60483500

@ CONTROL DATA
CORPORATION

DMS-170

CYBER DATABASE
CONTROL SYSTEM
VERSION 2

FORTRAN
APPLICATION PROGRAMMING
USER’S GUIDE

CDC® OPERATING SYSTEMS:
NOS 2
NOS/BE 1

REVISION RECORD

Revision Description
A (03/06/81) Original release at PSR level 528.
B (10/08/82) Updated to reflect FORTRAN Data Base Facility (FDBF) 1.3, CYBER Database Control System

(CDCS) 2.3, and use under NOS 2 (but not NOS 1); released at PSR Level 564. The guide
has been retitled. Major changes include adding documentation of data base transactions,
and creating the data base for sample programs with FORTRAN.

REVISION LETTERS I, O, @, AND X ARE NOT USED

oCOPYRIGHT CONTROL DATA CORPORATION 1981, 1982
ALL Rights Reserved
Printed in the United States of America

ii

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE

SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the back of this manual

60483500 B

2)

JJ

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Front Cover
Inside Front Cover
Title Page

i

ifi/iv

v

vi

vii

f@ - viii
. ix

1-1 thru 1-3
1-4 thru 1-7
2-1 thru 2-3
2-4 thru 2-6
3-1 thru 3-4
3-5 thru 3-14
3-15 thru 3-19
4-1 thru 4-6
5-1

5-2

~ 3z

5-5

5-6

5-7 thru 5-22
5-23 thru 5-28
6-1 thru 6-3
A-1 thru A-4
B-1 thru 8-3
c-1

c-2 thru C-10
C-11 thru C-15
Index-1 thru -3
Comment Sheet
Mailer

Back Cover

I 1 OO >PODIPOD>TIPPO>PROD>DI>I>>000ROD® I @ !

<'i 60483500 B iiiliv

PREFACE

The DMS-170 data management system clearly defines
two roles: the role of a data administrator who
develops, controls, and maintains the physical data
base; and the role of an application programmer who
accesses and manipulates the data within that data
base. Although the two roles differ considerably,
each role requires a knowledge of the tasks being
performed by the other. The data administrator,
for example, cannot develop a data base without
first understanding what type of applications will
be required. The application programmer, on the
other hand, cannot successfully access data without
first understanding how the data is described and
what specific controls have been established.

This guide describes the role of the FORTRAN S
application programmer who is accessing data within
a DMS-170 controlled data base environment. The
presence of a data administrator is assumed, and
the functions associated with that position are
described as they directly affect the application
programmer.

You should note that appendix C, entitled The
Sample Application, s particularly important.
This appendix sets up a working environment
complete with stored data for use with sample
programs. This environment can be duplicated to
provide a better understanding of DMS=-170 and the
tools that are wused to create a total data
management system.

The following manuals are of primary interest:

Publication

FORTRAN Data Base Facility
Version 1 Reference Manual

FORTRAN Version 5 Reference Manual

The following manuals are of secondary interest:

Publication

CYBER Database Control System
Version 2 Reference Manual

NOS Version 1 Manual Abstracts

NOS Version 1 Reference Manual,
Volume 1 of 2

NOS/BE Version 1 Manual Abstracts

NOS/BE Version 1 Reference Manual

Software Publications Release
History

60483500 A

As described in this publication, DMS-170 operates
under control of the following operating systems:

e NOS 1 for the CONTROL DATA CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000
Series Computer Systems.

e NOS/BE 1 for the CDC CYBER 170 Series; CYBER
70 Models 71, 72, 73, and 74; and 6000 Series
Computer Systems.

The NOS Manual Abstracts and the NOS/BE Manual
Abstracts are instant-sized manuals containing
brief descriptions of the contents and intended
audience of all NOS and NOS product set manuals,

and NOS/BE and NOS/BE product set manuals,
respectively. The abstracts manuals can be useful

in determining which manuals are of greatest
interest to you. The Software Publications Release
History serves as a guide in determining which
revision Level of software documentation
corresponds to the Programming Systems Report (PSR)
level of installed site software.

As a FORTRAN 5 application programmer, you can find
additional pertinent information 1in the Listed
Control Data Corporation publications. These
publications are Listed alphabetically in groupings
that indicate relative importance to you as readers
of this guide.

Publication
Number

60482200
60481300

Publication
Number

60481800
84000420

60435400
84000470
60493800

60481000

vi

CDC manuals can be ordered from Control Data Corporation,

Literature
St. Paul,

and Distribution Services, 308 North Dale
Minnesota 55103.

This manual describes a subset of the features
and parameters documented in the FORTRAN Data
Base Facility Version 1 Reference Manual.
Control Data cannot be responsible for the
proper functioning of any features or
parameters not documented in the FORTRAN Data
Base Facility Version 1 Reference Manual.

Street,

60483500 A

J)

J)

€ﬁﬂ\
ﬁ&aN

CONTENTS

“—

NOTATIONS
1. FORTRAN PROGRAMMING WITHIN DMS-170

System Components
Data Description Language
The Schema
The Sub=-Schema
FORTRAN Data Manipulation Language
CYBER Database Control System
Master Directory
CDCS Batch Test Facility
Data Base Procedures
CYBER Record Manager
File Organization
Multiple-Index Processing
Special Features
Concurrency
File Privacy
Relations
Constraints
Recovery
Summary of DMS-170 Components and Features

2. ACCESSING THE DATA BASE

Interpreting the FORTRAN Sub-Schema
FORTRAN Data Manipulation Language
DML Language Components
Syntax Requirements
Statement Positioning

3. PROCESSING THE DATA

Using DML to Access the Data Base
Identifying the Sub-Schema
Establishing the Interface With CDCS
Satisfying Privacy Requirements
Opening a Realm
Locking/Unlocking a Realm
Closing a Realm
Terminating the Interface With CDCS

Using DML to Manipulate Data
Writing a Record
Reading a Record

Sequential Read
Random Read
Positioning a Realm
Rewriting a Record

Deleting a Record

Using DML to Process Relations
Structure of a Relation
Using the Sub-Schema
Opening a Relation
Closing a Relation
Reading a Relation

Sequential Relation Read
Random Relation Read
Control Break
Null Occurrence
Positioning a Relation
Updating Realms Joined in a Relation

60483500 A

ix

1-1
1-1
1-1
1-1
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-4
1-4
1-4

3-1
3-1
3-2
3-3
3-3
3-3
3=4
3-4
3-5
3-5
3-6
3-6
3-6
3-6
3-7
3-8
3-8
3-9
3-10
3-10
3-10
3-12
3-12
3-13
3-13
3-13
3-14
3-15

4. ERROR PROCESSING AND STATUS
HANDLING TECHNIQUES

Using ERR and END Processing Options
Establishing a Data Base Status Block
Error Checking
Status Checking
pefining Recovery Points
Avoiding Constraint Violations
Anticipating Deadlock Situations

5. DEVELOPING FORTRAN PROGRAMS

Developing an Application Program
Compiling and Executing the Source Program
Sample Programs

6. USING THE CDCS BATCH TEST FACILITY

Requirements
Obtaining Load Maps
Executing the CDCS Batch Test Facility

APPENDIXES

A Standard Character Sets
B Glossary
C The Sample Application

INDEX

FIGURES

1-1 Schema and Sub-Schema Generation

1-2 CYBER Record Manager Interface

2-1 A Basic FORTRAN Sub-Schema

2-2 A Relational FORTRAN Sub-Schema

2-3 DML Statement Positioning

3-1 Sub-Schema AVERAGE

3-2 Identifying the Sub-Schema

3-3 Establishing the Interface With CDCS

3-4 Ssatisfying Privacy Requirements

3-5 Opening a Realm

3-6 Locking/Unlocking a Realm

3-7 Closing a Realm

3-8 Terminating the Interface With CDCS

3-9 Writing a Record

3-10 Reading Sequentially

3-11 Reading Randomly

3-12 Positioning a Realm

3-13 Rewriting a Record

3-14 Deleting a Record

3-15 Tree Structure and Ranks of a
Three-Realm Relation

3-16 Sub-Schema COMPARE

3-17 Tree Structure of Record Occurrences

3-18 Reading a Relation Sequentially

3-19 Reading a Relation Randomly

3-20 Null Record Occurrence Examples

3-21 Positioning a Relation

4-1
4-2
4-2
4-2
4-4
4oty
4=6

6-1

6-1
6-1
6-1

1-2
1-3
2-2
2-3
2-5
3-2
3-2
3-3
3-3
3-4
3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-8
3-9

3-9

3-11
3-13
3-13
3-13
3-14
3-15

vii

41
4~2
4=3
4=4
4-5
5~1
5-2
5-3

5-4
5-5
5-6

5-7
5-8

viii

Establishing a Data Base Status Block

befining Recovery Points

Single-File Constraint Example

Two-File Constraint Example

Deadlock Processing

FORTRAN DML Preprocessing

DML Control Statement

Executing DML and Compiling the
Source Program

Compiling and Executing the
Source Program

Program RATING

Program INDAVGE

Program RELATE

Program CHARGES

4-2
4=4
4=5
4-5
4=7
5-1
5-2

5-3

5-3
5-4
5-7
5-1
5-15

5-9 Program ADMIT

6-1 CDCSBTF Control Statement Format

6~2 Sample FORTRAN Execution of CDCS
Batch Test Facility

TABLES

1-1 Summary of DMS-170 Components and
Features

2-1 DML Statements

4-1 Error and Status Processing Mechanisms

4-2 Status Block Content

4-3 Locking Operations

6-1 Load Map Switch Settings

5-18
6-1

6-2

1-5
2-4
4=1
4-3
4=7
6-1

60483500 A

J

J D

NOTATIONS

The specifications for FORTRAN DML statements and
for particular control statements are described in
reference formats. The notations used in the
reference formats are described as follows:

UPPERCASE Uppercase words are reserved words
and must appear exactly as shown.
You can use reserved words only as

specified in the reference formats.

Lowercase Lowercase words are generic terms
that represent user-supplied words

or symbols.

60483500 A

L1 Brackets enclose optional portions
of a reference format. You can
optionally omit or include all of
the format within the brackets.

ans Ellipses immediately follow a pair
of brackets to indicate that you
can optionally repeat the enclosed
material.

Punctuation symbols shown within the formats are
required unless enclosed in brackets and
specifically noted as optional. One or more spaces
separate the elements in a reference format.
Numbers shown are decimal wunless otherwise
specified.

ix

'Y

FORTRAN PROGRAMMING WITHIN DMS-170 1

L -~~~ -~

DMS-170 is a Control Data software package for data
management. The system was designed on the premise
that a data base should be centrally controlled and
the data within that data base should be completely
independent of application programs. In Lline with
this philosophy, the role of data administrator
emerged. This individual was to Lead the design,
programming, implementation, maintenance, and
recovery efforts associated with the DMS-170 data
management system.

The data administrator 1is responsible for the
structural organization and layout of an entire
data base. This individual assigns names to and
describes the characteristics of all data dtems
within the data base. This total description is
called a schema. The schema is generated by the
data administrator and stored as a permanent file.

As a FORTRAN programmer, you probably would never
need or even want to access an entire data base.
You would, however, need to access selected
portions of a data base organized in a number of
ways to meet the requirements of your various
application programs. The grouping of data base
items dinto separate data base portions is the
responsibility of the data administrator. The
descriptions of these grouped items are called
sub-schemas. Sub-schemas are generated by the data
administrator and stored in a permanent file
Library.

Internal control is handled by the CYBER Database
Control System (CDCS). CDCS dnterprets all data
base requests from application programs, ensures
the validity of such requests, and passes them
along to the input/output processor. The controls
exercised by CDCS guarantee that one user cannot
alter the contents of the data base and adversely
affect another user's program.

The controls designated by the data administrator,
incorporated into the schema and sub-schema, and
carried out by CDCS relieve application programmers
of many tedious tasks such as data description,
data conversion, and validity checking.

SYSTEM COMPONENTS

The components of DMS-170 that are discussed in
this guide include the language that describes the
data (Data Description Language); the language that
provides data base access to a FORTRAN application
program (FORTRAN Data Manipulation Language); the
module that controls data base activity (CYBER
Database Control System); and the processor that
handles all dnput and output operations (CYBER
Record Manager). The components of DMS-170 that
are not discussed in this guide include a special,
nonprocedural Llanguage (Query Update) that provides
data base access to programming and nonprogramming
users and the COBOL Language extensions that
provide data base access to COBOL application
programs.

60483500 A

DATA DESCRIPTION LANGUAGE

The Data Description Language (DDL) is a compiler
language that the data administrator wuses to
describe data. DPL can generate four types of
descriptions: the schema definition that describes
an entire data base; the FORTRAN sub-schema
definition that describes selected portions of a
schema—defined data base for use by a FORTRAN
application program; the COBOL sub-schema
definition that describes selected portions of a
schema-defined data base for use by a COBOL
application program; and the QUERY UPDATE
sub-schema definition that either describes
selected portions of a schema-defined data base or
describes an independently controlled data base for
use by the interactive query software product Query
Update. The data descriptions for the schema and
each sub-schema are declared 1in DDL source
statements for input to the DDL compiler.

A block diagram dillustrating schema/sub~schema
generation is shown in figure 1-1.

The Schema

The schema is a detailed description of all the
data in a data base. The schema description is
generated from DDL statements that name the schema,
organize the schema into files (called areas in the
schema), describe each record type together with
the characteristics of the data in the record, and
describe relationships (called relations) and
dependency conditions (called constraints) among
areas. The schema also includes an access control
capability that provides privacy at the area level.

The data administrator writes the DDL source
statements and uses them as 1input to the DDL
compiler for compilation into an object schema or
schema directory. After storing the directory as a
permanent file, the data administrator provides you
with pertinent information so you can tailor your
FORTRAN program to meet processing requirements.
If, for example, you need to access an area that
has been defined as having controlled access in the
schema, it 1is the responsibility of the data
administrator to supply you with the appropriate
privacy key.

The Sub-Schema

The sub-schema is a detailed description of
selected portions of the data in a data base. The
FORTRAN sub-schema description is generated from
DDL statements that didentify the schema and
sub-schema, specify files (called realms in the
sub-schema) and the content and structure of
records, indicate changes in data format required
by the application program, didentify relations to
be used, and specify record qualification for
relation processing.

Schema
Source g

Schema
Directory

pbL
Compiler ,,———-—--5\\
Sub~Schema o o
Source] Sub-Schema
Directories
Sub-Schema
Library
Listings

N—

J

Figure 1-1. Schema and Sub-Schema Generation

The data administrator writes the DDL source
statements and wuses them as input to the DDL
compiler for compilation into an object sub-schema
or sub-schema directory. After storing the
directory 1in the sub-schema Llibrary, the data
adninistrator provides you with a Llisting of the
sub-schema so you can obtain the names and
descriptions of the data to be referenced in your
FORTRAN program. The data administrator also
provides you with the name of the sub-schema
library, which you must attach with an operating
system ATTACH control statement for DML
preprocessing of the Data Manipulation Language
statements in your FORTRAN program just before
compilation.

FORTRAN DATA MANIPULATION LANGUAGE

The FORTRAN Data Manipulation Language (DML) is the
language that provides a FORTRAN application
program with access to the DMS~170 controlled data
base. The Llanguage consists of a series of
statements that provide for opening and closing of
data base files; reading, writing, updating, and
deteting records from those files; and relation
processing. The DML statements you include in your
FORTRAN source program code are translated by the
DML preprocessor into statements acceptable to the
FORTRAN compiler.

CYBER DATABASE CONTROL SYSTEM

The central controlling component of DMS-170 is
CYBER Database Control System (CDCS), which
monitors and interprets all data base requests from
application programs. CDCS preprocesses each

application program request, performs any necessary
data conversion, handles structural differences
between the schema and the sub-schema by an
operation called mapping, and prepares the request
for input/output processing.

Master Directory

The master directory is a file that contains
information relating to all data bases, schemas,
and sub-schemas known to CDCS. The directory is
generated by one of the data base utilities
provided through CDCS. The data administrator
creates the master directory and stores it as a
permanent file. Your application program cannot
reference a sub-schema unless information about
that sub-schema exists in the master directory. It
is the responsibility of the data administrator to
ensure the sub-schema is valid. The master
directory file is attached through the job stream
of CDCS and is automatically available for your job.

CDCS Batch Test Facility

The CDCS Batch Test Facility is an absolute program
that you can use during program development and
testing. The facility enables you to run CDCS as a
normal batch job, which means you can attach a new
version of the master directory file each time you
run a job.

The program, which resides on the system Llibrary,
is called into execution by the CDCSBTF control
statement. When wusing this facility, you are
responsible for attaching the master directory file
and any necessary log files each time you run a job.

60483500 A

J)

Data Base Procedures

Data base procedures are special-purpose subpro-
grams that CDCS calls when specific situations
occur during CDCS processing. The data admin-
istrator writes the data base procedures and stores
them in a permanent file library. The name of the
procedure, the point at which it is to be called,
and the conditions governing 1its execution are
specified in the schema definition. Loading of
data base procedures is handled automatically
for you.

CYBER RECORD MANAGER

CYBER Record Manager (CRM) is the processor that
performs all input/output operations for FORTRAN as
well as the other CYBER host Llanguages operating
within DMS-170. The Advanced Access Methods (AAM)
file manager handles all operations concerning the
physical storage and access of data by application
programs. AlL data base files supported by CDCS
are conventional CRM files.

ALL necessary information regarding the
characteristics of a data base file is supplied to
CRM at schema compilation time. The data
administrator specifies appropriate parameters on
FILE control statements that are included in the
DOL source deck when the schema is created. In
pDMS-170, all communication with CRM s handled
automatically for you.

A block diagram illustrating the CRM interface with
CDCS and the data base is shown in figure 1-2.
File Organization

File organization dinformation is stored in the
schema directory. The three file organizations

allowed for data base files that are to be accessed
through CDCS are: indexed sequential, direct
access, and actual key.

Records in indexed sequential files are stored in
ascending order by key. An application program can
access the records either randomly by key or
sequentially.

Records in direct access files are stored randomly
in fixed-length blocks. The number of the block to
receive a record is determined by a calculation
performed by the system on the record. An
application program can access the records either
randomly by key or sequentially.

Records in actual key files have key values
assigned by the system. The key value is a number
that identifies the block and the position within
the block 4in which the record is stored. An
application program can access the records either
randomly by actual key or sequentially.

The primary key is specified in the schema. A
listing of the sub-schema provides you with this
information.

Multiple-Index Processing

Multiple-index processing is performed when
alternate keys are defined for a file. An index is
created for each alternate key in a data file when
the file is created. The indexes are updated
automatically whenever the data file is updated.
An application program can retrieve the records by
the primary key or by an alternate key.

Each alternate key is specified in the schema. A
listing of the sub-schema provides you with this
information.

DML FORTRAN
Preprocessor Compiler

FORTRAN/DML
Source Program

FORTRAN

Object
Program

)

Sub-Schema
Library

Master
Directory

Schema
Directory

Data Base Files

cbes <t—3= CRM

Figure 1-2. CYBER Record Manager Interface

60483500 A

SPECIAL FEATURES

Eight special features with which you need to be
familiar are: concurrency, immediate return, file
privacy, relations, constraints, data base ver-
sions, recovery, and data base transactions. When
these mechanisms are present in the CDCS operating
environment, some action on the part of your appli-
cation program might be required.

CONCURRENCY

The concurrency feature allows two or more applica-
tion programs to access the same data base file at
the same time for retrieval or update purposes.
During concurrent update operations, CDCS provides
a locking mechanism by which files and records can
be locked and unlocked at appropriate times.

CDCS always Llocks the current record whenever the
file is opened for input/output. Your application
program, however, can issue explicit Llock and
unlock requests for CDCS to lock the entire file.
By issuing a lock request, your program prevents
other jobs from updating the file that it 1is using
until it issues an unlock request. The file being
locked and unlocked must be a file identified in
the sub~schema.

A deadlock situation can occur when a program
attempts to access files or records that have been
locked by CDCS for other programs. When this situ-
ation occurs, CDCS arbitrarily releases the Llocked
resources held by one of the contending programs.
To ensure proper recovery handling in this type of
situation, you should include appropriate code in
your FORTRAN program.

IMMEDIATE RETURN

The immediate return feature of CDCS provides
FORTRAN application programs with the ability to
receive an immediate response from CDCS when either
CDCS cannot get the resources it needs, or a fatal
error occurs. When this feature is used, CDCS
returns control to the application program.

The 1immediate return feature cannot be enabled
before CDCS is invoked. See the CDCS 2 Application
Programming reference manual for more information.

FILE PRIVACY

The file privacy feature provides file access con-
trol. When file privacy has been specified in the
schema, your program must supply privacy keys to
gain access to the file.

