
60497700

DATA
CORPORATION

PASCAL
VERSION 1
REFERENCE MANUAL

CDC® OPERATING SYSTEM:
NOS 2

REVISION RECORD

Revision Description

01 (12/01/82) Preliminary release at PSR level 580.

REVISION LETTERS I, 0, Q, AND X ARE NOT USED Address comments concerning this manual to:

©COPYRIGHT CONTROL DATA CORPORATION 1982
All Rights Reserved
Printed in the United States of America

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the back of this manual

ii 60497700 01

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page is affected. A bar by the page number

indicates pagination rather than content has changed.

Page Revision

Front Cover
Title Page

01
iii/iv 01
v/vi 01
vii/viii 01
ix 01
1-1 01
2-1 thru 2-4 01
3-1 thru 3-21 01
4-1 thru 4-24 01
5-1 thru 5-10 01
6-1 thru 6-7 01
A-1 thru A-3 01
B-1 thru B-3 01
C-1 01
Index-1 01
Index-2 01
Comment Sheet 01
Mailer
Back Cover

60497700 01 iti/iv

PREFACE

This manual describes the CONTROL DATA® Pascal Version 1 language. It is intended to be used as
a reference, not as a tutorial for users who are unfamiliar with a version of Pascal.

Pascal Version 1 is available under control of the NOS 2 operating system on the CDC®CYBER 170
Series; CYBER 70 Models 71, 72, 73, and 74; and 6000 Series Computer Systems.

This manual is based on the RECAU Pascal Manual (RECAU-80-117-M, revision C 801001, edition
October 1980) and has been published with the written consent of RECAU, Jorgen Staunstrup, and
Ewald Skov Jensen.

This release of the Pascal compiler does not fully comply with International Standard
Organization standard Pascal. You can expect to make substantial changes to your compilation
control statement and source code once the compiler is released under the ISO standard.

This manual is organized in the following manner:

Section 1 provides an overview of Pascal Version 1 language concepts.

Section 2 contains the basic elements that describe the Pascal Version 1 language.

Section 3 describes the program heading and the declaration and definition of data using the
language elements from section 2.

Section 4 describes the statements that manipulate the declared and defined data from
section 3.

Section 5 describes the statements that compile, load, and execute a Pascal program under the
NOS 2 operating system.

Section 6 shows some complete Pascal programs.

Appendix A describes available character sets.

Appendix B describes compilation error messages.

Appendix C, lists the reserved words.

Related material is contained in the NOS Version 2 Reference Set Volume 3, System Commands,
publication number 60459680.

60497700 01 v/vi

CONTENTS

NOTATIONS ix CASE Statement 4-7
Jumps 4-8

Labeled Statement 4-8
1. LANGUAGE CONCEPTS 1-1 COTO Statement 4-9

Routines 4-9
Actual Parameters 4-10

2. PASCAL SYMBOLS 2-1 Binding a Value 4-10
Binding a Variable 4-11

Identifiers 2-1 Binding a Procedure or Function 4-11
Reserved Symbols 2-2 Dynamic Parameters 4-11
Literals 2-2 File Parameters 4-12

Integer Literal 2-2 Packed Parameters 4-12
Real Literal 2-3 Predefined Routines 4-12
Character Literal 2-3 Files 4-16
String Literal 2-4 Textfiles 4-18
Boolean Literal 2-4 Predefined Textfiles INPUT and OUTPUT 4-22

Separators 2-4 Segmented Files 4-23
Comment 2-4
Nonprinting Symbols 2-4

5. COMPILING, LOADING, AND EXECUTING 5-1

3. PROGRAM HEADING AND DECLARATION AND Organization of a Compiled Program 5-1
DEFINITION PARTS 3-1 Compiling a Program 5-3

Overview of the Runtime System 5-7
Program Heading Part 3-1 Loading and Executing a Program 5-B
Declaration and Definition Part 3-1 Understanding Runtime Error Messages 5-9

Label Section 3-2 FORTRAN and Pascal Incompatibilities 5-10
Const Section 3-2
Type Section 3-3

Simple Types 3-4 6. SAMPLE PROGRAMS 6-1
Structured Types 3-8
Pointer Types 3-15
Type Compatibility 3-16

Var Section 3-16
Value Section 3-17 APPENDIXES
Routines Section 3-19

Formal Parameters 3-20 A Character Sets A-1
Blocks 3-20 B Compilation Error Messages B-1
Scope Rules 3-21 C Reserved Symbols C-1

4. STATEMENT PART 4-1

INDEX
Expressions 4-1
Assignment Statement 4-3
IF Statement 4-4
WITH Statement 4-5 TABLES
WHILE Statement 4-6
REPEAT Statement 4-6 5-1 Corresponding Pascal and FORTRAN
FOR Statement 4-6 Routine Parameter Types 5-10

60497700 01 vii/viii

NOTATIONS

Certain notations are used throughout the manual with consistant meaning. These notations are:

indicates the permissible direction of traversal.

0

UPPERCASE

contains a reserved symbol in a syntax diagram. Alphabetic characters must

appear in uppercase in your source code. A complete list of reserved symbols

can be found in appendix C.

contains the general name of a construct that you must define; refer to the
description of the named item for definition rules.

indicates a reserved symbol in the text. Alphabetic characters must appear in
uppercase in your source code. A complete list of reserved words can be found
in appendix C.

. or . . . indicates statements that are not shown and are not
relevant to the example.

All program statements in this manual are shown in the internal Pascal character set
representation. You can translate special characters into the character set used at your site by
referring to appendix A, Character Sets.

60497700 01 ix

LANGUAGE CONCEPTS

A Pascal program consists of three parts:

Program heading

Declarations and definitions

Statements

The program heading part names the program and lists the parameters that are used in the program.

The declarations and definitions part describes the data objects that are to be manipulated.
This part contains the following sections:

Label declarations

Constant definitions

Type definitions

Variable declarations

Value declarations

Procedure and function declarations

The statements part defines the flow of program execution and manipulates the declared and
defined data objects.

60497700 01 1-1

PASCAL SYMBOLS

A Pascal program consists of a sequence of the Pascal symbols that are described in this section.

The set of symbols is divided into four categories: identifiers, reserved symbols, literals, and

separators.

IDENTIFIERS
Identifiers are names that denote quantities that you have declared, such as constants, types,
variables, values, procedures, and functions. An identifier must begin with a letter followed by
any combination of letters and digits.

identifier

Letter

digit

-1.4 letter

A letter must be in the set:

{A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z}

A digit must be in the set:

{0,1,2,3,4,5,6,7,8,9}

A number of identifiers are reserved symbols that cannot be used in other contexts. You can find
a list of reserved words in appendix C.

A number of identifiers have a predefined meaning. Predefined identifiers are not reserved
symbols and can be redefined.

Identifiers can be arbitrarily long, however, only the first 10 characters are significant.
Identifiers that denote distinct objects must differ in their first 10 characters.

The following are examples of legal, illegal, and predefined identifiers:

Legal

SUITS
DAY
NO1

Illegal

lA
ASPACE
SALES TAX

Predefined

INTEGER
REAL
TEXT

(Where A is au embedded space.)

60497700 01 2-1

RESERVED SYMBOLS

Reserved symbols are symbols that are defined within the Pascal language to have a distinct

meaning. This meaning cannot be changed.

You can find a list of reserved symbols in appendix C.

LITERALS
Literals denote values. There are five kinds of literals: integer, real, character, string, and

Boolean.

INTEGER LITERAL

An integer literal is a decimal or octal integer.

integer literal

 decimal integer

--Pi octal integer

decimal integer

digit

octal integer

 ►4 digit

The digits in an octal integer must all be less than 8.

The following are examples of an integer literal:

-714
777B

2-2 60497700 01

REAL LITERAL

A real literal is a real number with an optional scale factor.

real literal

real number

L I scale factor part 1- 1

decimal integer I scale factor part 1- 1

real number

decimal inte•e

scale factor part

scale factor

 e• scale factor

decimal integer

The following are examples of a real literal:

3.14
0.314E1
314E-2

CHARACTER LITERAL

 P.

A character literal is a character enclosed by single quote (') symbols.

char literal

character

The following are examples of a character literal:

'C'
'+'

Note that inside a character literal a single quote (') symbol is denoted by two quote (n)
symbols.

60497700 01 2-3

STRING LITERAL

A string literal is a sequence of characters enclosed by single quote (') symbols.

string literal

The following are examples of a string literal:

'EQUALS'
'flLOOKIIKE'n

Note that inside a string literal a single quote (') symbol is denoted by a two quote ('')
symbols.

BOOLEAN LITERAL

A Boolean literal is one of the predefined identifiers TRUE and FALSE.

boolean literal

 (true)) f

 Kfalse

SEPARATORS
A separator is a comment or nonprinting symbol. A separator can occur between any pair of
consecutive Pascal symbols. A separator may appear between any pair of consecutive identifiers
or literals. A separator cannot occur within a reserved symbol, identifier, or literal.

COMMENT

A comment is a string of explanatory text. You can improve the readability of your program by
adding comments, without affecting the results produced by the program.

comment

`--1 end

character

of Ltne:*-----f

If the first character after the (* is a dollar sign ($), the comment is interpreted as a list of
compiler options. See section 5 for a description of available compiler options.

NONPRINTING SYMBOLS

Nonprinting symbols are the space and the end-of-line.

2-4 60497700 01

PROGRAM HEADING AND
DECLARATION AND DEFINITION PARTS

A Pascal program must contain a program heading part, a declaration and definition part, and a
statement part. This section describes the program heading part and the declaration and
definition of data using the Pascal symbols described in section 2. Section 4 describes the
statement part.

PROGRAM HEADING PART
The program heading part names the program and lists the files that are used in the program.

program loading

program identifier

external files

 eri identifier

file name

file name

identifier

 ,G)

 P.

The files denoted by file names must be declared as file variables in the statement part of your
program, with the exceptions of INPUT and OUTPUT.

If the predefined files INPUT and OUTPUT are to be used as segmented files, a plus sign (+) must
follow their names in the program heading.

If a file is to be used interactively, a slash (/) must follow the file name in the program
heading.

Kinds of files and how to manipulate them are described under the heading Files in section 4.

DECLARATION AND DEFINITION PART
The declaration and definition part describes the data that will be manipulated in the statements
part. Seven sections can appear in this part, although any of them may be empty. The section
headings are: label, const, type, var, value, procedure, and function. The description of the
procedure and function sections is combined under the heading Routines.

60497700 01 3-1

LABEL SECTION

The label declaration section consists of a number of definitions of nonnegative numbers that are

used as statement labels.

You must declare all labels in the label declaration part of the routine or program where it is

defined.

Label declaration part

Label

digit

Labels follow the same rules of scope as other quantities, which is that they can only be used in
the program or routine in which they are declared.

Two labels that denote the same number are considered identical.

The following is an example of a label declaration section:

LABEL
100, 200;

A label is defined in the statement part of your program by prefixing a statement with the label
and a colon (:). For example,

100 : A := SUCC(THURBDAY);

The statement after the colon (:) cannot be a labeled statement.

You can define a label that is referenced by a GOTO only once in the compound statement of the

program or routine where it is declared. For example, the statement

GOTO 200

can only appear once in the path of execution taken by your program.

CONST SECTION

The constant definition section consists of a number of definitions of constant identifiers.

Each definition introduces an identifier as a synonym for the value of a literal or as a synonym

for an enumeration constant from a scalar type.

3-2 60497700 01

constant definition part

—eo(coast constant identifier

constant identifier

constant

constant

identifier

 ► constant identifier

enumeration constant

integer Literal

real Literal

char Literal

string literal

 11. boolean literal

The following is an example of a constant definition part:

CONST
UPPERLIMIT= 100;
HEADING = 'TABLE PROGRAM N = 100';

TYPE SECTION

The type declaration section defines sets of values that can be assumed by variables and
expressions (operands) of that type. There are three kinds of types: simple, structured, and
pointer.

type definition part

type identifier

type identifier

EMI

type

identifier

 1, 1 simple type

 4 structured type

pint er type

type identifier

60497700 01 3-3

The following is an example of a type definition section:

TYPE
SUITS = (CLUB,DIAMOND,HEART,SPADE);
DAYS = (MONDAY,TUESDAY,WEDNESDAY,THURSDAY,
FRIDAY, SATURDAY,SUNDAY);
WEEKEND = FRIDAY..SUNDAY;
MONTHS = (JANUARY,FEBRUARY,MARCH,APRIL,MAY,JUNE,JULY,AUGUST,
SEPTEMBER,OCTOBER,NOVEMBER,DECEMBER);
SEASONS = (WINTER,SPRING,SUMMER,AUTUMN);
COLORS = (BLACK,RED);

Given the above type definition section, the following relations are true:

DIAMOND <= HEART
MONDAY < SUNDAY
DECEMBER)= APRIL
WEDNESDAY = SUCC(TUESDAY)
NOVEMBER = PRED(DECEMBER)

The following relations are all false:

CLUB >= DIAMOND
JANUARY = FEBRUARY
SUCC(NOVEMBER) = OCTOBER

The following expressions have undefined values:

SUCC(SPADE)
PRED(MONDAY)
SUCC(DECEMBER)

You can also define new data types in the type definition section.

In a type identifier type definition, the new type identifier takes the same type as the old type
identifier.

Simple Types

There are six data types that are called simple types: Boolean, char, integer, real, scalar, and
subrange.

simple type

enumeration type

real

The following operators apply to operands of simple type and yield a Boolean result:

<> The operands are evaluated, then the resulting values are compared. The outcome is true
if the resulting values are not equal and false if they are equal.

The operands are evaluated, then the resulting values are compared. The outcome is true
if the resulting values are equal and false if they are not.

Five of the simple types are also called enumeration types because they consist of a finite,
totally ordered, set of values.

3-4 60497700 01

enumeration type

char

bootean

integer

scalar type

subrange type

The following operators apply to operands
type and yield a Boolean result:

C>

Boolean

Less than
Less than or equal to
Equal to
Not equal to
Greater than
Greater than or equal to

The type Boolean is

of enumeration type; they take operands of compatible

a predefined enumeration type. Its values are true and false.

The following operators apply to operands of type Boolean and yield a Boolean result:

Operator

AND

OR

NOT

Description of Operation

Logical conjunction of the two operands.

Logical disjunction of the two operands.

Logical negation of the operand.

