
Computer-based Education

Research Laboratory

University of Illinois Urbana Illinois

SUMMARY OF TUTOR® COMMANDS

AND

SYSTEM VARIABLES

ELAINE AVNER

TENTH EDITION AUGUST 1981

SUMMARY ®
OF TUTOR COMMANDS AND SYSTEM VARIABLES

(tenth edition)

Elaine Avner

PLATO Services Organization

Computer-based Education Research Laboratory

Copyright (c) August 1981 by Elaine S. Avner

First Edition
Second Edition
Third Edition
Fourth Edition
Fifth Edition
Sixth Edition
Seventh Edition
Eighth Edition
Ninth Edition
Tenth Edition

May 1974
June 1975
November 1975
August 1976
May 1977
September 1977
July 1978
August 1979
September 1980
August 1981

PLATO®and TUTOR® are service marks
of the

University of Illinois

Acknowledgment

Many PLATO users have made suggestions on the form and content of this book.
I am especially grateful to members of the systems staff, the evaluation group,
and the PLATO Services Organization for helpful comments. Members of the systems
staff involved in development of jjTUTOR reviewed the section on terminal resident
processing.

Roy Lipschutz assisted with final preparation of the manuscript.

This summary is intended for the experienced author who needs a quick
reference for the form of a tag and for some of the restrictions on commands.
It does not discuss fine details of the TUTOR language. For such information
authors should refer to "aids" and to The TUTOR Language by Bruce Sherwood.

Each command includes a brief description of its purpose and a descrip­
tion of the tag. The standard form is

command brief description

command DESCRIPTION OF TAG (any explanatory comments)
or

command actual tag

Note: Additional comments about this command.

NOTE: General comments about groups of commands.

The commands are grouped into nine categories: calculating (C),
data keeping (D), file operations (F), judging (J), managing sites (M),
presenting (P), routing (R), sequencing (S), terminal resident processing (T).
Commands which are difficult to classify are placed in categories which
describe their most probable use.

Modifications to this book required by changes in the TUTOR language are
contained in lesson "aids" (press DATA and type: changes to summary). These
modifications, along with other notes of interest, may be inserted in the spaces
which have been provided between entries and on the additional pages at the end
of each section.

CONTENTS
Page

Abbreviations i
Classification of commands and system variables ii to xl
CALCULATING

Basic calculating Cl
System operations and functions C5
Random numbers C8
Information C10
Bit and character manipulation C12
Operations on lists C15
Data manipulation C19
System variables for calculating C23

DATA KEEPING
Requesting data DI
Classifying data D2
Transferring data D3
Signing on and off D5
System variables for data keeping D6

FILE OPERATIONS
Attaching and accessing files FI
Datasets and namesets F3
Group files F8
TUTOR files and code files FI5
System variables for file operations F19

JUDGING
Preparation for responding J1
Vocabulary lists J4
Modification of judging copy of response J5
Modification of judging procedure J6
Storing judging copy of response J8
Matching judging copy of response J9
Information on specific words in response J13
Unconditional Judgment J15
Reference to other units which may contain judging commands J16
Alteration of judgment J17
Alteration of feedback J18
System variables for Judging J19

MANAGING SITES
Site commands Ml
Station commands M3
System variables for managing sites M6

PRESENTING
Basic display Pl
Graphics P6
Relocatable graphics P8
Drawing graphs P10
Non-screen P16
Special display P19
System variables for presenting P21

ROUTING
Router lesson R1
Curriculum information R2
System variables for routing R3

SEQUENCING
Basic sequencing SI
Automatic sequencing S2
Key-initiated sequencing S7
Timing S9
Lesson connections and sections SI2
Lesson lists S15
Lesson annotation and debugging S17
System variables for sequencing S21

TERMINAL RESIDENT PROCESSING
Loading and running T1
Calculating T3
File operations T8
Judging T9
Presenting T15
Exchanging information with the central system T20
Routing T22
Sequencing T23
Running assembler programs T25
System variables for terminal resident processing T28

Appendix
Some limits associated with commands A1
Keyset A4
Keycodes, internal codes, alternate font memory locations A5
Powers of two A10

Alphabetical index
System variables II
Commands 12

c

D

F

J

M

P

R

S

T

A

I

i

Abbreviations and Notes

Below are listed the abbreviations used in the descriptions.

abbreviation definition

arg argument or tag entry
(b) blank tag
coarse character grid coordinates
CM central memory
CPU central processing unit
disk rotating magnetic disk storage unit
EM extended memory (e.g., ECS, AMS, ES
expr mathematical expression
finex,finey fine grid coordinates
num number of
(opt) optional argument
ppt programmable terminal (1ST and PPT)
string character string
var variable
vars variables

In conditional statements and in statements where a variable is set, suffixes
m, 0, 1, 2, etc., denote the minus condition, 0 condition, 1 condition,
2 condition, etc., e.g.,

match VAR,WORD0,WORD1,W0RD2
do EXPR,NAMEM,NAME0,NAME1,NAME2

In conditional statements the conditional expression is rounded (not truncated)
to the nearest integer. Thus, a value of -.4 results in the 0 condition being
selected rather than the minus condition.

Generally, wherever a tag entry may be a number, a mathematical expression will
also be accepted.

Command names are enclosed in dashes when they are referred to In descriptions,
e.g., -next-. Names of system variables are enclosed in double quotes, e.g.,
"zreturn". Key names are capitalized, e.g., NEXT. A function key name followed
by "1", e.g., NEXT1, indicates the SHIFT key is held while the key is pressed.

A word which is enclosed in single quotes designates information which is stored
left-justified in a variable, e.g., 'student' .

Commands labeled "non-executable" are active only when the lesson is being
condensed and not during execution.

When variables are used in the tag of certain commands which require names in
the tag, e.g., -area-, the variable must be enclosed in parentheses to indicate
that the information needed is the contents of the variable and not a character
string; e.g., -area (v3)- means the area whose name is contained in variable v3,
while -area v3- means the area whose name is v3.

Some commands use the text delimiter ({) to separate arguments (e.g., -writec-,
-packc-, etc.). This symbol is obtained by pressing MICRO and then comma.

ii

CALCULATING

Basic calculating Cl

define
Ivars
calc
calcc
calcs
addl
subl
zero
set

Operations on lists C15

sort
sorta
finds
findsa
inserts
deletes
find
findall

Random numbers C8

seed
randu
setperm
randp
remove
restore
modperm

Information C10

name
group
compute
clock
date
day
ctime
cdate

Bit and character manipulation C12

search
pack
packc
move
itoa
otoa
htoa
clean
recname

Data manipulation C19

block
transfr
common
coraload
comret
abort
commonx
initial
storage
stoload
reserve
release
backgnd
foregnd

System variables for calculating C23

1common
lstorag
zbpc
zbpw
zcpw
zcusers

iii

DATA KEEPING

Requesting data DI

dataon
dataoff

System variables for datakeeping D6

collecting data

Classifying data D2

area
output
outputl
setdat

dataon

session data

zsesset
zsesspt
zsessda

area data

Transferring data D3

readset
readd

Signing on and off D5

restart
finish
permit

aarea
aarrows
ahelp
ahelpn
aok
aokist
asno
aterm
atermn
atirae
auno

iv

FILE OPERATIONS

Attaching and accessing files FI

attach
detach
access

Datasets and namesets F3

datain
dataout
reserve
release
setnarae
getname
addnarae
rename
addrecs
delrecs
delname
names

TUTOR files and code files FI5

setname
getname
names
iospecs
getline
setline
parse

Group files F8

records
checkpt

System variables for file operations

zcheck
zfacc
zf ile
zftype
zfusers
zinfo
zline
znindex
znscpn
znsmaxn
znsmaxr
znsnams
znsrecs
zrecs
zrof f
zrstatn
zrtype
zrvars
zrvret
zsvars
zsvret
zwpb
zwpr
zxfile

F19

V

JUDGING

Preparation for
responding J1

Matching judging
copy of response J9

Alteration of
judgment J17

eraseu match judge
force answer
edit wrong
arrow answerc Alteration of
arrowa wrongc feedback J18
arheada answera
long wronga okword
jkey concept nowo rd
copy mi sc on markup
endarrow exact

exactc
exactv

markupy

Vocabulary lists J4 an sv System variables
wrongv for judging J19

list ansu
endings wrongu judging in general
vocabs touch
vocab touchw anscnt

or ansok
ans jcount

Modification of judging judged
copy of response J5 key

Information on specific ntries
bump words in response J13 ztouchx
put ztouchy
putd getword
putv getmark verbal responses
close getloc
loada compare capital

entire
extra

Modification of judging Unconditional judgment J15 order
procedure J6 phrase

ok spell
specs no vocab

ignore wcount

Storing judging copy of numerical responses
response J8 Reference to other units

which may contain opcnt
store judging commands J16 varcnt
storeu formok
storen join
storea iarrow
open iarrowa

vi

MANAGING SITES

Site commands Ml System variables

site set zlsac
site info zrunner
site active
site stations

M6

Station commands M3

station
station
station
station
station
station
station

info
status
send
logout
stopl
off
on

vii

PRESENTING

Basic display Pl Relocatable graphics P8 Non-screen P16

at rorigin slide
atnm rat audio
write ratnra Play
writec rdot record
show rdraw enable
showz rbox disable
showt rvector ext
showe rcircle extout
showo xout
showh xin
showa Drawing graphs P10 beep
hidden saylang
text gorigin say
erase axes sayc
mode bounds
size scalex
rotate scaley Special display
delay lscalex
lang lscaley tabset
inhibit labelx micro
char labely charset
plot markx chartst

marky lineset
polar altfont

Graphics P6 gat
gatnm

dot gdot System variables
draw graph for presenting
box gdraw
fill gbox mode
vector gcircle size
window gvector sizex
circle vbar sizey
circleb hbar where

delta wherex
funct wherey

zlang

viii

ROUTING

Router lesson R1 System variables for routing R3

route
routvar
allow

errtype
ldone
lscore

Curriculum information

lstatus
rcallow

R2 router
rstartl

lesson rstartu
score
status

rvallow
zcurric
zleserr

ix

SEQUENCING

Basic sequencing SI Timing S9 System variables
for sequencing

unit keylist
unitop pause args
entry collect backout

getcode baseu
keytype clock

Automatic sequencing S2 time fromnum
timel key

jump timer lessnum
goto press lleslst
do catchup llesson
join break mainu
return cpulim mallot
exit muse
iferror nhelpop
imain Lesson connections proctim
branch and sections S12 ptime
doto sitenam
if use station
elseif jumpout tactive
else args user
endif from usersin
loop lessin zaccnam
endloop in zbatch
outloop notes zcondok
reloop cstart zfroml

estop zfromu
estop* zgroup

Key-initiated sequencing S7 zid
zlesson

next, nextl Lesson lists S15 zpnfile
back, backl zpnotes
stop leslist zretrnu
nextnow addlst zreturn
nextop, nextlop removl zsnfile
backop, backlop reserve zsnotes
help, helpl release zsysid
data, datal lname zsystem
lab, labl findl zterm
helpop, helplop ztouchx
dataop, datalop ztouchy
labop, lablop Lesson annotation ztzone
term and debugging SI7 zunit
termop zusers
base *
end c

$$
change
step
*list

S21

X

TERMINAL RESIDENT PROCESSING

Loading and running

ptutor
unit
loadu
runu
haltu

Calculating T3

define
calc
calcc
calcs
zero
set
compute
randu
setperm
randp
remove
restore
block
find
pack
search
searchf

File operations T8

attach
datain
dataout
file

Judging T9

darrow
arrow
endarrow
long
force
jkey
copy
putd
specs
keyword
answer
wrong
answerc
wrongc
exact
exactw
ansv
wrongv
ok
no
or
ifmatch
iarrow
ijudge
judge
okword
noword
getmark
getloc

Presenting T15

write
writec
show
showt
showb
showo
showh
showa
erase
mode
size
rotate
tabset
text
textn
gfill

Presenting (cont.)

charlim
charset
char
getchar
inhibit
allow
xout
xin
intrupt
at
atnm
circle
circleb
draw
dot
box
plot
fill
vector
enable
disable
play
record
slide
beep
gorigin
axes
bounds
scalex
scaley
labelx
labely
raarkx
marky
gdot
gdraw
gbox
gat
gatnm
vbar
hbar
gvector
gcircle
rorigin
rat
ratnm
rdot
rdraw
rcircle

TERMINAL RESIDENT PROCESSING
continued on next page

xi

TERMINAL RESIDENT PROCESSING (cont. from previous page)

Exchanging Information Sequencing
with central system T20

jumpn
xmit jumpout
receive press
sendkey getkey
trap clrkey

keytype
if

Routing T22 elseif
else

lesson endif
score loop

reloop
outloop
endloop
cstart
estop
estop*
use
keylist
next
next 1
back
backl
help
helpl
data
datal
lab
labl
stop
imain
goto
do
jump
base
doto
pause
branch

T23 Running assembler
programs T25

pptaddr
pptload
ppttest
pptclr
pptdata
pptout
pptrun
ppthalt

System variables for
terminal resident
processing T28

zanscnt
zcomm
zdata
zentire
zextra
zjcount
zjudged
zkey
zldone
zmode
zntries
zopcnt
zorder
zrecs
zreturn
zrouten
zscore
zspell
ztbase
ztmem
ztraemr
ztprog
ztrap
zttype
zwcount
zwherex
zwherey

CALCULATING

CALCULATING Cl

Basic calculating

define (non-executable) permits an author to rename variables and to define
mathematical functions, arrays, and constants for a lesson and to
specify those available for student use; defined variables must
physically precede any reference to the variables in the lesson

for example:

define DEFNAME
NAMEl=vl,NAME2=n2,NAME3=65,NAME4=2(NAME1+NAME3),...
FUNC(x,y,...)=some function of x, y, etc., where x, y, etc.
are not already defined, although the expression on the right
of the equal sign may contain previously defined names

(up to 6 arguments are permitted)

The following definitions allow use of segmented variables.

segment,NAME=STARTING VAR,NUM BITS PER BYTE,signed (opt) or
segment,NAME=STARTING VAR,NUM BITS PER BYTE,s (opt)
segmentv,NAME“STARTING VAR,STARTING BIT POSITION,

NUM BITS PER BYTE,s (opt)
(Starting variable address and byte size cannot be
variables. Byte size is from 1 to 59. If the last
argument ("signed" or "s") is included, negative as well as
positive integers may be stored. In vertical segment,
starting bit position may be from 1 to 60.)

The following definition sets up a field of less than 60 bits.

segmentf,NAME=VAR,STARTING BIT POSITION,NUM BITS.s (opt)
(Restrictions are those for segmented variables.
Field variables are not indexed.)

The following definitions allow use of arrays.

array,NAME(SIZE)“STARTING VAR (SIZE gives number of
variables required)

array,NAME(NUM ROWS,NUM COLUMNS)“STARTING VAR
(number of variables equals rows x columns)

array,NAME(FIRST ELEMENT;LAST ELEMENT)“STARTING VAR
array,NAME(FIRST ROW ELEMENT,FIRST COLUMN ELEMENT;LAST

ROW ELEMENT,LAST COLUMN ELEMENT)=STARTING VAR

Arrays may also be defined with segmented variables. The form is
that for vertical segments. For example:

arraysegv,NAME(SIZE)=STARTING VAR,STARTING BIT POSITION,
NUM BITS PER BYTE,s (opt)

Up to 255 elements are permitted in an array.

(-define- continued on next page.)

C2

define student
all defines necessary for student responses, including units

units,UNITl,UNIT2,... (maximum of 10 units, such as gram,
meter, second,...)

(The define set "student" may also include abbreviations
and equivalences involving these units. See -storeu-,
-ansu-, and -wrongu- for these applications.)

To merge a previous set of definitions (SETA) with a set being
defined at this point in the program (SETB):

define SETB,SETA
definitions in SETB

To purge previous define sets:

define purge,DEFNAME (discards define set named)
define purge (discards all define sets except "student")

Note: Approximately 1500 definitions are permitted in active define
sets, fewer if definitions are complicated. (Define set
"student" may contain approximately 500 definitions.) Defined
names and names of define sets cannot exceed 7 characters,
cannot contain mathematical operators, and must start with a
letter. Up to 5 define sets may be referenced. When a 6th set
is activated, all earlier sets except "student" are discarded.

A local define set may be declared as a continuation of a -unit-
command. (The -define- command is omitted.) Features described
above are available. In addition, local variables may be declared.
Sample formats for local variables are:

unit someu
NAME1,NAME2,NAME3(SIZE)
NAME4=C0NSTANT
floating:NAME5,NAME6,NAME7(SIZE)
integer,NUM BITS:NAME8,NAME9
integer,NUM BITS,signed:NAME10
integer:NAME11

To merge the local define set with the "global" define set:

unit someu
merge,DEFNAME (merges with the define set named)

or

unit someu
merge,previous (merges with the previous define set)

C3

Ivars

calc

calcc

(non-executable) sets up a buffer in memory for local variables for
the lesson; required if the lesson uses local variables; must appear
in the ieu before any references to a unit

Ivars SIZE OF BUFFER (maximum size of 128)

assigns the value of the expression on the right side of the assign
arrow to the variable or array on the left side, or packs up to 10
characters into an integer variable

for example:

calc VAR<= EXPR
calc VAR^ "STRING" (right-justlfled, use n-variable)
calc VAR4= 'STRING' (left-justified, use n-variable)
calc ARRAYNAME4 EXPR (includes standard arithmetic operations,

bit operations, and logical operations on entire arrays
and on array elements, and array functions operating on
entire arrays)

calc VAR 4=ARRAYNAME1 ° ARRAYNAME2
calc ARRAYNAMEl<= ARRAYNAME2 X ARRAYNAME3

Note: See section on SEQUENCING, Automatic sequencing for -doto-,
-branch-, -if-, -loop-, and related directives. These are
calc-type commands which allow branching within a unit.

does one of several calculations depending on the rounded value
of a conditional expression

calcc EXPR,VAR1<= EXPRM,VAR2<= EXPR0,VAR3^= EXPRl, ,VAR4<= EXPR3

calcs sets a variable to one of several values depending on the rounded
value of a conditional expression

calcs EXPR,VAR4=EXPRM,EXPR0,EXPRl,EXPR2,,EXPR4

NOTE: Up to 61 calculations may be performed with -calcc- or -calcs-.
A blank tag entry (,,) means no calculation is done for the
corresponding value of the conditional expression.

addl adds 1 to the specified variable; can be used with array elements
but not with entire arrays

addl VAR

C4

subl

zero

set

subtracts 1 from the specified variable; can be used with array
elements but not with entire arrays

subl VAR

sets to zero a single variable or a set of consecutive variables;
can be used with array elements but not with entire arrays

zero VAR
zero STARTING VAR,NUM VARS (cannot be used with segmented

variables or segmented arrays)

sets values of consecutive variables starting at the specified
variable, or sets values of matrix elements starting at the
specified element (starts at the first element if no element is
specified); can be used to set segmented arrays but not segmented
variables

set STARTING VAR4= VALUE1,VALUE2,VALUE3,...
set ARRAYNAME^ VALUE1,VALUE2,VALUE3,...
set ARRAYNAME(ROW,COLUMN)<= VALUE1.VALUE2,VALUE3,...

Note: Up to 61 values may be set with a single -set- command.

C5

Operations and symbols used in calculations

addition +

subtraction

multiplication x or * (implied multiplication is permitted, e.g., 5a)

division -j or I

dot product of two arrays °

cross product of two arrays X

parentheses, brackets ()»[]»{}

exponentiation ** or superscript or shift-superscript (e.g., a^)

assignment of a value to a variable 4=

tt = pi = 3.14159...

0 = degree sign; indicates a number is interpreted in degrees, e.g., 30°;
number x 1° converts number to radians;
number t 1° converts number to degrees

Address of a variable may be an expression; i.e., v(EXPR) is permitted,
where EXPR is rounded to the nearest integer.

Precedence of operations (in brief)

operations within parentheses

exponentiation

multiplication

division

addition and subtraction

In general with anything but very simple expressions, parentheses should
be used freely.

NOTE: The computer has approximately 14-digit accuracy.
Values of floating-point numbers range from about ±10~293 to ±10+322.
Values of integers range from about -10l? to +10l?.
However, multiplication and division of large integer values may give
erroneous results because of limitations on integer arithmetic.

C6

System functions (argument may be an expression)

abs(X)
arctan(X)

cos(X)
exp(X)

frac(X)
int(X)

log(X)
ln(X)
round(X)
sign(X)
sin(X)
sqrt(X)
varloc(X)

zfinex(X)
zfiney(X)

fractional part of X
integer part of X

absolute value of X
inverse tangent, result in radians, range —tt/2 to +ir/2 ;
for result in degrees, use arctan(X)/l°
cosine of X, X in radians; use cos(X°) when X is in degrees
ex

X is first rounded to the nearest integer
if X is within 10“9 of the integer for
|X|<105 or within (10“ 1\|X|) of the
integer for |X|>10^ (approximately)

common logarithm of X (base 10)
natural logarithm of X (base e)
rounded value of X
= -1 for X < -10-9; = 0 for -10-9 < X £ 10“9; = +1 for X > 10-9
sine of X, X in radians; use sin(X°) when X is in degrees
square root of X
address of variable X (X may be a student variable, central memory
variable, router variable, or defined variable)
fine-grid x location of character-grid location "X"
fine-grid y location of character-grid location "X"

Logical operations and functions (logical "true" is -1; logical "false" is 0)

Y
Y
Y
Y
Y

X > Y
XandY
XorY
not(X)

equality is "true" if
|X-Y|<10“9 for |X|<100 or
if |X-Y|<(10-11x|X|) for |X|>100
(approximately)

only if both X and Y are "true*

equal to
not equal to
less than or equal to
greater than or equal to
less than
greater than
logical "and"; result is "true1
logical "or"; result is "true" if either X or Y or both are "true'
reverse of truth value of X: if X=0, not(X)=-l; if X=-l, not(X)=0

Bit operations and functions (use with n-variables)

XarsY
XclsY
X$mask$Y
X$union$Y
X$diff$Y
bitcnt(X)
comp(X)
lmask(X)
rmask(X)

shifts X to the right by Y bit positions
shifts X to the left (circularly) by Y bit positions
sets bits where bits are set in both X and Y
sets bits where bits are set in either X or Y or both
sets bits where bits are set in either X or Y but not both
number of bits set in X
one's complement of X (bit reversal)
lef t-justified number with X bits set 'I X ranges from
right-justified number with X bits setj 0 to "zbpw"

System functions are continued on next page

C7

Array functions

And(X)
Max(X)
Min(X)
Or(X)
Prod(X)
Rev(X)
Sum(X)
Transp(X)

"true" (=-l) if all elements of array X are "true"
largest element in array X
smallest element in array X
"true" (=-l) if any element of array X is "true"
product of all elements in array X
reverse of array X; i.e., last element is now first, etc.
sum of all elements in array X
transpose of array X; i.e., rows and columns are interchanged

NOTE: Because of the finite accuracy of any computer, rounding occurs with
operations with fractional values (v-variables), giving results which
may be off by only one or two bits but which can lead to serious errors
The tolerances indicated with certain functions and logical operations
are designed to avoid such problems by ignoring these least significant
bits. However, there is no general solution to this inherent problem,
and users must design checks for specific applications.

Some special numerical values:

1/0 = o3777 0000 0000 0000 0000
-1/0 = o4000 7777 7777 7777 7777
0/0 = ol777 0000 0000 0000 0000

-0/0 = o6000 7777 7777 7777 7777

C8

Random numbers

seed specifies a seed for generation of random numbers with -randu- and
-randp-; remains in effect until execution of another -seed- command

seed VAR CONTAINING THE SEED VALUE
seed (B) (clears former value; specifies normal system seed)

randu selects a random number, sampled with replacement, and places it in
the specified variable

randu VAR,MAXIMUM (selects Integer from 1 to MAXIMUM;
0 < MAXIMUM < 246)

randu VAR (selects a number from 0 to 1; if the tag is an
n-variable, a value 0 or 1 is returned)

NOTE: The next four commands are generally used together to provide random
numbers without replacement.

setperm single-argument -setperm- sets up two copies of a list of integers
from 1 to the specified value for sampling without replacement; the
first copy of the list is affected by -randp-; the second copy of the
list is affected by -remove- and -restore-; two-argument -setperm-
sets up one list only; a separate copy of the list should be
maintained for use with -remove- and -restore-

setperm MAXIMUM INTEGER IN LIST (0 < MAXIMUM < 120)
setperm MAXIMUM INTEGER IN LIST,STARTING VAR OF LIST

(for list length > 120 and for special-purpose sampling;
the first variable of the list contains the number of
elements remaining in the list, and each succeeding
variable contains 60 elements in the list; the number of
variables required is: 2 + Int[(MAXIMUM - l)/60]; list
length cannot exceed 3000 if -randp- is used for sampling)

randp selects a random integer without replacement from the first copy of
the list set up by -setperm- and places it in the specified variable

randp VAR (with 1-argument -setperm-)
randp VAR FOR STORING VALUE,STARTING VAR OF LIST

(with 2-argument -setperm- or calculated list)

Note: With either form of -randp- the value returned is 0 if the
first copy of the list is exhausted.
With two-argument -randp-, the list length cannot exceed 3000.

C9

remove

restore

modperm

removes the specified value from the second copy of the list set up
by single-argument -setperm- or from the copy of the list maintained
for use with two-argument -remove-

remove INTEGER TO BE REMOVED (with 1-argument -setperm-)
remove INTEGER TO BE REMOVED,STARTING VAR OF COPY OF LIST

(with 2-argument -setperm-)

restores the specified value to the second copy of the list set up
by single-argument -setperm- or to the copy of the list maintained
for use with two-argument -restore-

restore INTEGER TO BE RESTORED (with 1-argument -setperm-)
restore INTEGER TO BE RESTORED,STARTING VAR OF COPY OF LIST

(with 2-argument -setperm-)

(no tag) replaces the first copy of the list with the current version
of the second copy of the list, which may have been operated on by
-remove- and -restore-; paired with single-argument -setperm- only;
to simulate -modperm- with two-argument -setperm-, use -block- or
-transfr- to replace the first copy with the second copy of the list

C10

Information

name places the signon name of the user (up to 18 characters) left-
justified in two consecutive variables starting at the specified
variable with octal zero fill in unused positions

name STARTING VAR (requires two consecutive variables)

group places the signon group of the user left-justified in the specified
variable, up to 8 characters with octal zero fill in unused positions

group VAR

compute compiles the specified character string into machine code, executes
the code, and stores the result in the specified variable; the end
of the character string is determined by the specified number of
characters, by six bits equal to 0 (o00), or by a comma in the string,
whichever is attained first; the fourth argument is a pointer to the
compiled code and is not required if the string is compiled only once

compute ARG1,ARG2,ARG3,ARG4 (opt) (invalid expression does not
compile; once compiled, no recompilation is done unless
the pointer is zeroed)

ARG1 = variable for storing the numerical result
ARG2 = character string to be compiled
ARG3 = number of characters in the character string
ARG4 = variable for the pointer to the compiled code (optional)

Note: ARG2 may be a left-justified character string enclosed in
single quotes (<10 characters) or the starting variable of a
left-justified stored character string. The string may contain
up to 100 characters. A "student" define set is required if
the string is to be created during execution of the program.

clock puts a character string in the specified variable giving time on a
24-hour clock in the format (space)hour.minute.second. (see also
the system variable "clock")

clock VAR WHERE STRING IS STORED (use -showa- to display)

date puts a character string in the specified variable for the current date
in the format (space)month number/day/last two digits of year(space)

date VAR WHERE STRING IS STORED (use -showa- to display)

Cll

day places in the specified variable the number of days elapsed since
midnight December 31, 1972 to the nearest 10-^ day (approximately
.1 second)

day VAR WHERE VALUE IS STORED (use a v-variable)

ctime converts the format for the time

ctime INPUT;OUTPUT;FORMAT (opt)

INPUT is the time to be converted and consists of one of the
following forms:

output from -day- command (one variable; use v-variable) or
output from -clock- command (one variable) or
HOUR,MINUTE (two variables separated by a comma) or
HOUR,MINUTE,SECOND (three variables separated by commas)

OUTPUT is the starting variable for storing the string
containing the converted time (two consecutive variables are
required); result is left-justified with zero fill;

if FORMAT is 24, result is hr.mn.sc (or hr.mn if
2-variable input is used)
if FORMAT is 12, result is hr:mn:sc pm (or am) (or hr:mn pm
if 2-variable input is used); if hr is in range 1 to 9,
the leading zero is converted to a space

FORMAT is 12 or 24; if omitted the default for the system is
used; default for the cerl system is 12

cdate converts the format for the date

cdate INPUT;OUTPUT;FORMAT (opt)

INPUT is the date to be converted and consists of one of the
following forms:

output from -day- command (one variable; use v-variable) or
output from -date- command (one variable) or
DAY,MONTH (two variables separated by a comma) or
DAY,MONTH,YEAR (three variables separated by commas)

OUTPUT is the variable for storing the string containing the
converted time; result is left-justified with zero fill;

if FORMAT is 1, result is mo/da/yr (or mo/da if 2-variable
input is used)
if FORMAT is 2, result is da/mo/yr (or da/mo if 2-variable
input is used)
if FORMAT is 3, result is yr/mo/da (or mo/day if 2-variable
input is used)
a leading zero is converted to a space

FORMAT is 1, 2, or 3; if omitted the default for the system is
used; default for the cerl system is 1 (i.e., mo/da/yr)

C12

Bit and character manipulation

search searches a character buffer for a specified object character string

search ARG1,ARG2,ARG3,ARG4,ARG5,ARG6

ARG1 = object string (left-justified)
ARG2 = number of characters in the string (<10 characters)
ARG3 = starting variable of the buffer to be searched
ARG4 = total number of characters in the buffer
ARG5 = relative character position at which to start search
ARG6 = variable for storing the relative character position of

the first occurrence of the object string

search ARG1,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7

ARG1 = object string (left-justified)
ARG2 = number of characters in the string (<10 characters)
ARG3 = starting variable of the buffer to be searched
ARG4 = total number of characters in the buffer
ARG5 = relative character position at which to start search
ARG6 = variable for storing the total found count
ARG7 = number of variables following ARG6 for storing relative

character positions where the object string is found
(may be less than total count)

Note: In both versions of -search- the relative found location is -1
if the object string is not found. In the second version the
count is 0 if the string is not found. Relative position of
the first character is 1, of the second character, 2, etc.
If ARG4 (length of buffer) is negative, a backwards search
is done.

pack packs a character string starting in the specified variable; the string
will be left-justified with octal zero fill in unused positions; if the
character count is not desired, the field is left blank

pack STARTING VAR FOR STORING STRING|VAR FOR STORING
CHARACTER COUNT$STRING

pack STARTING VAR FOR STORING STRING||STRING

Note: Use n-variable(s) for packing the string if subsequent
comparison for equality with another string is done. (If the
character string is packed for other purposes, v-variables
are acceptable.) Segmented variables cannot be used.
Embedded -show- (and related embeds) may be Included in the
string. Up to 500 characters (including embedded -show-) may
be packed, but the tag is limited to one line of code.

C13

packc

move

itoa

otoa

htoa

packs one of several character strings into a variable, depending
on the rounded value of a conditional expression; the string will
be left-justified with octal zero fill in unused positions;
if the character count is not desired, the field may be left blank;
blank argument for the character string leaves the variable(s)
unchanged for that value of the conditional expression

packc EXPR$STARTING VAR FOR STORING STRING$VAR FOR STORING
CHARACTER COUNT$STRINGM$STRING0$STRINGl|$STRING3...

Note: Up to 100 character strings may be listed. (See -pack- for
other options and restrictions.)

moves character(s) from a specified character position in a
character string to a specified position in another character string

move FROM STARTING VAR,FROM STARTING POSITION,TO STARTING
VAR,TO STARTING POSITION,NUM CHARACTERS (opt)

move ’STRING' .FROM STARTING POSITION,TO STARTING VAR,TO
STARTING POSITION,NUM CHARACTERS (opt)

Note: If not specified, number of characters is 1. Maximum
number of characters is 5000. Positions may be >10.

converts an integer to a character string, left-justified with
octal zero fill In unused positions

itoa NUMBER,STARTING VAR FOR STORING STRING,VAR FOR STORING
NUM CHARACTERS (opt)

Note: Non-integer values are rounded to the nearest integer before
conversion to a character string.

converts a number from octal format to alphanumeric format (i.e.,
to a character string) for the number of octal digits, if given
(digits are counted from the right end of the number)

otoa NUMBER,STARTING VAR FOR STORING STRING,NUM DIGITS (opt)

Note: Number of digits, if omitted, is 20.
If number of digits <10, 1 variable is used for storing the
string; otherwise 2 variables are used.

similar to -otoa- but for hexadecimal to alphanumeric conversion

htoa NUMBER,STARTING VAR FOR STORING STRING,NUM DIGITS (opt)

Note: Number of digits, if omitted, is 15.
If number of digits <10, 1 variable is used for storing the
string; otherwise 2 variables are used.