The data administrator provides you with this
information so you can ensure your FORTRAN program
meets the privacy requirements when CDCS checks for
appropriate privacy keys.

RELATIONS

The relational data base feature allows files to be
linked together into a logical relationship called

a relation. An application program can access the
data from related files with a single read request.
Relations are specified in the schema. Any rela-
tion that is available to an application program is
specified in the sub-schema.

Your application program can access a relation by
specifying a single read request with the name of
the relation that is to be read. CDCS processes
the request and returns a record occurrence from
each file in the relation to your program's working
storage area for the file.

The data administrator can place Llimitations on
relations by idincluding restrictions in the sub-
schema. Restrictions are in the form of qualifi-
cation criteria that must be satisfied before a
record occurrence is made available to your program.

A Llisting of the sub-schema provides you with the
name of the relation and indicates what specific
restrictions apply.

CONSTRAINTS

The constraint feature allows controls to be imposed
on update operations involving logically associated
files. Constraints protect the integrity of the
data base by allowing update operations to be
performed only when specific conditions are satis-
fied. Constraints are specified in the schema and
are enforced by €DCS.

The data administrator provides you with information
concerning constraints. You can avoid constraint
violations by becoming familiar with the rules that
apply when modifying files on which constraints
have been imposed.

DATA BASE VERSIONS

The data base version feature of CDCS allows an
application program to use the same schema and
subschema to access more than one group of permanent
files corresponding to the areas in the schema;
each of these groups is defined as a data base
version. Data base versions are defined by the
data administrator in the master directory. By
specifying use of. different versions, an applica-
tion program can perform operations on different
groups of files, each group forming a data base
version. For detailed information about this
feature, see the CDCS 2 Application Programming
reference manual.

RECOVERY

The recovery feature provides for reconstruction of
a damaged or inconsistent data base and provides
for the removing of updates made with erroneous
logic. The data base can be recovered when physi-
cal storage or system failure occurs and all or
part of the data base is lost or otherwise unread-
able. The data base can be restored to a previous
checkpoint or beginning of job when an application
program failure or logic error occurs.

60483500 B

J

J)

Recovery operations are made possible through @
logging facility, which is the recording of user
interactions with a data base file. Logging
requirements are defined by -the data administrator
for a schema and serviced by CDCS. CDCS records
the logging information on an independent file that
ultimately serves as input for data base recover
and restore operations. Log files, if specified,
are attached through the job stream of CDCS and are
automatically available to record the interactions
of your program with the data base.

DATA BASE TRANSACTION

The data base transaction feature of CDCS provides
the FORTRAN application program with the ability to
group a series of data base updates into a logical
unit, called a data base transaction.

The application program specifies the beginning of
the transaction, performs the update operations,
and specifies the end of the transaction, which can
be either a commit or a drop. When the application
program specifies a commit operation, all updates
made within the transaction become permanent. When
the application program specifies a drop operation,

TABLE 1-1. SUMMARY OF DMS-170

all updates within the transaction are reversed;
therefore, the data base remains in the state it
was in before the beginning of the transaction.

1f the application program fails to commit a
transaction because of system or program failure,
automatic recovery is performed; that is, the
transaction is dropped and the data base is re-
stored to its state before the beginning of the
transaction.

Transaction processing also provides an application
program with the ability to determine the point at
which to restart processing after a system failure.
The application program can use this feature to
determine the Last transaction that was committed
before the system failure occurred. The program
can then determine the point at which processing
should be restarted.

SUMMARY OF DMS-170
COMPONENTS AND FEATURES

A summary of DMS-170 components and features appears
in table 1-1. This table provides a quick refer-
ence for appropriate information.

COMPONENTS AND FEATURES

Component/

Feature pefinition

Information

Appears In Programmer Action

Alternate key
which a file can be accessed; de-
fined by the data administrator.

CDCS Batch Test A non-concurrent version of COCS

associated files or on items in a
single file to protect the integ-

operations; defined by the data
administrator.

CYBER Database
Control System
(cncs)

The central controlling module of
DMS-170.

CYBER Record
Manager (CRM)

The input/output processor for
DMS-170 operations.

bata base
procedures
by the data administrator.

60483500 B

A key other than the primary key by

Facility for use during program development.

Concurrency Simultaneous access to the same
data by two or more application
programs.

Constraints Controls imposed on records in

rity of the data base during update

Special—-purpose routines that per-
form predefined operations; written

On a random read, set the key
to a value indicating the
desired record occurrence.

Sub-schema Llisting

N/A Attach the master directory
when executing the applica-
tion program.

N/A Include appropriate code in
the application program to
handle a deadlock situation;
deadlock can occur when two
programs are contending for
access to a Locked file or
record.

Schema Obtain information from the
data administrator. Follow

the rules for modifying
files on which constraints
have been imposed.

N/A . None.
N/A None.
Schema None.

TABLE 1-1. SUMMARY OF DMS-170 COMPONENTS AND FEATURES (Contd)
Component/ AP Information :
Feature Definition Appears In Programmer Action
Data base A series of update operations N/A Include appropriate code in
transaction identified by a user-assigned the application program to
transaction identifier. A trans~ bracket the series of update
action is bracketed by a begin operations and to assign
transaction operation and either a transaction identifiers.
commit or drop operation. Transaction log files must
have been defined by the data
administrator in the master
directory.
Data base status | An array defined within an applica- N/A Include appropriate code in

block

Data base
version

Data
Description
Language (DDL)

File
organization

File privacy

FORTRAN Data
Manipulaticn
Language (DML)

Immediate return

Log files

Master
directory

Multiple-index
processor

o 1-6

tion program to which CDCS returns
information concerning the status
of operations on data base files
and relations.

A set of permanent files that is
associated with the areas described
by the schema; defined by the data
administrator.

The lLanguage that is used to struc-
ture a schema and sub-schema; used
by the data administrator.

The predetermined arrangement of
stored data; indexed sequential,
direct access, or actual key;
defined by the data administrator.

A situation in which an application
program can only gain access to a
file by supplying a privacy key;
defined by the data administrator.

The Llanguage that provides a
FORTRAN application program with
access to the DMS-170 controlled
data base.

A feature of CDCS that provides
FORTRAN application programs with
the ability to receive immediate
response from CDCS when either
CDCS cannot get the resources it
needs, or a fatal error occurs.

Disk files on which user inter-
actions with data base files are
recorded for recovery purposes.

A file containing information re-
Lating to all data bases, schemas,
and sub—-schemas known to CDCS;

created by the data administrator.

A processor that allows CRM files
to be accessed by alternate keys.

Master directory

N/A

Schema

Schema

N/A

N/A

Master directory

N/A

N/A

the application program.

To use a data base version
other than MASTER (which is
otherwise assumed), specify
the version name in the
application program.

None.

None.

Obtain information from the
data administrator. Include
a PRIVACY statement in the
application program.

Include appropriate DML

statements in the FORTRAN
source program code.

Include appropriate code in
the application program.

None.

Facility.

Attach the master directory

only when executing the pro-
gram through the CDCS Batch

Test Facility.

None.

60483500 B

J)

™
=)

TABLE 1-1. SUMMARY OF DMS-170 COMPONENTS AND FEATURES (Contd)

Component/
Feature

pefinition

Information
Appears In

Programmer Action

Primary key

Recovery:
Automatic

Recovery:
Manual

Relations

Restrictions

Schema

Sub-schema

A key that must be defined for
a file when the file is first
created; defined by the data
administrator.

A means by which a data base can
be automatically recovered in case
of a system or program failure.

A means by which a damaged or
destroyed data base can be re-
constructed or restored; defined
by the data administrator.

Logical structures formed by the
joining of files; permit retrieval
of data from more than one file at
the same time; defined by the data
administrator.

Criteria that must be satisfied in
a relation before a record occur-
rence can be made available to the
application program; defined by the
data administrator.

A detailed description of all the
data in a data base; created by the
data administrator through DDL.

A detailed description of selected
portions of the data in a data
base; created by the data adminis-~
trator through ODL.

Sub-schema Llisting

N/A

N/A

Sub-schema Llisting

Sub-schema Llisting

Schema Llisting

Sub-schema listing

On a random read, set the key
to a value indicating the
desired record occurrence.

Data base transactions pro-
vide for automatic recovery;
use them for sensitive up-
dates.

None.

To read a relation, specify
a single read request with
the name of the relation.
buring update, follow the
rules for updating files
joined in a relation.

None.

None.

Attach the sub-schema
library in which the sub-
schema resides for DML
preprocessing of the
application program.

60483500 B

ACCESSING THE DATA BASE 2

S

Every DMS-170 data base file that is to be accessed

through FORTRAN must be described in a directory
called a FORTRAN sub-schema. The data admin-
istrator, working with application programmers, is
responsible for creating the sub-schemas. Every
FORTRAN program that accesses a DMS-170 data base
file must wuse the FORTRAN Data Manipulation
Language (DML). The application programmer is
responsible for coding appropriate DML statements
and including them in the FORTRAN source program.

This section details the two principal data base
access tools: the sub-schema that describes the

data, and the language that provides access to that
data.

INTERPRETING THE FORTRAN
SUB-SCHEMA

The data administrator tailors sub-schemas to meet
specific applications. Assume, for example, you
have an application that requires access to only
two fields in a data base file: student IDs and
tuition charges. The data administrator might
provide you with a sub-schema that resembles
sub~schema SAMPLE1 shown in figure 2-1.

With the exception of the sub-schema Llibrary name
and any required privacy keys, the listing provides
you with complete information. The handwritten
notation in this example indicates the sub-schema
Library name is DDLLIB. If you were planning to
compile an application program using sub-schema
SAMPLE1, you would need to attach DDLLIB. Since no
privacy key 1is required, the schema obviously
imposes no access control on realm ACCOUNT.

Notice the three aliases assigned. Since symbolic
names in FORTRAN cannot exceed seven characters and
cannot include a hyphen, the data administrator
changes the names for your application.

Assume, for example, you have an application that
requires access to two data base files. Assume,
also, that you need a relationship between the two
files so that you can search one file and retrieve
corresponding records from the other. The data
administrator might provide you with a sub-schema
that resembles sub-schema SAMPLE2 in figure 2-2.

The handwritten notation in this example indicates
the sub-schema Llibrary name is DDLLIB. If you were
planning to compile an application program using
sub-schema SAMPLE2, you would need to attach
DDLLIB. The schema apparently 1imposes access
control on realm FILE2. The privacy key XX99 must
be included in a DML PRIVACY statement to gain
access to that realm.

FORTRAN DATA MANIPULATION
LANGUAGE

The FORTRAN Data Manipulation Language (DML) is the
means through which your FORTRAN program accesses

60483500 A

the data base. You must code the DML statements
along with FORTRAN statements in the FORTRAN source
program. The OML statements identify the sub-
schema, establish an interface with CDCS, and
provide access to realms defined by the sub-
schema. DML statements can appear both in the main
program and in subprograms.

The DML statements are translated into statements
acceptable to the FORTRAN compiler. The DML
preprocessor performs the translation and writes
the translated statements to a file along with the
FORTRAN statements in the source program. This new
file is then the input file to the FORTRAN compiler.

DML LANGUAGE COMPONENTS

The DML Language components dinclude DML statement
keywords, recognized symbols and punctuation, and
user-supplied names of variables and constants.
These components are grouped together into
statements for iJnput to the DML preprocessor,
which translates each statement appropriately into
a FORTRAN specification or CALL statement.

The first word of a statement is always a DML
keyword that identifies the task to be performed.
Most keywords are followed by user-supplied
elements and sometimes are followed by additional
keywords.

A List of available DML statements is shown in
table 2-1 for reference purposes. The statements
are listed in alphabetic order by the Lleading word
(keyword), which identifies the purpose of the
complete statement. The comments column provides
specific rules for the statement and includes
applicable default options.

SYNTAX REQUIREMENTS

The syntax requirements and coding conventions for
DML statements are exactly the same as for FORTRAN
statements. The following restrictions apply:

® A DML statement cannot be the object of a
logical IF.

® A DML statement must not reference files that
are referenced elsewhere in the program by a
conventional FORTRAN input/output statement or
by a FORTRAN PROGRAM statement.

Any executable DML statement can have a statement

label. The DML preprocessor copies the label into
the translated FORTRAN statement.

STATEMENT POSITIONING

Some DML statements require special positioning

“within the FORTRAN source program. These require-

ments are jllustrated in figure 2-3.

BWSYIS-GNS NYYI¥O4 ILSeE ¥V °|-Z 24nBLJ

“INNO Y gwgmmw\go
g11aa gh\sﬁﬂ *$23S d2 %s0°0 *q3sn W) 80092y

*BuiLssad0ad U0uJD UL PAJUBUISDL BB *SITLSONOVIQ 0 *3137dW07 4740
S|euip4o 9sayy 49| idwod gg 9yl Aq paubisse ase Sjeulpuo wdR]

*paJouby 3q ued abesssw ayj ‘weuboud uorjeatidde ayy o3
UJ9Ju0d ou Jo aue suorjesado Gupddey cewdyds syj 03 |esjjudapt
j0u s} ewdyds-qns 3y3 asnedaq buirddew wuojudd [[LM SIAI-=-INROJIY - WIVIN ¥O4 G3AIIN SI ONIJIVW Q¥OITU Frevy

— INNOJIV VANV ¥04 INIANLS 01000\ A3X AYVWINd
*INNOJJV wiesd Joj Aoy Adewrad 3y3 st INIANLS
INdNI 32¥N0S VWIHIS-8NS 40 ON3 xvrrx
an3 21000
‘ws3f J4869juy ue se paqLudsap 2 UNIGYO w+
SL YoLym CNOILINL Ppue ‘w3l J33ORJRYO-IT ue SB PaqL.IsIp NOILINL ¥3934NI 11000
SL YILYM “INJGNLS :P3SSBIOB 3Q UBD PJ0ddA BY} UL SWAL OM] 1 IVNIQHO *x
INIANLS LL¥YILIVEVHI 0L000
INNOJIY NIHLIM *»
*234120v 934100V Q¥0I3Y 60000
p40234 pueR INMOJJY WlEdL 03 S$S3I0e saprroad ewayds-qns Y| 80000
INNOJIY WYY 20000
*QI-IN30NLS PU® “J3¥-1J0V ‘ONIINMOJIY Saweu ewsyds 03 puodsau.od 90000
Ady3 fIN3ANLS Pu® ‘J3YLIIY INROJDY SJe s3weu M3u 3yl QI-LN3GNLS=INIANLS (W3LI)SYITW $0000
‘We3L pue ‘puodad ‘(8Lh)) wleds e 0} paubisse Bue S3WRU MON——w=—q IFY-LIIV=DIULIIV (QUOIIW)ISVITY %0000
SNILNNOJIV=INNOIIY (WIVIY)SYITY £0000
20000
"ALISY3AIND S} 3weu eudYdsS 3y} {TI1dWYS SL SWRU BWIYIS-QNS Y| —e— ALTSUIAINN=YWIHIS’ LI TdWYS YWIHISENnS 10000

4700 (1S€08) * ONILSIT 3IIVNOS = 137dWYS

60483500 A

BWAYIS-qNS NYYLYOJ euOLILIaY ¥ *Z-2 3JnbLy

2-3

°$33S dd 20L°0

2371wl Promu, 66X, Py Franmey SITLSONSYIS O
'd1710q T g

2313 - vawy
13714 - v3uy SNIOF L3
SITLSTIVIS NOILYT3Y

*pauuniad ¥rny
aq 03 aJe Q°p Jo obedare juiod speub e yiLM Spuodad

AlUQ °93YZ1I4 P40da4 uo pade|d Sp UOL3DLUISAU Y INdNI 33YN0S YW3IHIS-BNS 40 N3

GN3
(0% °"©3° IAVY9)IN2TI4 LOTULSIY
237114 - WIV3¥ ¥0J 03033N ST ONIddVW du¥0d3¥

13714 - WIW3Y ¥0d4 Q3QIIN SI ONIddVW Q¥0d3Y
23714 Y3V ¥04 3IQVH9
23114 Y3yv ¥04 4IZad

*pajsL| 9Je SA9Y ajeusay[e pue Auewldd 23714 v3¥v ¥03 LN3aI
13714 VIYY ¥04 ¥OIfVW
*pauLof aue 13714 V34V ¥04 QILITI4
23714 pue 13714 -°dlqeLieAe s} T3y paLed uoliejad y 1134 NOILVI3Y
‘WAL B34 © SB PaqLJdsap SL YILyMm
‘3QVyH pue fuR3} J93ORJRYD-TT UR SB PIQLUIS3P S| YILUM 3qv¥9 W3y
‘0123714 ‘we3l J83dvMRyd-pT B SB PAQLIISIP SI YILYM
‘INJQI :POSS3IJ® 3Q URD JIYZTI4 P40JaJ U} SWIYL UYL Q123714 LL*¥3LIVEVHD

IN3AT ¥1*¥ILIVYVHI

*2371d ULY3LM
93¥Z1I4 P40Id4 03 SS3I08 sapLAoud euwRYIS-gns 3| 93427114 GH0IY

‘w93l 4930BURYD-(QZ B SB PIQL4ISP Si YOLYW swagl
J3joRJRYD-TT UR Se paqL4Isap S| QITITI4 "YOCWW pue HOrVW 0Z¥¥3LIVHVHD
QIT31I4 :P3SSadde 3q UBD JIYTTI4 P40IDUA U} SWA3L OML

“T371d ULyIm

AILITI3 LL*¥ILIVAVHD

J3YTII4 P40234 03 SS9I%e sapLAoud ewayds-gns 3yl 2341714 Q¥023Y
*¢3114 pue A 23714 WIY3y

13714 :SWEPA4 OM} 03 $S9232 S8pLAOLd ewdyas-qns 3yl 13714 WIV3Y
‘wpeaJd puodas a3yl 4oy ‘A1aAp3oadsad ‘@123114 J3¥-JYNI "GI-LNIANLS=QIZITId (WILI)ISVITW

pue 93¥21I4 ‘23714 ‘wpead IS4l 3y3 403 ‘f1aAaL3oadsau J3Y-YY¥NI=J3¥21I4 (QY0IIY)ISYITY
‘QIT37I4 pue “JIYTII4 TITIJ SJe S3Weu MdU Byl -swall WNTNII¥YNI=231Id (WIYIYISYIW

puB “Sp402d4 ‘sw[eaJd OM} 03 paublsse oJe SaweU MIN —=—
334-1N3ANLS “QI-LN3ANLS=QI|31d (WALI)SVYIW
J3¥=IN3ANLS=I38 L1114 (QYOIIY)SYIY
AN3ANLS=131T4 (WIVIY)ISVIW

*ALISY3AINND
SL swWeu ewsyds oyl $231dWYS .S} OWeU RWBYISQNS By — = ALTSYIAINN=YWIHIS 23 1dKYS VWIHISENS

3700 (LS€08) * ONILSIT 3JUNOS «+

“Q3SN WY 800S0S

“31374W00 4744

100 NOILVI3Y

REREX

PR
§2000
42000
REREF
RRREN

12000 A3 3lvN¥3LWV
02000 A3 3ILVN¥3LIV
61000 A3 AYVWIN
9L000 A3X 3LYN¥ALTY
SLO00 A3 AWVWINd

£2000

£ IYNIQ¥0
22000
12000

4 IYNIQ¥0
02000

I TYNIQYHO
61000

237114 NIHLIM
81000
2 WNIQYO
21000
91000
L IYNIQYO0
$1000
L3714 NIHLIAM
1000
£1000
21000
11000
01000
60000
80000
20000
90000
$0000
%0000
£0000
20000
10000

2371dWYS

»

L

¥

¥

L

60483500 A

C

C C

6@"\
€@°\

CLOSE relation

COMMITTRAN

DELETE

DROPTRAN

FINDTRAN

INVOKE

LOCK

NEWVERSION

OPEN

OPEN relation

PRIVACY

Ends processing of the realms joined
in a relation.

Completes processing of a data base
transaction.

Removes a record from a realm.

Cancels processing of a data base
transaction.

Obtains information for a program
restart operation after system
failure.

Establishes the interface between
the executing program and CDCS.

Establishes an exclusive or protected
Lock on realms. Exclusive prohibits
read and update operations on the
realm. Protected prohibits only
update operations (allows read
operations).

Changes the data base version being
used by an application program.

Initiates processing of a realm.

Initiates processing of the realms
joined in a relation.

Establishes the right of a program
to access a realm.

TABLE 2-1. DML STATEMENTS
Statement Description Comments
ASSIGNID Obtains a restart identifier assigned | The program must execute the ASSIGNID statement
by CDCS. before processing data base transactions in order
to determine the status of a data base transaction
in a restart operation after a system failure
occurs. The FINDTRAN statement is used in the
restart operation.
BEGINTRAN Begins processing of a data base Updates are considered temporary until the data
transaction. base transaction is committed.
CLOSE Ends processing of a realm. Realms can be opened and closed any number of

times by a program.