The following shows the value of some Boolean expressions:

Expression Result Expression Result

TRUE AND TRUE TRUE TRUE OR TRUE TRUE
TRUE AND FALSE FALSE TRUE OR FALSE TRUE
FALSE AND TRUE FALSE FALSE OR TRUE TRUE
FALSE AND FALSE FALSE FALSE OR FALSE FALSE

NOT TRUE FALSE
NOT FALSE TRUE

TRUE C TRUE FALSE TRUE <= TRUE TRUE
TRUE < FALSE FALSE TRUE <= FALSE FALSE
FALSE < TRUE TRUE FALSE <= TRUE TRUE
FALSE < FALSE FALSE FALSE C= FALSE TRUE

TRUE = TRUE TRUE TRUE >= TRUE TRUE
TRUE = FALSE FALSE TRUE >= FALSE TRUE
FALSE = TRUE FALSE FALSE >= TRUE FALSE
FALSE = FALSE TRUE FALSE >= FALSE TRUE

TRUE <> TRUE FALSE
TRUE C> FALSE TRUE
FALSE <> TRUE TRUE
FALSE <> FALSE FALSE

The value of TRUE is greater than the value of FALSE.

60497700 01 3-5

Char

The type char is a predefined enumeration type. Its values are the character set used at your

site. Appendix A shows the translations between Pascal characters and CDC Scientific and CDC

ASCII character sets.

The characters in any character set are numbered; the ordinal number of a character can be

obtained from
character

the following Pascal character table by adding the row and column number for the

in question. The ordering of the character is defined by their ordinal values.

0 1 2 3 4 5 6 7 8 9

0 A B C D E F G H I

10 J K L M N 0 P Q R S
20 T U V W X Y Z O 1 2
30 3 4 5 6 7 8 9 + - *
40 / () $ = # [
50] 1 & Y <
60

The identifier COL is a predefined constant of type CHAR:

ORD(COL)=51

The identifier PER is a predefined constant of type CHAR:

ORD(PER)=47

You can produce the table with the following program:

PROGRAM TABLE(OUTPUT);
VAR
— CHARACTER: CHAR;
BEGIN

WRITELN(' 0 1 2 3 4 5 6 7 8 9');
WRITE(0:3,":3);
FOR CHARACTER := 'A' TO ';' DO

BEGIN
IF ORD(CHARACTER) MOD 10 = 0 THEN

BEGIN
WRITELN;
WRITE(ORD(CHARACTER):3)

END;
WRITE(CHARACTER:3)

END;
WRITELN;
WRITELN

END.

This statement will always be true for any two characters Cl and C2:

(C1 < C2) = (ORD(C1) < (ORD(C2))

3-6 60497700 01

Integer

The type integer is a predefined enumeration type. Its values are the finite set
[-248+1..248-1]. Actually, integers in the range [-299+1..299-1] can be stored, but the
only operations that are executed correctly in this range are: addition, subtraction, taking the
absolute value, comparisons, and multiplication and division by certain constants. These
constants must be either a power of two or the sum or difference of two powers of two.

The following operators apply to operands of type integer and yield an integer result:

Operator Description of Operation

Integer addition of the values of the two operands.

Monadic plus (redundant).

Integer subtraction of the value of the right operand from the value of the
left operand.

Monadic minus; negation.

*

DIV

MOD

Real

Integer multiplication of the values of the two operands.

The value of the left operand is divided by the value of the right operand.
The result is the quotient truncated (not rounded) to integer.

A MOD B is defined as: A - ((A DIV B) * B).

The type real is a predefined enumeration type. Its values consist of a finite subset of real
numbers in the range [-10322..- 10-294, 0, 10-294..10322]. A value of type real is
represented in the CDC floating point format: the mantissa has 48 bits and a sign and the
exponent has 11 bits. Therefore, there are at least 14 significant decimal digits.

Real data types are ordered according to the natural ordering of real numbers.

The following operators apply to operands of type real:

Operator Description of Operation

Floating point addition of the values of the two operands.

Monadic plus (redundant).

Floating point subtraction of the value of the right operand from the value of
the left operand.

Monadic minus.

Floating point multiplication of the values of the two operands.

Floating point division of the value of the left operand by the value of the
right operand.

The Boolean result is true if the specified relation holds between the two
operands, otherwise it is false.

O

60497700 01 3-7

Scalar

The type scalar is defined by listing all the enumeration constants (all the possible values) in
increasing order as a list of identifiers.

scalar type

-KB enumeration cons ant i-- 1—PC ►

enumeration constant

Subrange

 identifier

An enumeration type can also be defined as a subrange of another enumeration type by specifying
its minimum and maximum values separated by a double period (..).

subrange type

min bound

bound -00----101 max bound

max bound

constant

cons ant

The min bound must not exceed the max bound and they must be of the same enumeration type.

Structured Types

A structured type is a composition of simple types. The definition of a structured type
specifies the structuring method and the component types.

There are four kinds of structured types: array, file, record, and set.

structured type

set type

ite type

 . b array type I

----101 record type I-----'

3-8 60497700 01

Array

An array consists of a fixed number of components that all have the same type. The number of
components is specified by an enumeration type, which is called the index type.

array type

index type

0

component type

component typ

 ge. enumeration type

type

The index type is static and cannot be varied dynamically. This implies that the index type must
be known at the compilation time.

A shorthand notation for the type

ARRAY[T1] OF ARRAY[T2] OF T3

is the notation

ARRAY[T1,T2] OF T3

This is called a multi-dimensional array. The number of index types is called the dimension of
the array. The array with index type T2 is called the innermost array.

You can use arrays either whole or component wise. A whole array is selected by its array
variable. A component of an array is selected by the array variable followed by an index
enclosed in brackets. The total number of index expressions must not exceed the dimension of the
array. Furthermore, the value of each index expression must be an enumeration type that is
compatible with the corresponding index type.

indexed variable

arra variable

array variable

index

411

 • variable

index

expression

The notations NAME[A1][A2] and NAME[A1,A2] can be used interchangeably.

60497700 01 3-9

The following are examples of array declarations:

TYPE
HOURS = 8..16;
MATRIX = ARRAY[1..N,1..N] OF REAL; (* N IS AN INTEGER CONSTANT

COUNTER = OF INTEGER;
NAMEOFDAY = ARRAY[DAYS] OF ALFA;
OCCUPIED = ARRAY[DAYS,HOURS] OF BOOLEAN;

VAR
A,B,C : MATRIX;

The following statements show array denotations:

*)

A := B; (* THE ENTIRE MATRIX B IS COPIED INTO A *)

C[I] := A[I]; (* ONE ROW OF A IS COPIED INTO THE CORRESPONDING ROW IN C *)
C[I,J] := A[K,L]; (* ONE COMPONENT OF A IS COPIED INTO ONE COMPONENT OF C *)
OCCUPIED[WEDNESDAY,9] := TRUE;
OCCUPIED[FRIDAY,15] := FALSE;

The following statements initialize B to the identity matrix:

FOR I := 1 TO N DO
BEGIN

FOR J := 1 TO N DO
B[I,J] := 0;

B[I,I] := 1
END;

These statements provide an alternate way of initializing B to the identity matrix:

FOR J := 1 TO N DO
B[1][J] := 0;

FOR I := 2 TO N DO
B[I] :7-TRW;

FOR I := 1 TONDO

B[I,I] := 1;

File

The declaration of a file variable introduces a file buffer to the component type. The file
buffer is denoted by the file variable followed by an arrow (t).

file type

`(segmented

 Mile of) type

3-10 60497700 01

The file buffer can be considered a window through which components can be inspected (read) or

new components can be appended (written). A file position is implicitly associated with this

window (the file buffer). The window is moved by certain file operations. It is, however, not

possible to alternate between reading and writing a file; a file can be either read or written.

file buffer

0 file variable

file variable

variable

The sequential processing and the existence of a file buffer suggests that files are associated
with secondary storage and peripherals. Exactly how the components are allocated varies.
Usually only a few components are present in primary storage at a time and only the component
denoted by the file buffer is accessible.

A special mark is placed after the last component of the file. This mark is called the
end-of-file mark (EUF).

Record

A record consists of a fixed number of components called fields. A field identifier and type
must be specified for each field.

record type

field list

fused party

71171r111

fired part

variant part

eld %dent,. ier

A record can be divided into a fixed part and a variant part, either or both of these parts may
be empty.

60497700 01 3-11

variant part

ta ield

variant

tag field

TN taq field identifier

tag field identifier

tag field type

pe identifier

aq field type

variant

—Pi case label list

mpe identifier

0

A field list can have a number of variants. In this case, you can designate a tag field that
contains a value that indicates which variant is assumed by the field list at a given time. The
tag field may be empty.

The tag field type must be an enumeration type. Each variant must be labeled with one or more
constants whose type is compatible with the tag field type. All labels must be distinct.

Records can either be used as a whole or as a component. A component of a record is selected by
the record variable, followed by the field identifier of the component, separated by a period.

The following lines show examples of record types.

TYPE
CARDTYPE = (NORMAL,WILD);
COMPLEX = RECORD

R,I : REAL
END;

DATE = RECORD
ORDINAL : 1..31;
DAY : DAYS;
MONTH : MONTHS;
YEAR : 1900..2000

END;
PLAYINGCARD = RECORD

CASE T : CARDTYPE OF
NORMAL : (SUIT : SUITS;
RANK : 2..14);
WILD : (FACE : (BLANK,JOKER))

END;

3-12 60497700 01

If you assume the following declarations,

VAR
S,X,Y : COMPLEX;
HAND : ARRAY[1..13] OF PLAYINGCARD;

then the following are examples of record denotations:

S.R := X.R + Y.R; (* THE REAL COMPONENT OF S BECOMES THE SUM OF THE REAL PARTS OF X AND Y *)

HAND[1].T := NORMAL;
HAND[1].SUIT := CLUB;
HAND[1].RANK := 8; '
HAND[2].T := WILD;
HAND[2].FACE := JOKER;

Note that the tag field is used as any other field is.

Set

A set type consists of the set of all subsets of some enumeration type.

set type

of}-04 base type I-P-

hase type

enumeration type

The ordinal number of the largest element must not exceed 58 and the ordinal number of the
smallest element must not be negative. It follows that a set type can contain at most 59
elements.

set value

element

expression

4-01 expression, b----00 0 expression,

A set value denotes a set consisting of the expression values. The form [M..N] denotes the set
of all elements i of the base type such that M <= I <= N. If M> N then [M..N] denotes the empty
set. The set expressions must all be of compatible enumeration types. The empty set is denoted
[] and is compatible with any set type.

60497700 01 3-13

An example of a set type, assume A and B are of type T and T is a set type, then the following
expression is true:

(A - B) + (B - A) =A+B-A* B

A

- B c*D
B-)

If you assume the following declarations,

TYPE
WORKINGDAYS = SET OF DAYS;
CHARACTERS = SET OF 'A'..'+';

VAR
WORKINGDAY : WORKINGDAYS;
LETTERS, ➢IGITS, FIRST, FOLLOWING: CHARACTERS;
LAZY : BOOLEAN;

then the following lines are examples of applications . of.. set and set operators:

WORKINGDAY := [MONDAY..FRIDAY];
LAZY := NOT(SATURDAY IN WORKINGDAY);
LETTERS :=
DIGITS := ['0'..'9'];
FIRST := LETTERS;
FOLLOWING := FIRST + DIGITS + ['+'];

The following relations are all true:

FIRST * DIGITS = [
FOLLOWING - (DIGITS + ['+']) = LETTERS
FOLLOWING * FIRST = LETTERS
ORD([MONDAY, £UbSDAY, THURSDAY]) = 1 + 2 + 8

The following operators take two operands of compatible set types and produce a result that is of
a set type compatible with the operand types.

Operator Description of Operation

The result is the union of the two operand sets.

The result is the intersection of the two operand sets.

The result is the set difference of the two operand sets (the elements that
belong to the left operand, but not to the right operand).

The following operators take two operands of compatible set type and produce a Boolean result.

Operator Description of Operation

The result is true if the left operand is equal to the right operand.

CJ The result is true if the left operand is not equal to the right operand.

<= The result is true if the left operand is included in the right operand and
false if it is not.

>= The result is true if the right operand is included in the left operand and
false if it is not.

3-14 60497700 01

The following operator takes two operands and produces a Boolean result. The right operand is a
set type. The left operand must be of an enumeration type compatible with the base type of the
right operand.

Operator Description of Operation

IN The result is true if the left operand is a member of the set specified as the
right operand.

Pointer Types

Pointers are used for constructing dynamic data structures.

pointer type

 *I type identifier

The type identifier cannot denote a type containing a file type. The type identifier may be
defined textually after the pointer type.

The value of pointer variable is either nil or a reference to a variable of the specified type.
The pointer nil belongs to every pointer type; it points to no variable at all. The variable
referenced by a pointer is denoted by the pointer variable followed by an arrow (t).

referenced variable

pointer variable ••••

pointer variable

variable

For example, a list structure can be declared as follows:

TYPE
PLIST = }LIST;
LIST = RECORD

INF .

NEXT : PLIST
END;

VAR
HEAD : PLIST;

A list structure with two elements can be created as follows:

NEW(HEAD);
HEADt.INF := . . . ;
NEW(HKADt.NEXT);
HEADLNEXTt.INF := . . .
HEADt.NEXTt.NEXT := NIL;

The declaration of a pointer variable causes the computer to allocate space for the pointer,
hence no space is allocated for any referenced variable before this is explicitly denoted by
calling the predefined procedure new.

The type of a reference variable is the type specified in the declaration of the pointer type.

60497700 01 3-15

The following operators apply to operands of pointer type and yield a Boolean result:

<) The operands are evaluated, then the resulting values are compared. The outcome is true
if the resulting values are not equal and false if they are equal.

The operands are evaluated, then the resulting values are compared. The outcome is true
if the resulting values are equal and false if they are not.

Type Compatibility

Two operands must be compatible in type. In general,

Two types are compatible if they are the same type.

A subrange type is compatible with the type it is a subrange of.

Two subrange types of the same type are compatible.

Two string types are compatible if they have the same length.

Two set types are compatible if their base types are compatible.

The type of the empty set [J is compatible with any set type.

The type of the pointer value nil is compatible with any pointer type.

The type INTEGER and any subrange type of INTEGER are compatible with the type REAL except in the
following cases:

An operand of type REAL cannot be assigned to a variable or function identifier of type
INTEGER.

An actual parameter of type REAL cannot be passed to a formal parameter of type INTEGER.

VAR SECTION

The variable declaration section defines the name and type of a variable. Each variable in the
statements part must be declared in the variable declaration section prior to its use.

variable declaration part

rer variable identi

variable identifier

pe

 ep4 identifier

3-16 60497700 01

You can declare several variables of the same type in a single list of identifiers followed by

the type.

If a variable is of array type or record type, a single component is denoted by the identifier

followed by a selector specifying that component.

