

1-C. ANIMATION

Identify steps in the processes of continuing motion and leaping motion
character animation.

Once you know how to create characters, you can make your characters “come to
life”’; you can move them across the screen. This activity discusses two ways to
animate characters. One method moves the character in a continuous line. The
other method moves the character by leaps.

CONTINUOUS MOTION

14

Before you animate your character, you should understand three forms of the
-mode- instruction:

mode write
mode erase
mode reurite

The -mode- command with a write tag writes in dots. This is the standard mode,
and it is set by default when you begin programming; the text you have displayed
thus far has been displayed in mode write.

The -mode- command with an erase tag turns dots off. If you displayed a sentence
in mode write, and rewrote the same sentence in the same place in mode erase,
the sentence would be “‘erased’ because the dots would be turned off. Whenever
you include a -mode- instruction with an erase tag, you must remember to return
to mode write or mode rewrite when you want to stop erasing; otherwise, your
text will be invisible.

The -mode- command with a rewrite tag erases the old characters and replaces
them with new ones very quickly. It has the same effect as erasing a character
with an -erase- instruction and then writing a new character with a -write- instruc-
tion, but it performs the process much faster.

To animate a character, you simply rewrite the character over and over, posi-
tioning the character one or more dots over, back, up or down each time you
rewrite. The more dots you move with each rewrite, the “faster’” your character
moves.

PLATO Author Language: Part I1 Activity 1-C

For each dot you want to move in your rewrite, you must leave one column or
row of dots blank when you create your character to avoid leaving a trail; leave
blanks on the side opposite the direction your character is moving. The leftmost
column(s) should be blank if your character is moving to the right; the bottom
row(s) should be blank if your character is moving up, and so forth. You will
see what is meant by trail when you complete the practice section of this activity.
Another way to avoid leaving a trail is to leave a blank space in your code on the
side opposite the direction your character is moving.

Animation is accomplished easily with a -doto- loop:

define 1ndex = i

unit move

mode reurite

docto zfar, index454, 359
at index, 5@

mwrite YOUR CHARACTER
zfar

In this code, the variable index is used in the -at- instruction to set the position of
the character. The variable index is incremented by 1 with each execution of the
loop, thus moving the character one dot over to the right until the character halts
at position 350.

If you want the character to move two dots at a time, add an argument to the
-doto- instruction:

doto 2far, index458,3549, 2
To move three dots at a time, use an argument of 3, and so on. Remember that if

you move in increments of 2, 3, or more, you must leave the corresponding num-
ber of blank columns when you create your character.

15

PLATO Author Language: Part IT Activity 1-C

CHECK YOUR UNDERSTANDING: CONTINUOUS MOTION

In this section, you will enter code to animate a character.
1. Sign on to the PLATO terminal as an author.
2. Create a character set block.

3. Create this single character:

0] «— 7 dots down

This is the character you will animate. Notice that the leftmost column is
blank; you will move the character to the right, one dot at a time.

4. Return to the block display.

Enter an empty block and enter this code:

define i1ndex = vl

unit motion

mode rewrite

doto 1stop, index+48, 389
at 1ndex, 48

write >

1stop

The - in the -write- instruction is the arrow you created.

16

PLATO Author Language: Part I1 Activity 1-D

If you do not have confidence in your artistic ability, you may wish to create
your flying carpet based on the following printout.

111

o -i

26

2

Relocatable Graphics and Graphs

This unit explains how to create graphics and graphs that can be relocated by
changing only one instruction. It also discusses how the -size- and -rotate- instruc-
tions affect relocatable graphics and presents instructions used to fill in relocat-
able graphs.

INSTRUCTIONAL OBJECTIVES

After completing this unit, you should be able to:

® Identify the effects of the -rorigin-, -rat-, -rdraw-, -rcircle-, and -rbox- instruc-
tions

® Identify the effects that the -size- and -rotate- instructions have on relocatable
graphics

® Identify the effects of the -gorigin-, -axes-, -scalex-, -scaley-, -labeix-, -labely-,
-markx-, and -marky- instructions

® Identify the effects of the -vbar-, -hbar-, -gbox-, -gcircle-, and -gdraw- instruc-
tions

LEARNING ACTIVITIES

2-A. Relocatable Graphics. Text/Exercise/CAI: This activity pre-
sents instructions that allow you to create relocatable graphics.
Relocatable graphics can be repositioned by changing only one
instruction.