Relations can be opened and closed any number of
times by a program.

This statement causes all updates within the data
base transaction to be considered permanent.

The record being deleted is the record most
recently read from the realm. The value of the
primary key cannot change after the last read.

All realms are restored to the states that existed
just before the data base transaction began.

The program must have obtained a restart identifier
by executing the ASSIGNID statement in order to use
the FINDTRAN statement.

The statement must be executed before any other
DML statements except SUBSCHEMA.

The realm must be a realm described in the sub-
schema.

All sub-schema realms must be closed before
executing the NEWVERSION statement. See the
CDCS 2 Application Programming reference manual
for details.

If the processing mode is not specified, the realm
is opened for input/output.

1f the processing mode is not specified, the rela-
tion is opened for input/output. A processing
mode of open for output only is not valid.

1f the processing mode is not specified, the realm
can be accessed for input/output. The mode must
be the same as the mode indicated in the OPEN
statement.

60483500 B

J)

™
™

fﬁ‘\
G@’“

READ relation

REWRITE

START

START relation

SUBSCHEMA

TERMINATE

UNLOCK

WRITE

to the variables defined in the sub-
schema record description.

Transfers data from the relation
records to the corresponding vari-
ables defined in the sub-schema
record descriptions.

Replaces the Last record read with a
new record, using the current values
of the variables defined in the sub-
schema record description.

Logically positions a realm for
a subsequent sequential read
operation.

Logically positions the root realm
(the first realm named in the sub-
schema) of a relation for a subse-
quent relation read operation.

Identifies the sub-schema to be used
by the program.

Terminates the interface between the
FORTRAN program and CDCS.

Releases a lLock on a specified realm
and releases all record locks.

Writes a record, using the current
values of the variables defined in
the sub-schema record description.

TABLE 2-1. DML STATEMENTS (Contd)
Statement Description Comments
| ——
READ Transfers data from a realm record If a key is not specified, the read is sequential.

If a key is specified, the value of the referenced

key must be set by the program before the read is

executed.

If a key is not specified, the read is sequential.

If a key is specified, the key must be in the root
realm; the value of the referenced key must be set

by the program before the read is executed.

The value of the primary key must not have changed

since the last read.

The processing mode must be either input or
input/output.
primary or alternate key defined for the realm.
If a key is not specified, positioning is by
primary key.

The processing mode must be either input or
input/output. If a key is specified, it must be
a primary or alternate key that is defined in
the root realm. If a key is not specified,
positioning is by primary key of the root realm.

A FORTRAN program can reference only one sub-
schema.

When a TERMINATE statement is issued, an INVOKE
statement must be executed before any other DML
statements are issued.

The realm must be a realm described in the sub-
schema.

Schema record data items that are not defined in
the sub-schema are given null values by CDCS.

If a key is specified, it must be a

60483500 B

2-5

[specification statsnrcs |
SUBSCHEMA -t

oo e e—— =
|FORTRAN executable statements

I rnvoke T <

I
: asszeN1ot/rnpTRANT

| PRIVACYT

| oPENT ¢

| LOCK |

1 B ISR S

: BEGINTRAN -
IREAD/HRITE/REHRITE/DELETE/START

| COMMITTRAN

: DROPTRAN }4*
| unLockT

| cLoseT

| TERMINATE

— o — a—— — v ———— —

IFORTRAN executable statements

b .

TCannot appear within a data base transaction.

Must appear here

Must precede other DML statements (except SUBSCHEMA statement)

Must precede OPEN statement

Must precede LOCK statement
Must precede UNLOCK statement

Begins processing of a data base transaction

Ends processing of a data base transaction

Must be last DML statement

® 2-6

Figure 2-3. DML Statement Positioning

60483500 B

J

J

J

-

PROCESSING THE DATA

Processing data base files within the DMS-170

environment involves several steps.
are:

These steps

1. Obtain a current listing of the sub-schema from
the data administrator so you can have the
names and descriptions of the data your program
will be referencing.

2. Obtain the name of the appropriate sub-schema
Library from the data administrator. You will
need to attach this Llibrary for preprocessing
your program,

3. Ask the data administrator if any realms in the
sub-schema are defined in the schema as having
controlled access. When access is controlled,
you must know the privacy key.

4., Ask the data administrator if any constraints
exist in the schema. When constraints exist,
CDCS enforces them by not allowing updates that
violate constraints.

S. Code the FORTRAN program and include
appropriate Data Manipulation Language (DML)
statements for opening, closing, and processing
sub-schema realms.

6. Preprocess and compile the FORTRAN progranm.
Include, in the job stream before the FTNS
control statement, an ATTACH control statement
naming the sub~schema Llibrary and a DML control
statement to execute the DML preprocessor.

7. When compilation 1is successful, execute the
FORTRAN program. Include an LDSET control
statement to Load the DMS-170 Library.

DML statements are available to perform a variety
of operations on data base items described in a
FORTRAN sub-schema. This section describes these
statements and presents them 1in the following
sequence:

Data Base Access
SUBSCHEMA
INVOKE
PRIVACY
OPEN
LOCK /UNLOCK
CLOSE
TERMINATE

Data Base Manipulation
WRITE
READ
START
REWRITE
DELETE

Relation Access
CLOSE

READ
START

60483500 8

For purposes of illustration, a new sub-schema
named AVERAGE is shown in figure 3-1. This
sub-schema is referenced in subsequent examples.
The examples show portions of program MODEL which

illustrate statements necessary for particular data
base operations.

The sub-schema provides the following information:

e The realm (file) to be accessed is named CFILE.

e The record is named CRECORD.

e A character item named IDENT is the primary key.

® A character item named STUDENT is an alternate
key.

e A character item named COURSE is an alternate
key.

e A real item named GRADE is an alternate key.

The handwritten notation on the Llisting indicates
the sub-schema is stored on a Llibrary named SSLIB.
The notation also indicates CFILE has controlled
access and requires a privacy key of XX99.

USING DML TO ACCESS
THE DATA BASE

To access a data base, a FORTRAN program must
identify the sub-schema that the program uses,
establish an interface with CDCS, satisfy privacy
requirements, and perform the usual functions of
opening” and closing files. The following para-
graphs describe these functions and the DML state-
ments that you include in your program to provide
these functions.

IDENTIFYING THE SUB-SCHEMA
To identify the sub-schema, you must include a
SUBSCHEMA statement in your program. This must be
the first DML statement to appear in your program.
The format is:

SUBSCHEMA (sub-schema-name)

The SUBSCHEMA statement is required. You must
position the statement in the program as follows:

e After the specification statements

o Before the first DATA or NAMELIST statement

e Before any statement function

e Before any executable statement

At the point where the DML preprocessor encounters
the SUBSCHEMA statement, the DML preprocessor

copies into the source program the text declaration
and DATA statements resulting from the sub-schema

3-1 |

PRIMARY KEY 00012
ALTERNATE KEY 00013
ALTERNATE KEY G0014
ALTERNATE KEY 00015

AVERAGE * SOURCE LISTING * (80351) DDLF 1.2+538.
00001 SUBSCHEMA AVERAGE,SCHEMA=UNIVERSITY
00002
00003 ALIAS(REALM) CFILE=CURRICULUM
00004 ALIAS(RECORD) CRECORD=CURR-REC
00005 ALIASCITEM) STUDENT=STUDENT-ID.CURR-REC
00006 ALIASCITEM) COURSE=COURSE-ID.CURR-REC
00007
00008 REALM CFILE
00009
00010 RECORD CRECORD
00011
*% WITHIN CFILE
CHARACTER*14 IDENT
*% ORDINAL 1
00013 CHARACTER*11 STUDENT
*% ORDINAL 2)
00014 CHARACTER*6 COURSE
ORDINAL 3
00015 . REAL GRADE
*+ ORDINAL &
00016 END
00017
Ak END OF SUB-SCHEMA SOURCE INPUT

IDENT FOR AREA CFILE

STUDENT FOR AREA CFILE

COURSE FOR AREA CFILE

GRADE FOR AREA CFILE

Fkkik RECORD MAPPING IS NEEDED FOR REALM - CFILE

’“_—-"-_—"—'—_5“‘——”‘—’-_‘\\\~____——"'_——"-____—f"’—--~\“"———_-‘\‘\.__

Mﬁy XX‘)‘)mzdzd.[m CFILE.

Figure 3-1.

compilation. In this way, DML provides your
program with the ability to reference all records,
data items, and relations that are described in the
sub-schema.

In a program using the sample sub-schema AVERAGE,
the SUBSCHEMA statement appears as shown in figure
3-2.

PROGRAM MODEL

CHARACTER ...
DIMENSION ...

éUBSCHEHA(AVERAGE)
DATA ...
00 ...

END.

Figure 3-2. 1ldentifying the Sub-Schema

i 3-2

Sub-Schema AVERAGE

ESTABLISHING THE INTERFACE
WITH CDCS

To establish the interface with CDCS, you must
include an INVOKE statement in your program. This
must be the second DML statement to appear in your
program. The format is:

INVOKE

The INVOKE statement is required. The statement
must appear in the program before any other DML
statement except SUBSCHEMA,.

When the INVOKE statement is executed, CDCS
automatically attaches for use by the program all
realms described in the sub-schema didentified by
the program.

In a program using the sample sub-schema AVERAGE,
the INVOKE statement appears as shown in figure 3-3.

SATISFYING PRIVACY REQUIREMENTS

If a realm is defined in the schema as having con-
trolled access, your program must provide a privacy
key to access the realm. To provide the privacy
key, you must include the PRIVACY statement in your
program. The format is:

60483500 B

J

J)

(fm\
6@@\

PROGRAM MODEL

CHARACTER ...
DIMENSION ...

SUBSCHEMA (AVERAGE)
DATA ...
00 ...

Figure 3-3. Establishing the Interface With CDCS

PRIVACY (realm-name, [MODE=mode,]
PRIVACY=privacy key)

where
mode = I (access allowed for input)

I0 (access allowed for both input
and output, called input/output;
default)

0 (access allowed for output)

privacy key = character constant, variable
name, unsubscripted array name

A privacy key can be from 1 through 30 characters
in length. If you use a character constant to
specify a privacy key, enclose the character string
in apostrophes. If you use a variable name to
specify a privacy key, define the variable as type
CHARACTER*30. Ensure that the privacy key is
left-justified and blank filled in the field of the
variable. If you use an array name to specify the
privacy key, define the array as a 3-word array.
Ensure that the privacy key is left-justified and
blank filled in the field of the array.

The PRIVACY statement 1is required when access is
controlled. A separate PRIVACY statement is
required for each realm defined with controlled
access. The PRIVACY statement must be executed
before the statement that opens the realm.

The handwritten notation on the sample sub-schema
Llisting (figure 3-1) indicates access to the realm
is controlled and a privacy key called XX99 s
required. In a program using the sample sub-schema
AVERAGE, the required PRIVACY statement appears as
shown in figure 3-4.

OPENING A REALM

Before your program can access any data records in
an existing realm, the program must open the
realm. To open the realm, you must include the
OPEN statement in your program. The format is:

OPEN(realm-name [,MODE=mode] [,ERR=s])

60483500 8

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY (CFILE ,MODE=10,PRIVACY="XX99")

END

Figure 3-4. Satisfying Privacy Requirements

where
mode = I (open for input only)

10 (open for both input and output,
called input/output; default)

0 (open for output only; valid only for
creating a new file)

s = Label of an executable statement to
which control transfers on open error

For a realm with controlled access, the mode of
access indicated in the PRIVACY statement must
provide for the access mode indicated in the OPEN
statement. For example, if you open a realm for
input (MODE=I) you can specify MODE=I0 in the
PRIVACY statement.

If a separate privacy key is required for input
(MODE=1) and another privacy key is required for
output (MODE=0), two PRIVACY statements are required
to open a realm for input/output (MODE=IO0).

In a program using the sample sub-schema AVERAGE
(figure 3~1), the OPEN statement appears as shown
in figure 3-5. The MODE option 1is not included,
indicating a default to input/output.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY (CFILE,MODE=IO0,PRIVACY="XX99')

OPEN(CFILE,ERR=100)

100 PRINT *, 'ERROR ON OPEN'

Figure 3-5. Opening a Realm

3-3

Both the PRIVACY and OPEN statements indicate the
same mode, input/output. If an error occurs on
open, program execution continues at statement 100.

LOCKING/UNLOCKING A REALM

Whenever your program issues a read request on a
realm that is open for input/output, CDCS automat-
jcally locks the record that was read (the current
record) against update by another user. Through
DML, however, your progam can prevent other jobs
from performing update operations anywhere within a
realm by issuing a request that CDCS Llock the
entire realm. To issue the lock request, you must
include the LOCK statement in your program. The
format is:

LOCK (realm-name [,TYPE=lock-type [,ERR=s1])
where

Lock-type = character constant or variable

s = Label of an executable statement to
which control transfers on Llock
error

Two types of Llocking are permitted: exclusive or
protected. Exclusive locking prohibits concurrent
access to the realm for read or update operations;
protected locking allows concurrent access to the
realm for read operations but prohibits concurrent
update operations.

Lock-type can be specified as either a character
constant or a variable. The Llock-type option must
specify either the value EXCLUSIVE or the value
PROTECTED. The Llock-type is 9 characters long. If
you use a character constant to specify the Llock-
type, enclose the character string in apostrophes.
If you use a variable to specify the Llock-type,
define the variable as type CHARACTER*9.

The LOCK statement should be executed before any
read request with intent to update the record.

CDCS releases the realm lock held for your program
when the program issues an unlock request. To
issue the unlock request, you must include an
UNLOCK statement in your program. The format is:

UNLOCK (realm-name [,ERR=s])

where .
s = label of an executable statement to which
control transfers on unlock error

You should judiciously use a realm Llock. A realm
lock Llimits other wusers' access to the realm
(file). Additionally, a realm Lock overrides the
CDCS record Llocking mechanism, which provides a
checking capability on rewriting and deleting
records (for additional information, see the para-
graphs Rewriting a Record and Deleting a Record).

In a program using the sample sub-schema AVERAGE
(figure 3-1), the LOCK and UNLOCK statements appear
as shown in figure 3-6. If an error occurs during
the Llock or untock process, program execution
continues at statement 200 or 300, respectively.

3-4

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY (CFILE,MODE=I0,PRIVACY="'XX99")

OPEN (CFILE, ERR=100)

LOCK (CFILE, ERR=200)

UNLOCK (CFILE,ERR=300)

200 PRINT *, 'ERROR ON LOCK'

300 PRINT *, 'ERROR ON UNLOCK®

END

Figure 3-6. Locking/Unlocking a Realm

CLOSING A REALM

When your program has completed processing on a
realm, the program must close the realm. To close
the realm, you must include the CLOSE statement in
your program. The format is:

CLOSE(realm-name [,ERR=s1)
where

s = Label of an executable statement to which
control transfers on close error

Once a program closes a realm, the program can
perform no further processing on the realm until it
reopens the realm.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the CLOSE statement appears as shown
in figure 3-7. If an error occurs on close, pro-
gram execution continues at statement 400.

TERMINATING THE INTERFACE
WITH CDCS

To terminate the interface with CDCS, you must
include a TERMINATE statement in your program. The
format is:

TERMINATE
Once the TERMINATE statement is executed, no fur-

ther data base processing can take place without
execution of another INVOKE statement.

60483500 8

J

J)

In a program using the sample sub-schema AVERAGE
(figure 3-1), the TERMINATE statement appears as
shown in figure 3-8. This statement must be
executed before the FORTRAN END or STOP statement.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY (CFILE,MODE=10,PRIVACY="'XX99')

OPEN(CFILE,ERR=100)

LOCK (CFILE, ERR=200)

UNLOCK (CFILE,ERR=300)

CLOSE(CFILE,ERR=400)

400 PRINT *, "ERROR ON CLOSE'

END

Figure 3-7. Closing a Realm

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY (CFILE,MODE=I0,PRIVACY="XX99")

OPEN(CFILE,ERR=100)

CLOSE (CFILE,ERR=400)

100 PRINT %, 'ERROR ON OPEN'

400 PRINT *, 'ERROR ON CLOSE'

TERMINATE

END

Figure 3-8. Terminating the Interface With CDCS

60483500 A

USING DML TO MANIPULATE DATA

DML statements are available to create, read,
position, and modify data base records. The
following paragraphs describe these functions and
the DML statements that you must include in your
program to provide these functions.

WRITING A RECORD

To write a complete record, you must include a
WRITE statement in your program. The format is:

WRITE(realm-name [,ERR=s])
where

s = label of an executable statement to which
control transfers on write error

Before the WRITE statement is executed, the program
must set the primary key and all alternate keys to
appropriate values. A sub-schema does not always
reflect all data items that appear in the schema
record; therefore, before allowing the new record
to be written to the data base, CDCS gives null
values to those schema data items that are not
defined in the sub-schema.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the WRITE statement appears as shown
in figure 3-9. The program sets the primary key
IDENT and alternate keys STUDENT, COURSE, and GRADE
to appropriate values before the WRITE statement is
executed. If an error occurs on write, program
execution continues at statement 500.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE

PRIVACY(CFILE, MODE=I0,PRIVACY="XX99")
OPEN(CFILE,MODE=10,ERR=100)
IDENT="122-13-6704-09"
STUDENT="'122-13-6704"*

COURSE="PSY136"

GRADE=3.7

WRITE(CFILE,ERR=500)

500 PRINT *, "ERROR ON WRITE®

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-9. Writing a Record

This example shows a program writing a record to an
existing file, CFILE. Before the program writes to
this file, the PRIVACY and OPEN statements
establish access for input/output (MODE=I10). If
the program were creating this file, the OPEN and
PRIVACY statements would have to establish access
for output only (MODE=0).

READING A RECORD

To read a record, you must include a READ statement
in your program. The format is:

READ{realm-name [,KEY symbol item—-namel
C,ERR=s] C,END=s1)

where
symbol = = ,EQ. .GT. .GE.
item—name = primary or alternate key

s = label of an executable statement to
which control transfers on read
error (ERR)

Llabel of an executable statement to
which control transfers on
end-of-file (END)

When you omit the KEY option, the read operation is
sequential. When you include the KEY option, the
read operation is random.

The END option is valid only for a sequential read
operation.

Sequential Read

A sequential read accesses the record occurrence
Ltocated at the current record position. Successive
read operations return record occurrences by
position. Indexed sequential files are sequenced
in ascending primary key order, actual key files
are sequenced by block and record slot within the
block, and direct access files are sequenced by
position in home blocks.

Typical FORTRAN 5 statements issued outside of a
data base environment terminate with a fatal error
if EOF is sensed and a test for EOF status is not
included in the FORTRAN READ statement. If EOF
status 1is not tested in DML, program execution
continues with the next statement. Consequently,
it is necessary to test for EOF on a DML sequential
read operation. You can handle this test in one of
two ways:

® Include the END option on the READ statement.
When EOF is sensed, program execution continues
at the statement specified in the option.

o Test for an EOF value of 1008 in the data
base status block. This option is described in
section 4.

In a program using the sample sub-schema AVERAGE
(figure 3-1), a sequential read appears as shown in
figure 3-10. If an error occurs on read, program
execution continues at statement 600. The READ
statement includes the END option to test for EOF.
When EOF is reached, program execution continues at
statement 900.

Random Read
A random read accesses a record occurrence by the
value of a referenced primary or alternate key.

The program must set the value of the referenced
key before the READ statement is executed.

3-6

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE

PRIVACY (CFILE,MODE=I0,PRIVACY="'XX99")
OPEN(CFILE,ERR=100)

READ (CFILE,ERR=600,END=500)

600 PRINT *, 'ERROR ON READ'

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-10. Reading Sequentially

In a program using the sample sub-schema AVERAGE
(figure 3-1), a random read appears as shown in
figure 3-11. The program sets the alternate key
GRADE to the value 4.0. This read returns from
CFILE the first record occurrence in which the
alternate key GRADE has the value 4.0. If an error
occurs on read, program execution continues at
statement 600.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE

PRIVACY(CFILE, MODE=IO,PRIVACY='XX99"')
OPEN(CFILE,ERR=100)

GRADE=4.0

READ(CFILE ,KEY.EQ.GRADE,ERR=600)

600 PRINT *, 'ERROR ON READ®

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-11. Reading Randomly

POSITIONING A REALM

To position a realm for subsequent sequential read
operations, you must include a START statement in
your program. The format is:

START(realm~name [,KEY symbol item=-name]
[,ERR=s1)

where

symbol = = .EQ. .GT. .GE.

item-name = primary or alternate key

s = Label of an executable statement to
which control transfers on start
error

Before the START statement is executed, the program
must have opened the realm for dnput or
input/output.