The following is an example of both a type and a variable declaration section:

TYPE
WEEKEND = FRIDAY.. SUNDAY;

VAR
GOODDAY : WEEKEND;

If the variable GOODDAY has the value FRIDAY, then the following relations are true:

PRED(GOODDAY) = THURSDAY
SUCC(THURSDAY) = GOODDAY

VALUE SECTION •

The value declaration section initializes the variables declared in the statements part.

value part

value variable identifier

(- evi value specification 1--11)

value specification

ee constant

ail)

set value

structured value

structured value

L i type identifier

structured value specification

•—eri repetition /actor

repetition factor

structured value specification I

value specification 1--0CD-e.

constant 1----e<7;0-ie•

60497700 01 3-17

A variable of a simple type can be initialized with a constant of the same type.

A variable of pointer type can only be initialized with nil.

A variable of set type can be initialized with a set value.

A variable of array or record type can be initialized with a structured value.

A structured value consists of a number of component values, one for each component of the
structured type. Each component value must be of the same type as the corresponding component
type. If the component type is simple, pointer, or set type, the corresponding component value
must follow the rules just given. If a component type is itself an array or record type, the
corresponding component value must be a structured value (this rule is used recursively). A
multi-dimensional array is considered to be an array of arrays.

A type identifier can be present in a structured value. If it is present, it must denote the

same type as the type of the variable being initialized.

The type identifier can be omitted, in which case the rules just given apply.

The following is an example of CONST, TYPE, VAR, and VALUE section declarations:

CONST
N= 5;
SIZE = 3;

TYPE
VECTOR = ARRAY[1..N] OF INTEGER;
NAME = PACKED ARRAY[1:781 OF CHAR;
NODE = RECORD

ID : NAME;
NEXT = ?NODE;

END;
MATRIX = ARRAY[1..SIZE, 1..512E] OF INTEGER;
DOUBLEVECTOR = ARRAY[1..2] OF VECTOR;

VAR
X,Y :VECTOR;
P,S : NAME;
N : NODE;
M1,M2 : MATRIX;
D : DOUBLEVECTOR;
I : INTEGER;

VALUE
X = VECTOR(1,1,2,2,3);
Y = (N OF 0);
P = ('PETER ');
S = ('J',101,'H','N',4 OF ' ');
N = NODE('DUMMY ',NIL);
M1 = MATRIX((2,3,5),(7,9,13),(17,19,23));
M2 = ((3 OF 0),(3 OF 1),(1,2,3));
D = DOUBLEVECTOR(2 OF VECTOR(N OF 0));
I= 7;

Repetition factors can be used to initialize many array elements with the same value. The

constant of a repetition factor must be of integer type.

Packed variables can be initialized with a string literal.

A variable of string type can also be initialized with a string literal.

A record with a variant part can be initialized; the tag field value determines which variant is

followed. Even if the tag field has no field identifier the tag field value must be specified to
select a variant.

3-18 60497700 01

ROUTINES: SECTION

The routine declaration section defines a block of statements that can be executed by a procedure

of function call within the statements part. The block of statements are bounded by a BEGIN and

END.

routine declaration

procedure heading

procedure heading

function heading I

 black

—{procedure procedure identifier

function heading

ornial parameter

—a(function) ---eri_f unctzon identifier

procedure identifier

function identifier

identifier

so

dent I f ier

Routine is a generic term for procedures and functions. The difference between a procedure and
function is that while both are subprograms, a function returns a result value and, therefore,
can be used in an expression.

A value part is only allowed in the declaration of a program and not within routines.

Routines can be called recursively. At most, ten levels of routines can be declared inside each
other. At runtime, however, dynamic routine calls can be nested to any level.

The type in the function heading is the function type, it specifies the range of the function.
The function type must be a simple or a pointer type.

The following are examples of routine headings:

FUNCTION MYOWNSQRT(X: REAL): REAL;
FUNCTION ZERO(LOWER, UPPER: REAL; FUNCTION F(X: REAL): REAL): REAL;
PROCEDURE INSERT(ELEMENT: COMPONENTTYPE);
PROCEDURE UPDATE(RAR ELEMENT: COMPONENTTYPE);

60497700 01 3-19

You can change the current value of a function within the statements that make up the function by

writing the function name as the left hand side of an assignment. The value return by the
function is the dynamically last value assigned to it.

Formal Parameters

Formal parameters specify the interface between the block and its surroundings. Each formal
parameter is given its kind and its formal name. There are four parameter kinds: variable,
value, procedure, and function. The kind value is assumed if nothing else is specified.

Formal parameters are denoted by formal names in the block of a routine. A formal parameter of
kind variable denotes a variable of the specified name and type. The denoted variable is the
actual parameter. A formal parameter of kind value can be used as a local variable of the
specified name and type; its initial value is the value of the actual parameter. A formal
parameter of kind procedure or function can be used as if it is a locally declared routine.

The reserved word DYNAMIC can only precede an array type.

Further differences between the four parameter kinds are given under the heading Actual
Parameters in section 4.

Blocks•

A block is a group of statements that is bound by a begin and end. There are three classes of
blocks: forward, external, and internal.

block

internal block

external block

forward black.]

Forward Block

The scope rules at the end of this section state that a routine must be declared before it is
used. The declaration of a block as a forward block is an announcement of a routine declaration
that will be given textually later. When the routine, declaration is given, the formal parameters
are omitted in the heading.

forward block

 ►(forward)

External Block

The declaration of a block as an external block is an announcement of a separately compiled
routine. The linking of external routines is done by the NOS operating system. Refer to section
5 for a more detailed description of the NOS interface.

external block

 ,e(f ortran)

3-20 60497700 01

Internal Block

internal block

--PI declarations compound statement I----fr

declarations

label declaration part

constant definition part

type definition part

variable declaration part I

value par

routine declaration par

Scope Flules

A scope is one of the following:

A field list (excluding inner scopes)

A routine heading

A block (excluding inner scopes)

A name can be declared once in each scope only. All names must be declared before they are
used. If a name is declared both in a scope and in an inner scope, it is always the inner
declaration that is effective in the inner scope.

Generally, the declaration of a name is effective in the rest of the block where it is declared,
however, details for each kind of name are given below.

Constant identifier, type identifier, variable identifier, enumeration constant, label, and
routine identifier:

The declaration of these identifiers is effective in the rest of the block.

Pointer type identifier:

In the definition of a pointer type, the type identifier on the right hand side of the
arrow (t) can be defined textually after the pointer type definition.

Field identifier:

The declaration of a field identifier is effective in the rest of the block, but the
field identifier can be used in RECORD variables and WITH statements only.

Routine parameter name:

The name is effective in the rest of the block.

Program identifier:

The program identifier has no significance within the program.

60497700 01 3-21

STATEMENT PART

This section describes the statements that manipulate defined and declared data items.

A collection of statements can be grouped together as a compound statement by enclosing them
within BEGIN and END.

The statement(s) in the statement part are executed sequentially in the same order as they appear.

EXPRESSIONS
Expressions are often a fundamental part of a statement. An expression defines a rule of
computation for obtaining a value by application of operators to operands. An expression is
evaluated from left to right using the following precedence rules (highest to lowest precedence):

NOT
*, /, DIV, MOD, AND
+, OR
=, <>, C, <=, >, >=, IN

Expressions are written in infix notation.

expression

simple expression

simple expression

•-11K)—•

)—

simple expression

term

60497700 01 4-1

term

 (and)s,

 ► factor

factor

constant

 ► variable

function call I

 '(not) factor

set value

The following relations are true:

2 * 3 - 4 * 5 = (2 * 3) - (4 * 5)
15 DIV 4 * 4 = (15 DIV 4) * 4
80 /55 / 3 = (80 / 5) / 3
4 + 2 * 3 = 4 + (2 * 3)

For any B1, B2, B3 of type Boolean, the following relation is true:

B1 OR NOT B2 AND B3 = B1 OR ((NOT B2) AND B3)

The following is an ambiguous expression:

0 < X AND X < 10

It should be written as

(0 < X) AND (X C 10)

The following two statements are different:

IF (I <= N) AND (TABLE[I] = KEY) THEN S;
IF I C= N THEN IF TABLE[I] = KEY THEN S;

All factors in an expression are evaluated and therefore should be defined.

If an expression contains a function whose evaluation causes side effects on other factors in the

expression, the left to right evaluation does not always hold; such side effects should be
avoided.

4-2 60497700 01

The following table gives all valid combinations of dyadic operators and operand types:

The

Operator(s)

DIV, MOD, /

Left Operand

INTEGER
INTEGER
REAL
REAL
any type compatible with T

INTEGER
INTEGER
INTEGER
REAL
REAL

OR, AND, <, > BOOLEAN
any string type T
any simple type T

<=, >=, =, <> any string type T
any simple type T
any set type T

IN any enumeration type
compatible with T

following table gives all valid

Operator(s)

+,-

NOT

Right Operand

INTEGER
REAL
INTEGER
REAL
any type compatible with T

INTEGER
INTEGER
REAL
INTEGER
REAL

BOOJ RAN
any type compatible with T
any type compatible with T

any type compatible with T
any type compatible with T
any type compatible with T

SET OF T

Result

INTEGER
REAL
REAL
REAL
set type T

INTEGER
REAL
REAL
REAL
REAL

BOOLEAN
BOOLEAN
BOOLEAN

BOOLEAN
BOOLEAN
BOOLEAN

BOOLEAN

combinations of monadic operators and operand types:

Operand Result

INTEGER
REAL

INTEGER
REAL

BOOLEAN BOOLEAN

➢uring evaluation of an expression, intermediate results are kept in a fixed number of
registers. If the number of intermediate results exceeds the capacity of the registers, the
expression cannot be translated and the compiler issues the error message: expression too
complicated. To remedy this, you must either rewrite the expression with a less complicated
parenthesis structure or be split into two or more expressions.

ASSIGNMENT STATEMENT
The assignment statement replaces the current value of a variable or function with the value of
an expression.

assignment statement

 oivariable

1---01 function identifier

ex ression

The variable or function and expression must be of compatible types. Assignments can be made to
variables of any type except file variables (assignment to the file buffer of a file is legal).

An assignment can be made to a function identifier within its own statement block. The value
returned by the function is the dynamically last value that was assigned to it.

60497700 01 4-3

IF STATEMENT
The IF statement defines two paths that can be taken during program execution. The path that is
taken depends upon the result of the Boolean expression contained in the statement.

if statement

true part

R then statement,

false part

else statement,

Statement 1 will only be executed if the value of the expression is true. The statement
following statement 1, in this case statement 2, will be executed if the value of the expression
is false.

The ambiguity that arises from the construction

IF El THEN IF E2 THEN Si ELSE S2

can be resolved by writing it as

IF El THEN
BEGIN

IF E2 THEN. 51
ELSE 52

END

The following are examples of IF statements:

IF DAY = SUNDAY THEN NEXT := MONDAY
ELSE NEXT := SUCC(DAY)

IF X > Y THEN
BEGIN

MIN := Y;
MAX := X

END
ELSE

BEGIN
MIN := X;
MAX := Y

END;

The following IF statements are not equivalent:

IF (I <= N) AND (TABLE[I] = KEY) THEN 5;

IF I <= N THEN IF TABLE[I] = KEY THEN S;

In the case where I > N, the first statement will evaluate TABLE[I] KEY and probably cause an
index error.

4-4 60497700 01

A frequent misuse of the IF statement is the following:

IF A = B THEN FOUND := TRUE
ELSE FOUND := FALSE;

A much simpler statement is:

FOUND := A = B;

The following IF statement:

IF B THEN S1 ELSE S2;

is equivalent to:

CASE B OF
TRUE : Si;
FALSE : S2

END'

WITH STATEMENT
The WITH statement facilitates manipulation of record components.

with statement

record variable

The fields of the record variable(s) within the statement can be denoted by writing their field
identifiers without preceding them with the denotation of the entire record variable.

The following is an example of a WITH statement:

WITH HAND[1] DO
BEGIN

T := NORMAL;
SUIT := CLUB;
RANK := 8

END;

You can nest WITH statements, as in the example

WITH V1 DO S1
WITH V2 DO S1

WITH Vn DO Si;

A shorter way to write the same nested WITH statement is the following:

WITH V1, V2, V3, Vn DO Si;

The record variable selects a record; this selection cannot be changed in the statement. If the
record variable has array indexes or pointers, changes to them within the WITH statement will not
affect the selection.

60497700 01 4-5

WHILE STATEMENT

The WHILE statement specifies that a statement is to be executed a number of times.

while statement

The expression must yield a result of type Boolean. The statement following DO will be executed

zero or more times. The expression is evaluated before each execution.

The WHILE statement continues until the evaluation of the expression yields a false result. If

the evaluation of the expression is false before execution of the WHILE statement, the statement

following DO is not executed.

REPEAT STATEMENT

The REPEAT statement specifies that a sequence of statements is to be executed repeatedly.

repeat statement

The expression must yield a result of type Boolean. The sequence of statements between the

symbols REPEAT and UNTIL are executed one or more times. Every time the sequence is executed,

the expression is evaluated. When the resulting value becomes true the REPEAT statement is

completed.

FOR STATEMENT
A value of an enumeration type can be used to execute a statement repeatedly with a consecutive
sequence of enumeration values.

for statement

control variable

or list

control variable

for list

identifier

statement

—PI expression, 1---r----10Ct1:7)-7--PI expression: k- ►

'-►(downto)

4-6 60497700 01

The two expressions must be of the same enumeration type and the type of the control variable
must be compatible with this type. The control variable must be declared in the same block as
the FOR statement. Assignment to the control variable is not allowed within the statement.

The FOR list expresses the size of the interval and the order of progression. The control
variable can either be incremented (in steps of 1) from expression 1 TO expression 2, or
decremented (in steps by 1) from expression 1 DOWNTO expression 2. The expressions are only
evaluated once before the repetition. If expression 1 is greater than expression 2 and increment
is specified (TO) then the statement is not executed at all. If expression 1 is less than
expression 2 and decrement is specified (DOWNTO), the statement is not executed.

The value of the control variable is undefined after the completion of the FOR statement.

The expression in the FOR list may contain variables. The selection of these variables cannot be
changed in the statement. If the variables have array indexes or pointers, changes to them in
the FOR statement will not affect the selection.

The value of I = J in the following FOR statement is undefined:

FOR I :=1 TONDO

IF I =S THEN

CASE STATEMENT
The CASE statement specifies that the value of an enumeration type is to be used to select one of
several statements for execution.

case statement

ex session

 0

end part

 • case list element ► end part!

