PLATO

CONTROL DATA

AUTHOR LANGUAGE W
REFERENCE MANUAL

G

CONTROL
DATA

PL AT()

AUTHOR LANGUAGE
REFERENCE MANUAL

GD

CONTROL
DATA

REVISION RECORD

REVISION DESCRIPTION
01 Preliminary manual.
(7-18-74)
A Manual released. This printing obsoletes the previous edition.
(9-19-75)
B Manual revised to reflect changes and corrections resulting from product development. This revision includes
(3-31-717) minor editorial changes and adds index. This edition obsoletes all previous editions.
C Manual revised to reflect changes and corrections resulting from product development. This edition obsoletes all
(4-21-78) previous editions.

Publication No.
97405100

REVISION LETTERS |, 0, @ AND X ARE NOT USED
Address comments concerning this
manual to:
Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
© 1974, 1975, 1977, 1978 St. Paul, Minnesota 55112

" ti
hy Custrel.Datk Corporation or use Comment Sheet in the back of

Printed in the United States of America this manual,

ii

LIST OF EFFECTIVE PAGES

s manual, are indicated by bars in the margins or by a dot

New features, as well as changes, deletions, and additions to information in thi

dicates pagination rather than content has changed.

near the page number if the entire page is affected. A bar by the page number in

>
w
o«
w
(L)
<
o
2| vemvmmvvVLLVLVMEEmmOVVVVLY O,
o
3
w e >
(5} (o]
$ 135155 2g8
n(_u.J2341234567.1234|..Zeeee%emm&
w LoLn I L L L1 1190 UVUUTUUOG
Sx<<<hhdhhdhOOOLAQASSSS5550 Q&
>
m oo0oovO0OmODOLLODLOLODLLLDOLDLLLLUMDOLDOLODOLDLDLOLLLDLLDLDLLDLDLLDLLLDLLLLLLDLLDLLLLDLLDLLDLLDLLLDLLLLLLLLLOLOD
w
(&)
<
o O = N MO W O —N™m
™~ oo O NN~ I U O D= 00 O g v vg ot vt of ot g O D T LD O B 00 O vy v v vt g O o O D LD — O — O]
TT T TS T P T P T T T T 7208843444444 L L L L L Ll lldddhdbdbdbhdddd
L R e I - - Y P A P P - - 2 L | i S
H ooooLLLLLLLLLLLLDLLDLLLLDLLLLDLLDLDLLDLLLDLLDLDLLLDLLDLLLLDLLLLUMDLDLDLDLDLLLLDLLDLDLLDLLDLLLDLLLOLOD
(14
w
[T}
<
o O~V NO— NN HNO-OVNO NN O-ONO NN O-0DOD — O NMm
R R O ST) e AT T AT T g T] 0 T 1 o R T e o B TR T T T N M s O LT s R T R T I TR e 7
HOVOLOLOLOLOLOLOLOLOLOLOLEOOLELOLOOOO OOV VWL O LWL L W W W=~ - 00 60 0 O 60 60 6O 60 G0 O 60 0 O 0 O O
H oL LLLLLLLDLDLLDLDLDLDLDLLLLDLDLLLDLLDLDLLDLLDLLLDLDLDLDLLDLDLLLDLLLLLLLDLDLDLDLLLLLDLLDLODO
@
B
wi So
[T] o
Sile s
s
cY = O NN HO-ONO = NNHFNOEONRO - NNHEWOEONO — N 0O
mt | O e o = O 0D T LD O D= 00 O e e ot v e e o = = NN NN NN NNNNMMMMMMM N MM
e R~ L I T T Y T T g o e Tl oy o o T L o e A s i i T e O O) e
B~ HEPIPIPA N A AMOFOOOLOLOLOLOLOLODLOLOOLLOLEOOLOLOLVLOOEOOVLOLEVVOLOWLR O WO IO WO O W O

97405100 C

iii/iv

PREFACE

I The CONTROL DATA® PLATO (Programmed Logic for Familiarity with the PLATO User's Guide may be helpful

Automatic Teaching Operations) system is a multimedia
computer-based educational delivery system.

This manual describes the PLATO author language used by
the PLATO system. It is intended as a reference manual
for use by persons familiar with the author language.

Sections 1 through 4 provide a general introduction to the
PLATO system, lesson structure, and execution of the
author language lessons.

Section 5 gives a brief, ready-reference description of
each PLATO author language instruction.

Sections 6 through 14 explain in detail each of the author
language instructions.

Readers with no previous knowledge of the author lan-
guage are encouraged to direct their initial attentions to
the following sections of the manual.

Sections 1 through 4 Introduction

Variables, expressions,
and functions

Sections 6 and 7

Section 9 Displays .

Section 10 Lesson structure

Section 11 Handling responses
97405100 C

to the user of this manual.

DISCLAIMER
This product is intended for use only as deseribed in this

document. Control Data cannot be responsible for the
proper functioning of undeseribed features or parameters.

RELATED PUBLICATIONS

The following publications are referenced and related
PLATO manuals.

Control Data Publication Publication No.

PLATO Terminal User's Guide 97404800
PLATO Operator's Guide 97405200
PLATO User's Guide 97405900
PLATO Author Language Instrue-

tion Formats 97406600
PLATO System Overview 97406700

v/vi

- mpm— L - s i s= M === F " t.rau -.u.-f. B *-l-“

. . : :..I:_
N B - 1 - - P = T . - - P TL . _._'.II_ -

: . "k 5. reol L0t s
-a:l-_..-.__-'-l' . . . - . . . - .

-
S AT R " - :
. - N L | FE
- . i L T :
= = . N el

N 1= -.I.|._,.. s TR
'* . - ",:,-:;_H-'.--.'“-:-._ll.'.'
b i S AL

Ty .
- .ll-. . -
- . L

. .= a
= =
i ' PR
=l -
-
- = Sep = 1 .
. ne
B g - a
s 11
tm e -
" el L
. . B
= 1. -
= -
B i+
i ' . 2 b LR
= R ey
1 - . I

CONTENTS

1. GENERAL SYSTEM DESCRIPTION 1-1 else 5-16
endif 5-16

System Components 1-1 doto 5-16
System Operation 1-1 loop 5-17
Notation 1-1 outloop 5-17
reloop 5-17

endloop 5-17

2. LESSON STRUCTURE AND EXECUTION 2-1 common 5-18
commonx 5-18

Branching 2-1 comload 5-18
Execution 2-1 comret 5-19
dataset 5-19

datain 5-19

3. UNIT STRUCTURE 3-1 dataout 5-20
setname 5-20

Initial Entry Unit 3-1 getname 5-20
Main and Auxiliary Units 3-1 addname 5-20
delname 5-21

rename 5-21

4. UNIT EXECUTION 4-1 names 5-21
addrecs 5-21

delrecs 5-21

5. INSTRUCTION DESCRIPTIONS 5-1 reserve 5-22
release 5-22

Instruction Format 5-1 abort 5-23
Calculation Instruetions 5-3 storage 5-23
define 5-3 stoload 5-23
cale 5=5 block 5-23
addl 5-5 transfr 5-24
subl 5-5 Display Instructions 5-24
zero 5=5 at 5-24
calce 5-5 atnm 5-24
cales 5-6 rorigin 5-25

set 5-6 gorigin 5-25
pack 5-6 rat 5-25
packe 5-6 gat 5-25
itoa 5-7 ratnm 5-26
otoa 5-7 gatnm 5-26
htoa 5=7 write 5-26
find 5-7 writee 5-26
findall 5-8 show 5-26
search 5-8 showt 5-27
finds 5-9 showo 5-27
findsa 5-9 showz 5-27
sort 5-10 showe 5-27
sorta 5-10 showa 5-28
inserts 5-11 text 5-28
deletes 5-11 hidden 5-28
move 5-12 erase 5-28
compute 5-12 eraseu 5-29
clock 5-12 size 5-29
date 5-12 rotate 5-29

day 5-12 dot 5-29
name 5-13 rdot 5-30
group 5-13 gdot 5-30
from 5-13 draw 5-30
lessin 5-13 rdraw 5-30
randu 5-14 gdraw 5-31
setperm 5-14 circle 5-31
randp 5-14 cireleb 5-31
seed 5-14 reircle 5-32
remove 5-15 geircle 5-32
modperm 5-15 box 5-32
branch 5-15 rbox 5-33

if 5-15 gbox 5-33
elseif 5-16 vector 5-33

97405100 C

vii

rvector
gvector
window
mode
color
embed
catchup
delay
char
plot
charset
chartst
lineset
altfont
miero
codeout
tabset
slide
enable
disable
audio
play
record
ext
extout
axes
bounds
scalex
scaley
1scalex
Iscaley
labelx
labely
markx
marky
graph
hbar
vbar
delta
funet
polar

Lesson Control Instructions

unit
imain
next
nextop
nextl
nextlop
jump
join

do

goto
exit
nextnow
iferror
entry
finish
timel
timer
end
back
backop
backl
backl op
stop
help
helpop
helpl
helpl op
data
dataop
datal
datalop
lab

viii

5-40
5-40
5-41
5-41
5-42
5-42
5-42
5-42
5-43
5-43
5-43
5-44
5-44
5-44
5-44
5-45
5-45
5-45
5-45
5-46
5-46
5-47
5-47
5-47
5-48
5-48
5-48
5-48
5-49
5-49
5-49
5-49
5-50
5-50
5-50
5-50

5-51
5-51
5-51
5-51
5-52
5-52
5-52
5-52

labop
labl
lablop
base
term
termop
*, ¢, $$
estop
cstart
cstop*
restart
status
return
press
jumpout
inhibit
keylist
pause
collect
keytype
force
change
use
step

in
initial
lesson
seore
backgnd
foregnd
cpulim
route
routvar
allow
leslist
addlst
removl
lname
findl

Response Handling Instructions

arrow
endarrow
iarrow
arheada
arrowa
iarrowa
long
jkey
storea
open
loada
close
bump
put
putd
putv
answer
answerc
wrong
wronge
list
conecept
miscon
vocab
voecabs
endings
ok

no
okword
noword
ignore
exact
exacte
exactv

5-55

97405100 C

ansv

ansu

wrongv

wrongu

store

storen

storeu

ntouch

ntouchw

touch

touchw

match

or

ans

compare

specs

markup

judge

getword

getmark

getloc

edit

copy

time
Student Data Instructions

dataon

dataoff

area

setdat

output

outputl

readset

readd

readr

notes
Resource Management Instructions

site

station
Printing Instruection

*list

6. VARIABLES

Student Variables
Integer Variables
Floating-Point Variables
NC and VC Variables
Assigning Names to Variables

7. EXPRESSIONS AND FUNCTIONS

Constants
Expressions
Arithmetic Operations
Logical Operations
Bit Operations
Array Operations
-cale- Instruction
Functions

8. OTHER CALCULATION FEATURES

System-Defined Arrays
Full-Word Arrays
Vertically Segmented Arrays
Author-Defined Arrays
Full-Word Arrays
Segments
Vertical Segments
Nonnumerie Information

Entering Alphanumeric Information

97405100 C

5-70

5-70

5-76
5-77
5-717
5-77
5-78
5-78
5-79
5-79
5-80
5-80
5-80
5-81
5-81

6-1

=323 23 a3=3 =3 23 <3

U
L0 OB B DD e =

o
1
—

O QO OB DD DD = e

Locating Specific Information
Sorting Routines
Changing List Contents
Moving Character Strings
Compiling Character Strings
Special Information
Random Numbers
Branching and Looping Within a Unit
Branching Within a —cale— Instruction
—if— Structure
—doto— Instruction
Looping
—cales— Instruction
Common
Types of Common, —common—, and
—commonx—
Using Common
—-reserve— and —release— Instructions
—abort— Instruction
Storage
—storage— Instruction
—stoload- Instruction
Dataset Files
—dataset— Instruction
—datain— Instruction
—dataout— Instruction
Nameset Files
Structure
Dataset Instructions Used With Namesets
Nameset Instructions
Reserving Namesets
Moving Blocks of Data

9. DISPLAYS

Coarse and Fine Grids

Basie Display Presentation
Displaying Variables
Erasing

Large and Angled Writing

Graphies Instructions

Relocatable Instructions

Mode Control

Embedding

Timing

Constructing Alternate Characters
Charsets
Linesets

Micros

-codeout- Instruction

-tabset- Instruction

Nonsecreen Display Instructions

Relative Graphies Instructions

Creating Graphs
Setting Boundaries of a Graph
Scaling the Graph Axes
Labeling the Axes
Writing on the Graph
Drawing Bars on the Graph
Graphing Functions
Polar Coordinates

10. LESSON SEQUENCE AND CONTROL

Author-Initiated Branching
Use of the -next- Instruction
-jump- Instruction
Auxiliary Unit Structures
Iterative -join- and -do- Instructions
Conditional-Iterative -do- and -join-
Instruections
-goto- Instruction

8-4
8-6
8-6
8-7
8-7
8-8
8-8
8-10
8-10
8-10
8-11
8-12
8-13
8-13

8-13
8-14
8-15
8-15
8-15
8-15
8-16
8-16
8-16
8-17
8-17
8-17
8-117
8-18
8-18
8-20
8-20

Argumented Units
-exit- Instruetion
-nextnow- Instruction
-iferror- Instruction
-entry- Instruction
Branching Within a Unit
-finish- Instruction
-imain- Instruction
Timed Branching
Student-Initiated Branching
Branching to a New Main Unit Sequence
Help Sequences
-end- Instruction
Specifying a Help Sequence
-base- Instruction
Use of the -term- Instruction
Other Control Instructions
Comments
Condensing Control
Reentering Lessons
-return- Instruction
-press- Instruction
-jumpout- Instruction
-inhibit- Instruction
-keylist- Instruction
-pause- Instruction
-collect- Instruction
-keytype- Instruction
-force- Instruction
-change- Instruction
-use- Instruction
-step- Instruction and TERM-step Option
-initial- Instruction
-lesson- Instruction
-score- Instruction
-backgnd- and -foregnd- Instructions
-cpulim- Instruction
Lesson Routing
-route- Instruction
-routvar- Instruction
-allow- Instruction
Lesson Lists
-leslist- Instruction
-addlst- Instruction
-removl- Instruction
-Iname- Instruction

CHARACTER AND KEY CODES
SYSTEM FUNCTIONS AND RESERVED
WORDS

W

6-1 Format of Floating-Point Variables
8-1 Example of a Nameset

9-1 Sample of Character Definition
9-2 Mierofiche Layout

5-1 Instruction Index

7-1 Operator Precedence

9-1 Embedded Instructions

9-2 Relative Timing Example

9-3 Permitted -codeout- Tag Values
11-1 Judging Instructions

11-2 -specs- Options

10-4 -findl- Instruction 10-17
10-4
10-4
10-4 11. RESPONSE HANDLING 11-1
10-4
10-4 Execution of Response Handling 11-1
10-5 Initiating Judging 11-2
10-5 Manipulating the Student Response 11-3
10-5 Storing a Student Response 11-3
10-5 Making a Judging Copy 11-4
10-5 Altering the Judging Copy 11-4
10-6 Information from a Student Response 11-5
10-6 Response Judging 11-5
10-6 Nonnumeric Response Judging 11-5
10-7 Numerie Judging 11-7
10-8 Touch Panel Judging 11-8
10-8 Other Judging Instructions 11-10
10-8 -specs- Instruction 11-10
10-8 Regular Instructions Affecting Response Handling 11-11
10-9 -judge- Instruction 11-11
10-9 -edit- and -copy- Instructions 11-12
10-9 -time- Instruetion 11-12
10-10 -change- Instruction 11-13
10-10
10-11
10-11 12. CONDITIONAL FORM 12-1
10-11
10-11
10-12 13. STUDENT DATA 13-1
10-12
10-12 Specifying Data Collection 13-1
10-12 Specifying Data to be Collected 13-1
10-13 Reading Data into a Lesson 13-2
10-13 Notes 13-5
10-13
10-14
10-14 14. RESOURCE MANAGEMENT 14-1
10-14
10-14 -site- Instruction 14-1
10-15 -station- Instruction 14-1
10-16
10-16
10-16 15. PRINTING LISTINGS 15-1
10-16
10-17 -*list- Instruction 15-1
10-17 Printing Commons and Datasets 15-1
APPENDIXES

A-1 C. BINARY, OCTAL, AND DECIMAL

NUMBER SYSTEMS C-1
B-1 D. TERMINAL KEYBOARDS D-1

INDEX
FIGURES
6-1 9-3 Example of -hbar- and -vbar- Instructions 9-14
8-17 10-1 Key Locations for Placing -route-
9-8 Instructions 10-15
9-11
TABLES
5-1 12-1 Instructions with a Conditional Form 12-2
7-1 13-1 Legal Tags for -dataon- and -dataoff- 13-1
9-6 13-2 Area Summary Data Storage 13-3
9-7 13-3 -outputl- Data Storage 13-4
9-10 13-4 Signoff Data Storage 13-4
11-1 13-5 Student Statisties Storage 13-5
11-11
97405100 C

GENERAL SYSTEM DESCRIPTION 1

The PLATO author language enables the development and
presentation of course material using the PLATO system.