60483500 A

J D

J D

-
~

When you omit the KEY option, the reaim is
positioned by primary key wvalue; the realm is
positioned to the record occurrence with a primary
key value equal to the current value of the primary
key item. When you include the KEY option, the
realm is positioned to the first record occurrence
with a matching key value.

In a program using the sample sub-schema AVERAGE
(figure 3-1), both forms of the START statement
appear as shown in figure 3-12. If an error occurs
on start, program execution continues at
statement 700.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY(CFILE,MODE=I0,PRIVACY="XX99")
OPEN(CFILE,ERR=100)
IDENT="122-13-6704-01"
START(CFILE,ERR=700)

READ (CFILE ,ERR=600,END=900)

700 PRINT *, 'ERROR ON START'

COURSE='PSY100"
START (CFILE,KEY.GE. COURSE ,ERR=700)
READ (CFILE, ERR=600, END=900)

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-12. Positioning a Realm

The first START statement omits the KEY option,
which means CFILE will be positioned by primary
key. The program sets the primary key (IDENT) to
the value 122-13-6704-01 before the START statement
is executed; the realm will be positioned to the
record occurrence with the matching primary key
value,

The second START statement dincludes the KEY
option. The program sets the alternate key COURSE
to the value PSY100. The first record occurrence
in CFILE with an alternate key COURSE greater than

or equal to PSY100 will be the one to which CFILE
is positioned.

REWRITING A RECORD

To rewrite a record, you must include a REWRITE
statement in your program. The format is:

REWRITE(realm-name [,ERR=s])
where

s = lahel of an executable statement to which
control transfers on rewrite error

60483500 A

When a record is rewritten, the current values of
those variables defined in the sub-schema are
rewritten to the specified data base record. Data
items defined in the schema but not defined in the
sub~schema remain unchanged.

Before your program can rewrite a record, your
program must have Llocked the record either with a
record lock or with a realm lock. Typically, the
record Lock is used.

For a rewrite using a record lock, the program
establishes the record locking mechanism by opening
the realm for input/output. To rewrite the record,
the program must include the following steps:

1. Read the record to the program's working
storage area by executing a DML READ statement.

2. Set the value of each data item being changed
to the appropriate new value.

3. Rewrite the record by executing a REWRITE
statement.

When the realm is opened for input/output and the
read is executed, CDCS expects an update operation
and consequently Llocks the record. (CDCS allows
rewriting of only the locked record.

The program must not change the value of the
primary key between the read and the rewrite of the
record. The following example illustrates a
processing sequence to avoid:

IDENT="'100-22-5860-04"
READ (CFILE,KEY=IDENT)
IDENT="'200-44-7863-01"
REWRITE(CFILE)

Assuming a rewrite using a record lock, CDCS does
not allow the rewrite in this example to be
performed because the record is not Llocked;
record 100-22-5860-04 is locked, but the rewrite is
attempted on record 200-44-7863-01. (CDCS issues an
error diagnostic on the rewrite.

If an update requires that the value of a primary
key be changed, the program must first delete the
record with the old primary key value and then
write the record with the new primary key value.

For a rewrite using a realm Llock, the program
establishes the realm lock by executing the LOCK
statement. Then to rewrite a record, the program
needs only to set the value of the primary key to
the value of the record being rewritten and execute
the REWRITE statement. The recommended rewriting
procedure, however, includes more steps than
these. The recommended procedure is the same as
for a rewrite using a record lock: read the
record, change the appropriate values, then rewrite
the record. By reading the record, the program can
test for an error on the read and, thereby, protect
the integrity of the data base. With the realm
lock, it is your responsibility to ensure that the
program does not change the value of the primary
key between the read and the rewrite of the record.

You should judiciously wuse a realm Llock when
rewriting records because the realm Llock overrides
the record Llock and the checking capability
available through the record lock.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the REWRITE statement appears as
shown in figure 3-13. The program performs the
rewrite by using a record lock. The program reads
the record occurrence with a primary key value
of 100~22-5860-04, changes the value of data itenm
GRADE to the value 3.8, and then rewrites the
record. In the rewritten record, all other values
in the record occurrence remain unchanged. If an
error occurs on rewrite, program execution
continues at statement 800.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY(CFILE,MODE=10,PRIVACY="XX99")
OPEN(CFILE,ERR=100)
IDENT="100-22-5860-04"

READ (CFILE ,KEY=IDENT,ERR=600)
GRADE=3.8

REWRITE(CFILE,ERR=800)

600 PRINT *, "ERROR ON READ®

800 PRINT *, 'ERROR ON REWRITE'

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-13. Rewriting a Record

DELETING A RECORD

To delete a record, you must include a DELETE
statement in your program. The format is:

DELETE(realm-name I, ERR=s])
where

s = label of an executable statement to which
control transfers on delete error

Before your program can delete a record, your
program must have locked the record either with a
record lock or with a realm lock. Typically, the
record Llock is used.

For a delete using a record Llock, the program
establishes the record locking mechanism by opening
the realm for input/output. To delete the record,
the program must include the following steps:

1. Read the record by executing a DML READ
statement.

2. Delete the record by executing a DELETE
statement.

When a realm is opened for input/output and the
read is executed, CDCS expects an update operation
and consequently Llocks the record. CDCS allows
deletion of only the locked record.

The program must not change the value of the
primary key between the read and the delete of the
record. The following example illustrates a
processing sequence to avoid:

IDENT="100-22-5860-04"
READ (CFILE,KEY=IDENT)
IDENT="'400~23-1248-07"
DELETE(CFILE)

Assuming a delete using a record lock, CDCS does
not allow the delete 1in this example to be
performed because the record 1is not Locked;
record 100-22-5860-04 is Llocked, but the delete is
attempted on record 400-23-1248-07. CDCS issues an
error diagnostic on the delete.

For a delete using a realm Llock, the program
establishes the realm Locking mechanism by
executing the LOCK statement. Then to delete a
record, the program needs only to set the value of
the primary key to the value of the record being
deleted and execute the DELETE statement. The
recommended procedure for deleting a record,
however, 1includes more steps than these. The
recommended procedure is the same as for a delete
using a record lock: read the record and then
delete the record. By reading the record, the
program can test for an error on the read and,
thereby, protect the integrity of the data base.
With the realm Llock, it is your responsibility to
ensure that the program does not change the value
of the primary key between the read and the delete
of the record.

You should judiciously wuse a realm Lock when
deleting records because the realm Llock overrides
the record lock and the checking capability
available through the record lock.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the DELETE statement appears as shown
in figure 3-14. The program performs the delete by
using a record lock. The program reads from CFILE
the record occurrence with a primary key C(IDENT)
equal to 100-22-5860-04 and then deletes that
record. If an error occurs on delete, program
execution continues at statement 850.

USING DML TO PROCESS
RELATIONS

Relation processing greatly simplifies programming
when several related realms are required by the
application program. Realms that have common data
items can be joined in a relation. When a relation
is included in a sub-schema, the relation can be
accessed and read through DML. This means that a
single relation read request by an application
program returns a relation occurrence, which
consists of one qualifying record from each of the
realms comprising the relation.

60483500 A

J)

J)

PROGRAM MODEL
SUBSCHEMA (AVERAGE)

INVOKE

PRIVACY (CFILE,MODE=10,PRIVACY="'XX99")
OPEN(CFILE,ERR=100)
IDENT="100-22-5860-04"

READ (CFILE,KEY=IDENT,ERR=600)
DELETE(CFILE,ERR=850)

600 PRINT %, 'ERROR ON READ'

850 PRINT %, 'ERROR ON DELETE®

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-14. Deleting a Record

DML statements are available to provide for
processing relations. The functions involved in
relation processing are opening and closing the
realms of the relation, positioning a relation
through a start operation, and reading the
relation. Paragraphs that follow describe these
functions and the DML statements that you must
include 1in your program to provide the functions.
First, however, it s necessary to examine the
structure of a relation and the manner in which
€DCS returns records to the program's working
storage area.

STRUCTURE OF A RELATION

A relation can be described as a hierarchical tree
structure. The root of the tree 4is the realm
through which the relation is entered; this is the
first realm Llisted for a relation in the
sub-schema. A data item in the realm at the root
of the structure joins the realm to a common data

item 1in the next realm Llisted for the relation.
When the relation is entered, the value of the data
item in the root realm record leads to a record in
the second realm. More than one record in ths
second realm can contain the same value; thus one
record in the root realm can Llead to several
records in the second realm.

The second realm in the relation can be joined to a
third realm through a common data item. Once
again, a record in the second realm can Llead to
several records in the third realm. This branching
out from the root of the tree continues through
each realm in the relation.

The tree structure of the three-realm relation REL3
of the wuniversity data base is dillustrated in
figure 3-15. The tree structure is normally
pictured upside down, with the root at the top and
branches going down. The first realm, PFILE, which
is the root of the structure, consists of a master
record for each professor. The second realm,
CRSFILE, consists of a master record for each
course, The third realm, CFILE, consists of
curriculum records. The common data item joining
the first and second realms is the professor
identification; the common data item joining the
second and third realms is the course
identification.

Realms in a relation are numbered consecutively as
ranks. The first realm entered (called the root
realm) 1is always assigned rank 1. The rank is
incremented by 1 for each successive realm in the
relation. The value of the rank of a realm
contrasts with the placement of the realm in the
tree structure. The Llower the rank, the higher the
realm is shown in the tree structure; i.e., rank 1
(the lowest rank) 1is shown at the top of the tree
structure. Figure 3-15 also shows ranks in the
relation REL3.

When a relation is read, a record occurrence from
each realm in the relation is returned to the
program. A relationship exits between record occur-
rences in a relation: a parent/child relationship.
A record occurrence that has another record occur-
rence at the next numerically higher rank in the
relation 4is referred to as the parent record

Tree Structure

Root Realm

Realm Name Rank
PFILE Rank 1
CRSFILE Rank 2
CFILE Rank 3

Figure 3-15. Tree Structure and Ranks of a Three-Realm Relation

60483500 A

occurrence. A record occurrence that has another
record occurrence at the next numerically Llower
rank in the relation is referred to as the child
record occurrence. In a parent/child relationship
in relation REL3, a record occurrence in PFILE
would represent the parent with corresponding record
occurrences of CRSFILE representing the children.
Additionally, a record occurrence in CRSFILE would
represent the parent with corresponding record
occurrences in CFILE representing the children.

USING THE SUB-SCHEMA

The structure of a relation is defined when the
schema is created. A relation that is available to
an application program is included in the
sub-schema. The sub-schema Llisting provides the
names of the realms in the relation. A new sample
sub~schema named COMPARE, which makes available a
three-realm relation, is shown in figure 3-16.

The sub-schema Llisting provides the following
information:

® A relation is available to DML because the

RELATION statement is included in the
sub-schema.

® Three schema areas are joined by relation named
REL3. The areas are named PROFESSOR, COURSE,
and CURRICULUM in the schema; they are renamed
as realms PFILE, CRSFILE, and CFILE in the
sub-schema. The order in which the areas
(realms) appear in the Relation Statistics
portion of the Llisting indicates the ranks of
the realms: the first realm Llisted has the
rank 1; the second, rank 2; and so forth.

e PFILE has a primary key named PROFID; CRSFILE
has an alternate key named PROF. Looking at
the Llisting of aliases, you can see these
fields both appear as PROF-ID in the schema.
Obviously these fields represent unique
professor identification and are common to both
realms. You can assume that these items join
the realms . The data administrator, however,
should provide the common data ditems if they
are not obvious and 4if programming con-
siderations require that you know them.

e CRSFILE has a primary key named CRSID; CFILE
has an alternate key named COURSE. Looking at
the Llisting of aliases, you can see these
fields both appear as COURSE-ID in the schema.
Obviously these fields represent unique course
information and are common to both realms. You
can assume that these items join the realms.
The data administrator, however, should provide
the joining data ditems under the conditions
indicated previously.

© A restriction is placed on CRECORD. A relation
occurrence wWill not be returned unless data
item CODE contains the character C. Before a
relation occurrence 1is returned to the pro-
gram's working storage area, CDCS checks for
restrictions and enforces any restrictions.
CDCS allows only qualifying records to be
returned.

3-10

OPENING A RELATION

Before your program can access any data records in
an existing relation, the program must open the
appropriate realms. To open all the realms in a
relation, you can include a relation OPEN statement
in your program. The format is:

OPEN(relation-name [,MODE=mode] [,ERR=s])
where
mode = I (open for input only)

I0 (open for both idnput and output,
called input/output; default)

s = label of an executable statement to
which control transfers on open error

Your program should normally open a relation for
input (MODE=I). The program should open the
relation for input/output (MODE=I0) wunder two
circumstances:

e Processing requirements indicate that the
program should Llock the records to prevent
update during the relation read.

o The program updates individual realms 1in the
relation following the relation read.

If your program is opening a relation in which one
or more realms have controlled access, you must
include in the program a PRIVACY statement for each
realm that has controlled access.

The following statement opens for input the realms
joined in relation REL3, which is shown in sample
sub~schema COMPARE (figure 3-16). iIf an error
occurs on open, program execution continues at
statement 50:

OPEN (REL3,MODE=I ,ERR=50)

If you have included an OPEN statement in your
program for each realm in the relation, you do not
need to include a relation OPEN statement.

CLOSING A RELATION

When your program has completed relation
processing, the program must close the appropriate
realms. To close all the realms of a relation, you
can include a relation CLOSE statement in your
program. The format is:

CLOSE(relation-name [,ERR=s])

where

s = label of an executable statement to which
control transfers on close error

The following statement closes the realms joined in
relation REL3, which is shown in sample sub-schema
COMPARE (figure 3-16). If an error occurs on
close, program execution continues at statement 60:

CLOSE(REL3,ERR=60)

If you dinclude a CLOSE statement in your program
for each realm in the relation, you do not need to
include a relation CLOSE statement.

60483500 A

J)

J)

*k

*%

COMPARE

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
WITHIN PFILE
00026
ORDINAL 1
00027
ORDINAL 2
00028
00029
ORDINAL 3
00030
WITHIN CRSFILE
00031
ORDINAL 1
00032
ORDINAL 2
00033
00034
ORDINAL 3
00035
WITHIN CFILE
00036

00037

ORDINAL

1
ORDINAL 2
00038
ORDINAL 3
00039
ORDINAL 4
00040
00041
ORDINAL 5

00042

PRIMARY KEY 00026
ALTERNATE KEY 00028
PRIMARY KEY 00031
ALTERNATE KEY 00033
PRIMARY KEY 00036
ALTERNATE KEY 00037
ALTERNATE KEY 00040

Fekkokk
deddkokk
dekkhk
00043
00044

* SOURCE LISTING * (80351) DDLF 1.2+538.

SUBSCHEMA COMPARE,SCHEMA=UNIVERSITY

ALIAS(REALM) PFILE=PROFESSOR
ALIAS(RECORD) PRECORD=PROF-REC
ALIAS(ITEM) PROFID=PROF-ID.PROF-REC
ALIASCITEM) PNAME=PROF-NAME

ALIAS(REALM) CRSFILE=COURSE
ALIAS(RECORD) CRSREC=COURSE-REC
ALIASCITEM) CRSID=COURSE-ID.COURSE-REC
ALIAS(ITEM) CRSNAME=COURSE-NAME
ALIAS(ITEM) PROF=PROF-ID.COURSE-REC
ALIAS(ITEM) FIELD=ACADEMIC-FIELD

ALIAS(REALM) CFILE=CURRICULUM
ALIAS(RECORD) CRECORD=CURR-REC
ALIASCITEM) COURSE=COURSE-ID.CURR-REC
ALIASCITEM) CODE=COMPLETE-CODE
ALIAS(ITEM) DATE=COMPLETE-DATE

REALM PFILE

REALM CRSFILE
REALM CFILE

RECORD PRECORD
CHARACTER#8 PROFID
CHARACTER*30 PNAME

CHARACTER#20 FIELD

RECORD CRSREC
CHARACTER*6 CRSID
CHARACTER*20 CRSNAME

CHARACTER*8 PROF

RECORD CRECORD
CHARACTER*14 IDENT
CHARACTER*6 COURSE
CHARACTER*1 CODE
CHARACTER*8 DATE

REAL GRADE

RELATION REL3
PROFID FOR AREA PFILE
FIELD FOR AREA PFILE
CRSID FOR AREA CRSFILE
PROF FOR AREA CRSFILE
IDENT FOR AREA CFILE
COURSE FOR AREA CFILE
GRADE FOR AREA CFILE
RECORD MAPPING IS NOT NEEDED FOR REALM - PFILE
RECORD MAPPING IS NEEDED FOR REALM - CRSFILE
RECORD MAPPING IS NEEDED FOR REALM - CFILE
RESTRICT CRECORD (CODE .EQ. 'C')
END

60483500 A

Figure 3-16. Sub-Schema COMPARE (Sheet 1 of 2)

3-11

RELATION 001 REL3 JOINS

00045
Fkdkk END OF SUB-SCHEMA SOURCE INPUT
dokkdk RELATION STATISTICS dekdkdok

WW

AREA - PFILE
AREA - CRSFILE
AREA - CFILE

Libuany namae SSLIB
Pumey oy "KX99'narced. for. CFILE.

Figure 3-16. Sub-Schema COMPARE (Sheet 2 of 2)

READING A RELATION

To read a relation, you must include a relation
READ statement in your program. The format is:

READ(relation-name [,KEY symbol jtem-namel
r,ERR=s] [END=s])

where
symbol = = .EQ. .6T. .GE.
item~name = primary or alternate key

s = label of an executable statement to
: which control transfers on read
error (ERR)

Label of an executable statement to
which control transfers on
end-of-file (END)

When you omit the KEY option, the read operation is
sequential. When you dinclude the KEY option, the
read operation is random.

The END option is valid only for a sequential read
operation.

Sequential Relation Read

A sequential relation read accesses the relation
occurrence located at the current relation
position. Successive read operations return
relation occurrences by position of the root realm,
which is the first realm Listed for the relation in
the Relation Statistics portion of the sub-schema
listing. Indexed sequential files are sequenced in
ascending primary key order, actual key files are
sequenced by block and record slot within the
block, and direct access files are sequenced by
position in home blocks.

A relation occurrence is composed of record
occurrences. A tree structure of record occur-
rences for relation REL3 is shown in figure 3-17.
Assuming that A1 is the first record in PFILE, the
first and subsequent sequential reads return record

occurrences to the working storage area in the
following order: A1B1C1, A1B1C2, A1B1C3, A1B2C4,
and so forth. When record occurrences in CRSFILE
and CFILE are exhausted, a subsequent sequential
read returns the next record (A2, not shown) in
PFILE and associated records in CRSFILE and CFILE
as the operation repeats.

Typical FORTRAN S statements issued outside of a
data base environment terminate with a fatal error
if EOF is sensed and a test for EOF status is not
included in the FORTRAN READ statement. If EOF
status is not tested in a DML READ statement and
EOF is sensed, program execution continues with the
next statement. Consequently, it is necessary to
test for EOF on a DML sequential read operation.
This can be handled in one of two ways:

® Include the END option cn the READ statement.
When an EOF 1is sensed, program execution
continues at the statement specified in the
option.

e Include a test for an EOF value of 100g in
the data base status block. This option is
described in section 4.

In a program using sample sub-schema COMPARE
(figure 3-16), a sequential read appears as shown
in figure 3-18. If an error occurs on read,
program execution continues at statement 600. The
END option is included on the READ statement to
test for EOF. wWhen EOF 1is reached, program
execution continues at statement 900.

The sequential read returns the first record in
PFILE and the first corresponding record occur-
rences in CRSFILE and in CFILE. Successive reads
return qualifying record occurrences as indicated
in the preceding discussion of the tree structure
of record occurrences. If EOF is sensed on PFILE,
the relation read transfers control to the state-
ment specified by the END option.

Notice the PRIVACY statement. Since CFILE is

joined in the relation and has controlled access,
the privacy key for that realm is required.

60483500 A

J)

J D

PRECORD Record Occurrence
PFILE Realm

CRSREC Record Occurrence

CRSFILE Realm 81
CRECORD Record Occurrence
CFILE Realm

€1 c2 ¢3

C4 C5 C6 C7 (€8 €9 C10 C11 C12

M Rank 1

B3 B4 Rank 2

Rank 3

Figure 3-17. Tree Structure of Record Occurrences

PROGRAM RELMOD

SUBSCHEMA (COMPARE)

INVOKE
PRIVACY(CFILE,MODE=I,PRIVACY="XX99')
OPEN(REL3,MODE=I,ERR=100)

READ (REL3,ERR=600,END=900)

900 CLOSE(REL3)
TERMINATE
END

Figure 3-18. Reading a Relation Sequentially

Random Relation Read

A random relation read accesses a relation
occurrence by the value of a referenced primary or
alternate key. The referenced key must be in the
root realm. For a program wusing the sample
sub-schema COMPARE, the key named in the READ
statement must be associated with PFILE (the root
realm) rather than CRSFILE or CFILE. The program
must set the value of the referenced key before the
READ statement is executed.