27

[[———
—

2-A. RELOCATABLE GRAPHICS

Identify the effects of the -rorigin-, -rat-, -rdraw-, -rcircle-, and -rbox- instruc-
tions.

Suppose you have drawn a picture using the -draw-, -circle-, and -box- commands.
You want to use this picture a number of times at a number of different screen
locations. With the instructions you now know, you would have to redraw the
picture each time because of the coordinates specified in your instructions.
Instructions of this type are in absolute form; they display at only one position.

This activity discusses relocatable graphics instructions. These instructions cause
graphics to be displayed relative to a specified reference point. When the reference
point changes, the position of the display changes. Relocatable instructions dis-
cussed in this activity are -rorigin-, -rat-, -rdraw-, -rcircle-, and -rbox-.

THE -rorigin- INSTRUCTION

The reference point for relocatable instructions is specified in the -rorigin- instruc-
tion. The -rorigin- instruction can take one of three forms:

rorigin FINE GRID COORDIMNATES
rorigin VYARIABLE OR EXPRESSION %, YARIABLE OR EXPRESSION ¥
rorigin
The first format specifies a reference point using fine-grid coordinates. Fine grid
should always be used; coarse grid sometimes results in unanticipated displays. An

example of this format is:

rorigin 256,256
This instruction establishes a reference point at the middle of the screen.
The second format allows variables and expressions to be used to establish a
reference point if the position of the display is dependent on action that has

taken place previously in the lesson.

The third format, -rorigin- with a blank tag, sets the origin at the correct wherex
and wherey (the fine-grid equivalents of the system variable where).

29

PLATO Author Language: Part I1 Activity 2-A

The setting of an -rorigin- remains in effect until another -rorigin- is executed.
If no -rorigin- is specified, it is automatically set at (,(.

THE -rat- INSTRUCTION

The -rat- instruction is similar to the -at- instruction in that it establishes a left-
hand margin for the display of text, data, or figures. However, this position is
relative to the preceding -rorigin-. For example,

rorigin 256,256

rat 8,8

write Where will
this write?

produces this display:

Where will
this write?

THE -rdraw- INSTRUCTION

The -rdraw- instruction is similar to the -draw- instruction; lines are drawn be-
tween specified coordinates. The position of the display, however, is relative to
the position set in the -rorigin- instruction. For example:

1n

o

Z
1

NN
o,

m N

rori
dra

56
rdraw , B

-e

» 125

30

PLATO Author Language: Part I1 Activity 2-A

draws a line from the origin to a point 125 dots over from the origin and 125 dots
up:

origin 125 over

This code:

rorigin 256,256
rdraw #,8;125,8

draws a line from the origin to a point 125 dots over from the origin and 0
dots up:

Qup
origin 125 over

31

PLATO Author Language: Part I1

THE -rdraw- INSTRUCTION IN A -doto- LOOP

32

Sign on to the PLATO system as an author.

2. Enter this code in an empty block:

define loop vi
unit rdraw
rorigin 256,256

doto 1fini,loopsd, 338,38

rotate loop
rdraw 8,8;78,8;28,-25;8,8
1fini

Activity 2-A

The -rdraw- instruction can be put into a -doto- loop. This section of this activity
will be taught via the PLATO terminal. Follow these steps:

This code establishes your reference point at 256,256. Starting at @, the vari-
able loop will be incremented by 3(until 330 is reached. The variable loop is
the number of degrees to rotate; it is repeated twelve times. The -rdraw-
instruction draws a line 7Q dots over and () dots up and a line 2() dots over and
25 dots down (because of the -25) from the origin. It then draws a line from

this point back to the -rorigin-:

0.9 70,9

20,-25

3. Condense your code to see the results.

Return to your code.