SYSTEM COMPONENTS

Two types of components necessary for operation of a
PLATO system are the actual equipment and the pro-
gramming that controls the equipment. The equipment
consists of a central computer, extended core storage
(ECS), mass storage, communications equipment, and
PLATO terminals. The programming consists of the
operating system, the PLATO system, and the PLATO
author language.

The central computer is the component that actually
executes the lessons, as well as performing other related
tasks. It consists of a central processing unit, which
performs the actual execution, and central memory, which
contains the lesson being executed.

ECS is used to store records and any lessons that are being
used, because information can be transferred quickly
between ECS and central memory.

Mass storage has a larger capacity than ECS, but the
associated information transfer rate is much less. Hence,
mass storage is used primarily for storing lessons that are
not currently in use. Mass storage consists of magnetic
disks and is therefore sometimes called disk storage, disk
memory, or simply disk.

The communications equipment allows the central com-
puter and the PLATO terminals to exchange information.

The PLATO terminal is the device used by the author or
student for constructing or executing lessons. Addi-
tionally, instructors use the terminal to construct the
necessary courseware (lesson selection and lesson se-
quence lists). A description of the PLATO terminal and
its use is given in the PLATO Terminal User's Guide.

The operating system performs such functions as handling
the transfer of information between components of the
system.

The PLATO system controls the actions of the computer
as they relate specifically to PLATO. This programming
allows the author to construct a lesson, specify informa-
tion about the lesson, control lesson execution, and per-
form various associated tasks.

The author language condenser is the part of the PLATO
system that converts author language instructions (also
called source code) into instructions that can be inter-
preted or executed by the computer.

The PLATO author language is composed of a number of

instructions with which an author can construct a lesson
for presentation to students.

97405100 C

SYSTEM OPERATION

PLATO is a time-sharing system. This means that a
lesson that is being used, whether by an author or a stu-
dent, is not always in actual execution. Instead, each
lesson is given a certain amount of time in the central
processing unit and then waits while other lessons exe-
cute. Because of the speed of the computer, the delays
are not usually discernible to the user. The period of time
during which a lesson is using the central processing unit
is called a time-slice.

A condensed copy of the lesson is kept in ECS whenever
the lesson is being used. At the beginning of the time-
slice, the unit to be executed is copied into the central
memory for execution. The unit is not copied back to ECS
at the end of the time-slice, since the ECS copy was not
destroyed. The copy in central memory is simply
overwritten by the next lesson using the central processor.

When a lesson is not being used, it is kept on mass storage,
allowing room in ECS for lessons being used. Because the
total amount of ECS is limited, all lessons cannot be kept
in ECS. Hence, the mass storage is used for the lessons
that are not currently needed. Mass storage is not
suitable for the temporary storage of lessons between
time-slices because of the longer access time and slower
information transfer rate in comparison with ECS.

Only one copy of a lesson is required to be in ECS, re-
gardless of the number of students using the lesson. This
results in a considerable saving of ECS space when several
students are using a lesson concurrently. Since there are
records and other data maintained for each student, more
ECS space is required when 15 students are executing the
same lesson concurrently than is used when only one
student is executing the lesson. However, the space
required for additional users of a lesson is much less than
would be required if each user had a separate copy of the
lesson.

NOTATION

To facilitate differentiation between text and author
language instructions, instructions are set off from normal
text with hyphens (-).

Names of function keys are in full capitals, while author
language instructions are always given in lowercase let-
ters. For example, NEXT refers to the function key,
located to the right of the alphabetic keyboard, while
-next— refers to the instruction that specifies the unit to
be executed after completion of the current unit. Where
an uppercase function key does not have a specific name,
it is referred to as in SHIFT BACK. Uppercase keys that
have specific names, such as FONT and TERM, do not use
the SHIFT prefix.

Author language instructions that refer to an uppercase
funetion key that does not have a specific name have a 1
at the end of the key name. Thus, the instruction

helpl unitname
enables the SHIFT HELP keys, while the instruction

help unitname

enables the HELP key.

1-2

When reference to a full instruction (that is, both the
command and the tag of the instruction) is made in text,
the command and tag portions of the instruction are
separated by spaces, with the hyphens enclosing the entire
instruction. An example is the -long 1- instruction.
Additionally, tags shown in bold typeface are abbreviated
descriptions of the tags and not the actual tags to be
entered. Actual tags to be entered are in regular
typeface, the same as the associated commands. Tags en-
closed in braces, { } , are optional.

97405100 C

LESSON STRUCTURE AND EXECUTION 2

R P T e T ey T e e e e g

Each PLATO author language lesson has two structures,
physical and logical. The physical structure is the same
for all lessons and is simply a series of instructions
grouped into entities called units. The system stores
these instructions sequentially in central memory, in ECS,
on mass-memory disks, or in any combination of these.
The logical structure is usually more complex and may
bear little relation to the physical structure. The concern
of this manual is primarily with the logical structure of
lessons rather than the physical structure. Thus, when the
structure of a lesson is mentioned, without other qualifi-
cation, the logical structure is the structure meant.

The logical structure of the lesson is the presentation of
the execution of the parts of the lesson. The basic part of
a lesson is the unit. A unit is usually entered from only
one point in its structure, the beginning. Since all
references to code other than that being executed refer to
entire units, it is reasonable to speak of units as black
boxes. The structure of the lesson then depends upon
what types of boxes are used and their connection with
each other. This is developed more thoroughly, although
implicitly, in section 10.

A lesson is basically composed of one or more sequences
of main units, usually with some of the main units having
auxiliary units.

The difference between main and auxiliary units is given
in detail in section 3. The relevant difference in terms of
lesson struecture is that auxiliary units cannot be formed
into a sequence and are invisible to the student as sepa-
rate entities.

BRANCHING

There are two types of branching within a lesson, author-
initiated and student-initiated. Author-initiated branch-
ing occurs when one of several paths is taken, with the
lesson, rather than the student, making the selection. In
many situations, this is based on the performance of the
student, such as automatically branching the student to a
remedial sequence. The use of auxiliary units can be
considered a form of author-initiated branching.

Student-initiated branching occurs when the student
chooses an option to execute. There are two major types,
function key branching and author-provided branching.
Function key branching occurs when the author gives the
student a choice which is accessible by a funection key.
This includes the main unit sequences specified with the
NEXT, SHIFT NEXT, BACK, and SHIFT BACK keys and
the help sequences specified with the HELP, SHIFT HELP,
LAB, SHIFT LAB, DATA, and SHIFT DATA keys. An
example of author-provided branching is when the author

97405100 C

gives the student a list of options and lets the student
select the next option to execute.

EXECUTION

The basic flow of execution of an author language lesson,
unless modified by the author, is sequentially through the
physical lesson. Thus, if a particular sequence of units
that is to be executed sequentially is also sequential in the
physical lesson, no specification of the next unit to be
executed is required. However, if any modification to this
simple linear flow is desired, as with the use of branching,
the author must explicitly sequence the units within the
physical lesson in order to give the order of execution of
the units in the logical lesson. The addition of branching
capabilities allows the sequential flow to be modified in
several ways.

The author-initiated branching modifies the sequence of
execution of units and can be used to select one of several
possible sequences of base units. The base unit sequences
usually contain the basic information that the lesson is
designed to convey.

The student-initiated branching usually adds a number of
units to the order of execution, with execution resuming
at the unit from which the help sequence was accessed.
However, this can be modified by the author through the
use of the —base— instruction so that either the student
does not return from the help sequence (because it defines
itself as a base sequence, once entered) or the student
returns from the help sequence to a different unit than
the unit from which he entered the help sequence. There
are three types of student-initiated function key branch-
ing: two of them have similar effects in that when the
student executes the sequence specified by the author, he
is returned to that part of the lesson from which the
branching was initiated; the third type of branching does
not return the student to that part of the lesson from
which branching was initiated (refer to section 10).

Student-initiated branching is made possible by explicit
definition of the branching possibilities by the author.
The student-initiated branching can be initiated by the use
of the student help keys and the TERM key. Unless the
author has specified a help sequence or a -term-ed unit,
these keys have no effect on the lesson.

Auxiliary units are units that are executed under the
control of a main unit. Sometimes the main unit resumes
execution at the point where execution was suspended, but
this is not necessarily the case. Whether execution of the
main unit is resumed depends on the contents of the
auxiliary unit and the method used for accessing the
auxiliary unit.

2-1

e ﬂ-r-..—l.-l.- e

- L]

UNIT STRUCTURE 3

T ST R R S T N T e T e T e e S e e R e T e T L S SR T]

The basic component of a PLATO author language lesson
is the unit. A unit is a semi-independent block of author
language instruction, beginning with a —unit— instruction
and ending immediately before the next —unit— instruc-
tion. With one exception, the —unit— instruction must be
present. The tag of the —unit— instruction is the name of
the unit, which must be no more than eight charaecters in
length. The unit is semi-independent because the unit can
be called into execution from another unit or from several
other units at different points in the lesson. To be
meaningful, however, the unit must have some connection
with the logical structure of the lesson.

The most general form of the unit has two parts. While it
is common for a unit to have both parts, it is not nec-
essary. Inclusion or exclusion of either part depends on
the intended use of the unit and the preference of the
author. When both parts are present, they are separated
by the —arrow— and —endarrow— instructions.

One part of the unit is used for presentation of material
to the student that is not dependent on a response and for
some general calculation. This part of the unit consists
entirely of regular instructions.

The —arrow— instruction indicates that student response is
requested. The part of the unit following the —arrow—
instruction is the response judging part of the unit. Other
processing can also be done in this part of the unit.

Units without a response processing section are fairly
common and are used for special purposes, repetitive
processing, and simple display presentation. Units con-
sisting entirely of a response processing portion are rare,
and their execution can be complex.

INITIAL ENTRY UNIT

The initial entry unit (IEU) is the one exception to the
requirement that a unit have a —unit- instruction as its
first instruction.

The IEU must physically be the first unit in the lesson. It
is differentiated by the lack of the —unit— instruction as
its first instruction. The use of an IEU is not mandatory
but is encouraged if the student is to be allowed to restart
an uncompleted lesson at some point other than the
beginning of the lesson.

When the student starts at some point in the lesson other
than the beginning, the physically preceding units are
skipped totally except the IEU. Thus, if these units load a
character set, define a miero table, or initialize the value
of some variables, these actions are not performed and
the lesson does not execute correctly, as seen by the
student, unless they are in the IEU.

The IEU, if present, is executed each time the student
enters the lesson, except when a lesson does a —jumpout—
to itself, or when the lesson is a router. Executing the
IEU upon each student entry makes the loading of char-
acter sets and other initializations simple and localized.

97405100 C

at 912
write Now LOADING CHARACTER AND
MICRO SETS

Please be patient - loading takes
about 17 seconds

charset sindarin, feanorian
micro sindarin, mike
erase

unit intro

This IEU causes a character set and a micro table to be
loaded and performs a full-screen erasure when the
loading is complete. This is necessary because the IEU is
executed as if it were accessed by a —join— instruection
from the first unit entered by the student. Thus, if an
erase is not performed, the display (if any) generated by
the IEU is not erased before the display from the actual
unit entered is placed on the screen.

MAIN AND AUXILIARY UNITS

Since the definition of a unit is the same for all units, the
units vary in usage rather than definition. Furthermore, it
is possible, although uncommon, for the usage of a
specific unit to change during lesson execution. Hence, a
reference to a type of unit indicates only the way in which
the unit is to be used at that time.

There are two major types of units, main units and aux-
iliary units. Main units are further subdivided into base
units and help units. A full discussion of the types of units
and their use is given in section 10.

An auxiliary unit is executed under the control of another
unit. The auxiliary unit, as the name implies, furnishes
auxiliary instructions to the unit from which it was
accessed. No unit initialization is performed.

A main unit is any unit which is not an auxiliary unit.
Such units usually lie in a sequence of units, which an
auxiliary unit cannot do. There are two types of
sequences, base sequence and help sequences.

A help sequence is a sequence of one or more units that is
specified by the author as accessible by the student
through the use of the special student help keys. The
units composing such a sequence are called help units. A
help sequence usually contains background, definitional, or
review material. The help sequence is not executed
unless accessed by the student. When execution of a help
sequence is complete, the unit from which the help
sequence is accessed is reexecuted, unless the author
specifies otherwise within the help sequence.

The unit from which the student can access a help se-
quence serves as a base for that sequence. Hence, such
units are called base units. A special marker, indicating
that the current unit is the base unit, is updated each time
a main unit, other than a help unit, is initialized.
Therefore, a sequence of main units that are not help
units is termed a base sequence. There can be more than
one base sequence in a lesson, which is why the term base
sequence is preferable to primary sequence.