In a program using sub-schema COMPARE
(figure 3-16), a random read appears as shown in
figure 3-19, The program sets the primary key
PROFID of PFILE to RSS00860. The random read
returns the record occurrence in PFILE that has
PROFID equal to RSS00860 and the first
corresponding record occurrences in CRSFILE and
CFILE.

Control Break

A control break occurs when a new record occurrence
is read for a parent realm in a relation. Control
break status, however, is returned for the realm of
the child. Therefore, if a realm in a relation has
control break status after execution of a
sequential read, the record occurrence read for
this realm is a child record occurrence for a new
parent record occurrence.

60483500 A

PROGRAM RELMOD

SUBSCHEMA (COMPARE)

INVOKE
PRIVACY(CFILE,MODE=I,PRIVACY="XX99')
OPEN(REL3 ,MODE=I,ERR=100)
PROFID="RSSC0860"'

READ (REL3 ,KEY=PROFID ,ERR=600)

900 CLOSE (REL3)
TERMINATE
END

Figure 3-19. Reading a Relation Randomly

In the example shown in the tree structure of
record occurrences (figure 3-17), control break
occurs when A1 is first read (when A1B1C1 is
returned). In this situation, control break status
is returned for CRSFILE (rank 2) and for CFILE
(rank 3). A control break occurs when B2 is first
read (when A1B2C4 is returned), when B3 is first
read (when A1B3C6 1is returned), and so forth. 1In
these situations, control break status is returned
for CFILE, which is rank 3 of the relation.

The presence of a control break and the rank of the
realm that is the lowest ranked realm with control
break status can be determined by checking the data
base status block. Status checking is described in
section 4.

Null Occurrence

A null occurrence denotes that either no record
occurrence qualifies for a read or that a record
occurrence does not exist at a given Llevel in a
relation.

A read relation operation produces a null
occurrence when one of the following is true:

® A parent record occurrence qualifies for the
read, but no child record occurrence qualifies.

® A parent record occurrence qualifies for the
read, but no child record occurrence exists.

3-13

If a null record occurrence is returned for each
realm in a relation except the root realm, another
READ statement must be executed to obtain the next
set of record occurrences.

A null occurrence consists cf a display code right
bracket (1) 1in each character position of the
record in the working storage area. The presence
of a null occurrence and the lowest rank on which
it occurred can be detected by checking the data
base status block. Status checking is described in
section 4.

Some examples of null record occurrences returned
are shown in figure 3-20. 1In the first example,
the Llowest rank with a null record occurrence is
rank 2. In the second and third examples, the
lowest rank with a null record occurrence is rank 3.

POSITIONING A RELATION
To position a relation for subsequent sequential
read operations, you must include a START statement

in your program. The format is:

START(relation-name [,KEY symbol jtem=~namel
C,ERR=s])

where
symbol = = LEQ. .6T. .GE.

item—-name = primary or alternate key defined in
the root realm

s = Llabel of an executable statement to
which control transfers on start
error

Before the START statement is executed, the realm
must have been opened for input or input/output.

When you omit the KEY option, the relation is
positioned by primary key value of the root realm;
the root realm 1is positioned to the record
occurrence with a primary key value equal to the
current value of the primary key item. When you
include the KEY option, the root realm is
positioned to the first record occurrence with a
matching key value.

In a program using the sample sub-schema COMPARE
(figure 3-16), both forms of the START statement
appear as shown in figure 3-21. If an error occurs
on start, program execution continues at
statement 700.

The first START statement omits the KEY option,
which means the relation ocurrence will be
positioned by the root realm primary key. The
primary key (PROFID) of the root realm is set to
the value MLNOO840 before the START statement is
executed; the relation is positioned to the root
realm record occurrence with the matching primary
key.

The second START statement includes the KEY
option. Alternate key FIELD is set to the value
PSYCHOLOGY. The first record occurrence in PFILE
with an alternate key equal to PSYCHOLOGY is the
one to which root realm PFILE is positioned. The
subsequent sequential reads reference the alternate
key FIELD. These reads return record occurrences
in the root realm in alphabetical order (collating

Record Occurrences in a Relation

Rank 1

Rank 2 81

Rank 3
c1 €2

Program's Working Storage Area

A1 and B2 qualify.

Program's Working Storage Area

Program's Working Storage Area

A1 qualifies, B! and B2 do not qualify.

A1 and B1 qualify, €1, €2, and €3 do not qualify.

sequence order) according to the value of the
alternate key FIELD.
At
B2
A1 11...] 11...]
A B2 1...]
A1 B1 1...]

Figure 3-20. Null Record Occurrence Examples

3-14

60483500 A

J)

J

6@“*

PROGRAM RELMOD

SUBSCHEMA (COMPARE)

INVOKE
PRIVACY(CFILE,MODE=I,PRIVACY="XX99")
OPEN (REL3,MODE=I , ERR=100)
PROFID="MLNC0840"

START (REL3,ERR=700)

READ (REL3,ERR=600,END=900)

.

FIELD="PSYCKOLOGY'
START (REL3,KEY.EQ.FIELD,ERR=700)
READ (REL3, ERR=650 ,END=750)

900 CLOSE(REL3)
TERMINATE
END

Figure 3-21. Positioning a Relation

UPDATING REALMS JOINED IN A
RELATION

Realms joined in a relation can be updated, but
care should be exercised. Related files are joined
in the schema by a common data item to form a
parent/child relationship. The schema contains a
JOIN clause in which a data item in one realm is
equated with an identical data item in another
realm. This common data item is called a join item.

CDCS normally does not monitor update operations
that would alter the underlying relationship
between related files. The exception is when con-
straints have been incorporated in the schema by
the data administrator, as described in section 4.

Assuning constraints are not present, the following
precautions should be noted:

® Modification of join item values can change
parent/child relationships.

e Deletion of parent record occurrences can make
all child record occurrences of the deleted
parent record occurrence inaccessible when a
relation is read.

Important rules to remember for relation update are:

® Always delete a child occurrence before delet-
ing the parent record occurrence.

© Always write the parent record occurrence
before writing a child record occurrence.

e Be aware of file positioning; input/output
operations could alter positions on the files
joined in the relation while within a sequen-
tial read relation Loop.

60483500 B

USING DML TO PROCESS
DATA BASE TRANSACTIONS

Data base transactions can be used when you have
many interrelated updates to perform on one or more
data base files. These updates all need to be
processed and made permanent to ensure the data is
correct before other wusers access the updated
records. A data base transaction is a convenient
way for processing coordinated updates.

A group of updates for which the application pro-
gram specifies the beginning and the completion is
referred to as a data base transaction. At first,
all updates within a data base transaction are
considered temporary. These updates are considered
permanent when the application program specifies
the completion of the data base transaction (called
committing a data base transaction). Figure 3-22
shows the sequence of operations in a data base
transaction.

If an application program does not commit a data
base transaction, but instead drops the data base
transaction or terminates execution, each record
that was updated within the data base transaction
is restored to the state it was in just before the
beginning of the data base transaction, and CDCS
issues an informative diagnostic. There are several
situations in which data base transactions are not
committed. For example, program Llogic can deter-
mine that the data base transaction should not be
committed and can cancel (drop) the data base
transaction. System failure or program failure can
occur during the application program's processing
of the data base transaction. In each of these
situations, updates made within the uncommitted
data base transactions are reversed.

The application program can perform data base
transactions only if transaction recovery files
have been defined for the schema in the master
directory. When a FORTRAN application program
begins a data base transaction, CDCS processes
subsequent update operations by that program in
transaction mode. When processing in transaction
mode, CDCS uses the exclusive record Llocking mech-
anism that prevents other users from accessing
records updated within an uncommitted data base
transaction.

PROCESSING OPERATIONS

FORTRAN DML statements provide for the operations
involved in data base transactions. Three of these
operations, which are directly involved in the
program code dealing with updates, are described in
the following paragraphs.

e Begin a data base transaction

Designates the beginning of a data base
transaction and communicates a transaction
identifier to CDCS. This causes CDCS to
begin processing in transaction mode for
the application program.

3-15 e

PROG A

BEGINTRAN

READ CFILE
REWRITE CFILE

READ SFILE
REWRITE SFILE

READ PFILE
REWRITE PFILE

COMMITTRAN

CFILE

coes SFILE

PFILE

Figure 3-22. Data Base Transaction Flow

e Commit a data base transaction

Designates the end of a data base trans-
action and indicates that the updates
within the data base transaction are to be
committed. This causes all the updates
made within the data base transaction to be
considered permanent.

e Drop a data base transaction

Designates the end of a data base trans-
action and indicates that the updates
already made within the data base trans-
action are to be cancelled. This causes
each record updated within the data base
transaction to be restored to the state it
was 1in just before the beginning of the
data base transaction.

Beginning a Data Base Transaction

To begin a data base transaction, you must use a
BEGINTRAN statement. The format is:

BEGINTRAN (tran—-id [,ERR=s1)
where
tran-id = character constant or variable

s = Label of an executable statement to
which control transfers on begin error

® 3-16

A tran-id can be from 1 through 10 characters in
Llength. If you use a character constant to specify
a tran-id, enclose the character string in apostro-
phes. If you use a variable name to specify a
tran-id, define the variable as- type CHARACTER*10.
Ensure that the tran-id is left-justified and blank
filled in the field of the variable.

Records that are subsequently wupdated remain
exclusively Llocked until the data base transaction
is either completed or dropped. Updates are con-
sidered temporary until the data base transaction
is successfully completed. If your program attempts
to begin a data base transaction when the data ad-
ministrator has not defined a transaction recovery
file for the schema, a fatal error occurs.

Committing a Data Base Transaction

To commit a data base transaction, you must use a
COMMITTRAN statement. The format is:

COMMITTRAN L(,ERR=s)]
where

s = label of an executable statement to which
control transfers on commit error

Execution of this statement causes all updates of
the present data base transaction to become perma-
nent; all record locks are released so that the
records become available for access by other appli-
cation programs (unless a realm Lock applies).

60483500 B

))

J

In a program using sample sub-schema COMPARE (figure
3-16), the BEGINTRAN and COMMITTRAN statements
appear as shown in figure 3-23. The program uses
the BEGINTRAN statement to begin the data base
transaction. The program sets the primary key
PROFID of PFILE to WLSNO855. PFILE is read randomly
and the occurrence of this record is deleted. A
new record is then written to PFILE. The CRSFILE
is read randomly for any occurrence of the deleted
PROF value. Each record with PROF=WLSNO855 is
updated and rewritten with the PROF value of the
new record. After all updates have been performed,

the COMMITTRAN statement is executed and all up-
dates become permanent.

PROGRAM RELMOD
CHARACTER TRANID *10
SUBSCHEMA (COMPARE)
DATA TRANID/'1234567890'/
INVOKE
PRIVACY (PFILE,MODE=I0,PRIVACY='XX99')
OPEN (PFILE ,MODE=10, ERR=600)
OPEN(CRSFILE,MODE=I0,ERR=600)
BEGINTRAN (TRANID,ERR=900)
PROFID='WLSNO855"
READ (PFILE ,KEY=PROFID, ERR=600)
DELETE (PFILE)
PROFID="MRHT1234 "
PNAME="HAUS, M.T.®
FIELD="'CHEMISTRY"
WRITE (PFILE,ERR=600)
D0 400, 11=1,10
PROF='WLSNO855'
READ (CRSF ILE ,KEY=PROF ,END=500,ERR=600)
PROF="MRHT 1234

400 REWRITE (CRSFILE,ERR=600)

500 COMMITTRAN(ERR=600)

900 CLOSE(PFILE)
CLOSE(CRSFILE)
TERMINATE
END

Figure 3-23. Committing a Data Base Transaction

Dropping a Data Base Transaction

To cancel the current data base transaction, you
must use a DROPTRAN statement. The format is:

DROPTRAN L[(,ERR=s)]
where
s = Llabel of an executable statement to which

control transfers on cancel error

Execution of the DROPTRAN statement causes CDCS to
restore the records updated within the data base

60483500 B

transaction to their original states that existed
just before the data base transaction was initiated
and also causes CDCS to release all record locks.

In a program using sample sub—-schema COMPARE (figure
3-16), the BEGINTRAN and DROPTRAN statements appear
as shown in figure 3-24. The program uses the
BEGINTRAN statement to begin the data base transac-
tion. If an error occurs 'in the program, execution
continues at Line 600 and the DROPTRAN statement is
executed, causing the current data base transaction
to be cancelled.

PROGRAM RELMOD

CHARACTER TRANID *10

SUBSCHEMA (COMPARE)

DATA TRANID/'1234567890'/

INVOKE

PRIVACY (PFILE,MODE=10,PRIVACY='XX99"')
OPEN(PFILE ,MODE=10,ERR=600)

OPEN (CRSFILE ,MODE=10,ERR=600)
BEGINTRAN (TRANID,ERR=900)

READ (PFILE ,KEY=PROFID,ERR=600)

WRITE (PFILE ,ERR=600)

600 PRINT#, *TRANSACTION ERROR'
DROPTRAN
900 CLOSE(PFILE)
CLOSE(CRSFILE)
TERMINATE
END

Figure 3-24. Dropping a Data Base Transaction

PROCESSING CONSIDERATIONS

The following rules and considerations apply to
data base transactions:

e Only one data base transaction can be in prog-
ress at a time within a particular application
program. That is, there can be no nesting of
data base transactions.

e The data administrator defines the maximum
number of concurrent data base transactions
allowed for all users of the schema. If this
number is exceeded, CDCS issues a nonfatal
diagnostic. The application program can try
the data base transaction request later.

e File Llocks are not recommended for use with
data base transactions.

3-17 @

USING DML FOR PROGRAM
RESTART '

FORTRAN DML statements provide for the operations
involved in vrestarting programs. The restart
component of data base transactions allows an
application program to determine the point at which
to begin a data base transaction following a system
failure. An application program can determine
whether or not a data base transaction was committed
before the system failed. With this information
available, the program can determine the point at
which to resume a data base transaction.

The application program can perform a restart oper-
ation only if the data administrator has defined
both a transaction recovery file and a restart
identifier file in the schema.

PROCESSING OPERATIONS

The following paragraghs describe the operations
used for program restart if a system failure occurs:

e Obtain a restart identifier

Communicates with CDCS to obtain a restart
identifier for the application program.
The application program must save the
restart identifier for subsequent use in a
restart operation. If program restart
capability is desired, this operation must
be performed before the first data base
transaction is begun.

e Inquire about the status of the Last data base
transaction

Communicates to CDCS a restart identifier
and obtains from CDCS the transaction
identifier for the Last completed data base
transaction associated with that restart
identifier. CDCS then assigns the restart
identifier obtained to the program. This
operation provides for restarting an appli-
cation program. Application program Llogic
then uses the transaction identifier to
determine with which data base transaction
to resume processing. The application
program should contain the logic necessary
to be restartable.

Assigning a Restart Identifier
To obtain the restart identifier assigned to this
program by CDCS, you must use the ASSIGNID state-
ment. The format is:

ASSIGNID (restart-id [,ERR=s1)
where

restart-id = variable

s = Label of an executable statement

to which control transfers on
assign error

e 3-18

A restart-id can be from 1 through 10 characters in
length. A variable name must be used to specify a
restart-id and must be defined as type CHARACTER*10.

The restart identifier obtained by the ASSIGNID
statement can then be used by the FINDTRAN state-
ment; the program can then determine the status of
a data base transaction when a system failure
occurs. The restart identifier should not be saved
on a data base file because it could be lost if
failure occurs. The application program should
contain the Llogic necessary to save the identifier
outside of the program.

ASSIGNID should be specified before any updates are

attempted within a data base transaction. ASSIGNID

must not be specified within a data base trans-

action.

Performing a Restart Operation

To obtain information for a program restart opera-

tion after system failure, you must use the FINDTRAN

statement. This statement is normally issued in

the restart unit of the program. The format is:
FINDTRAN (restart-id, tran-id [,ERR=s])

where

restart-id = character constant or variable

tran-id = variable

s = label of an executable statement
to which control transfers on find
error

Restart-id identifies the 1- through 10-character
restart identifier that was assigned to the program
by the ASSIGNID statement before the system failure.
If you use a character constant to specify restart-
id, enclose the character string in apostrophes.
I1f you use a variable name to specify restart-id,
define the variable as type CHARACTER*10.

Tran-id receives the transaction identifier of the
last completed data base transaction; this identi-
fier is returned only if the application program
had begun a CDCS data base transaction prior to a
system failure. The transaction identifier is not
returned if no data base transaction has been
committed for the specified restart identifier. A
variable name must be used to specify tran-id and
must be defined as type CHARACTER*10.

Tran-id receives the characters #xkkxkkixx (10
asterisks) if the restart identifier is unknown to
CDCS. The restart identifier is unknown to CDCS if
the wrong value is specified for restart-id or if
the pregram terminated normally. If the program
terminated normally, a new restart identifier must
be obtained.

Tran-id receives a value of 10 blanks if the re-
start identifier is known to CDCS but no data base
transaction had been completed prior to the system
failure. The FINDTRAN statement executes normally,
and a new restart identifier does not need to be
obtained. The restart identifier specified as
restart-id is reassigned to the program.

60483500 B

J

J

If a transaction identifier is returned, a new identifier assigned by C(DCS. Include in the job
restart identifier does not need to be obtained. stream the control statements needed to create a
The restart identifier specified as restart-id is file to save the restart identifier in case a

reassigned to the program.

system failure occurs. If the restart option is
chosen, the FINDTRAN statement is executed, and the

In a program using sample sub-schema COMPARE (figure program can determine the status of the data base
3-16), the ASSIGNID and FINDTRAN statements appear transaction when the -system failure occurred. The
as shown in figure 3-25. This program is run file containing the restart identifier must be
interactively, and the user must enter one of the attached in the job stream when the restart option
three options given. If the initial option is is chosen. If the end option is chosen, program
chosen, the ASSIGNID statement obtains the restart execution is terminated.

10

PROGRAM RELMOD
CHARACTER RESTID #*10
CHARACTER TRANID *10
CHARACTER OPTION *7
SUBSCHEMA (COMPARE)
INVOKE
OPEN(2,FILE="RESTART")
PRINT*, "ENTER: INITIAL, RESTART, OR END'
READ*, OPTION
IF (OPTION .EQ. 'INITIAL') THEN
ASSIGNID (RESTID,ERR=50)
WRITE(2,'(A10)*) RESTID
CLOSE(2)
G0 TO 25
ELSE IF (OPTION .EQ. 'END') THEN
60 TO 60
ELSE IF (OPTION .EQ. *RESTART') THEN
READ(2,'(A10)') RESTID
FINDTRAN (RESTID,TRANID,ERR=50)
IF (TRANID .EQ. '#waawkiiax®) THEN
PRINT#, ' RESTART UNSUCCESSFUL OR UNNECESSARY'
G0 TO 60
ELSE

TERMINATE
END

60483500 B

Figure 3-25. Restarting a Data Base Transaction

3-19 @

.\.\
Y
o .
" ' ’
' :
3 - pe ! "
z ,
i L \..
| .
; I
: - i
! = L i
o e oo
. i)
v i3
S .
“ : .
e -
H
P
i
'
' /
i / '
/
'
!
. i)
. i
i
" 1
‘ '
' ! ¢ .
i : .
M
. i

ERROR PROCESSING AND STATUS

HANDLING TECHNIQUES

DMS-170 offers a variety of error and status proc-

essing mechanisms. Each serves a specific purpose
in the operating environment. These mechanisms are
summarized in table 4-1 and detailed in the follow-
ing paragraphs.

USING ERR AND END
PROCESSING OPTIONS

A transfer of control to special processing for
error or end-of-file (EOF) conditions can be speci-
fied in your program. This is accomplished by
including the ERR and END options in the appropri-
ate DML statements.

The ERR option can appear in most statements, as
shown in the formats in section 3. The END option
can appear in the sequential READ statement.

The formats for the ERR and END options are:
ERR=statement-Llabel
END=statement~label
When the ERR or END option is executed, control
transfers to the statement identified by statement-

Llabel. The identified statement must be executable.

Assume an input/output error occurred during execu-
tion of the following statement:

OPEN(FILEX,ERR=50)

Execution of the OPEN statement 1is terminated,
status is set to the appropriate error code as
described later in this section, and program execu-
tion continues at statement 50.

TABLE 4~1. ERROR AND STATUS PROCESSING MECHANISMS

Mechanism befinition Programmer Action
Error Syntax option that passes control to program Include ERR option in appropriate DML
processing logic on an error condition. Control is not statements.
option passed when a CDCS relation condition indi-

cating a null record occurrence or control

break occurs.
End-of-file Syntax option that passes control to program Include END option in appropriate DML
processing Logic on an EOF condition. statements.
option

Status block

An array to which CDCS returns data base
status information.