Now you will move this drawing to another position. To do so, code another

unit with a new unit name, and a new -rorigin- instruction:

rorigin 356,256

PLATO Author Language: Part I1

Activity 2-A

2. Code this auxiliary unit:

3. Establish a second origin in another unit before your auxiliary unit, using the
same set of circles in a different position:

unit redraw
rorigin 388,388
do circle

4. Condense your code. Notice that your set of circles appears at a different
position on the second display than it did on the first display.

5. Practice using the -rcircle- instruction to create relocatable circles and arcs.

6. Remain at the terminal.

THE -rbox- INSTRUCTION

34

The -rbox- instruction is similar to the -box- instruction in that if two corners
and an optional thickness are set in the tag, a box will be drawn. The position of

the box, however, is relative to the point set in the -rorigin-. Three formats of
the -rbox- instruction are:

rocx CORNER1; CORNERZ (FINE BRID OR COARSE BRID)

roox CORMER1; CORNER2; THICKNESS (FINE BRID OR COARSE BRID)
roox ; CORNERZ (FINE BRID OR COARSE BRID)

roox CORNERZ (FINE BRID OR CORRSE GRID)

The first draws a box with its corners relative to the -rorigin-. The second allows
a thickness to be specified.

The third is a special case. It automatically sets one corner at where; the second
corner is specified. This is useful when boxing text. For example, if the words
This is the answer begin at relative position (0,0, this instruction

rioox ;8,16

produces these results:

PLATO Author Language: Part I1 Activity 2-A

(2319)
N

This is the answer|
\(where)

The fourth format draws a box with one corner at the origin, and the other at the
specified distance from the origin.

USING ID/SD TO CREATE RELOCATABLE GRAPHICS

When you understand the principles of relocatable graphics instructions, you can
go on to code these instructions easily and automatically using ID/SD directives.
Follow these steps:

1.
2.
3.

Enter ID mode.
Move the cursor to the point at which you want your origin to be.

Press SHIFT-DATA. This sets your origin and automatically puts the -rorigin-
instruction in your code. Other drawings made on this display will be in
relocatable form.

To draw a line from the origin to another point, move the cursor to the
other point and press the letter / for line.

Continue to move the cursor and to press the letter / until you have the
drawing you desire.

To begin a new drawing that is not connected to the previous drawing, move
the cursor to another point on the display. Press the letter p to mark the
location.

Continue to move the cursor and to press the letter / to complete the draw-
ing. Draw other shapes using the ID directives o, O, v, b, and B.

Press the SHIFT-BACK key. Your -rdraw- instruction and other relocatable
instructions have been automatically inserted in your code.

Practice using ID/SD to insert relocatable instructions in your code.

When finished, sign off the terminal and go on to the next activity.

35

2-B. SIZING AND ROTATING
RELOCATABLE GRAPHICS

Identify the effects that the -size- and -rotate- instructions have on relocat-
able graphics.

Relocatable instructions allow you to reposition graphics; you can also size and
rotate your relocatable graphics. Because of the -rorigin- and -rat- instructions,
however, you must take care when inserting -size- and -rotate- instructions in your
code. This activity allows you to experiment using the -size- and -rotate- instruc-
tions with relocatable instructions.

THE -size- INSTRUCTION

The -size- instruction can be used to make relocatable graphics larger or smaller.
Remember, however, that all relocatable instructions are relative to the point set
in your -rorigin- instruction. The -size- instruction, if placed before a -rat- instruc-
tion, sizes the -rat- instruction. For example, in this code:

rorigin 59,58

s1zZe z
rat 199,288

the arguments of the -rat- instruction are doubled; the -rat- instruction now sets
a position 200 dots over and 40Q dots up from the point set by the -rorigin-.
You must take care that a -size- instruction does not run your drawing over the
edge of the screen.

THE -rotate- INSTRUCTION

The -rotate- instruction also affects any relocatable instructions it precedes,
including the -rat- instruction. Thus, you must take care that the placement of
your -rotate- instructions does not move your graphics off the screen.