'— ►(otherwise

case list element

T►4 case label part

case label part

 4. statement

statement

end)

 ► constant Ito

60497700 01 4-7

A CASE list element is a statement labeled by one or more constants. These constants must all be
of the same type as the expression. All labels (constants) in a CASE statement must be
distinct. The statement labeled by the current value of the expression is selected for
execution. If no such label is present, the statements following OTHERWISE are selected for
execution. If OTHERWISE is not included in the CASE statement, the effect of the CASE statement
is defined as follows: if the compiler option T+ (see section 5) is specified, the runtime error
message INDEX OR CASE EXPR OUT OF RANGE is given and program execution terminated; if the
compiler option T- is specified, no statement is selected for execution. Upon completion of the
selected statement, the CASE statement is also completed.

If you assume the following declarations:

VAR
MONTH : MONTHS;
SUIT SUITS;
SEASON : SEASONS;
COLOR : COLORS;

then the following are valid examples of a CASE statement:

CASE MONTH OF

DECEMBER,JANUARY,FEBRUARY : SEASON := WINTER;
MARCH,APRIL,MAY : SEASON := SPRING;
JUNE,JULY,AUGUST : SEASON := SUMMER;
SEPTEMBER, OCTOBER,NOVEMBER : SEASON := AUTUMN;

END;

CASE SUIT OF
CLUB, SPADE : COLOR := BLACK

OTHERWISE
COLOR := RED;

END;

The CASE statement is translated into a jump table. The size of this table is limited; no two
labels Ll and L2 can be chosen so that ABS(ORD(L1) - ORD(L2)) > 1000.

JUMPS
Complicated control structures can be constructed using jumps. A jump is a means of transferring
control to an arbitary place in a program. It should be noted that any control structure can be
constructed using the WHILE and IF statements only (and auxiliary boolean variables).
Furthermore, it is not considered good programming style to use jumps.

A jump consists of a destination (label) and transfer of control (the GOTO statement).

LABELED STATEMENT

A labeled statement is the destination of a GOTO statement.

A labeled statement is defined by prefixing a statement with a label and a colon
statement after the colon cannot be a labeled statement.

labelled statement

label statement

(:). The

4-8 60497700 01

Labels follow the same rules of scope that other declared quantities do: the innermost declared
label will be effective in the case of nested routines that use the same label.

All labels must be declared in the LABEL section of the declaraction and definition part of the

program or routine in which it is defined. A label that is referenced by a GOTO statement can be

used only once in the statements part.

GOTO STATEMENT

Control is transferred to a labeled statement by a GOTO statement.

goto statement

goto label

The innermost declared label will be effective in the case where nested routines use the same
label. The result of jumping into an inner statement of an IF, WHILE, REPEAT, WITH, FOR, or CASE
statement is undefined.

ROUTINES
Routine is a generic term for procedures and functions. The difference between procedures and
functions is that while both are subroutines, a function returns a result, therefore, a function
name can be a part of an expression.

procedure call

procedure name

function call

function name

actual parameters

Ili actual parameters r
A routine call binds actual parameters to formal parameters, allocates local variables, and
executes the block of statements that make up the routine. When the block is completed, local
variables are deallocated and execution is resumed with the statement immediately after the
routine call.

The variables of a routine are associated with a specific call; they exist from the routine call
until the block of statements is completed. When a routine is called recursively, several
versions of the variables exist simultaneously, one for each uncompleted call.

60497700 01 4-9

The scope rules of Faecal lead to a conflict in a situation where two routines call each other.
(Which one should be declared first?) The conflict can be removed by substituting the identifier
FORWARD for the body of the first routine and postponing the specification of the routine body.
For example,

FUNCTION G(X : REAL) : REAL;
FORWARD;
FUNCTION F(X : REAL) : REAL;

•
•
BEGIN

G(X);

END;

FUNCT▪ ION G;
BEGIN

F(X);

END;

ACTUAL PARAMETERS

There must be an actual parameter for each formal parameter.

actual parameters

 /1. € 71=.ngl 11

routine identifier

 variable

The binding of an actual parameter to a formal parameter depends on the parameter kind. There
are four parameter kinds: value, variable, function, and procedure.

Binding a Valbe

The type of the actual parameter must be compatible with the type of the formal parameter. The
value of the actual parameter is evaluated, then this value becomes the initial value of the
formal parameter. Assignments to the formal parameter within the block do not affect the actual
parameter (call by value).

4-10 60497700 01

Binding a Variable

The type of the actual and formal parameter must be the same. The actual parameter must be a

variable. The value of this variable becomes the initial value of the formal parameter. Changes

to the value of the formal parameter within the block affects the actual parameter directly. The
actual parameter selects a variable; this selection cannot be changed in the block. If the
variable contains array indexes or pointers, changes to them do not affect the selection (call by
reference).

A component of a packed structure can only be used as an actual VAR parameter if it occupies a
whole multiple of 60-bit machine words.

An element or a field of a packed variable cannot be an actual VAR parameter. The whole packed
variable can, however, be an actual VAR parameter.

Binding a Procedure or Function

The parameter list of the actual and formal parameters must match. Two parameter lists match if
they have the same number of parameters and if the parameters match pairwise. Two parameters
match if either of the following conditions are true:

Value and variable parameter types are the same

Routine formal parameters match

Note the following guidelines for choosing between value and variable specification of parameters:

If a parameter is not used to transfer a result from the routine, value specification is
generally preferred. But for each value parameter is allocated a storage area for holding
the entire value. The value of the actual parameter is transferred to this area. In case of
a large structure type, value specification can therefore be very inefficient.

DYNAMIC PARAMETERS

If the formal parameter is specified as DYNAMIC, it must be an array type T. The actual
parameter is then required to:

Have the same dimension as T

Have index types that are pairwise compatible with the index types of T

Have the same element type as T

Note that the second condition implies that actual parameters with different index types (for
example, size) can be passed as actual parameters to a routine.

Dynamic parameters can only be manipulated componentwise. This means that assignments and
comparisons of dynamic parameters must be done componentwise. Furthermore PACK and UNPACK can
only be applied to components of a dynamic parameter. Dynamic parameters can be passed as
parameters to other routines.

60497700 01 4-11

The following is an example of a function with dynamic parameters:

TYPE
LIST = ARRAY[1..100] OF INTEGER;

FUNCTION
MAXIMUM(VAR L : DYNAMIC LIST) : INTEGER;

- (* L IS OF KIND VARIABLE TO SAVE TIME AND SPACE *)
VAR

I, MAX : INTEGER;
BEGIN

MAX := HIGH(L)•
FOR I := LOW(L) + 1 TO HIGH(L)

IF MAX < L[I] THEN
MAX := L[I];

MAXIMUM := MAX
END;

FILE PARAMETERS

A parameter of a file type must be passed as a variable.

If the type of a formal parameter is T or SEGMENTED T, where T is a file type, the actual
parameter is allowed to be both of type T or of type SEGMENTED T.

PACKED PARAMETERS

Only the innermost array can be packed when a packed array is passed as a dynamic parameter.

PREDEFINED ROUTINES

The following discussion describes all predefined routines except those that apply to files,
which are discussed under the heading Files in this section.

ABS Takes a single integer argument and returns an integer result that is the
absolute value of the argument.

ARCTAN Takes a single real argument and returns the result of applying the specified
mathematical function to the argument.

CARD Takes a single argument of set type and returns an integer that is the
cardinality of the argument (the number of elements in the set).

CHR

CLOCK

COS

DATE

Takes a single integer argument and returns a character result that has the

ordinal value of the argument. As a consequence, CHR is only defined in the
subrange [0..63].

This is a parameterless integer function. It gives the current used CPU-time in
milliseconds.

Takes a single real argument and returns the, result of applying the specified
mathematical function to the argument.

Takes a single parameter of type alfa and assigns the current date to it in the
form: YY/MM/DD. (year/month/day.).

4-12 60497700 01

DISPOSE Releases the variable referenced by P. If the associated type contains variants
and NEW(P,C1,. . .,Cn) has been used to allocate the variable, then
DISPOSE(P,C1,. . .,Cn) must be used to release the variable.

EOF Described under Files.

EOLN Described under Files.

EOS Described under Files.

EXP Takes a single real argument and returns the result of applying the specified
mathematical function to the argument.

EXPO Takes a single real argument and returns an integer result that is the exponent
of the argument in binary representation.

GET Described under Files.

GETSEG Described under Files.

HATT Takes a single argument of type string and terminates the program (after closing
external files) with a CPU abort, places string in the dayfile of the job and
produces a dump.

HIGH Takes an array variable or parameter of index type and returns the max bound of
the nth index type of A, 1 < N < dimension of A. HIGH(A) is a shorthand for HIGH
(A,1).

LINELIMIT Described under Files.

LOW Takes an array variable or parameter of index type and returns the min bound of
the nth index type of A, 1 < N < dimension of A. LOW(A) is a shorthand for
LOW(A,1).

LN Takes a single real argument and returns the result of applying the specified
mathematical function to the argument.

MESSAGE Takes a single argument of type string and places it in the dayfile of the job.

NEW Allocates a new variable of the same type as the argument and assigns a reference
to the argument.

In the case where the type associated with P is a record type and the field has
variants, the form NEW(P,C1,. . .,Cn) can be used. C1,... .,Cn is a list of
constant selectors used to determine the size of the allocated variable. The
size is as if the variable was declared a record type with the field list formed
by the following rule of selection: first, the variant corresponding to the
selector Cl is selected, then, the field list of this variant is formed by using
the selectors C2,. . .,Cn (by a recursive application of this rule), finally, the
so-far-formed field list is prefixed by the tag field (if nonempty) and is
substituted for the variant part.

The above description does not imply any assignment to the tag fields.

The variant of the allocated variable must not be changed, and assignment to the
entire variable is not allowed. However, the value of single components can be
altered.

60497700 01 4-13

If you assume the following declarations:

CONST
MAXVAL = 50;

TYPE
PATOM = }ATOM;
ATOM =

RECORD
NAME • ALFA;
NUMBER : INTEGER;
WEIGHT : REAL;
OCCUPIED : SET OF 1.. MAXVAL;
BINDINGS : ARRAY[1..MA/VAL] OF PATOM;
CHARGE : (PLUS,MINUS,NEUTRAL);
SATURATED : BOOLEAN
END;

VAR
A : ATOM;

then the following statements give all the names of the atoms to which A is bound:

WITH A DO
FOR I := 1 TO MAXVAL DO

IF I IN OCCUPIED THEN
WRITELN(I,BINDINDS[I]t.NAME);

If you assume the following declarations:

VAR
P : tPLAYINGCARD;

then NEW(P,WILD) allocates a variable whose size is as if the variable had been
of the type Q defined as

TYPE

Q = RECORD
T : CARDTYPE;
FACE : (BLANK,JOKER)

END;

ODD Takes a single integer argument and returns a Boolean result that is true if the
argument is odd and false if the argument is even.

ORD Applies to operands of any enumeration type. Takes a single argument and returns
a result that is the number of the argument in the set of values defined by the
type of the argument. When applied to a pointer the result is the integer
representation of the pointer. When applied to a Boolean value, the result is
the following:

ORD(FALSE) = 0

ORD(TRUE) = 1

Ord can also be applied to a subrange type:

VAR
A : INTEGER;
B : MIN..MAX;

In this case, A = B implies ORD(A) = ORD(B).

4-14 60497700 01

PACK Packs array values. Assume that A and P are variables of the following types:

A: ARRAY [i..N] OF T;
P: PACKED ARRAY [U..V] OF T;

When (ORD(N) - ORD(I)) >= (ORD(V) - ORD(U)); M <= I; and the index types of the
arrays A and P and the type of I are compatible, then PACK(A,I,P) is equivalent
to:

K := I;
FOR J := U TO V DO
BEGIN

P[J] := A[K];
K := SUCC(K)

END

PAGE Described under Files.

PRED Applies to operands of any enumeration type. Takes one argument and returns the
predecessor of the argument, which is the same type as the argument. If the
argument is the first (smallest) value of the type the result may be undefined.

PUT Described under Files.

PUTSEG Described under Files.

READ Described under Files.

READLN Described under Files.

RESET Described under Files.

REWRITE Described under Files.

ROUND Takes a single real argument and returns a result that is the argument rounded
(not truncated) according to standard mathematical conventions.

The difference between round and trunc is illustrated by the following examples:

TRUNC(1.6) = 1 ROUND(1.6) =2
TRUNC(-1.6) = -1 ROUND(-1.6) = -2
TRUNC(2.4) = 2 ROUND(2.4) = 2

The operators = and <> should be used with great care on real arguments because
of round-off errors that often result from the representation of real values, as
in the following examples:

(1.00000 - 0.00001) = 0.99999 FALSE
SQR(SQRT(2)) = 2 FALSE
(4.0 * 0.25) = 1 TRUE
(10000 * 0.0003) = 3 TRUE
(1000000 * 0.000003) = 3 FALSE

SIN Takes a single real argument and returns the result of applying the specified
mathematical function to the argument.

SQR Takes a single integer argument and returns an integer result that is the square
of the argument.

SORT Takes a single real argument and returns the result of applying the specified
mathematical function to the argument.

60497700 01 4-15

SUCC Applies to operands of any enumeration type. Takes one argument and returns the
successor of the argument, which is the same type as the argument. If the
argument is the last (greatest) value of the type the result may be undefined.

TIME Takes a single argument of type alfa and assigns the curent time to it in the
form: HH.MM.SS. (hour.minute.seconds.).

TRUNC Takes a single real argument and returns an integer whose sign is the same as the
argument and whose absolute value is the greatest among the integers less than or
equal to the absolute value of the argument.

Trunc can also be applied to two arguments; the first argument must be of type
real, the second argument must be of type integer. TRUNC(X,I) is equal to
TRUNC(X * Y) where Y is 2 to the power I.

The difference between round and trunc is illustrated by the following examples:

TRUNC(1.6) = 1 ROUND(1.6) = 2
TRUNC(-1.6) = -1 ROUND(-1.6) = -2
TRUNC(2.4) = 2 ROUND(2.4) = 2

UNDEFINED Takes a single real argument and returns a Boolean result that is true if the
argument is out of range or indefinite if a division by 0 was made.

UNPACK Unpacks array values. Assume that A and P are variables of the following types:

A: ARRAY [M..N] OF T;
P: PACKED ARRAY [U..V] OF T;

When (ORD(N) - ORD(I)) >= (ORD(V) - ORD(U)); M <= I; and the index types of the
arrays A and P and the type of I are compatible, then UNPACK(A,I,P) is equivalent
to:

K := I;
FOR J := U TO V DO
BEGIN

A[K] := P[JI;
K := SUCC(K)

END;

Where J denotes an auxiliary variable that is not used elsewhere in the program.

WRITE Described under Files.

WRITELN Described under Files.