Include the following operations in the pro-
gram: establishing the data base status
block, calling subroutine DMLDBST once, and
testing the status block contents at appro-
priate points.

Constraint A method of avoiding situations in which Be aware of constraints, and follow the
handling constraints could be violated. rules for modifying the files on which
constraints have been imposed.
Deadlock A method of recovering from a situation in If the program must have simultaneous Llocks
processing which programs are contending for locked on several resources, include a test for
resources. deadlock status and provide program logic
to reestablish any released locks.
Restart A method of allowing an application program Include the ASSIGNID statement and the
processing to determine the point at which to begin FINDTRAN statement in the application pro-
processing following a system or program gram to determine the status of a data base
failure. transaction after a system or program
failure occurs.
Dropping a The capability to cancel a data base trans— Include the DROPTRAN statement in the appli-
data base action. cation program.
trans-
action
60483500 B 4-1

Assume an EOF was sensed during execution of the
following statement:

READ (FILEX,END=75)

Execution of the READ statement is terminated and
execution continues at statement 75.

Several examples of this type of error and end-of-
file processing appear throughout section 3.

ESTABLISHING A DATA
BASE STATUS BLOCK

An array called a data base status block can be
established in your program to receive data base
status information. When the status block is
included in your program, CDCS updates the block
after every operation on a realm or a relation.

TABLE 4-2. STATUS

The minimum length of the data base status block is
one word; the maximum length is 11 words. You can
include some or all of the words for testing pur-
poses. The content of the status block is shown in

table 4-2.
The following rules apply to the status block:
® Only one status block can exist at a time in

the program.

e The status block must .be declared as type
INTEGER.

® The length of the block must be sufficient to
completely include each desired portion of
status information.

BLOCK CONTENT

occurring at the item level.

Word Content Comments
1 The CDCS or CRM octal error code for the Only error codes are returned. Status codes indi~
Last data base operation on a realm or a cating null occurrences or control breaks are not
relation. returned in this word. A zero value indicates no
error occurred. Use 0 format for printing.
2t A sub-schema item ordinal for CDCS errors Item-level errors are associated with data valida-

tion and data base procedures established by the
data administrator in the schema, and with CDCS

record mapping. A zero value indicates no error
occurred. Use I format for printing.

3T A CRM octal code indicating file position

for open, close, read, and start opera-

indicates the file position of the root

of the realm when the last data base oper-
ation was performed. The code is returned

tions. For a relation operation, the code

Code values are:
013 Beginning-of-information.

103 End-of-keylist. The last primary key value
associated with a given alternate key was

during the last data base operation.

realm. returned during a read operation using an
alternate key value.

20g End-of-record. A record was returned during
a read operation.

1003 Eend-of-information. A sequential read
operation was attempted after the previous
operation returned the last record in the
realm.

Use 0 format for printing.

4* The severity of an error that occurred A zero value indicates no error occurred or a non-

fatal error occurred. A value of one indicates a
fatal error occurred. Use 0 or I format for print-
ing.

5 The name of the function being performed
when an error or relation condition oc-
curred; the name is left-justified and
blank filled.

4-2

If no error has occurred, this word contains no
valid information. Use A10 format for printing.

60483500 B

J)

BN

TABLE 4-2. STATUS BLOCK CONTENT (Contd)

Word Content

Comments

6TT The rank of the realm on which a CDCS or

ation. (The ranks of realms joined in a
relation are numbered consecutively, with
the root realm having rank 1.)

CRM error occurred during a relation oper-

A zero value indicates no error occurred. Use
I format for printing.

7TT The Lowest rank on which a control break
occurred during a relation operation.

ALl realms in the relation with a rank greater than
the rank stored in this word also have control
breaks or null status. (Null status overrides
control break status.) A zero value indicates no
control break occurred. Use I format for printing.

occurred; the name is left-justified and
blank filled.

8TT The lowest rank for which there was a ALL realms in the relation with a rank greater than
null rgcord occurrence during a relation the rank stored in this word also have null occur-
operation. rences. A zero value indicates no null occurrence.
Use I format for printing.
9,10,11 The name of the realm on which an error A blank value indicates no error occurred; a blank

value also can indicate the error occurred on an
operation not associated with input/output or
occurred on an input/output operation not explic-
itly requested by the application program. Use A30
format for printing.

THords 2, 3, and 4 are treated as a single unit by CDCS; length must be provided for all three words if
information for any portion of the unit is to be returned.

TTHords 6, 7, and 8 must all be defined to obtain any one word of relation status information.

The following declaration would provide a complete
status block:

INTEGER STATUS(11)
The following declaration would provide a 5-word
status block reflecting all information except that
pertaining to relation processing:
INTEGER STAT(S)
The Ulocation and Llength of the status block are
conveyed to CDCS through a call to the DMLDBST
routine. The routine can be called at any point in
the program after the INVOKE statement. The format
of the call is:
CALL DMLDBST (block-name,length)
where
block-name = name of the status block
length = Length in words of the status block
The following rules apply to the DMLDBST routine:
e The routine needs to be called one time only.
e The call to DMLDBST should appear before the
first DML statement after INVOKE. Positioning
of the DMLDBST call is important because the

call initializes the status block to zeros and
blanks.

60483500 B

e If DMLDBST is called more than once in a pro-
gram, the status block defined in the last call
is the one that is updated by CDCS.

In a program using the sample sub-schema COMPARE
shown in section 3, a data base status block decla-
ration appears as shown in figure 4-1. The formats
for printing the contents of the data base status
block are also shown in the figure.

PROGRAM DBSEXMP

INTEGER STATBLK(11)

SUBSCHEMA (COMPARE)

INVOKE

CALL DMLDBST (STATBLK,11)

PRIVACY (CFILE,MODE=I,PRIVACY="XX99")
OPEN (REL3,MODE=1 , ERR=100)

PFOF ID="MLNG0840'

READ (REL 3, ERR=600, END=900)

600 PRINT *, "ERROR ON READ'
PRINT 700, STATBLK
700 FORMAT (1X, 'STATUS BLOCK' /
1 1X,04,2X,15,2X,03,2X,01,2X,
1 A10,2X,15,2X,15,2X,15,2X,A30)
900 CLOSE (REL3)
TERMINATE
END

Figure 4-1. Establishing a Data Base
Status Block

4-3

ERROR CHECKING

Error checking should be performed after every
operation on realm or relation. Two methods are
available:

e Test the error code in word 1 of the data base
status block after every operation. For
example:

OPEN(CFILE)
IF(STATBLK(1) .NE. O)...

e Include the ERR option on the DML statement as
appropriate and handle status block printing in
one specific section of the program. For
example:

OPEN(CFILE,ERR=50)

50 PRINT 60,STATBLK

STATUS CHECKING

Status checking should be performed as appropriate
during relation processing to determine control
breaks and null occurrences. Testing is performed
on words 7 and 8, respectively, of the data base
status block. (For more information about control
break and null occurrence, see section 3.)

Word 7 indicates the lLowest rank on which a control
break occurred. A nonzero value in this word
indicates a control break. To test for a control
break, you can inctude a test on word 7 in your
program. For example:

READ (CFILE)
IF(STATBLK(?7) .NE. 0)...

Word 8 indicates the Llowest rank for which there
was a null occurrence. A nonzero value in this
word indicates a null occurrence. Since the right
bracket character (1) is stored in a null record,
you would probably want your program to bypass
printing or move spaces to the print line. To test
for a null occurrence, you can include a test on
word 8 in your program. For example:

READ (CFILE)
IF(STATBLK(8) .NE. 0)...

AVOIDING CONSTRAINT
VIOLATIONS

The data administrator incorporates constraints in
the schema for the purpose of protecting interde-
pendent data. Constraints can be defined for two
logically associated items within a single file
(single-file constraint) and for two Llogically
associated items within two files (two-file con-
straint).

Consider an employment file in which each record
occurrence contains an employee number and a man-
ager number, where the manager number conforms to
the structure of the employee number. Figure 4-2
jllustrates this concept. Assume, for example, the
data administrator designed the schema with the
following single-file constraint:

MNGR-NO DEPENDS ON EMP-NO

In this example, MNGR-NO (the dependent item) is
dependent upon EMP-NO (the dominant item). This
means that no occurrence of the dependent record
can exist in the data base unless an occurrence of
the dominant record also exists with the same value
of the associated data item. Also, no dominant
record can be deleted if a dependent record exists
with the same value of the associated data item.

The dominant item in a single-file constraint is
always a primary key or an alternate key with no
duplicates; the dependent item is a primary key or
an alternate key, and the alternate key can have
duplicates. You would violate the constraint pre-
sented in the example if you attempted to do any of
the following:

e Store an employee EMPLOYMENT record if an
EMPLOYMENT record for the referenced manager
does not exist. (An organization could not
recognize a manager who was not first an em-
ployee.)

® Change the value of the dominant item (EMP-NO)
if a corresponding dependent item (MNGR-NO)
exists. (An organization could not change an
employee number as long as references to the
old number existed.)

e Delete a manager EMPLOYMENT record if an em-
ployee EMPLOYMENT record with the corresponding
manager number exists. (An organization could
not remove a manager while an employee was
still reporting to that individual.)

Manager EMPLOYMENT Record

Employee EMPLOYMENT Record

EMP-NO MNGR-NO

(Primary Key) | (Alternate Key) ADDRESS | SALARY >
EMP-NO MNGR-NO

(Primary Key) | (Alternate Key) | ADDRESS | SALARY

Figure 4-2. Single-File Constraint Example

4=4

60483500 B

J)

DD

In a single-file constraint, at Lleast one record
exists that has no dominant record. This situation
occurs in the single-file constraint example for
the employee who has no manager. The record for
this employee must have the same value for both
EMP-NO and MNGR-NO.

If you are creating a file on which a single-file
constraint has been imposed, take the following
steps in the order given:

1. Create the file with record occurrences of the
items that have no dominant record.

2. Close the file.

3. Reopen the file for input/output and add the
record occurrences of the dependent items.
(Ensure that a dominant record occurrence
exists before adding any corresponding depen-
dent item.)

For a situation involving a two-file constraint,
consider a course file and a curriculum file.
Assume that the data administrator designed the
schema with the following two-file constraint:

COURSE-ID OF CURR-REC DEPENDS ON
COURSE-ID OF COURSE-REC

The records of the two files and the data items
associated in the constraint are shown in figure
4-3. CURR-REC (the dependent record) is dependent
upon COURSE~-REC (the dominant record) if there is a
correspondence between them. A correspondence
exists if the dependent record and the dominant
record each contain the same value for the common
item, which is COURSE-ID in this example.

You would violate the constraint presented in the
two-file constraint example if you attempted to do
any of the following:

o Delete a COURSE-REC occurrence if a correspond~
ing CURR-REC occurrence exists. (The university
could not drop a course from 1its curriculum
while a student was still enrolled.)

e Change the COURSE-ID value of a COURSE-REC
occurrence if a corresponding CURR-REC occur-
rence exists. (The university could not change
the identification code of a course as long as
a student's record still uses that code.)

e Add a CURR-REC occurrence if a corresponding
COURSE-REC occurrence does not exist. (A stu-
dent could not be enrolled in a course that was
not being offered by the university.)

If you are modifying the common item of a file on
which a two-file constraint has been imposed and
the common item is a primary key, take the follow-
ing steps in the order given:

1. Write the dominant record with the new value in
the common item.

2. Read a dependent record, and change the value
of the common item to the new value of the dom-
inant record. Rewrite the dependent record.
(Perform this step for each dependent record of
the dominant record.)

3. Delete the dominant record with the old value.

If you are modifying the common item of a file on
which a two-file constraint has been imposed and
the common item is an alternate key, take the fol-
lowing steps in the order given:

1. Mrite each dependent record containing the old
value of the item to a temporary file.

2. Delete each dependent record containing the old
value of the item from the data base.

3. Read the dominant record, and change the value
of the data item to the new value. Rewrite the
dominant record.

4. Read a dependent record from the temporary
file, and change the value of the common item
to the new value of the dominant record. Write
the dependent record to the data base. (Per-
form this step for each dependent record of the
dominant record.)

Since constraints are established in the schema and
not indicated in any way in the sub-schema, it is
the responsibility of the data administrator to
supply you with this information., By being aware
of constraints, you can anticipate violations and
prevent them from occurring in your application
program.

COURSE-REC COURSE-ID | counsE-naMe SCHOOL T erormo

(Course File) (Primary Key)

CURR-REC IDENT _ COURSE-ID

(Curriculum File) (Primary Key) STUDENT=ID | .\ ternate Key) | *=* UNITS :>>

Figure 4-3. Two-File Constraint Example

60483500 B

when a constraint is violated, CDCS aborts the
particular operation, returns a nonfatal 601g
error code, and continues processing. The error
message identifies the record on which the attempted
violation occurred. Whenever you are writing,
deleting, or rewriting a record, the appropriate
data base status block entry should be tested.

Two general rules to remember for constraint proc-
essing are:

e Always delete a dependent record occurrence
before deleting the dominant record occurrence.

e Always write the dominant record occurrence
before writing a dependent record occurrence.

ANTICIPATING DEADLOCK
SITUATIONS

CDCS allows concurrent access to a data base. This
means that two or more application programs can
access the same file (realm) at the same time. The
following can take place:

e Two or more application programs can open the
same file for dinput and perform simultaneous
read operations.

e One application program can open a file for
input/output and perform update operations,
while other programs can open the same file for
input and perform simultaneous read operations.

e Two or more application programs can open the
same file for input/output, but only one pro-
gram can gain immediate access to a particular
record to perform update operations.

The integrity of the data base is maintained through
CDCS locking mechanisms: the record locking mecha-
nism and the file Llocking mechanism. CDCS holds a
lock (either protected or exclusive) for an appli-
cation program and prevents update of the Llocked
file or record by any other program.

Exclusive locking prohibits read and update opera-
tions on the realm. Protected locking prohibits
only update operations (allows read operations).
See the CDCS 2 Application Programming reference
manual for detailed information about locking.

46

Whenever two or more application programs contend
for locked resources, which are files or records, a
deadlock situation can occur. Contention occurs
when two programs, each having at least one resource
locked, attempt to lock a resource that is Llocked
by the other program. Neither program can continue
processing, because neither program can obtain the
necessary locks. CDCS automatically releases the
Llocked resources of one program. The other program
then can obtain the Llocks it requires and can
continue processing.

wWhen CDCS has detected a deadlock situation and has
released the Llocked resources of an application
program, CDCS issues the deadlock error status code
663g to that program. If the application program
established the data base status block, the program
can check the first word for the deadlock code.

If your program must have locks on several re-
sources, your program should always test for dead-
lock status before attempting to update a file. If
deadlock occurs, your program should reestablish
the Llocks that it held before continuing further
processing.

An example illustrating deadlock processing appears
in figure 4-4. Files joined in relation REL3 are
opened for input/output. The program presumably is
reading a record prior to update and CDCS has
locked all records in the reltation occurrence. The
example includes a test of word 1 in the status
block.to enter a loop in case of deadlock. In the
toop, the program attempts to reestablish the Locks
and checks for deadlock.

PROGRAM DEADLCK
INTEGER STATBLK(11)
SUBSCHEMA (COMPARE)
INVOKE
CALL DMLDBST(STATBLK,11)
PRIVACY(CFILE,PRIVACY="XX99"')
OPEN(REL3 ,ERR=100)
PROF1ID="JMS00160"

30 READ(REL3,KEY=PROFID)
IF(STATBLK(1) .EQ. 0"663") GO TO 30

900 CLOSE(REL3)
TERMINATE
END

Figure 4~4. Deadlock Processing

60483500 B

2

TABLE 4-3,

LOCKING OPERATIONS

Operation

Effect

and includes a DML LOCK statement. (This should be
avoided whenever possible.

without including a DML LOCK statement.

out including a DML LOCK statement.

An application program opens a relation for
input /output.

An application program opens a realm for input/output

An application program opens a realm for input/output

An application program opens a realm for output with-

CDCS locks the entire realm against update by other
users. An unlock or close operation by that pro-
gram releases the Llock.

CDCS Locks the record on the read operation. A
rewrite, delete, or another read operation by that
program releases the Llock.

CDCS Locks the entire realm. A close operation by
that program releases the lock.

CDCS Llocks all records in a given relation occur=-
rence. A rewrite or delete operation by the pro-
gram releases the Lock on the record updated. The
next relation read operation by that program re-
leases the record locks on the files for which a
new record has been read.

Whenever two or more application programs contend
for locked resources, which are files or records, a
deadlock situation can occur. Contention occurs
when two programs, each having at Lleast one
resource locked, attempt to lock a resource that is
locked by the other program. Neither program can
continue processing, because neither program can
obtain the necessary locks. CDCS automatically
releases the locked resources of one program. The
other program then can obtain the locks it requires
and can continue processing.

When CDCS has detected a deadlock situation and has
released the Llocked resources of an application
program, CDCS issues the deadlock error status code
663g to that program. If the application program
established the data base status block, the program
can check the first word for the deadlock code.

If your program must have Llocks on several
resources, your program should always test for
deadlock status before attempting to update a
file. If deadlock occurs, your program should
reestablish the locks that it held before
continuing further processing.

An example illustrating deadlock processing appears
in figure 4-5. Files joined in relation REL3 are

60483500 A

PROGRAM DEADLCK
INTEGER STATBLK(11)
SUBSCHEMA (COMPARE)
INVOKE
CALL DMLDBST(STATBLK,11)
PRIVACY(CFILE,PRIVACY="'XX99")
OPEN(REL3 ,ERR=100)
PROFID="JMS00160°*

30 READ(REL3,KEY=PROFID)
IF(STATBLK(1) .EQ. 0"663") GO TO 30

900 CLOSE(REL3)
TERMINATE
END

Figure 4-5. Deadlock Processing

opened for input/output. The program presumably is
reading a record prior to update and CDCS has
locked all records in the relation occurrence. The
example includes a test of word 1 in the status
block to enter a loop in case of deadlock. 1In the
loop, the program attempts to reestablish the Llocks
and checks for deadlock.

DEVELOPING FORTRAN PROGRAMS

FORTRAN application programming in the DMS-170
environment relieves you of several responsi-
bilities. For example:

e You do not have to describe data within your
program; the data administrator incorporates
data descriptions in the schema and sub-schema.
Data descriptions in a sub-schema are included
in your program.

e You do not have to write conversion routines;
CbCS handles all conversion for you.

e You do not have to write all routines that
perform validity checking; the data administra-
tor generates data base procedures, which are
specified in the schema and called at
appropriate times.

e You do not have to write separate logging and
recovery utilities; the data administrator
provides for data base restoration by specify-
ing logging operations in the master directory.

e You do not have to be concerned with the details
of input/output; CDCS handles them.

DEVELOPING AN APPLICATION
PROGRAM

To develop a DMS-170 application program, you must
do the following:

e Obtain a Llisting of the sub-schema from the
data administrator.

e Obtain the name of the sub-schema library from
the data administrator.

e Obtain the appropriate privacy keys from the
data administator.

® Be aware of any constraints that have been
incorporated in the schema.

e Include appropriate DML statements in your
FORTRAN program.

I e Obtain information on whether data base trans-

actions can or should be used.

COMPILING AND EXECUTING
THE SOURCE PROGRAM

To compile and execute a DMS-170 FORTRAN applica-
tion program, you must do the following:

1. Attach the sub-schema Llibrary for DML preproc-
essing of the source program.

2. Include a DML control statement for DML pre-
processing of the source program.

3. Include an FTN5 control statement that speci-
fies the DML output file as the input file for
the FORTRAN 5 compiler.

4. Include an LDSET control statement for Lloading
the system Library for execution of the source
program.

5. Include the name of the file containing the
relocatable binary program (LGO is the default
name) to execute the program.

6. Be sure that CDCS is active or use CDCSBTF
under the direction of the data administrator.

DML statements are preprocessed before source
program compilation. The DML preprocessor tran-
slates the DML statements into appropriate FORTRAN
statements. When translation is complete, the DML
preprocessor writes the FORTRAN source program to
an output file with the default name DMLOUT. This
output file, complete with translated DML state-
ments, becomes the input file to the FORTRAN com-
piler. A block diagram illustrating FORTRAN/DML
preprocessing is shown in figure 5-1.

The DML control statement calls the DML preproc-
essor. A Llist of DML control statement parameters
is shown in figure 5-2.

The statements required to execute the DML preproc-
essor and to compile the source program are shown
in figure 5-3.

The statements required to execute the DML preproc-
essor and to compile and execute the source program
are shown in figure 5-4. An LDSET control state-
ment naming the system Llibrary, OMSLIB, must be
included for program execution.