C14

clean replaces the following character codes in a buffer with o55 (space):
o00, 066 (subscript), o67 (superscript), o70 (shift),
o71 (carriage return), o74 (backspace), o75 (font), o76 (access)

clean STARTING VARIABLE,NUM VARS (opt) (NUM VARS, if omitted, is 1)

recname takes the 18-character string specified by the first argument,
removes characters not allowed in signon names, and returns the
modified string in variables specified by the second argument; each
string requires two variables; characters allowed are: lower-case
letters, numerals, apostrophes, accent marks, asterisks, pluses,
minuses, and blanks (except in the first and last position and in
contiguous positions); end of the string is marked by o00

recname STARTING VAR OF

Note: zreturn = -1 if
= 0 if
= +1 if

STRING,STARTING VAR OF MODIFIED STRING

the string is modified successfully
there are no characters in the initial string
there are no characters in the modified string

Note: A legal signon name must consist of at least one symbol which
is a letter or numeral.

C15

Operations on lists

sort

sorta

arranges a list of entries stored in consecutive variables in
ascending order according to the value of the specified sort field

sort ARG1;ARG2,ARG3,ARG4,ARG5,ARG6 (opt)
ARG1A;ARG2A (optional line; allows simultaneous sorting

of an associated list of entries)

ARG1 = starting location; may be:
STUDENT VAR (v or n) or
CM VAR (vc or nc) or
c,EM COMMON LOCATION or
s,EM STORAGE LOCATION

ARG2 = number of entries in list
ARG3 = number of variables per entry (or increment between

entries); value from 1 to 200
ARG4 = starting bit position of sort field
ARG5 = number of bits in sort field
ARG6 = mask on sort field (optional)
ARG1A = starting location (see ARG1 for details) (optional)
ARG2A = number of variables per entry (optional)

Note: The field for numerical sorting may not extend across
boundaries of variables.

arranges a list of entries stored in consecutive variables in
alphabetical order according to the internal codes for the
characters in the specified sort field

sorta ARG1;ARG2,ARG3,ARG4,ARG5,ARG6 (opt)
ARG1A;ARG2A (optional line; allows simultaneous sorting

of an associated list of entries)

ARG1 = starting location; may be:
STUDENT VAR (v or n) or
CM VAR (vc or nc) or
c,EM COMMON LOCATION or
s,EM STORAGE LOCATION

ARG2 = number of entries in list
ARG3 = number of variables per entry (or increment between

entries); value from 1 to 200
ARG4 = starting character position of sort field
ARG5 = number of characters in sort field
ARG6 = mask on sort field (optional)
ARG1A = starting location (see ARG1 for details) (optional)
ARG2A = number of variables per entry (optional)

Note: The field for alphabetical sorting may extend across
boundaries of variables. However, the mask can affect only
one variable.

C16

finds performs a binary chop search on a sorted numerical list

finds ARG1,ARG2;ARG3,ARG4,ARG5,ARG6,ARG7,ARG8 (opt)

ARG1 = starting variable containing the object of the search
(the object must have the same length and relative
position as the list entry)

ARG2 = starting location of the list; may be:
STUDENT VAR (v or n) or
CM VAR (vc or nc) or
c,EM COMMON LOCATION or
s,EM STORAGE LOCATION

ARG3 = number of entries in the list
ARG4 = number of variables per entry (or increment between

entries); value from 1 to 500
ARG5 = starting bit position of the search field
ARG6 = number of bits in the search field
ARG7 = variable for storing the relative location where the

object is found (1st entry is 1, 2nd, 2, etc); if the
object is not found, the variable is set to the negative
of the position where the object would have occurred

ARG8 = mask on search field (optional)

findsa performs a binary chop search on a sorted alphabetical list

findsa ARG1,ARG2;ARG3,ARG4,ARG5,ARG6,ARG7,ARG8 (opt)

ARG1 = starting variable containing the object of the search
(the object must have the same length and relative
position as the list entry)

ARG2 = starting location of the list; may be:
STUDENT VAR (v or n) or
CM VAR (vc or nc) or
c,EM COMMON LOCATION or
s,EM STORAGE LOCATION

ARG3 = number of entries in the list
ARG4 = number of variables per entry (or increment between

entries); value from 1 to 500
ARG5 = starting character position of the search field
ARG6 = number of characters in the search field
ARG7 = variable for storing the relative location where the

object is found (1st entry is 1, 2nd, 2, etc); if the
object is not found, the variable is set to the negative
of the position where the object would have occurred

ARG8 = mask on search field (optional)

C17

inserts

deletes

inserts contents of specified buffer into a list of entries stored
in consecutive variables; shifts the remainder of the list down

inserts ARG1,ARG2;ARG3,ARG4,ARG5,ARG6 (opt)
ARG1A,ARG2A;ARG3A (optional line; allows simultaneous

insertion into associated list)

ARG1 = starting variable containing object to be inserted
(the object must have the same length as a list entry)

ARG2 = starting location of the list; may be:
STUDENT VAR (v or n) or
CM VAR (vc or nc) or
c,EM COMMON LOCATION or
s,EM STORAGE LOCATION

ARG3 = number of entries in the list
ARG4 = number of variables per entry (or increment between

entries); ARG4 * ARG6 = value from 1 to 500
ARG5 = relative position in list at which to insert object

(must be value from 1 to 1+length of list)
ARG6 = number of entries to insert (optional; default is 1)
ARG1A = starting variable containing object to be inserted

(optional)
ARG2A = starting location (see ARG2 for details) (optional)
ARG3A = number of variables per entry (optional)

deletes the entries at the specified position in a list of entries
stored in consecutive variables; shifts the remainder of the list
up and fills the last entries with zeros

deletes ARG1;ARG2,ARG3,ARG4,ARG5 (opt)
ARG1A;ARG2A (optional line; allows simultaneous deletion

from an associated list)

ARG1 = starting location; may be:
STUDENT VAR (v or n) or
CM VAR (vc or nc) or
c,EM COMMON LOCATION or
s,EM STORAGE LOCATION

ARG2 = number of entries in the list
ARG3 = number of variables per entry (or increment between

entries); value from 1 to 500
ARG4 = relative position in the list of the entry to be

deleted (must be a value from 1 to length of list)
ARG5 = number of entries to delete (optional; default is 1)
ARG1A = starting location (see ARG1 for details) (optional)
ARG2A = number of variables per entry (optional)

NOTE: Commands -inserts- and -deletes- may be used on sorted or unsorted lists

C18

find searches a list of consecutive variables for the first variable
containing the specified bit pattern

find ARG1,ARG2,ARG3,ARG4,ARG5 (opt),ARG6 (opt)

ARG1 = object bit pattern 60 bits; may be variable)
ARG2 = starting variable in the list
ARG3 = number of variables in the list
ARG4 = variable for storing the relative location where the

object is found (relative to the beginning of the list)
ARG5 = increment between variables (optional)
ARG6 = mask (optional)

findall searches a list of consecutive variables for all variables containing
the specified bit pattern

findall ARG1,ARG2,ARG3,ARG4,ARG5,ARG6 (opt),ARG7 (opt)

ARG1 = object bit pattern (< 60 bits; may be variable)
ARG2 = starting variable in the list
ARG3 = number of variables in the list
ARG4 = variable for storing total found count
ARG5 = number of variables following ARG4 for storing the

relative locations where the object is found (relative
to the beginning of the list)(may be less than the
total count)

ARG6 = increment between variables (optional)
ARG7 = mask (optional)

NOTE: Use n-variables with -find- and -findall-. Segmented variables may not
be used.
Increment, if omitted, is 1. Negative increment causes a backwards
search from the last variable in the list. (When search is backwards,
relative locations are still counted from the beginning of the list.)
If the mask is omitted, the entire variable is compared with the object
bit pattern. If a mask is used, the increment must be given, even if
it is 1.
Relative location of the first variable is 0, of the second variable, 1,
etc.
With -find-, if the bit pattern is not found, the found location is -1.
With -findall-, if the bit pattern is not found, the count is 0 and the
first following variable is -1.

C19

Data manipulation

block copies a set of consecutive student variables (v, n) or central
memory variables (vc, nc) into another set of consecutive variables

block FROM STARTING VAR,TO STARTING VAR,NUM VARS

transfr transfers data between v- and n-variables (student variables),
vc- and nc-variables (central memory variables), EM common,
EM storage, or vr- and nr-variables (router variables) (-comload-
and/or -stoload- must be in effect with central memory variables)

transfr FROM STARTING LOCATION;TO STARTING LOCATION;NUM VARS
(general form)

Any of the following may be used in the first two arguments of the tag

STUDENT VAR (v or n)
common,EM COMMON LOCATION or c,EM COMMON LOCATION
storage,EM STORAGE LOCATION or s,EM STORAGE LOCATION
CM VAR (vc or nc)
router,EM ROUTER COMMON LOCATION (when placed in "from"

position, router lesson must contain -allow read-;
when placed in "to" position, router lesson must contain
-allow write-)

routvars,EM ROUTER VAR LOCATION (may be placed only in
"from" position; router lesson must contain
-allow read rvars-)

ROUTER VAR (legal only when -transfr- command is in the
router lesson)

for example:

transfr vl;c,23;10

transfr v6;vc51;9

transfr s,11;c,100;21

(transfers variables vl through vl0 to EM
common locations 23 through 32)
(transfers variables v6 through vl4 to
variables vc51 through vc59)
(transfers EM storage locations 11 through
31 to EM common locations 100 through 120)

Note: Limit to length (NUM VARS) which may be transferred is set by:
tag of -common- or -storage- (when referencing EM) or
length of -comload- or -stoload- (when referencing CM

variables) or
150 (when referencing student variables) or
tag of -routvar- (when referencing router variables)

NOTE: For this type of operation, -block- and -transfr- are very fast

C20

common (non-executable) sets up storage space which is accessible to all
users in a lesson; in central memory the variables are referenced by
vc and nc; common codewords must match when the common blocks are in
a different lesson from the -common- command

common NUM WORDS,OPTIONS (opt) (temporary common; no common blocks)
common ,COMMON NAME,NUM WORDS,OPTIONS (opt)

(-common- and common blocks are in the same lesson)
common LESSON NAME,COMMON NAME,NUM WORDS.OPTIONS (opt)

(LESSON NAME is the lesson containing the common blocks)

Note: Maximum length is 8000 words. For length < 1500, loading
and unloading are automatic unless altered by -comload-
or optional arguments "no load" or "read only".
For length > 1500, -comload- must be used for access to
central memory variables. Either or both of the following
OPTIONS may be added to the tag of -common-:

no load (cancels automatic loading of common from EM to CM)
read only (prevents transfer of common from CM to EM)

The following OPTION may be used only with permanent common:

checkpt (causes common to be returned to disk approximately
every 8 minutes)

coraload provides automatic loading and unloading of common between central
memory and EM during each time slice; required if common length
exceeds 1500 and central memory variables must be accessed

comload STARTING CM VAR (vc or nc),EM COMMON LOCATION,NUM VARS
(maximum of 1500 variables)

comload (B) (unloads CM variables and turns off further automatic
loading until another -comload- command is executed)

for example:

comload vc22,10,8 (transfers vc22 through vc29 from and to EM
common locations 10 through 17)

comret (no tag) returns to disk the common specified by the lesson

Note: zreturn -1 if common is successfully returned
0 if no common is specified for this lesson

+1 if common cannot be returned

abort prevents return of information to disk

abort common
abort record (with student record; sets "user" to 'sabort')
abort autocheck (with student record; sets "user" to 'snockpt')
abort leslist

C21

commonx

initial

storage

similar to -common- except that -commonx- is executable; if the
-commonx- command and common blocks are in different lessons, the
common codewords must match or the codeword argument must be given;
the codeword argument must match the common codeword on the lesson
containing the blocks; if any optional arguments are included, the
fields for intervening missing arguments must be present

commonx ,COMMON NAME,NUM WORDS (opt),CODEWORD (opt).OPTIONS (opt)
(-commonx- and common blocks are in the same lesson)

commonx LESSON NAME,COMMON NAME,NUM WORDS (opt).CODEWORD (opt),
OPTIONS (opt)

commonx <LESLIST POSITION>,COMMON NAME.NUM WORDS (opt),
CODEWORD (opt),OPTIONS (opt)

commonx (B) (disconnects current common, copies it to disk if no
other users are in the common, and turns off comloading)

Note: Variable name and codeword arguments must be enclosed in
parentheses.
If NUM WORDS is omitted and common is in EM, the EM length is
used; if common is not in EM, entire common is read from disk.
OPTIONS are the same as for -common-.

zreturn = -1
= 0
= 1
= 2
= 3

= 4

if execution is successful
if the common is not found or no common is in use
if no codewords match
if the lesson already has a common
if the length of the EM version of the common
is different from the declared length
If the declared length is illegal

specifies a unit to be executed by the first user to encounter this
command when a lesson or common is first brought into EM

initial common,UNIT NAME (not executed if common is in another
lesson which is already in EM and in which
-initial common- has already been executed)

initial lesson,UNIT NAME

(non-executable) sets up storage space which serves as a temporary
extension of student variables; in central memory the variables are
referenced by vc and nc; they are not saved in student records and
are zeroed during jumpout to another lesson (see -inhibit dropstor-)

storage NUM WORDS (maximum length of 8000)
storage NUM WORDS.exactly (lesson requires the exact amount of

storage specified)
storage NUM WORDS.minimum (lesson requires the greater of the amount

of storage specified or the amount present when the lesson
is entered with -inhibit dropstor- in effect)

C22

stoload similar to -comload- but refers to storage; required for any
length storage to access central memory variables

stoload STARTING CM VAR (vc or nc),EM STORAGE LOCATION,NUM VARS
(maximum of 1500 variables)

stoload (B) (turns off automatic loading and unloading of storage)

NOTE: When both -comload- and -stoload- are used, care must be taken that the
addresses of central memory variables into which common has been loaded
do not overlap with the addresses into which storage has been loaded.

reserve sets system variable "zreturn" in order to allow a user to reserve
the common to prevent changes by more than one user at a time

reserve common

Note: zreturn = -2 if the common is already reserved by this user
= -1 if -reserve- is executed successfully by this

user
= station number of user who has already reserved

the common

release sets system variable "zreturn" to allow the common to be released

release common

Note: zreturn = -2 if the common is not reserved by any user
= -1 if -release- is executed successfully by this

user
= station number of user who has reserved the common

backgnd (no tag) flags a lesson as a "background" lesson so that it may use
large amounts of CPU time when the time is available; when CPU time
is scarce, the lesson is handled at lower priority than non­
background lessons

foregnd (no tag) switches the lesson to foreground processing; normal state
of execution

C23

System variables for calculating

1common length of common (set by tag of -common- command or -commonx- command)

lstorag length of storage (set by tag of -storage- command)

zbpc number of bits per character (currently 6)

zbpw number of bits per computer word (currently 60)

zcpw number of characters per computer word (currently 10)

zcusers number of users signed into the current common

Additional notes on CALCULATING

Additional notes on CALCULATING

Additional notes on CALCULATING

DATA KEEPING

DATA KEEPING DI

Requesting data

dataon specifies that student data for the lesson is to be collected and
sent to a datafile if the student records have been set to allow
collection of data (see also system variable "dataon")

dataon (B) (turns on all data collection)
dataon TAG (TAG can be ok, no, unrec no, vocab, area, output,

help, help no, term, term no, errors, signin)

Note: Non-blank tag will temporarily override options set in
group records until turned off by -dataoff- with the
appropriate tag.

dataoff specifies termination of collection of data for that lesson

dataoff (B)
dataoff TAG (TAG is same as that used in a preceding -dataon-)

Note: Non-blank tag of -dataoff- will turn off only options
turned on by a previous -dataon- with a non-blank tag;
-dataoff- does not override options set in group records.

D2

Classifying data

area specifies a section in the lesson (called an area) typically
representing 5 to 15 minutes of student contact time for which
certain information is collected

area NAME (maximum of 10 characters in NAME; cannot start with
a number; variable tag must be enclosed in parentheses)

Note: Information collected:

elapsed time in the area (in minutes; accurate to .1 minute)
number of arrows encountered
number of "ok" judgments
number of responses judged "ok" on 1st attempt
number of anticipated "no" judgments, or "wrong” judgments
number of unanticipated "no" judgments
number of term requests satisfied
number of term requests not satisfied
number of help-type requests satisfied
number of help-type requests not satisfied
whether the area has been completed

area (B) (causes data for the preceding area to be placed in
the datafile; no further data is stored until -area-
with nonblank tag is executed)

area incomplete (terminates the current area and flags it as
incomplete)

area cancelled (cancels all data for the current area; does not
initiate a new area or produce any records in the datafile)

output puts a comment and/or value of an expression into the datafile

output COMMENT AND/OR EXPR (formats for the expression are:
n, v, a, o, h with embedded form, i.e., FORMAT,EXPR>)

outputl places labeled information from specified student variables in
the datafile

outputl LABEL (opt),STARTING VAR,NUM VARS (maximum of
10 characters in LABEL and 20 consecutive variables)

setdat allows alteration of system variables containing area data

setdat SYSTEM VAR<= EXPR

Note: "atime" cannot be set to a value greater than the total time
signed on for that session. It is accurate to 0.1 second.
The remaining system variables (except for "aarea") can be
set to values up to 511.

D3

Transferring data

readset establishes a link between a datafile and the lesson which receives
the data

readset DATAFILE NAME, 'DATAFILE CHANGE OR INSPECT CODEWORD' (opt)
VAR FOR STORING NUM UNUSED BLOCKS (opt)

readset <LESLIST POSITION>, 'DATAFILE CHANGE OR INSPECT
CODEWORD' (opt),VAR FOR STORING NUM UNUSED BLOCKS (opt)

Mote: The second argument is included if codewords on the lesson and
datafile do not match. Variable file name must be enclosed in
parentheses; if the codeword is a variable, quote marks are
omitted. The third argument is -1 if the datafile is full.

zreturn -1 if the datafile exists and is not empty
0 if the name specified is not a datafile
1 if codewords on the lesson and datafile do not

match
2 if the datafile is empty
3 if there is no room in EM for the buffer
4 if there is a disk error

readd transfers data from a datafile into student variables or central
memory variables (must be preceded by -readset- naming the datafile)

readd area,STARTING VAR,NUM VARS

Note: Area summary data consists of the following information:

n(x) or nc(x) = starting variable
n(x) and n(x+l) contain the user's name (up to 18 characters)
n(x+2) contains the lesson name
n(x+3) " the area name
n(x+4) " elapsed time for the area (in milliseconds)
n(x+5) " number of arrows for the area
n(x+6) " number of "ok" judgments for the area
n(x+7) " number of "ok" judgments on the 1st attempt
n(x+8) " number of anticipated "no" judgments (matched by

-wrong-, -wrongc-, -wrongu-, -wrongv-, -miscon-,
-touchw-, or -judge wrong-)

n(x+9) " number of unanticipated "no" judgments
n(x+10) " number of help-type requests satisfied
n(x+ll) " number of help-type requests not satisfied
n(x+12) " number of term requests satisfied
n(x+13) " number of term requests not satisfied
n(x+14) = -1 if the area was completed, =0 if not
n(x+15) = -1 if the area is a continuation, =0 otherwise

(-readd- continued on next page)

D4

readd outputl,STARTING VAR,NUM VARS

Note: Data from -outputl- consists of the following information:

n(x) or nc(x) = starting variable
n(x) contains the length of -outputl- (number of variables)
n(x+l) and n(x+2) contain the user's name (up to 18 characters)
n(x+3) contains the lesson name
n(x+4) " the area name
n(x+5) " execution time of -outputl- in milliseconds
n(x+6) " -outputl- label
n(x+7) to n(x + NUM VARS - 1) contain data in the tag of -outputl-

readd signoff,STARTING VAR,NUM VARS

Note: Signoff data consists of the following information:

n(x) or nc(x) = starting variable
n(x) and n(x+l) contain the user's name (up to 18 characters)
n(x+2) contains the lesson name
n(x+3) »• elapsed time (in minutes) spent in the lesson

during this session
n(x+4) total time (in minutes) to complete the lesson

if the lesson is completed during this session
-1 if the lesson is not completed during this

n(x+5) »• date of session
n(x+6) time of signoff

Note: With all tags for -readd-,

zreturn != -1 if there is more data in the datafile
= 0 if the end of the datafile is reached

D5

Signing on and off

restart specifies unit (and lesson if given) where the student is to begin
at the next session

restart (B) (start at the main unit containing this command)
restart UNIT NAME (start in this lesson at the specified unit)
restart LESSON NAME,UNIT NAME (start in the specified lesson at

the specified unit)
restart <LESLIST POSITION>,UNIT NAME (start in the lesson at the

specified leslist position, in the specified unit;
variable unit names must be enclosed in parentheses)

restart (0),(0) or restart q (clears restart information;
no restart is in effect)

finish specifies the unit which will be executed upon exit from the lesson
via STOP1 (but not via -end lesson- or -jumpout-)

finish UNIT NAME
finish (B) or finish q (clears -finish- setting)
finish EXPR,NAMEM,NAME0,q,NAME2,x (example of conditional form;

maximum of 100 arguments in the conditional tag)

permit specifies whether -restart- commands (except those restarting to a
specific unit in another lesson) are obeyed for students in groups
with short records; has no effect for students with regular records

permit short recs (permits -restart- commands except to a specific
unit in another lesson)

permit (B) (permits only -restart- commands which do not specify
a unit; default condition)

D6

System variables for data keeping

collecting data

dataon = -1 if data collection is turned on
= 0 if data collection is off
(see also command -dataon-)

session data

zsesset elapsed time since the beginning of this session (in seconds, to the
nearest millisecond)

zsesspt processing time during this session (in seconds, to the nearest
millisecond)

zsessda number of disk accesses since sign-on during this session

area data

aarea name of current area (left-justified; display with -showa-)

aarrows number of arrows encountered

ahelp number of help-type requests satisfied

ahelpn number of help-type requests not satisfied

a ok number of "ok" judgments

aokist number of "ok" judgments on the first attempt

asno number of specified (anticipated) "no" judgments; also referred to
as "wrong” judgments, where "judged" has been set to 0

aterm number of term requests satisfied

atermn number of term requests not satisfied

D7

atime elapsed time in the area (in milliseconds)

auno number of unanticipated "no” judgments; "judged" has been set to +1

NOTE: The system variables containing area data are zeroed at the beginning
of each area.
"atime" may have a value up to about 9 hours.
The remaining variables (except "aarea") may have values up to 511.

Additional notes on DATA KEEPING

FILE OPERATIONS

FILE OPERATIONS FI

Attaching and accessing files

attach establishes a connection with a file and permits access to disk records
or blocks for dataset, nameset, group, TUTOR (lesson), or code files;
with datasets and namesets record size may be from 64 to 512 words

attach NAME (for read and write access)
attach <LESLIST POSITION>
attach NAME,rw, 'CODEWORD' (opt) (for read and write access)
attach CLESLIST POSTION>,rw, 'CODEWORD' (opt)
attach NAME,ro, 'CODEWORD' (opt) (for read-only access)
attach CLESLIST POSITION>,ro, 'CODEWORD' (opt)

Note: Codeword checks between lesson and file:
Codeword argument omitted, read and write access:
attach codeword on lesson must match change codeword (TUTOR file,

code file) or write records codeword (nameset, dataset,
group file);
processor lesson—read/write or special write or dual access
(user's editing codeword [or group or account] must match
the codeword for writing into the file)

Codeword argument omitted, read-only access:
attach codeword on lesson must match change or inspect codeword

(TUTOR file, code file) or write records or read records
codeword (nameset, dataset, group file);
processor lesson—read only, read/write, or dual access or
special read or special write (user's editing codeword [or
group or account] must match codeword for reading the file)

Codeword argument included: both read/write and read only:
CODEWORD (typable) must make same match as attach codeword.

Variable file name must be enclosed in parentheses.
Quote marks on variable codeword argument are omitted.
"rw" may be replaced by an expression with value -1.
”ro‘ may be replaced by an expression with value 0.
TUTOR files and code files are always "read only". When
the file is attached with "rw", it cannot be edited by the
system editor or attached with "rw" access at another station.

zreturn -1 if connection to the file is successful
0 if the file does not exist or is the wrong type
1 If no codewords match
2 if a user at another station is editing the file

directory or has attached a TUTOR file or code
file with "rw" access (or is editing the file)

3 if there is an error in the directory of the file
4 if a disk error has occurred

detach disconnects a file from the lesson

detach NAME (detaches and releases the specified file, whether
active or inactive)

detach <LESLIST POSITION>
detach (B) (detaches and releases the current active file)

F2

access checks the specified custom access list in the specified lesson for
the user's name, group, and account and returns the user's access
flags in the bits of the specified variable

access LESSON NAME,BLOCK NAME;VAR FOR STORING ACCESS BITS
access .BLOCK NAMEjVAR FOR STORING ACCESS BITS (the access list is

in the lesson containing the -access- command)
access CLESLIST POSITION>,BLOCK NAME;VAR FOR STORING ACCESS BITS

Note: Variable lesson and block names must be enclosed in parentheses

zreturn = -2 if the user's access flags are returned and
user is the owner of the access list

= -1 if the user's access flags are returned
= 0 if this list is not a custom access list
= 1 if the lesson is not found
= 2 if the access list is not found
= 3 if there is a system error

F3

Datasets and namesets

NOTE: When -datain-, -dataout-, -reserve-, -release- are used with namesets,
the record designations are relative to the selected named records.

datain transfers data from disk to the specified buffer

datain STARTING RECORD NUMBER;TO STARTING LOCATION;NUM RECORDS (opt)

dataout transfers data from a buffer to disk

dataout STARTING RECORD NUMBER;FROM STARTING LOCATION;NUM RECORDS (opt)

NOTE: With -datain- and -dataout- the second argument in the tag may be:
STUDENT VAR or c,EM COMMON LOCATION or s,EM STORAGE LOCATION
If omitted, the number of records transferred is 1.

zreturn = -1
= 0

= 1

= 2
= 3
= 4
= 5

6

if -datain- or -dataout- is executed successfully
if there is a pack error or if the disk containing the
file is not available
if the file has the wrong type, if no file is attached,
or if no name has been selected
if record numbers extend out of range
if the required buffer locations extend out of range
(-dataout- only) if the user does not have write access
(-dataout- only) if record(s) is reserved by another user
if there is a disk error

reserve reserves file records or the directory to prevent changes by more
than one user at a time

reserve records.STARTING RECORD NUMBER,NUM RECORDS
reserve name (reserves all records in the selected name)
reserve file (reserves all records in the attached file)
reserve directory (reserves the file directory)

Note: zreturn -2 if the records are already reserved by this user
-1 If -reserve- is executed successfully by this

user
0 if no file is attached or if no name has been

selected
1 if record numbers extend out of range
2 if the user does not have write access
5+n, where n=station number of the user who has
reserved these records

F4

release releases file records or the directory

release records,STARTING RECORD NUMBER,NUM RECORDS
release name (releases records in the selected name)
release file (releases all records in the attached file)
release directory (releases the file directory)

Note: zreturn -2 if the records are not reserved by any user
-1 if -release- is executed successfully by this

user
0 if no file is attached or if no name has been

selected
1 if record numbers extend out of range
5+n, where n=station number of the user who has
reserved these records

NOTE: With the following commands (-setname-, -getname-, -addname-, -rename-,
-addrecs-, -delrecs-, -delname-, -names-), the name can be up to 30
characters long (3 variables). The optional extra information for the
name is stored in the right-most 24 bits of the specified variable.

setname selects a name (i.e., named set of records) in a nameset

setname 'NAME' (NAME can contain up to 10 characters; if the name
length in the nameset is more than 10 characters, the tag
literal is filled out on the right with zeros)

setname STARTING VAR CONTAINING NAME
setname nextname (selects the next name in alphabetical order or

the first name if a name has not already been selected)
setname backname (selects the preceding name in alphabetical order

or the last name if a name has not already been selected)
setname (B) (clears the name currently selected)

Note: zreturn -1 if the specified name matches exactly a name
in the nameset

0 if the specified name matches one name for the
given number of characters; selects that name

1 if the specified name matches more than one
name for the given number of characters;
selects the first of the names

2 if the specified name does not match any name;
the name reference is cleared

3 if no nameset is attached

(With tags "nextname" and "backname", "zreturn" can have only
values -1, 2, or 3.)

F5

getname stores the name currently selected and its associated extra
information, if specified; the name is left-justified and unused
character positions are filled with octal zeros; the extra information
is stored in the right-most 24 bits of the specified variable and
remaining bits are cleared

getname STARTING VAR FOR STORING NAME,VAR FOR STORING EXTRA
INFORMATION (opt)

Note: If no name has been selected, a value of 0 is stored for both
the name and the extra information.

addname adds a new named set of records to a nameset file; selects that name

addname STARTING VAR CONTAINING NAME,NUM RECORDS (opt),VAR
CONTAINING EXTRA INFORMATION (opt)

Note: Number of records, if omitted, is 1.
Extra information, if omitted, is 0.

zreturn -1 if the name is added successfully
0 if no nameset is attached
1 if the user does not have write access
2 if the new name duplicates an existing name or

has an illegal format
3 if enough room is not available for new records
4 if the nameset is reserved

rename changes the name of the currently selected named set of records
and/or the associated extra information

rename STARTING VAR CONTAINING NEW NAME,VAR CONTAINING NEW
INFORMATION (opt)

Note: If the second argument is omitted, information is unchanged.

zreturn -1 If the name is changed successfully
0 If no nameset is attached
1 if the user does not have write access
2 if no name has been selected
3 if the new name duplicates an existing name or

has an illegal format
4 if records in the selected name are reserved

F6

addrecs

delrecs

delname

adds records to the selected name

addrecs NUM RECORDS TO ADD AT END
addrecs RECORD POSITION,NUM RECORDS TO ADD AT THAT POSITION

Note: zreturn = -1
= 0
= 1
= 2
= 3

= 4
= 5

if records are added successfully
if no nameset is attached
if the user does not have write access
If no name has been selected
if the specified starting position is outside
the range of records in the named records
(2-argument form)
if records in the selected name are reserved
if enough room is not available for new records

deletes records from the selected name (but does not zero the records)

delrecs NUM RECORDS TO DELETE FROM END
delrecs STARTING RECORD POSITION,NUM RECORDS TO DELETE

Note: zreturn = -1
= 0
= 1
= 2
= 3

= 4

if records are deleted successfully
if no nameset is attached
if the user does not have write access
if no name has been selected
if the specified starting position is outside
the range of records in the named records
(2-argument form)
if the specified records are reserved

(no tag) deletes the currently selected name and all its records
(but does not zero the deleted records)

Note: zreturn = -1
= 0
= 1
= 2
= 4

if the name and records are deleted successfully
if no nameset is attached
if the user does not have write access
if no name has been selected
if the specified records are reserved

F7

names stores names from the nameset (names are stored left-justified with
octal zeros in unused character positions); each name entry, which
may require from 1 to 3 variables, is followed by a variable whose
left-most 15 bits contain the number of records with the name and
whose right-most 24 bits contain the extra information

names ARGl(opt),ARG2,ARG3,ARG4

ARGl = starting position in list of nameset names (optional)
(if omitted, starting position is the name currently
selected by -setname- or the beginning of the list if
no name is selected)

ARG2 = starting variable for storing names
ARG3 = maximum number of variables for storing names (each

requires from 2 to 4 variables)
ARG4 = variable for storing actual number of names obtained

Note: zreturn = -1 if names are stored successfully
= 0 if no nameset is attached
= +1 if the starting position is invalid

F8

Group files

The following commands for namesets may also be used with group files:
-setname-, -getname-, -names-, -addrecs-, -delrecs-, -reserve-, -release-,
-datain-, and -dataout-.

The -records- command provides information on a group file.

NOTE: With -records- command, change access changes the parameter to the
information contained in the specified variable(s); read access stores
the parameter in the specified variable(s).

To change alphabetic information use a left-justified string (<10
characters) or n-type variable(s) containing a left-justified string.
To read (store) alphabetic information use n-type variables.
(Alphabetic information is stored left-justified.)

records change and records read allow parameters for the previously
selected name to be changed or read

records change;OPTION1;0PTI0N2;OPTION3...
records read;OPTION1;OPTION2;OPTION3...