FILES
A file is a structure that consists of a sequence of components that are all of the same type.

file type

(segmented)

 (file type

A file type can be defined as the number of components (the length of the file) is not fixed. At
any time, only one component of the file is accessible. The other components can be reached by
sequencing through the file. A file without any components is said to be empty.

4-16 60497700 01

The declaration of a file variable introduces a file buffer to the component type. The file
buffer is denoted by the file variable followed by an arrow (t),

file buffer

file variable

file variable

variable

The file buffer is like a window through which components of the file can be inspected (read) or
new components appended (written). A file position is implicitly associated with this window
(the file buffer). The window is moved by certain file operations. It is, however, not possible
to alternate between reading and writing a file. In a single pass the file can be either read or
written.

The sequential processing and the existence of a file buffer suggests that files are associated
with secondary storage and peripherals. Exactly how the components are allocated varies, but
usually only a few components are present in primary storage at any given time, and only the
component denoted by the file buffer is accessible.

A special mark is placed after the last component of the file. This mark is called the
end-of-file mark (EOF).

The predefined routines for file handling are given below. It is assumed that F is a file
variable and X is of a type compatible with the type of the components in the file F.

EOF(F) Takes a file name as an argument and returns a Boolean true value if the file
is positioned at the end-of-file mark and false if it is not.

GET(F) Advances the position of the file to the next component. The value of the
file buffer becomes the content of this component. If no next component
exists, EOF(F) becomes true and the value of Ft is undefined. If EOF(F) is
true prior to the execution of GET(F), the call results in the runtime error
message: TRIED TO READ PAST EOS/EOF.

PUT(F) Appends the value of the buffer variable Ft to the file F. The value of Ft
becomes undefined. If the value of EOF(F) or EOF(F) is false prior to the
execution of the PUT(F), the call results in the runtime error message: TRIED
TO WRITE WHILE NOT EOS/EOF. Otherwise the value of EOF remains true.

READ(F,X) A READ statement is exactly equivalent to:

X := Ft;
GET(F);

X must be of a type compatible with the type of the components in the file F.
If F is a textfile, see the description under the heading Textiles.

RESET(F) Repositions the file at the start; the file buffer Ft contains the first
component of the file. The file can now be read. If the file is empty, the
value of Ft is undefined and EOF(F) is true.

60497700 01 4-17

REWRITE(P) Positions the file at the start for rewriting. The value of F becomes the
empty file, Ft becomes undefined, and EOF(F) becomes true.

WRITE(F,X) A WRITE statement is exactly equivalent to:

Ft := X;
PUT(F);

X must be of a type compatible with the type of the components in the file F.
If F is a textfile, see the description under the heading textfiles.

By using the B option described in section 5, the size of the main storage area holding part of
the file around the current position can be varied. In this way, an exchange of time for space
(or vice versa) can be obtained.

TEXTFILES

A file of characters is called a textfile. Accordingly, the predefined type TEXT is defined as:

TEXT : FILE OF CHAR;

Texts can be subdivided into lines. However, the mark indicating a line boundary is not a
character included in the set of char values. The following predefined routines are provided for
manipulating this end-of-line mark (EOL). It is assumed that T is a variable of type TEXT.

EOLN(T) The result of this Boolean function is true if T is positioned at an
end-of-line mark, and false otherwise. If true, Tt contains a blank.

READLN(T) Skips to the beginning of the next line of T. Subsequently, TI becomes the
first character of the next line if any. READLN(T) has the same effect as the
following statements:

WHILE NOT EOLN(T) DO GET(T);
GET(T);

WRITELN(T) Terminates the current line of T; writes an end-of-line mark.

WRITELN may append some extra blanks to the line because of some peculiarities
in the representation of end-of-line mark in the NOS operating system.

Two additional predefined routines are provided:

LINELINIT(T,N) Associates a linecounter with the file T and resets this linecounter to N.
The first parameter must be a textfile and the second an integer expression.
Each time an end-of-line mark is written onto T the associated linecounter is
decremented by 1. The program is terminated if the linecounter reaches zero
and the following message is given: LINELIMIT EXCEEDED.

LINEL1MIT(OUTPUT,1000) is automatically executed before the program is
executed.

PAGE(T) Positions the lineprinter. The argument must be a textfile. PAGE(T) is
equivalent to the statements:

WRITELN(T):
WRITE(T,'1');

The '1' forces the lineprinter to the top of a new page.

4-18 60497700 01

A textfile T, subdivided into lines, can be scanned by the following piece of program:

RESET(T);
WHILE NOT EOF(T) DO

BEGIN

WHILE NOT EOLN(T) DO
BEGIN

READ(T,CH);
Q(CH) (* PROCESS SINGLE CHARACTER *)

END;
READLN(T);
R (* PROCESS LINE *)

END;

A textfile T, subdivided into lines with a maximum of N significant characters in each line, can
be scanned by the following piece of program:

RESET(T);
WHILE NOT EOF(T) DO

BEGIN
I := 0;
WHILE (I < N) > EOLN(T) DO

BEGIN
I := I + 1;
READ(T,LINE[I]);

END;
READLN(T);
R (* PROCESS LINE *)

END;

To facilitate the manipulation of textfiles, the predefined procedures READ and WRITE have some
built-in transformation procedures. These translate numbers from the internal binary
representation into a character sequence of decimal digits and vice versa. These procedures are
called in a nonstandard way because they can be called with a variable number of parameters of
various types.

Let T denote a textfile and V,V1,. . .,Vn variables of type CHAR, INTEGER, or REAL.

READ(T,V) Reads a sequence of characters from the file T through the file buffer Tt using
GET(T). The first significant character is the character in Tt.

If V is of type char, then READ(T,V) is exactly equivalent to:

V := Tt;
GET(T);

If V is type integer, a sequence of digits is transformed into a (decimal) value
and then assigned to V. Leading blanks and leading end-of-line marks are
skipped. The character sequence that follows must be consistent with the syntax
for decimal integers given in section 2. If not, execution is terminated and a
runtime error message is given. Trailing blanks are skipped (if the file buffer
Tt is left at the first nonblank character after the number or is left at the
end-of-line mark).

If V is of type real, a sequence of characters is transformed into a real value
and then assigned to V. Leading blanks and leading end-of-line marks are
skipped. The character sequence that follows must be consistent with the syntax
for real literals given in section 2. If not, execution is terminated and a
runtime error message is given. Trailing blanks are skipped (if the file buffer
is left at the first nonblank character after the real number or is left at the
end-of-line mark).

60497700 01 4-19

READ(T,V1,. . .,Vn) is a shorthand notion for:

BEGIN
READ(T,V1);
READ(T,V2);

READ(T,Vn)
END;

READLN(T,V) is a shorthand notation for:

BEGIN
EEAD(T,V);
READLN(T)

END;

READLN(T,V1,. . .,Vn) is a shorthand notation for:

BEGIN
READ(T,V1,. . .,Vn);
READLN(T)

END;

The predefined procedure WRITE is extended in a similar way. Let P,P1,. . .,Pn be parameters of
the form defined below and T be a textile.

WRITE(T,P) Transforms the parameter P into a sequence of characters (according to the rules
given below). This sequence is written on T.

WRITE(T,P1,. . .,Pn) is a shorthand notation for:

BEGIN
WRITE(T,P1);
WRITE(T,P2);

WRITE(T,Pn)
END;

WRITELN(T,P1,. . .,Pn) is a shorthand notation for:

BEGIN
WRITE(T,P1,. . .,Pn);
WRITELN(T)

END;

4-20 60497700 01

The parameters in the predefined procedures WRITE and WRITELN must have the following form:

parameter

--Pi expression

field width

raction Length

field width

expression I

 (act)

 *(hex)

fraction length

expression

The first expression, which is the value to be written, must be of type: INTEGER, BOOLEAN, CHAR,
REAL, or STRING. The fraction length can be given only when the expression is of type REAL. The
field width indicates the minimum number of characters to be written. If the expression in the
field width is followed by one of the identifiers OCT or HEX, the value to be written must be of
type integer; the value is output in octal or hexadecimal form. Integers only can be written in
octal form. If the field width is longer than needed, the value is written right justified. The
field width must be an integer expression with value greater than or equal to O. If omitted, a
default value is chosen, in accordance with the following table:

Default
Type Field Width Remarks

integer 10 If the field width is too short, the necessary number of additional
character positions is used.

Boolean 10 If the field width is 5 or more either of the strings ' TRUE' or
'FALSE' is written.

If the field width is 0, 1, 2, 3, or 4 either of the characters 'T'
or 'F' is written.

char

real

1 If the field width is 0, the default field width 1 is used.

22 If fraction length is not specified the value will be written with 1
digit before the decimal point; 13 digits after the decimal point;
and a scaling exponent written as E+ddd (floating point notation).

If fraction length is specified, the fraction length must be at
least two less than the field width. The fraction length specifies
the number of digits to follow the decimal point. If the fraction
length is specified no exponent is written (fixed point notation).
If the field width is too short the necessary number of additional
character positions is used.

string length of If a nonzero field width less than the length of the
string string is specified, the right part of the string is truncated. If

a field width equal to 0 is specified the entire string is written.

60497700 01 4-21

Predefined Textfiles INPUT and OUTPUT

Two textfiles named INPUT and OUTPUT are predefined:

VAR

INPUT,OUTPUT : TEXT;

The call LINELIMIT(OUTPUT,1000) is automatically executed before the program is executed.

The first parameter to READ, READLN, WRITE, WRITELN, EOF, EOLN, or EOS can-be' omitted, in which
case INPUT or OUTPUT respectively is used.

Let V denote a variable of type CHAR, INTEGER, or REAL and E denote an expression of type CHAR,
INTEGER, REAL, BOOLEAN, or STRING.

WRITE(E) is equivalent to WRITE(OUTPUT,E)
WRITELN(E) is equivalent to WRITELN(OUTPUT,E)
READ(V) is equivalent to READ(INPUT,V)
READLN(V) is equivalent to READLN(INPUT,V)
EOF is equivalent to EOF(INPUT)
EOLN is equivalent to EOLN(INPUT)
EOS is equivalent to EOS(INPUT)

The predefined textfiles INPUT and OUTPUT correspond to the NOS files INPUT and OUTPUT
respectively. Section 6 shows how other external files are declared.

If a file is to be printed, the first character of each line can be used as a carriage control
character (depending on the printing device) and the line length can be limited as well

If a Pascal file is assigned to a terminal, you should
buffer emptied), the job is swapped out because it is

To ensure that all output generated up to the present
use the standard procedure WRITELN. Only whole lines
line is treated as an end-of-file mark.

be aware that when output is printed (the
waiting for input data.

moment is sent to the terminal, you should
will be written because each empty terminal

If an external file is used for interactive input, a slash (/) following the file name in the
program heading makes it possible to write output to the terminal before any input is read.
READLN skips a new line of input and in the case of interactive input ask the user for input by
writing a question mark.

The following is an example of interactive use of INPUT and OUTPUT:

PROGRAM IO(INPUT/,OUTPUT);

VAR
ID : INTEGER;
CH : CHAR;

BEGIN
WRITELN('.PLEASE ENTER YOUR IDENTIFICATION'); `
READLN;
READ(ID);

•

WRITELN('NOW GIVE YOUR CONTROL CHARACTER');
READLN;
READ(CH);

END.

4-22 60497700 01

SEGMENTED FILES "

A segmented file makes it possible to manipulate logical records, which are a subdivision of a
file into segments of varying length. A segmented file type is defined by prefixing a usual file
type definition with the reserved symbol SEGMENTED.

segmented file type

—►(segmented file of)

The predefined files INPUT and OUTPUT can be specified as segmented files in the program heading.

A number of routines are provided for manipulating segmented files. Assume that F is of a
SEGMENTED file type.

EOS(F) Returns a Boolean true if the file is positioned at an end-of-record mark and a
false if it is not. The value of the file buffer Ft is undefined if EOS(F) is true.

GETSEG(F) Positions the file at the start of the next segment. The file buffer Ft becomes
the first component of the next segment. If no next segment is present execution
is terminated and the runtime error message: TRIED TO READ PAST EOS/EOF is given.
GETSEG can only be applied to a file that is being read.

PUTSEG(F) Closes the current segment (an end-of-record mark is written onto F). PUTSEG is
only allowed if EOF(F) is true.

A segmented file makes it possible to move the file (relatively) quickly to any segment in the
file. For the purpose of reading and (re)writing a segmented file, the predefined procedures
GETSEG and REWRITE are extended to accept two arguments. Assume that F is of a segmented file
type and F an integer expression.

GETSEG(F,N) Positions the file at the start of Nth segment counting from the current
.position of the file.

The file buffer Ft becomes the first component of the Nth segment.

N > 0 implies counting segments in the forward direction.

N = 0 means the current segment.

If no Nth segment (N >= 0) is present, EOF(F) becomes true and Ft becomes
undefined.

N C 0 implies counting segments in the backward direction.

If the file is positioned at segment number M, M < -N, then GETSEG(F,N) is
equivalent to RESET(F).

REWRITE(F,N) Initiates the file for (re)writing F at the Nth segment counting from the
current position. EOS(F) becomes true.

N > 0 implies counting segments in the forward direction.

N = 0 means the current segment.

If no Nth (N >= 0) segment is present the file is initiated for the writing of
F after the last segment and EOF(F) becomes true.

N < 0 implies counting segments in the backward direction.

If the file is positioned at segment number M, M C -N, then REWRITE(F,N) is
equivalent to REWRITE(F).

Current segment number R, R >= N, counted from the current position is not
accessible after the execution of REWRITE(F,N).

60497700 01 4-23

Because files are organized for sequential forward processing, GETSEG and REWRITE are not as

efficient for N <= 0 as for N> O.

The following points about segmented files should be noted:

EOF(F) always implies E0S(F).

GET(F) is only applicable when EOS(F) is false.

PUT(F) and PUTSEG(F) are only applicable when EOS(F) is true.

The routines PUTSEG, GETSEG, and EOS can only be applied to segmented files.

Files denoted by file names must be declared as file variables in the block of the program; an
exception to this is INPUT and OUTPUT. The files listed in the program heading are called
external files.

4-24 60497700 01

COMPILING, LOADING, AND
EXECUTING

A Pascal job usually passes through the following steps:

1. The source code (program) is compiled. The compiler generates object, or relocatable, code
and a listing of the source code if the L compiler option is selected.

2. The object code is loaded and linked with pre-compiled routines (for example, routines for
input and output and routines predefined by the user).

3. The loaded code is executed.

You initiate these steps with appropriate control statements to the NOS 2 operating system. The
following sequence shows the basic control statements to compile, load, and execute a program:

. . . ,CM50000,510,P3.
USER, . . .
CHARGE, . .