FORTRAN Source DML
Program Preprocessor
(includes DML (translates
statements) DML statements
to FORTRAN)

DMLOUT FORTRAN

(default

Compi Ler
output file) P

. Figure 5-1. FORTRAN DML Preprocessing

60483500 B

bML(p1,p2,p3,p4,p5,p6,07)

pl SB=Lfn Name of file containing sub-schema T Trivial. The syntax of the usage
Library. is correct, but it is questionable.
S8 Same as SB=SBLFN. W Warning. The syntax is incorrect,
but the processor has been able to
$8=0 Not allowed. recover by making an assumption
about what was intended.
omitted Same as SB=SBLFN.
F Fatal. An error prevents DML from
p2 LV=F5 Specifies FORTRAN 5. processing the statement in which
it occurs. Unresolvable semantic
Lv Same as LV=F5. errors also fall into this
category. Processing continues
omitted Dependent on installation. with the next statement.
p3 I=lfn Name of file containing FORTRAN C Catastrophic. Compilation cannot
source program with added DML continue; however, DML advances to
statements to be preprocessed by DML. the end of the current program
unit and attempts to process the
1 Same as I=COMPILE. next program unit.
omitted Same as I=INPUT. ET Same as ET=F.
1=0 Not allowed. omitted Same as ET=0.
p4 O=Lfn Name of file to which translated ET=0 The job step is not to be aborted
version of FORTRAN source program is even if errors occur (except for
to be written. DML statements control statement errors).
appearing in FORTRAN program are
translated into FORTRAN statements T and W errors do not invalidate the output
before being written to this file. file produced by DML (the file specified by
the 0 option). The translated code on the
0 Same as 0=DMLOUT. file can still be compiled (barring any errors
not related to DML), but the results might not
omitted Same as 0=DMLOUT. be what the user intended. F and C errors,
however, produce an output file that cannot be
0=0 No output is produced. successfully compiled by FORTRAN.
p5 E=lfn Name of file to which error p7 DS Directive suppression. Listing
diagnostics are to be written. control directives are not generated;
all FORTRAN statements generated by
E Same as E=ERRS. DML preprocessing appear in the
FORTRAN source Llisting.
omitted Same as E=QUTPUT.
omitted Listing control directives are
pé ET=op Error termination code. Four Levels generated; FORTRAN statements
of errors are defined; if an error of generated by DML preprocessing of the
the specified level or higher takes SUBSCHEMA and INVOKE statements do
place, the job is aborted to an not appear in the FORTRAN source
EXIT(S) control statement (NOS/BE) or Listing.
EXIT control statement (NOS). The
abort does not take place until DML FORTRAN CALL statements generated as a result
is finished. The possible values for of executable DML statements always appear on
op, in increasing order of severity, the FORTRAN source Listing regardless of DS
are as follows: specification.
Figure 5-2. DML Control Statement
5-2 60483500 A

J

J

J J

ﬂggkstatement

statement

CHARGE statement} . NOS only
ATTACH (sub-schema-Llibrary)

DML (SB=sub—-schema-Library,LV=F5)

FTNS (I=DMLOUT)

End-of-record

FORTRAN source program containing DML statements
End-of-information

Figure 5-3. Executing DML and Compiling
the Source Program

Job statement
USER statement

CHARGE statement } € N0S only
ATTACH (sub-schema-Llibrary)

DML (SB=sub-schema-library,LV=F5}

FTN5 (I=DMLOUT)

LDSET(LIB=DMSLIB)

LGO.

End-of-record

FORTRAN source program containing DML statements
End-of-information

Figure 5-4. Compiling and Executing
the Source Program

SAMPLE PROGRAMS

Sample programs appear in the remainder of this
section. Each program uses the data base environ-
ment that is established and illustrated in appen-
dix C. You should read this appendix to become
familiar with the schema, sub-schemas, and stored
data before examining the FORTRAN programs.

When the DML preprocessor translates DML statements
into FORTRAN statements, the FORTRAN statements can
be printed out or suppressed, depending on the
setting of the DS parameter on the DML control
statement. When the DS parameter is included, all
FORTRAN statements generated by the DML preprocessor

60483500 8

appear in the FORTRAN source LlListing. When the DS
parameter is omitted, Llisting control statements
are generated and inserted immediately after the
SUBSCHEMA and INVOKE statements; therefore, the
FORTRAN statements generated by DML preprocessing
of these statements do not appear in the FORTRAN
source listing.

Listing control directives appear in the sample
program source lListings in the following form:

cs LIST(ALL=0)
cs LIST(ALL)

These directives are generated automatically by the
DML preprocessor. They appear because the DS
parameter in each DML control statement was omitted.
Notice, however, that CALL statements generated as
a result of executable DML statements appear re-
gardless of the DS parameter setting.

Each sample program is illustrated by including the
control statements, the source program statements,
the compilation Listing, and the output of program
execution. The programs are:

Program RATING Figure 5-5
Program INDAVGE Figure 5-6
Program RELATE Figure 5-7

Program CHARGES Figure 5-8
Program ADMIT Figure 5-9

Program TRANPRG Figure 5-10

Program TRANPRG, shown in figure 5-10, is an inter-
active job. The file description and input file
for this program appear as shown in figure 5-11.

The figures show the sample programs (listed above)
being executed when CDCS is active at system con-
trol point. CDCS Batch Test Facility (CDCSBTF) can
also be wused. When using CDCSBTF, replace the
LDSET and the LGO control statements with the fol-
Llowing control statements:

LIBRARY,DMSLIB.
CDCSBTF (LGO/MDPFN=MSTRDIR,UN=xx)

¢ ¢ ¢

(S 4O L 399ys) ONILVY weuBodd °g-g 34nbiLy

pPJ40%94-j0-pugz
aN3
JLYNIWY3IL
(37142)3507 08
[23 (" ¢
/ +SI 39VY¥3AY. ‘XL) LvWY0d (93
IWL0L/S. INI¥d
N / vl0i=1v1i0L 0
08 OL 09
(OEV/X27/SI‘X2/S1/%2/S1/X2/0LY l
“%2721'%2750°X27SI“ X240 XL l
/ 2078 SNLYLS,‘XL) LVW¥O0d 09
N18LYLS‘09 INIY¥d 0s
0z oL 09
3qY¥9 + Tvi0L=TV10L
L+N=N
02 0L 09 (0"0°D3"3aV¥9)iI
(02=0N3“0S=44337142) aV3Y 02
0=1vi0L
O=N
(0S=¥Y3“31149)N3d0
Ci66XX1=AIVAIYd’3ITI4D) AIVATYD
C(LL/YT8LYLS) 1S8aTHa 1TV)
INOANI
(39VY3AY) YWIHISENS
CLNIALYLS ¥39ILINT

“NOILNT0S 3IHL

L1N0 SINI¥d ANV 39V¥3AV IHL SALVINIIVI NIHL WVHO0Ud 3HL
*403 NO 02 IN3W3LVLS OL TOYLINOD SY3JISNVAIL LNIWILVLS Qv3d
WA IHL NO YILIWVY¥VA ON3 3JHL °S3QVY9 INIANLS TV J0 AV
IYIINSNO3S V SWY0J¥3Id WYHS0¥d FHL “TTOOHIS IHL Y03 3IOVHIAAY
JHL SALYINIIVI GNY SIAVED IN3ANLS 1TV SAVIY WVI90¥d STHL

VO OLLLLL O

ONILVY WYY90¥d
welbodd 924n0g

P40%3J-}0-pu3

*097

(8I1SWq=811) 135071
(LNOTWA=I)SNLd
(S4=A1791155=8S) TWd
(BINSS)HIVLLY
juswajels JOYVHI
juswalels yasn
juswajels qor

sjuawaiels 10J43u0)

=

60483500 A

54

(€ 40 2 193ys) ONILVY WeaBoud °g-g aJnbiry

5

aN3 16

GN3TWA T2 06

3LYNIWY3L P 68

(1L000” LO00480)S1IIWA TV¥I 08 88

(31142)35073 »x 28

CLoy4xi l 98

/ +SI 39VY3IAV, ‘XL) LVWyod S S8

IL0L/SL ANT¥d 48

N / Y104=1V10L 0L £8

08 oL 09 28

(0EV/X27SI“X27S1/%X27SI’X2/0LY i L8

‘X2721/X2/£0°%2/S1/X2/ 90X\ L 08

/ M3078 SNLYLS,‘XL) LVWNO4 09 62

A18LY1S‘09 LNIY¥d 0s 82

02 oL 09 7

3QYY9 + WL0L=VIOL 9

L+N=N s

02 OL 09 (0°0°B3"3aV¥9)4dI 92

¢ 02+ 0S+*‘17L7100071000480)q¥Wa T1IVI 02 €
(02=GN3/0S=4¥33114)) av3y ' 22

0="1vi0lL ")

0=N 0L

¢ 0S+/0IHZ/1000”1000480)NdOTWA 1IVI 69
(0S=¥Y¥3/I1T4IINII0 »» 89

G w’u w’u 66XX1’ 1090+ 29
71000701 L)AYCIHG 1IVD 99

C166XX 1 =AIVAT¥AIT1T49) AJVATYd »x 59

CLLYMT18LYLS) LSEATWG T1IVD 49

€1 L20L90EYL9LE0LEYLSSE007 HOL+ €9

HOLY 39VY¥3AVHOL1000484“ LOCO) ANITWE 1Y) 29

CVILSIT % L9

€0=17W) 1511 $) 25

INOANI ¥ 9s

QW LS $ ss

(0=1TV) 1811 $) 2l

(39VY¥IAY) YWIHISENS P L

CLL)XELYLS ¥39ALNI oL

b 6

"NOILNT0S 3HL 3 8

1IN0 SLNIY¥D GNY 3OV¥IAV IFHL SILVINITWI NIHL WY¥O0Ud 3HL I L
*403 NO 02 LN3W3LVLS OL TO¥INOD SHIJISNVNL INIWILVLS Qv3¥ 2 9
WG 3HL NO ¥3L3IWV¥Vd GN3 IHL °S3IAVHS LN3GNLS 1Y 40 avy3y) S
IVILNING3S V SWNOJ¥3d WY¥SO¥d IHL °7JOOHIS IHL ¥O3 39VH3AV I Y
3HL SILYINITYI ONY SIAYYD INIANLS TV SAVIN WYN90¥d SIHL I €
2 2
ONILVY WV¥90¥d L

8ES+L°S NLJ 0=Ld0 9LL/92 ONILYY WvN90dd

uL3sSLy uot3e) 1duo)

60483500 A

6““‘
C@“hv

¢ ¢

(£ 30 € 393ys) ONILVY wedboud

*g-g 84nbiL4

@\)

60483500 B

SAN0J3S 6£0°0

9°¢
SI 39VY3AV

UoLIN%9x3 weabodq wodd Inding

IWIL 31IdW0I

%2082 = 800409 qa3sn 39VI0LS WIS
§S = a9 HLON3T NOWWOI 4371738V WIS
9L = 8222 HLON3T L1INN-WYY90Yd
==SJILSILVLiS-~
0 8s ONILVY
===S9YV--SSIUAAY---AWVYN-
(V=01)--SLINIOd A¥LN3I~--
88 899 08 6L LViWy0d a0Ll 09
1] 1vwyod aiel LT 8L 89s 0s
€8 819 0L 172 a0y 02
430---~S31143d0Y¥d--~-~-SSIYGAV-138Y1- 343¢----$31143d0Y¥d-----$S3¥QQV-138V 1~
(¥=07)--S7138Y7T LN3WILVLIS--
JISNIYLINI l JIY¥aAN39 4207 aNILNoYEns 9 ANITWA
3aNILNoY¥ENs 9 QyTWa 3aNILno¥ENS 0 IN3TWa
INILROYENS 8 AY¥dIKa INILNOY¥ENS 2 1580744
INILNOYENS Y NdOTha 3aNILNOY¥ENS 2 ST1ITWa
SSYT1) SOYY========3dALl-———~=IWVN- SSV1) SOYY-~-=~===3dAL-—-~-=TWVYN-
(¥=01)--$3UNAII0¥d—-~
L YI93IINI 8502 M8Lvls
w3 galLee wiol Y3D3LINI 8022 N
L L»dYH) /1000847 8L 1N3ANLS Y1L¥¥VHI Av3 /1000847 €0 IN30I
3y /vvL0004/ €0 ELVE L ERETL S /0000847 8L aInyed
2 Y393INI /00008a/ 809 Locoleq l Y393INI /00008a/ €0l 1s873¥ad
Y393INI /0000847 8%l Lo00sed Y Y3I9JINI /0000847 €0 Wv3y¥ed
Y393INI /00008a/ 8¢ ivisad L*¥VHD Ab3 /100084/ 80 L00018¢
€ Y393INI /000084/ 8% WYNJSEd 11 Y393INI /00008d/7 asl 1000480
€ 43931NI /00008a/ 8Ll L000yaa 9*YVHI /10008407 82 ERY P
321 §--~—=====3dAl~=——===§311¥3d0¥d-----)I0T18--5SIHYAAY~~~TWVN- 3718 3dAL $31143d0¥d~-~~-N30718--SSIYAQY--~IWVN-

(V=0T) —-dVW ITBYI¥VA--

5-6

Control Statements for Interactive Job

ATTACH (FTNRUN)

ATTACH (SSLIB)

DML (SB=SSLIB,LV=F5,I=FTNRUN)
FTNS(I=DMLOUT)

ATTACH (INTRAN)

FILE (INTRAN,RT=Z,BT=()

LDSET (LIB=DMSLIB)

LGO.

End-of-record

Source Program
PROGRAM TRANPRG

THIS PROGRAM DEMONSTRATES THE USE OF TRANSACTIONS AND
PROGRAM RESTART. FIRST THE PROGRAM DETERMINES IF THE
RUN IS AN INITIAL RUN OR A RESTART OPERATION BY
REQUESTING INPUT FROM A TERMINAL.

THEN THE PROGRAM READS TRANSACTIONS FROM FILE INTRAN
(SHOWN IN FIGURE 5-11), BEGINS TRANSACTION
PROCESSING, AND UPDATES TWO REALMS: SFILE AND CFILE.

DURING RESTART PROCESSING, THE PROGRAM POSITIONS FILE
INTRAN BY READING AND DISGARDING RECORDS THAT WERE
SUCCESSFULLY PROCESSED BEFORE THE FAILURE.

OO OO0

INTEGER STATBLK(11)
CHARACTER RESTID %10
CHARACTER TRANID *10
CHARACTER INID *10
CHARACTER INSTID *11
CHARACTER INMJR *20
CHARACTER OPTION *7
fﬁmh’ SUBSCHEMA (RELATION)
DATA TRANID/'0000000000*/
INVOKE
CALL DMLDBST(STATBLK,11)
OPEN(5,FILE="INTRAN',STATUS="0LD' ,ACCESS="SEQUENTIAL')
OPEN (2 ,FILE="RESTART")
10 PRINT*, ' ENTER: INITIAL, RESTART, OR END'
READ*, OPTION
IF (OPTION .EQ. '"INITIAL') THEN
ASSIGNID (RESTID,ERR=50)
WRITE(2,'(A10)*) RESTID
CLOSE (2)
G0 TO 25
ELSE If (OPTION .EQ. 'RESTART') THEN
READ (2,'(A10) ') RESTID
FINDTRAN (RESTID,TRANID,ERR=50)
IF (TRANID .EQ, "#akkadkan®') THEN
PRINT*, ' RESTART UNSUCCESSFUL OR UNNECESSARY'
GO TO 60
ELSE
15 READ (5,*,ERR=60,END=60) INID,INSTID,INMJR, NUM
D0 20 II=1,NUM
20 READ (5,%,ERR=60,END=60) IDENT,COURS,GRADE,
1 CODE,DATE,UNITS
IF (INID .EQ. TRANID) THEN
GO TO 25
ELSE
GO0 TO 15
END IF
END IF

Figure 5-10. Program TRANPRG (Sheet 1 of S)

(". 60483500 8 5-23 o

[z Xz Nsal

25

[z XN el

30

a0

45
50

55

60

90
92
98

ELSE IF (OPTION .EQ. 'END') THEN
GO TO 60

ELSE
G0 TO 10

END IF

BEGIN DATA BASE PROCESSING

PRIVACY (CFILE,PRIVACY="XX99')

OPEN (SFILE,MODE=10,ERR=50)
OPEN (CFILE,MODE=I10,ERR=50)

MAIN LOOP BEGINS. THIS READS AND PROCESSES FILE INTRAN.

20 35 J4=1,9999

READ (5,%,ERR=45,END=55) TRANID, INSTID,INMJR,NUM

BEGINTRAN (TRANID,ERR=45)

STID=INSTID

READ (SFILE,KEY=STID,ERR=45)

INMJR=MAJOR

REWRITE (SFILE,ERR=45)

CSTID=STID

00 30, II=1,NUM

READ (5,%,ERR=45,END=45) IDENT,COURS,GRADE,
CODE,DATE ,UNITS

WRITE (CFILE,ERR=45)

COMMITTRAN (ERR=45)

MAIN LOOP ENDS.

PRINT*, ' TRANSACTION ERROR, TRANID = ', TRANID
PRINT 98, STATBLK(1),STATBLK(2),STATBLK(3)
DROPTRAN

PRINT*, 'DATA BASE PROCESSING COMPLETED'
CLOSE (SFILE)

CLOSE (CFILE)

TERMINATE

CLOSE (5,STATUS='DELETE')

FORMAT (A10,A11,A20,11)

FORMAT (A14,A6,F3.1,A1,A8,11)

FORMAT (1X,'STATUS BLOCK'/1X,04,2X,15,2X,A10)
END

End-of-Record

Compilation Listing

PROGRAM TRANPRG 74/74 OPT=0

-
OVOONOVMIITWN-=

— ol b o)
VI WN

PROGRAM TRANPRG

RUN IS AN INITIAL RUN OR A RESTART OPERATION BY
REQUESTING INPUT FROM A TERMINAL.

(SHOWN IN THE PRECEDING FIGURE), BEGINS TRANSACTION

INTRAN BY READING AND DISGARDING RECORDS THAT WERE
SUCCESSFULLY PROCESSED BEFORE THE FAILURE.

OO0 O

THIS PROGRAM DEMONSTRATES THE USE OF TRANSACTIONS AND
PROGRAM RESTART. FIRST THE PROGRAM DETERMINES IF THE

THEN THE PROGRAM READS TRANSACTIONS FROM FILE INTRAN

PROCESSING, AND UPDATES TWO REALMS: SFILE AND CFILE.

DURING RESTART PROCESSING, THE PROGRAM POSITIONS FILE

® 5-24

Figure 5-10. Program TRANPRG (Sheet 2 of 5)

60483500 B

J)

D)

16
17
18
19
20
21
22
23
24

12

113

114

115

125

126

127

128

129

130

131

132

133

134

135

136

<@5“‘ 137
. 138

139

140

14

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

cs
cs

cs$
cs

Kk

c
c
c
dek

%k

*

*
[
c
c

10

15
20

25

INTEGER STATBLK(11)
CHARACTER RESTID *10
CHARACTER TRANID *10
CHARACTER INID #10
CHARACTER INSTID *11
CHARACTER INMJR #20
CHARACTER OPTION *7
SUBSCHEMA (RELATION)
LISTCALL=0)
LIST(ALL)
DATA TRANID/'00000000CO" /
INVOKE
LIST(ALL=0)
LIST(ALL)
CALL DMLINV(0CO02,0BFD001, 10HRELATION ,10H
+10H ,0"76710464332261536703")
CALL DMLDBST (STATBLK,11)
OPEN (5,FILE="INTRAN',STATUS="0LD" ,ACCESS="SEQUENTIAL")
OPEN (2, F ILES"RESTART*)
PRINT*, ' ENTER: INITIAL, RESTART, OR END'
READ*, OPTION
IF (OPTION .EQ. 'INITIAL') THEN
ASSIGNID (RESTID,ERR=50)
CALL DMLGTID(RESTID ,*50)
WRITE(2,'(A10)') RESTID
CLOSE (2)
G0 TO 25
ELSE IF (OPTION .EQ. 'RESTART') THEN
READ(2,°(A10)') RESTID
FINDTRAN (RESTID,TRANID,ERR=50)
CALL DMLFIND(RESTID ,TRANID ,*50)
IF (TRANID .EQ. “#kmkrskkax') THEN
PRINT*, ' RESTART UNSUCCESSFUL OR UNNECESSARY'

G0 TO 60
ELSE
READ (5,%,ERR=60,END=60) INID,INSTID,INMJR,NUM
00 20 II=1,NUM
READ (5,%,ERR=60,END=60) IDENT,COURS,GRADE,
X CODE,DATE, UNITS
IF (INID .EQ. TRANID) THEN
60 TO 25
ELSE
60 TO 15
END IF
END IF
ELSE IF (OPTION .EQ. 'END') THEN
60 TO 60
ELSE
60 TO 10
END IF

BEGIN DATA BASE PROCESSING

PRIVACY (CFILE,PRIVACY='XX99')
CALL DMLPRV(1,1,0,0002,
+o"60ll’llxx99 '.,'l ll’ll ll)
OPEN (SFILE,MODE=I0,ERR=50)

CALL DMLOPN (DBFO001,0001,2HI0,*50)

OPEN (CFILE,MODE=I0,ERR=50)

MAIN LOOP BEGINS. THIS READS AND PROCESSES FILE INTRAN.