OPTIONS:

name,STARTING VAR (name of the record; requires 2 variables)
user type,VAR (read only; stores user type, e.g., 'student')
off,VAR (VAR is -1 for record turned off, 0 otherwise)
info,VAR (the 24 bits of extra information)
options, 'TYPE',VAR (author and instructor options; VAR is -1 for

option turned on, 0 for option turned off; 'TYPE' may be
'ifilecat', 'anyless', 'sitelist', 'userlist', 'notes',
'accounts', 'datafile', 'prints', 'editown', 'editothr')

svars,STARTING ADDRESS,STARTING VAR,NUM VARS (student variables)
rvars,STARTING ADDRESS,STARTING VAR,NUM VARS (router variables)
message,STARTING VAR (requires 31 variables)
lesson,VAR (name of the restart lesson; change: lesson entry may

be a leslist position, e.g., change;lesson,<LESLIST POSITION>)
unit,VAR (name of the restart unit)
score,VAR (last value of "lscore")
completed,VAR (last value of "ldone")
status,VAR (last value of "lstatus")
ldonelist,STARTING LESSON POSITION,STARTING VAR,NUM VARS (read only;

"ldone" information, in 3-bit signed segments; "mrouter" only)
lscorelist,STARTING LESSON POSITION,STARTING VAR,NUM VARS (read only

"lscore" information, in 8-bit signed segments; "mrouter" only)
data on,VAR (VAR is -1 for individual data collection on, 0 for off)

(-records change- and -records read- continued on next page)

F9

data opts, 'TYPE',VAR (individual data collection options; VAR is -1
for option turned on, 0 for option turned off; 'TYPE' may be
'area' , 'output' , 'ok' , 'no', 'unrec no', 'vocab' , 'help',
'help no' , 'term' , 'term no’ , 'errors' , 'signin')

password,TYPE,VAR (opt) (change: TYPE=-1, set password to string
in VAR; TYPE=0, zero password; TYPE=1, set password to none;
read: TYPE is a variable which stores the value for type of
password [-1, typable password; 0, blank; 1, none required])

total time,VAR (read only; total hours on PLATO; use v-variable)
(read only; total days on PLATO)
(read only; total sessions on PLATO)
(read only; total cpu time in milliseconds)
(read only; total disk accesses)
(read only; date of creation of the name)
(read only; date the name was last signed on)
(read only; time the name was last signed on)

(read only; station number where name was last signed on)
(read only; stores "zid" information)

total days,VAR
sessions,VAR
cpu time,VAR
disk count,VAR
creation,VAR
last date,VAR
last time,VAR
station,VAR
id,VAR

Note: See "zreturn" on next page.

records add and records delete permit names to be added or deleted

records add;name,STARTING VAR;user type, 'USERTYPE';OPTION1;0PTI0N2...
records delete (deletes the selected name and Its records; zeros

records with basic signon data but not extra records)

OPTIONS are those for previously selected name.
With -records add- "name" and "user type" are required; other
options are allowed for initializing values. If no options are
specified, the parameters are created with value of zero.
'USERTYPE' may be 'student', 'multiple', 'instructor', or 'data'.
(Type 'author' may be created in author group files which do not
contain University of Illinois authors.)
A 'data' usir type may be used for storing data for the group as a
whole. A name with this user type cannot sign onto the system.

Note: See "zreturn" on next page.

records changedir and records readdir allow information in the group
directory to be changed or read

records changedir;OPTION1;OPTION2;OPTION3...
records readdir;OPTION1;OPTION2;0PTI0N3...

OPTIONS:

name,VAR (read only; name of last editor)
group,VAR (read only; group of last editor)

(-records changedir- and -records readdir- continued on next page)

F10

station,VAR (read only;
lesson,VAR (read only;
date,VAR (read only;
time,VAR (read only;
short,VAR (read only;

station where last editor worked)
lesson which last edited the group)

(read only; date the group was last edited)
time the group was last edited)

(read only; VAR is -1 if the group has short records,
0 if the group has regular-length records)

snotes.VAR (read only; name of student notes file)
data file,VAR (read only; name of datafile)
processor,VAR (read only; name of processor lesson)
router,VAR (name of student router; may not be set to a system lesson;

change: lesson entry may be a leslist position, e.g.,
changedir;router,<LESLIST POSITION>)

irouter,VAR (name of instructor router; change: if VAR=0, router is
set to "imode"; may not be set to any other system lesson;
change: lesson entry may be a leslist position, e.g.,
changedir;irouter,<LESLIST POSITION>)

group data, 'TYPE' ,VAR (group data collection options; VAR is -1 for
option turned on, 0 for option turned off; 'TYPE' is same as
for individual data opts)

less data, 'TYPE' ,VAR (lesson data collection options; VAR is -1 for
option turned on, 0 for option turned off; 'TYPE' is same as
for individual data opts)

write code,TYPE,VAR (opt) (write records codeword; change: TYPE=-1,
set codeword to string in VAR; TYPE=1, set to unmatchable
codeword; TYPE=2, set codeword to user's group; TYPE=3, set
codeword to user's account;
read: TYPE is a variable which stores the value for type of
codeword [-1, typable code; 1, unmatchable; 2, group; 3, account])

read code,TYPE,VAR (opt) (read records codeword; TYPE is same as for
write code)

message, ’TYPE’ .STARTING VAR,VAR FOR DATETIME (opt) (message requires
31 variables; ’TYPE’=’all’ , ‘student’, ’multiple', 'instructor',
or 'author' ; for read-only access, date and time the message
was written may be returned in the optional argument as a
character string in the form: yrmndyhrmt where yr is the
last 2 digits of the year; mn is month number; dy is the day
of the month; hr Is the hour; mt is the minute)

NOTE: For all preceding forms of the -records- command:

zreturn = -1
= 0
= 1
= 2
= 3
= 4
= 5
> 6

if -records- is executed successfully
if no group is attached or if no name has been selected
if the user does not have write access
if the new name duplicates an existing name
if there is not enough disk space available
if the entire group or the name is reserved by another user
if there is a disk error
if there is an error in the (n-5)th OPTION in the
-records- tag, where n is the "zreturn" value

FI 1

records locate stores the station numbers where names in the group are
signed on; the search stops when the first name is found

records locate.STATION NUMBER TO START SEARCH (opt);VAR
(if STATION NUMBER is omitted, search starts at station 0;
VAR is set to the station number where the first name is
found or to -1 if no names in the group are signed on at
stations 2 STATION NUMBER)

Note: zreturn -1 if -records locate- is executed successfully
0 if no group is attached
2 if the station number is invalid
5 if there is a system error

records info stores information for the name signed on at the specified
station or for the previously selected name

records info,STATION NUMBER (opt);OPTION1;OPTION2;...
(if STATION NUMBER is omitted, data is stored for the
selected name)

OPTIONS:

(name of the record; requires 2 variables)
(type of record, e.g., 'student')
(name of the lesson or type of activity)
(name of the main unit)
(name of the current unit)
(name of the router lesson)
(name of the curriculum file or instructor file)
(name of the processor lesson database)
(number of hours signed on for this session;
use v-variable)
(cpu time in milliseconds for this session)
(number of disk accesses for this session)

VAR (router EM charges; 'TYPE' is 'lesson' ,
'common' , 'storage')

VAR (lesson EM charges; 'TYPE' is 'lesson' ,
'common' , 'storage')

(name of the current area)
(number of the station where the name is signed on)
(name of the site at which the name is signed on)
(current value of "lstatus")
(current value of "lscore")
(current value of "ldone")

name,STARTING VAR
user type,VAR
lesson,VAR
main,VAR
current,VAR
router,VAR
curriculum,VAR
zxfile,VAR
hours on,VAR

cpu time,VAR
disk count,VAR
router ecs, 'TYPE' ,

lesson ecs, 'TYPE' ,

area,VAR
station,VAR
site,VAR
status,VAR
score,VAR
completed,VAR

Note: zreturn = -1
= 0

= 2

= 5
2 6

if -records info- is executed successfully
if no group is attached or if no name has been
selected
if the selected name is not signed on or if no
name in the group is signed on at the specified
station
if there is a system error
if there is an error in the (n-S)1-^1 OPTION in the
-records- tag, where n is the "zreturn" value

F12

records send sends a message (up to 60 characters) to the station or rings
the sound device on the terminal (if programmable)

records send,STATION NUMBER(opt)jmessage,SCREEN LOCATION,STARTING VAR
CONTAINING MESSAGE,NUM CHARACTERS IN MESSAGE

records send,STATION NUMBER(opt);beep
(if STATION NUMBER is omitted, the message or signal is
sent to the selected name)

Note: zreturn -1 if the message or signal is sent successfully
0 if no group is attached or if no name has been

selected
1 if write access to the group is not allowed
2 if the selected name is not signed on or if no

name in the group is signed on at the specified
station

4 if the message or signal cannot be sent to the
specified station

5 if there is a system error

records backout backs out the specified station or the previously selected
name after erasing the screen and sending a message (sets
"backout" to -2)

records backout,STATION NUMBER (opt) (if STATION NUMBER is omitted,
selected name is backed off)

Note: zreturn -1 if the backout is successful
0 if no group Is attached or if no name has been

selected
1 if write access to the group is not allowed
2 if the selected name is not signed on or if no

name in the group is signed on at the specified
station

3 if the station is not backed out because of error
4 if the specified station cannot be backed out
5 if there is a system error

F13

records update updates the disk copy of the records for this user (student
or instructor); the user's group must be attached with
read/write privileges, and the user's name must be selected
with -setname-

Note: zreturn = -1
= 0

= 1
= 2

= 3

= 4

= 5

if updating is successful
if no group is attached or if no name has been
selected
if write access to the group is not allowed
if the wrong group is attached or the wrong
name has been selected
if checkpointing has been turned off by
-checkpt off- or -records save-
if the selected name is not user type 'student'
or 'instructor'
if there is a disk error or other system error

records save similar to -records update- except that the record is flagged
as "saved" and automatic checkpointing is turned off; can be
used only in a router lesson

Note: zreturn = -1
= 0

= 1
= 2

= 3

= 4

= 5

if -records save- is successful
if no group is attached or if no name has been
selected
if write access to the group is not allowed
if the wrong group is attached or the wrong
name has been selected
if -checkpt off- is in effect or if the record
has already been saved
if the selected name is not user type 'student'
or 'instructor'
if there is a disk error or other system error

records restore retrieves
-records

the saved record from disk; used with
save-; can be used only in a router lesson

Note: zreturn = -1
= 0

= 1
= 2

= 3
= 4

= 5

if -records restore- is successful
if no group is attached or if no name has been
selected
if write access to the group is not allowed
if the wrong group is attached or the wrong
name has been selected
if the record has not been saved by -records save-
if the selected name is not user type 'student'
or 'instructor'
if there is a disk error or other system error

F14

checkpt allows the program to control checkpointing of student and instructor
records; a -checkpt- command executed in a router sets the default
for checkpointing for subsequent instructional lessons

checkpt on (allows automatic checkpointing; normal default for
students)

checkpt off (prevents automatic checkpointing; normal default for
instructors)

checkpt EXPR (value=0 sets to "off"; value=-l sets to "on")

Note: zreturn = -1 if -checkpt- is successful
= 0 if -checkpt- cannot be used with this user type

('multiple' , 'author' , 'sabort' , 'snockpt')

F15

TUTOR files and code files

setname selects a block name from the attached file; contiguous blocks with
the same name are selected at the same time

setname 'NAME'
setname VAR CONTAINING NAME
setname nextname (selects the next name in sequence or the first

name if a name has not already been selected)
setname backname (selects the preceding name in sequence or the

last name if a name has not already been selected)
setname (B) (clears the name currently selected and selects source

blocks set to condense)

Note: zreturn = -1

= 0

= 1

= 2

= 3

if the specified name matches exactly a block
name in the file
if the specified name matches one name for the
given number of characters; selects that name
if the specified name matches more than one
name for the given number of characters;
selects the first of the names
if the specified name does not match any name;
the name reference is cleared
if no TUTOR file or code file is attached

(With tags "nextname" and "backname", "zreturn" can have only
values -1, 2, or 3.)

getname stores the name currently selected and the associated information,
if specified; name is left-justified and unused character positions
are filled with octal zeros

getname VAR FOR STORING NAME,VAR FOR STORING INFORMATION (opt)

format for the information (counting from the left end of
the variable):

42 bits (7 characters): block type (left-justified)
access, binary, charset, common, leslist, lineset,
listing, micro, source, text, vocab

6 bits (1 character): condense flag [("-" (o46) or " " (o55)]
3 bits unused
9 bits: block position in directory

Note: If no name has been selected, a value of 0 is stored for both
the name and the information.

F16

names stores names of blocks in the file (left-justified with octal zeros
in unused character positions); each entry requires 2 variables, the
first for the name and the second for the associated information

names ARG1(opt),ARG2,ARG3,ARG4

ARG1 = starting postion in the directory of block names
(numbering starts at 1 for block 1-b)
(optional; if omitted, starting position is the name
currently selected by -setname- or the beginning of
the list if no name is selected)

ARG2 = starting variable for storing names
ARG3 = maximum number of variables for storing names (each

requires 2 variables)
ARG4 = variable for storing actual number of names obtained

format for the associated information (counting from the
left end of the variable):

6 bits (1 character): condense flag (o46) or " " (o55)]
6 bits (1 character): blank (o55)

12 bits (2 characters): block type
II II (o5555) (source) "li" (ol411) (listing)
"ac" (00103) (access list) "11" (ol414) (leslist)
"bi" (o0211) (binary) "In" (ol416) (lineset)
"ch" (00310) (charset) "mi" (ol511) (micro)
"cm" (00315) (common) "tx" (o2430) (text)

'vc" (o2603) (vocab)
27 bits unused (o000000000)
9 bits: number of words of disk space used

Note: zreturn -1 if names are stored successfully
0 if no TUTOR file or code file is attached

+1 if the starting position is invalid

iospecs specifies parameters for subsequent -getline- commands

iospecs 0PTI0N1.0PTI0N2,0PTI0N3

OPTIONS include:

mods
nomods
deleted
nodeleted
truncate

notruncate

mod words are included in the lines read
mod words are not included in the lines read
deleted lines are included in the lines read
deleted lines are not included in the lines read
the line is truncated if it is too long for the buffer;
the line pointer moves to the next line
the line is truncated if it is too long for the buffer;
the line pointer stays at the truncated line

Note: If the -iospecs- command is omitted, the default options are:
nomods,nodeleted,truncate

F17

getline reads a line from the selected block name in the attached file and
stores it (left-justified) in the specified variables

getline ARGl,ARG2,ARG3

ARGl = starting variable of the buffer for storing the line
ARG2 = number of variables in the buffer
ARG3 = variable for storing the number of variables actually

required to store the line

Results depend on options set by previous -iospecs-:

mods

nomods
deleted
nodeleted
truncate

no truncate

mod words are stored in the first 2 variables of the
buffer
mod words are not stored
deleted lines are stored
deleted lines are not stored
a line which is too long for the buffer is truncated, and
the truncated line is stored; all lines end with 12 bits
of 0 (o0000); return length is the number of variables
actually used to store the line
a line which is too long for the buffer is truncated and
stored (but the next -getline- command will attempt to
store this line without truncation); lines so truncated
will not end in 12 bits of 0; return length is the true
length of the line, i.e., the number of variables that
would be required to store it without truncation

Note: zreturn = -1
= 0
= 1
= 2

= 3
= 4
2 5

if -getline- is executed successfully
if no TUTOR file or code file is attached
if there are no lines left in the selected blocks
if the line length is greater than the buffer
length (the line is truncated)
if this line is a deleted line
if this line is a truncated deleted line
if a system disk error has occurred

setline sets the pointer for the line to be read by the next -getline-
command; should be used in conjunction with "zline"

setline VAR CONTAINING VALUE OF DESIRED "zline"

Note: zreturn = -1 if -setline- is executed successfully
= 0 if no TUTOR file or code file is attached
= +1 if the pointer value is illegal

F18

parse analyzes (or parses) a line of TUTOR code stored in a buffer

parse ARG1,ARG2,ARG3,ARG4,ARG5,ARG6

ARG1 = starting variable containing the line of code
ARG2 = number of variables to examine (end of line also

terminates the search)
ARG3 = variable for storing indent level of code

(= 0 if not indented)
ARG4 = variable for storing the command name, left-justified

and filled to character position 8 with spaces (o55);
if the line is a comment, the first 8 characters of
the line are stored

ARG5 = variable for storing the relative character position
of the beginning of the tag

ARG6 = variable for storing the number of variables actually
required to store this line

Note: zreturn = -1 if the line is a comment or a deleted line
= 0 otherwise

F19

System variables for file operations

These system variables are set when the appropiate file is attached or when a
name has been selected (in the attached nameset or group file).

zcheck current checkpointing status of records
= -1 if checkpointing is allowed
= 0 if -checkpt off- is in effect
= 1 if -records save- is in effect
= 2 if -abort record- or -abort autocheck- is in effect
= 3 if the user is an author or a multiple

zfacc = -1 if the file is attached read/write
= 0 if the file is attached read only or if no file is attached

zf ile name of the file currently attached to the lesson
(left-justified; display with -showa-)

zftype type of file which is attached to the lesson ('dataset', 'nameset',
'group', 'lesson', 'code') (left-justified; display with -showa-)

zfusers number of users connected to the file currently attached

zinfo contains the 24 bits of information associated with the currently
selected name in a nameset or group; stored in the right-most 24 bits

zline value of the pointer to the next line to be read by -getline-

znindex position of the currently selected name in the nameset or group
directory (= 0 if no name has been selected or if no nameset or group
is attached)

znscpn number of characters per name for the attached file
(= 10 for TUTOR file and code file; = 18 for group file)

znsmaxn maximum number of names (or blocks) allowed in the attached file

znsmaxr maximum number of records (or blocks) allowed in the attached file

znsnams number of names in use in the attached nameset or group

F20

znsrecs

zrecs

number of records in use in the entire attached nameset or group

number of records in the selected name in the attached nameset or
number of extra records (i.e., records added with -addrecs-) in the
selected name in the attached group or
number of records in the attached dataset

zrof f = -1 if the currently selected name in a group has been turned off
= 0 otherwise

zrstatn station number where the currently selected name in a group is signed
on (= -1 if the name is not signed on)

zrtype user type of currently selected name in the attached group:
'student', 'multiple', 'instructor', 'author', 'data'
(left-justified; display with -showa-)

zrvars maximum number of router variables (currently 64)

zrvret = -1 if router variables are permanently stored on disk
= 0 if router variables are not permanently stored

zsvars maximum number of student variables (currently 150)

zsvret = -1 if student variables are permanently stored on disk
= 0 if student variables are not permanently stored

zwpb number of computer words per block in the attached TUTOR file or
code file (currently 320)

zwpr number of computer words per record in the attached file
(= 320 for TUTOR file and code file; = 64 for group file)

zxfile contains the name of the file through which a processor lesson is
accessed (= 0 if the processor lesson is entered directly)
(left-justified; display with -showa-)

Additional notes on FILE OPERATIONS

Additional notes on FILE OPERATIONS

JUDGING

JUDGING J1

Two types of commands are described in this section: judging commands and
regular commands. (Other sections of this book include only regular commands.)
Regular commands are not executed during the judging process, i.e., after the
user has entered a response, nor are judging commands executed before the user
has entered a response or in situations where no response is involved.
(See "The TUTOR Language" and lesson "aids" for extensive descriptions of the
judging process.)

Regular commands in this section include: -eraseu-, -force-, -edit-,
-arrow-, -arrowa-, -arheada-, -long-, -jkey-, -copy-, -endarrow-, -getword-,
-getmark-, -getloc-, -compare-, -iarrow-, -iarrowa-, -judge-, -okword-, -noword-,
-markup-, -markupy-. Commands -list-, -endings-, -vocabs-, -vocab- are special
non-executable commands which establish lists of words for use with certain
response-matching commands. The -join- command is both regular and judging.
The remaining commands in this section are judging commands.

Preparation for responding

eraseu (regular command) the specified unit is executed at all subsequent
arrows in the unit containing -eraseu- when the user erases part or
all of a response after receiving judgment; useful for erasing
complicated displays which are not handled by the standard judging
process

eraseu UNIT NAME
eraseu (B) or eraseu q (clears -eraseu- setting for remainder

of the unit)
eraseu EXPR,NAMEM,NAME0,q,NAME2,x (example of conditional form;

maximum of 100 arguments in the conditional tag)

force (regular command) alters the input of a response as specified;
setting is cleared at each main unit

force

force

force

force
force
force

force
force

force

bold (forces the response to be written in bold characters
[programmable terminal only])

caps (inserts the shift code (o70) before each letter
[a through z] in the response)

firsterase (erases an incorrect response and contingent
message when the user presses any key, not just NEXT,
ERASE, etc.)

font (inserts the font code (o75) before the first keypress)
left (forces the response to be written from right to left)
long (initiates judging when the character input reaches

the value of the tag of -long-; unnecessary with -long 1-)
micro (forces keypresses through the microtable conversion)
(B) or force clear (clears previous -force- settings

in the unit)
clear,font,left (may combine tags)

J2

edit

arrow

arrowa

arheada

long

jkey

(regular command) required for EDIT key to be active when the tag
of -long- exceeds 150; specifies the starting variable of a buffer
for storing the characters in a response (up to 300 characters)

edit STARTING VAR (use student variable)
edit (B) (clears edit buffer; if placed after -arrow-, prevents

use of the EDIT key; see also -inhibit edit-)

(regular command) plots the response arrow at the specified screen
location (see -inhibit arrow-); sets defaults: -long 150- and
-jkey (B)-

arrow COARSE
arrow FINEX,FINEY

(regular command) allows an alternative arrow associated with -iarrowa
and -arheada-; follows same rules and restrictions as -arrow-

arrowa COARSE
arrowa FINEX.FINEY

(regular command) specifies a symbol to be plotted with the
alternative arrow

arheada SYMBOL TO BE PLOTTED WITH -arrowa-

Note: Up to five 6-bit characters may be specified.

(regular command) sets the maximum number of characters in a response
(default is 150 characters); must follow -arrow- (see NOTE)

long NUM CHARACTERS (value of tag is from 0 to 300; -long 1-
causes automatic judging; tag > 150 requires use of
-edit- for EDIT key to be active; -long 0- prevents
input from the keyset except for function keys)

(regular command) specifies the function key(s) which will initiate
judging (in addition to the NEXT key); must follow -arrow- (see NOTE)

jkey KEYNAME (name of function key is in lower case)
jkey KEYNAME1,KEYNAME2,KEYNAME3,...
jkey (B) (clears previous -jkey- settings so that only NEXT

initiates judging)

J3

copy (regular command) specifies the starting variable of the character
string which is to be copied on the screen at the arrow, one word at
a time, when the COPY key is pressed; the end of the character string
is indicated by the specified number of characters or by 12 bits equal
to 0 (o0000), whichever is attained first; loads the string exactly as
it appears on the screen into the response buffer; must follow -arrow-
(see NOTE)

copy STARTING VAR,NUM CHARACTERS (use student variable)

NOTE: To affect the first response, -long-, -jkey-, and -copy- must follow the
-arrow- command but must precede any judging commands. However, after
the user enters a response (e.g., an incorrect response), these commands
can be executed among the regular commands following the matched
response in order to affect the next response at the same arrow.

endarrow (regular command) (no tag) terminates judging with an unanticipated
"no" judgment if the response has not been matched; after an "ok"
judgment, -endarrow- terminates the search for additional -arrow-
commands and switches back to the pre-arrow state

J4

Vocabulary lists

list (non-executable) sets up a list of synonyms for judging; used with
-answer-, -wrong-, -answerc-, -wrongc-, -answera-, -wronga-, -match-

list LISTNAME,WORD1,PHRASE*CONSISTING*OF*SEVERAL*WORDS,
W0RD2,W0RD3,... (maximum of 7 characters in LISTNAME)

endings (non-executable) used with -vocabs- and -vocab- to add endings to
root words (must precede -vocabs- or -vocab-)

endings NUMBER,ENDING1.ENDING2,... (NUMBER is an integer from 0 to 9)

Note: In -vocabs- or -vocab-,
WORD/NUMBER adds endings to the root word and includes all

words in the vocabulary
WORD//NUMBER adds only words with endings to the vocabulary;

the root word is not included
Up to 10 -endings- commands with up to 8 endings each may
be included. Apostrophe is legal in an ending.

vocabs (non-executable) sets up lists of ignorable words and synonymous
required words; used with -concept- and -miscon-; checks for
capitalization and spelling; allows assignment of user information
numbers

vocabs NAME
<IGNORABLE WORDS SEPARATED BY COMMAS>
W0RD1,W0RD2,PHRASE*CONSISTING*OF*SEVERAL*WORDS
(SYNONYMOUS WORDS3 AND PHRASES SEPARATED BY COMMAS)
(WORD4/s,WORD 5/ENDING1/ENDING2,W0RD6//ENDING1)
W0RD7/NUMBER1,WORD8//NUMBER2
(WORD9,WORD10=1,WORD11=2.SYNONYM11=2,...)

vocab (non-executable) similar to -vocabs- except does not check for
capitalization and spelling and does not allow phrases

vocab NAME
<IGNORABLE WORDS SEPARATED BY COMMAS>
W0RD1.W0RD2
(SYNONYMOUS WORDS3 SEPARATED BY COMMAS)
(W0RD4/S.W0RD5/ENDING1/ENDING2,WORD6//ENDING1)
W0RD7/NUMBER1.WORD8//NUMBER2

NOTE: Up to 7 characters are permitted in the name of the vocabulary.
When sets of endings are used repeatedly, -endings- plus -vocab(s)-
may be more convenient than -vocab(s)- with actual endings included.
With -vocabs-, user information numbers may have values from 1 to 511.

J5

Modification of judging copy of response

bump removes the specified characters from the judging copy of the
response before judging

bump CHARACTERS (maximum of 8 characters; use additional
-bump- commands for more than 8 characters)

put replaces a character string in the judging copy of the response
with another character string

put STRING1=STRING2 (replaces STRING1 with STRING2)

putd similar to -put- but uses the first character in the tag as the
separator between strings

putd /STRING1/STRING2/ (separator is /)
putd ,STRING1,STRING2, (separator is ,)

putv similar to -put- but works with stored strings

putv ARG1,ARG2,ARG3,ARG4

ARG1 = starting variable of string (left-justified)
ARG2 = number of characters in string
ARG3 = starting variable of replacement string (left-justified)
ARG4 = number of characters in replacement string

NOTE: Maximum number of characters in a string for -put-, -putd-, and -putv-
is 50. If replacement operations cause the judging copy of the response
to exceed 300 characters, judging terminates with a "no" judgment.

close takes characters stored in the right-most six bits from successive
variables and makes a judging copy for use with judging commands;
often paired with -open-; the end of the character string is
indicated by the specified number of characters or by six bits
equal to zero (o00), whichever is attained first

close STARTING VAR,NUM CHARACTERS (use n-variables)

loada takes the characters stored in the specified variable(s) by -pack-,
-storea-, or -calc- and makes a judging copy; the end of the
character string is indicated by the specified number of characters
or by six bits equal to zero (o00), whichever is attained first

loada STARTING VAR,NUM CHARACTERS (opt) (number of characters,
if omitted, is 10; maximum number of characters is 299)

J6

Modification of judging procedure

NOTE: The various -specs- options do not affect all judging commands.
Commands affected by each -specs- option are indicated by number
from the following list.

judging commands affected by -specs-

1. -match-
2. -answer-, -wrong-, -answerc-, -wrongc-, -answera-, -wronga-
3. -vocabs-, -concept-, -miscon-
4. -vocab-, -concept-, -miscon-
5. -exact-, -exactc-, -exactv-
6. -ansv-, -wrongv-, -ansu-, -wrongu-, -store-, -storeu-
7. -storen-
8. -storea-

allows control over processing of responses; also serves as a marker
for execution of subsequent regular commands after judging is complete

specs allwords (treats integers like letters [rather than numbers]
so that a number-letter boundary is not like a
word-word boundary or punctuation)

(with 1, 2, 3, 4, 7 above)

specs alphxnum (treats a letter-number boundary like a word-word
boundary or like punctuation)

(with 1, 2, 3, 4, 7 above)

specs bumpshift (removes shift codes from the judging copy of the
response)

(with all commands above)

specs exorder (checks the order of ignorable words)
(with 2 above)

specs holdmark (prevents markup of the response but stores the
markup information for later display)

(with all commands above where markup is done: 2, 3, 4)

specs nodiff (turns off the numeric difference judger, which
treats a numerical response as a "misspelling" if
it is within 10% of the correct response;
no spelling markup is done)

(with 2 above)

specs nomark (turns off answer markup)
(with all commands above where markup is done: 2, 3, 4)

specs nookno (prevents appearance of "ok" and "no")
(with all commands above)

31

specs

specs

specs

specs

specs

specs

specs

specs

specs

specs

specs

Note:

noops (prevents use of mathematical operations in a
numerical response)

(with 6 above)

noorder (turns off the order judger; allows any word order;
no order or missing-word markup is done)

(with 2, 3, 4 above)

nospell (turns off the spelling judger; no spelling markup
is done)

(with 2 above)

novars (prevents use of variables defined in define set
"student")

(with 6 above)

okassign (allows assignment of a value to a variable defined
in define set "student")

(with 6 above)

okcap (allows a capitalized word in the response to
match a non-capitalized word in the tag of a
response-matching command or in the vocabulary)

(with 1, 2, 3 above)

okextra (allows extra words in the response; caution—
words not in -vocabs- may be treated as spelling
errors)

(with 2, 3, 4 above)

okspell (allows any reasonable spelling)
(with 1, 2, 3 above)

toler (allows 1% tolerance in a numerical response)
(with 1, 2 above)

(B) (acts only as a marker)

nookno,okspell,noorder (may combine tags)

The following system variables are set properly even if
use of the -specs- tag causes the response to match the
tag of a response-matching command.

-specs- tag
okspell
okcap
okextra
noorder

system variable
spell
capital
extra
order

J8

Storing judging copy of response

NOTE: Commands -store-, -storeu-, and -storen- terminate judging with a
"no" judgment if an error is found in the form of the response.

store calculates the numerical value of the response and stores it in
the variable specified in the tag

store VAR

storeu similar to -store- but also evaluates dimensionality of units

storeu VAR FOR STORING NUMBER,STARTING VAR FOR STORING POWERS
OF DIMENSIONS (see -define-: units; use v-variables to

store the powers of the dimensions; powers are stored
in the order in which the primary units are defined)

storen searches for and evaluates simple numerical expressions (without
variables) in the response, which may also contain non-numeric
characters; stores numerical results in the specified variables one
at a time; removes numerical parts of the response from the answer
buffer and replaces them with spaces; numerical parts must be set off
from letters by spaces or punctuation; if no numerical expression is
found, the variables are set to 0 and judging ends with a "no”
judgment; each -storen- increments "anscnt"

storen VARl
storen VAR2

storea stores characters from the response, left-justified, in the specified
variable(s), 10 characters per variable; unused character positions
are filled with octal zeros

storea STARTING VAR,NUM CHARACTERS (opt) (number of characters,
if omitted, is 10)

Note: Use n-variable(s) for storing the string if subsequent
comparison for equality with another string is done. (If the
character string is stored for other purposes, v-variables are
acceptable.) Segmented variables cannot be used with -storea-

open places the characters in the response, one-by-one, in the right-most
six bits of successive variables starting at the specified variable

open STARTING VAR (use n-variables)

J9

Matching judging copy of response

NOTE: References to response mean judging copy of the response. Except for
-match-, judging terminates when the response matches the tag. The
-match- command always terminates judging.

NOTE: Up to 39 "words" (entries separated by space or punctuation) are
permitted in responses with -match-, -answer-, -wrong-, -answerc-,
-wrongc-, -answera-, -wronga-, -concept-, and -miscon-. If the number
of words exceeds 39, judgment is "no" and "anscnt" is set to -2.
With these commands the tag may not contain punctuation (or symbols
changed to "punc" by the -change- command) although the user's response
may contain punctuation.
(See "judging values" in "aids" for details on punctuation.)