B =
.
o = F =
P
-:'. an
L i
e [
r.
[51
il
h A .
[o T
g = k=
[
-.-.' .
'
- -
L ST
=" '_“"'f:
- LT B
r - i
R |
T N

- o o
N .1 .
.= = -
- k- .
I -
- L -
r " i
) [
e -
i

UNIT EXECUTION 4

The instructions in a unit are not necessarily executed in
order of occurrence. Particularly during response proc-
essing, some instructions might be executed several times,
while others might not be executed at all.

Part of the reason is the possibility of author- and stu-
dent-initiated branching. However, it is usually because
of the manner in which student responses are processed.

The author language executer operates in two major
states, regular and judging. The author language instruc-
tions are divided into two classes, based on which of the
two system-states allow their execution. Thus, display
instructions, which can be done independently of the
student response, are regular instructions, while those
that determine whether the student's response will be
accepted as correct (plus some instructions for manipula-
tion of the student response) are judging instructions.
Only one instruction, the —join— instruction, is executed in
both the regular and judging states.

The processor ignores judging instructions that do not
follow an —arrow— instruction.

When a unit is entered, any initialization is done first. If
the unit is an auxiliary unit, no initialization is done. If it
is a help unit, there is some initialization, usually
including a full-sereen erase, but not complete initializa-
tion. Full initialization is performed if the unit entered is
a base unit.

After initialization, all regular instructions up to the first
—arrow— instruction or the next -unit— instruction,
whichever occurs first, are executed.

If the system encounters a —unit— instruction, it waits for
the student to press the NEXT key or any active key,
indicating readiness to continue. When the student
presses an active key, the processor enters the new unit
with the procedure as before.

97405100 C

If an —arrow— instruction is encountered, the system
places the arrow character on the student's sereen (unless
this has been disabled by the author with an —inhibit—
instruction) and then executes any regular instruections
immediately following the —arrow- instruction. When the
first judging instruction is reached, the system then
switches into the judging state and waits for the student
to respond.

When the student presses the NEXT key, indicating that
he is finished typing his response, the system begins
checking the response against the specified answers
(answers may be specified as correct or incorreet). If an
adequate match is not found, the response is judged
incorrect by default. If a match is found, the response is
judged ok or no (correct or incorreet), whichever is
indicated by the instruction matched. Regular instruc-
tions following the matched answer are then executed, if
any, until an —endarrow—, another —arrow—, a —unit—, or
another judging instruction is encountered.

Unless the author specifically construets the lesson other-
wise, a student is forced to press NEXT or ERASE, type a
different response, and enter it by pressing NEXT again,
whenever the response is judged incorrect. (Editing keys
are also available to the student under author control that
prevent the necessity of retyping the entire response.)

When the —arrow— has been satisfied (that is, when the
student has given a response that has been judged ok and
all following regular instructions have been executed), the
system then checks for an —endarrow—, —arrow— or —unit—
instruction. These are then executed as before. If an
—arrow— or —unit— instruction is found, the instruection is
executed as previously.

This execution sequence can be modified by the —long—
and —specs— instructions. For a complete discussion of
lesson execution during response processing, refer to
section 11.

4-1

.-|'I'- ';F'I) .

INSTRUCTION DESCRIPTIONS 5

This section contains a short description of each of the
PLATO author language instructions. A more complete
explanation is given in sections 6 through 14. Table 5-1
gives an alphabetic list of the instructions with their page
numbers.

INSTRUCTION FORMAT

Each author language instruction has two parts, command
and tag. The command is the same as the name of the
instruction. The tag gives the necessary specifications
and modifiers for execution of the command. If none are
necessary, the tag can be left blank. The command field
begins in column 1 of the display. The tag field begins in

R e T T T e B e T e ey O RSP T T

After entering the command, the TAB key
(The cursor is

column 9.
positions the cursor to the ninth column.
not visible.)

The tag consists of one or more arguments. Each argu-
ment is one specification for the command portion of the
instruction. Arguments are usually separated by commas.
Arguments enclosed in braces ({,}) in the instruction
descriptions are optional and need not be included in the
instruction. Multiline entries give alternatives; only one
can be used in a single instruction.

For example:

i

TABLE 5-1. INSTRUCTION INDEX

Instruetion | Desecription | Explanation || Instruection | Description | Explanation || Instruction | Description | Instruction
abort 5-23 8-15 char 5-35 9-7 delname 5-21 8-19
addlst 5-62 10-16 charset 5-36 9-8 delrecs 5-21 8-19
addname 5-20 8-19 chartst 5-36 9-9 delta 5-43 9-14
addrecs 5-21 8-19 circle 5-31 9-5 disable 5-38 9-10
addl 5-5 7-4 circleb 5-31 9-5 do 5-47 10-2
allow 5-61 10-16 clock 5-12 8-8 dot 5-29 9-4
altfont 5-37 9-9 close 5-65 11-4 doto 5-16 8-11
ans 5-73 11-10 codeout 5-37 9-10 draw 5-30 9-4
ansu 5-70 11-8 collect 5-57 10-11 edit 575 11-12
ansv 5-70 1327 color 5-35 9-6 else 5-16 8-10
answer 5-66 11=5 comload 5-18 8-14 elseif 5-16 8-10
answerc 5-66 11-6 common 5-18 8-13 enable 5-38 9-10
area 5-76 13-2 commonx 5-18 8-14 end 5-49 10-6
arheada 5-63 11-2 compare 5-73 11=10 endarrow 5-63 14=]
arrow 5-63 11-1 compute 5-12 8-7 endif 5-16 8-10
arrowa 5-64 11-2 comret 5-19 8-15 endings 5-68 11=7
at 5-24 9-2 concept 5-67 11-6 endloop 5-17 8-12
atnm 5-24 9-2 copy 5-75 11-12 entry 5-48 10-4
audio 5-38 9-11 cpulim 5-60 10-14 erase 5-28 9-3
axes 5-39 9-12 estart 5-54 10-8 eraseu 5-29 9-4
back 5-49 10-5 estop 5-54 10-8 exact 5-69 11-7
backgnd 5-60 10-14 cstop* 5-55 10-9 exacte 5-69 11-7
backop 5-50 10-5 data 5-51 10-6 exactv 5-70 11-7
backl 5-50 10-5 datain 5-19 8-17 exit 5-47 10-4
backlop 5-50 10-5 dataoff 5-76 13-1 ext 5-39 9-11
base 5-53 10-7 dataon 5-76 13-1 extout 5-39 9-11
block 5-23 8-20 dataop 5-52 10-7 find 5=7 8-4
bounds 5-39 9-12 dataout 5-20 8-17 findall 5-8 8-5
box 5-32 9-5 dataset 5-19 8-16 findl 5-62 10-17
branch 5-15 10-4 datal 5-52 10-6 finds 5-9 8-5
bump 5-65 11-4 datalop 5-52 10-7 findsa 5-9 8-5
cale 5-5 7-3 date 5-12 8-8 finish 5-48 10-5
calee 5-5 12-1 day 5-12 8-8 force 5-58 9-10
cales 5-6 8-13 define 5-3 6-2 foregnd 5-60 10-14
catchup 5-35 9-6 delay 5-35 9-6 from 5-13 8-8
change 5-58 10-12 deletes 5-11 8-6 funct 5-43 9-14

97405100 C 5-1

TABLE 5-1. INSTRUCTION INDEX (Contd)

Instruction | Desecription | Explanation || Instruetion | Description | Explanation || Instruction | Desecription | Explanation
gat 5-25 9-11 match 5-73 11-10 rvector 5-34 9-5
gatnm 5-26 9-11 micro 5-37 9-10 scalex 5-40 9-12
gbox 5-33 9-11 miscon 5-67 11-6 scaley 5-40 9-12
geirele 5-32 9-11 mode 5-35 9-6 score 5-59 10-13
gdot 5-30 9:11 modperm 5-15 8-9 search 5-8 8-5
gdraw 5-31 9-11 move 5-12 8-7 seed 5-14 8-9
getloe 5-75 11-5 name 5-13 8-8 set 5-6 8-2
getmark 5-74 11-5 names 5-21 8-19 setdat 5-77 13-2
gelname 5-20 8-19 next 5-45 10-5 setname 5-20 8-18
getword 5-74 11-5 nextnow 5-48 10-4 setperm 5-14 8-9
gorigin 5-25 9-11 nextop 5-45 10-5 show 5-26 9-2
gotlo 5-47 10-3 nextl 5-45 10-5 showa 5-28 9-3
graph 5-42 9-13 nextlop 5-45 10-5 showe 5=217 9-2
group 5-13 8-8 no 5-69 11-7 showo 5-27 9-2
gvector 5-34 9-11 notes 5-79 13-5 showt 5-27 9-2
hbar 5-42 9-13 noword 5-69 11-2 showz 5-27 9-2
help 5-50 10-6 ntouch 5-71 11-9 site 5-80 14-1
helpop 5-51 10-7 ntouchw 5-72 11-9 size 5-29 9-4
helpl 5-51 10-6 ok 5-68 11-7 slide 5-37 9-10
helplop 5-51 10-7 okword 5-69 11-2 sort 5-10 8-6
hidden 5-28 9-3 open 5-64 11-4 sorta 5-10 8-6
htoa 5= 8-4 or 5-73 11-10 specs 5-73 11-10
iarrow 5-63 11-2 otoa 5-7 8-4 station 5-80 14-1
iarrowa 5-64 11-2 outloop 5-17 8-12 status 5-55 10-9
if 5-15 8-10 output 5-77 13-2 step 5-58 10-12
iferror 5-48 10-4 outputl 5-77 13-2 stoload 5-23 8-16
ignore 5-69 11-7 pack 5-6 8-3 stop 5-50 10-5
imain 5-44 10-5 packe 5-6 8-4 storage 5-23 8-15
in 5-59 8-8 pause 5-57 10-11 store 5-71 8-7
inhibit 5-56 10-10 play 5-38 9-11 storea 5-64 11-3
initial 5-59 10-13 plot 5-36 9-7 storen 5-71 11-8
inserts 5-11 8-6 polar 5-44 9-14 storeu 5-71 11-8
itoa 5-7 8-4 press 5-55 10-9 subl 5-5 7-4
jkey 5-64 11-3 put 5-65 11-4 tabset 5-37 9-10
join 5-46 10-2 putd 5-65 11-4 term 5-54 10-8
judge 5-74 11-11 putv 5-66 11-4 termop 5-54 10-8
jump 5-46 10-2 randp 5-14 8-9 text 5-28 9-3
jumpout 5-56 10-10 randu 5-14 8-9 time 5-75 11-12
keylist 5-56 10-11 rat 5=25 9-5 timel 5-49 10-5
keytype 5-57 10-11 ratnm 5-26 9-5 timer 5-49 10-5
lab 5-52 10-6 rbox 5-33 9-5 touch 5-72 11-9
labelx 5-41 9-12 rcirele 5-32 9-5 touchw 5-72 11-9
labely 5-41 9-12 rdot 5-30 9-5 transfr 5-24 8-20
labop 5-53 10-7 rdraw 5-30 9-5 unit 5-44 10-1
labl 5-53 10-6 readd 5-78 13-3 use 5-58 10-12
lablop 5-53 10-7 readr 5-79 13-4 vbar 5-43 9-13
leslist 5-61 10-16 readset 5-78 13-3 vector 5-33 9-5
lessin 5-13 8-8 record 5-38 9-11 vocab 5-68 11-7
lesson 5-59 10-13 release 5-22 8-15 vocabs 5-68 11-6
lineset 5-36 9-9 reloop 5-17 8-12 window 5-34 9-5
list 5-67 11-6 remove 5-15 8-9 write 5-26 9-1
Iname 5-62 10-17 removl 5-62 10-17 writec 5-26 9-1
loada 5-65 11-4 rename 5-21 8-19 wrong 5-66 11-5
long 5-64 11-3 reserve 5-22 8-15 wronge 5-67 11-6
loop 5-17 8-12 restart 5-55 10-9 wrongu 5-70 11-8
Iscalex 5-40 9-11 return 5-55 10-9 wrongv 5-70 11=7
Iscaley 5-40 9-11 rorigin 5-25 9-5 Zero 5-5 7-4
markup 5-74 11-10 rotate 5-29 9-4 *list 5-81 15-1
markx 5-42 9-12 route 5-60 10-14 *c,$$ 5-54 10-8
marky 5-42 9-12 routvar 5-61 10-15

97405100 C

CALCULATION INSTRUCTIONS , function

The following instructions are used to manipulate infor- fn(x)=expr(x)
mation.
fn Name assigned to an
define compute endloop author-defined function
cale clock common
addl date commonx X Dummy variable
subl day comload
zero name comret expr Definition of a function
calee group dataset
cales from datain array
set lessin dataout
pack randu setname array,name(num)=var
packe setperm getname
itoa randp addname $$ T one-dimensional array
otoa seed delname
htoa remove rename array,name(lnum;nnum)=var
find modperm names
findall branch addrecs $$one-dimensional array with
search if delrecs offset index
finds elseif reserve
findsa else release array,name(row,col)=var
sort endif abort
sorta doto storage $$two-dimensional array
inserts loop stoload
deletes outloop bloeck array,name(lrow,1col;nrow,ncol)=var
move reloop transfr

$$two-dimensional array with
offset index

DEFINE array,name=var
Instruction format: $$zero-dimensional array
define {name (sets)} name(x1,x2,...,xn)=var(expr)
definitions
$$author-defined array
Tag definitions: name Array name
name Name of define set (optional) num Number of elements
sets Name of other define sets to be in- var Starting variable of array

cluded (names separated by commas)
Inum First element

definitions Definitions of any or all of the forms:
nnum Last element

variable
row Number of rows
name=var
col Number of columns
name Name assigned to a vari-
able 1row First row
var Variable of type n, v, ne, lcol First column
or ve
nrow Last row
constant
ncol Last column
name=num
x1,x2, Index variables specifying
name Name assigned to a con- ey XN number of dimensions in
stant array
num Number or mathematical expr Expression using index
expression variables, specifying num-

t Two consecutive dollar signs indicate a comment.

97405100 C

ber of var

5-3 ©

5-4

vertically segmented array

arraysegv,name(num)=var,startbit,size
{igne
,signed

$$one-dimensional vertical array

arraysegv,name(lnum;nnum)=var,
S

startbit,size l signe d}
$$one-dimensional vertical array

with offset index

arraysegv,name(row,col)=var startbit,
i';:igned

$$two-dimensional vertical array
arraysegv,name(lrow,l col;nrow,neol)=
vm-,stm-tbit,size[:2i - l

$$two-dimensional vertical array
with offset index

name Array name
num Number of elements
var Starting variable of array

startbit Starting bit for segment

size Number of bits in each
element
s or Segment elements have a

signed sign bit (optional)
Inum First element

nnum Last element

rowW Number of rows

col Number of columns

Irow First row

lcol First column

nrow Last row

necol Last eolumn

segment

segment,segname=start,size l,,zigne d }

segname Segment name

start Starting variable of
segment

size Number of binary bits
in each segment ele-
ment

s or signed Segment elements
have a sign bit (op-
tional)

vertical segment
segment,vertical,name=var,startbit,

,S

l,signed]

name Segment name

var Unindexed variable
such as nl or ne (con-
stant)

startbit Starting bit for seg-
ment

size Number of binary bits
in each segment ele-
ment

s or signed Segment elements
have a sign bit (op-
tional)

units of measure
units,priml,prim2,...,equivl,equiv2,...
$$ must be in student define set
priml, Primary units antie-
prim2,... ipated in student re-
sponse for use with
—ansu—, —storeu—, and

—wrongu-— instructions

equivl, Acceptable equiva-
equiv2,... lent units

Effect:

Assigns meaningful names to variables.