PASCAL. (Step 1
LGO. Steps 2 and 3
EOR
PROGRAM SAMPLE
BEGIN

END
EOR
data

EOF

ORGANIZATION OF A COMPILED PROGRAM
The object code that is generated by the compiler is relocatable binary code separated into named
logical records, or modules. Each module contains the code for a block in the program. The
modules occur in the same order as their corresponding compound statements. Global variables are
placed in a separate module. The module names depend on the E compiler option. See the
description of the E option under the heading Compiling a Program for an explanation of the entry
point names in the object code modules.

60497700 01 5-1

Here are two examples of source code and=tbe>object code they produce:

Source code Object code

(*$E+*) Record:

PROGRAM A(OUTPUT);
PROCEDURE B; 1

BEGIN
2

3

END;
PROCEDURE C; 4

PROCEDURE D;
BEGIN 5

6

END;
PROCEDURE E;

BEGIN

END;
BEGIN

END;
BEGIN

END.

Source code Object code

(*$E+*)
PROGRAM R(OUTPUT); Record:

PROCEDURE L;
BEGIN 1

•
2

EN▪ D* 3

PROCEDURE M;
FORWARD; 4

PROCEDURE N;
BEGIN 5

E▪ ND;
PROCEDURE M;

BEGIN

•
END*

BEGIN

B

D

C

A

A;

L

N

X;

END.

5-2 60497700 01

COMPILING A PROGRAM

To initiate compilation of your program, use the control statement

PASCAL(sfn,lfn,bfn/opts)

where -

sfn Program source file name; the default name is INPUT.

lfn Program listing file name; the default name is OUTPUT.

bfn Binary object file name; the default name is LGO.

opts One or more compiler options.

The parameters sfn, lfn, and bfn are order-dependent; two consecutive commas within the parametei
list request the compiler to use the default value for the missing parameter. For example,

PASCAL(SS„BB)

This control statement requests the compiler to compile source file SS and to produce both a
program listing file named OUTPUT, the default program listing file, and a binary object file
named BB.

At least 50000 octal words of common memory are needed to run the compiler.

You can control the compilation mode with compiler directives. For example, you can request the
compiler to insert or omit runtime test instructions with compiler directives.

Compiler directives are written as comments, but with a dollar sign ($) as the first character.

Compiler directives can be placed anywhere in a program, which enables you to activate options
over specific parts of your program.

Each option consists of an option letter followed by the new value of the option setting. The
value may be a + or - which turns some options on and off like switches. Alternately, the value
may be a decimal or octal (indicated by a radix B) integer for numeric options, or a literal
string for string options (see the E, I, and L options). The rules for these strings are the
same as those for character strings appearing in a Pascal program. Finally, for all options
except the I option, if the value is an equals sign (=), the option is set to its previous
value. However, only one previous value is remembered.

Option scanning terminates when any entry that is not an appropriate option letter or option
value is entered. For example, setting a switch option to a numeric value, will cause option
scanning to end with no error messages produced (except with the I option). Errors also
terminate option scanning.

The following options are available:

B Determines the size of file buffers. If the value of the B option is less than 64, it is
a buffer factor and the actual buffer size (in words) is at least 128 times the buffer
factor. If the value is larger than 64, it specifies the actual buffer size.

The compiler adds one to B, then rounds the value to the next multiple of the file
element size. Buffer sizes must be adjusted to fit the requirements of peripheral
hardware devices. Disk files need at least B1 (or B128). Tape files need at least B4
(or B512).

The buffer size for a file is bound to its type. The type text is predefined at the time
the compiler reads the reserved symbol program. Therefore, to change the buffer size for
textfiles (including INPUT and OUTPUT), the B option must be set prior to the program
heading.

Default is B2.

60497700 01 5-3

E Allows you to control the entry-point names generated by the compiler for the main

program, main variables block, procedures, functions, and labels. Entry points are

required by the operating system loader; the E option is of special interest to your if

you want to create a library of compiled, relocatable procedures and functions. The

following paragraphs describe the effect of the E option:

a) Procedures and functions declared as EXTERN or FORTRAN get an entry-point name equal

to the first seven characters of the procedure or function name. Other routines get

an entry-point name depending on the value of the E option at the moment of

analyzing the routine name:

E- Creates a unique name of the form PRCnnnn (where nnnn is an octal number

from 0001 to 7777) is generated by the compiler.

E+ Uses the first seven characters of the routine name as the entry-point

name.

An extended form of the E option may be used to create an entry-point unrelated to

the name of the routine. The following example illustrates this form for procedures

and functions:

FUNCTION (*$E.P.RND4*) ROUND(X: REAL): REAL;

The entry-point for function round is actually P.RND. This gives the ability to

define any entry point accepted by the loader, even ones that include special

characters (such as a period). This form of the E option applies equally to EXTERN,

FORTRAN, and local routines, but E must be specified between the word function or

procedure and the routine name.

b) The main program and main variables block get an entry-point name depending on the

value of E, as follows:

E- Uses P.MAIN as the main program and main variables block entry-point

name.

E+ Uses the first seven characters of the program name as the main program

entry-point name and the first six characters of the program name
followed by a semicolon as the main variables block entry-point name.

The extended form of the E option may be used for the main program, but two names

should be specified for the main program block and the main variables block. For

example,

PROGRAM (*$E'P.MAIN'/'P.VARS' *) MYPROG(OUTPUT);

c) Labels that are used by goto statements that exit a block are automatically assigned

an entry-point name of the form PASCL.X (where X is a letter or digit). The

entry-point name of any label may be explicitly assigned with the extended E

option. In this case, the E option must immediately precede the declaration of the

label. For example,

LABEL (*$E'L.1' *) 1,2, (*$E'L.LOOPS' *) 13;

It is your responsibility to ensure that duplicate entry-point names are not created when

you specify the E- option. You must avoid creating duplicate entry-point names and must

ensure that created entry-point names are acceptable to the system loader when you

specify the extended form of the E option. The extended form of the B option exists

mainly for the Pascal library.

Default is E-.

5-4 60497700 01

G Selects the automatic load and go feature, which allows a program to be compiled and
executed in a single job step with one control statement. If 0+ is selected when the
program header is scanned, the binary object file is rewound before compilation. If G+
is selected at the end of compilation and the program is error-free, the binary object
file is loaded and executed automatically.

-Default is G-.

I Controls the inclusion of external text. The I option includes source code from an
external file. This directive has the following two forms:

(*$I.PACKAGEV'FILE1*)

(*$I1PACKAGE1*)

The first form attempts to find an entry named PACKAGE on the file named FILE. The
second form attempts to find the entry named PACKAGE on the default file, which is
PASCLIB for NOS 2. The included text is not restricted to declarations. It can also
contain full procedures and functions. Because the text entry is simply inserted into
the text of your program, the include facility can be used to create full source
libraries.

The included text is written on the program listing if L+ was selected, thereby giving
you an accurate record of what was compiled. A complete record is important if you plan
to transport the program to another implementation of Pascal. Compiler options embedded
within included text will change previous option settings unless they are explicitly
restored with an equal sign (=) in the text itself.

L Controls the listing of the program text. The L option turns the listing on and off
during compilation, specifies the size of each printed page, and sets page titles and
subtitles. L+ turns the listing on and L- turns it off. If the L is followed by a
number, the number defines the page size by specifying the last line to be printed on
each page. L > 1000 selects no pagination. If L is followed by a character string, the
page title or subtitle is set. The first such specification sets the main title, while
subsequent specifications set the subtitle and cause a page eject. To set the title on
the first printed page, the L option must appear on the first line.

Default is L+.

P Directs the compiler to generate a Post Mortem Dump (PMD) listing in the event of a
runtime error. P+ requests the PMD facility to provide a description of each procedure
or function that was active at the time of the error, including the line number of the
statement which was currently being executed, and the names and values of all
unstructured local variables. Values of pointer variables are printed as 6-digit octal
addresses, and values of ALFA variables are printed as 10-character strings. A value of
LINDEF means undefined. P+ is recommended until you are sure that your program is
correct. P- suppresses most of the PMD information; it includes enough information to
list the name of the procedure in which the error occurred. PO is an option setting
designed especially for the Pascal compiler and library. Procedures compiled with PO are
transparent to PMD. Compiling an entire program with PO deletes the minimal information
(3 words per procedure), which includes the name of the procedure and the locations of
the entry point and constants. PO can be used for production programs to delete all
unnecessary traceback information.

Default is P+.

R Controls reduce mode. R is used in conjunction with the W option to control execution
field length.

Default is R+.

60497700 01 5-5

T Directs the compiler to generate extra code that can be used to perform runtime tests to
check the following:

a) That the index used for array-indexing operations lies within the specified array
bounds.

-b) That the value that is assigned to a variable of a subrange type lies within the
specified range. This check is also performed when reading such variables.

c) That no divide-by-zero operations were performed.

d) That the absolute value of the result of an automatic real-to-integer conversion is
less than MAXINT.

e) That there was no overflow or underflow from a real expression.

f) That the evaluated expression in a CASE statement corresponds to a constant in a
case list element (unless OTHERWISE is used).

g) That P is a valid pointer when it is referenced as P or DISPOSE(P). The T+ option
must be selected when the pointer type is declared and when the pointer is
referenced.

h) That SET elements are within the declared range after assignments to set variables
are made.

Also, the control variable in all FOR statements is set to an undefined value upon normal
exit from the statement if T+ is selected. T+ is recommended until you are sure that
your program is correct.

Default is T+.

U Restricts the number of characters that are scanned by the compiler in every source
line. U+ restricts the number of characters to 72. This is convenient when using the
default widths under the UPDATE or MODIFY text maintenance programs. U- sets the number
of relevant characters to 120. U may be set to any specific numeric value between 10 and
120. The remainder of the line (past the width specified by this option) is treated as a
comment. The U option is best used on the first line of the Pascal source program.

Default is U-.

W Controls the workspace size. W is used in conjunction with the R option to control
runtime field length.

Default is WO.

X Determines the number of X registers used for passing parameter descriptors. If the
value of the X option is in the range (0 C N < 5), the first N parameter descriptors are
passed in the registers X0 to X(N-1) (the first in X0, the second in Xl, and so on).
Extra parameters are passed through a table in memory.

N > 0 reduces the size of the code produced by the compiler and usually decreases the
execution time. However, you must be aware that with the first parameter and with N > 0,
the compiler cannot use registers X0 to XT (where J is the minimum of (N-1) and (I-2))
for its computation. It is possible for the compiler to give the message: EXPRESSION TOO
COMPLICATED where N > 0.

Default is X4.

5-6 60497700 01

OVERVIEW OF THE RUNTIME SYSTEM
Code and data are separated from each other at runtime. The local data from each executed
routine is united in a data segment and is addressed by an offset relative to the segment origin

(the so-called BASE address) from this time on. At runtime, a stack containing the data segments
of all executed routines is provided. Because the base addresses of the data segments vary
during runtime, variable addressing is nontrivial. However, this way of organizing data
guarantees maximum storage economy. Every data segment exists only during the routine execution;
the data segment is created at routine entry and discarded at routine exit.

To allow stacking and unstacking of data segments, a link is needed. This link, called the
dynamic link (DL), chains every data segment to its immediate predecessor in the stack. Variable
addressing is done through a second link, called the static link (SL), which chains only those
data segments which are currently accessible. SL and DL are incorporated in the head of every
data segment.

For example, refer to the following source code:

(*$E+*)
PROGRAM RSTS(OUTPUT);
PROCEDURE P;

PROCEDURE Q;
BEGIN

END;
PROCEDURE R;

BEGIN

4;

END.
BEGIN

R;

END▪ ;
BEGIN

P;

END▪ .

60497700 01 5-7

This is the stack of data segments that correspond to the program.

user
area

runtime
heap

runtimef
stack

heap elements
created by NEW
or by DISPOSE

data segment of the
routine actually

in execution

data segment of
the main program

code and
global variables

dynamic data static
chain: segments: chains:

r
I I

_ J

q

DL
SL

r

DL
SL

DL
SL

rtst

DL
SL

es-

FL

4-134

4- 86 (NEXT)

4C— B5 (BASE)

4— I MAIN I

0

.4- B6 (NEXT)

4- B5 (BASE)

4— (MAIN)

The stack, growing upwards, originates from the calling sequence: RTST ---P R Q. BASE is

the base address of the most recently created data segment. It is the head of the chains. NEXT
defines the base address of the next data segment to be stacked.

LOADING AND EXECUTING A PROGRAM

To initiate loading and execution of your program, use the control statement:

OC(fl,f2 fn)

where

OC The file that contains the object code, or relocatable binary code.

fi The names of files that contain routines that are external to the program, but that are
used during execution.

5-8 60497700 01

Routines that are referenced, but not included in file OC, are searched for in the PASCLIB system

library.

Routines that are referenced, but not included either in the file OC or in the PASCLIB system

library, are searched for in the system library.

It is possible to load and initiate execution in several other ways.

After completion of the loading process, a contiguous piece of unused memory remains at the upper
end of the user area. This area is called the work space and is used for the runtime stack and
runtime heap during execution. The runtime stack grows upward from the lower end while the
runtime heap grows downward from the upper end.

Iuser area

runtime heap

work space

=time stack

code and
global variables

FL

0

The W compiler option controls the calculation of the work space (WS) value.

Wn sets the number of words to be used for the WS (n is a string of digits with an optional
post-radix B).

WO requests the Pascal compiler to calculate an appropriate WS size. Pascal sums the lengths of
all nongobal variables declared in the program, then adds a safety factor of 2000 octal (1024
decimal) words. The value that the compiler estimates for the W option is printed at the bottom
of the compiler listing.

The R compiler option controls what is done with the WS value. R+ requests that the user program
be given the right amount of memory for both the code including global variables (CS) and the WS,
even if this is a reduction. R- requests that the memory be increased only if it is necessary to
satisfy the sum of the CS and WS. In other words, the memory allocation will never be decreased
if R- is set. This option has an effect which is analogous to the REDUCE control statement.

The default settings are WO,R+. This causes Pascal to calculate the WS value and requests that
memory allocation be set to reflect this, regardless of whether or not an increase or decrease is
required. These option settings will always allocate enough memory for programs that do not use
recursion or dynamic allocation, which is the case for most programs. In some cases, however,
the defaults may not be appropriate.

When setting the Work Space value explicitly, you should note that there is hidden data
(temporary space for anonymous variables) that is used by Pascal program itself. Therefore, you
should increase your WS estimate to provide a margin of safety. A good rule of thumb is to add
about 10 words per procedure plus an additional several hundred words.

UNDERSTANDING RUNTIME ERROR MESSAGES

When a runtime error occurs, a dayfile message explaining the error is given together with a Post
Mortem Dump.