Response markup (refer to -specs- for identification of commands with
which the markup Is used):
=== word is misspelled (2, 3)
+ word is capitalized incorrectly (2, 3)
*** word is part of a broken phrase (2, 3)
<= word is out of order (too far right) (2)
A word is missing (2)
xxx word is an extra word (2)
uuu word is an extra word (not in vocabulary) (3, 4)

match checks the response against the arguments in the tag and sets a
variable to the relative position of the matched character string;
removes the matched string from the answer buffer and replaces it
with spaces; if no match is found, the variable is set to -1 and
judgment is "no" (sets "judged" to +1); otherwise judgment is "ok"
(sets "judged" to -1)

match VAR,WORD0,W0RD1,PHRASE*WORD2,W0RD3
match VAR,(WORD0,SYNONYM0),(WORD1,(LISTNAME1)),((LISTNAME2))

answer compares the response with the tag; checks for word order, spelling,
capitalization, extra words, and numeric tolerance unless altered
by -specs-; sets "judged" to -1 if the response matches the tag

answer WORDS AND PHRASE*WORDS (blank tag matches a response which
is blank or which contains only spaces and punctuation)

answer <EXTRA WORDS>(SYNONYMOUS WORDS1 AND PHRASE*WORDS1
SEPARATED BY COMMAS)(SYNONYMOUS WORDS2 and PHRASE*W0RDS2
SEPARATED BY COMMAS)W0RD3

answer «LISTNAME1»((LISTNAME2)) ((LISTNAME3) ,W0RD3)
answer RESPONSE1;RESPONSE2;RESPONSE3 (each argument may have any

of the preceding forms for the tag of -answer-; synonymous
responses for the same argument are separated by commas)

J10

wrong same options as -answer- but for an incorrect response; sets
"judged" to 0 if the response matches the tag

wrong WORDS AND PHRASE*WORDS

answerc compares the response with one of several arguments in the tag,
depending on the rounded value of the conditional expression;
performs the checks available with -answer-; sets "judged" to -1
if the response matches the required argument

answerc EXPR|RESPONSEM|RESPONSE0$$RESPONSE2 (the arguments may
have any of the forms allowed in the tag of -answer-;
a blank argument indicates no anticipated response for
that value of the conditional expression)

wrongc same options as -answerc- but for an incorrect response; sets
"judged" to 0 if the response matches the required argument

wrongc EXPR$RESPONSEM$$$RESPONSE2$RESPONSE3

answera same options as -answer- except the tag is variable (the stored
character string consists of a tag which is allowed with -answer-);
the end of the character string is indicated by the specified number
of characters or by six bits equal to zero (o00), whichever is
attained first; sets "judged" to -1 if the response matches the tag

answera STARTING VAR OF STORED STRING,NUM CHARACTERS (opt)
(NUM CHARACTERS, if omitted, is 10)

wronga same options as -answera- but for an incorrect response; sets
"judged" to 0 if the response matches the tag

wronga STARTING VAR OF STORED STRING,NUM CHARACTERS (opt)

concept compares the response with the tag; -vocab- or -vocabs- provides
synonyms; sets "judged" to -1 if the response matches the tag

concept WORDS AND PHRASE WORDS (no asterisk in phrases; blank tag
matches a response which is blank or which contains only
ignorable words from the vocabulary)

concept W0RD1 WORD2,VAR1^=W0RD1,VAR2< W0RD2 (detects which synonym
is entered if the vocabulary is appropriately set up)

miscon same options as -concept- but for an incorrect response; sets
"judged" to 0 if the response matches the tag

miscon WORDS AND PHRASE WORDS

Jll

exact compares the response with the tag for an exact character string
match; sets "judged" to -1 if the response matches the tag

exact STRING (blank tag matches a blank response)

exactc compares the response for an exact character string match with one
of several arguments in the tag depending on the rounded value of a
conditional expression; sets "judged" to -1 if the response matches
the required argument

exactc EXPR,STRINGM,STRING0,.STRING2 (blank argument matches a
blank response)

exactv compares the response with a stored character string for an exact
match; the end of the character string is indicated by the specified
number of characters or by six bits equal to zero (o00), whichever is
attained first; sets "judged" to -1 if the response matches the tag

exactv STARTING VAR OF STORED STRING,NUM CHARACTERS (opt)
(NUM CHARACTERS, if omitted, is 10; if the number of
characters is 0, the response is judged correct if nothing
is entered)

NOTE: With the following four commands (-ansv-, -wrongv-, -ansu-, -wrongu-),
TOLERANCE is optional. When tolerance is omitted, the default is 10“’
if the absolute value of the tag value is less than approximately 100
or (10“^ x |tag value |) if the absolute value of the tag value is
greater than approximately 100. These commands cannot judge values
smaller in absolute value than 10“^ since any response less than 10”^
will then match the tag.
TOLERANCE may be absolute deviation or percent deviation.

ansv checks a numerical response against the first argument in the tag,
with tolerance, if given, set by the second argument; sets
"judged" to -1 if the response matches the tag (within the tolerance)

ansv CORRECT VALUE,TOLERANCE

wrongv similar to -ansv- but for an incorrect numerical response; sets
"judged" to 0 if the response matches the tag (within the tolerance)

wrongv INCORRECT VALUE,TOLERANCE

J12

ansu

wrongu

NOTE:

touch

touchw

NOTE:

or

ans

similar to -ansv- but checks for correct units; sets "judged" to -1
if the response matches the tag (within the tolerance)

ansu NUMBER AND UNITS,TOLERANCE

similar to -ansu- but for an incorrect response; sets "judged" to 0
if the response matches the tag (within the tolerance)

wrongu NUMBER AND UNITS,TOLERANCE
wrongu NUMBER,TOLERANCE (may be used to indicate that units

are missing)

For applications of -ansu- and -wrongu- see -storeu- and -define-.
Commands -ansv- and -wrongv- accept defined units in the user's response
but they do not judge the units.

specifies the location of a rectangle for a touch response; sets
"judged" to -1 if the specified rectangle is touched (see -enable-
and -disable-)

touch AREA1;AREA2;AREA3;... (blank tag matches any touch input)

Note: AREA may be: COARSE,WIDTH IN CHARACTERS,HEIGHT IN LINES
£r FINEX.FINEY,WIDTH IN DOTS,HEIGHT IN DOTS
COARSE or FINEX.FINEY is the screen location of the lower
left corner of a rectangle of specified width and height.
Width and height are optional and assumed to be 1 if omitted.

same options as -touch- but for an incorrect touch response; sets
"judged" to 0 if the specified rectangle is touched

touchw AREA1;AREA2;AREA3;AREA4;...

One touch square is 32 dots on each side (or 4 characters in width
and 2 lines in height).

(no tag) placed on the line between response-matching commands
to provide alternative responses for the same value of "anscnt"

(no tag) allows use of the ANS key; terminates judging only if
ANS is pressed; otherwise normal judging occurs; -ans- must be
the first judging command following the -arrow- command unless
-jkey ans- is in effect

J13

Information on specific words in response

NOTE: In the following commands (-getword-, -getmark-, -getloc-, -compare-),
a "word" is an entry set off by spaces or punctuation from surrounding
characters. (See -specs allwords-, -specs -alphxnum- and
-change symbol- for additional options in specifying word boundaries.)

getword (regular command) allows storage of individual words in a response

getword ARGl,ARG2,ARG3,ARG4 (opt)

ARG1 = relative position of the word in the response
(first word is 1, second word, 2, etc.)

ARG2 = starting variable for storing the word (up to
10 characters per variable)

ARG3 = variable for storing the actual number of characters
in the word (= 0 if ARGl > "wcount")

ARG4 = maximum number of characters to be stored in ARG2
(optional; if omitted, value is 10)

Note: Words that are stored are not removed from the judge buffer.

getmark (regular command) used after judging a response to give markup
information on individual words in the response

getmark ARG1,ARG2

ARGl = relative position of the word in the response
(first word is 1, second word, 2, etc.)

ARG2 = variable containing markup information
= -2 if the response is perfect or if no markup is done

with the response-matching command used
= -1 if the position of the word is out of bounds

(i.e., if ARGl > "wcount")
= 0 if there are no errors in the word
> 0 bits in ARG2 are set according to the error(s),

starting at the right-most bit (subscript "2"
indicates the number is in binary notation):
(12) a word preceding this word is missing
(102) the word is out of order (too far right)
(1002) there is a capitalization error
(1 0002) the spelling is incorrect
(10 0002) the word is part of a broken phrase
(100 0002) the word is an extra word
(1 000 0002) this word is the last word, and a

word which should follow is missing

J14

getloc

compare

(regular command) gives the screen position of the beginning (and
end, if requested) of the specified word in the response

getloc ARG1,ARG2,ARG3,ARG4 (opt),ARG5 (opt)

ARGl = relative position of the word in the response
(first word is 1, second word, 2, etc.)

ARG2 = variable for storing the finex screen position of
the beginning of the word (= -1 if ARGl > "wcount")

ARG3 = variable for storing the finey screen position of
the beginning of the word

ARG4 = variable for storing the finex screen position of
the end of the word (optional)

ARG5 = variable for storing the finey screen position of
the end of the word (optional)

(regular command) compares two words for spelling

compare ARGl,ARG2,ARG3

ARGl = starting variable containing a word
ARG2 = starting variable containing another word
ARG3 = variable for storing the result code

result = -1
= 0
> 0

if the words are different
if the words are identical
if the words are misspellings of each other
(smaller value indicates a closer match)

Note: The words must be stored in the same manner, e.g., both words
left-justified or both right-justified. Words stored with
-storea- or -pack- are left-justified.
If a word itself is given (£ 10 characters), it must be
enclosed in single quotes for left-justification or double
quotes for right-justification.
System variables "spell" and "capital" are set if result
value 2 0:
"capital" is set to 0 and "spell" is set to -1 if only one
word is capitalized but spellings are identical;
otherwise "spell” is set to 0 If result > 0

The end of each word is marked by a punctuation symbol, space,
or 6 bits of 0 (o00). Words are compared up to the first
occurrence of a terminating symbol.
A maximum of 39 characters in each word may be compared.

J15

Unconditional judgment

ok (no tag) judges any response "ok "; sets "

no (no tag) judges any response "no sets "

ignore (no tag) erases and ignores .any response;
processing and waits for a new response

judged" to -1

judged" to +1

stops further

J16

Reference

join

iarrow

iarrowa

to other units which may contain judging commands

causes execution of the specified unit without change of main
unit; commands following -join- are executed; -join- is executed
in all states: regular, judging, and search (see also description
under SEQUENCING, Automatic sequencing)

join UNIT NAME
join NAME,VAR<=INITIAL EXPR,FINAL EXPR,STEPSIZE EXPR (opt)
join EXPR,NAMEM,NAME0,x,NAME2,q (example of conditional form)

(regular command) the specified unit is executed after each
subsequent -arrow- in a unit just before the first judging command
is executed

iarrow UNIT NAME
iarrow (B) or iarrow q (clears the -iarrow- setting for

subsequent -arrow- commands in the unit)
iarrow EXPR,NAMEM,NAME0,q,NAME2,x (example of conditional form;

maximum of 100 arguments in the conditional tag)

Note: The -iarrow- setting is equivalent to -join- after each
subsequent -arrow- (just before the first judging command);
the specified unit is executed in all states.

(regular command) similar to -iarrow- but is associated with
-arrowa-; see -iarrow- for restrictions

iarrowa UNIT NAME

J17

Alteration

judge

of judgment

(regul ar command) alters the judgment rendered by judging commands

judge ok (sets judgment to "ok"; sets "judged" to -1;
continues executing regular commands)

judge no (sets judgment to "no" [unanticipated]; sets
"judged" to +1; continues executing regular
commands)

judge wrong (sets judgment to "no" [anticipated]; sets
"judged" to 0; continues executing regular
commands)

judge okquit (sets judgment to "ok"; sets "judged" to -1;
terminates execution at that arrow except for
regular commands following -specs-)

judge noquit (sets judgment to "no"; sets "judged" to +1;
terminates execution at that arrow except for
regular commands following -specs-)

judge quit (leaves judgment unchanged and terminates
execution at that arrow except for regular
commands following -specs-; allows the user to
proceed to the next arrow even if judgment on
the current arrow is "no")

judge ignore (stops executing all commands, erases the
response, and waits for a new response)

judge exit (rescinds judgment and waits for additional keys)
judge continue (resumes judging using the modified response,

as altered by -bump-, -put-, -specs-, -match-,
-storen-, etc.; resumes executing judging
commands)

judge rejudge (resumes judging using the original, unmodified
response and clears the -specs- setting;
resumes executing judging commands)

judge EXPR,x,no ,ignore,ok (example of conditional form;
argument x leaves judgment unchanged)

J18

Alteration of feedback

okword (regular command) permits "ok" message to be changed

okword NEW WORD FOR USE WITH "OK" JUDGMENT (may be blank)

noword (regular command) permits "no" message to be changed

noword NEW WORD FOR USE WITH "NO" JUDGMENT (may be blank)

NOTE: Tags of -okword- and -noword- may have up to 9 characters.
A space is automatically provided before the message.
Commands -okword- and/or -noword- may be placed anywhere in the
lesson. Once they are executed, they are in effect until execution
of another -okword- and/or -noword- command.

markup (regular command) (no tag) used with -specs holdmark- to display
markup information that was inhibited with -specs holdmark-

markupy (regular command) specifies vertical displacement of markup
information in screen dots from the default position of 8 dots below
the response; tag is negative for new position below the default,
positive for above; new position is in effect until execution of
another -markupy- command

markupy DOTS FROM DEFAULT MARKUP POSITION
markupy 0 (sets to default position of 8 dots below response)

J19

System variables for judging

judging in general

anscnt number of response-matching commands encountered at an arrow
before the response is matched; also set by -storen-; otherwise,
= -2 if the user's response contains more than 39 words
= -1 if no tag is matched
= 0 for a store error
zeroed for each -arrow- and each -specs- command

ansok = -1 if the response is a satisfactory match to the preceding
response-matching command

= 0 otherwise;
in particular, after -no-,
= -1 if there is no match to a previous response-matching command
= 0 if the match is poor

jcount number of internal 6-bit character codes in the response

judged = -1 for any "ok" judgment
= 0 for any "wrong" judgment (anticipated "no")
= 1 for any "no" judgment (unanticipated "no")
= 2 for response not yet judged

key
ztouchx
ztouchy

[See descriptions under system variables for sequencing.]

ntries number of attempts on the current arrow

verbal responses

judging commands which affect system variables for verbal responses:

1. -match- 3. -vocabs-, -concept-, -miscon
2. -answer-, -wrong-, -answerc-, -wrongc-, 4. -vocab-, -concept-, -miscon-

-answera-, -wronga-

capital = -1 if there are no capitalization errors, = 0 otherwise
(with 1, 2, 3 above)

entire = -1 if all required words are present, = 0 otherwise
(with 2 above)

J20

extra = -1 if there are no extra words in the response, = 0 otherwise
(with 2, 3, 4 above)

order = -1 if word order is ok, = 0 otherwise
(with 2 above)

phrase = -1 if there are no phrase errors, = 0 otherwise
(with 1, 2, 3 above)

spell = -1 if spelling is ok, = 0 otherwise
(with 1, 2, 3 above)

vocab = -1 if all words in the response are in the vocabulary, = 0 otherwise
(with 3, 4 above)

wcount number of words in the response (maximum of 39)
(with all above)

numerical responses

These system variables are set with -ansv-, -wrongv-, -ansu-, -wrongu-,
-store-, -storeu-, -compute-, -calc-, -calcc-, and -calcs-.

opcnt number of arithmetic operations and functions in the response
(= -1 if there are no operations and the expression cannot be stored
with -store-)

varcnt number of defined variables and functions (define set "student")

J21

formok gives diagnostics on errors in mathematical expressions

= -1 if the expression is ok
= 0 if there is a bad function argument or index
= 1 if there is an illegal character
= 2 if there are unbalanced parentheses
= 3 if there are too many decimal points
= 4 if there are variables not defined in define set "student”
= 5 if a symbol involving $ is not a logical or a bit operator
= 6 if the expression has bad form
=7 if a value is assigned to a non-variable
= 8 if an octal constant contains digit 8 or 9
= 9 if there is an error in an alpha string
=10 if a number has too many digits
=11 if an array index is out of bounds
= 12 if there are variables with -specs novars-
= 13 if there are operations with -specs noops-
= 14 if there are assignments without -specs okassign-
= 15 if units in the response are used incorrectly
= 16 if too much computing is attempted
= 17 if the expression is too deep in nested functions
=18 if a function has the wrong number of arguments
= 20 if an array has the incorrect number of arguments
= 21 if an array is not permitted in this expression
= 22 if the array size is incorrect or operation is nonconformal
= 23 if there are too many arrays in the expression
= 60 if too many temporary variables are needed during processing
= 62 if expression is too complicated for temporary storage to hold
= 63 if there are too many literal numbers in the expression
= 65 if there is an error in a segment definition
= 66 if expression is too deep in indexes which are assigned values

Additional notes on JUDGING

Additional notes on JUDGING

Additional notes on JUDGING

MANAGING SITES

MANAGING SITES Ml

Commands in this section are legal only in a site lesson.

Site commands

These commands, all of which have -site- in the command field, give information
on the specified logical site.

site set specifies the logical site for subsequent -site- commands
and -station- commands; a later -site set- command
overrides an earlier one

site set, 'SITENAME'

Note: zreturn = -1 if -site set- is executed successfully
= 0 if the lesson is not a site lesson for the

specified sitename

site info stores current site EM information for the site specified
by a preceding -site set-

site info,STARTING VAR FOR STORING INFORMATION

Note: Information consists of:

n(x) or nc(x) = starting variable
n(x)
n(x+l)
n(x+2)
n(x+3)

contains the base EM allotment
If
II
If

the EM currently allotted
the EM currently in use
the number of active terminals at the site

zreturn == -1 if -site info- is executed successfully
= 0 if no site has been set by -site set-

site active stores the physical station numbers of the specified
number of active stations on the site

site active,STARTING STATION NUMBER,STARTING VAR FOR STORING
STATION NUMBERS,NUM ACTIVE STATIONS TO STORE

Note: zreturn = -1 if -site active- is executed successfully
= 0 if no site has been set by -site set-
= +1 if the starting station number is invalid

M2

site stations stores the physical station numbers of the specified
number of stations permanently on the site

site stations,STARTING STATION NUMBER,STARTING VAR FOR STORING
STATION NUMBERS,NUM STATIONS TO STORE

Note: zreturn = -1 if -site stations- is executed successfully
= 0 if no site has been set by -site set-
= +1 if the starting station number is invalid

M3

Station commands

These commands, all of which have -station- in the command field, give
information on individual stations on the specified logical site.

station info stores information on the specified physical station number

station info,STATION NUMBER,STARTING VAR FOR STORING DATA

Note: Information consists of:

n(x) or nc(x)
n(x) and n(x+l)
n(x+2) contains
n(x+3)
n(x+4)
n(x+5)

n(x+6)
n(x+7)

n(x+8)
n(x+9)

II name of
II EM used

zreturn = -1 if
= 0 if
= 1 if
= 2 if
= 3 if

= starting variable
contain the user's name (up to 18 characters)
the name of the user's group
the type of user
the account name containing the user's group
session statistics (in 3 20-bit fields—
disk accesses, seconds of CPU, elapsed time in seconds)
the name of the user's lesson or type of activity
total EM the lesson Is using (in 3 15-bit fields—
storage EM, common EM, lesson EM [left-most 15-bit
field is empty])

info- is executed successfully
is been set by -site set-

station status sets "zreturn" according to the status of the specified
physical station number

station status,STATION NUMBER

Note: zreturn -2 if the station is in the process of signing on
-1 if the station is active
0 if no site has been set by -site set-
1 if the starting station number is invalid
2 if the specified station is not on the site
3 if the station is inactive
4 if a backout of the station is in progress
5 if the station is locked out

M4

station send sends the specified message (in -mode rewrite-) to the
specified physical station number

station send,STATION NUMBER,SCREEN LOCATION,MESSAGE,NUM
CHARACTERS IN MESSAGE

Note: zreturn -1 if message is sent successfully
0 if no site has been set by -site set-
1 If the starting station number is invalid
2 if the specified station is not on the site
3 no message is sent (specified station is a

runner station or is the station sending the
message)

station logout backs out the station (given by the physical station number)
(sets "backout" to -2)

station logout,STATION NUMBER

Note: zreturn -1 if the backout is successful
0 if no site has been set by -site set-
1 if the starting station number is invalid
2 if the specified station is not on the site
3 if the specified station cannot be backed out

station stopl presses STOPl at the specified station (sets "backout" to
+1 until the station enters another instructional lesson)

station stopl,STATION NUMBER

Note: zreturn = -1
= 0
= 1
= 2
= 3

if STOPl is pressed at the station
if no site has been set by -site set-
if the starting station number is invalid
if the specified station is not on the site
if STOPl cannot be pressed at the specified
station

station off turns off the specified station and prevents further use of
the terminal (sets "backout" to -2)

station off,STATION NUMBER

Note: zreturn = -1
= 0
= 1
= 2
= 3

if the station is turned off successfully
if no site has been set by -site set-
if the starting station number is invalid
if the specified station is not on the site
if the specified station cannot be turned off

M5

station on turns on the specified station

station on,STATION NUMBER

Note: zreturn -1 if the station is turned on successfully
0 if no site has been set by -site set-
1 if the starting station number is invalid
2 if the specified station is not on the site
3 the station is already active

M6

System variables for managing sites

zlsac = -1
= 0

if the lesson is a site access controller
otherwise

zrunner = -1
= 0

if the lesson is being executed at a runner station
otherwise

Additional notes on MANAGING SITES

Additional notes on MANAGING SITES

PRESENTING

PRESENTING Pl

Basic display

at specifies starting position of display on the screen; sets left margin

at COARSE
at FINEX.FINEY

Note: The following formulas convert between character grid and
fine grid.

finex = 800x frac(coarse/100) - 8
finey = 512 - 16* int(coarse/100)
coarse = 100x {1 + int[(511 - finey)/16] } + int(finex/8) + 1

atnm like -at- but does not reset the left margin

atnm COARSE
atnm FINEX.FINEY

write displays text on the screen

write ANY MESSAGE, WHICH MAY CONSIST OF SEVERAL LINES
AND INCLUDE EMBEDDED INFORMATION.

writec displays one of several messages depending on the rounded value of
the conditional expression

writec EXPR|MESSAGEM|MESSAGE0|MESSAGEl|jMESSAGE3

NOTE: The embed feature is available. See descriptions of the individual
commands in this section for information on FORMAT, MINIMUM, and
ASTERISK, which are optional.

embedded
embedded
embedded
embedded
embedded
embedded
embedded
embedded
embedded
embedded
embedded

embedded

-show-
-showz-
-showt-
-showe-
-showo-
-showh-
-showa-
-at-
-a tnm-
-size-
-rotate-

-mode-

< show,EXPR,FORMAT,MINIMUM^ or <(s,EXPR,FORMAT,MINIMUM)*
< showz,EXPR,FORMAT> or < z,EXPR,FORMAT
< showt, EXPR, FORMAT)* or <(t, EXPR, FORMAT)>
< showe,EXPR,FORMAT,ASTERISK)* or < e,EXPR,FORMAT .ASTERISK)*
< showo,EXPR,FORMAT)* or < o,EXPR,FORMAT)*
< showh,EXPR,FORMAT)* or <(h,EXPR,FORMAT>
< showa,STARTING VAR,FORMAT)* or <(a,STARTING VAR,FORMAT)*
<(at,COARSER ; <(at,FINEX,FINEY)*
< atnm,COARSER ; <(atnm,FINEX,FINEY)*
< size,EXPR GIVING SIZE OF WRITING)*
<(size, SIZE IN X DIRECTION, SIZE IN Y DIRECTION)*
< rotate,EXPR GIVING ANGLE FOR WRITING)*

m,w)> (write mode)
< m,e> (erase mode)

m,r)> (rewrite mode)

P2

NOTE:

show

showz

showt

showe

In the show-type commands (-show-, -showz-, -showt-, -showe-, -showo-,
-showh-, -showa-), the general form is

showz EXPR,FORMAT

where FORMAT, which may be an expression, is optional.
If FORMAT equals 0, nothing is displayed.

For displaying entire arrays, the general form is
showt ARRAYNAME,FORMAT (for arrays with number of rows < 16,

number of columns <64; -showa-, -showh-, -showo-, -showe-
may also be used to display entire arrays)

To display only the first element of an array, use
show ARRAYNAME,FORMAT or showz ARRAYNAME,FORMAT

displays the value of a variable or an expression with the specified
number of significant digits but with suppression of trailing zeros
after the decimal point; exponential format is displayed if the
number of digits preceding the decimal point exceeds FORMAT by
more than 4, or if the absolute value is less than 10“^;
MINIMUM is between 0 and 1 and specifies the smallest non-zero
value to be displayed (0 is displayed if the absolute value of
the expression is less than MINIMUM)

show EXPR,NUM DIGITS,MINIMUM (FORMAT, if omitted, is 4;
MINIMUM, if omitted, is 10'9)

similar to -show- but displays all digits, including trailing zeros

showz EXPR,NUM DIGITS (FORMAT, if omitted, is 4)

displays the value of a variable or an expression in the specified
format

showt EXPR,NUM DIGITS PRECEDING DECIMAL POINT,NUM DIGITS
FOLLOWING DECIMAL POINT (may be omitted if zero)

(FORMAT, if omitted, is 4,3 for v-variable, 8 for
n-variable; if the number of decimal places is less
than 10, FORMAT may also be expressed as a single
decimal number: e.g., 4.3 is equivalent to 4,3)

displays the value of a variable or an expression in exponential
format with the specified number of significant digits, including
a leading blank or a minus sign; an optional third argument
specifies the format for the exponent

showe EXPR,NUM DIGITS,ASTERISK (FORMAT, if omitted, is 4;
ASTERISK is omitted or =0 for exponent expressed by
superscript, #0 for exponent expressed by 2 asterisks and
multiplication sign replaced by one asterisk)

P3

showo displays the value of a variable or an expression in octal notation

showo EXPR,NUM DIGITS DISPLAYED (FORMAT, if omitted, is 21;
in embedded -showo- default format is 20)

showh displays the value of a variable or an expression in hexadecimal
notation

showh EXPR,NUM DIGITS DISPLAYED (FORMAT, if omitted, is 16;
in embedded -showh- default format is 15)

showa displays characters in the specified variable(s) or specified string,
reading from the left end of the buffer

showa STARTING VAR,NUM CHARACTERS (FORMAT, if omitted, is 10)
showa 'STRING' (STRING may contain up to 10 characters)

hidden displays hidden as well as visible characters; (special symbols are
used to display hidden characters); number of characters includes
all 6-bit character codes

hidden STARTING VAR,NUM CHARACTERS (opt) (NUM CHARACTERS,
if omitted, is 10)

text

erase

Note: Symbols for hidden characters are:
o zero code (o00) _ blank (o55)

superscript (o67) t shift (o70)
+~ backspace (o74) ♦ font (o75)

u subscript (066)
1 carriage return (o71)
n access (o76)

displays contents of an alphanumeric buffer, line by line; the end
of a line must be indicated by a variable ending with 2 zero codes
(i.e., 12 bits equal to 0: O0000) (embedded zero codes (o00) are
ignored); not affected by -size- or -rotate-

text STARTING VAR,NUM VARS

erases the screen, selectively or entirely

erase
erase

erase
erase

abort (causes a full-screen erase and aborts output)
(B) or erase NEGATIVE NUMBER (causes full-screen erase

but does not abort output)
NUM CHARACTERS
NUM CHARACTERS

TO BE ERASED
PER LINE,NUM LINES (causes block erase)

Note: Selective erase is affected by preceding -size-, -gorigin-
(and -scalex-, -scaley-), and -rorigin-.

P4

mode specifies terminal writing mode (see also system variable "mode")

mode
mode
mode

mode

mode

write (normal writing state; writes only selected dots)
erase (erases only selected dots)
rewrite (erases and rewrites in one step; does not work

with "size” / 0)
inverse (only on programmable terminal; displays dark

writing on light background)
EXPR,erase,write,x,erase (example of conditional form;

argument x leaves writing mode unchanged)

Note: The mode is reset to "write" after any full-screen erase, in
particular at a main unit not containing -inhibit erase-.

size specifies the size of line-drawn characters; remains in effect
across main unit boundaries until turned off explicitly (see
also system variables "size", "sizex", "sizey")

size EXPR GIVING SIZE OF CHARACTERS
size SIZE IN X DIRECTION,SIZE IN Y DIRECTION (sets independent

sizes in x and y directions)
size 0 or size (B) (restores standard writing)

Note: Negative
negative
Negative

"sizex”
"sizey"
"size"

gives
gives

behaves

backwards characters and writing;
upside down characters and writing.
like simultaneous negative "sizex"

rotate

delay

and negative "sizey".

causes line-drawn characters to be written at the angle specified
in the tag; remains in effect across main unit boundaries until
turned off explicitly (must be used with -size- tag / 0)

rotate EXPR GIVING ANGLE IN DEGREES (omit degree symbol;
measured counter-clockwise from horizontal)

rotate 0 or rotate (B) (restores horizontal writing)

permits short delays during output; causes "do nothing" output to be
sent to the terminal for the specified delay time

delay DURATION OF DELAY IN FRACTIONS OF A SECOND (maximum of
1 second; accurate to 1/60 second)

lang sets the system variable "zlang'

lang english (sets "zlang" to 0)
lang french (sets "zlang" to 1)
lang Spanish (sets "zlang" to 2)
lang german (sets "zlang" to 3)
lang EXPR,french,x,english,german (example of conditional form;

argument x leaves "zlang" unchanged)

P5

inhibit temporarily disables certain normal actions of TUTOR in a unit;
all settings are cleared at each main unit

inhibit

inhibit
inhibit

inhibit
inhibit

inhibit

inhibit
inhibit

inhibit

inhibit
inhibit
inhibit

inhibit

anserase (prevents automatic erasure of answer-contingent
message when a response is erased)
(prevents plotting of the response arrow)
(prevents judging if NEXT is pressed before any
characters are typed)
(prevents clearing of the charset flag)
(prevents the attached file from being released
during a jumpout)
(prevents storage from being dropped during a
jumpout)
(prevents use of the EDIT key)
(prevents normal full-screen erase when
proceeding to the next main unit)
(prevents return to the lesson containing this

via -jumpout return- or
return,return-)
EM check before attempting a jumpout)
use of the TERM key)

(removes effect of previous -inhibit
commands in that main unit)

clear,arrow,blanks (may combine tags)

arrow
blanks

charclear
dropfile

dropstor

edit
erase

from

jumpchk
term
(B) or

statement
-jumpout
(prevents
(prevents

inhibit clear

char permits specification of specially designed characters for display

char NAME,ARGl,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7,ARG8

Note: The character name (NAME) may be a number from 0 to 126
(excluding 63) or a defined name. Arguments ARGl through
ARG8 are numbers which specify which of the 16 dots are
lit in each of the 8 columns of the character space.

for example:

define chi=88 $$ load chi on X
char chi,o4020,ol0040,o6300,ol600,o3140,o4020,ol0040,0

plot displays a special character previously specified by a -char- command

plot NAME
plot EXPR (EXPR may have value from 0 to 126, excluding 63)

Note: Special characters may also be displayed by pressing the
FONT key and then the key(s) where the character(s) are
loaded into the terminal memory. Built-in characters are
displayed after FONT is pressed again.

P6

Graphics

NOTE:

dot

draw

box

fill

With -dot-, -draw-, -box-, -fill-, -vector-, -window-, LOCATION is the
screen location and may be COARSE or FINEX,FINEY. Coarse grid and
fine grid coordinates may be mixed in tags with more than one argument.

draws a dot at the specified screen location

dot LOCATION

draws a dot, line, or line-drawn figure; after execution, "wherex"
and "wherey" are set to the last point plotted

draw LOCATION (draws a dot; -dot- is faster if many dots are
plotted; -draw- is faster if lines are also being drawn)

draw LOCATION1;LOCATION2 (draws a line)
draw LOCATION1;LOCATION2;L0CATI0N3;... (draws connected lines)
draw ;LOCATION (draws a continued line)
draw LOCATION1;LOCATION2;skip;LOCATION3;LOCATION4

("skip" moves to a new position without plotting)

Note: Maximum number of numbers in the tag is 63 ("skip" counts
as a number).

draws a rectangle with the specified corner locations and thickness;
after execution, "wherex", "wherey" are set to the lower left corner
of the box with thickness included

box CORNER LOCATION;OPPOSITE CORNER LOCATION;DOTS THICK(opt)
box ;CORNER LOCATION;DOTS THICK (opt) (opposite corner at current

"wherex", "wherey")
box CORNER LOCATION (opposite corner at 0,0; cannot specify

thickness with this form of tag)
box (B) (equivalent to -box 0,0;511,511—)

Note: Thickness, if omitted, 0, 1, or -1, is 1 dot. Negative
thickness extends inward; positive thickness extends outward.
Maximum thickness is 95 (or -95).

fills in a rectangular area on the screen on programmable terminals;
does not affect the setting of "wherex", "wherey"

fill CORNER LOCATION;OPPOSITE CORNER LOCATION
fill ;C0RNER LOCATION (opposite corner at "wherex", "wherey")
fill (B) (fills in the entire screen, i.e., corners 0,0;511,511)

Note: The rectangular area is erased if -fill- is preceded by
-mode erase- or -mode inverse-.

P7

vector draws a vector symbol with specified tail and head locations and
head size

vector TAIL LOCATIONjHEAD LOCATION;SIZE (opt)
vector ;HEAD LOCATION;SIZE (opt) (tail at "wherex", "wherey")
vector HEAD LOCATION (tail at 0,0 ; cannot specify head size)
vector 0,0;HEAD LOCATION;SIZE (tail at 0,0 ; head size specified)

Note: SIZE, if omitted, is 10 or 11 dots for moderate-length vectors
Negative size indicates open arrowhead.
I size|^1 is absolute (in screen dots); |size|<l is relative
to the length of the vector.

window establishes a rectangular "window" on the screen outside of which
line-drawn display is not plotted; remains in effect across main
unit boundaries until turned off explicitly

window CORNER LOCATION;OPPOSITE CORNER LOCATION
window ;CORNER LOCATION (opposite corner at "wherex", "wherey")
window CORNER LOCATION (opposite corner at 0,0)
window (B) (clears previous -window- setting)

circle draws a circle with the specified parameters; the center is at the
current "wherex", "wherey"; after execution, "wherex", "wherey" are
set to the center for a one-argument tag and to the end of the last
line drawn for the three-argument tag

circle RADIUS IN DOTS,START ANGLE (opt),END ANGLE (opt)
(second and third arguments are optional: if omitted,
START ANGLE is 0° and END ANGLE is 360°; angles are
measured in degrees counter-clockwise from START ANGLE;
degree sign is omitted)

circleb same options as -circle- but draws a broken circle

circleb RADIUS IN DOTS,START ANGLE (opt),END ANGLE (opt)

P8

Relocatable graphics

rorigin establishes a "relocatable” origin for use with -rdraw-, -rat-,
-rbox-, -rvector-, and -rcircle-

rorigin COARSE
rorigin FINEX.FINEY
rorigin (B) (sets relocatable origin to "wherex”, "wherey")

Note: Upon entering a lesson, the relocatable origin is
automatically set to -rorigin 0,0-.