Comments:

Defined names can be from 1 to 7 characters long.
Names cannot begin with a number and cannot con-
tain mathematical operators, FONT characters, or
backspaces.

Previously defined quantities cannot appear on the
left side of the equal sign but can appear on the right
side. More than one definition can be placed on a
single line if separated by commas. Names must be
defined before use. Placing definitions in initial
entry units is suggested. The define set named
student defines variable names that can also be
referenced by the student. An array may not contain
more than 255 elements. The maximum value an
array index may have (when offset) is 213-1. The
indexes, offsets, and base locations in array defini-
tions must be literals or previously defined constants.

97405100 C

CALC
Instruction format:
cale var < expr
cale varl < var2 <...< varn < expr

Tag definitions:

var,varl, Variable names (primitive or defined)
var2,...,
varn
expr Mathematical expression
Effect:

Value of expression is placed in the variable(s) on the
left of the assignment symbol(s) (&)

Comments:
The —cale- instruction can be a continued instruetion.
The variable can be an element of an array or
segment. If var is the unindexed name of an array,

the indicated operation is performed on each element
of the array.

ADDI1

Instruction format:

addl var

Tag definition:

var Variable name

Effect:

Adds one to the value of the named variable.

SUB1

Instruction format:

subl var

Tag definition:

var Variable name

97405100 C

Effect:

Subtracts one from the value of the named variable.

ZERO
Instruction format:

zero start {,num}

Tag definition:

start Starting variable of block to be zeroed
num Number of variables to be zeroed
Effect:

Sets indicated variables to numeric zero.

Comments:

One-argument tag sets only the named variable to
zero.

CALCC

Instruction format:

calee expr,assignl,assign2,...
Tag definition:
expr Expression whose value determines ac-
tion to be taken
assignl, —cale— assignments, separated by com-
assign2,... mas
Effect:

Performs one of several —cale— type actions, de-
pending on the value of the expression.

Comments:

First assignment done if expression is negative;
second if expression is zero, third if expression is one,
fourth if expression is two, and so on. Value of
expression larger than that corresponding to a posi-
tion uses last position. An x cannot be used to
indicate no action; a null entry (successive commas)
is used instead.

5-5

CALCS
Instruction format:

cales expr,var < valuel,value2,...

Tag definition:

expr Mathematical expression

var Variable to which a value is to be
assigned

valuel, Expressions one of whose value is to be

value2,... assigned to var

Effect:
Performs one of several possible assignments, de-
pending on the value of the expression.

Comments:
First value is assigned if expression is negative,
second if expression is zero, and so on. Value of
expression larger than that corresponding to a posi-
tion uses last position. An x cannot be used to in-

dicate no action; a null entry (successive commas) is
used instead.

SET
Instruction format:

set var<-exprl,expr2,...

Tag definition:

var Starting variable or array element of
block to be —set—
exprl, Variables or mathematical expressions
expr2,...
Effect:

Allows several values to be entered into consecutive
whole-word variables. The variables are set during
execution of the —set— instruction.

Comments:

The —set— instruction cannot be used to assign values
to consecutive elements of a segment.

PACK
Instruction format:

pack nam, {len} ,str

Tag definition:
nam Variable in which characters are stored

len Optional variable which contains char-
acter count

str Character string to be stored

Effect:

Places specified character string in the named vari-
able, left-justified, with zero-fill.

Comments:

String storage can cross variable boundaries. Using
two successive commas specifies an omitted len.

PACKC
Instruction format:

packe expr,nam, {len} ,str—,str0,strl,...,strn

Tag definition:

expr Mathematical expression

nam Variable in which character strings are
stored

len Optional variable in which character

count for specified string is stored

str—,str0,
strl,...,
strn

Character strings to be stored in nam

Effect:

Based on the value of the mathematical expression
(expr), places specified character string in the named
variable, left-justified, with zero-fill. —packe- is the
conditional form of the —pack— instruction.

Comments:

The following may be used as separators: , ; or }.
The separator after len is the only allowable string
separator. End-of-line also acts as a separator. If
the first tag line ends with len, the only allowable
separator is end-of-line.

97405100 C

ITOA
Instruction format:

itoa val,loc {,num }

Tag definition:

val Integer variable to be converted
loc Location of converted string
num Optional variable for storing character
count
Effect:

Value of the first variable is converted to an al-
phanumeric string. String is left-justified with zero-
fill starting in loe.

Comments:

Only integer variables should be used. All arguments
must be variable names.

OTOA

Instruction format:

otoa val,loc { ,num }

Tag definition:

val Octal variable to be converted
loc Location of converted string
num Optional variable for number of digits

to be converted

Effect:
Value of the first variable is converted to an alpha-
numeric string. String is left-justified in a 1- or 2-
word buffer named by second argument.

Comments:

If num is not specified, the default value is 20.
HTOA

Instruction format:

htoa val,loc { ,num |

97405100 C

Tag definition:

val Hexadecimal variable to be converted
loc Location of converted string
num Optional variable for number of digits

to be converted

Effect:
Value of the first variable is converted to an alpha-
numeric string. String is left-justified in a 1- or 2-
word buffer named by second argument.

Comments:

If num is not specified, the default value is 15.

FIND
Instruction format:

find ot{;j,start},lelgth,retm'n {,increment!

Tag definition:

obj Variable containing object to be found
start Starting variable of search

length Number of variables to be searched
return Variable in which number of variable

containing object is stored

increment Optional variable which specifies only
every nth word for comparison with obj

mask Optional mask of variable containing
object

Effect:

Searches specified number of variables for bit con-
figuration in object (possibly modified by mask). The
number of the variable in which the object first
occurs (relative to the starting variable) is placed in
the return variable. If the object is not found, the
value of the return variable is set to —1.

Comments:

The search can be made backwards through the list by
specifying the length as negative. The value of
return, however, is the number relative to the
starting variable (that is, if there is only one occur-
rence, a negative search gives the same result as a
positive search). If mask is used, inerement must be
specified.

5-7

FINDALL

Instruction format:

findall obj,start,length,return,follow
{sincrement| {,mask}
Tag definition:
obj Object to be found
start Starting variable of list to search
length Length of list
return Starting return variable (cannot be a
segment)
follow Number of following variables for stor-
age of found locations (0 for count only)
increment Optional variable which specifies only
every nth word for comparison with
object (assumed to be 1 if not given)
mask Optional mask of variable containing
object (full-word search if not given)
Effect:

Searches a list of variables to find a specified object,
returns a count of the number of matches, and lists
the locations of the matches. Increment between
variables searched can be specified to be other than
1

Comments:

If object matches the first variable, the location
value returned is 0; if there is no mateh, return is —1.
If mask is used, inerement must be specified (1 in
normal case). If increment specified exceeds the
length, an execution error ocecurs. The search can be
made backwards from the last variable in the list by
specifying increment as negative.

SEARCH

Instruction format:

5-8

search str,strlen,start,len,char,ret { ,count}

Tag definition:

str Variable containing character string to
be found

strlen Number of characters in str

start Starting variable of string to be
searched

len Number of variables to be searched

char Starting character position of string to

—search— within start (1 indicates first
character in string)

ret Variable storing result

count Variable or mathematical expression

Effect:

Searches the specified variables for the object string
specified in str. ret contains the relative character
number of the first occurrence if an occurrence is
found; otherwise, ret is —1. If the optional count is
present and is 0, the entire string is searched for all
occurrences of the object and returns a count of the
number of occurrences in ret. If ecount > 0, each of
that number of variables following ret contains the
character position of one of the ret occurrences
within the string searched. The ret+ 1th variable is
set to -1 to indicate the end of the list of
occurrences, and all following variables are un-
changed. Does a forward search if len is positive,
and does a backward search if len is negative.

Comments:

The object string must be left-justified in the vari-
able. Search crosses word boundaries, so ret is the
character position in which the occurrence begins.
The string searched for (contents of str) ean be any-
where within a word. The string searched for can be
no longer than 10 characters. ret cannot be a
—segment—ed variable.

97405100 C

FINDS FINDSA
Instruction format:

object,list;length,inc,1stchar,numchars,
return {,mask}

Instruction format:
finds object,list;length,inc,1stbit,numbits, findsa
return {.mask

Tag definition: Tag definition:

object Variable containing object to be found object Variable containing object to be found
list Starting location of list can be: list Starting location of list can be:
Student Either n(x) or defined Student Either n(x) or defined
variables name variables name
CM ne(x) CM ne(x)
variables variables
ECS common,2000 ECS common,2000
common (=e,2000) common (=e,2000)
ECS storage,123 ECS storage,123
storage (=s,123) storage (=s,123)
length Number of entries in list; one entry can
be several words length Number of entries in list; one entry can
be several words
inc Number of words per entry; must be <
500 inc Number of words per entry; must be <
500
1stbit First bit of search field
1stchar First character of search field
numbits Number of bits in search field
numechars Number of characters in search field
return Variable containing the list entry num-
ber if object is found; otherwise, nega- return Variable containing the list entry num-
tive of list entry number where object ber if object is found; otherwise, nega-
should be tive of list entry number where object
should be
mask Optional mask of variable containing
object mask Optional 1-word mask of variable con-
taining object
Effect:
Effect:

Finds an object in a sorted numerie list.
Finds an object in a sorted alphabetie list.

Comments:
Comments:
Does not check if the list is sorted. Each entry in the

list can occupy one or more words, but must not be
partial words. The numeric field cannot cross word
boundaries. List length of 0 sets return to -1, and ine
must be at least 1.

97405100 C

Does not check if the list is sorted. Each entry in the
list can occupy one or more words, but must not be
partial words. The character field can cross word
boundaries. List length of 0 sets return to -1, and ine
must be at least 1.

SORT

Instruction format:

sort list1;length,ine,1stbit,numbits {,mask
list2;jine
Tag definition:
listl Starting location of the list to be sorted
in numerical order:
Student Either n(x) or v(x)
variables
CcM Either ne(x) or ve(x)
variables
ECS common,2000
common (=e,2000)
ECS storage,123
storage (=s,123)
list2 Starting location of the optional asso-
ciated list to be sorted in numerical
order
length Number of entries in list; one entry may
be several words
ine Number of words per entry
1stbit First bit of field for sorting
numbits Number of bits in sort field
mask Optional mask for sort field
Effect:

Places a list of variables (n or v variables) into nu-
merical order, smaller to larger. The second tag line
is optional; it causes list2 to be sorted at the same
time as listl, thus sorting paired lists.

Comments:

A semicolon is required as a separator after the list
tag. Each entry in the list may occupy one or several
whole variables. Entries cannot be partial words.
The numeric field for sorting may not cross word

boundaries. For example, it is allowable to sort on
bits 43 through 53, but it is not allowable to sort on
bits 55 through 67. The command field for the paired
list (the optional second line for the instruction) must
be blank. Only two lists can be paired.

SORTA

Instruction format:

sorta lista;length,ine,1stchar,numchars {,mask } l

listbsine

Tag definition:

lista Starting location of the list to be sorted
in alphabetical order

listb Starting location of the optional asso-
ciated list to be sorted in alphabetical
order

length Number of entries in list; one entry may
be several words

ine Number of words per entry

1stchar First character of sort field

numchars Number of characters in sort field

mask Optional 1-word mask for sort field

Effect:

Places a list into alphabetical order according to the
internal codes for the characters. The second tag
line is optional; it causes listb to be sorted at the
same time as lista, thus sorting paired lists.

Comments:

A semicolon is required as a separator after the list
tag. Each entry in the list may oceupy one or several
whole variables. Entries cannot be partial words.
The character field may cross one word boundary,
such as characters 8 through 14. The command field
for the paired list (the optional second line for the
instruetion) must be blank. Only two lists ecan be
paired.

97405100 C

INSERTS DELETES
Instruction format: Instruction format:

inserts objectl,listl;length,incl,loc l,num§ deletes listl;length,inel,loc {,num}
{object2,list2;inc2] list2;ine2!|

Tag definition:
Tag definition:

objectl Variable containing object to be in-
serted listl Starting location of list can be:
object2 Variable containing object to be in- Student Either n(x) or defined
serted in associated list (optional) variables name
list1 Starting location of list can be: . CM ne(x)
variables
Student Either n(x) or defined
variables name ECS common,2000
common =¢,2000)
CM ne(x)
variables ECS storage,123
storage (=s,123)
ECS common,2000
common (=¢,2000) list2 Starting location of optional associated
list
ECS storage,123
storage (=s,123) length Number of entries in list before de-
letion; one entry can be several words
list2 Starting location of optional associated
list inel, Number of words per entry; must be <
inc2 500
length Number of entries in list before in-
sertion; one entry can be several words loc Position of entry to be deleted
incl, Number of words per entry; must be < num Optional number of deleted entries
inc2 500
loc Position objects are inserted into Effect:
num Optional number of inserted entries Deletes any number of entries from a list. The
second tag line is optional; it deletes an entry in the
optional associated list2 from the same position as
Effect: the entry in listl is deleted.
Inserts any number of new entries into a list. The
second tag line is optional; it inserts object2 in the Comments:
optional associated list2 in the same position as
objectl is inserted in listl. Fills the last entry with zeros after moving the list

together. Each entry in the list can occupy one or
more words, but must not be partial words. List
Comments: entry size determines object size. ine must be at

least 1, and loe must be > 1 and < length + 1.

Each entry in the list can occupy one or more words,

but must not be partial words. List entry size de-

termines object size. ine must be at least 1, and loe

must be > 1 and < length + 1.

97405100 C 5-11 e

MOVE

Instruction format:

move ostart,ochar,fstart,fchar { Jen |

Tag definition:
ostart - Starting variable of object to be moved

ochar Character location within variable
ostart of object to be moved

fstart Starting variable of new location

fchar Character location within variable
fstart of new location

len Optional character count; if omitted,
one character is moved
Effect:
Copies a character string from one location to an-

other. A maximum of 1500 characters can be moved
within one —move- instruction.

COMPUTE

Instruction format:

compute val,start,len,var
Tag definition:
val Variable to contain value of expression
start Starting variable of expression (left-
justified)
len Number of characters in expression;

must be < 100

var Variable to contain a pointer to compile
code

Effect:
Evaluates value of expression stored as a character
string and saves compile code for later use of the
—compute— for the same string.

Comments:
The first time a character string is compiled, var

must have the value zero. On following evaluations
of the same string, var must have the value assigned

5-12

during the first compilation. = Must use a student
define set with this instruction, if defined variables
are in the string.