Figure 1 illustrates how the -rotate- instruction pivots a relocatable figure. The
figure is always positioned by the -rat- instruction at a certain point relative to
the origin. When rotated, it remains the same distance from the origin, but pivots
according to the degrees specified. If pivoted so any portion runs over the screen,

37

PLATO Author Language: Part IT Activity 2-B

Figure 1. The -rotate- instruction pivots a relocatable figure

the wraparound of the lines creates strange displays. The bottom square on the
diagram would cause this figure to wrap around; the portion of the rectangle
shown below the line in the diagram would actually shoot out in strange direc-
tions from other sides of the screen.

There is an instruction that can be used to eliminate the wraparound effect. The
-window- instruction specifies an area on the display beyond which no line draw-
ings will be displayed:

window LOKWER LEFT COARSE BRID; UPPER RIBHT COARSE BRID
window LOWER LEFT FINEX,FINEY; UPPER RIBHT FINEXZ,FINEY
w1 ndow $$removes the =ffect

Thus a -window- @,Q; 511,511 will set the display limits at the lower-left and
upper-right corners of the display; no wraparound effect will occur.

CAI INTRODUCTION

38

It is easier to determine how the -size- and -rotate- instructions affect a figure
when you can see the results. This short CAI lesson allows you to experiment
with a figure by changing the origin, size and degrees of rotation.

PLATO Author Language. Part I1 Activity 2-B

Now sign on to a Control Data PLATO terminal. When you see the list of modules,
type the letter of this unit. Then press NEXT. A module description display will
appear. Press the letter a to see your assignments. When you locate the description
of this CAI activity, “Effects of Relocatable Graphics Instructions,” press LAB to
take the lesson.

39

2-C.

CREATING SCALED RELOCATABLE GRAPHS

Identify the effects of the -gorigin-, -axes-, -scalex-, -scaley-, -labelx-, -labely-,
-markx-, and -marky- instructions.

You can draw this graph using the instructions you learned in PLATO Author
Langauge: Part I.

200

150

100

Il

-50 50 " 100 ' 150 " 200

-50

It would be time consuming, and could not be relocated easily, however. In this
activity, you will learn to draw a graph using a series of graphing instructions that
make the creation of graphs much easier. The following instructions are discussed:
-gorigin-, -axes-, -scalex-, -scaley-, -labelx-, -labely-, markx-, and -marky-. You will
be given an opportunity to practice using these instructions.

THE -gorigin- INSTRUCTION

40

The -gorigin- instruction specifies the reference point for the other graphing
instructions. For example,

~

gorigin 128,112

sets the origin at a position 128 dots over and 112 dots up from the lower left-
hand corner of the screen.

PLATO Author Language: Part IT Activity 2-C

28 T

18 t

The minor marks argument must be a factor of the major marks argument. These
tags are acceptable:

labelx 54,18
labelx 28,5
labely 248,38
labely 68,28

These are not:

labelx 68,25
labelx 249,188
labely 88,6
labely 198,38

The PLATO system does not allow you to mark an axis like this:

The major marks argument, however, need not be a factor of the -scalex- or
-scaley- instructions. This code:

gorigin 256,256

axes 188,189
scalex 68
labelx 25

produces this axis:

-
-

PLATO Author Language: Part IT

58

create this display:

These instructions

gorigin 109,198
axes 208,298
gbox 188,188

create this display:

These instructions

gorigin 199,168
axes 288,288
gbox -54,-58

Activity 2-D

PLATO Author Language: Part I1 Activity 3-B

If the word kad is stored right-justified with this instruction:

&8ss ni<*had”

the computer stores it in »/ as a binary number:

i Po000 | 000000 | 001000 | 00001 | PEA100

- L - o 7
—

h a d

If you request the numerical representation of the word had with the -showo-
instruction, you will receive its octal equivalent:

00 00 00 00 00 09 00 10 1 94

Thus, the -showo- instruction is useful when you are debugging a program. With
practice you will become accustomed to interpreting octal numbers as characters;
you can see if the correct characters were stored by requesting the numbers used
to store them with the -showo- instruction.

An understanding of this storage system and a knowledge of how much space
your characters require are also useful when you are segmenting integer variables;
integer variables can be divided to hold more than one value. This process is dis-
cussed in activity 3-C.

CHECK YOUR UNDERSTANDING

Directions: Answer the following questions by filling in the blanks.