NOTE: All subsequent relocatable commands are affected by preceding
-rorigin-, -size-, and -rotate-.

rat similar to -at- but relative to the -rorigin- location; affected
by preceding -size- and -rotate-

rat X-LOCATION,Y-LOCATION
rat (B) (equivalent to -rat 0,0-, i.e., the current

-rorigin- location)

ratnm similar to -rat- but does not reset the left margin (see -atnm-)

ratnm X-LOCATION.Y-LOCATION

rdot draws a dot at the specified position relative to the -rorigin-
location; position is affected by preceding -size- and -rotate-

rdot X-LOCATION,Y-LOCATION

rdraw similar to -draw- but figure is affected by preceding -size- and/or
-rotate-; the last point plotted serves as the location for the next
screen activity

rdraw TAG LIKE -draw- EXCEPT WITH RESPECT TO -rorigin- LOCATION
(i.e., in screen dots from the -rorigin- location)

rbox similar to -box- but draws a rectangle relative to the -rorigin-
location; affected by preceding -size- and -rotate- (see -box-)

rbox CORNER X,CORNER Y;OPPOSITE CORNER X,OPPOSITE CORNER Y;
DOTS THICK (opt)

rbox ;CORNER X,CORNER Y;DOTS THICK (opt) (opposite corner at
"wherex", "wherey")

rbox CORNER X,CORNER Y (opposite corner at -rorigin- location;
cannot specify thickness with this form of tag)

P9

rvector

rcircle

similar to -vector- but draws vector symbol relative to the -rorigin
location; affected by preceding -size- and -rotate- (see -vector-)

rvector XTAIL,YTAIL;XHEAD,YHEAD;SIZE (opt)
rvector ;XTAIL,XHEAD;SIZE (opt) (tail at "wherex", "wherey")
rvector XHEAD,YHEAD (tail at -rorigin- location)
rvector 0,0;XHEAD,YHEAD;SIZE (tail at -rorigin- location)

same options as -circle- but is affected by preceding -rotate- and
-size-; gives an ellipse if preceded by two-argument -size- with
unequal arguments (see -circle-)

rcircle RADIUS IN DOTS,START ANGLE (opt),END ANGLE (opt)
(specify basic radius before affected by -size-)

P10

Drawing graphs

gorigin specifies location of the origin of the graph; all other display
with graphing commands is relative to this origin

gorigin COARSE
gorigin FINEX.FINEY
gorigin (B) (sets graph origin to "wherex", "wherey")

Note: Upon entering a lesson, the origin is automatically set
to -gorigin 0,0-.

axes specifies lengths of the axes and draws the axes; remains in effect
across main unit boundaries until reset; x and y values are in dots
relative to the -gorigin- location

axes NEGATIVE X,NEGATIVE Y,POSITIVE X,POSITIVE Y
axes POSITIVE X,POSITIVE Y
axes (B) (draws axes specified by the last -axes- or -bounds-)

Note: To draw one-quadrant axes (other than both positive axes) with
labeling on the outside of the axes, use four-argument form of
the tag with arguments corresponding to missing axes set to 0.

bounds specifies lengths of the axes but does not draw the axes (i.e., axes
are invisible); remains in effect across main unit boundaries until
reset; x and y values are in dots relative to the -gorigin- location

bounds NEGATIVE X,NEGATIVE Y,POSITIVE X,POSITIVE Y
bounds POSITIVE X,POSITIVE Y
bounds (B) (sets up bounds specified by the last -axes- or -bounds-)

Note: Upon entering a lesson the boundaries are automatically
set to -bounds 511,511-.

scalex specifies the maximum value and the value at the origin on the
x axis; remains in effect across main unit boundaries until reset

scalex MAXIMUM VALUE OF X,VALUE OF X AT ORIGIN (opt)
(value at origin, if omitted, is 0)

scaley same options as -scalex- but for the y axis

scaley MAXIMUM VALUE OF Y,VALUE OF Y AT ORIGIN (opt)
(value at origin, if omitted, is 0)

Pll

lscalex specifies the maximum value and the value at the origin on the
x axis; the scale between these points is proportional to the
logarithm of maximum x divided by the value at the origin; remains
in effect across main unit boundaries until reset

lscalex MAXIMUM VALUE OF X,VALUE OF X AT ORIGIN (opt)
(value at origin, If omitted, is 1, i.e., 10^)

lscaley same options as -lscalex- but for the y axis

lscaley MAXIMUM VALUE OF Y,VALUE OF Y AT ORIGIN (opt)(value at origin, if omitted, is 1, i.e., 10^)

NOTE: If any of the commands -scalex-, -scaley-, -lscalex-, -lscaley- are
omitted, a linear scale with length set by the preceding -axes- or
-bounds- is assumed.

NOTE: Subsequent graphing commands are in appropriate scaled units.

labelx specifies mark intervals, draws tick marks, and labels the x axis

labelx MAJOR INTERVAL,MINOR INTERVAL(opt).MARKSIZE(opt).FORMAT(opt)

labely specifies mark intervals, draws tick marks, and labels the y axis

labely MAJOR INTERVAL,MINOR INTERVAL(opt),MARKSIZE(opt),FORMAT(opt)

markx specifies mark intervals; draws tick marks on the x axis with no labels

markx MAJOR INTERVAL,MINOR INTERVAL(opt).MARKSIZE(opt)

marky specifies mark intervals; draws tick marks on the y axis with no labels

marky MAJOR INTERVAL,MINOR INTERVAL(opt),MARKSIZE(opt)

NOTE: The total number of marks on an axis cannot exceed 100.
MAJOR INTERVAL = 0 (with linear scale) to select the "best" interval

automatically
MINOR INTERVAL = 0 or omitted to omit minor marks
MARKSIZE = 0 or omitted for normal label marks
MARKSIZE = 1 for major marks extending to bounds of the graph
MARKSIZE = 2 for all marks extending to bounds of the graph
FORMAT gives the format for the labels and has the same form as that

for -showt-, e.g., 1.2 or 1,2. FORMAT is optional; if omitted, the
label format is selected automatically and depends on the scale.

Blank fields are not permitted; use 0 where appropriate.

(NOTE continued on next page.)

P12

NOTE: (continued from preceding page)
For labeling log scales:
MAJOR INTERVAL must be 0 (major marks are automatically plotted every

decade)
MINOR INTERVAL < 0, minor marks are not plotted
MINOR INTERVAL = 0 or 3 (or omitted), minor marks are placed at values

of 1, 2, 5 within the decade
MINOR INTERVAL = 5, minor marks are placed at 1, 2, 3, 5, 7
MINOR INTERVAL = 10, minor marks are placed at 1, 2, 3, 4, 5, 6, 7, 8, 9

polar causes tags of graphing commands to be interpreted as polar
coordinates containing scaled radius and polar angle; may set scales
on x and y axes; remains in effect across main unit boundaries until
turned off explicitly; polar conversion and scaling must be turned
off independently

polar (B) (turns on polar conversion)
polar MAXIMUM VALUE OF X AND Y (turns on polar conversion

and scales both axes)
polar MAXIMUM VALUE OF X,MAXIMUM VALUE OF Y (turns on

polar conversion and scales axes independently)
polar NEGATIVE VALUE (turns off polar conversion but not scale)

NOTE: When the tag of subsequent commands is interpreted in polar coordinates,
the degree sign must be used if the angle is in degrees. Without the
degree sign, the angle is interpreted in radians.

gat similar to -at- but specifies the screen location relative to the
-gorigin- location and in scaled units

gat X-LOCATION,Y-LOCATION
gat DISTANCE,ANGLE (with -polar-)
gat (B) (equivalent to -gat 0,0-, i.e., the current

-gorigin- location)

gatnm similar to -gat- but does not reset the left margin (see -atnm-)

gatnm X-LOCATION,Y-LOCATION
gatnm DISTANCE,ANGLE (with -polar-)

gdot draws a dot at the specified position relative to the -gorigin-
location and in scaled units

gdot X-LOCATION,Y-LOCATION
gdot DISTANCE,ANGLE (with -polar-)

P13

graph places a dot or character string centered at the position indicated
relative to the -gorigin- location and in scaled units

graph X-LOCATION,Y-LOCATION,STRING (opt) (maximum of 9 characters
in STRING; if STRING is not specified, a dot is plotted)

graph DISTANCE,ANGLE,STRING (with -polar-)
graph X-LOCATION,Y-LOCATION;VAR,NUM CHARACTERS (opt)

(if NUM CHARACTERS is omitted, 10 characters are plotted)
graph DISTANCE,ANGLE;VAR,NUM CHARACTERS (with -polar-)

gdraw like -draw- but relative to the -gorigin- location and in scaled units;
after execution "wherex", "wherey" are set to the last point plotted

for example:

gdraw X1,Y1;X2,Y2 (draws a line on the graph)
gdraw DISTANCEl,ANGLE1;DISTANCE2.ANGLE2 (with -polar-)

gbox same options as -box- but draws a rectangle relative to the -gorigin-
location; affected by preceding -scalex- and -scaley- (see -box-)

gbox CORNER X,CORNER Y;OPPOSITE CORNER X,OPPOSITE CORNER Y;
DOTS THICK (opt)

gbox DISTANCE CORNER,ANGLE CORNER;DISTANCE OPPOSITE CORNER,
ANGLE OPPOSITE CORNER;DOTS THICK (with -polar-)

gbox ;CORNER X,CORNER Y;DOTS THICK (opt) (draws a box
with opposite corner at current "wherex”, "wherey")

gbox ;DISTANCE CORNER,ANGLE CORNER;DOTS THICK (with -polar-)
gbox CORNER X,CORNER Y (draws a box with opposite corner at

-gorigin- location; cannot specify thickness with this
form of the tag)

gbox DISTANCE CORNER,ANGLE CORNER (with -polar-)
gbox (B) (draws a box set by a previous -axes-/-bounds- and

-scalex-/-scaley-)

gcircle same options as -circle- but is affected by preceding -scalex- and
-scaley-; draws an ellipse if the -scalex- and -scaley- settings are
different (see -circle-)

gcircle RADIUS IN DOTS,START ANGLE (opt),END ANGLE (opt)
(specify basic radius before affected by -scalex-, -scaley-)

P14

gvector same options as -vector- except draws vector symbol relative to the
-gorigin- location and in scaled units (see -vector-)

gvector XTAIL,YTAIL;XHEAD,YHEAD;SIZE (opt)
gvector DISTANCETAIL,ANGLETAIL;DISTANCEHEAD,ANGLEHEAD;SIZE(opt)

(with -polar-)
gvector ;XHEAD,YHEAD;SIZE (opt) (tail at "wherex”, "wherey")
gvector ;DISTANCE HEAD,ANGLE HEAD;SIZE (opt) (with -polar-)
gvector XHEAD,YHEAD (tail at -gorigin- location)
gvector 0,0;XHEAD,YHEAD;SIZE (tail at -gorigin- location)
gvector LENGTH,ANGLE (tail at -gorigin- location; with -polar-)

Note: Because of the default conditions of -gorigin 0,0- and
-bounds 511,511-, -gvector- used without preceding -gorigin-
and -bounds- gives the same result as -vector- with fine-grid
coordinates.

vbar draws a vertical bar at the specified location relative to the
-gorigin- location and in scaled units

vbar X-LOCATION,HEIGHT,STRING (opt)
vbar DISTANCE BAR TOP,ANGLE BAR TOP,STRING (with -polar-)
vbar X-LOCATION,HEIGHT;VAR,NUM CHARACTERS (opt)
vbar DISTANCE BAR TOP,ANGLE BAR TOP;VAR,NUM CHARACTERS

(with -polar-)

hbar draws a horizontal bar at the specified location relative to the
-gorigin- location and in scaled units

hbar LENGTH,Y-LOCATION,STRING (opt)
hbar DISTANCE BAR END,ANGLE BAR END,STRING (with -polar-)
hbar LENGTH,Y-LOCATION;VAR,NUM CHARACTERS (opt)
hbar DISTANCE BAR END,ANGLE BAR END;VAR,NUM CHARACTERS

(with -polar-)

NOTE: With -vbar- and -hbar-, STRING may have up to 9 characters. If STRING
is omitted, a rectangle is drawn. If the character string is stored in
a variable and number of characters is omitted, 10 characters are drawn.

P15

delta specifies stepsize for subsequent -funct- commands

delta STEPSIZE

Note: If -delta- is omitted, the stepsize is set to 1.

funct plots the curve specified in the tag, with the stepsize given by a
preceding -delta- or by the stepsize given in the tag

funct FUNCTION EXPR,INDEPENDENT VAR

Note: Range of independent variable is set by boundaries of
-axes- (or -bounds-) and -scalex- commands.

funct FUNCTION EXPR,INDEPENDENT VAR<= INITIAL,FINAL,STEPSIZE

Note: If initial or final values of the independent variable are
beyond previously set boundaries, the latter are used.
For polar functions if initial or final value is omitted,
it is assumed to be 0 or 2ir, respectively.

With either form of -funct-, a v-variable is recommended
for the independent variable.

NOTE: With -delta- and -funct-, select a stepsize that gives a smooth graph
but plots quickly. A reasonable lower limit to the stepsize for a
graph with linear x axis is:

ISTEPSIZE| 2 -02* |FINAL VALUE - INITIAL VALUE|

P16

Non-screen

slide

audio

Play

record

enable

disable

operates the slide projector and selects the specified slide

slide SLIDE NUMBER (value from 0 to 255)
slide ROW+16XCOLUMN (ROW, COLUMN from 0 to 15)
slide 512 (turns off lamp)
slide 256 (closes shutter)
slide 512+SLIDE NUMBER (selects slide with lamp off)
slide 256+SLIDE NUMBER (selects slide with shutter closed)
slide noslide (selects slide 0, turns off lamp, closes shutter)

sends the value of the tag (truncated to 15 bits) to the external
device connected to the "audio" jack

audio EXPR

plays the audio device recording at the message location specified

play TRACK,SECTOR,NUM SECTORS (128 tracks, 32 sectors each)

records a message at the location specified

record TRACK,SECTOR,NUM SECTORS

allows input from the touch panel and from external devices

enable touch
enable ext
enable touch,ext (may combine tags)

Note: -enable touch- must be reset for each -arrow- command in a
unit and after any full-screen erase.
-enable touch- in a unit with no -arrow- allows any touch
on the screen to have the effect of pressing NEXT.
-enable ext- is turned off only by -disable ext-.

prevents input from any device except the keyset; this is the normal
state of the terminal

disable touch
disable ext
disable touch,ext

P17

ext

extout

xout

xin

beep

NOTE:

sends the value of the tag (truncated to 15 bits) to an external
device (or to the device at another station if "ext" option has
been turned on by the receiving user)

ext EXPR
ext EXPR,STATION

Note: zreturn = -1 if data is sent successfully
= 0 otherwise

sends the value of the right-most 16 bits of the specified variables
to an external device; the 16th bit from the right determines how the
information is interpreted: 1 for ext, 0 for audio

extout STARTING VAR,NUM VARS (opt) (NUM VARS, if omitted, is 1)

sends data (in 8-bit bytes) contained in the specified variables to
an external device (available only on programmable terminals)

xout DEVICE ADDRESS (establishes an address for use by subsequent
-extout- or -ext- commands)

xout ADDRESS,STARTING VAR,NUM BYTES,SEGMENT SIZE (opt)
(SEGMENT SIZE, if omitted, is 60; if SEGMENT SIZE > 8,
only the right-most 8 bits are sent)

Note: zreturn = -1 if the data is sent successfully
= 0 if STOP or STOP1 is pressed during transmission

collects data (in 8-bit bytes) from an external device and stores it
in the specified variables (available only on programmable terminals)

xin DEVICE ADDRESS (establishes an address to be read upon
subsequent external interrupt requests)

xin ADDRESS,STARTING VAR,NUM BYTES,SEGMENT SIZE (opt)
(SEGMENT SIZE, if omitted, is 60; if SEGMENT SIZE > 8,
the right-most 8 bits of "key" are stored, right-justified,
in each segment)

Note: zreturn = -1 if the data is received successfully
= 0 if STOP or STOP1 is pressed during transmission

(no tag) rings the sound device on programmable terminals

Commands -xout-, -xin-, -beep- may be used only at a programmable
terminal.
For current Information on device addresses, see the descriptions of
-xin- or -xout- in "aids".

P18

saylang

say

sayc

specifies f.he language to be spoken by a phonemic synthesizer which
is operated by the terminal (languages currently available: WES
[World En.glish Spelling], ipa [International Phonetic Alphabet],
Esperanto, and Spanish); currently works only with Votrax model VS-6

sayla’ng LANGUAGE
sayLang (B) or saylang q (turns off subsequent -say- commands)
saylang EXPR,LANGUAGEM,LANGUAGE0,q.LANGUAGE2,x (example of

conditional form)

specifies the sentence to be spoken by the synthesizer

say SENTENCE OR PHRASE (may include embedded information)

specifies the sentence to be spoken by the synthesizer depending
on the value of a conditional expression

sayc EXPR|PHRASEM|PHRASE0|PHRASE1

P19

Special display

tabset sets tabs which are used by a user pressing the TAB key; remains in
effect across unit boundaries until reset

tabset OCTAL NUMBER CONTAINING 10 PACKED TAB SETTINGS FROM
LEFT TO RIGHT (each setting is a 6-bit octal number giving

the horizontal character position; unused settings to
the right must be filled with octal zeros)

for example, to set tabs at horizontal character positions
8, 21, 30, 48, 56, and 63, use:

tabset ol0 25 36 60 70 77 00 00 00 00

Note: The tag may be an n-variable which contains the packed settings

micro specifies microtable definitions used when the user presses the
MICRO key and then another key; unless specified, microtable and
-micro- command are in the same lesson

micro (0),MICROTABLE NAME
micro (zlesson).MICROTABLE NAME
micro .MICROTABLE NAME
micro MICROTABLE NAME
micro LESSON NAME.MICROTABLE NAME (LESSON NAME contains the

microtable; enclose variable arguments in parentheses)
micro CLESLIST POSITION>,MICROTABLE NAME
micro (B) (cancels microtable in effect and restores built-in

microtable definitions)

Note: zreturn = -1 if the microtable is available
= 0 if the microtable is not found

charset causes the specified character set to be loaded into the terminal
memory (see -inhibit charclear-); 1-block charset may contain
up to 79 characters, 2-block charset up to 126 characters; unless
specified, the charset and -charset- command are in the same lesson

charset (0),CHARSET NAME
charset (zlesson).CHARSET NAME
charset ,CHARSET NAME
charset CHARSET NAME
charset LESSON NAME,CHARSET NAME (LESSON NAME contains the charset

blocks; enclose variable arguments in parentheses)
charset <LESLIST POSITION>,CHARSET NAME
charset (B) (clears charset flag)

Note: zreturn -1 if the character set is loaded successfully
0 if the character set is not found
1 if the STOP key is pressed during loading
2 if there is an error in loading
3 if there Is a disk error
5 if the variable for the charset name equals 0

P20

chartst

lineset

allows check for presence of a character set in the terminal memory;
sets "zreturn" to -1 if the charset flag is set and to 0 if not

chartst (0),CHARSET NAME
chartst (zlesson),CHARSET NAME
chartst ,CHARSET NAME
chartst CHARSET NAME
chartst LESSON NAME,CHARSET NAME (LESSON NAME contains the

charset; enclose variable arguments in parentheses)
chartst CLESLIST POSITION)*,CHARSET NAME

allows use of line-drawn characters, which are affected by preceding
-size- and -rotate-; "size” must not be 0; linechars are accessed by
the FONT key or by -altfont on- ; a lineset may be up to 3 blocks
long; 1 block may contain up to 128 small linechars; unless specified,
lineset blocks and -lineset- command are in the same lesson

lineset (0),LINESET NAME
lineset (zlesson).LINESET NAME
lineset .LINESET NAME
lineset LINESET NAME
lineset LESSON NAME,LINESET NAME (LESSON NAME contains the

lineset; enclose variable arguments in parentheses)
lineset CLESLIST POSITION>,LINESET NAME
lineset (B) (cancels lineset In effect and restores standard

sized writing)

Note: zreturn = -1 if the lineset is attached successfully
= 0 if the lineset is not found
= +1 if there is an error in the lineset

altfont changes font mode of the terminal; affects charsets and linesets

altfont on or altfont 1 or altfont alt (switches terminal
to alternate font)

altfont off or altfont 0 or altfont normal (switches
terminal to normal font, which is the default state)

Note: Tag may be calculated, but it must be exactly 0 or 1.
Altfont setting remains in effect across unit boundaries
until reset by another -altfont- command or until -jumpout-
is executed.

P21

System variables for presenting

with -mode erase-
with -mode rewrit e-
with -mode write-
with -mode inverse-

see -mode- command
mode = -1

= 0
= 1
= 2

size current value of the tag of the single-argument -size- command
(see -size- command)

sizex current value of the "x” argument in the two-argument -size- command

sizey current value of the "y" argument in the two-argument -size- command

where character-grid location for next display

wherex fine-grid x location for next display
See CALCULATING,

► System functions,
for zfinex(X), zfiney(X)

wherey fine-grid y location for next display

zlang useful for display of multi-lingual text; set by -lang- command
= 0 for -lang english-
= 1 for -lang french-
= 2 for -lang spanish-
= 3 for -lang german-

Additional notes on PRESENTING

Additional notes on PRESENTING

Additional notes on PRESENTING

ROUTING

ROUTING R1

Router lesson

route used in a router lesson to specify to which unit in the router
lesson the user is sent upon leaving the instructional lesson

route end lesson,UNIT NAME (exit via -end lesson- or -jumpout q-)
route error,UNIT NAME (exit via execution error or condense error)
route finish,UNIT NAME (exit via STOPl)
route resignon,UNIT NAME (opt) (upon STOPl exit from a lesson,

provides the user with a choice page offering the option
to sign off completely or to continue working
[i.e., to return to the router, to the specified unit,
If given, or to the first unit if UNIT NAME is omitted])

routvar (non-executable) sets up special variables in a router lesson which
can be used only in the router lesson; they are referenced by
vr and nr

routvar NUM VARS (maximum of 64 variables)

allow used in a router lesson to specify that router common and/or
router variables may be referenced in the instructional lesson

allow read (read-only access to router common)
allow write (read and write access to router common)
allow read rvars (read-only access to router variables)
allow (B) (clears last setting of -allow-)

R2

Curriculum information

NOTE: The following commands are used in instructional lessons.

lesson sets the system variable "ldone" to indicate whether the user has
completed the lesson

lesson complete (sets "ldone" to -1)
lesson incomplete (sets "ldone" to 0)
lesson no end (sets "ldone" to +1; may be used in lessons with

no logical end)
lesson EXPR,complete,incomplete,x,no end (example of conditional

form; argument x leaves "ldone" unchanged)

score places the value of the tag, rounded to the nearest integer, into
the system variable "lscore"

score EXPR (value from 0 to 100)
score (B) (sets "lscore" to -1)

status places the value of the tag, rounded to the nearest integer, into
the system variable "lstatus"; allows a user to reestablish a status
upon returning to a lesson after having entered other lessons

status EXPR

R3

System variables for routing

errtype

ldone

= 0 for unknown error type
= 1 for execution error
= 2 for fatal condense error or for attempted jumpout to a router

not specified for the group
= 3 for memory exceeded
= 4 for error in the finish unit of the instructional lesson
= 5 for exit from the condense queue via STOPl

= -1 if the user has encountered -lesson complete- or
-end lesson-

= 0 if the user has encountered -lesson incomplete- or has never
entered the lesson or has entered but not completed the lesson
(-records ldonelist- returns a value of 2 for the last case
when "mrouter" is used)

= +1 if the user has encountered -lesson no end-

lscore rounded value of the tag of -score- (value from 0 to 100); initially
set to -1 for a user routed by "mrouter"; may also be set to -1 with
-score (B)-; initially set to 0 for a user not routed by "mrouter"

lstatus rounded value of the tag of -status-

rcallow = 0 for no access to router common
= 1 for -allow read-
= 2 for -allow write-

router name of the router lesson (left-justified; display with -showa-)

rstartl name of the lesson from the last -restart- command
(left-justified; display with -showa-)

rstartu name of the unit from the last -restart- command
(left-justified; display with -showa-)

rvallow = 0 for no access to router variables
= 1 for -allow read rvars-

zcurric name of the instructor file when "mrouter" is the router
(left-justified; display with -showa-)

R4

zleserr gives detailed information on fatal errors which can occur when
accessing a lesson (i.e., errors that give a student the message
"Call Your Instructor")

= 0 if there is no error or if the error is non-fatal
= 1 if the condensor is not available
= 2 if the lesson does not exist
= 3 if the lesson source code is too long
= 4 if EM is not available (although the site EM allocation is

not exceeded)
= 5 (system error)
= 6 if there is a disk error
= 7 if there is a unit which is too long
= 8 if the lesson has been deleted
= 9 (not used)
= 10 if there is no room in EM for the lesson common
=11 if the common is not found
=12 if there are not enough common blocks
= 13 (system error)
= 14 if there is a common codeword error
= 15 if there is a tag which is too long
= 16 if the lesson binary is too long
= 17 if the lesson is not a TUTOR lesson
= 18 if the lesson is temporarily unavailable
= 19 if the site EM allocation is exceeded
= 20 (system error)
= 21 (system error)
= 22 if there is an error in specifying the router
= 23 if there is a jumpout codeword error
= 24 if the common in EM has a different length from the length

specified in the -common- command
=25 if a jumpout to the wrong router is attempted
= 26 if there is an error in the -use- command (other than

"block not found")
= 27 (system error)
= 28 if the lesson is not available (not used on the CERL system)
= 29 (not used)
= 30 if the lesson is obsolete and must be converted
= 31 if there is an error in the -use- command: block not found
= 32 if the processor lesson is not a valid TUTOR file

Additional notes on ROUTING

Additional notes on ROUTING

SEQUENCING

SEQUENCING SI

Basic sequencing

unit names and initiates a section of a lesson (called a unit) which may
be referenced by other sequencing commands

unit NAME (maximum of 8 characters in NAME)

unitop similar to -unit- but without a full-screen erase when the unit is
entered (except upon initial entry into a lesson); "mode" and "where
are not altered

unitop NAME (maximum of 8 characters in NAME)

NOTE: Initial entry unit (ieu) refers to commands preceding the first -unit
or -unitop- command in a lesson; these are executed whenever and
wherever a lesson is entered (except when a lesson executes -jumpout-
to itself or when a router lesson is returned to during the session).

See -define- for formats for a local define set, which is declared as
a continuation of a -unit- command.

entry names a section of a lesson which may be referenced by other
sequencing commands; does not affect the flow of execution of the
unit in which the -entry- command is placed except that -entry- may
not be placed within the range of -branch-, -doto-, -if-, or -loop-;
no keypress is required to execute commands following -entry-;
no full-screen erase or other main-unit initializations occur
following -entry- when it is executed within a unit

entry NAME (maximum of 8 characters In NAME)

NOTE: Commands -unit-, -unitop-, and -entry- may have a form with arguments:

unit NAME(VARl,VAR2,VAR3,...) (up to 10 arguments)

A lesson may have up to 394 different units referenced by -unit-,
-unitop-, and -entry-. No unit may be named "q” or "x".
Maximum length of a unit is 500 condensed words.

S2

Automatic sequencing

NOTE: The following commands (-jump-, -goto-, -do-, and -join-) may have a
conditional form, e.g.,

goto EXPR,NAMEM,NAME0,NAMEl,x,NAME3,q
do EXPR,NAMEM,NAME0 ,x,NAME2 ,q, VAR<£ INITIAL,FINAL,STEP

Argument x is equivalent to absence of the command; argument q is
equivalent to a branch to an empty unit. Special case occurs with
-do q- (-join q-), which is equivalent to -goto q-. For iterative
-do-, q terminates the -do-, and x indicates no iteration is done for
that value of the conditional expression. Argument q is not valid with
-jump-. Up to 100 arguments are permitted in the conditional tag.

These commands may pass up to 10 arguments, e.g.,

goto NAME(VALUEl,VALUE2,,VALUE4) (values may be expressions)

•
unit NAME(VARl,VAR2,VAR3,VAR4) (VAR3 is unchanged)

or
do NAME(VALUE1,VALUE2;VAR1,VAR2,VAR3) (-return- returns

values to VARl, VARl, VAR3)

jump causes execution of the unit named in the tag with a full-screen
erase (unless the erase is prevented: see -inhibit erase-) and
change of main unit; initializations associated with entering a
main unit are performed

jump UNIT NAME

goto causes execution of the unit named in the tag without a screen erase,
without change of main unit, and without other main-unit
initializations; there is no further execution of commands in the
original unit except during the judging process

goto UNIT NAME

do (insertion) causes execution of the unit named in the tag without
screen erase or change of main unit; returns to the original unit
to execute commands following -do-

(iteration) causes repeated execution of unit(s) named in the tag while
changing a counter; otherwise same as insertion -do­

do UNIT NAME
do NAME, VAR <= INITIAL EXPR,FINAL EXPR,STEPSIZE EXPR (opt)

(STEPSIZE, if omitted, is +1; STEPSIZE may be negative;
loop variable is undefined after completion of the loop)

Note: Nested -do- and -join- levels may be up to 10 deep.

S3

join

return

exit

iferror

imain

similar to -do- but is executed during judging and during search
for additional -arrow- commands following an "ok" judgment

join UNIT NAME
join NAME,VAR<= INITIAL EXPR,FINAL EXPR.STEPSIZE EXPR (opt)

returns values to variables specified in a -unit- command with
arguments

return EXPRl,EXPR2,EXPR3 (maximum of 10 arguments)

Note: -return- occurs in a unit executed via -do- or -join-.

do NAME(EXPR;VARl,VAR2)

unit NAME(VAR)

return EXPRl,EXPR2 (returns values to VARl, VAR2)

permits termination of -do- or -join- sequences

exit (B) or exit NEGATIVE VALUE (exit from all levels
of -join- and -do-)

exit EXPR GIVING NUM LEVELS
exit 0 (causes no exit)

specifies the unit to execute via a -goto- if an error is found
in the execution of a subsequent calculation in a unit

iferror UNIT NAME
iferror (B) or iferror q (turns off -iferror- setting for

remainder of unit)
iferror EXPR,NAMEM,NAME0,q,NAME2,x (example of conditional form;

maximum of 100 arguments in conditional tag)

specifies the unit to execute at the start of every main unit in the
lesson; later occurrence of the command overrides an earlier setting;
equivalent to -do- at the beginning of each main unit

imain UNIT NAME
imain (B) or imain q (turns off -imain- setting for

remainder of lesson or until reset)
imain EXPR,NAMEM,NAME0,q,NAME2,x (example of conditional form;

maximum of 100 arguments in conditional tag)

S4

NOTE: The following two commands (-branch-, -doto-) permit branching or
looping within a unit. The command may appear in the command field or
in the tag field. In the tag field the command is part of a continued
-calc-.

branch permits branching within a unit (the statement label must start
with a number and may contain up to 7 characters)

for example:

5a
do
write

VAR<= EXPR
someu
some message

branch EXPR,5a,x (argument x causes fall-through to the next
line in the unit)

calc
6test

VAR4= EXPR
VAR4= EXPR
branch 6test
branch x (causes fall-through to next line in the -calc-)
branch EXPR,x,6test (example of conditional form)

doto permits looping within a unit (the statement label must start with
a number, may contain up to 7 characters, and must have a blank tag)

for example:

doto
do

2sync,VAR4= INITIAL EXPR,FINAL EXPR,STEPSIZE EXPR
someu

write
••

some message

2 sync (B)

calc VAR<= EXPR
doto 4run,VAR<= INITIAL EXPR,FINAL EXPR,STEPSIZE EXPR

•

4 run

Note: Stepsize, if omitted, is +1. Stepsize may be negative.
Value of the loop variable is undefined after completion
of the loop.