CLOCK

Instruetion format:

clock name

Tag definition:

name Variable name

Effect:

Places time (to nearest second) in variable in alpha-
numeric form with format such as

13.20.58

(that is, 24-hour clock).

DATE

Instruction format:

date name

Tag definition:

name Variable name

Effect:

Places current date in variable in alphanumerie
format with the format month/day/year.
DAY

Instruection format:

day vname

Tag definition:

vname Floating-point variable name
Effect:

Places number of days (whole and fractional) since
the starting date and time (set by installation).

97405100 C

NAME

Instruction format:

name namel

Tag definition:

Name of first of two consecutive vari-
ables to be used

namel

Effect:
First 10 characters of student sign-on name placed in

first variable, remaining eight in second variable,
left-justified, zero-filled.

GROUP

Instruction format:

group name

Tag definition:

name Variable name

Effect:

Places the student's group name in variable name,
left-justified, zero-filled.

FROM
Instruction format:

from var;lname {,uname} 3
Inamel {,unamel} ;.;.;

$$lesson name/unit name pairs

from var;<expr> {,uname | ;
<exprl> ,uname} Sisas
$$leslist
from lvar (,uvar }
Tag definition:
var Variable

97405100 C

Iname; Lesson names

Inamel;...

uname; Unit names or variables containing unit

unamel;... name, left-justified, zero-filled

expr Variable or mathematical expression
that references a leslist number en-
closed in <>

lvar Variable in which lesson name is placed

uvar Variable in which unit name is placed

Effect:

Permits author to determine the lesson (and unit)
from which his lesson was entered via a —jumpout—
instruction.

Comments:

If the current lesson was entered from the first lesson
name/ (unit name), the variable is set to 0; if from
the next pair, it is set to 1, ete. If the lesson is not
found in the list (lesson name/unit name pair list), the
variable is set to —-1. Each line of the —from-—
instruction must end with a semicolon. Last form of
—from— places names of lesson and unit from which
student entered current lesson into lvar and uvar.

LESSIN
Instruction format:

lessin lesson

Tag definition:

Actual lesson name or leslist reference
in <>

lesson

Effect:

Checks to see if lesson named is credited to the
logical site and sets system-reserved word zreturn
accordingly (zreturn is —1 if lesson is in ECS or in use
at site; zreturn is 0 otherwise).

Comments:

Leslist reference may be a constant, a variable, or an
expression.

RANDU
Instruction format:

randu name {,lim |

Tag definition:

name Variable name in which value will be
stored
Lim Limit value
Effect:

Returns a fraction between zero
and one (0 < name < 1)

One argument:

Two argument: Returns an integer between one
and value of limit, inclusive

Comments:
The variable storing the number should be a floating-

point variable and must be such in the one-argument
case. Sampling is done with replacement.

SETPERM

Instruction format:

setperm lim{,loc}
Tag definition:
lim Upper bounds of integer set used (1 <
lim < 120)
loc Location for storing permutation

Effect:

Sets up a permutation of integers between one and
lim inclusive. One-argument form stores the per-
mutation in the standard system location and creates
a second copy. Two-argument form stores the per-
mutation in the user variables specified and does not
create a second copy. In the two-argument form, lim
can be greater than 120.

Comments:
Second copy is for use by the -remove- and

—modperm— instructions. When the two-argument
form is used, the number of variables required to

5-14

store the permutation is the value of the author
language expression 2 + int ((lim - 1)/60).

RANDP
Instruction format:

randp store | ,loc |

Tag definition:
store Variable used to store result

loe Starting location of permutation is in
user bank variables

Effect:

Selects an integer from the permutation without
replacement and stores the result in store. One-
argument form uses system location; two-argument
form uses a permutation located in the user variables
specified. When the permutation is exhausted, a
value of zero is returned.

SEED

Instruction format:

seed loc

Tag definition:

loc Location of seed value for use with the
—randu— and —randp— instructions

Effect:

Allows specification of a starting value for the vari-
able used in the algorithm for generating random
numbers. As long as the algorithm is unchanged, any
string of random numbers can be repeated by using
the same seed.

Comments:

A —seed- instruction with a blank tag indicates that
the system seed is to be used. When a student enters
a lesson, the system seed is assumed until a —seed—
instruction is executed. The seed indicated by the
—seed— instruction is then used until a -seed- in-
struction with a blank tag is executed or the student
leaves the lesson.

97405100 C

REMOVE
Instruction format:

remove value {,loc}

Tag definition:

value Number to be removed from thé per-
mutation
loc Starting location of permutation is in

user bank variables

Effect:
Removes specified value from permutation. One-
argument form affects second system copy, and two-
argument form affects the user variable copy speci-
fied.

Comments:
The instruction is ignored if value specified is less
than or equal to zero, greater than the largest ele-

ment of the permutation, or previously removed by a
—remove— instruetion.

MODPERM
Instruction format:

modperm

Effect:
Replaces first system copy of permutation (accessed

by a one-argument —randp-) with second system copy
(affected by —remove-).

BRANCH
Instruction format:
branch label

branch expr,labell ,label2,...

Tag definition:

expr Mathematical expression

97405100 C

label,labell, Line label, x, or q
label2

Effect:

Branches to different lines of code within the same
unit. A line label appears in the command field,
starts with a number, and is seven or less characters
in length. x causes the —branch— to have no effect; q
causes branching to the next non—cale— instruction.
The second form of the —branch— instruction is the
normal conditional form.

Comments:

If the —branch— is preceded by a —cale— instruction,
the —branch— continues the preceding —cale— and can,
if desired, be put in the tag field. Otherwise, the
—branch— must be in the command field and initiates
calculation.

IF

Instruction format:

if expr
. instr
Tag definition:
expr Logical or arithmetic expression
instr Indented author language instructions

(must be regular)

Effect:

Begins an —if— structure. If the value of expr is true,
the author language instructions immediately follow-
ing —if— are executed. If the value of expr is false,
execution resumes at the next —elseif-, —else—, or
—endif- instruction at the current level of indenting.

Comments:
Every —if— structure must end with an —endif- in-

struction. Instructions between —if— and —endif— must
be indented (except for —elseif— and —else-).

ELSEIF
Instruction format:
elseif expr
. instr
Tag definition:
expr Logical or arithmetic expression
instr Indented author language instructions
(must be regular)
Effect:
If the value of expr is true, the author language
instructions immediately following —elseif— are exe-
cuted. If the value of expr is false, execution
resumes at the next —elseif—, —else—, or —endif-
instruction at the current level of indenting.
Comments:
Evaluated when the preceding —if- or —elseif— is

false. Can have more than one —elseif— instruetion in
an —if— structure.

ELSE
Instruction format:
else
. instr
Tag definition:

instr Indented author language instructions
(must be regular)

Effect:

When all preceding —if— and —elseif— expressions are
false, the author language instructions immediately
following —else— are executed.

Comments:

Must have a blank tag.

ENDIF
Instruction format:

endif

5-16

Effect:

Ends an —if- structure.

Comments:

Execution jumps to —endif— after the execution of
author language instructions following a true expr.

DOTO

Instruction format:

doto label,var<beg,end {,inc}

Tag definition:

label Statement label

var Index variable to be inecremented

beg Initial value of index variable (constant,
variable, or mathematical expression)

end Final value of index variable (constant,
variable, or mathematical expression)

ine Size of increment for index variable
(default is 1; negative increments are
permitted)

Effect:

Allows an interactive loop within the same unit, with
the —doto— loop extending from the —doto— command
to the statement label named in the tag. The
statement label is in the command field, starts with a
number, is seven or less characters in length, and has
a blank tag. The —doto— loop is executed the
specified number of times indicated in the iterative
loop (var<-beg). When the value of the index variable
exceeds the final value (end) of the index variable,
the —doto— loop is complete, and the command
following the line label is executed.

—doto— loops can be nested within —doto— loops.. A
negative ine value gives a decreasing loop.

Comments:

—doto— in the command field initiates a —cale— func-
tion; if the —doto— begins the tag field, it continues a
—cale-. Non—cale— commands are allowed within a
—doto— loop. The statement label ending the —doto—
may not contain a —cale— expression in the tag of the
statement label. The statement label of the —doto—
loop must be in the same unit as the —doto—
statement. —doto— can only be used in the iterative
form. An —entry— in the middle of a —doto— loop is
illegal. When nesting —doto— loops, the inner —doto—
loop cannot extend beyond the statement label of the
outer —doto—loop.

97405100 C

LOOP
Instruction format:

loop {expr}
instr

Tag definition:
expr Logical or arithmetic expression

instr Indented author language instructions
(must be regular)

Effect:

Begins a loop. If the value of expr is true, the author
language instructions immediately following —loop—
are executed. If the value of expr is false, execution
resumes following the —endloop— instruction.

Comments:
A blank tag is equivalent to a true expression. Every
loop starting with a —loop— instruction must end with
an -endloop— instruction. Instructions between

—loop— and —endloop— must be indented (except for
—outloop— and —reloop-).

ouTLOOP

Instruction format:

outloop expr

Tag definition:

expr Logical or arithmetic expression

Effect:

Provides a conditional exit from a loop. If the value
of expr is true, execution resumes following the
—endloop— instruction. If the value of expr is false,
the author language instructions immediately follow-
ing —outloop— are executed.

97405100 C

Comments:

Must be at same level of indenting as last —loop—
instruction. Must have a tag.

RELOOP
Instruction format:

reloop expr

Tag definition:

expr Logical or arithmetic expression

Effect:
Provides a conditional branch to the —loop— instruc-
tion. If the value of expr is true, execution resumes
with the previous —loop— instruction. If the value of
expr is false, the author language instructions imme-
diately following —reloop— are executed.

Comments:

Must be at same level of indentation as last —loop—
instruetion. Must have a tag.

ENDLOOP

Instruction format:

endloop

Effect:
Ends a loop. Branches immediately to the —loop—
instruction which began the loop.

Comments:

Must have a blank tag.

5-17 o

COMMON

Instruction format:

common num {,opt |
common {1esson} ,block,num {,opt)
Tag definition:
num Number of variables declared (maxi-
mum of 8000 words)
lesson Lesson containing permanent common;
optional ii lesson is same lesson con-
taining —common- instruction
block Name of block or blocks containing
permanent common
opt Options
Effect:
One argument: Specifies the number of variables
in temporary common
Three argument: Obtains specified number of vari-
ables from permanent common lo-
cated in lesson lesson, block block
Options: Read only, no load, ronl (combined
read only and no load), or checkpt
(permanent common is returned to
disk approximately every 8
minutes)
Comments:
This nonexecutable instruction can appear anywhere
in a lesson because common is allocated at condense
time. Can be used once per lesson. If common is less
than 1500 words, no —comload- instruction is required
after —common-. If common is more than 1500
words, a —comload- instruction after —common-— is
required.
COMMONX

Instruction format:

Tag

5-18

commonx {leson},block,num,{code} |,opt}
definition:
lesson Lesson containing permanent common;

optional if lesson is same lesson con-
taining —ecommonx~— instruction

block Name of bloeck or blocks containing
permanent common

num Number of variables requested
code Codeword of common (optional)
opt Options (read only, no load, ronl, and
checkpt)
Effect:

Common variables requested by —commonx— are
allocated when —commonx- is executed.

Comments:

An executable form of the —common-— instruction.
All arguments can be variables. Can be used once per
lesson.

COMLOAD
Instruction format:
comload

comload cm,ecs,num

Tag definition:

em Starting position in central memory nc
or ve variables

ecs Starting position in extended core stor-
age common

num Number of variables (maximum of 1500
words per instruction)

Effect:

Loads num common variables from extended core
storage (set by preceding —common-) into central
memory nc and ve variables at the start of each
time-slice and returns the updated values at the end
of each time-slice.

Comments:

Unless different variables are to be loaded, a single
instruction is sufficient. Can be a continued instrue-
tion (up to three lines) with one load specification per
line. Subsequent —comload- instruections cause unload
before load. Only one —comload— can be in effect at
one time. A —comload- must be preceded by a
—common-— instruction. Blank tag stops —comload—
execution.

97405100 C

COMRET
Instruction format:

comret

Effect:

Copies current permanent common from ECS to disk.

Comments:

ECS copy of common is not affected.

DATASET

Instruction format:
[] dataset

dataset fn {,access | {,code |

Tag definition:

fn Dataset file name

aceess Type of access desired (optional):
-1 > Read/write
#-1 2> Read only

blank > Read/write

code Common code word (for read/write ac-
cess) or inspect code word (for read-

only access) of dataset (required if
common code word of lesson does not
match corresponding code word of

l dataset); can be a variable or a literal;
optional

Effect:

Establishes connection between lesson and dataset or
nameset file. After successful execution, records

may be read from or written to the dataset by using

I —datain— or —dataout-. A blank tag terminates the
connection to the current dataset.

Comments:

Operates in the same manner as the —-readset— in-
struction but successful only if the named file is a

97405100 C

dataset or a nameset. System-reserved word zreturn
is set to:

-1 Connection made (lesson and dataset code
words matehed)

0 If the file is not found
1 If codes do not match

2 If file is in use elsewhere (file is being
edited)

>3 System disk errors

The system-reserved words zdsname, zrecs, and zwpr
are also set following successful execution of the
—dataset— instruction. If the dataset is a nameset,
the system-reserved words znsepn, znsmaxn,
znsmaxr, znsnams, and znsrecs are also set. Refer to
appendix B.

DATAIN

Instruction format:

datain srecsloe { ;num‘

Tag definition:
srec Number of the first record to be read '

loc Location to which the first block is
written as follows:

Location Format
storage storage,x or s,x
common common,X Or ¢,X
student nx
variables

num Number of records to be read (optional);

if omitted, 1 is assumed

Effect:
Reads num records from the dataset file, beginning at
sree, into storage, common, or student variables.
Comments:
Up to 10 dataset-type instructions may be used in a

—finish— unit; requires a previous —dataset— instruc-
tion. Delimiters must be semicolons.

5-19

DATAOUT
Instruction format:

dataout srec;loe {;num}

Tag definition:

srec Number of the first record to which
data will be written

loc Beginning location from which data will
be written as follows:
Location Format
storage storage,x or s,x
common common,X or ¢,X
student nx
variables

num Number of records to be written (op-

tional); if omitted, 1 is assumed

Effect:

Writes num records from storage, common, or student
variables into the dataset file, beginning at sreec.

Comments:
Up to 10 dataset-type instructions may be used in a

—finish— unit; requires a previous —dataset— instruc-
tion. Delimiters must be semicolons.

SETNAME
Instruction format:

setname {m}

setname nextname
setname backname
Tag definition:
var Variable in which name starts
nextname Keyword nextname must be used in the
—setname nextname- instruction
backname Keyword backname must be used in the
—setname backname-— instruection
Effect:

Selects a named set of records from a nameset for
future reference. Selects the next name in alpha-
betical order when the tag is nextname. Selects the

® 5-20

preceding name in alphabetical order when the tag is
backname. A blank tag clears the current name.

Comments:

The argument var cannot be a constant or a literal.