1. How many binary bits does the storage of the character string Thomas require?

2. Use the internal codes given in aids to determine the octal character or inter-
nal codes of the characters in Thomas.

T h o m a S

3. What is the binary number used to store the character string Thomas?

4. What instruction could you use to store the character string Thomas on the
right side of a variable?

On the left side?

81

3-C. SEGMENTED VARIABLES

Identify correct ways to segment variables and reference segmented variables.

Consider a case in which you wish to store the test scores of seventy-five students
to obtain an average score. You could use seventy-five of your 150 student
variables; this method, however, may not leave you enough variables to store
other records you wish to keep. Thus, you may want to segment your variables
to store more than one number in each variable. This activity explains how to
segment variables to make better use of variable storage space.

THE SEGMENTATION PRINCIPLE

Activity 1-B explains that each variable can store up to sixty binary digits; when
sixty digits are not required, an integer variable can be divided or segmented,
and different numbers or character strings can be assigned to each segment. This
segmentation process greatly increases the number of records that can be stored.
Each segment can be thought of as a totally separate variable.

For example, consider the storage of the student test scores. Assume the scores
can range from () to 10Q. The decimal number 100 is equal to 144 in octal.
144g is equal to 1100100 in binary. Thus, the largest score requires only seven
bits of storage space; the other fifty-three bits are empty.

The point is, one integer variable has enough space for eight scores (6() bits + 7
bits per score = 8 scores plus a fraction). If all student variables required for this
record-keeping function are segmented, only ten variables (75 scores +~ 8 scores
per variable = 9 variables plus a fraction = 1Q)) rather than seventy-five are needed.

The general format for segmenting variables is:

define =segment, SEGMENT NAME=YRRIABLE,EITS FER SEGMENT

Segment size can only be defined with integers. For example,

detfine segment,score=nl,

divides variable nl and all subsequent variables in the user variables into eight
segments of seven bits each, with four bits left over. The name of the segmented
variable is score.

83

PLATO Author Language: Part IT

Activity 3-D

Variable Effect Possible Users

judged Stores a: To give appropriate feedback
-1 after ok
(@ after wrong
1 after no

anscnt Stores number of answer- Branching based on instruc-
judging instructions tion matched
encountered before a
match is found

key Holds keycode of last key Branching based on key
student pressed press

clock Places current time in Discovering amount of time
seconds in a variable spent in an activity

jcount Number of internal 6-bit Testing length of student
character codes in student response
response

baseu Holds alphabetic name of Branching depending on
student’s current base unit whether unit is a main unit

or help sequence unit

mainu Holds name of student’s For debugging
current main unit

Idone Holds completion status of To store completion records
lesson if used in conjunction
with -lesson- instructions

97

PLATO Author Language: Part II Activity 3-E

Because you have six candidates, and because decimals can be used to rate the
candidates, six floating point variables must be used to store the ratings. Assume
that variables v1{) through vI5 will be used. Think of the variables as being
stacked in a row:

v1Q
vll

v12
vl3
vl4
vl5

Previously, you had to define each variable. With an array, you use this format:

define VARIABLENAME(X) = Y (MATHEMATICAL EXPRESSION)

L——— expression defining starting

location in terms of the index

any combination of characters will
represent the value of the variable

For example, if the value of the first index will be @, the formula is:
variable name (x) = v(1st + x)
If the value of the first index will be 1, either of these two formulas can be used:

variable name (x) =v (I1st-1 + x)

variable name (x) =v (Ist-1 +-1)
The particular situation determines whether you will set the index at @ or 1. When
using segmented variables, set the index at 1;indexing with () results in an execu-

tion error because you can’t reference seg ({) if seg is a segmented variable. Thus,
it is important to analyze your situation carefully before setting your index.

For the interview example, this instruction can be used because the variables in
the array are not segmented:

define canrate(1)=v (1d+1) $$ canrate stands for
* "candidate's rating”, reguires v1@-v15%

99

PLATO Author Language: Part I1 Activity 3-E

100

The comment is not essential, but it is good coding practice; you can see at a
glance which variables are used in your array so you don’t use them again. If you
want the rating for the first candidate to be stored in vI{), you can see that the
value of this rating must be @ (canrate(9)=v(10+@). Thus, when coding this lesson,
you must ensure that a () is used to reference the rating of the first candidate.