S5

NOTE :

if

elseif

else

endif

The following four commands (-if-, -elseif-, -else-, and -endif-)
permit branching within a unit. Logical value of an expression is "true
if its rounded value is -1 and "false” if its rounded value is 0.

performs a branch based on the logical value of the tag expression;
value of "true" causes fall-through to the next line; value of "false"
causes branch to the next -elseif-, -else-, or -endif- at the same
level; code following -if- must be indented (up to the next -elseif-,
-else-, or -endif- at the same level) and marked with the indent
symbol; range of -if- must be terminated by -endif- at the same level

if LOGICAL EXPR

provides an alternative branch within the range of the preceding
-if- at the same level; subsequent code follows same indenting
rules as -if-

elseif LOGICAL EXPR

(no tag) provides a branch if the logical value of the tag of the
preceding -if- or -elseif- at the same level is "false"; subsequent
code follows same indenting rules as -if-

(no tag) marks the end of the range of the preceding -if- at the
same level

NOTE: Following is an example demonstrating placement of these commands

if n8<4
• write first branch $$ executed if n8<4
• calc n94= 34 $$ executed if n8<4
elseif n8=4 $$ executed If n8£4
• write second branch $$ executed if n8=4
• do someunit $$ executed if n8=4
else $$ executed if n8>4
• write default branch $$ executed if n8>4
• if n8>6 $$ executed if n8>4
• write special branch $$ executed if n8>6
• endif $$ end of range! of -if
endif $$ end of range! of -if

n8>6-
n8<4-

S6

NOTE: The following four commands (-loop-, -endloop-, -outloop-, and -reloop-)
permit looping within a unit. Logical value of an expression is "true"
if its rounded value is -1 and "false" if its rounded value is 0.

loop initiates a loop based on the logical value of the tag expression;
value of "true" causes execution of subsequent commands in the loop;
value of "false" causes execution of the first command after -endloop-
at the same level of indentation as -loop-; code following -loop- must
be indented (up to the next -outloop-, -reloop-, or -endloop- at the
same level) and marked with the indent symbol; range of -loop- is
marked by -endloop- at the same level

loop LOGICAL EXPR (blank tag is equivalent to "true" value)

endloop (no tag) marks the end of a loop initiated by the previous -loop-
command at the same level of indentation; causes a branch back to
the previous -loop- command at the same level

outloop based on the logical value of the tag, causes exit from the range of
-loop- at the same level of indentation; value of "true" causes
execution of the first command after -endloop- at the same level;
value of "false" causes execution of subsequent commands within the
loop, which follow the same indenting rules as -loop-

outloop LOGICAL EXPR (blank tag is equivalent to "true" value)

reloop based on the logical value of the tag expression, causes branch back
to the previous -loop- command at the same level of indentation
without terminating the loop; value of "true" causes branch to the
previous -loop- at the same level; value of "false" causes execution
of subsequent commands within the loop, which follow the same
indenting rules as -loop-

reloop LOGICAL EXPR (blank tag is equivalent to "true” value)

Note: Following is an example demonstrating placement of these commands.

loop n8<10
• write within loop $$ executed if n8<10
• subl n8 $$ executed if n8<10
reloop n8£5 $$ executed if n8<10
• write still within loop $$ executed if n8<5
• do someunit $$ executed if n8<5
outloop n8<3 $$ executed if n8<5
• write still within loop $$ executed if 3£n8<5
endloop
write outside of loop $$ executed if n8£10 or n8<3

S7

Key-initiated sequencing

NOTE: The following commands (-next- through -lablop-) may have the
conditional form, where argument x leaves the pointer unchanged, and
argument q clears the pointer and renders the key inactive (except for
NEXT, which causes fall-through to the following unit). Argument q is
not valid with -nextnow-. Up to 100 arguments are permitted in the
conditional tag. The conditional expression is evaluated when the
command is executed, not when the key is pressed.

next, nextl, back, backl, stop specifies the unit executed when the user
presses the appropriate key (arrows must be satisfied before
sequencing on the NEXT key); the specified unit is a main unit

next UNIT NAME
backl UNIT NAME
back (B) or back q (clears back pointer; disables BACK key)

nextnow terminates processing and makes only NEXT key active; the specified
unit is a main unit

nextnow UNIT NAME

nextop, nextlop, backop, backlop specifies the unit executed when the user
presses the appropriate key; there is no full-screen erase and new
information is plotted on-the-page; the specified unit is a main unit

nextlop UNIT NAME
backop (B) or backop q (clears back pointer; disables BACK key)

help, helpl, data, datal, lab, labl initiates a help-type sequence by
specifying the unit to be executed if the user presses the appropriate
key; sets the base pointer for the unit to return to unless the base
pointer is already set; the unit executed is a main unit but not a
base unit (unless the base pointer is reset to this unit); a help-type
sequence may be terminated by the -end- command

help UNIT NAME
lab (B) or lab q (clears lab pointer; disables LAB key)

S8

helpop, helplop, dataop, datalop, labop, lablop specifies the unit executed
when the user presses the appropriate key; the unit executed is not a
main unit or a base unit and no full-screen erase is performed;
control is returned to the main unit after execution of the
helpop-type unit

helpop UNIT NAME
dataop (B) or dataop q (clears data pointer; disables DATA key)

term permits use of the TERM key to initiate a help-type sequence starting
at the unit containing this command and the specified character
string; sequence can be terminated by -end- (see -inhibit term-)

term STRING (maximum of 8 characters)
term (B) (provides match to any term request that does not

match an author-specified or system-specified term)

termop similar to -term- except initiates a helpop-type sequence

termop STRING (maximum of 8 characters)
termop (B) (provides match to any term request that does not

match an author-specified or system-specified term)

NOTE: A lesson may have up to 299 -term- and -termop- commands.

base resets or clears the base
sequencing

pointer in order to alter help-type

base (B) or base q (clears base pointer)
base UNIT NAME (sets base pointer to named unit)
base EXPR,q,NAME,x (example of conditional form;

argument x leaves base pointer unchanged; argument q
clears base pointer; maximum of 100 arguments in
conditional tag)

end terminates a help-type sequence or a lesson

end (B) or end help (ends a help-type sequence; may occur
anywhere in a unit; the user is returned to the base unit
after pressing NEXT; -end- is ignored if the user is not
in a help-type sequence)

end lesson (when NEXT is pressed after execution of this
statement, the user is returned to the router lesson or to
the "Press NEXT to Begin" display; the finish unit is not
executed; authors are returned to the author-mode display)

S9

Timing

keylist

pause

collect

(non-executable) forms a set of keys with the specified name for use
with -pause- and -keytype- commands

keylist NAME.KEYl,KEY2,KEY3,... (from 2 to 7 characters in NAME)
keylist NAME,NAME1,NAME2,... (keylists may be combined)

Note: System-defined keylists are:

alpha (letters: a to z and A to Z)
numeric (digits: 0 to 9)
funct (function keys ["key" from o200 to o235])
keyset (any keyset input)
touch (input from touch panel)
ext (input from external device other than touch panel)
all (input from keyset, touch-panel, or external device)

delays execution of subsequent commands by the specified interval
or until the specified keys are pressed

pause EXPR GIVING NUM SECONDS (minimum of .75 second)
pause 0 (causes no pause; exception to .75 second minimum)
pause (B) or pause NEGATIVE VALUE (interrupts processing

until any keypress comes in)
pause keys=KEYl,KEY2,KEYLIST NAME,... (interrupts processing

until one of the specified keys comes in; all keynames
are typed without quote marks and function keys are
typed in lower case)

pause NUM SECONDS,keys=KEYl,KEY2.KEYLIST NAME,... (interrupts
processing for the specified time or until one of the
specified keys comes in)

Note: If a function key other than next, such as help, is specified
and there is a preceding -help- or -helpop- command specifying
a unit to execute, this unit is executed rather than the
command following the -pause-. If next is specified, the NEXT
key just breaks the -pause-, even if there Is a preceding
-next- command.
The statements -pause keys=touch- and -pause keys=ext- set
the appropriate -enable-.

allows storage of keycodes from keyset, touch panel, or external
inputs in successive variables, starting at the specified variable;
collection terminates with receipt of the specified number of keys
or with receipt of the TIMEUP key, which is also stored

collect STARTING VAR,NUM KEYS (must use student variables)

S10

getcode

keytype

time

timel

timer

stores a user-generated string, left-justified, in the specified
variable and plots X's; "endkeys" specifies function keys which
terminate the entry (in addition to NEXT, which is the default);
up to 10 characters may be entered and stored

getcode VAR,endkeys=KEYNAMEl,KEYNAME2,... (opt) (names of keys are
in lower case)

sets a variable according to the position in a list of the input by
the user; if the input action is not listed, the variable is set to -1

keytype VAR,ARG0,ARGl,ARG2,...

arguments ARG0, ARGl, ARG2,... may be any of the following:

KEYNAME (any keyname; no quotation marks are used;
function keys are in lower case)

KEYLIST NAME (name of a system-defined keylist or of a list set up by
the -keylist- command)

(VAR) (value of "key" is compared with the value stored in VAR)
ext(VAR) (when the 10th bit from the right of "key" equals 1,

indicating an external input, the right-most 9 bits
of "key" are compared with the value stored in VAR)

touch(COARSE,WIDTH IN CHARACTERS,HEIGHT IN LINES)
touch(FINEX,FINEY,WIDTH IN DOTS,HEIGHT IN DOTS)

(COARSE or FINEX,FINEY is the screen position of the lower left
corner of a rectangle with specified width and height; width
and height are optional and are assumed to be 1 if omitted)

Note: Up to 100 keys may be specified; keylists count as one key.

presses the TIMEUP key after the specified interval and sets "key" to
"timeup”; function keys can break through the timing and set "key" to
the key pressed

time EXPR GIVING NUM SECONDS (minimum of .75 second)
time (B) or time NEGATIVE VALUE (clears any -time- in effect)

specifies a unit in the same lesson to execute (via helpop-type
sequence) when the indicated time has elapsed; remains in effect
across other timing commands and across unit boundaries

timel NUM SECONDS,UNIT NAME (minimum of .75 second)
timel (B) or timel NEGATIVE VALUE (clears any -timel- in effect)

used in a router lesson to specify a unit in the router to which a
routed user is sent when the indicated time has elapsed

timer NUM SECONDS,UNIT NAME (minimum of 60 seconds)
timer (B) or timer NEGATIVE VALUE (clears any -timer- in effect)

Sil

press puts the specified key into the student input buffer for the
indicated station, if given; limited to one keypress per second

press KEYCODE
press VAR CONTAINING KEYCODE
press "KEYNAME" (for non-function keys; lower case only)
press KEYNAME (for function keys, e.g., -press next-)
press KEYCODE,STATION (presses the key at another station if the

station is in the same lesson as the -press- command)

Note: For 2-argument -press-:
zreturn = -1 if the station is in the lesson

= 0 otherwise

catchup (no tag) causes a pause in execution while transmission of
accumulated output to the terminal is completed in order to
synchronize display and execution of commands

break (no tag) interrupts processing and returns with a new timeslice
for further processing when a complete timeslice is available

cpulim specifies the maximum CPU usage rate in thousand instructions per
second with a maximum of 10 thousand instructions per second

cpulim EXPR GIVING MAXIMUM CPU USAGE RATE (maximum of 10)

S12

Lesson connections and sections

use (non-executable) inserts into the file being condensed the specified
block(s) from the file specified in the directory OR the file
specified in the tag of -use-; all contiguous blocks with the same
name are taken; use codewords on the files must match

use BLOCK NAME (file is specified in the directory)
use FILE NAME,BLOCK NAME (multi-file use flag is set in the

directory; up to 5 different files may be used)

jumpout causes execution of the specified lesson or of the processor lesson,
if one is declared; up to 10 arguments may be passed to the lesson
(see -inhibit jumpchk-, -inhibit from-, and -args-)

jumpout FILE NAME (goes to the first unit in the lesson;
jumpout codewords need not match)

jumpout FILE NAME(VALUE1,VALUE2) (example of form with arguments)
jumpout FILE NAME,UNIT NAME (goes to the specified unit in the

lesson; jumpout codewords must match)
jumpout FILE NAME,UNIT NAME(VALUE) (example of form with arguments)
jumpout return (returns to the first unit of the lesson from which

a jumpout was made to the present lesson)
jumpout return(VALUE) (example of form with arguments)
jumpout return,return (returns to the lesson from which a jumpout

was made to the unit following the unit with the -jumpout-)
jumpout (B) or jumpout q (causes a jumpout to the author-mode page

for authors or to "Press NEXT to begin" page or to a router
for students or instructors; similar to -end lesson-)

jumpout <LESLIST POSITION> (causes a jumpout to the first unit of
the lesson at the specified position in the leslist)

jumpout <LESLIST POSITION>,UNIT NAME (causes a jumpout to the
specified unit in the lesson at the specified leslist
position; jumpout codewords must match)

jumpout EXPR;FILEM,UNITM;FILE0;FILE1,UNITl;q;x (example of
conditional form; argument q causes jumpout as above;
argument x causes no jumpout)

jumpout resume (used in a router lesson to return the user to the
lesson and unit specified by the last -restart-)

jumpout continue (used in a site lesson to send the user to a
router or lesson)

jumpout NOTESFILE NAME (causes jumpout to the specified notes file;
return to lesson is automatic, via -jumpout return,return-)

jumpout notes,choice (causes jumpout with read and write access to
the student notes file attached to the user's group)

jumpout notes,read (causes jumpout with read access to the student
notes file attached to the user's group)

jumpout notes,write (causes jumpout with write access to the student
notes file attached to the user's group)

jumpout notes,instruct (causes jumpout with read access as an
instructor to the student notes file attached to the group)

jumpout pnotes (causes jumpout to personal notes)

(-jumpout- continued on next page)

S13

jumpout s0acedit(LESSON NAME,LIST NAME,TYPE, 'CODEWORD'(opt))
(causes -jumpout- to access-list editor; TYPE is -1 to edit
or 0 to inspect; CODEWORD (or user's editing codeword) must
match lesson's change or common codeword to edit or
lesson's change, common, or inspect codeword to inspect;
if the list contains special options to edit the list,
these are checked and codewords are ignored;
return to the lesson is via -jumpout return,return(VALUE)-,
where VALUE is -1 if the list was changed, 0 otherwise)

Note: Variable lesson and unit names must be enclosed in parentheses.

args stores the values of arguments passed by -jumpout- to the lesson;
values are stored in the specified variables

args VARl,VAR2,VAR3 (maximum of 10 variables)

Note: zreturn = -1
= 0

1

if arguments are passed successfully
if no jumpout arguments are present
if there are more jumpout arguments present than
variables in -args-; as many values as can be
received are stored; "zreturn" value is the
actual number of arguments present

Arguments passed by -jumpout- may be picked up by a -unit-
command with arguments instead of by -args-.

from

lessin

checks the lesson and main unit, if specified, from which a lesson is
entered against a list and sets a variable to the relative position
of the lesson and unit in the list; if no unit is specified, any unit
in the lesson qualifies; if the lesson and unit are not listed, the
variable is set to -1; alternate form stores lesson name and unit name
in the specified variables

for example:

from VAR;LESSON0,UNIT0;LESSON1;CLESLIST POSITIONSUNIT2
(variable lesson and unit names must be enclosed in
parentheses)

from VAR FOR LESSON NAME,VAR FOR UNIT NAME (opt)

checks if the lesson specified Is credited to the user's logical site;
sets "zreturn" to -1 if the lesson is in EM and in use at the user's
logical site and to 0 otherwise

lessin 'LESSON NAME'
lessin (VAR CONTAINING LESSON NAME)
lessin CLESLIST POSITION OF LESSON>

S14

in sets "zreturn" to indicate whether a user at the specified station
number is in the lesson containing the -in- command

in EXPR GIVING STATION NUMBER

Note: zreturn = -2

= -I

= 0

if -in- is in a router lesson and a routed user
at the specified station is in an instructional
lesson
if the station is in the instructional lesson
containing the -in- command
if the station is not in the lesson

notes initiates TERM-comments automatically, or sends the specified text to
the lesson notes file or student notes file without user interaction;
the title, if included, must be left-justified, may contain up to
15 characters, and always requires two variables

notes STARTING VAR CONTAINING TITLE (opt) (initiates TERM-comments)
notes STARTING VAR CONTAINING TEXT,NUM VARS,STARTING VAR

CONTAINING TITLE (opt) (inserts text at front of note)
notes STARTING VAR CONTAINING TEXT,NUM VARS,STARTING VAR

CONTAINING TITLE (opt),send (sends the text automatically)

Note: Student variables must be used for the text and the title;
the format for the text is that for -text- command.
After multi-argument -notes-, values of "zreturn” are:

zreturn -1 if the note is sent successfully
0 if the user pressed BACK1 and note was not sent
1 if TERM-comments is not allowed in the lesson
2 if the format of the text is incorrect or if the

text is too long (>111 60-bit words or >16 lines)
3 if the note cannot be stored (e.g., the notes file

does not exist or is full)

cstart (non-executable) (no tag) indicates subsequent code is to be
condensed (used after a preceding -estop-)

estop (non-executable) (no tag) indicates subsequent code is not to
be condensed; in effect up to the next -cstart-, if any

estop* (non-executable) (no tag) indicates none of the subsequent code
is to be condensed, independent of subsequent -cstart- commands

NOTE: It is preferable to use the partial condense option of the editor
rather than -cstart-, -estop-, and -estop*-.

S15

Lesson lists

leslist references special blocks containing a list of up to 2400 lessons
(numbered starting at 0); if the -leslist- command and leslist blocks
are in different lessons, the common codewords must match or the
codeword argument must be included; codeword argument must match the
common codeword of the lesson containing the leslist blocks

leslist (0),LESLIST NAME
leslist (zlesson),LESLIST NAME
leslist .LESLIST NAME
leslist LESLIST NAME
leslist LESSON NAME,LESLIST NAME, 'CODEWORD' (opt)

(LESSON NAME contains the leslist blocks)
leslist <LESLIST POSITION>,LESLIST NAME, 'CODEWORD' (opt)
leslist (B) (disconnects the current leslist)

Note: Variable lesson and block names must be enclosed in parentheses
Quote marks on the codeword are omitted for variable argument.

zreturn = -1
= 0
= +1

if the -leslist- command is executed successfully
If the leslist blocks are not found
if codewords do not match

addlst allows addition of a lesson name to a leslist, either in the specified
slot or in the first empty slot If none is specified; the tag must be
a variable; requires three consecutive variables (the name is stored
with: -storea STARTING VAR,30-)

addlst STARTING VAR,LESLIST POSITION (opt)

Note: zreturn -1 if the lesson name is added successfully
0 if there is no preceding successful -leslist-

command
1 if the form of the lesson name is incorrect
2 if the lesson name is already in the leslist

(with one-argument form only)
3 if the leslist is full
4 if the specified slot is occupied (with two-

argument form only)
5 if the leslist is reserved by another user

removl allows deletion of a lesson at a specified leslist position; the
vacated position is left blank

removl LESLIST POSITION

Note: zreturn = -1 if the lesson is removed successfully
= 0 if there is no preceding successful -leslist-

command
= +1 if the leslist is reserved by another user

S16

reserve reserves the current leslist to prevent changes via -addlst- and
-removl- by more than one user at a time

reserve leslist

Note: zreturn -2 if the leslist is already reserved by this user
-1 if -reserve- is executed successfully by this

user
0 if there is no preceding successful -leslist-

command
5+n, where n=station number of the user who has
reserved the leslist

release releases the current leslist (if previously reserved)

release leslist

Note: zreturn -2 if the leslist is not reserved by any user
-1 if -release- is executed successfully by this

user
0 if there is no preceding successful -leslist-

command
5+n, where n=station number of the user who has
reserved the leslist

lname

findl

stores the lesson name at the specified leslist position in three
consecutive variables starting at the specified variable

lname STARTING VAR,LESLIST POSITION

Note: Use with -showa- to display the lesson name; e.g.:
lname STARTING VAR,LESLIST POSITION
showa STARTING VAR,30

zreturn = -1 if execution is successful
= 0 if there is no preceding successful -leslist-

command

searches the leslist for the lesson name stored in three consecutive
variables and returns the leslist position in the specified variable

findl STARTING VAR FOR LESSON NAME,VAR FOR LESLIST POSITION

Note: If the lesson name is not found or if no leslist is used,
returned value for the leslist position is -1.

S17

Lesson annotation and debugging

* indicates the statement on that line is a comment only and is to
c(space) be ignored by the computer

*This is a comment,
c This is a comment.

$$ (not a command) when placed on the same line with a TUTOR statement
indicates that subsequent material on that line is a comment

COMMAND TAG $$this is a comment

change (non-executable) permits names of commands to be changed, e.g., to a
language other than English; also permits symbols (e.g., punctuation)
to be redefined in certain judging commands; -change- must be placed
in the initial entry unit; all changes are in effect for the entire
lesson and cannot be altered

change command NORMAL TUTOR NAME to NEW NAME
change symbol SYMBOL1 to SYMBOL2

for example:

change command at to wo
change symbol * to letter
change symbol ? to puncword
change symbol p to punc
change symbol 3 to vowel
change symbol a to b
change symbol space to letter
change symbol sup to null
change symbol / to diacrit

etc.

Note: The answer-matching commands affected by -change symbol- are:
-answer-, -wrong-, -answera-, -wronga-, -answerc-, -wrongc-,
-concept-, -miscon-, -match-, -storen-. Other commands
affected are: -getword-, -getmark-, -getloc-, and -compare-.

step allows a user to step through a lesson command by command; an author
whose security code matches the lesson's change code may use TERM-step
(TERM-step is not available for other user types)

step on
step off
step EXPR (value=0 turns off step; value#0 turns on step)

S18

*list (does not affect condensing or execution) specifies options for
printing a file; -*list- commands for printing special types of blocks
must precede those blocks in the program; source blocks and text
blocks are always printed unless specified otherwise

*list

*list

*list

*list

*list

*list
*list
*list
*list
*list

*list
*list
*list
*list

*list
*list
*list

*list

*list
*list

*list
*list

*list
*list

*list
*list

*list

*list
*list
*list
*list

binary,BLOCK NAME,NUM WORDS,FORMAT (prints contents of
binary blocks; see page S20 for information on FORMAT)

charset (prints contents of all charsets in the lesson
with 0 for dots on and - for dots off)

charset,(DOTSBLANKS) (prints contents of charsets with
symbols specified for dots and blanks)

commands,COMMAND1,C0MMAND2,C0MMAND3,... (up to 10 commands;
lists lines on print where specified commands appear)

common,COMMON NAME.NUM WORDS,FORMAT (prints contents of
common; see page S20 for information on FORMAT)

deleted (prints deleted lines [with "mod words” option])
eject (causes page eject where command is located)
ignore (causes subsequent -*list- commands to be ignored)
info (prints lesson information display)
label,YOUR LABEL INCLUDING SPACES (prints a label at the

location of the -*list- command)
leslist (prints the contents of all leslists in the lesson)
listing (prints the contents of listing blocks)
micro (prints the contents of all microtables in the lesson)
mods (prints "mod words": first 5 characters of the name of

the last person to change each line and date of the change)
nosource (stops printing source blocks but not text blocks)
notext (stops printing text blocks but not source blocks)
off (stops printing blocks at the location of the command;

starts printing preceding -*list- options and the unit
cross-reference table)

off,BLOCKNAME1,BLOCKNAME2,BLOCKNAME3-BLOCKNAME4
(specifies blocks that are not to be printed)

parts (prints only source blocks which are set to condense)
symbols (prints reference table of variables, defined and

primitive, used in the lesson)
text (prints only text of -write- and -writec- commands)
title,YOUR TITLE (specifies subheading to be printed under

the lesson name on each subsequent page; causes page eject
when -*list title- is encountered)

vocab (prints contents of vocab blocks)
xref,on (turns on unit cross referencing [and symbol cross

referencing if requested] for all printed source blocks;
default case)

xref,all (same as -*list xref,on-)
xref,off (turns off cross referencing for all printed source

blocks)
xref,parts (turns on unit cross referencing [and symbol cross

referencing if requested] for all printed source blocks
which are set to condense)

1 space (prints blocks with single spacing; default case)
2 space (prints blocks with double spacing)
3 space (prints blocks with triple spacing)
4 space (prints blocks with quadruple spacing)

S19

Instructions for printing datasets and namesets are specified in the directory
of the file. Page S20 has information on FORMAT.

datasets:

STARTING RECORD NUMBER,NUM RECORDS,FORMAT
STARTING RECORD,,special
PAGE EJECTS;STARTING RECORD,,special
PAGE EJECTS;special (prints entire dataset in special format with page

ejects as specified)
special (prints entire dataset in special format)
STARTING RECORD,.direct
PAGE EJECTS;STARTING RECORD,.direct
PAGE EJECTSjdirect (prints entire dataset in direct format with page

ejects as specified)
direct (prints entire dataset in direct format)
INSTRUCTION!;INSTRUCTION2; etc. (may state several different instructions)

namesets:

NAMES;STARTING RECORD NUMBER,NUM RECORDS.FORMAT
NAMES;STARTING RECORD,.special
NAMES;PAGE EJECTS;STARTING RECORD,,special
NAMES;PAGE EJECTS;special (prints all records of specified names in

special format with specified page ejects)
NAMES;special
NAMES;STARTING RECORD,.direct
NAMES;PAGE EJECTS;STARTING RECORD,.direct
NAMES;PAGE EJECTS;direct
NAMES;direct
INSTRUCTION!;INSTRUCTION2; etc. (may state several different instructions)

NOTE: PAGE EJECTS may be: pages and/or records (if
entries must be separated by a semicolon, e.g.,

both are given, the
pages;records).

With namesets
NAME1
NAME1-NAME2
NAME1-
-NAME2
omitted

NAMES may be:
(prints records only for NAME1)
(prints records for names from NAMEl to NAME2)
(prints records from NAMEl to the last name)
(prints records from the first name to NAME2)
(prints records for all names in the nameset; preceding
semicolon must be included, e.g., ;special or
;STARTING RECORD,,direct)

S20

Note: FORMAT for printing datasets, namesets, commons, and binary blocks:

integer or I
exponential or e
floating or f
octal or o
hexadecimal or h
alpha
X

or a

special or s

direct
(DESIGNED)

or d

special format

(nc-variables; prints 10 words per line)
(vc-variables; prints 10 words per line)
(vc-variables; prints 10 words per line)
(prints 5 words per line)
(prints 6 words per line)
(prints 10 words per line)
(prints each word in o, e, i, and a formats;
prints 2 words per line)
(special format; specified number of words to be printed
is ignored but field must be present; details below)
(not used with binary blocks)
(like special format but carriage control is required)
(designed format; enclosed in parentheses; details below)

and direct format:

words are interpreted in alpha;
words with all 0 bits are ignored unless they are preceded by at least

one non-zero word on the same line;
a line (and a page) must always end with at least 12 zero bits (o0000)
up to 127 characters may be printed per line;
control characters for direct: " ", single space; "0", double space;

triple space; "+", overwrite; "1”, page eject; "2", bottom of page

the following print options are placed directly in the dataset, nameset,
or common; each requires two consecutive words:

*format eject
*format end

*format pages

*format records
*format blocks

(causes page eject at this location)
(causes the print of the file or of the name to end
at this location)
(causes page eject after each printed page;
allows top and bottom margins)
(causes page eject after each subsequent record)
(causes page eject after each subsequent block)

designed format:

the format is for a line of print;
format must be enclosed in parentheses;
up to 135 characters may be printed per line

designed format may consist of:

i (integer; nc-variables; prints 10 characters per word)
e (exponential; vc-variables; prints 10 characters per word)
f (floating point; vc-variables; prints 10 characters per word)
o (octal; prints 20 characters per word)
h (hexadecimal; prints 15 characters per word)
a (alpha; prints 10 characters per word)
x (space; preceding number indicates number of spaces)
1 (location of word; prints 4 or more characters)
p (skip to next word to be printed on the same line; preceding number

indicates how many words to go forward)
commas and spaces for readability

S21

System variables for sequencing

args number of arguments transferred at the previous execution of a unit
with arguments or -jumpout- with arguments

backout = -2 for a single-station backout
= -1 for a general backout
= 0 for no backout (e.g. signoff via STOPl)
= +1 after -station stopl-

baseu name of the user's current base unit (= 0 if no base unit is
specified, indicating the user is not in a help-type sequence)

clock value of the system clock in seconds (to the nearest millisecond)
since the previous deadstart (see command -clock-)

fromnum leslist position of the lesson from which the user came via a jumpout
(= -1 if the lesson is not in the leslist or if no leslist is in use)

key after a keyset input: contains the 7-bit keycode of the last keypress;
after a touch-panel input: contains a 9-bit number which gives the
location of the touch square (the binary form of this number is
lxxxxyyyy, where the 4 bits labeled "x" give the horizontal touch
location and the 4 bits labeled "y" give the vertical touch location—
coordinates for touch squares on the screen are: 0,0 at lower left,
0,15 at upper left, 15,0 at lower right, 15,15 at upper right);
after an external input: contains a 10-bit number whose left-most
2 bits are 10, with the remaining 8 bits carrying information from
the external source

lessnum leslist position of the user's current lesson (= -1 if the lesson
is not in the leslist or if no leslist is being used)

lleslst maximum number of lessons allowed in the leslist (= 0 if no leslist
is in use)

llesson condensed length of the lesson

mainu name of the user's current main unit

mallot memory allotment for the logical site at which the user is working

muse total memory usage by users at the same logical site as the user

S22

nhelpop

proctim

number of times a help-type key is pressed for on-the-page help;
zeroed for each main unit and for each arrow in the unit

processing time in the lesson (in seconds, to nearest millisecond)

ptime = -1 if the current time is during prime-time hours
= 0 otherwise

sitenam name of the user's logical site

station identification number assigned by the system to a terminal port
physical site = station ars 5 = int(station/32)
site station # = station $mask$ o37 = 32x frac(station/32)
station = 32x physical site + site station #

tactive number of currently active terminals

user user type: ’author’, ’instructor’, ’student’, ’multiple’,
’sabort’ (if student records have been aborted), ’snockpt’ (if
automatic checkpoint has been aborted)

usersin number of users in the lesson (routed users are counted as being in
the router as well as in the instructional lesson)

zaccnam name of the account which contains the user's group

zbatch = -1 if the user can submit batch jobs
= 0 if the user cannot submit batch jobs
= +1 if batch jobs are turned off for the system

zcondok = -1 if the lesson condenses without errors or warnings
= 0 if the lesson has condense errors or warning messages

zfroml name of the lesson from which a jumpout was done

zfromu name of the unit from which a jumpout was done

zgroup name of the user's group

S23

zid

zlesson

zpnfile

zpnotes

zretrnu

zreturn

zsnfile

zsnotes

zsysid

zsystem

unique identification number for the user; information is in 3 fields
(counting from the left end of the word):
18 bits: system identifier
22 bits: group identifier
20 bits: name identifier

name of the user's current lesson

= -1 if the user's group has a personal notes file attached
= 0 otherwise (and for multiples and students without access to

personal notes)

= -1 if the user has new, unread personal notes
= 0 otherwise

name of the unit to which -jumpout return,return- will go

set by some commands according to the results of execution; set by:
TUTOR commands: -access-, -addlst-, -addname-, -addrecs-, -attach-,
-charset-, -chartest-, -checkpt-, -commonx-, -comret-, -datain-,
-dataout-, -delrecs-, -ext-, -in-, -getline-, -leslist-, -lessin-,
-lineset-, -lname-, -micro-, -names-, -notes-, -parse-, -press-,
-readd-, -readset-, -recname-, -records-, -release-, -removl-,
-rename-, -reserve-, -setline-, -setname-, -site-, -station-, -xin-,
-xout-

= -1 if a student user's group has a student notes file attached
(TERM-comments sent to student notes file)

= 0 otherwise (and for authors and instructors)
(TERM-comments sent to lesson notes file)

= +1 if access to student notes and lesson notes is not allowed

= -1 if the student has new, unread notes
= 0 otherwise

60-bit value which uniquely represents the user's PLATO system; will
not change during lifetime of the system; not for display purposes

contains the name of the user's PLATO system

zterm contains the last term requested by the user

S24

ztouchx fine-grid x-location of the center of the touch box touched
(= -1 if last input was not a touch input)

ztouchy fine-grid y-location of the center of the touch box touched
(= -1 if last input was not a touch input)

ztzone contains the three-letter abbreviation of the time zone of the
location of the central computer of the user's PLATO system (e.g., CST)

zunit name of the user's current unit

zusers number of users currently signed on

NOTE: The following system variables contain alphabetic information
(left-justified) and must be displayed with -showa-:
baseu, mainu, sitenam, user, zaccnam, zfroml, zfromu, zgroup, zlesson,
zretrnu, zsystem, zterm, ztzone, and zunit.

In addition to the system variables listed In this subsection, keynames of
function keys may be treated as system constants. These keynames are typed
in lower case (e.g., next, lab, term) and have the numerical values given in
the keycode table on page A5. The exception is the SQUARE key, which has the
keyname "microl".

Additional notes on SEQUENCING

Additional notes on SEQUENCING

TERMINAL RESIDENT PROCESSING

TERMINAL RESIDENT PROCESSING T1

This section presents features of the pTUTOR programming language available with
the PLATO Programmable Terminal (PPT) and the CDC Information Systems Terminal
(1ST). Both types of terminals are referred to as "ppt". Features of central
system TUTOR for running assembly language programs are described although
details of assembly language are not included.

The pTUTOR language is evolving rapidly, and users should check "aids" for
current features.