GETNAME

Instruction format:

getname name {,var}

Tag definition:
name Starting variable for return of the name
var Variable where the information associ-

ated with the name is stored (optional)

Effect:
Returns the name currently selected from a nameset

and its 24 bits of associated information. Returns a
full word of zero if no name is currently in effect.

Comments:

Returns only full words.

ADDNAME

Instruction format:

addname name {,num {,var}}

Tag definition:

name Starting variable of name to add to
nameset

num Number of records to add with name;
default is 1

var Variable containing 24 bits of associ-

ated information to add with name
Effect:
Adds a new name and new set of records to a

nameset.

Comments:

When var is specified, rightmost 24 bits are taken.

97405100 C

DELNAME
Instruction format:

delname

Effect:

Deletes the current selected name and its records.

Comments:

This is the only method of deleting a name from a
nameset.

RENAME

Instruction format:

rename name {,var }

Tag definition:

name Starting variable of name to replace old
name
var Variable containing 24 bits of new

associated information

Effect:
Changes the name of the currently selected name.
Can also change the 24 bits of associated informa-
tion.

Comments:

If var is not specified, the current associated infor-
mation stays the same.

NAMES
Instruction format:

names pos,var,num,return

Tag definition:

pos Starting position in list of names
var Starting variable for storing names
num Maximum number of words available for

storing names

97405100 C

return Variable returning number of names

actually obtained
Effect:
Returns a set of names from the current list in the
nameset.
Comments:

Each name entry uses 1, 2, or 3 words for the name
plus 1 word for the associated information.

ADDRECS

Instruction format:

addrecs 'reca'd,} num

Tag definition:

record Record number assigned to first added
record
num Number of records to add
Effect:

Adds records to the current named set of records.
One-argument form adds records to end of set of
records.

DELRECS
Instruction format:

delrecs {reca'd,} num

Tag definition:

record Starting record number to be deleted
num Number of records to delete
Effect:

Deletes records from the current named set of rec-
ords. One-argument form deletes records from end
of set of records.

Comments:

If all records are deleted, the name remains with no
records.

5-21

RES

ERVE

Instruction format:

reserve common
reserve dataset
reserve records,record,num
Tag definition:
common The tag common must be used in the
—reserve common- instruction
dataset The tag dataset must be used in the
—reserve dataset— instruction
records The tag records must be used in the
—reserve records— instruction
record Starting record number of dataset to
—reserve—
num Number of records of dataset to
—reserve—
Effect:

Sets a flag to indicate that this terminal is using
common or dataset records.

Comments:

5-22

System-reserved word zreturn is returned equal to —1
if common is reserved successfully or is returned
equal to the station number of the terminal which has
common reserved. zreturn is —2 if the terminal
already has common reserved. After a -reserve
dataset— instruction, zreturn is set as follows:

-2 Records already reserved by this ter-
minal
-1 —reserve— successful
0 No preceding —dataset— instruction
1 No such record number(s) in dataset
2 Terminal has read-only access to
dataset
5+n Record(s) of dataset reserved by ter-

minal number n

The —reserve common— instruction does not lock out
access to the common variables. However, appropri-
ate branches can be used on the value of zreturn such
that a lock-out will oceur in the lesson. The -reserve
dataset— instruction prevents other users from writ-
ing into the entire dataset or nameset. The —reserve
records— instruction prevents other users from writ-
ing into the reserved records(s) of the dataset or
nameset. Dataset records which are reserved by
another terminal can still be read.

RELEASE

Instruction format:

release common
release dataset
release records,record,num

Tag definition:

common The tag common must be used in the
—-release common-— instruction

dataset The tag dataset must be used in the
-release dataset— instruction

records The tag records must be used in the
-release records— instruction

record Starting record number of dataset to
-release—

num Number of records of dataset to
-release—

Effect:

Clears flag set by -reserve—. Not cleared if common
or dataset records are not reserved by this station.

Comments:

System-reserved word zreturn is returned equal to -1
if common is released successfully or is returned
equal to the station number of the terminal which has
common reserved. zreturn is —2 if common is not
reserved by any terminal. After a -release dataset—
instruction, zreturn is set as follows:

-2 Dataset record(s) not reserved by any
terminal
=1 —release— successful
0 No preceding —dataset— instruction
1 No such record number(s) in dataset
5+n Record(s) in dataset are reserved by

terminal number n

Common variables are automatically released if an
execution error occurs in the lesson or if the user
exits by pressing SHIFT STOP. Dataset records are
automatically released when the user exits from the
lesson by any means, when another —dataset— instruc-
tion is executed, or when a —dataset (0)- instruection
is executed.

97405100 C

STOLOAD

ABORT
Instruction format: Instruction format:
abort common stoload l
abort record stoload cm,stor,num
abort autocheck
Tag definition:
common, (Up to three tags can be
abort record, used with a single —abort— ecm Starting variable position in central
autocheck| command.) memory ne or ve variables |
stor Starting variable position in storage
Effect:
num Number of variables (maximum of 1500
The —abort common— instruction transforms a per- words per instruction)
manent common into a temporary common. Common
is not returned to the disk (updated) when the last
user leaves student mode. Lesson(s) containing Effect:
common continue to function as before, but all recent
changes to common are never returned to the disk. Loads num variables from storage (set by a preceding I
Execution errors ocecur if there is no common or read- —storage-) into central memory nc and ve variables at
only common. the beginning of each time-slice and returns the

updated values at the end of each time-slice.
The —abort record- instruction causes student records
not to be returned back to the disk when the student

signs off. However, CPU time, number of sessions, Comments:

etc. are updated at sign-off time. Autocheckpoint

function is included with —abort record-. An execu- Unless different variables are to be loaded, a single

tion error occurs if user is not a registered student —stoload- is sufficient. Can be a continued instrue-

with the -abort record— and -abort autocheck— tion (up to three lines) with one load specification per

commands. line. A blank tag cancels previous —stoload-. A
—stoload— must be preceded by a -storage— in-

Autocheckpoint of common does not occur when an struction.

—abort autocheck- is in effect.

BLOCK
STORAGE
Instruction format:
Instruction format:
block start,store,num
storage num

Tag definition:
Tag definition:

start Starting location of block to be moved
num Number of words of storage
store Starting location of block destination
Effect: num Number of variables to move (ean be 0) I
Reserves the requested number of words in ECS.
Effect:
Comments: Copies num variables from the block starting at start

to the block starting at store.
Only one -storage— instruction can be used in a
lesson. Maximum length of storage is 1500 words.

97405100 C 5-23

TRANSFR
Instruction format:

transfr start;store;num

Tag definition:

start Starting location of block to be moved

store Starting location of block destination

num Number of variables to move (can be 0)
Effect:

Copies num variables from the block starting at start
to the block starting at store.

Comments:

More general than the —block— instruection but with
the same type of effect. The arguments must be
separated with semicolons. The locations can have
any of the following forms.

s l Student variables

VX

nex } Central memory variables
vex

ecommon,x <
2 } ECS common variables

e,X

storage,x ’ Storage variables

S,X

In all cases, x is the variable number.

DISPLAY INSTRUCTIONS

The following instructions are used to display information.

at showz rdraw
atnm showe gdraw
rorigin showa circle
gorigin text circleb
rat hidden reirele
gat erase geircle
ratnm eraseu box
gatnm size rbox
write rotate gbox
writec dot vector
show rdot rvector
showt gdot gvector
showo draw window

5-24

mode tabset 1scalex
color slide 1scaley
embed enable labelx
catchup disable labely
delay audio markx
char play marky
plot record graph
charset ext hbar
chartst extout vbar
lineset axes delta
altfont bounds funet
miero scalex polar
codeout scaley

AT

Instruction format:
at loc

at finex,finey

Tag definition:

loc Coarse-grid location

finex Fine-grid horizontal location

finey Fine-grid vertical location
Effect:

Sets position and margin for display instructions.

ATNM

Instruction format:
atnm loc

atnm finex,finey

Tag definition:

loe Coarse-grid location

finex Fine-grid horizontal location

finey Fine-grid vertical location
Effect:

Sets position for display instruections but does not set
a left margin for continued lines (second and subse-
quent lines) of the display. Second and subsequent
lines are displayed at the leftmost margin (default
left margin).

97405100 C

RORIGIN

Instruction format:

rorigin loc
rorigin finex,finey
rorigin

Tag definition:

loc Coarse-grid location
finex Fine-grid horizontal location
finey Fine-grid vertical location
blank Sets origin to current wherex and
wherey
Effect:

Specifies an origin for the relocatable instructions.

Comments:
Remains in effect until another -rorigin— is executed.

If no -rorigin— is specified when entering a lesson,
—rorigin— is set to 0,0.

GORIGIN

Instruction format:

gorigin loc
gorigin finex,finey
gorigin

Tag definition:

loc Coarse-grid location
finex Fine-grid horizontal location
finey Fine-grid vertical location
blank Sets origin to current wherex and
wherey
Effect:
Specifies an origin for the relative graphies instrue-
tions.
97405100 C

Comments:
Remains in effect until another —gorigin— is executed.

If no —gorigin— is specified when entering a lesson,
—gorigin— is set to 0,0.

RAT

Instruction format:

rat loc

rat finex,finey

rat
Tag definition:

loc Coarse-grid location

finex Fine-grid horizontal location

finey Fine-grid vertical location

blank Sets sereen position to current —rorigin—
Effect:

The -rat— (relocatable at) instruction determines a
new screen position relative to the specified
—rorigin-. The current state of the -size— and
—-rotate— instructions is taken into account. The
—rat- instruction is used with text display instructions
and with relocatable instructions.

GAT

Instruction format:

gat X,y

Tag definition:

X Scaled horizontal position
y Scaled vertical position
Effect:

Places cursor (position) at specified location on the

screen for subsequent graphiecs instructions.
Comments:

Equivalent to the fine grid —at— instruction, except

that the location is specified in scaled graph coor-
dinates relative to the specified —gorigin—.

5-25

RATNM
Instruction format:
ratnm loe

ratnm finex,finey

Tag definition:

loc Coarse-grid location

finex Fine-grid horizontal location

finey Fine-grid vertical location
Effect:

Sets position for display instruction with respect to
—rorigin— but does not set a left margin for continued
lines (second and subsequent lines) of the display.
Continued lines are displayed at the leftmost margin.

GATNM
Instruction format:

gatnm X,y

Tag definition:

b ¢ Scaled horizontal location
y Scaled vertical location
Effect:

Sets position for graphics instruction with respect to
—gorigin— but does not set a left margin for continued
lines (second and subsequent lines) of the display.
Continued lines are displayed at the leftmost margin.
Comment:

Equivalent to the fine grid —atnm— instruction, except
that the location is specified in scaled graph coordi-
nates relative to the specified —gorigin—.

WRITE

Instruction format:

write message

Tag definition:

Text to be displayed (may include em-
bedded instructions)

message

Effect:
Displays text, starting at current screen position

(may be specified by an —at—, -rat—, —gat—, —atnm—,
—ratnm-—, or —gatnm-— instruction).

5-26

Comments:

Tag can be more than one line in length. Refer also
to embed.

WRITEC

Instruction format:

writec expr,messl,mess2,...
writec exprimessl{mess24...

Tag definition:

expr Mathematical expression
messl, Text to be displayed (may include em-
mess2,... bedded instructions)

Effect:

Displays one of several possible messages on the
sereen.

Comments:
Second form uses universal delimiters (ACCESS,).

Omitted arguments use successive delimiters, not x
or q. Tag can be more than one line.

SHOW
Instruction format:

show var { ,num {,ahsval} }

Tag definition:

var Variable whose value is to be displayed
num Number of significant figures desired
absval Minimum absolute value to be displayed
(0 to1)
Effect:

Displays value of first argument, which can be an
expression. If the value to be displayed has more
than num + 4 digits before the decimal point, it is
displayed in exponential format. If the value is less
than 10-4, it is also displayed in exponential format.
If the value is less than the absolute value (absval), 0
is displayed.

Comments:

The default value of num is 4. The default value of
absval is 1079,

97405100 C

SHOWT

Instruction format:

showt var {,format}

Tag definition:

var Variable whose value is to be displayed
format Format of number (l.r, or 1,r)
Effect:

Displays the specified variable at the current screen
position, right-justified, with the length or format
specified.

Comments:
A value too large for the specified format displays

asterisks (***¥), Integer default length is eight
digits. Floating-point default format is 4,3.

SHOWO
Instruction format:

showo var {,num}

Tag definition:
var Variable whose value is to be displayed
num Number of octal digits to be displayed
(default is 21)
Effect:

Displays value of specified variable in octal.

Comments:

If num > 20 (num-20) leading blanks are sup-

plied
num > 64 num is set to 64
num =0 Instruction is ignored
num < (Execution error is generated

If variable cannot be displayed in the specified num-
ber of digits, num asterisks are displayed.

97405100 C

SHOWZ
Instruction format:

showz var { ,num}

Tag definition:

var Variable whose value is to be displayed
num Number of significant figures desired
Effect:

Displays value of first argument, which can be an
expression. If value does not fit in the length speci-
fied in the second argument, exponential format is
used, displaying precisely the number of places
specified.

SHOWE

Instruction format:

showe var {,num {,format |}

Tag definition:

var Variable whose value is to be displayed
num Number of digits to be displayed (op-
tional); default is 4
format Type of scientific notation (optional);
default is 0
Effect:

Displays specified number of digits in exponential
format. If format (optional third argument) is 0, the
standard format is displayed (for example, 3.00x102).
If format is nonzero, the ** format is displayed (for
example, 3.00¥10**2), Leading space or - is auto-
matically supplied to permit tabular displays.

Comments:
Width of the display field depends on exponent size.

If the optional third argument is used, the optional
second argument (num) must be specified.

5-27

SHOWA

Instruction format:

showa var,num

Tag definition:

var Variable whose value is to be displayed
num Number of characters to be displayed
Effect:

Displays contents of specified variable in alpha-
numeric form. Assumes character string is left-
justified.

Comments:
Contents of more than one (consecutive) variable are

displayed if num is greater than 10. Most shifted and
access characters must be counted as two characters.

TEXT
Instruction format:

text var,num

Tag definition:

var Starting variable of alphanumeric
buffer
num Number of computer words to be dis-

played (must be < 468)

Effect:
Displays contents of an alphanumeric buffer, auto-
matically starting new lines.

Comments:
Does not allow literals in the tag, and is not affected
by the —size— or —rotate— instructions. Execution of

the —text— instruction does not update the system-
reserved word where.

HIDDEN

Instruction format:

hidden var {,num }

Tag definition:

var Variable containing alphanumeric char-
acters
num Number of characters to be displayed
(optional)
Effect:
Displays contents of var, showing all hidden 6-bit
codes.
Comments:

The default value of num is 10. After execution of
the -hidden— instruection, the value of system-
reserved word where is unreliable. Does not work
well with -mode rewrite—.