60497700 01 5-9

FORTRAN AND PASCAL INCOMPATIBILITIES
Some incompatibilities exist between the Pascal and FORTRAN languages. Two of these are the
representation of values and the method of storing multidimensional array values. You may be
forced to do some extra programming to get around these incompatibilities.

Table 5-1 shows parameter types in a Pascal routine that correspond to parameter types in a
FORTRAN routine. The Pascal compiler does not test for illegal parameter types as in FORTRAN.
As in FORTRAN, trailing parameters can be omitted.

Alternate returns from a FORTRAN routine are not allowed.

TABLE 5-1. CORRESPONDING PASCAL AND FORTRAN ROUTINE PARAMETER TYPES

Parameter Type
in a FORTRAN
Routine

Parameter Type
in a Pascal Remarks
Routine

INTEGER INTEGER With variable parameters of integer, real, double,
and complex types, a negative zero (-0) may be
returned by the FORTRAN routine. To eliminate this
possibility, you should add a zero to the value upon
returning to the Pascal routine.

REAL REAL

DOUBLE RECORD

PUREAL;
P2:REAL

END
COMPLEX

LOGICAL INTEGER Return a negative value for true and a positive
value for false.

DIMENSION ARRAY You must either transpose multidimensional array
values before entering a FORTRAN routine or remember
that array values are stored rowwise when manipulat-
ing them in the FORTRAN routine. Always set the
lower array bound to 1.

SUBROUTINE PROCEDURE

FUNCTION FUNCTION The result returned to the Pascal routine cannot be
complex, double, or a negative zero. To eliminate
the possibility of a negative zero, you should add
a zero to the value upon returning to the Pascal
module.

5-10 60497700 01

SAMPLE PROGRAMS

This section poses some problems and provides a solution.

The first problem deals with placing a class of three steers.

In a judging contest, the official judges the steers on qualities such as height, straightness
along the back, and amount of muscle. The steers are numbered 1, 2, and 3, so it is possible for
the official to determine the correct placing as: 3, 1, 2.

After the official determines the correct placing, students judge the same class to determine
what they feel is the correct placing (the official's placing is unknown to the students).

A student can place the class as one of the following combinations:

3 1 2
3 2 1
1 3 2
2 1 3
2 3 1
1 2 3

A perfect match between the official's and a student's placing is awarded 50 points. A student
whose placing does not match the official's is penalized for each incorrect decision that was
made. The penalty is calculated using a number called the degree of difficulty or cut. The cut
between a pair of steers is also determined by the official. An example of a cut assignment is:

Official placing: 3 1 2

Cuts: 5 1

If the official assigns a cut of 5 between steers 3 and 1, then there is a clear difference in
quality in the two steers; switching the placing of this pair results in a large penalty. If the
official assigns a cut of 1 between steers 1 and 2, then there is a small difference in quality
in the two steers; switching the placing of this pair results in a lesser penalty. The following
are sample penalty calculations:

Official placing: 3 1 2

Cuts: 5 1

Student placing: 1 3 2

The score would be calculated as 50 - 5 = 45 because the top pair was switched.

Official placing: 1 2 3

Cuts: 1 3

Student placing: 3 2 1

The score would be calculated as 50 - (2*cut2 + 2*cut2) = 42 because the top and bottom placing
was switched.

The problem is to write a Pascal program that accepts as input the official's placing, cuts, and
student's placing, calculates the score, and outputs the score.

60497700 01 6-1

This solution uses arrays to hold the data, IF statements to perform the calculations, and

labeled statements to control the flow of execution.

PROGRAM JUDGE(INPUT/,OUTPUT);
TYPE

• PLACINGS = ARRAY[1..3] OF INTEGER;
CUTS = ARRAY[1..2] OF INTEGER;

VAR
0,J : PLACINGS;
CUT : CUTS;
I,RESULT : INTEGER;

LABEL
50,75;

BEGIN
(** INPUT. OFFICIAL PLACING. **)

WRITELN('INPUT OFFICIAL PLACING');
FOR I := 1 TO 3 DO READ(0[I]);

(** INPUT CUTS. **)
WRITELN('INPUT OFFICIAL CUTS');
FOR I := 1 TO 2 DO READ(CUT[I]);

(** INPUT JUDGE'S PLACING OR ZERO. **)
50 : WRITELN('INPUT JUDGES" PLACING OR FOUR ZEROS');

FOR I := 1 TO 3 DO READ(J[I]);
IF = 0) THEN GOTO 75;

(** BEGIN CALCULATION OF SCORE. PERFECT SCORE. **)
IF ((0[1]=J[1]) AND (0[2]=J[2]))

1116N RESULT := 50;
(**.TOP AND BOTTOM PAIR SWITCHES. **)

IF ((0[1]=J[2]) AND (O[2]=J[1]))
THEN RESULT := 50 - CUT[1];

IF ((0[2]=J[3]) AND (0[3]=J[2]))
THEN RESULT := 50 - CUT[2];

(** TOP TO BOTTOM. **)

IF ((0[1]=7[3]) AND (0[2]=J[1]))
THEN RESULT := 50 - (2*CUT[1] + CUT[2]);

(** SIMPLE BUST. **)
IF ((0[1]=7[2]) AND (0[2]=J[3]))

THEN RESULT := 50 - (CUT[1] + 2*CUT[2]);
(** MAJOR BUST. **)
IF ((0[1]=J[3]) AND (0[2]=J[2]))

THEN RESULT := 50 - (2*CUT[1] 2*CUT[2]);
(** OUTPUT SCORE. **)

WRITELN('SCORE IS ',RESULT:2);
GOTO 50;

75 : WRITELN('END OF PROGRAM')

END.

6-2 60497700 01

This solution decodes the student's placing to match the placing: 1 2 3 using WHILE and REPEAT

statements and then calculates the penalty using a CASE statement and a function. The use of

WHILE or REPEAT statements to control execution of a program is preferred over the use of labeled

statements because the result is a more structured program.

PROGRAM JUDGE(INPUT/,OUTPUT);
TYPE

PLACINGS = ARRAY[1..3] OF INTEGER;
CUTS = ARRAY[1..2] OF INTEGER;

VAR
0,J,R : PLACINGS;
CUT : CUTS;
I,M,N,SCORE : INTEGER;

FUNCTION RESULT(X,Y : INTEGER) : INTEGER;
BEGIN

RESULT := 50 - (X*CUT[1] + Y*CUT[2])
END;

BEGIN
(** INPUT OFFICIAL PLACING. **)

WRITELN('INPUT OFFICIAL PLACING');
FOR I := 1 TO 3 DO READ(O[I]);

(** INPUT CUTS. **)
WRITELN('INPUT OFFICIAL CUTS');
FOR I := 1 TO 2 DO READ(CUT[I]);

(** INPUT JUDGE'S PLACING. **)
WRITELN('INPUT JUDGES" PLACING');
FOR I := 1 TO 3 DO READ(J[I]);

(** CREATE ARRAY R AS IF OFFICIAL PLACING WERE 1 2 3.

FOR N:= 1 TO 3 DO
BEGIN

M := 0;
REPEAT

M := M + 1;
UNTIL J[M] = 0[N];
R[M] := N

END;
(** CALCULATE RESULT. **)

CASE (100*R[1] + 10*R[2] + R[3]) OF
123 : SCORE := RESULT(0,0);
132 : SCORE := RESULT(0,1);
213 : SCORE := RESULT(1,0);
231 : SCORE := RESULT(2,1);
312 : SCORE := RESULT(1,2);
321 : SCORE := RESULT(2,2)

END;
(** OUTPUT SCORE. **);
WRITELN('SCORE IS ',SCORE:2);
WRITELN('END OF PROGRAM')

END.

* *)

60497700 01 6-3

The second problem deals with building a linked list. The following program creates a

last-in-first-out (LIFO) linked list of four nodes. The data area in each node is assigned a

character in the alphabet. After the linked list is constructed, it is traversed from the last

entry to the first entry. Traversal is verified by writing the contents of the data area in each

node.

PROGRAM INKLIST(INPUT/,OUTPUT);
TYPE

POINTER = tNODE;
NODE = RECORD

NEXTPNTR : POINTER;
DATA : CHAR

END;
VAR

BASE,PNTR : POINTER;
I : INTEGER;

BEGIN
(** CREATE A POINTER THAT POINTS TO NIL. **)

BASE := NIL;
(** CREATE NODES AND LINK THEM. **)

FOR I := 1 TO 4 DO
BEGIN
(** CREATE A NEW NODE. **)

NEW(PNTR);
(** PUT DATA INTO THE NODE DATA AREA. **)

READLN(PNTRt.DATA):
(* PUT THE BASE POINTER VALUE INTO THE NODE POINTER. *)

PNTRt.NEXTPNTR := BASE;
(** POINT THE BASE POINTER TO THE NODE. **)

BASE := PNTR
END;

PNTR := BASE;
WHILE PNTR 0 NIL DO

BEGIN
(** VERIFY ORDER OF NODES. **)
WRITELN(PNTR .DATA);
(** POINT TO THE NEXT NODE. **)
PNTR := PNTRt.NEXTPNTR

END;
WRITELN('END OF PROGRAM')

END.

6-4 60497700 01

If you insert A, B, C, D as data for the nodes, the resulting linked list would appear as follows:

NIL

A

B

C

BASE

D

60497700 01 6-5

The following program is a variation of the linked list program. A linked list of four nodes is

again created, but the first node is pointed to by a pointer named HEAD and the last node by a

pointer named TAIL. The advantage of creating the list this way is that modifying the list is

much easier.

The list must contain at least one node.

PROdRAM HEADTAIL(INPUT/,OUTPUT);

TYPE
POINTER = *NODE;
NODE = RECORD

NEXTPNTR : POINTER;
DATA : CHAR

END;
VAR

HEAD, TAIL, PNTR : POINTER;
I : INTEGER;

BEGIN
(** CREATE FIRST NODE AND POINT HEAD AND TAIL TO IT. **)

NEW(PNTR);
READLN;
READ(PNTR).DATA);
PNTRf.NEXTPNTR := NIL;
HEAD := PNTR;
TAIL := PNTR;
(** CREATE OTHER THREE NODES. **)

FOR I := 1 TO 3 DO
BEGIN

NEW(PNTR);
READLN;
READ(PNTRI.DATA);
PNTRLNEXTPNTR := TAILf.NEXTPNTR:
TAILf.NEXTPNTR := PNTRI.NEXTENTR;
TALL := PNTR

END;
(** VERIFY ORDER OF NODES.'**)
PNTR := HEAD;
REPEAT

WRITELN(PNTRf.DATA);
PNTR := PNTRf.NEXTPNTR

UNTIL PNTRf.NEXTPNTR = NIL;
WRITELN(PNTRI.DATA);
WRITELN('END OF PROGRAM')

END.

6-6 60497700 01

If you insert A, B, C, D as data for the nodes, the resulting linked list would appear as follows:

HEAD

A

V

C

TAIL

NIL

D

60497700 01 6-7

CHARACTER SETS

This appendix describes character correspondence between the internal Pascal character set and

the CDC Scientific and CDC ASCII character sets.

All program statements in this manual are shown in the internal Pascal character representation.

You must translate this representation into the character set used at your site.

Ordinal
Number

Pascal
Character

CDC Scientific
Character Set

CDC ASCII
Character Set

0 undefined End of Line in 63
: (colon) in 64

End of Line in 63
: (colon) in 64

1 A A A

2 B B B

3 C C C

4 D D D

5 E E E

6 F F F

7 G G G

8 H H H

9 I I I

10 J J J

11 K K K

12 L L L

13 M M

14 N N N

15 0 0 0

16 P P P

17 Q Q Q

18 R R R

19 S S S

20 T T T

60497700 01 A-1

Ordinal
Number

Pascal
Character

CDC Scientific
Character Set

CDC ASCII
Character Set

21 U U U

22 V V V

23 W

24 X X X

25 Y Y Y

26 Z Z Z

27 0 0 0

28 1 1 1

29 2 2 2

30 3 3 3

31 4 4 4

32 5 5 5

33 6 6 6

34 7 7 7

35 8 8 8

36 9 9 9

37 + + +

38 - - -

39

40 / / /

41 (((

42)))

43 $ $ $

44 = = -

45 (space) (space) (space)

46 , (comma) , (comma) , (comma)

47 . (period) . period . period

48 E (equivalence) # (number sign)

49 [(left bracket) [(left bracket) [(left bracket)

A-2 60497700 01

Ordinal
Number

Pascal
Character

CDC Scientific
Character Set

CDC ASCII
Character Set

50] (right bracket)] (right bracket) .] (right bracket)

51 : (colon) : (colon) in 63
% (percent) in 64

: (colon) in 63
% (percent) in 64

52 0 (not equal) " (quote)

53 f-,-(right arrow) — (underline)

54 v (logical OR) I (exclamation)

55 A (logical AND) & (ampersand)

56 ' (apostrophe) t (up arrow) ' (apostrophe)

57 i (down arrow) 2 (question)

58 < (less than) C (less than) C (less than)

59 > (greater than) > (greater than) > (greater than)

60 < (less equal) @ (commercial at)

61 > (greater equal) \ (back slash)

62 t (up arrow) —, (logical not) A (circumflex)

63 ; (semicolon) ; (semicolon) ; (semicolon)

60497700 01 A-3

COMPILATION ERROR MESSAGES

The compiler indicates an error by printing an arrow that points to the place in the text where
the error is detected. This is not always the place where the error is made. The arrow is
followed by a number, which indicates what kind of error was detected. A list of numbers used in
error messages and their corresponding messages is given at the end of the compilation. The list
is given on the file containing the compiler listing.

At most

MESSAGES

10 errors will be indicated on one line.