CALL DMLOPN (DBF0002,0002,2HI0,*50)
b0 35 44=1,9999
READ (5,*,ERR=45,END=55) TRANID, INSTID,INMJR,NUM
BEGINTRAN (TRANID,ERR=45)
CALL DMLBEG(TRANID S45)
STID=INSTID
READ (SFILE,KEY=STID,ERR=45)
CALL DMLRDK (pBFO0001,0001,00001,0001,1,0011,0,0000,00,
+STID %45) '

60483500 B

Figure 5-10.

Program TRANPRG (Sheet 3 of 5)

5-25 @

183

184 *%

185
186
187
188
189
150
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

*&

30

[z Nz Xa ik

35
45

50
*ok

55

*%
*d

*k
60

90
92
98

INMJR=MAJOR

REWRITE (SFILE,ERR=45)

CALL DMLREW(DBF0001,0,0001,00001,%45)
CSTID=STID

0 30, II=1,NUM

READ (5,%,ERR=45,END=45) IDENT,COURS,GRADE,
X CODE , DATE ,UNITS
WRITE (CFILE,ERR=45)

CALL DMLWRT (DBF0002,0,0002,00001,%45)
COMMITTRAN (ERR=45)

MAIN LOOP ENDS.

CALL DMLCMT (%45)

PRINT*, ' TRANSACTION ERROR, TRANID = ', TRANID
PRINT 98, STATBLK(1),STATBLK(2),STATBLK(3)
DROPTRAN

CALL DMLDRP

PRINT*, 'DATA BASE PROCESSING COMPLETED'
CLOSE (SFILE)

CALL DMLCLS (DBF0001,0001)

CLOSE (CFILE)

CALL DMLCLS (DBF0002,0002)

TERMINATE

CALL DMLEND

CLOSE (5,STATUS='DELETE')

FORMAT (A10,A11,A20,11)

FORMAT (A14,A6,F3.1,A1,A8,11)

FORMAT (1X,'STATUS BLOCK'/1X,04,2X,15,2X,A10)
END

—VARIABLE MAP—(LO=A)

~NAME~~~ADDRESS~~BLOCK~-~~~PROPERTIES TYPE SI1ZE
CODE 08 /p0002AB/ CHAR*1

COURS 28 /080002/ CHAR*6

CSTID 18 /pB0002/ CHAR*11

DATE 08 /p0002AB/ CHAR*8

DBAGCDO1 7068 INTEGER 3
DBFO001 168 /pB00CO/ INTEGER 35
0BF0002 678 /pB0COO/ INTEGER 35
pBI0001 08 /pB0001/ EQV CHAR*1

0810002 08 /pB0002/ EQV CHAR*1

DBNO0OO1 1348 /pB0O0CO/ INTEGER 3
DBREALM 08 /bB000O/ INTEGER 3
DBRELST 108 /pB0000/ INTEGER 2
DBRUID 78 /bB0CCO/ INTEGER

DBRO001 128 /pB0OCO/ INTEGER 3
DBRCD02 638 /pBCOCOD/ INTEGER 3
DBSCNAM 48 /pB00CO/ INTEGER 3
DBSTAT 38 /pB0C0O/ INTEGER

0BS5S 0001 158 /pBC00O/ INTEGER

pBS0002 668 /pB0000/ INTEGER

DBT0001 618 /bB0000/ INTEGER 2
DBT0002 1328 /DBO00D/ INTEGER 2
GRADE 08 /p0002AA/ REAL

IDENT 08 /pB0C02/ EQV CHAR™ 4

I1 7128 INTEGER

INID 7008 CHAR*10

INMJR 7038 CHAR*20

INSTID 7018 CHAR*11

JJ 7148 INTEGER

MAJOR 18 /080001/ CHAR*20

NUM 7118 INTEGER

OPTION 7058 CHAR*7

RESTID 6768 CHAR*10

STATBLK 6638 INTEGER 1"
STID 08 /psB0001/ EQV CHAR*11

TRANID 6778 CHAR*10

WNITS 08 /p0002AC/ INTEGER

® 5-26

Figure 5-10. Program TRANPRG (Sheet 4 of 5)

J)

J)

—PROCEDURES -~ (LO=A)

=-NAME TYPE ARGS CLASS
DMLBEG 2 SUBROUTINE
DMLCLS 2 SUBROUT INE
DML CMT 1 SUBROUTINE
DMLDBST 2 SUBROUT INE
DML DRP 0 SUBROUTINE
DMLEND 0 SUBROUT INE
DMLFIND 3 SUBROUTINE
DMLGTID 2 SUBROUT INE
DMLINV 6 SUBROUTINE
DMLOPN 4 SUBROUT INE
DMLPRV 8 SUBROUTINE
DMLRDK 1 SUBROUT INE
DMLREW 5 SUBROUTINE
DMLWRT 5 SUBROUT INE
LOCF GENERIC 1 INTRINSIC

—STATEMENT LABELS—— (LO=A)
~LABEL -ADDRESS-----PROPERT IES——~~DEF

10 468 131
15 1128 147
20 INACTIVE DO-TERM 149
25 1468 166
30 INACTIVE DO-TERM 191
35 INACTIVE DO-TERM 196
45 2558 197
50 2578 198
55 2638 20
60 2718 207
90 3458 FORMAT 209
92 3508 FORMAT 210
98 3548 FORMAT 211

> ==ENTRY POINTS—(LO=A)
=NAME—-ADDRESS——ARGS ~-~

TRANPRG 5B 0
==1/0 UNITS— (LO=A)
~NAME=~~ PROPERTIES-~=========—m

TAPE2 AUX/FMT/SEQ
TAPES AUX/FMT/SEQ

--STATISTICS—
PROGRAM-UNIT LENGTH 7178 = 463
CM LABELLED COMMON LENGTH 1528 = 106
CM STORAGE USED 63600B = 26496
COMPILE TIME 0.185 SECONDS

Qutput and Interactive Response From Program Execution

ENTER: INITIAL, RESTART, OR END
? 'initial'
DATA BASE PROCESSING COMPLETED

60483500 B

Figure 5-10. Program TRANPRG (Sheet S of 5)

5-27 @

File Description With Corresponding Read Statements

A group of data items occuring NUM times

TRANID INSTID INMJR NUM IDENT COURS GRADE CODE
(CHAR 10)| (CHAR 11)] (CHAR 20)| CINT 1) | (CHAR 14)] (CHAR 6) | (REAL 3) | (CHAR 1)

DATE
(CHAR 8)

UNITS
(INT 1)

READ (5,*,ERR=45,END=55)
TRANID,INSTID,INMJR, NUM

READ (S,*,ERR=45,END=45)
IDENT,COURS ,GRADE , CODE, DATE ,UNITS

Data

'AG00000001* *100-22-5860' 'PSYCHOLOGY' 3
1100-22-5860-05"' °'PSY136' 4.0 'c' '9/30/80'
'100-22-5860-06"' 'BUSCO1' 3.0 'C' '9/30/80'
'100-22-5860-07* 'PSY003' 3.5 'C' *9/30/80'
'AQ00000002' '122-13-6704' 'BUSINESS' 2
1422-13-6704-03" 'BUS017' 4.0 'C' '9/30/80'
1122-13-6705-04" 'PSYC003' 3.0 'C' '9/30/80°*
'A000000003' *687-14-2100" 'BIOLOG' 2
1687-14-2100-05"' 'PSY002' 4.0 'C' '9/30/80"
'687-14-2100-06" 'BUSO17' 3.5 'C' '9/30/80'

W W W W (T RV RV

e 5-28

Figure 5-11. Input File INTRAN and File Description for Program TRANPRG

60483500 B

J D

(% 40 | 393Yg) 3IDAVANI weuBoud *9-g 3J4nbij4

U.__Oub.._luro...v:w
an3
JLYNIWY3L
(37142738012 00L
(0EV/X27SI“X27SI/X27SI‘X20LY l
IX2721°%X27€07%27S17X27 490" XL L
/ 43078 SNLVLS,“XL) lVW¥O4 09
A1ELVLS“09 LNI¥d 0s
13714 INANI ALdWI, “* INI¥d oy
00L oL 09
0L 01 09 (.ON: “B3° TYNIJ)JI o€
(L°94XE7 LIV X6700,) LVWHO4 se
IYL0L741I410 ‘52 LNI¥d
N / viol=104
0€ 01 09 (0 "®3" N)4I
4I0N3
02 0L 09 (4IQI0 °®3" LN3IANLS) 3T
35713
1S3A=TYNIA
N3HL (,00L,0 °B3* (£)N18LYL1S)4I
(0S=¥¥3731142)av3y
4IaN3
3aVY9+IYL0L=VLOL
L+N=N
N3HL (0°L °39° 3avy9)dI 02
1N3ANLS=01Q10
0°0=1v10L
0=N oL
0% 01 09 (,00LuO0 *B3" (£)N18LYLS)AI
(0S=¥¥337149) av3y
(0S=¥¥3/31149)N3dO0
C166XXs=AIVATHA/IT1T4D) AIVATYY
(LL318LYL1S) 1SBATWA 1TV
INOANT
10N, =TYNIA
(39VHIAY) YWIHISENS
L1*dIQ70 YILIVAVHI
€¥TYNI4 ¥ILIVUVHD
C(LLIXIBLYLS ¥I9IUNI

7 PJ0234~40-puz
“403 ¥04 SMNIIHD N14LVLIS JO QNOM 3 097
QY¥IHL 3HL ONILS3L “03SN3S ST 403 ITLINN 3T1I4 3IHL Qv3¥ 9 (8I71SWa=8I1)13541
OL SINNTINOD NIHL “39VNIAV 3IHL SINI¥d GNV SALYINYYIY D (1107 Wa=I) SNLJ
WYH90¥d JHL “SIONVHI QI INIANLS 3JHL NIHM -qI IN3aNnLs 3 (S4=A1/81155=8S) Wa
1SY¥I4 3HL S3AVS QVIY LSHUIJ 3HL °“SIOVAIAV WNAIAIANI) (8ITSS)HIVLILY
SILVINITIYY ANV S3AV¥D LIN3ANLS TV SAY3Y WVHO0¥d SIHL 3 Juawalels JOYVYHI
o] juswalels y3asn
JOAVANI WY¥90ud juswajeys qor

Weabodg @dJnog S3UsW9IEs 10J3U0)

60483500 A

¢ €

¢ ¢

(% 40 2 333Y8) 3IOAVANI wesboug *9-g aunbLy

¢ ¢

N /7 WL0L=1V1I0L L6
0g 0L 09 (D °*®3" N)4I 06
41aN3 68
02 0L 09 (4IQ10 °"®3" LN3ANLS)3I 88
3573 28
1S3A,=TUNTA 98
NIHL (,00L.0 *B3" (£INTIBLYLS) 3T 1]
¢ 0S*70“1/1000“100048G) Q¥ TWA 11V2 8
(0S=¥¥3731142)qV3y xx €8
41aN3 28
3AYH9+IVLOL="IVLI0L 18
L+N=N 08
NIHL (0°L “39° 3Qv¥9)dI 02 62
IN3ANLS=41410 8.
0°0="1v10L ”
=N oL 9L
0% 0L 09 (.00LLO °B3" (£INIBLYLIS) AT s
(0S*/0”171000”10004€0) Q4 IHA TV 23
(0S=¥¥3731142)av3y xx €L
(0$*“0IHZ2’ L1000’ 1000484Q)NOTWA 1TVD 2L
(0S=¥Y¥3737142)N3d0 x y)
A: :\- :\: Qoxx:\-oo-o*. ON
‘100070717 1L)YA¥dIKG TTIVD 69
~ C166XX1=AIVATYd 21149) AIVAT Y ™ 89
CLL/W18LY1S) 158G WA TIVD 29
(u120L90£7L92£0LEY LSSEn0” HOL+ 99
HOLY 39V¥3AVHOL/L0004807LOCOYANITING 1Y) s9
1V LSIT $ %9
(C=1I LSTN %2 09
INOANI P 6S
+ON.=TYNIZ 8s
(1Y) Ls1I % V14
(0=1TV) LSIN $9 7
(39YY3AY) YWIHISENS P €L
L1*QIQT70 Y3LIVUVHD 2L
S¥YNIJ ¥ILIVHVHI L
CLLINI8LYLS ¥39ILNI oL
5 6
°403 ¥04 SNI3IH) W1ELVLS 30 Q¥OM 3 8
GYIHL 3HL ONILS3L °"43SN3IS SI 403 TILNN 3174 3IHL QVI¥ D 2
Ol S3NNILNOD NIHL “39VY¥3AY 3HL SININ GNV SILVINDTIVI I 9
WYYO0¥d JHL “SIONVHI 4I LN3IANLS 3HL NIHM “aI IN3ANLS 2 4
L1S¥TI4 3JHL SIAVS QV3¥ LSUT4 IHL °SIOVY3AV TYNAIAIANI I Y
S3LYINDTIVI GNY SIAVHO INIANLS TV SAVIY WY¥O0¥d SIHL 2 €
i) 2
FOAVANI WV390ud i
8ES+L"6 Nid 0=1d0 92L/92 39AVANI WYY¥S0Yd

Bur3siy uolie]tduo)

60483500 A

5-8

5-9

(%7 30 ¢ 3133ys) 3IOAVANI weusBoud *9-g a4nbLg
20L ayeL ool %6 asiLL o€
86 LviWyod 8is1 09 €6 Lywyod avsi g2
26 azel 0s 6l ass 02
96 802l oY 9L 80s oL
430--~-$311Y4340¥d----~8S3¥AQY-138Y 1~ 430----$311Y43d0Yd-----$S3YAQY-138Y 1~
(¥=01)--$138Y71 LNIW3LVLS-~
JISNIYLNI L JIY¥3IN39 4901 aNILNoYENS 9 ANITWG
3NILnOYENS 9 ay¥ua 3ANILNOYENS 0 aN3THa
3INILNOY¥ENS 8 A¥dIKa 3NI1NOYENS r4 188077Wa
3INILNOY¥ENS v NdOWa aNILNOYENS 2 $12TWa
$SY1) SOYY=——————-3dALl-=====TUYN~ SSY1) SOYY~-—~=====3dAL-~~=--FWYN-
(¥=071)--S34NA3)08d-~
¥3I93INI /0000847 841 1000584
Tv3Y 802¢ wioL ¥3934NI /000084/ 8¢ 1vissaq
LL¥¥VHI /1000807 81 IN3aNLS € ¥393LNI /000084/ &% WYNJISaa
L ¥393UNI aL0g daLvLs € ¥393UNI /0000847 8LL 1000¥%8a
L L*dYHD asi¢ a1a10 ¥3934NI /0000847 €2 q1n¥80
¥3931NI 8llg N L ¥393LINI 1000080/ 80L 18713480
4 14YHD AD3 /100084/ €0 LN301 € ¥393INI /000084/ €0 Wlvayaa
SVEL /¥v¥L000d/ €0 3qvyo L¥¥VHI AD3 /1000807 80 1000180
S*YYH) ayls TYNIJ cs ¥393.INI /0000807 8sL 10004940
2 ¥393INI 7000080/ €09 L00oLEd 9xYVYH) /100080/ @82 asyno?
3718 3dAL $3114340Y¥d ¥20718--5SIYAQY-~-WYN~ 3218 3dAL $311¥3d0Yd~----%I018--SSIHAQY-~~TWYN~
(¥=01)~-dVW 378VI¥VA--
aN3 SoL
AN3TKG 1Y) 0L
JLYNIWN3L e €01
(L00071000480)S1271Wa 1¥d 00l 2ot
(37149)38010 ** 1oL
(OEV’X2/ST/X2/S1/X2“S1/X2’0LY L ooL
IX27217%X27507X2/S1/X27%07 XL L 66
/ 320718 SNLVLS,“XL) lyvwyod 09 86
¥1aLVLS‘09 INIYd 0s 26
«3714 INANI ALdW3: ‘% INI¥d oY 96
00L OL 09 (13
OlL 0L 09 (,ON. "®3" TWNIJ)4I ot %6
L 94/XE7LLYX67100) LYWYOS (4 €6
W10L/QI0T0 “S2 LNI¥d 26

60483500 A

ﬂ_

(Y 40 9 J004S) FVAVANI weuBoug

*9=¢ 04nBig4

$QN0J3S 260°0

Y2082 = 600409
§§ = B9
602 = @i2g

6°¢ 00l2-Y1-289
0% i1-21-829
8°c 1202-68-£5S
s°s 092£-4%-02L
£°€ £968-95~2£Y
9°€ o%i2-L1-261
8°¢ 0825-2¢~%21
0°y 9029-¢1~221
138 0928-%%-021
s°t 098s-22-00L

UO[3NJaX3 WEJBOJg Woa§ IndIng

IWIL IIdN0D
43asn 39VY0LS WIS

HAON3T NOWWOJ 03717138Y1 WIS
HIONTT LINN-WVY¥S0¥d

==SJILSILIVLS-~

0 8s JOAVANI

—==$9YY-~$SIYAQY~~~IWVN-
(¥=071)--SINIOd AYIN3--

60483500 A

5-10

(% 30 | 393ys) 3LVT3Y WesBodd *z-G 34nbiy

pPJ40984~40-pug
an3
ILYNIWY3IL
(113¥)35071) 0L
(0EV/X27S1/X2/51/X2/S1/X2‘0LY L
“X2721°%27€07X2/S1/X27 907 X1 L
/ 330718 SNLYLS.‘XL) LyWyod 09
A18LYLS/09 INI¥d 0s
SL oL 09
02 0L 09 (0"3IN"(2)N18LVLIS)4I
(02=0AN3‘0S=¥4371134) av3y s2
(L°934XE7LLY/X6/0HL) LVWYOA 02
3QVY¥9/qILS) ‘02 INI¥d St
0L 0L 09 C(CLCCCCCCLCE. *®3"AaN3AVS) AT
QILS=AINIAYS
(0S=¥¥370ILS=A3N’ L 13¥)QV3IY oL
10926-9Y~02} ¢=4Q1LS
(0S=¥¥3/ 1 13¥)NIJO
C166XXe=AIVAIYA/I1T4I) AIVAT N
- (LL/38LYLS) 1S8a WA TTVI
INOANI
(NOILY13¥) YW3HISENS
LL*AINIAYS ¥ILIVHVHI
(LL)X18LYLS ¥393UINI

“)Y3¥E T0YLINOI ¥0J LS3L V A8 A3IM0TTTI04 TVILNIND3S

SI 4v3¥ dANOJ3S 3HL °Q¥0I3¥ 1NN ¥0d4 1S3L V A8 43IMO0T104
WOONYY ST Qv3Y LSYId 3IHL “09.£-9%-02l QI LIN3ANLS

H0d S3IAVYO SINIY¥d GNV NOILYI3Y A8 SAVIY WVYO0Yd SIHL

Voo O

ALVIIY WYY¥SoUd
weJbold 93Jnos

pJ0234-}0-pu3g

*091

(8I7SWA=8I1) 13807
(1NOTWA=T)SNLS
(S4=A178115S=6S)Wa
(8I1SS)HOVLLY
JUBWaIRIS JOYVH)
juswoiels ¥asn
juawalels qop

sjusawalels 10J43U0)

5-11

60483500 A

a ¢

(7 30 2 3193Y§) 31V13Y wedboud =)-¢ aunbLy

¢ C

an3 8¢l
ANITWG 1Y) 281
JLYNIWYIL = 9fL
(1000vEa“ LOCONSQ) ¥S12Wd 11V2 0 sl
(113Y¥)3S0 ¥ Y€1
(OEY/X2/ST’X2751/%X27S1/X2/0LV L g€l
IX2721°X2/£07X2’/S1’ X2 %0‘X1 L 2gl
/ 43078 SNLYLS,.“XL) LvWyod 09 Ll
M8LYLS‘09 INI¥d 0s o€l
SL oL 09 62l
0L OL 09 (0°3N"(2)N18LViS)4I 821
¢ 02+’ 0S*‘L717100071L00ONSA) THIWG 1Y) s2 221
(0=AN3“0S=443/ L13¥) av3y - 92l
L 94/<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>