The following code contains the essential instructions for coding the interview
lesson:

define canrate(1)=vil1g+1) $$ reguires vi@d-v15s

loop = vl16
cand = v17
zero canrate (@) ,6 $% 1nitialize to zerc because #
* means candidate has not been
% interviewed
K X
unit call
at 18198
write Which candidate do vou want to rate?
a. John
b. Soma
c. Amn
d. George
e. Cynthia
f. Harry
match cand,a,b,c,d,e, f

* 1f a 1s chosen, value 1n cand 1s #; 1f ¢ 1s chosen,
*x value 1n cand 1s 2; and so forth.

endarrow

J ump cand-1, casea, caseb, casec, cased, casee, dasef
b S B 3

unit rate

next call

at 28148

write What rating do vwou give this candidate?
arrow 2118

store canrate (cand)
—_—

more units of code
XXX

unit show

at 1818

PLATO Author Language: Part 11 Activity 3-E

write
doto
x

*x

at

x
writec
at
show
xR
unit

éoto
XXX
unit

éoto
XXX

Here are the ratings you gave your candidates:

1loop,looped,5 % six loops for six candidates
starting at # to ensure that
the first one shown will be v18.

1318+loopx188 $%$ loop x 188 moves each rating
down one line

loop-1¢a. Johnsb. Sonyasc. Anns...sf. Harry

1338+l ocopx108

canrate (loop) $% rate for each candidate 1s shown
casea

rate

caseb

rate

TWO-DIMENSIONAL ARRAYS

A two-dimensional array requires two reference numbers for each compartment
or variable. It is helpful to think of a two-dimensional array in this way:

0 1 2
0 0.0 | 0.1 | 0.2
1 Lo | 1,1 | 12

2 2,0 2,1 252

3 3,0 3,1 3,2

Each compartment is referenced by two numbers or indexes—a row number

and a column number. The following case study demonstrates the use of a two-
dimensional array.

The lesson asks students to evaluate four candidates for credit cards. They are to
evaluate the salary, age, and credit rating of each candidate, using a rating scale

from 1 to 3. This information can be visually represented as follows, with one
variable used to store each rating:

101

PLATO Author Language: Part 11

THREE-DIMENSIONAL ARRAYS

104

Activity 3-E

Three-dimensional arrays require a third index. The following is an example of
a lesson requiring a three-dimensional array.

A company is running a survey on employee satisfaction. The PLATO system
will be used to record employee responses to questions. The survey must:

1. Record which of two divisions the employee is in.

2. Indicate the employee’s job classification (manager, technical, or clerical).

3. Ask four questions; the same questions are given to each employee, regardless
of the job classification. The company wants to see if different job classes

respond differently to the same questions.

This information can be diagrammed:

Q1 (9 v20

Management () gg 8; :g;

Q4 (3) v23

Division 1 Q1L) 4
Technical (1) %é ((;)) :"2256

()] Q4 (3) v27

QL (® v28

Clerical (2) 83 8; gz

Q4 (3) v31

QL (9 v32

Management () gg 8; :’;i

Q4 (3) v35

Division 2 Q1 (@ v36
Technical (1) 85 8 g;

(1) Q4 (3) v39
() v490

Clerical (2) gg 83 ‘v'fé

Q4 (3) v43

Notice that the values assigned to each index begin with @ in each case.

PLATO Author Language: Part II Activity 3-F

108

Notice that feet is used only as a function; it is not defined as a variable. If it were
defined as a variable elsewhere in the code, such as

define feet = v2
a condense error would occur.