ERROR IN SIMPLE TYPE
IDENTIFIER EXPECTED
'PROGRAM' EXPECTED
')' EXPECTED
':' EXPECTED

1:
2:
3:
4:

5:
6: UNEXPECTED SYMBOL
7: ERROR IN PARAMETER LIST
8: 'OF' EXPECTED
9: 'C' EXPECTED
10: ERROR IN TYPE
11: 1[1 EXPECTED
12: '1' EXPECTED
13: 'END' EXPECTED
14: ';' EXPECTED
15: INTEGER CONSTANT EXPECTED
16: 1=' EXPECTED
17: 'BEGIN' EXPECTED
18: ERROR IN DECLARATION PART
19: ERROR IN FIELD-LIST
20: 1,1 EXPECTED
21: 1... EXPECTED
40: VALUE PART ALLOWED ONLY IN MAIN PROGRAM
41: TOO FEW VALUES SPECIFIED
42: TOO MANY VALUES SPECIFIED
43: VARIABLE INITIALIZED TWICE
44: TYPE IS NEITHER ARRAY NOR RECORD
45: REPETITION FACTOR MUST BE GREATER THAN ZERRO
50: ERROR IN CONSTANT
51: ':=' EXPECTED
52: 'THEN' EXPECTED
53: 'UNTIL' EXPECTED
54: 'DO' EXPECTED
55: 'TO' OR 'DOWNTO' EXPECTED
57: 'FILE' EXPECTED
58: ERROR IN FACTOR
59: ERROR IN VARIABLE
60: FILE TYPE IDENTIFIER EXPECTED
101: IDENTIFIER DECLARED TWICE
102: LOWBOUND EXCEEDS HIGHBOUND
103: IDENTIFIER IS NOT OF APPROPRIATE CLASS
104: IDENTIFIER NOT DECLARED
105: SIGN NOT ALLOWED
106: NUMBER EXPECTED
107: INCOMPATIBLE SUBRANGE TYPES
108: FILE NOT ALLOWED HERE
109: TYPE MUST NOT BE REAL

60497700 01 B-1

MESSAGES

110: TAGFIELD TYPE MUST BE AN ENUMERATION ;APE
111: INCOMPATIBLE WITH TAGFIELD TYPE
112: INDEX TYPE MUST NOT BE REAL
113: INDEX TYPE MUST BE AN ENUMERATION TYPE
114: BASE TYPE MUST NOT BE REAL
115: BASE TYPE MUST BE AN ENUMERATION TYPE
116: ERROR IN TYPE OF PREDEFINED PROCEDURE PARAMETER
117: UNSATISFIED FORWARD REFERENCE
118: IDENTIFIER USED PRIOR TO DECLARATION
119: FORWARD DECLARED; REPETITION OF PARAMETER LIST NOT ALLOWED
120: FUNCTION RESULT TYPE MUST BE A SIMPLE OR POINTER TYPE
121: FILE VALUE PARAMETER NOT ALLOWED
122: FORWARD DECLARED FUNCTION; REPETITION OF RESULT TYPE NOT ALLOWED
123: MISSING RESULT TYPE IN FUNCTION DECLARATION
124: FIXED-POINT FORMATTING ALLOWED FOR REALS ONLY
125: ERROR IN TYPE OF PREDEFINED FUNCTION PARAMETER
126: NUMBER OF PARAMETERS DOES NOT AGREE WITH DECLARATION
127: INVALID PARAMETER SUBSTITUTION
128: PARAMETER PROCEDURE/FUNCTION IS NOT COMPATIBLE WITH DECLARATION
129: TYPE CONFLICT OF OPERANDS
130: EXPRESSION IS NOT SET TYPE
131: TESTS ON EQUALITY ALLOWED ONLY
132: '<' AND '>' NOT ALLOWED FOR SET OPERANDS
133: FILE COMPARISON NOT ALLOWED
134: INVALID TYPE OF OPERAND(S)
135: TYPE OF OPERAND MUST BE BOOLEAN
136: SET ELEMENT MUST BE AN ENUMERATION TYPE
137: SET ELEMENT TYPES NOT COMPATIBLE
138: TYPE OF VARIABLE IS NOT ARRAY
139: INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION
140: TYPE OF VARIABLE IS NOT RECORD
141: TYPE OF VARIABLE MUST BE FILE OR POINTER
142: INVALID PARAMETER SUBSTITUTION
143: INVALID TYPE OF LOOP CONTROL VARIABLE
144: INVALID TYPE OF EXPRESSION
145: TYPE CONFLICT
146: ASSIGNMENT OF FILES NOT ALLOWED
147: LABEL TYPE INCOMPATIBLE WITH SELECTING EXPRESSION
148: SUBRANGE BOUNDS MUST BE OF AN ENUMERATION TYPE
150: ASSIGNMENT OF THIS FUNCTION IS NOT ALLOWED
151: ASSIGNMENT TO FORMAL FUNCTION IS NOT ALLOWED
152: NO SUCH FIELD IN THIS RECORD
155: CONTROL VARIABLE MUST NOT BE DECLARED ON AN INTERMEDIATE LEVEL
156: MULTIDEFINED CASE LABEL
157: RANGE OF CASE LABELS IS TOO LARGE
158: MISSING CORRESPONDING VARIANT DECLARATION
159: REAL OR STRING TAGFIELDS NOT ALLOWED
160: PREVIOUS DECLARATION WAS NOT FORWARD
161: MULTIPLE FORWARD DECLARATION
164: SUBSTITUTION OF PREDEFINED PROCEDURE/FUNCTION NOT ALLOWED
165: MULTIDEFINED LABEL
166: MULTIDECLARED LABEL
167: UNDECLARED LABEL
168: UNDEFINED LABEL IN THE PREVIOUS BLOCK
169: ERROR IN BASE SET

170: VALUE PARAMETER EXPECTED
172: UNDECLARED EXTERNAL FILE
173: FORTRAN PROCEDURE OR FUNCTION EXPECTED
174: PASCAL PROCEDURE OR FUNCTION EXPECTED
175: MISSING FILE 'INPUT' IN PROGRAM HEADING
176: MISSING FILE 'OUTPUT' IN PROGRAM HEADING

B-2 60497700 01

MESSAGES

177: ASSIGNMENT TO FUNCTION ALLOWED ONLY IN FUNCTION BODY

178: MULTIDEFINED RECORD VARIANT

179: X-OPTION OF ACTUAL PROCEDURE/FUNCTION DOES NOT MATCH FORMAL DECLARATION

180: CONTROL VARIABLE MUST NOT BE FORMAL

181: ARRAY SUBSCRIPT CALCULATION TOO COMPLICATED
182: MAGNITUDE OF CASE LABEL IS TOO LARGE
183: SUBRANGE OF TYPE REAL IS NOT ALLOWED
184: ASSIGNMENT TO CONTROL VARIABLE IS NOT ALLOWED
198: ALTERNATE INPUT NOT FOUND
199: ONLY ONE ALTERNATE INPUT MAY BE ACTIVE
201: ERROR IN REAL CONSTANT: DIGIT EXPECTED
202: STRING CONSTANT MUST BE CONTAINED ON A SINGLE LINE
203: INTEGER CONSTANT EXCEEDS RANGE
204: 8 OR 9 IN OCTAT NUMBER
205: STRING OF LENGTH ZERO ARE NOT ALLOWED
206: INTEGER PART OF REAL CONSTANT EXCEEDS RANGE
207: REAL CONSTANT EXCEEDS RANGE
250: TOO MANY NESTED SCOPES OF IDENTIFIERS
251: TOO MANY NESTED PROCEDURES AND/OR FUNCTIONS
255: TOO MANY ERRORS ON THIS SOURCE LINE
256: TOO MANY EXTERNAL REFERENCES
258: TOO MANY LOCAL FILES
259: EXPRESSION TOO COMPLICATED
260: TOO MANY EXIT LABELS
261: TOO MANY LARGE VARIABLES
262: NODE TO BE ALLOCATED IS TOO LARGE
263: TOO MANY PROCEDURE/FUNCTION PARAMETERS
264: TOO MANY PROCEDURES AND FUNCTIONS
300: DIVISION BY ZERO
302: INDEX EXPRESSION OUT OF BOUNDS
303: VALUE TO BE ASSIGNED IS OUT OF BOUNDS
304: ELEMENT EXPRESSION OUT OF RANGE
305: FIRST CHARACTER OF ENTRY POINT MUST BE A-Z, 0-4
350: ONLY THE LAST DIMENSION MAY BE PACKED
351: ARRAY TYPE IDENTIFIER EXPECTED
352: ARRAY VARIABLE EXPECTED
353: POSITIVE INTEGER CONSTANT EXPECTED
394: COMPARISON OF DYNAMIC PARAMETERS NOT ALLOWED
395: ASSIGNMENT TO/FROM DYNAMIC PARAMETER NOT ALLOWED
396: MULTI-WORD VALUE PARAMETERS ARE NOT IMPLEMENTED FOR FORTRAN ROUTINES
397: PACK AND UNPACK ARE NOT IMPLEMENTED FOR DYNAMIC ARRAYS
398: IMPLEMENTATION RESTRICTION

60497700 01 B-3

RESERVED SYMBOLS

The following are reserved symbols that have a predefined meaning that cannot be changed.

Throughout this manual reserved symbols are depicted in boldface type in the syntax diagrams and

in underlined uppercase letters in the text. All alphabetic characters must appear in uppercase

in your source program.

+ (DYNAMIC PACKED

-) ELSE PROCEDURE
* [END PROGRAM

/] FILE RECORD
:= (space) FOR REPEAT

FUNCTION SEGMENTED

(* GOTO SET ,
; *) IF THEN

AND IN TO
ARRAY LABEL TYPE
BEGIN MOD UNTIL

C> CASE NIL VALUE
< CONST NOT VAR
<= DIV OF WHILE
>= DO OR WITH
> DOWNTO OTHERWISE

60497700 01 C-1

INDEX

ABS 4-12
Actual parameters 4-10
ARCTAN 4-12
Array type 3-9
Assignment statement 4-3

Binding
A procedure or function
A value 4-10
A variable 4-11

Blacks
External 3-20
Forward 3-20
Internal 3-21

Boolean literal 2-4
Boolean type 3-5

Call by reference 4-11
Call by value 4-10
CARD 4-12
CASE statement 4-7
Char type 3-6
Character literal 2-3
Character sets A-1
CUR 4-12
CLOCK 4-12
Comment 2-4
Compiler

Command 5-3
Error messages B-1
Options 5-3

Compiling a program 5-3
CONST section 1-1, 3-2
COS 4-12

File parameters 4-12
File type 3-10
Files

Definition 4-16
Segmented 4-23
Textfiles 4-18, 4-22

FOR statement 4-6
Formal parameters 3-20

4-11 FORTRAN and Pascal incompatibilities 5-10
Forward block 3-20
Function binding 4-11
FUNCTION section (see Routines section)

DATE 4-12
Declarations and definitions part

CONST section 3-2
➢escription 1-1, 3-1
FUNCTION section (see Routines section)
LABEL section 3-2
PROCE➢URE section (see Routines section)
TYPE section 3-3
VALUE section 3-17
VAR section 3-16

DISPOSE 4-13
Dynamic parameters 4-11

End-Of-Line (EOL) 2-4
EOF 4-17
EOLN 4-18
EOS 4-23
Error messages, compiler B-1
Executing a program 5-8
EXP 4-13
EXPO 4-13
Expressions 4-1
External block 3-20

GET 4-17
GETSEG 4-23
GOTO statement 4-9

HALT 4-13
HIGH 4-13

Identifiers 2-1
IF statement 4-4
Incompatibilities, Pascal and FORTRAN 5-10
Integer literal 2-2
Integer type 3-7
Internal block 3-21

Jumps 4-8

LABEL section 1-1, 3-2
Labeled statement 4-8
Language concepts 1-1
LINELIMIT 4-18
Literals

Boolean 2-4
Character 2-3
Definition 2-2
Integer 2-2
Real 2-3
String 2-4

LN 4-13
Loading a program 5-8
LOW 4-13

MESSAGE 4-13

NEW 4-13
Nonprinting symbols 2-4
Notations ix

ODD 4-14
Options, compiler 5-3
ORD 4-14
Organization of a compiled program 5-1
Overview of the runtime system 5-7

60497700 01 Index-1

PACK 4-15
Packed parameters 4-12
PAGE 4-18
Parameters

Actual 4-10
Dynamic 4-11
File 4-12
Formal 3-20
Packed 4-12

Pascal
Compile command
Language concepts 1-1
Symbols 2-1

Pascal and FORTRAN incompatibilities 5-10
Pointer types 3-15
PRED 4-15
Predefined

Identifiers 2-1
Routines 4-12, 4-17, 4-18
Textfiles 4-22

Procedure binding 4-11
PROCEDURE section (see Routines section)
Program

Compilation 5-3
Declarations and definition part 1-1, 3-1
Execution 5-8
Heading part 1-1, 3-1
Loading 5-8
Samples 6-1
Statements part 4-1

Program parts
Declarations and definitions 1-1, 3-1
Heading 1-1, 3-1
Statements 1-1, 4-1

PUT 4-17
PUTSEG 4-23

READ 4-17
READLN 4-18
Real literal 2-3
Real type 3-7
Record type 3-11
REPEAT statement 4-6
Reserved symbols 2-2, C-1
RESET 4-17
REWRITE 4-18, 4-23
ROUND 4-15
Routine, predefined 4-12, 4-17, 4-18
Routines 4-9
Routines section 3-19
Rules of scope 3-21
Runtime

Error messages 5-9
System overview 5-7

Sample programs 6-1
Scalar type 3-8
Scope rules 3-21
Segmented files 4-23
Separators

Comment 2-4
Nonprinting symbols 2-4

Set type 3-13
Simple types

Boolean 3-5
Char 3-6

Simple types (Contd)
Integer 3-7
Real 3-7
Scalar 3-8
Subrange 3-8

SIN 4-15
SQR 4-15
SQRT 4-15
Statements

Assignment 4-1
CASE 4-7
FOR 4-6
GOTO 4-9
IF 4-4
Labeled 4-8
REPEAT 4-6
WHILE 4-6
WITH 4-5

Statements part 1-1, 4-1
String literal 2-4
Structured types

Array 3-9
File 3-10
Record 3-11
Set 3-13

Subrange type 3-8
SUCC 4-16
Symbols

Pascal 2-1
Reserved C-1

Textfiles 4-18, 4-22
TIME 4-16
TRUNC 4-16
Type compatibility 3-16
TYPE section 1-1, 3-3
Types

Pointer 3-15
Simple

Boolean 3-5
Char 3-6
Integer 3-7
Real 3-7
Scalar 3-8
Subrange 3-8

Structured
Array 3-9
File 3-10
Record 3-11
Set 3-13

UNDEFINED 4-16
Understanding runtime error messages 5-9
UNPACK 4-16

Value binding 4-10
VALUE section 1-1, 3-17
VAR section 1-1, 3-16
Variable binding 4-11

WHILE statement 4-6
WITH statement 4-5
WRITE 4-18, 4-20
WRITELN 4-18

Index-2 60497700 01

COMMENT SHEET

MANUAL TITLE: Pascal Version 1 Reference Manual

PUBLICATION NO.: 60497700 REVISION: 01

NAME:

COMPANY:

STREET ADDRESS:

CITY: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

Please reply No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

TAPE

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive
Sunnyvale, California 94086

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

111111111111.1111Ellal

1111111111=11111111111111111
MliallallE
U1111•1111•111.11
M111111=1111111111=1

FOLD

C
U

T
A

LO
N

G
 L

IN
E