Loading and running

ptutor (non-executable) (no tag) marks the beginning of a terminal resident
program written in pTUTOR; all subsequent commands are interpreted as
pTUTOR commands; must follow the TUTOR part of a program

unit names and initiates a section of a lesson (called a unit) which may be
referenced by other sequencing commands; must follow a -^ltutor- command

unit NAME (maximum of 8 characters in NAME)

Note: Maximum length of a condensed unit is about 3000 8-bit bytes.
No unit may be named "q" or "x".

loadu loads units into the terminal's memory so they can be executed with
-runu- or referenced by sequencing commands in ^iTUTOR; must be placed
in the TUTOR portion of a program

loadu NAME1,NAME2,NAME3 (maximum of 20 units can be loaded)
loadu ,NAME1,NAME2,NAME3 (loads specified units without deleting

units already loaded)
loadu (B) (clears flags indicating units are loaded)

Note: zreturn = -1
= 0

= 1
= 2
= 3
= 4
= 5
= 6

if units are loaded successfully
if the terminal is not programmable or if it
has the wrong pTUTOR level
if there is not enough memory in the terminal
if the units cannot be found
if STOP or STOP1 is pressed during loading
if jjTUTOR is not available
if there is an error in the binary format
if too many units are loaded

T2

runu

haltu

causes execution of a unit which was previously loaded into the memory
of the terminal (with -loadu-); must be placed in the TUTOR portion of
a program

runu NAME

Note: zreturn = -1 if the -runu- is executed successfully
= 0 if the specified unit is not loaded

(no tag) terminates execution of the unit which is currently running;
if no unit is running, -haltu- is ignored; the ^jTUTOR unit must
contain a -pause- command in order to be halted; -haltu- must be
placed in the TUTOR portion of a program

T3

Calculating

define (non-executable) similar to TUTOR -define- but primitives (n, v) are
not used; names of variables, constants, arrays, and functions are
listed, with the number of bits, if necessary; definitions are 16-bit
signed integer type unless type is specified as floating point or 8-bit
signed integer; all definitions following a specific type designation
follow that designation until a different designation is encountered

for example:

define NAME1,NAME2,NAME3
NAME4(ARRAYSIZE)
i,8:NAME5,NAME6
FUNC(ARG1,ARG2)=EXPR
f,48:NAME7,NAME8(ARRAYSIZE)
i,16:NAME9
i,8:NAME10«NAME9,NAMEll=NAME9
NAME12=20,NAME13=4.3

Note: Defined names may contain up to 7 characters and must start
with a letter.
Up to 6 arguments are permitted in defined functions.
One-dimensional arrays are permitted.
Approximately 1000 definitions are permitted.

calc assigns the value of the expression on the right side of the assign
arrow to the variable on the left side (available functions are given
on page T7)

calc VAR<= EXPR
calc VAR^ "LETTER" (single character only; character code is

placed in the right-most 8 bits of VAR of integer type)

calcc does one of several calculations depending on the rounded value of
a conditional expression

calcc EXPR,VAR1<= EXPRM,VAR2<= EXPR0,VAR3^= EXPRl, ,VAR4<£ EXPR3

calcs sets a variable to one of several values depending on the rounded
value of a conditional expression

calcs EXPR,VAR^= EXPRM,EXPR0,EXPRl,EXPR2,,EXPR4

NOTE: With -calcc- and -calcs- a blank tag entry (,,) means no calculation is
done for the corresponding value of the conditional expression.

T4

zero

set

compute

randu

setperm

sets to zero a single variable or consecutive variablessets to zero

zero VAR
zero START
zero (B)

Note: In the
by the

(sets all defined variables to 0)

sets values of consecutive variables starting at the specified
variable, or sets values of consecutive array elements starting at
the specified element

set STARTING VAR<= EXPR1 ,EXPR2 ,EXPR3 ,... (up to 95 values)

Note: All variables must be the same type as the starting variable.

evaluates a character string containing a simple expression involving
constants and converts the string to a number

compute VAR FOR RESULT,STARTING VAR OF STRING,NUM CHARACTERS

Note: The string may contain up to 128 characters.

zreturn = -1
= 0

= 1
= 2
= 3
= 4
= 5
= 6

if the string is converted successfully
if there are operations in the string when
-specs noops- is in effect
if the string contains an invalid character
If there too many decimal points
if the expression is too complicated
if there is an unrecognized operator
if the expression has bad form
if there are unbalanced parentheses

selects a random number, sampled with replacement, and places it in
the specified variable

randu VAR,MAXIMUM (selects integer from 1 to MAXIMUM;
0 £ MAXIMUM i (214 - 1))

Note: If the number generated is larger than the specified variable
type can store, only the right-most bits are retained.

creates a permutation list of the specified length for sampling by
the -randp- command (similar to the two-argument -setperm- in TUTOR)

setperm LIST LENGTH,STARTING VAR OF LIST (first variable of the list
contains the number of integers remaining in the list; each
remaining variable contains one bit for each integer)

T5

randp

remove

restore

block

find

pack

selects an integer without replacement from the list set up by
-setperm- and places it in the specified variable; when the list is
exhausted, the variable is set to 0

randp VAR FOR STORING VALUE,STARTING VAR OF PERMUTATION LIST

removes the specified value from the permutation list

remove INTEGER TO REMOVE,STARTING VAR OF PERMUTATION LIST

restores the specified value to the permutation list

restore INTEGER TO RESTORE,STARTING VAR OF PERMUTATION LIST

copies consecutive variables from one location to another (similar to
the TUTOR form of -block- except that there are no central memory
variables)

block FROM STARTING VAR,TO STARTING VAR,NUM VARS

Note: The number of 8-bit bytes copied is determined by the type
designation of the "from" variable.

searches each variable in a list of consecutive variables for the
first occurrence of the specified object

find ARG1,ARG2,ARG3,ARG4

ARG1 = variable containing the object bit pattern
ARG2 = starting variable of the list (variables in the list

must be the same type as the object)
ARG3 = number of variables in the list
ARG4 = variable for storing the location of the object

(0 if found in first variable, 1 if found in second
variable, etc., -1 if the object is not found)

packs a character string starting in the specified variable; packs
each 6-bit character code into one 8-bit byte; string may contain
embedded -show- and -showa-

pack STARTING VAR FOR STORING STRING$VAR FOR STORING
CHARACTER COUNT (opt)J STRING

T6

search searches a buffer for the first occurrence of the specified character
string (each character occupies an 8-bit byte)

search ARGl,ARG2,ARG3,ARG4,ARG5,ARG6

ARGl = starting variable containing the object string to be
searched for

ARG2 = number of 8-bit bytes in the object string
ARG3 = starting variable of the buffer to be searched
ARG4 = number of 8-bit bytes in the buffer to be searched
ARG5 = relative character position in the buffer at which to

start the search
ARG6 = variable for storing the relative location of the object

(0 if found in the first 8-bit byte, 1 if found in the
second 8-bit byte, etc., -1 if not found)

searchf searches a buffer for the first occurrence of a character string in
a specific field within an object

searchf ARGl,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7,ARG8

ARGl = variable which contains the first character of the
string to be found

ARG2 = number of 8-bit bytes in the string
ARG3 = starting variable of the buffer to be searched
ARG4 = number of entries in the buffer to be searched
ARG5 = entry in the buffer at which to start searching
ARG6 = number of 8-bit bytes in each entry in the buffer
ARG7 = starting byte position within each entry for comparison

with the string
ARG8 = variable for storing the relative position of the object

(0 if found in the first entry, 1 if found in the second
entry, -1 if not found)

T7

Operations, symbols, and functions used in calculations

addition +
subtraction -
multiplication x or
division v or
exponentiation **
parentheses and brackets
assignment of a

(), [
variablevalue to

designation of an octal constant
° = degree sign; indicates a number

= 3.14159...

], { }

o
is interpreted in degrees

IT = pi
e = 2.71828...
bit operations: $mask$, $union$, $diff$, ars, cls
logical operations: <, >, 2, = > and, or
abs(X)
int(X)
frac(X)
log(X)
alog(X)
ln(X)
exp(X)
sin(X)
cos(X)
comp(X)
zvloc(X)
zk(KEYNAME)

absolute value of X
integer part of X
fractional part of X
common logarithm of X (base 10)
common antilogarithm of X (i.e., 10^)
natural logarithm of X (base e)
eX
sine of X, X in radians; use sin(X°) for X in degrees
cosine of X, X in radians; use cos(X°) for X in degrees
one's complement of X (bit reversal)
absolute memory location in RAM of the variable X
returns keyset code for KEYNAME (e.g., zk(m), which has value 77;

KEYNAME must be specified; expression is not allowed; allowed
keynames are given in the appendix, in the keycode table for
programmable terminal)

Numbers are represented in "two's complement" form; i.e., -X = comp(X)+l .

The left-most bit of an integer is the sign bit.
Range of values for 8-bit integers is -2? to +(2? - 1), or -128 to +127 .
Range of values for 16-bit integers is -215 to +(2^ - 1), or -32768 to +32767

Floating point numbers contain 48 bits:
left-most bit is the sign bit;
next 15 bits contain the exponent;
right-most 32 bits contain the coefficient.

Values of floating point numbers range from ±2~16384 to ±2+16383
Floating point numbers have up to 9 significant digits.

Tolerance with floating point operations (<, >, <, =, int, frac)
is 2_26 relative error (approximately 1.5x10-8 relative error).

T8

File operations

attach establishes a connection between a pTUTOR lesson and a dataset which
is stored on a flexible disk connected to the terminal

attach NAME (variable tag must be an integer variable and must be
enclosed in parentheses)

datain

dataout

Note: zreturn

transfers data

datain

-1 if connection to the file is successful
0 if the dataset is not found on the flexible disk

+1 if there is a disk error

from the

STARTING RECORD

transfers data from the

dataout STARTING RECORD

dataset to the specified buffer

NUMBER,TO STARTING VAR,NUM RECORDS

specified buffer to the dataset

NUMBER,FROM STARTING VAR,NUM RECORDS

NOTE: With -datain- and -dataout-:

zreturn -1 if the transfer is successful
0 if no dataset is attached

+1 if there is a disk error

Each record of a jjTUTOR dataset contains 128 8-bit bytes. The receiving
or sending buffer must accommodate the records received or sent.
From 1 to 255 records may be transferred.

file performs operations on a flexible disk attached to the terminal

file createjdataset,NAME,NUM RECS,DISKUNIT (creates a dataset)
file destroy;dataset,NAME,DISKUNIT (destroys a dataset)

Note: DISKUNIT is 0 or 1.

zreturn = -1
= 1
= 2
= 3
= 4
= 5
= 6
= 7
= 8

= 9
= 10
= 11

if the operation is successful
if there is an error in reading the disk
if there is an error in writing to the disk
if there is a system error
if the disk unit does not respond to the terminal
if the file is not found (with "destroy" option)
if this is a duplicate name (with "create" option)
if the disk unit number is illegal
if there is insufficient space for another file
(with "create" option)
if the disk format is bad
if there is a system error
if there is a system error

T9

Judging

darrow (non-executable) establishes a buffer (starting variable and length)
for all subsequent -arrow- commands; if omitted, the buffer must be
specified with the -arrow- command

darrow STARTING VAR,NUM CHARACTERS ALLOWED

arrow places an arrow on the screen at the specified location and stores
characters in the specified buffer; indented commands which follow
-arrow- are executed before processing stops to wait for student
input; non-indented commands which follow these indented commands but
which precede response-matching commands are executed each time a
judging key is pressed to initiate judging

arrow LOCATION;STARTING VAR,NUM CHARACTERS ALLOWED
(LOCATION may be COARSE or FINEX.FINEY)

arrow LOCATION (buffer established by preceding -darrow-)

endarrow (no tag) must terminate response processing; if the response is
matched, indented commands following the matched response and indented
commands following -ifmatch- are executed; if the "wrong" response is
matched or if the response is not matched, judgment is "no" and
processing stops until another response is entered; if judgment is
"ok", response processing is complete and commands following -endarrow
are executed

long modifies the maximum number of characters allowed at an arrow set by
the -arrow- command or the -darrow- command; cleared at each -arrow-

long NUM CHARACTERS

force alters the input of a response as specified; must appear as an
indented command following -arrow-; cleared at each main unit

force long (initiates judging when the number of characters
entered reaches the limit set by -long-)

force font (inserts the font code before the first keypress)
force (B) (clears the current setting of -force- in this unit)

jkey specifies keys (in addition to NEXT) which will initiate judging;
cleared at each -arrow-; if a non-function key is specified, it
appears as the last key in the response buffer; names specified in
the -keylist- command are permitted, including system-defined keylist
names

jkey KEY1,KEY2,KEY3 (e.g., jkey back,=,a)

T10

copy

putd

specs

activates COPY key and specifies a buffer containing characters to be
written on the screen one word at a time when COPY is pressed; loads
the string into the response buffer exactly as it appears on the
screen; cleared at each -arrow-

copy STARTING VAR,NUM CHARACTERS

replaces a character string in the response buffer with another
character string; the first character in the tag is Interpreted as
the separator between strings

putd /STRING1/STRING2/ (separator is /)
putd ,STRING1,STRING2, (separator is ,)

Note: zreturn = -1 if -putd- is executed successfully
= 0 if the replacement string causes the response to

be longer than the storage buffer

modifies standard judging procedures for all subsequent answer
processing at that arrow; cleared at each -arrow-; settings are
cumulative at an arrow; cleared at each -arrow-

NOTE:

specs nomark (prevents default answer markup)
specs nookno (prevents appearance of "ok" and "no")
specs noops (prevents use of mathematical operators in a

numerical response)
specs nospell (turns off default spelling checks; no spelling

markup is done; "zspell" is not set)
specs okcap (allows capitalized word in the response to match ,

non-capitalized word in the tag of a response­
matching command)

specs okextra (allows "extra" words in the response, i.e., words
not in the tag of the response-matching command)

specs okspell (allows any reasonable spelling of words in the
response)

specs punc (allows only punctuation specified in the response
matching command; without -specs punc-, specified
punctuation must be present, but additional
punctuation may also be present)

specs (B) (clears previous settings at this arrow)
specs nookno ,okcap,okspell (may combine tags)

With the following response-matching commands (-keyword-, -answer-,
-wrong-, -answerc- , -wrongc-, -exact-, -exactw-, -ansv-, -wrongv-),
if the response matches the tag or the required argument, subsequent
indented commands are executed up to the next non-indented command.

Til

keyword

answer

wrong

answerc

wrongc

exact

exactw

checks the response for words listed in the tag; if a word is matched,
the variable is set to the relative position of the first matched word
in the tag and judgment is "ok" ("zjudged" set to -1); if no word is
matched, the variable is set to -1, judgment is not made, and judging
continues

keyword VAR|WORD0|[WORD1 SYNONYM1]|WORD2||WORD4

compares the response with the -answer- tag; checks for spelling,
capitalization, extra words, and punctuation unless altered by -specs-;
punctuation marks are treated as words; sets "zjudged" to -1 if the
response matches the tag

answer <EXTRA WORDS> [SYNONYMS SEPARATED BY SPACES] W0RD2 W0RD3
(blank tag matches a response in which nothing is entered
or which contains only spaces and punctuation;
-allow blanks- must be in effect)

answer <a,STARTING VAR,NUM CHARACTERS> (maximum of 10 words)

Note: Punctuation symbols are

similar to -answer- but for an incorrect response; sets "zjudged" to 0
if the response matches the tag

wrong <EXTRA WORDS> [SYNONYMS SEPARATED BY SPACES] W0RD2 WORD3
wrong <a,STARTING VAR,NUM CHARACTERS^ (maximum of 10 words)

conditional form of -answer-; performs checks available with -answer-;
sets "zjudged" to -1 if the response matches the required argument

answerc EXPR|RESPONSEM|RESPONSE0||RESPONSE2

similar to -answerc- but for an incorrect response; sets "zjudged" to 0
if the response matches the required argument

wrongc EXPR|RESPONSEM|RESPONSE0|RESPONSEl|jRESPONSE3

compares the response with the tag for an exact character by character
match; sets "zjudged" to -1 if the response matches the tag

exact STRING (blank tag matches a response in which nothing Is
entered; -allow blanks- must be in effect)

similar to -exact- but for an incorrect response; sets "zjudged" to 0
if the response matches the tag

exactw STRING

T12

ansv

wrongv

ok

no

or

ifmatch

iarrow

checks a numerical response against the first argument in the tag,
with tolerance set by the optional second argument; sets
"zjudged" to -1 if the response matches the tag within the tolerance;
tolerance may be stated as absolute deviation or percent deviation;
if tolerance is omitted, the response value must match the tag value

ansv VALUE,TOLERANCE (opt)

similar to -ansv- but for an incorrect numerical response; sets
"zjudged" to 0 if the response matches the tag within the tolerance

wrongv VALUE,TOLERANCE (opt)

judges a response "ok" and sets "zjudged" to -1 if the rounded value
of the tag is negative; if the judgment is "ok", indented commands
following -ok- are executed

ok EXPR (blank tag is equivalent to negative value)

judges a response "no" and sets "zjudged" to +1 if the rounded value
of the tag is negative; if the judgment is "no", indented commands
following -no- are executed

no EXPR (blank tag is equivalent to negative value)

(no tag) placed on the line between response-matching commands to
provide alternative responses; if the tag of any command linked by
-or- is matched, indented commands following the last linked
response-matching command are executed

(no tag) indented commands following -ifmatch- are executed whenever
a response is matched, independent of judgment ("zjudged" equals -1,
0, or +1); only one -ifmatch- may occur for each -arrow-; -ifmatch-
must be the last non-indented command before -endarrow-

specifies the unit to be executed immediately after each subsequent
-arrow- in a main unit; equivalent to indented -do- command after the
-arrow- command; cleared at each main unit; later occurrence in the
unit overrides an earlier setting in the unit

iarrow UNIT NAME
iarrow EXPR,UNITM,UNIT0,x,q,UNIT3 (example of conditional form)
iarrow q (clears previous setting in the unit)

T13

ijudge specifies the unit to be executed each time the student presses a
judging key; equivalent to non-indented -do- command after -arrow­
following indented commands but preceding response-matching commands;
cleared at each main unit; later occurrence in the unit overrides an
earlier setting in the unit

ijudge UNIT NAME
ijudge EXPR,UNITM,UNIT0,q,UNIT2,x (example of conditional form)
ijudge q (clears previous setting in the unit)

judge alters the judgment rendered by judging commands

judge ok (sets judgment to "ok"; sets "zjudged" to -1;
executes subsequent commands up to the next judging
or non-indented command before branching to -ifmatch-
[or -endarrow-])

judge no (sets judgment to "no" [unanticipated]; sets
"zjudged" to +1; executes subsequent commands up to
the next judging or non-indented command before
branching to -ifmatch- [or -endarrow-]); returns to
the arrow for additional input)

judge wrong (sets judgment to "no" [anticipated]; sets
"zjudged" to 0; executes subsequent commands up to
the next judging or non-indented command before
branching to -ifmatch- [or -endarrow-]); returns to
the arrow for additional input)

judge okquit (sets judgment to "ok"; sets "zjudged" to -1;
branches to -ifmatch- [or -endarrow-])

judge noquit (sets judgment to "no"; sets "zjudged" to +1;
branches to -ifmatch- [or -endarrow-];
returns to the arrow for additional Input)

judge quit (does not alter judgment or "zjudged"; branches to
-ifmatch- [or -endarrow-]; allows the student to
leave the arrow even if judgment is not "ok")

judge exdent (sets "zjudged" to 2; branches to next non-indented
command and continues judging)

judge exit (returns to the arrow to wait for additional input)
judge ignore (stops processing, erases response, and returns to

the arrow for additional input)
judge X (leaves judgment unchanged; used in conditional form)
judge EXPR.no ,ok,x,wrong (example of conditional form)

okword

noword

changes "ok" message to the character string in the specified buffer;
each character is in an 8-bit byte

okword STARTING VAR,NUM CHARACTERS (may be blank)

changes "no" message to the character string in the specified buffer;
each character is in an 8-bit byte

noword STARTING VAR,NUM CHARACTERS (may be blank)

EXPR.no

T14

getmark used after judging a response to give markup information on
individual words in the response

getmark ARGl,ARG2

ARGl = relative position of the word in the response
(first word is 1, second word, 2, etc.)

ARG2 = variable containing markup information (must be 16-bit
integer variable)

= -2 if the response is perfect or if no markup is done
with the response-matching command used

= -1 if the position of the word is out of bounds
(i.e., if ARGl > "zwcount")

= 0 if there are no errors in the word
> 0 bits in ARG2 are set according to the error(s),

starting at the right-most bit (subscript "2"
indicates the number is in binary notation):
(12) a word preceding this word is missing
(102) the word is out of order (too far right)
(1002) there is a capitalization error
(1 0002) the spelling is incorrect
(10 0002) [bit not currently set]
(100 0002) the word is an extra word
(1 000 0002) this word is the last word, and a

word which should follow is missing

getloc gives the screen position of the beginning (and end, if requested) of
the specified word in the response

getloc ARGl,ARG2,ARG3,ARG4 (opt),ARG5 (opt)

ARGl = relative position of the word in the response
(first word is 1, second word, 2, etc.)

ARG2 = variable for storing the finex screen position of
the beginning of the word (= -1 if ARGl > "zwcount")

ARG3 = variable for storing the finey screen position of
the beginning of the word

ARG4 = variable for storing the finex screen position of
the end of the word (optional)

ARG5 = variable for storing the finey screen position of
the end of the word (optional)

T15

Presenting

write displays text, including embedded information

write MESSAGE, INCLUDING EMBEDDED INFORMATION

writec displays one of several messages, depending on the value of the
conditional expression; the conditional expression must conform to
restrictions on calculations

writec EXPRJmESSAGEM$MESSAGE0|MESSAGE1$|MESSAGE3

NOTE: The following embed features are available. See descriptions of the
individual commands for definitions of the arguments.

<(show,EXPR> or <s,EXPR>
<showt,EXPR,LEFT,RIGHT> or <t,EXPR,LEFT,RIGHT>
<showb,EXPR,NUM BITS> or <b,EXPR,NUM BITS>
<showo,EXPR,NUM PLACES> or <o,EXPR,NUM PLACES>
<showh,EXPR,NUM PLACES> or <h,EXPR,NUM PLACES>
<showa,STARTING VAR,COUNT> or <a.STARTING VAR,COUNT>
< at,COARSE)* ; < at,FINEX,FINEY>
<atnm,COARSE> ; < atnm,FINEX,FINEY>

show displays the value of an integer variable or expression

show EXPR

showt displays the value of a variable or an expression in the specified
format

showt EXPR,PLACES LEFT OF DECIMAL,PLACES RIGHT OF DECIMAL
(format, if omitted, is 4,3; if third argument is omitted,
no places are shown to the right of the decimal)

showb displays the value of an integer variable or expression in binary
notation; displays the specified number of bits, counting from the
right end of the value

showb EXPR,NUM BITS

showo displays the value of an integer variable or expression in octal
notation; displays the specified number of places, counting from the
right end of the value

showo EXPR,NUM PLACES

T16

showh

showa

erase

mode

size

rotate

tabset

displays the value of an integer variable or expression in hexadecimal
notation; displays the specified number of places, counting from the
right end of the value

showh EXPR,NUM PLACES

displays characters in the specified integer variable(s), reading from
the left end of the buffer; each character is in an 8-bit byte

showa STARTING VAR,NUM CHARACTERS

erases the screen, selectively or entirely

erase (B) (causes full-screen erase)
erase NUM CHARACTERS TO ERASE
erase NUM CHARACTERS PER LINE,NUM LINES

specifies terminal writing mode (see system variable "zmode")

mode
mode
mode
mode
mode

write (normal writing state; writes selected dots)
erase (erases selected dots)
rewrite (erases and rewrites in one step)
inverse (displays dark characters on light background)
EXPR,erase,write,x,inverse (example of conditional form;

argument x leaves writing mode unchanged)

specifies size bold-face or normal writing or sets size for
relocatable commands (-rdraw-, -rdot-, etc.)

size SIZE (does not affect writing)
size SIZE IN X DIRECTION,SIZE IN Y DIRECTION
size bold (specifies bold-face writing)
size 0 or size (B) (restores standard writing)

specifies vertical or normal writing or sets angle for relocatable
commands (-rdraw-, -rdot-, etc.)

rotate ANGLE IN DEGREES (does not affect writing)
rotate vertical (plots writing from bottom to top of screen)
rotate 0 or rotate (B) (restores writing from left to right)

specifies 10 tabulator settings which are used when the student
presses the TAB key; each setting is an 8-bit byte which gives the
horizontal character position on the screen; settings remain in effect
until reset by another -tabset- command

tabset STARTING VAR
tabset (B) (clears previous -tabset- settings)

T17

text

textn

gfill

charlim

charset

displays contents of an alphanumeric buffer line by line; the end of
a line must be indicated by an 8-bit byte equal to 0; not affected by
-size- or -rotate-

text STARTING VAR,NUM 8-BIT BYTES

similar to -text- except lines of text are numbered to the left of
each line; not affected by -size- or -rotate-

textn ARG1,ARG2,ARG3,ARG4,ARG5,ARG6

ARG1 = starting variable of the buffer
ARG2 = number of 8-bit bytes
ARG3 = variable for storing the position of the next character

to be plotted (1 + position of last character displayed)
ARG4 = number of the first line displayed (if equal to 0, no

text is displayed)
ARG5 = number of the last line displayed (maximum is 31)
ARG6 = maximum number of characters per line

Note: zreturn = -1 if ARG4 and ARG5 are in the range 0 to 31
= 0 otherwise

similar to -fill- but fills a rectangle relative to the -gorigin-
location; affected by preceding -scalex- and -scaley-; not affected
by -size- and -rotate- (see -fill-)

gfill CORNER LOCATION;OPPOSITE CORNER LOCATION

(non-executable) specifies the highest character number into which
alternate font characters may be loaded by -char- or -charset-; if
omitted, 128 slots are set aside in memory for storing characters

charlim NUMBER (values from 0 to 127)

loads a character set into the terminal's memory from the flexible
disk connected to the terminal

charset LESSON NAME,BLOCK NAME (variable arguments must be enclosed
in parentheses)

Note: zreturn = -1
= 0
= +1

if the charset is loaded successfully
if the charset is not found on the flexible disk
if an error occurs in reading the flexible disk

T18

char

getchar

inhibit

allow

permits specification of specially designed characters for display

char NAME,ARG1,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7,ARG8
char NAME,STARTING VAR

Note: In the 9-argument form, ARGl through ARG8 specify which of the
16 dots are lit in each of the 8 columns of the character. In
the 2-argument form, STARTING VAR is the first of 8 consecutive
16-bit variables, each specifying the dots in each of the
8 columns, as in the 9-argument form.
NAME may be a character number or a defined name.

copies the depiction of the specified character into the specified
buffer (8 consecutive 16-bit integer variables or 16 consecutive 8-bit
integer variables); one column of the character is in each 16 bits

getchar NAME.STARTING VAR

Note: NAME may be a character number or a defined name.

disables certain actions of pTUTOR in a unit; settings are cleared
at each main unit and default settings are restored; effect within a
unit is cumulative, i.e., later occurrence of -inhibit- is added to
the effect of an earlier occurrence

inhibit arrow
inhibit blanks

inhibit erase

inhibit keys
inhibit plato
inhibit (B)

(prevents plotting of the response arrow)
(prevents judging if a judging key is pressed before
a response is entered; default setting)
(prevents normal full-screen erase when proceeding to
a new main unit)
(prevents any keypress from breaking through -pause-)
(prevents processing of output from the central system)
(establishes the default settings in this main unit;
equivalent to: -allow arrow,erase,keys,plato- and
-inhibit blanks-)

permits actions which have been inhibited in the unit by -inhibit-;
effect within a unit is cumulative, i.e., later occurrence of -allow-
is added to the effect of an earlier occurrence

allow
allow

allow
allow
allow
allow

arrow (allows the response arrow to be plotted)
blanks (allows null input at a response arrow; default is

-inhibit blanks-)
erase (allows a full-screen erase at a new main unit)
keys (allows input from the keyset to break through -pause-)
plato (allows processing of output from the central system)
(B) (establishes settings opposite to default settings;

equivalent to: -inhibit arrow,erase,keys,plato- and
-allow blanks-)

T19

xout sends data (in 8-bit bytes) contained in the specified variables to
an external device; data is read starting with the left-most byte

xout DEVICE ADDRESS,STARTING VAR,NUM 8-BIT BYTES TO SEND

xin collects data (in 8-bit bytes) from an external device and stores it
in the specified variables starting at the left-most 8-bit byte

xin DEVICE ADDRESS,STARTING VAR,NUM 8-BIT BYTES TO STORE

NOTE: See descriptions in "aids" of TUTOR versions of -xout- and -xin- for
current information on device addresses.

intrupt specifies a unit to execute (via -do-) when an interrupt is received
from an external device

intrupt UNIT NAME
intrupt EXPR,NAMEM,NAME0,x,NAME2,q (example of conditional form)

NOTE: The following commands have similar forms to their TUTOR counterparts
with exceptions as noted:
-at-, -atrim-, -circle-, -circleb-, -draw-, -dot-, -box-, -plot-, -fill-,
-vector-, -enable-, -disable-, -play-, -record-, -slide-, -beep-.

graphing commands: -gorigin-, -axes-, -bounds-, -scalex-, -scaley-,
-labelx, -labely-, -markx-, -marky-, -gdot-, -gdraw-, -gbox-, -gat-,
-gatnm-, -vbar-, -hbar-, -gvector-, -gcircle-.
With graphing commands: -labelx- and -labely- require an explicit
format for the labels in the same format as -showt-.
There are no default values for -gorigin-, -axes-, -bounds-, -scalex-,
and -scaley-. These parameters must be set explicitly.

relocatable commands: -rorigin-, -rat-, -ratnm-, -rdot-, -rdraw-,
-rcircle-.

Display commands use "zwherex" and "zwherey" as current screen position.

T20

Exchanging

xmit

receive

sendkey

information with the central system

permits exchange of data between the terminal and the central system;
when -xmit- is in the TUTOR part of a program, data is sent to the
terminal for use in a juTUTOR program; when -xmit- is in the pTUTOR
part of a program, data is sent to the central system for processing
in a TUTOR program

^uTUTOR form (sends an 8-bit value to the central system, where it
is processed as an external key, i.e., a key from an
external device [to pick up data from a single -xmit-,
-pause keys=ext- and processing of "key" must follow the
-runu- command; to pick up data from any number of -xmit-
commands, -enable ext- and -collect- must follow -runu-])

xmi t EXPR

TUTOR form (data is in the form of horizontal segments; byte size of
data 16; number of 8-bit bytes received is in "zdata";
the data is picked up by the pTUTOR program by the
-receive- command)

xmit STARTING VAR,NUM SEGMENTS,SEGMENT SIZE (opt)
(SEGMENT SIZE, if omitted, is 60; if SEGMENT SIZE > 16,
only the right-most 16 bits are sent)

Note: After the TUTOR -xmit-,

zreturn = -1 if the data is transmitted successfully
= 0 if no pTUTOR program is loaded
= +1 if the STOP key is pressed during transmission

collects data that is sent to the terminal from the central system
(by -xmit-)

receive STARTING VAR,NUM 8-BIT BYTES

Note: If the byte size for data transmitted from the central system
is > 8, the byte size for the receiving buffer must be 16.

sends a key value to the central system (-pause- must be present to
accept the key)

sendkey (B) (sends the current value of "zkey")
sendkey stop (sends the STOP key)

T21

trap traps output from the central system in the specified buffer; executes
the trapped output; traps status of the terminal

trap save;STARTING VAR,NUM 8-BIT BYTES (traps output)
trap play;STARTING VAR,NUM 8-BIT BYTES (executes trapped output)
trap status;STARTING VAR,NUM 8-BIT BYTES (saves terminal status

seen by the central system; saves 27 bytes)
trap terminal;STARTING VAR,NUM 8-BIT BYTES (saves terminal status

seen by the ^uTUTOR executor; saves 27 bytes)
trap save,play;STARTING VAR,NUM 8-BIT BYTES

(saves and executes trapped output)

Note: zreturn = number of 8-bit bytes trapped in the buffer

T22

Routing

lesson sets the system variable "zldone" to indicate whether a lesson is
considered complete

lesson
lesson
lesson
lesson

complete (sets "zldone" to -1)
incomplete (sets "zldone" to 0)
no end (sets "zldone" to +1)
EXPR,complete.incomplete,x,no end

form; argument x leaves "zldone"
(example of conditional
unchanged)

score places the value of the tag, rounded to the nearest integer, into the
system variable "zscore"

score
score

EXPR (value from 0 to 100)
(B) or score NEGATIVE VALUE (sets "zscore" to -1)

T23

Sequencing

jumpn jumps to the specified unit but does not do any initializations,
such as main unit, screen erase, etc.; clears the -do- stack

jumpn UNIT NAME

jumpout causes immediate execution of the specified lesson on the flexible
disk connected to the terminal

jumpout LESSON NAME (variable tag must be an integer variable and
must be enclosed in parentheses)

jumpout (B) (returns to the router lesson on the flexible disk)

press puts the specified key into the student input buffer

press LETTER (e.g., -press b-)
press (zk(LETTER))
press FUNCTION KEY (use lower case, e.g., -press next-)
press (EXPR)

getkey (no tag) reads the next key from the key buffer (which contains up to
12 keys pressed by the user or by -press-), removes the key from the
buffer, and sets "zkey" to the value of the key (sets "zkey" to -1 if
the buffer is empty)

clrkey (no tag) clears the key buffer

keytype sets a variable according to the position in a list of the input by
the user; if the input action is not listed, the variable is set to -1

keytype VAR,ARG0,ARG1,ARG2,...

arguments ARG0, ARG1, ARG2,... may be any of the following:

KEYNAME (any keyname; no quotation marks are used;
function keys are in lower case)

KEYLIST NAME (name of a system-defined keylist or of a list set up by
the -keylist- command)

ext (any external input)
touch(COARSE,WIDTH IN CHARACTERS,HEIGHT IN LINES)
touch(FINEX,FINEY,WIDTH IN DOTS,HEIGHT IN DOTS)

(COARSE or FINEX,FINEY is the screen position of the lower left
corner of a rectangle with specified width and height; width
and height are optional and are assumed to be 1 if omitted)

Note: Up to 97 keys may be specified; keylists count as one key

T24

NOTE: The following commands have similar forms to their TUTOR counterparts
with exceptions as noted:

-if-, -elseif-, -else-, -endif-, -loop-, -reloop-, -outloop-, -endloop-,
-cstart-, -estop-, -estop*-, -use-, -keylist-,

-next-, -nextl-, -back-, -backl-, -help-, -helpl-, -data-, -datal-,
-lab-, -labl-, -stop-, -imain-, -goto-, -do-, -jump-, -base-, -doto-,
-pause-, -branch-.