Now consider a function that determines the area of a rectangle, based on the
rectangle’s base and height. This function can be defined in this way:

define base = v1
height = v2
area = basexheight

Up to six arguments can be used in an expression associated with a defined func-
tion. The following expression uses two:

define height(1,j)=2.54(12x1+))

This defined function can be used to convert feet and inches to centimeters.
The i and j arguments are dummy arguments; their values will be determined later
in the program. The i argument will hold the number of feet, and the j argument
will hold the number of inches. When actually used in the lesson, the function
can be used as follows. The defined variables ft and in are representative; any
values can be placed in the parentheses:

ansv height (ft, 1n)

As a final example, the following defined functions take a coarse-grid number and
return its x and y coordinates in fine-grid dots. This is useful when you are writing
in coarse-grid, but want to box your writing with fine-grid dots:

define finex(1)=888xfrac (1+-184) -8
finev (1) =512-16x1nt (1+184d)

Notice that the system-defined functions frac and int are used to define this
function.

Once you define a function, such as keight, you may use its label as you would
use a variable. Always remember that the function is dependent upon the value of
a variable if you used a variable in the definition.

3-G. COMMON AND STORAGE VARIABLES

Identify characteristics of common and storage variables.

A house often seems to have enough storage space when you first inspect it, but
when you move in, you may find that more closets would be helpful. So it is with
variables. You now have student variables and system variables at your disposal;
in the future, however, you may find that you need more storage space, or storage
space that serves a different purpose.

This activity begins with a discussion of the PLATO storage system and how it
accommodates two additional types of storage, common variables and storage
variables. It then presents instructions that can be used to manipulate these
variables.

THE PLATO STORAGE SYSTEM

To understand the use of common and storage variables, you should know a few
facts about the PLATO storage system. The PLATO system has three main types
of memory. PLATO Author Language: Part I discusses disk and ECS. Disk is the
slowest, but is the most abundant and the least expensive. ECS is faster, but there
is less of it, and it is more expensive than disk. Central Memory (CM) storage is
the fastest, but there is even less CM available than ECS, and it is the most expen-
sive. It is in CM that the actual processing of a lesson takes place. CM can only
process one lesson at a time, but this processing takes place so fast that users are
seldom aware that they are ‘“‘taking turns.”

The common variables discussed in this activity are originally stored on disk.
When required in a lesson, a copy of these variables is brought into ECS. Storage
variables are locations in ECS; they are not stored on disk.

When a lesson is in use, a copy of the current lesson and a copy of the user
variables for a particular user are put in CM. Also in CM is another bank of
1,500 variables. These are called CM common. They are referenced in much
the same way as user variables, except that the letter ¢ is added to the reference.
Thus, nc3 references the third CM common variable as an integer, and ve 351
references the 351st CM common variable as a floating point number. Because
there are 1,50) CM common variables, the numbers in the references must be
between 1 and 1,500. CM common variables can have defined names similar to
user variables. The following are examples of CM common variables with defined
names:

111

PLATO Author Language: Part IT Activity 3-G

This information can be used to allow students to see how their progress com-
pares to that of other students.

Common variables are also useful for storing information that is common to all
students, such as the correct answers for a series of questions. Two types of
common variables exist, permanent and temporary. Permanent is perhaps the
most useful, and is discussed in this activity. Temporary common variables are not
discussed. Permanent common variables reside on disk between sessions. A copy
is kept on disk during session, but may not reflect the changes made on the vari-
ables. Thus, permanent common keeps a permanent record for all students.

Up to 8,000 words of permanent common can be loaded into ECS. However, only
1,500 can be loaded into CM at any one time. This is the challenge: You must be
sure that you load into CM from ECS only those common variables needed at a
given time. Instructions are presented later in this activity that enable you to ma-
nipulate the transfer of your common variables from ECS to CM and back again.

STORAGE VARIABLES

Storage variables, like student variables, are unique to each user; ECS storage
space required for a lesson increases when more people use it.

You can reserve up to 8,000 storage variables. However, storage variables occupy
CM common, just as ECS common variables do. When common and storage vari-
ables are loaded into CM, common variables are loaded first. If you are loading
storage variables into locations already filled with common variables, the common
variables will be overwritten; the storage values will replace the common values.
The system does not tell you that your locations overlap; you are responsible for
ensuring that your common and storage variables are loaded properly.