ERASE

Instruction format:

erase
erase num {,lim }
erase abort

Tag definition:

0 Zero value

num Positive value

lines Number of lines

abort The keyword abort must be used with

the —erase abort— instruction

Effect:
blank Entire screen erased and pending output
not aborted
0 Instruetion ignored
num Number of characters erased
num,lines Block of num characters by lines erased
abort Entire screen erased and pending output

aborted

97405100 C

ERASEU

Instruction format:

eraseu
eraseu uname
eraseu expr,unamel ,uname2,...

Tag definition:

uname Unit name

unamel, Unit names, x, or q

uname2,...

expr Variable or mathematical expression
Effect:

Causes unit named in tag to be executed when any of
the following keys are pressed after an ok or no
judgment.

ERASE
SHIFT ERASE
NEXT (not after ok)
EDIT
SHIFT EDIT
Comments:
After execution, —eraseu— remains in effect for that
entire main unit. Conditional form x causes the

—eraseu— to have no effect; q or —eraseu— with no tag
clears previous —eraseu—.

SIZE

Instruction format:
size s

size sizex,sizey

Tag definition:

s Size of text

sizex Horizontal character size

sizey Vertical character size
Effect:

Sets size of text to tag value times normal size.
—size 0—returns to normal size.

97405100 C

Comments:

When size is other than zero, the text is displayed
slower than normal text. The —size— instruction
remains in effect between unit boundaries. Alternate
characters display the associated nonprogrammable
character if the size is not zero and no -lineset—
instruction is in effect. If a —lineset— instruection is in
effect, the size is nonzero, and alternate-character
text is used, the appropriate -lineset— character is
displayed.

ROTATE

Instruction format:

rotate angle

Tag definition:

angle Angle of rotation (in degrees)

Effect:

Rotates text through angle specified before display.

Comments:
Normal (size zero) and alternate character text

unaffected by —rotate— instruction. -lineset— char-
acters are affected by the —rotate— instruection.

DOT
Instruction format:
dot loc

dot finex,finey

Tag definition:

loc Coarse-grid location

finex Horizontal fine-grid location

finey Vertical fine-grid location
Effect:

Lights up one screen dot at specified location.
Comments:

Coarse-grid location lights dot in lower-left corner of
character space.

5-29

RDOT
Instruction format:
dot loc

dot finex,finey

Tag definitions:

loe Coarse-grid location

finex Horizontal fine-grid location

finey Vertical fine-grid location
Effect:

Lights up one screen dot at specified location relative
to —rorigin—.
Comments:

Coarse-grid location lights dot in lower-left corner of
character space.

GDOT
Instruction format:

gdot finex,finey

Tag definition:

finex Horizontal fine-grid location
finey Vertical fine-grid location
Effect:

Lights up one screen dot at specified location relative
to —gorigin—.
Comments:

The tag for the —gdot— instruction must use fine-grid
coordinate form.

1 s5-30

DRAW
Instruction format:
draw loclsloe2; ...

draw sloclloe?; ...

Tag definition:
locl; Coarse- or fine-grid locations or key-
loe2; ... word skip separated by semicolons

Effect:
Draws lines between locations specified, in the order
specified. Initial semicolons start from current
sereen position; skip moves to next position without a
line being drawn.

Comments:
Fine- and coarse-grid coordinates can be mixed in a
single tag. Fine-grid coordinates give horizontal and
vertical positions, in that order, separated by com-
mas. System-reserved words where, wherex, and

wherey are not updated until the instruction ecom-
pletes execution.

RDRAW
Instruction format:
rdraw locl;loc2; ...

rdraw sloelsloe?; ...

Tag definition:

loel; Fine-grid locations relative to —rorigin—
loc2; ... or keyword skip separated by semi-
colons
Effect:

Allows specification of a figure with respect to
—rorigin—. Allows sizing and rotation of the figure
using the —size— and —rotate— instructions.

97405100 C

GDRAW
Instruction format:
gdraw loclsloc2; ...

gdraw sloelsloe?; ...

Tag definition:

locl; Fine-grid locations relative to —gorigin—
loe2; ... or keyword skip separated by semi-
colons
Effect:

Draws lines between locations specified. Initial
semicolons start from current —gorigin— position.
Comments:

The tag for the —gdraw— instruction must use the
fine-grid coordinate form.

CIRCLE
Instruction format:
circle radius

circle radius,beg,end

Tag definition:
radius Radius of circle in fine-grid dots

beg Starting angle from the horizontal (in
degrees); required when drawing ares

end Ending angle from the horizontal (in
© degrees); required when drawing ares
Effect:

Draws a circle, as defined in the first instruection
format, or partial circle (arc), as defined in the

97405100 C

second instruction format. The center of the circle
or arc is defined by the current system-reserved
words wherex and wherey (usually set by a preceding
—at— or —atnm— instruction). wherex and wherey are
unchanged by the whole circle instruction but are
reset to the last point drawn on the circumference of
an are.

Comments:

The -—eircle— instruction also performs automatic
windowing at the end of the screen.

CIRCLEB
Instruetion format:
cireleb radius

cireleb radius,beg,end

Tag definition:
radius Radius of circle in fine-grid dots

beg Starting angle from the horizontal (in
degrees); required when drawing ares

end Ending angle from the horizontal (in
degrees); required when drawing ares

Effect:

Draws a broken (dashed) cirele or ellipse, as defined
in the first instruction format, or partial circle (arc),
as defined in the second instruction format. The
center of the circle or arc is defined by the current
system-reserved words wherex and wherey (usually
set by a preceding —at— or —atnm-— instruction).
wherex and wherey are unchanged by the whole circle
instruction but are reset to the last point drawn on
the circumference of an arc.

Comments:

The —circleb— instruction also performs automatic
windowing at the edge of the sereen.

RCIRCLE
Instruction format:
reirele radius

reircle radius,beg,end

Tag definition:

radius Radius of cirele in fine-grid dots
beg Starting angle from the horizontal (in
degrees); required when drawing arcs
end Ending angle from the horizontal (in
degrees); required when drawing arcs
Effect:

Draws a circle or ellipse, as defined in the first
instruction format, or partial circle (are), as defined
in the second instruction format relative to the
current —rorigin—. The center of the cirele, ellipse,
or arc is defined by the current system-reserved
words wherex and wherey (usually set by a preceding
—rat— or —ratnm- instruction). Ellipses are drawn
only if the sizex and sizey scales are different.
wherex and wherey are unchanged by the whole circle
instruction but are reset to the last point drawn on
the circumference of an are. The —rcircle— instrue-
tion is affected by the —size— and —rotate— instruc-
tions.

Comments:

The -rcircle— instruction also performs automatie
windowing at the edge of the screen.

GCIRCLE
Instruction format:
geirele radius

geirele radius,beg,end

Tag definition:

radius Radius of cirele in fine-grid dots
beg Starting angle from the horizontal (in
degrees); required when drawing ares
end Ending angle from the horizontal (in
degrees); required when drawing ares
5-32

Effect:

Draws a circle or ellipse, as defined in the first
instruction format, or partial circle (are), as defined
in the second instruction format relative to the
current —gorigin—. The center of the circle, ellipse,
or arc is defined by the current system-reserved
words wherex and wherey (usually set by a preceding
—gat— or —gatnm- instruction). Ellipses are drawn
only if the x and y scales are different. wherex and
wherey are unchanged by the whole cirele instruction
but are reset to the last point drawn on the
circumference of an are.

Comments:

The —gcircle— instruction also performs automatic
windowing at the edge of the screen.

BOX
Instruction format:

box {{10e1} ;} loe2 {;thick]

Tag definition:

locl One corner (coarse- or fine-grid coor-
dinates) of box to be displayed (op-
tional)

loc2 Opposite corner (coarse- or fine-grid

coordinates) of box to be displayed

thick Thickness of the box wall in fine-grid
dots (optional)

Effect:

Draws a rectangular box whose opposite (diagonal)
corners are at the two locations specified (loel and
loc2). If the first location is omitted (for example,
—box ;loe2-), the current sereen position is used for
the other corner. If only one location is specified (for
example, —box 910-), a box is drawn with one corner
at the specified location and the other corner at
location 0,0.

Comments:

If the thickness value (thiek) is positive, the box wall
is built in an outward direction from the corners. If
thickness is a negative value, the buildup is in an
inward direction. Thickness values of -1, 0, 1, and a
blank (thick argument not specified) mean that the
box wall is to be one line thick. This value must be
less than 50.

97405100 C

RBOX
Instruction format:

rbox { {101} ; } 10e2 {;thick]

Tag definition:

locl One corner (coarse- or fine-grid coor-
dinates) of box to be displayed (op-
tional)

loc2 Opposite corner (coarse- or fine-grid

coordinates) of box to be displayed

thick Thickness of the box wall in fine-grid
dots (optional)

Effect:

Draws a rectangular box whose opposite (diagonal)
corners are at the two locations specified (loel and
loc2). If the first location is omitted (for example,
—-rbox ;loe2-), the current screen position is used for
the other corner. If only one location is specified (for
example, —rbox 812-), a box is drawn with one corner
at the specified location and the other corner relative
to the current -rorigin-—. —-rbox— locations are
affected by the —size— and —rotate— instructions.

Comments:
If the thickness value (thiek) is positive, the box wall
is built in an outward direction from the corners. If
thickness is a negative value, the buildup is in an
inward direction. Thickness values of -1, 0, 1, and a
blank (thick argument not specified) mean that the

box wall is to be one line thick. This value must be
less than 50.

GBOX
Instruction format:
gbox
gbox {{floe1} ; } floe2 { ;thick]

Tag definition:

floc1 One corner (fine-grid coordinates) of
box to be displayed (optional)

floc2 Opposite corner (fine-grid coordinates)
of box to be displayed

thick Thickness of the box wall in fine-grid
dots (optional)

97405100 C

Effect:

Draws a rectangular box whose opposite (diagonal)
corners are at the two locations specified (flocl and
floc2). If the first location is omitted (for example,
—gbox ;floe2-), the current screen position is used for
the other corner. If only one location is specified (for
example, —gbox 200,200-), a box is drawn with one
corner at the specified location and the other corner
relative to the current —gorigin—. The -—gbox—
instruction uses scaled coordinates as specified by
previous —scale— and —bounds/axes— instructions. A
—gbox— instruction with a blank tag draws a box
around the current —bounds—.

Comments:

If the thickness value (thiek) is positive, the box wall
is built in an outward direction from the corners. If
thickness is a negative value, the buildup is in an
inward direction. Thickness values of -1, 0, 1, and a
blank (thick argument not specified) mean that the
box wall is to be one line thick. This value must be
less than 50.

VECTOR

Instruction format:

vector { {loel } ; } loc2 |{;size}

Tag definition:

locl Horizontal and vertical location
(coarse- or fine-grid coordinates) of the
arrow's tail (optional)

loc2 Horizontal and vertical location
(coarse- or fine-grid coordinates) of the
arrow's head

size Size of arrow's head; default is 10.5
(optional)

Effect:

Draws a vector (pointer or arrow) with its tail at the
first location (loecl) and its head at the second
location (loe2). If the first location is omitted (for
example, —vector ;loe2-), the tail is at the current
screen position. If only one location is given (for
example, —vector 910-), a vector is drawn with the
head at the specified location and the tail at location
0,0.

Comments:

A positive-size arrowhead is a closed triangle. A
negative-size arrowhead is open (barbed). When size
> 1, it specifies the absolute size of the arrowhead in
dots. When size < 1, it specifies the size of the
arrowhead relative to the length of the vector. This
headsize changes with —size—, —scalex—, and —scaley—
instructions.

5-33

RVECTOR
Instruction format:

rvector {{locl} ;} loc2 {;size |

Tag definition:

locl Horizontal and vertical location
(coarse-or fine-grid coordinates) of the
arrow's tail (optional)

loc2 Horizontal and vertical location
(coarse-or fine-grid coordinates) of the
arrow's head

size Size of arrow's head; default is 10.5
(optional)

Effect:

Draws a veetor (pointer or arrow) with its tail at the
first location (loecl) and its head at the second
location (loe2). If the first location is omitted (for
example, —rvector jloe2-), the tail is at the current
sereen position. If only one loecation is given (for
example, —rvector 1210-), a vector is drawn with the
head at the specified location and the tail at the
current —rorigin—. Vectors drawn with the —rvector—
instruction are affected by the —size— and -rotate—
instruetions.

Comments:
A positive-size arrowhead is a closed triangle. A
negative-size arrowhead is open (barbed). When size
> 1, it specifies the absolute size of the arrowhead in
dots. When size < 1, it specifies the size of the
arrowhead relative to the length of the vector. This

headsize changes with —size—, —scalex—, and —scaley—
instructions.

GVECTOR
Instruction format:

gvector “flocl} ;} floc2 ';size]

Tag definition:

flocl Scaled horizontal and vertical location
(fine-grid coordinates) of the arrow's
tail (optional)

floc2 Scaled horizontal and vertical location
(finegrid coordinates) of the arrow's
head

size Size of arrow's head; default is 10.5
(optional)

5-34

Effect:

Draws a vector (pointer or arrow) with its tail at the
first location (loel) and its head at the second
location (loe2). If the first location is omitted (for
example, —gvector j;loe2-), the tail is at the current
screen position. If only one location is given (for
example, —gvector 220,220-), a vector is drawn with
the head at the specified location and the tail at the
current -gorigin—. The —-gvector— instruction uses
scaled coordinates as specified by previous —scale—
and -bounds/axes— instructions. The tag for the
—gvector— instruction must use the fine-grid coordi-
nate form.

Comments:

A positive-size arrowhead is a closed triangle. A
negative-size arrowhead is open (barbed). When size
> 1, it specifies the absolute size of the arrowhead in
dots. When size < 1, it specifies the size of the
arrowhead relative to the length of the vector. This
headsize changes with —size—, —scalex—, and —scaley—
instructions.

WINDOW

Instruction format:

window

window “locl} ;}locz

Tag definition:

locl One corner (coarse- or fine-grid coordi-
nates) of window (optional)

loc2 Opposite corner (coarse- or fine-grid
coordinates) of window

Effect:

Limits display area within rectangle bounded by
specified corners (loel and loe2). If the first location
is omitted (for example, —window j;loe2-), the current
sereen position is used for the other corner. If only
one location is specified (for example, —window
loe2-), one corner is at loe2 and the other corner is at
0,0. Blank tag turns off previous —window— instruec-
tion.

Comments:

The —window— instruction remains in effect across
unit boundaries. Size 0 text and —dot— are
unaffected. Fine-grid coordinates are separated by a
comma.

97405100 C

MODE

Instruction format:

mode

mode

type

expr, typel, type2,...

Tag definition:

type,
typel,
type2,...

expr

Effect:

Keywords write, rewrite, or erase

Variable or mathematical expression

Sets the mode in which the terminal operates.

Comments:

Mode rewrite erases an entire character space before
displaying text.

COLOR

Instruction format:

color

type

Tag definition:

type

Effect:

Keyword orange means write; keyboard
black means erase

The —color orange-— instruction is equivalent to the

—mode write— instruction,

and the —color black—

instruction is equivalent to the —mode erase— in-
struction.