Argumented units are not available.
Conditional expressions must conform to restrictions on calculations.
There is no iterative -do-.
Tag "q" must be used to inactivate a key with the corresponding command,
e.g., -back-, -lab-, etc.
Explicit -next- command is required to proceed to the next unit.
There is no -end- command; a help-type sequence ends with a unit with
no -next- command.
Only the blank-tag form of -base- is available.
With -doto- all index values must be integers.
With -pause- there is no minimum time; the key is returned in "zkey".
The -branch- command appears only in the command field.

T25

Running assembler programs

All commands in this subsection must be executed in a TUTOR program.

pptaddr establishes a base address or location in the read/write memory of
the terminal for subsequent loading, testing, running, and clearing
of a program or for loading of data

pptaddr ADDRESS
pptaddr ADDRESS FOR LOADING,ADDRESS FOR RELOCATING
pptaddr (B) (sets base address to default, which is "ztbase"+2048)

pptload loads and relocates, if required, the program in the specified
binary block at the location specified by the previous -pptaddr-;
if LESSON NAME is omitted, the current lesson is assumed

pptload LESSON NAME (opt),BLOCK NAME
pptload <LESSON POSITIONS (opt),BLOCK NAME
pptload (B) (clears all flags indicating that programs are loaded

into the terminal's memory)

Note: zreturn -1 if program is loaded successfully
0 if the binary block is not found
1 If the STOP key is pressed during loading
2 if the terminal is not programmable
3 if the binary has a bad length
4 if there are too many programs in memory
5 if there is an error in the binary format
6 if there is a system disk error

ppttest sets "zreturn" to test whether the specified binary block is loaded
in the terminal's memory at the address specified by a previous
-pptaddr-; if LESSON NAME is omitted, the current lesson is assumed

ppttest LESSON NAME (opt),BLOCK NAME
ppttest CLESSON POSITION> (opt),BLOCK NAME

Note: zreturn = -1 if the binary is loaded at the previously
specified address

= 0 if the binary is not loaded at that address

pptclr clears the flag indicating that the specified binary block is loaded
in the terminal's memory at the address specified by a previous
-pptaddr-, or clears flags for all binaries; if LESSON NAME is omitted,
the current lesson is assumed

pptclr LESSON NAME (opt),BLOCK NAME
pptclr <LESSON POSITION> (opt),BLOCK NAME
pptclr (B) (clears all flags)

T26

pptdata loads data from student variables or central memory variables into the
terminal's memory, starting at the address specified by a previous
-pptaddr-

pptdata STARTING VAR,NUM SEGMENTS,SEGMENT SIZE (opt)
(SEGMENT SIZE, if omitted, is 60; if SEGMENT SIZE > 8,
only the right-most 8 bits are sent)

Note: zreturn = -1 if data is sent
= 0 if the STOP key
= +1 if the terminal

successfully
is pressed during transmission
is not programmable

pptout sends data words and control words stored in student variables or
central memory variables to the terminal; each "package" of data
consists of a 19-bit word which specifies a terminal function;
(LDE, or load echo, is not permitted)

pptout STARTING VAR,NUM VARS (opt) (NUM VARS, if omitted, is 1)

Note: zreturn = -1 if data is sent successfully
= 0 if the terminal is not programmable

Note: For a complete description of the data words and control words,
see "The PLATO V Terminal" by Jack Stifle.

pptrun causes execution of the program residing at the address specified by
a previous -pptaddr-, or specifies the entry to be executed in a
jump table at the beginning of the program residing at the address
specified by a previous -pptaddr- and sends an 18-bit data word, if
requested

pptrun (B) (executes the program at the previously declared address)
pptrun JUMP TABLE ENTRY,DATAWORD (opt) (executes an instruction

in a jump table; DATAWORD, if omitted, is 0)

Note: zreturn = -1 if -pptrun- is successful
= 0 if the terminal is not programmable

T27

ppthalt after waiting the specified time interval, halts programs which are
running in the terminal if the programs have been appropriately set up

ppthalt NUM SECONDS (opt).dependent (halts lesson-dependent programs;
if omitted, NUM SECONDS is .25)

ppthalt NUM SECONDS (opt),all (halts both lesson-dependent programs
and lesson-independent programs; if omitted, NUM SECONDS
is .25)

ppthalt (B) (equivalent to -ppthalt .25,all-)

Note: zreturn -2 if no program is running in the terminal
-1 if the program is halted successfully
0 if the terminal is the wrong type
1 if the status (m.status) cannot be read
2 if -ppthalt- is in a finish unit or

if NUM SECONDS £ 0
ol00 + n, where n is the contents of m.status
(= ol61 for lesson-dependent program)
(= ol52 for lesson-independent program)

T28

System variables for terminal resident processing

zanscnt number of response-matching commands encountered at an arrow before
the response is matched; = -1 if no tag is matched

zcomm provides a counter for timing interrupts; incremented each time an
interrupt is received

zdata number of 8-bit bytes of data sent from the central system by -xmit-

zentire = -1 if all required words are present in the response, = 0 otherwise

zextra = -1 if there are no extra words in the response, = 0 otherwise

zjcount number of characters entered at a pTUTOR -arrow-

zjudged = -1 for any "ok" judgment
= 0 for any "wrong" judgment (anticipated "no")

=
1
2

for any "no" judgment (unanticipated
for a response which is not matched;

"no")
also set by •

zkey contains the keycode of the last input (updated after -i
-]pause-, -getkey-, and at the beginning of a main unit)

zldone -1 if the user has encountered -lesson complete-
= 0 if the user has encountered -lesson incomplete-
= +1 if the user has encountered -lesson no end-

zmode -1 with -mode erase-
= 0 with -mode rewrite-
= 1 with -mode write-
= 2 with -mode inverse-

zntries number of attempts at the current arrow

zopcnt number of arithmetic operations in a numerical response (set with
-ansv-, -wrongv-, -compute-)

zorder = -1 if the word order is correct, = 0 otherwise

T29

zrecs number of records in the attached dataset

zreturn set by some commands according to the results of execution; set by:
-attach-, -charset-, -compute-, -datain-, -dataout-, -file-, -loadu-,
-putd-, -runu-, -textn-, -trap-, -xmit-, -pptdata-, -ppthalt-,
-pptload-, -pptout-, -pptrun-, -ppttest-

zrouten indicates entry conditions to the router lesson:
= 0 if this is the first entry to the router lesson
=1 if this entry to the router is via -jumpout-
= 2 if the router is returned to when the end of the instructional

lesson is reached
=3 if the router is returned to when the instructional lesson is

terminated by STOPl keypress
= 4 if the router is returned to when an execution error occurs

in the instructional lesson

zscore rounded value of the tag of jjTUTOR -score- (value from 0 to 100)

zspell = -1 if spelling is correct, = 0 otherwise

ztbase (TUTOR only) address of the first available read/write memory byte in
the user's terminal

ztmem (TUTOR only) number of 8-bit bytes of memory in the user's terminal

z tmemr (TUTOR only) number of available 8-bit bytes in the terminal's memory
after a -loadu- command

ztprog (TUTOR only) = -2 if the user's terminal is programmable and ^uTUTOR
may be available

= -1 if the user's terminal is programmable but pTUTOR is not
available

= 0 if the user's terminal is not programmable

ztrap number of bytes of output pending from the central system; each
terminal word is 3 bytes, so "ztrap" is a multiple of 3

T30

zttype gives information on the user's terminal; counting from the left end
of the 8-bit word:
1 bit: always» 0
3 bits: memory configuration (see "aids" for detail
4 bits: terminal type

= 0 if the terminal is a PLATO IV
= 2, 3, 4 if the terminal is an IST1
= 5 if the terminal is an IST2
= 6 if the terminal is a current PPT
= 8, 9, 10 if the terminal is a PPT
= 12 if the terminal is an ASCII terminal
= 13 if the terminal is a TV terminal
= 14 if the terminal is an IST1
= 15 if the terminal is an IST2

Note: The TUTOR version of "zttype" gives terminal type only; values
are the same except for 6, which is unused, and 14, which is
used for current PPT.

zwcount number of words in the response (maximum of 50); set by -answer-,
-wrong-, -answerc-, -wrongc-

zwherex fine-grid x location for the next display in ^iTUTOR processing

zwherey fine-grid y location for the next display in juTUTOR processing

Additional notes on TERMINAL RESIDENT PROCESSING

Additional notes on TERMINAL RESIDENT PROCESSING

APPENDIX

APPENDIX A1

Limits associated with commands (for TUTOR version unless specified otherwise)

area 10 characters in name of area

args
argumented unit 10 arguments

arheada five 6-bit characters

box
gbox
rbox

95 dots thick

bump 8 characters

calcc
calcs 61 calculations

charlim value of tag from 0 to 127

common 8000 variables (>1500 variables requires -comload-)

comload 1500 variables

compute 100 characters in character string (TUTOR)
127 characters in character string (pTUTOR)

conditional form
of commands which
reference unit
names, e.g., -next-
-help-, etc.

100 unit names (line containing 101st name
as a condense error)

>

is flagged

cpulim value of tag from 1 to 10

define 7 characters in name of define set
7 characters in name of variable
1500 definitions (fewer if definitions are
500 definitions in define set "student"
6 arguments in defined function
10 units (e.g., kg, m, sec, liter, etc.)
255 elements in an array
5 active define sets

complicated)

delay 1 second maximum

deletes value of increment from 1 to 500

d° I combined
join J 10 levels

draw
gdraw
rdraw

63 arguments

edit maximum of 300 characters in buffer

A2

endings 10 separate -endings- commands, 8 endings in each tag

finds
findsa value of increment from 1 to 500

graph 9 characters in string to be plotted

group 8 characters in sign-on group name

hbar
vbar 9 characters in string to be plotted

inserts (increment between entries)x(number of entries to add) < 500

keylist from 2 to 7 characters in the name

keytype 100 keys in tag (keylists count as one key) (TUTOR)
97 keys in tag (keylists count as one key) (jiTUTOR)

labelx
labely
markx
marky

100 marks maximum plotted on an axis

list 7 characters in name of list

loada 300 characters

loadu 20 units

long 300 characters (>150 requires -edit- for active EDIT key)

Ivars 128 local variables

move 5000 characters may be moved

name 18 characters in sign-on name

noword
okword 9 characters in word

outputl 10 characters in label, 20 consecutive variables

pack 500 characters in character string (with embeds)

packc 100 character strings

pause .75 second minimum

press 1 keypress per second

put
putd
putv

50 characters in strings; expansion due to string
replacement limited to 300 characters

A3

randu integer from 0 to 2^6 (TUTOR)
integer from 0 to (2^ - 1) (jjTUTOR)

return 10 arguments

routvar 64 variables

score value of tag from 0 to 100 (TUTOR and jjTUTOR)

set up to 61 separate values (TUTOR)
up to 95 separate values (jjTUTOR)

setdat value for "atime" less than elapsed time for the session
values for "aarrows", "ahelp", etc. less than 512

setperm (one-argument) integer from 0 to 120
(two-argument) integer from 0 to 3000

sort
sorta value of increment from 1 to 200

storage 8000 variables

term
termop 8 characters in string, 299 terms in a lesson

time .75 second minimum

t imel .75 second minimum

timer 60 seconds minimum

transfr length is the smaller of:
size of common or storage (reference to EM) or
length of -comload- or -stoload- (reference to CM) or
150 (reference to student variables) or
tag of -routvar- (reference to router variables)

unit
unitop
entry

8 characters in name
500 condensed words in a unit
394 distinct condensed units in a lesson

vocab
vocabs 7 characters in name of vocabulary

*list commands 10 commands

A5

KEYCODES5

key keycode key keycode key keycode

a 1 = o01 9 46 = o56 97 = 0141
b 2 = 002 47 = o57 1 98 = 0142
c 3 = 003 * 48 = o60 z 101 = 0145
d 4 = o04 [49 = o61 A 102 = ol46
<5 5 = 005] 50 = 062 ? 104 = 0150
f 6 = 006 % 51 = o63 110 = 0156

O' 7 = 007 X 52 = 064 i 111 = 0157
h 8 = ol0 <> 53 = o65 n 112 = o16 0
i 9 = oil su.b 54 = 066 u 116 = o16 4
J 10 = ol2 super 55 = 067 1ocksub 118 = 0166
k 11 = o13 sh i f 14= 56 = o70 1ocksup 119 = 0167
1 12 = ol4 car ret 57 = o7 1 127 = 0177
m 13 = 015 < 58 = o72 FUNKEY 128 = 0200
ri 14 = ol6 > 59 = o73 NEXT 130 = 0202
o 15 = ol7 bkspace 60 = 074 NEXT1 131 = 0203
P 16 = 020 font 61 = 075 ERASE 132 = 0204
q 17 = 021 access 62 = 076 ERASE 1 133 = 0205
r 18 = o 2 2 > 63 = o77 HELP 134 = 0206
s 19 = o23 A 65 = ol01 HELP1 135 = 0207
t 20 = 024 B 66 = 0102 BACK 136 = 0210
u. 21 = o25 c 67 = 0103 BACK 1 137 = 0211
y 22 = 026 D 68 = 0104 LAB 138 = o212
w 2 3 = o2 7 E 69 = 0105 LABI 139 = 0213
x 24 = o30 F 70 = 0106 DATA 140 = 0214
X 25 = o31 G 71 = 0107 DATAl 141 = 0215
Z 26 = o3 2 H 72 = ol10 TERN 142 = 0216
0 27 = o33 I 73 = olll ANS 143 = 0217
1 28 = o34 J 74 = 0112 COPY 144 = 0220
oc. 29 = 035 K 75 = 0113 COPYl 145 = 0221
3 30 = 036 L 76 = 0114 EDIT 146 = 0222
4 31 = o37 M 77 = 0115 EDIT1 147 = 0223
5 32 = 040 N 78 = 0116 MICRO 148 = 0224
6 33 = o41 0 79 = 0117 SQUARE 149 = 0225
7 34 = o42 P 80 = 0120 STOP 150 = 0226
8 35 = o43 Q 81 = 0121 STOF'l 151 = 0227
9 36 = 044 R 82 = 0122 TAB 152 = 0230
+ 37 = o45 S 83 = 0123 TIMEUP 155 = 0233
- 3 8 = o 4 6 T 84 = 0124 CATCHUP 157 = o235
* 39 = o47 U 85 = 0125 touch- 256 = 0400
/ 40 = o50 V 86 = 0126 panel i 1
(41 = o51 w 87 = 0127 inputs 511 = 0777

) 42 = o52 X 88 = 0130 external 512 = O1000
$ 43 = o53 Y 89 = 0131 inputs 1 i
= 44 = o54 2 90 = 0132 767 = 01377

space 45 = 055

key" contains the keycode of the last key pressed

A6

INTERNAL CODES

unshifted shi fted access access-shi fted
char code char code char code char code

a O01 A o700l Oi 07601 «- 0767001
b o.0 2 B 070.02 A 07602
c 003 c 07.003 o 7 6.0 3 (c) 0767003
d 004 D o7004 S 07 604 -♦ 0767004

o0 5 E 07005 07 605
f 006 F 07006 ♦ 0767006
cro- 0.07 G 07007
h Ol0 H 07010
i ol 1 I o7011 1 0767011
j 012 J 07012
k Ol 3 K 07013
1 o 1 4 L 07014 X 0761 4

rn ol 5 M 07015 07615
n o 1 6 N 07016 07616
o 017 0 07017 o 07617 □ 0767017
P o20 P 07020 ir 076 20
q o2 1 Q 0702 1 * 07621
r o22 R 07022 fi 07622
s 023 S 0702 3 cr 07623
t o24 T o702 4 e 07624
Ll o25 U 07025 •• 07625
V o2 6 V 0702 6 * 07626
W o2 7 w 07027 w 07627 t 0767027
X o30 X 07.030 * 07 6 30 4 0767030
y o31 Y 0703 1
z o32 z 07032
0 o33 left64# 0703 3 < 07633
1 034 1 e ft * 07034 > 07634
2 o35 m, e# 07035
3 o3 6 m, w 0703 6
4 03 7 Am, r 0703 7
5 o40 r i ght # 07040 <3> 07 6 40
6 041 07041 07641
7 o42 07042
8 043 bold# 07043
9 044 unbold# 07044
+ o45 Z 07045 & 07645
- o46 A 07046
* 047
Z 050 ? 07050 07 6 50
(o51 1okcap# $

) o52 = 07652
$ o5 3 # 07653
= o54 pi 07654

space o55 .5space 07655
» o56 II 07056 ♦ 07656

o57 ! 07057
060 n 07060

A7

INTERNAL CODES (cent.)

unshi fted shi fted access access-shi fted
char code char code char code char code

[06 1 { o7 6 61
) o62 } 07662
% 06 3
X 06 4 u 07064 o 07664 X 0767064

06 5 cr 01 5 07665
sub5 o 6 6 loksub5 07066 dnlin5 07666 ldnlin5 07 6 706 6

super$ 06 7 loksup5 0706 7 uplin5 o7 6 6 7 lu.pl in5 o7 6 706 7
shift5 o70

car ret ■ o7 1 ldnlin5 07071 crl015 07671
< o72 < 07672
> ©7 3 > 07673

bkspa.ee 07 4 .5bksp 07674
font o75 acfont5 07675

access 076
o 7 7 07077 07677

5NOTE:

left64 write to left, starting at character position 64
left write to left, starting at current position
m,e disp1 ay in mode erase
m,w display in mode write
m,r display in mode rewrite
right write to right, starting at current position
bold write in bold characters (ppt only)
unbold write in standard characters (ppt only)
lokcap toggle locked shifted letters--activated by a micro

which is defined as SHIFTS (
[code 07051 does not appear in character string)

cr 01 write on next line, starting at character position 1
sub write next character down 5 dots
loksub write all subsequent characters down 5 dots
dnlin write next character down one line (down 16 dots)
ldnlin write all subsequent characters down one line
super write next character up 5 dots
loksup write all subsequent characters up 5 dots
uplin write next character up one line (up 16 dots)
lu.pl in write all subsequent characters up one line
shift shift code--isolated shift code obtained by SHIFT 4=
car ret write on next line, starting at left margin
crl01 start writing at screen position 101
aefont font code which is not erased when the character

fo11owing it is erased

The following characters, although produced with the shift
key, do not produce a shift code in the internal code:
*, (,), $, [,], %, <, >, car ret, backspace, font, access.
These characters are listed in the "unshifted" category.

bkspa.ee

A8

ALTERNATE FONT TERMINAL MEMORY LOCATIONS

(key assoc i at ed w i t h t ermi na1 memory 1ocat i on)

loc key 1 oc key loc key loc key loc key

3 space 27 .3 54 Ck) 81 Q 138)
1 a 2 3 1 55 (1) co r-

j R 139 CE)
9 b 2 9 9 56 Cm) 8 3 S 1 13 CF)
3 <3 3.3 3 57 Cn) 84 T 1 1 1 CO
4 d 31 4 58 Co) 85 U 112 n
c •"l '“I•J li. c 59 ■

J 8 6 V 1 1 3 CH)
6 f 33 6 63 II 87 l«J 114 CI)
7 ry 3 4 7 61 J 88 X 1 15 (J)
ij h 35 8 62 8 9 Y 1 16 u

9 i 3 6 9 6 3 unav 93 2 117 C/)
13 j 3 / + 6 4 space 9 1 < 118 CK)
1 1 k 3 3 - 65 A 92 > 119 CL)
12 1 3 9 (a) 6 6 B 93 [1 23 CM)
13 rn 4.3 / 6 7 C 9 4] 12 1 CN)
1 4 n 41 (b) 68 D 95 $ 122 CO)
1 5 o 42 Cc) 6 9 E 96 % 123 z
1 6 P 43 Cd) 73 F 97 124 1

1 7 q 44 = 71 G 98 1 125 (!)
1 3 r 45 Ce) 72 H 9 9 * 126 (.)
1 9 s 46 (f) 73 I 13.8 (127 unav
23 t 47 (g) 74 J 131 y

2 1 U. 43 -r 75 K 132 A
■?' *?•' V 49 Ch) 76 L 1.83 (A)
•”i •“Z o W 5.3 Ci) 77 M 134 ?
24 ’X 51 Cj) 7 3 N 135 CB)
25 uz 5 2 X 7 9 0 136 CO
2 6 2 5 3 * 8.3 P 137 CD)

NOTE: unav:
(key) :

Lo'
Pr,
Pr.

at ion is u.nava i 1 ab 1 e f or st or i ng char act er:
ss MICRO and then the indicated key or
ss SHIFT-SOUARE and then the indicated key

A9

KEYCODES5
(programmable terminal)

key keycode key keycode key keycode key keycode

t i meup -1
0 0 < 32 space 64 bksp 96
1 1 > 33 a 65 A 97
2 2 [34 b 66 B 98
3 3] 35 c 67 C 99
4 4 $ 36 d 68 D 100
5 5 % 37 e 69 E 101
6 6 38 f 70 F 102
7 7 39 g 71 G 103
3 8 # 40 h 72 H 104
9 9 (41 i 73 I 105
X 10 u 42 j 74 J 106
-r 1 1 n 43 k 75 K 107

tab 12 cr 44 1 76 L 103
ass i gn 1 3 ass i gn1 45 m 77 M 109

+ 14 Z 46 n 78 N 1 10
- 15 A 47 o 79 0 1 1 1

sup 16 supl 43 P 80 P 1 12
sub 1 7 sub 1 49 q 81 Q 1 13
a ns 1 8 term 50 r 82 R 1 14

erase 19 erase1 51 s 83 S 1 15
m i cro 20 font 52 t 84 T 1 16
he 1 p 21 helpl 53 u. 85 U 1 1 7
next 22 next 1 54 V 86 V 1 18
edit 23 edit 1 55 w 87 W 1 1 9
back 24 backl 56 X 88 X 120
data 25 datal 57 y 89 Y 121
stop 26 stopl 53 z 90 Z 122
copy 27 copyl 59 = 91) 123

square 28 square1 60 i 92 : 124
lab 29 labl 61 / 93 ? 125

94 i 126
» 95 II 127

5 System variable "zkey" contains the keycode of the last
i nput.
Function "zk" returns keyset keycode values.
Touch-panel input codes range from 256 to 511.
External input codes range from 512 to 767.

Powers of 2

n

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

■»n

1
2
4
8

= 8*
n

30
31
32
33

1 073 741 824
2 147 483 648
4 294 967 296
8 589 934 592=8

16 34 17 179 869 184

32 35 34 359 738 368
64 =82 36 68 719 476 736

128 37 137 438 953 472
256 38 274 877 906 944
512 =83 39 549 755 813 888

1 024 40 1 099 511 627 776
2 048 41 2 199 023 255 552
4 096 =84 42 4 398 046 511 104
8 192 43 8 796 093 022 208

16 384 44 17 592 186 044 416

32 768 =85 45 35 184 372 088 832
65 536 46 70 368 744 177 664

131 072 47 140 737 488 355 328
262 144 =86 48 281 474 976 710 656
524 288 49 562 949 953 421 312

1 048 576 7 50 1 125 899 906 842 624
2 097 152 =8? 51 2 251 799 813 685 248
4 194 304 52 4 503 599 627 370 496
8 388 608 53 9 007 199 254 740 992

16 777 216 =88 54 18 014 398 509 481 984

33 554 432 55 36 028 797 018 963 968
67 108 864 56 72 057 594 037 927 936

134 217 728 =89 57 144 115 188 075 855 872
268 435 456 58 288 230 376 151 711 744
536 870 912 59 576 460 752 303 423 488

=8

=8

=8

=8

=8

=8

=8 10

=8.11

12

13

=8.14

=8 15

16

17

18

19

the byte size = n: range for unsigned integers is 0 to 2n-1
n~" 1 n- 1

range for signed integers is -(2 -1) to +(2 -1)

n_ 1 nthe maximum absolute value such that 2 <]maximum| < 2 :

byte size for unsigned integers is n

byte size for signed integers is n+1

INDEX

INDEX II

Alphabetical index to system variables

System variables may be used wherever expressions are accepted, e.g., in tag C
of -calc-, -at-, etc.

Word Page Word Page Word Page Word Page

aarea D6 ntries J19 zfacc F19 zscore T29
aarrows D6 opcnt J20 zfile F19 zsessda D6
ahelp D6 order J20 zfroml S22 zsesset D6
ahelpn D6 phrase J20 zfromu S22 zsesspt D6
anscnt J19 proctim S22 zftype F19 zsnfile S23
ansok J19 ptime S22 zfusers F19 zsnotes S23
aok D6 rcallow R3 zgroup S22 zspell T29
aokist D6 router R3 zid S23 zsvars F20
args S21 rstartl R3 zinfo F19 zsvret F20
asno D6 rstartu R3 zjcount T28 zsysid S23
aterm D6 rvallow R3 zjudged T28 zsystem S23
atermn D6 sitenam S22 zkey T28 ztbase T29
atime D7 size P21 zlang P21 zterm S23
auno D7 sizex P21 zldone T28 ztmem T29
backout S21 sizey P21 zleserr R4 ztmemr T29
baseu S21 spell J20 zlesson S23 ztouchx S24
capital J19 station S22 zlsac M6 ztouchy S24
clock S21 tactive S22 zline F19 ztprog T29
dataon D6 user S22 zmode T28 ztrap T29
entire J19 usersin S22 znindex F19 zttype T30
errtype R3 varcnt J20 znscpn F19 ztzone S24
extra J20 vocab J20 znsmaxn F19 zunit S24
formok J21 wcount J20 znsmaxr F19 zusers S24
fromnum S21 where P21 znsnams F19 zwcount T30
jcount J19 wherex P21 znsrecs F20 zwherex T30
judged J19 wherey P21 zntries T28 zwherey T30
key S21 zaccnam S22 zopcnt T28 zwpb F20
1common C23 zanscnt T28 zorder T28 zwpr F20
ldone R3 zbatch S22 zpnfile S23 zxfile F20
lessnum S21 zb pc C23 zpnotes S23
lleslst S21 zbpw C23 zrecs F20,T29
llesson S21 zcheck F19 zretrnu S23
lscore R3 zcoram T28 zreturn S23.T29
lstatus R3 zcondok S22 zrof f F20
lstorag C23 zcpw C23 zrouten T29
mainu S21 zcurric R3 zrunner M6
mallot S21 zcusers C23 zrstatn F20
mode P21 zdata T28 zrtype F20
muse S21 zentire T28 zrvars F20
nhelpop S22 zextra T28 zrvret F20

I

12

M

Alphabetical index to commands and related directives

Command Page Command Page Command Page Command Page

abort C20 checkpt F14 endif S5.T24 hidden P3
access F2 circle P7.T19 endings J4 htoa C13
addlst S15 circleb P7,T19 endloop S6.T24 iarrow J16.T12
addl C3 clean C14 entry SI iarrowa J16
addname F5 clock C10 erase P3.T16 ieu SI
addrecs F6 close J5 eraseu J1 if S5,T24
allow R1 clrkey T23 exact Jll,Til i ferror S3
allow T18 collect S9 exactc Jll ifmatch T12
altfont P20 comload C20 exactv Jll ignore J15
ans J12 common C20 exactw Til ijudge T13
ansu J12 commonx C21 exi t S3 imain S3,T24
ansv J11,T12 compare J14 ext P17 in S14
answer J9.T11 comret C20 extout P17 inhibit P5.T18
answera J10 compute C10.T4 file T8 initial C21
answerc J10.T11 concept J10 fill P6.T19 inserts C17
array Cl copy J3.T10 find C18.T5 intrupt T19
area D2 cpulim Sil findall C18 iospecs F16
args S13 cstart S14.T24 find S16 itoa C13
argument S1,S2 estop S14.T24 finds C16 jkey J2,T9
arheada J2 estop* S14.T24 findsa C16 join J16,S3
arrow J2,T9 ctime Cll finish D5 judge J17.T13
arrowa J2 darrow T9 force J1,T9 jump S2,T24
at P1,T19 data S7,T24 foregnd C22 jumpn T23
atnm P1,T19 datal S7,T24 from S13 jumpout S12.T23
attach F1,T8 datain F3,T8 f unct P15 keylist S9.T24
audio P16 dataoff DI gat P12.T19 keytype S10.T23
axes P10.T19 dataon DI gatnm P12,T19 keyword Til
back S7.T24 dataop S8 gbox P13.I19 lab S7.T24
backl S7.T24 datalop S8 gcircle P13,T19 labl S7.T24
backgnd C22 dataout F3,T8 gdot P12.T19 labelx P11.T19
backop S7 date C10 gdraw P13.T19 labely P11,T19
backlop S7 day Cll getchar T18 labop S8
base S8.T24 define C1,T3 getcode S10 lablop S8
beep P17.T19 delay P4 getkey T23 lang P4
block C19.T5 deletes C17 getline F17 leslist S15
bounds P10.T19 delname F6 getloc J14,T14 lessin S13
box P6.T19 delrecs F6 getmark J13.T14 lesson R2.T22
branch S4.T24 delta P15 getname F5.F15 lineset P20
break Sil detach FI getword J13 list J4
bump J5 disable P16.T19 gfill T17 lname S16
c S17 do S2.T24 gorigin P10.T19 loada J5
calc C3.T3 dot P6.T19 goto S2,T24 loadu T1
calcc C3.T3 doto S4.T24 graph P13 long J2,T9
calcs C3.T3 draw P6,T19 group C10 loop S6,T24
catchup Sil edit J2 gvector P14.T19 lscalex Pll
cdate Cll else S5,T24 haltu T2 lscaley Pll
change S17 elseif S5,T24 hbar P14.T19 Ivars C3
char P5.T18 embed P1,T15 help S7.T24 markup J18
charlim T17 enable P16.T19 helpl S7,T24 markupy J18
charset P19.T17 end S8 helpop S8 markx P11.T19
chartst P20 endarrow J3,T9 helplop S8 marky P11.T19

I

13

Alphabetical index to commands and related directives (cont.)

Command Page Command Page Command Page Command Page

match J9 rdraw P8,T19 sorta C15
micro P19 readd D3 specs J6.T10
mi scon J10 readset D3 station M3
mode P4.T16 receive T20 status R2
modperm C9 recname C14 step S17
move C13 record P16.T19 stoload C22
name C10 records F8 stop S7,T24
names F7.F16 release C22,F4,S16 storage C21
next S7.T24 reloop S6,T24 store J8
nextl S7.T24 remove C9.T5 storea J8
nextnow S7 removl S15 storen J8
nextop S7 rename F5 storeu J8
nextlop S7 reserve C22,F3,S16 subl C4
no J15.T12 restart D5 tabset P19.T16
notes S14 restore C9,T5 term S8
noword J18.T13 return S3 termop S8
ok J15.T12 rorigin P8,T19 text P3.T17
okword J18.T13 rotate P4.T16 textn T17
open J8 route Rl time S10
or J12.T12 routvar Rl timel S10
otoa C13 runu T2 timer S10
outloop S6,T24 rvector P9 touch J12
output D2 say P18 touchw J12
outputl D2 sayc P18 transfr C19
pack C12.T5 saylang P18 trap T21
packc C13 scalex P10.T19 unit S1,T1
parse F18 scaley P10.T19 unitop SI
pause S9,T24 score R2,T22 use S12.T24
permit D5 search C12.T6 vbar P14.T19
play P16.T19 searchf T6 vector P7.T19
plot P5,T19 seed C8 vocab J4
polar P12 segment Cl vocabs J4
pptaddr T25 segmentf Cl window P7
pptclr T25 sendkey T20 write P1,T15
pptdata T26 set C4,T4 writec P1,T15
ppthalt T27 setdat D2 wrong J10.T11
pptload T25 setline F17 wronga J10
pptout T26 setname F4,F15 wrongc J10,T11
pptrun T26 setperm C8,T4 wrongu J12
ppttest T25 show P2.T15 wrongv J11.T12
press S11.T23 showa P3.T16 xin P17.T19
put J5 showb T15 xmit T20
putd J5.T10 showe P2 xout P17.T19
putv J5 showh P3.T16 zero C4,T4
randp C8.T5 showo P3,T15 * S17
randu C8,T4 showt P2.T15 $$ S17
rat P8,T19 showz P2 *format S20
ratnm P8.T19 site Ml *list S18
rbox P8 size P4,T16 ututor T1
rcircle P9,T19 slide P16.T19 /
rdot P8,T19 sort C15

C

D

F

J

M

P

R

S

T

A

I

C CALCULATING

D DATA KEEPING

F FILE OPERATIONS

J JUDGING

M MANAGING SITES

P PRESENTING

R ROUTING

S SEQUENCING

T TERMINAL RESIDENT PROCESSING

A APPENDIX

I ALPHABETICAL INDEX