USING COMMON VARIABLES

Using common variables requires two steps; you must establish a common block,
and you must insert a -common- instruction in your code. To create a common
block, go to your block display and press the shifted letter of your last block.
Choose the option for a common block and name the block. You will then be
asked how many words of common you want. If ECS is a prime consideration,
you might as well specify 64 because the system ‘“‘charges” you in multiples of
64 words of ECS.

Later, when you want to see what is stored in your common block, press the
letter of your common block, and press NEXT to inspect its contents. To edit
your common block, press DATA instead of NEXT. Then choose the inspect
change option. When you choose this option, you can press HELP for help in

113

PLATO Author Language: Part IT Activity 3-G

A specific -comload- instruction could be:

comlocad ncl188,588, 498

This loads common variables from ECS into CM. Storage in CM begins with CM
location ncl@@. ECS common variable 5¢¢ is loaded into ncl@@. ECS common
variable 501 is loaded into ncl@1, and so on, until 40 variables have been loaded.

The -comload- instruction should be inserted in your code wherever you want
the loading to occur. It remains in effect until another -comload- instruction is
executed.

The -comload- instruction can specify up to three strings of variables to be loaded.
For example:

comload ncl,188,4
ncS, 258,188
nclésS, 498,58

The first part of this instruction tag loads four common variables starting with
ECS variable /0@ into CM variables ncl through nc4. The second part of the tag
loads .10 common variables starting with ECS variable 25¢ into CM variables
ncS through nclP4. The third part of the tag loads fifty common variables start-
ing with ECS variable 4@ into CM variables ncl(5 through ncl54.

USING STORAGE VARIABLES

Storage variables are created with the -storage- instruction. No storage block is
created. The general format of the -storage- instruction is:

storage NUMBER OF WORDS
The instruction
storage 188

allows you to use 10Q storage variables anywhere in your code.

Only one -storage- instruction is allowed per lesson. The storage variables for each
student are set up and zeroed when the student enters the lesson. They are not
retained when the student leaves the lesson; they are zeroed again upon reentry.
Usually, when using a -storage- instruction, you must also include a -stoload-

instruction. It uses the same general format as the -comload- instruction; it loads
the variables into ve or nc locations in CM.

115

PLATO Author Language: Part 11 Activity 3-G

transfers the values of ECS common variables 5,00@ through 5,049 into ECS
storage variables (¢ through 149. This instruction

transfr c, 4988;vc388; 25

transfers the values of ECS common variables 4,00¢ through 4,024 into CM
locations ve3@¢ through vc324.

The -transfr- instruction works in conjunction with the -comload- and -stoload-
instructions, when the values of common and storage variables are being trans-
ferred to and from CM common locations. You cannot transfer any values to or
from variables in CM locations not loaded with a -comload- or -stoload-. This
-transfr- instruction is illegal:

comload ncl, 198, 48

transfr ncz2@;c, 189; 498

CM common variables nc41 through nc6f have not been loaded. This transfer
instruction is legal:

comload ncl, 188, 48
transfr nc2@d;c,188; 28

Transfers from student variables to common variables are useful for a number of
purposes. Now that you know the -transfr- instruction is available, you should
recognize its uses when you encounter them. Here is one way you may not think
of: When a programmer executes a lesson as a student in author mode and must
shift-STOP off the terminal in the middle of the lesson, the author’s student
variables are zeroed. Until now, the author would have to begin the lesson over
again, which is frustrating during the debugging phase. If the -transfr- instruction
is used to transfer the values of the student variables into permanent common
variables, the values remain in storage; the author can transfer these back to stu-
dent variables and continue to execute the lesson upon return to the terminal,
retaining values previously set.

117

PLATO Author Language: Part I1 Activity 3-G

CHECK YOUR UNDERSTANDING

118

Directions: Answer the following questions by filling in the blanks.

1.

10.

How many ECS common variables can be stored in ECS?

How many storage variables can be stored in ECS?

What is the maximum number of common and storage variables that can be
loaded into CM? .

Which type of variable discussed in this activity requires the creation of a
special block?

Which instruction accesses permanent common?

What is its format?

What instruction is required if the total common length is greater than 1,500
variables?

What instruction creates storage variables?

What is the purpose of the -stoload- instruction?

What is the purpose of the -transfr- instruction?