EMBED (Not an Instruection)

Normal Form

show
showt
showz
showo
showe
showa
at
atnm
size
rotate

mode

97405100 C

al,a2,a3
al,a2,a3

al,a2

al,a2

al,a2 {,format)
al,a2

al,a2

al,a2

al

al

tag

Embedded Form
<s,al,a2,a3>
<t,al,a2,a3>
<z,al,a2>
<o0,al,a2>
<e,al,a2 {,format}>
<a,al,a2>

< at,al,a2>

< atnm,al,a2 >
<size,al>

< rotate,al>

< m,tag >

Effect:
Causes specified display action within a —write— or
—writec— instruction.

Comments:
Normal default options are in effect, except that no
leading blank is specified for the embedded —showo—

instruction. The embed mode feature does not work
with alternate font.

CATCHUP
Instruction format:

catchup

Effect:

Halts lesson execution until all display material
previously specified has been shown on the terminal.

DELAY
Instruction format:

delay num

Tag definition:
num Number less than or equal to one (float-
ing-point format)
Effect:

Causes execution delay specified by tag (in seconds).

CHAR
Instruction format

char slot,al,a2,a3,a4,a5,a6,a7,a8

Tag definition:
slot Memory slot number

al,...,a8 Dot specifications

Effect:

Defines a character associated with the specified slot
of the alternate character memory. Each dot
specification specifies one column of the character
matrix, each binary one signifies a lighted dot, and
each binary zero signifies an unlighted dot.

5-35

PLOT
Instruction format:

plot slot

Tag definition:

slot Memory slot number

Effect:
Displays alternate character in the specified memory
slot.

Comments:

Can only display one character per instruction.

CHARSET

Instruction format:
charset

charset { los,} name

Tag definition:
less Lesson containing character set or vari-
able containing lesson name; optional if
current lesson contains character set
name Name of character set or variable
containing name
Effect:
Loads specified character set into alternate char-
acter memory of the terminal. Blank tag clears
information about which character set is loaded.
Comments:
Loading requires about 17 seconds for a full character

set. Loading is not done if the character set has
already been placed in the terminal.

CHARTST
Instruction format:

chartst {les,} name

5-36

Tag definition:

less Lesson containing character set or vari-
able containing lesson name; optional if
current lesson contains character set

name Name of character set or variable
containing name

Effect:

Checks if character set named in the tag (name) is
currently loaded into the terminal. System-reserved
word zreturn is —1 if character set is loaded; it is 0 if
character set is not loaded.

Comment:
The —chartst— instruction cannot determine if the
character set was properly loaded, but only if an

attempt has been made by using the —charset— in-
struection.

LINESET
Instruction format:
lineset

lineset {las,} name

Tag definition:

less Lesson containing lineset or variable
containing lesson name; optional if cur-
rent lesson contains lineset

name Name of lineset or variable containing
name

Effect:

Obtains specified lineset from specified lesson. Blank
tag clears information about which lineset is loaded.

Comments:

The -lineset— instruction may be used when sizing and
rotating alternate characters; however, it can only be
used if the current size does not equal zero. As with
normal characters whose size is other than zero,
characters are plotted slower than size-0 alternate
characters. Following a -lineset— instruction, sys-
tem-reserved word zreturn is set as follows:

-1 Loaded successfully
0 Lineset not found
1 Error in lineset

97405100 C

ALTFONT
Instruction format:

altfont val

Tag definition:

val on, 1, alt, off, 0, normal

Effect:
Switches displayed characters into alternate char-
acter set for both student and author if tag is on, 1,
or alt. Returns to normal character set if tag is off,
0, or normal.

Comments:

Source code remains in standard character set.

MICRO
Instruction format:
miero

miero l&s,} name

Tag definition:

less Lesson containing miero table; optional
if current lesson contains micro table
name Name of micro table
Effect: \

Obtains miero table from specified lesson. Blank tag
loads the system micro table.

Comments:
System-reserved word zreturn is set to -1 if the
micro table is loaded; zreturn is 0 if the micro table
is not loaded.

CODEOUT

Instruction format:

codeout val

97405100 C

Tag definition:

val Octal value between 010 and 017, in-
clusive
Effect:
Sends specified octal code to the terminal when
executed.
TABSET

Instruction format:

tabset o al a2 a3 a4 a5 a6 a7 a8 a9 al0

Tag definition:

al,...,al0 Octal two-digit fields

Effect:
Defines columns that student can use with the TAB
key.

Comments:

Ten fields must be used, with lowercase o preceding
first field only. Commas are not used.

SLIDE
Instruction format:

slide num

Tag definition:

num Number of slide selected

Effect:
Selects designated slide from mierofiche and displays
it

Comments:

There are three additional options.

512+n Selects the slide but leaves bulb off
256+n Selects the slide but closes shutter
noslide Selects slide 0, turns bulb off, and

closes shutter

5-37

ENABLE

Instruction format:

enable touch
enable ext
enable touch,ext

Tag definition:

touch Keyword touch must be used in the
—enable touch— instruction.

ext Keyword ext must be used in the
—enable ext— instruction.

Effect:

Allows input from touch panel or external devices.

DISABLE

Instruction format:

disable touch
disable ext
disable touch,ext

Tag definition:

touch Keyword touch must be used in the
—disable touch— instruction.

ext Keyword ext must be used in the
—disable ext— instruction.
Effect:

Allows no further input from touch panel or external
devices.

AUDIO

Instruction format:

| audio var

Tag definition:

| var Variable or mathematical expression (0

to 32767)

Effect:
If the terminal is equipped with the audio disk fea-

ture, the —audio— instruction activates the prere-
| corded message specified in tag (var).

5-38

Comments:

The —audio— instruction may be used instead of the
—play- instruction.

PLAY

Instruection format:

play track,sector,length

Tag definition:

track Audio disk track number (0 to 127) or
mathematical expression

sector Audio disk sector number (0 to 31) or
mathematical expression

length Number of consecutive sectors to be
played (0 to 4095) or mathematical
expression

Effect:

If the terminal is equipped with the audio disk fea-
ture, the —play— instruction activates the prerecorded
message specified by the tag.

RECORD

Instruction format:

record track,sector,length

Tag definition:
track Audio disk track number (0 to 127) or
mathematical expression
sector Audio disk sector number (0 to 31) or
mathematical expression
length Number of consecutive sectors to be
recorded (0 to 4095) or mathematical
expression
Effect:

If the terminal is equipped with the audio disk fea-
ture, the -record- instruction activates recording
capability of the device at the location specified by
the tag.

Comments:
Audio messages entered with the —record— instruction

are replayed with either an -audio— or -play—
instruction.

97405100 C

EXT

Instruction format:

ext var |,station |

Tag definition:
var Variable (type n or ne) or mathematical
expression containing information in
rightmost 15 bits
station Number of other station to receive
—ext— instruction.
Effect:
Sends rightmost 15 bits to external terminal acces-
sory. Two-argument form checks if the other station
wishes to receive —ext— instructions.
Comments:
Value of mathematical expression in var truncated to

15 bits. System-reserved word zreturn is set to -1 if
the data is sent or to 0 if data is not sent.

EXTOUT
Instruction format:

extout var {,num}

Tag definition:

var Variable (type n or nc) containing infor-
mation in rightmost 16 bits
num Number of words to be sent out; default
value is 1
Effect:

Sends rightmost 16 bits of num words starting at var
to the external jack of the terminal.

Comments:
An —erase abort— or —jump— instruction aborts pend-

ing —extout— output. To prevent this, use a —catchup—
instruction before —erase abort— or —jump—.

97405100 C

AXES

Instruction format:

axes
axes x+Hy+
axes X~y Xyt

Tag definition:

x+ Positive length of horizontal axis in
fine-grid dots

y+ Positive length of vertical axis in fine-
grid dots

x- Negative length of horizontal axis in
fine-grid dots

y- Negative length of vertical axis in fine-
grid dots

Effect:

Draws axes of the graph and sets graph limits. Blank
tag redraws previously specified axes.

BOUNDS
Instruction format:
bounds x+y+

bounds X—,y-,X+,y+

Tag definition:

x+ Positive horizontal boundary of graph in
fine-grid dots

y+ Positive vertical boundary of graph in
fine-grid dots

x- Negative horizontal boundary of graph
in fine-grid dots

Yy Negative vertical boundary of graph in
fine-grid dots

Effect:

Establishes boundaries of graph without drawing the
axes.

5-39

SCALEX
Instruction format:

scalex max {,offset }

Tag definition:

max Maximum horizontal value of graph
offset Value of horizontal axis at origin (de-
fault is 0)
Effect:

Scales the horizontal axis, allowing later references
to be given in graph values, rather than fine-grid
dots; offset allows graph origin to be other than
(010)-

SCALEY

Instruction format:

scaley max {,offset}
Tag definition:
max Maximum vertical value of graph
offset Value of vertical axis at origin (default
is 0)
Effect:

Scales the vertical axis, allowing later references to
be given in graph values, rather than fine-grid dots;
offset allows graph origin to be other than (0,0).

LSCALEX

Instruction format:

1scalex max {,offset)

5-40

Tag definition:
max Maximum horizontal value of graph

offset Value of horizontal axis at origin (de-

fault is 1)

Effect:

Scales axes of the graph according to the common
logarithm (base 10) for later reference; offset allows
author determination of value at origin.

Comments:

Logarithms of negative numbers cannot be used. If a
negative portion of the axis is specified, it is used for
negative logarithms (logarithms of numbers between
0 and 1). Maximum value can be expressed as 104,
instead of 10000.

LSCALEY

Instruction format:

Iscaley max {,offset)
Tag definition:
max Maximum value of vertical axis
offset Value of vertical axis at origin
Effect:

Scales vertical axis according to the common log-
arithm (base 10) for later reference; offset allows the
author to specify axis value at the origin.

Comments:

Logarithms of negative numbers cannot be used. If a
negative portion of the axis is specified, it is used for
negative logarithms (logarithms of numbers between
0 and 1). Maximum values can be expressed as 104,
instead of 10000.

97405100 C

LABELX

Instruction format:
labelx major {,minor,size {,format B
labelx 0 {,minorsize {,format }

Tag definition:

major Major mark interval

minor Minor mark interval

size Size of major and minor marks

format Format of labels (l.r or 1,r)
Effect:

Places major and minor marks on horizontal axis at
specified scaled intervals and gives numeric labels of
value.

Comments:

If axis is normally scaled, the first form is used. If no
major mark interval is specified, a choice is auto-
matically made. The second form is used if the axis
is logarithmically scaled. In this case:

Minor Mark
Argument Marks Ocecur At:
- (minus sign) none
0, 3, or none 1, 2; 5
5 1y2%5:85 557
10 1,2,3,4,56,7,8,9, 10

within each decade. Major marks are automatically
made each decade.

The size may be:

0 or omitted Normal length

1 Major marks extend to graph
boundaries
2 Major and minor marks extend

to graph boundaries

97405100 C

LABELY
Instruction format:
labely major {,minor,size {,format/ }

labely 0 {,minor,size {,format}}

Tag definition:

major Major mark interval

minor Minor mark interval

size Size of major and minor marks

format Format of labels (L.r or 1,r)
Effect:

Places major and minor marks on the vertical axis at
the specified (scaled) intervals and attaches numeric
value labels.

Comments:

If the axis is normally scaled, the first form is used.
If no major mark interval is specified, a choice of
interval is made automatieally. The second form is
used if the axis is sealed logarithmically. The minor
mark intervals can be:

Minor Mark
Argument Marks Occur At:
- (minus sign) none
0, 3, or none 1, 2,5
5 152543, 8, T
10 1,2,3,4,5,6,7,8,9, 10

within each decade. Major marks are made auto-
matically at each decade.

The size may be:

0 or omitted Normal length

i | Major marks extend to graph
boundaries

2 All' marks extend to graph
boundaries

5-41

MARKX
Instruction format:

markx major {,minor,size)

Tag definition:

major Major mark interval

minor Minor mark interval

size Size of major and minor marks
Effect:

Places major and minor marks on the horizontal axis
at the specified (scaled) intervals.

Comments:

Equivalent to —labelx—, except that no numeric label-
ing is done.

MARKY
Instruction format:

marky major {,minor,size |

Tag definition:

major Major mark interval

minor Minor mark interval

size Size of major and minor marks
Effect:

Places major and minor marks on the vertical axis at
the specified (scaled) intervals.
Comments:

Equivalent to —labely—, except that no numeric label-
ing is done.

GRAPH
Instruction format:
graph x,y {,string)

graph x,y;var { ,num |

Tag definition:

X Scaled horizontal position

I 5-42

y Scaled vertical position

string Character string to be displayed (op-
tional)

var Variable containing string to be dis-
played

num Number of characters to be displayed
(optional)

Effect:

Two-argument form places a dot at specified loca-
tion. Three-argument form displays third argument,
beginning at specified location. Four-argument form
displays num characters.

Comments:

Character string (if used) can be no longer than nine
character codes if string is used or 10 character
codes if var is used. The location of the string is
moved somewhat down and to the right of the
specified location to center the first character of the
string.

HBAR

Instruction format:

hbar x,y {,string
hbar x,y {,var|
hbar X,y { ,var,num |}

Tag definition:

X Scaled horizontal location of end of bar
y Scaled vertical location of center of bar
string Character string used in plotting bar

var Variable containing character string

used in plotting bar

num Number of characters from variable to
be used
Effect:
Draws horizontal bar from vertical axis to location
specified.
Comments:

If a string is the third argument, it must be no longer
than nine character codes. If the third argument is a
variable name, the alphanumeric contents of the
variable is used. All 10 character codes are used if
there is no fourth argument. The fourth argument
gives the number of characters, starting from the
leftmost, to be used from var.

97405100 C

VBAR

Instruction format:

vbar x,y {,string}
vbar x,y { ,var}
vbar x,y {,var,num}

Tag definition:

X Scaled horizontal location of the center
of the bar

y Scaled vertical location of the end of
the bar

string Character string used in plotting bar

var Variable containing character string

used in plotting bar
num Number of characters from variable to
be used in plotting bar
Effect:
Draws vertical bar from horizontal axis to location
specified.
Comments:
If a string is the third argument, it must be no longer
than nine character codes. If the third argument is a
variable name, the alphanumeric contents of the
variable is used. All 10 character codes are used if
there is no fourth argument. The fourth argument

gives the number of charaecters, starting from the
leftmost, to be used from var.

DELTA
Instruction format:

delta inc
Tag definition:

ine Increment size for following —funct—
instruction

97405100 C

Effect:

Specifies the increment size for each iteration of a
following —funet— instruction that does not specify its
own increment size.

Comments:

If —delta— instruction is omitted, default value is 1.

FUNCT
Instruction format:

funet f(x),x {< xbeg,xend,dx|

Tag definition:

f(x) Function to be plotted

x Independent (horizontal axis) variable

xbeg Initial value of x

xend Final value of x

dx Increment size during iterations
Effect:

Plots lines connecting values of the function at
specified increments.

Comments:

Iteration of the independent variable is done auto-
matically. If the independent variable does not
appear, explicitly or implicitly (through definitions) in
the funetion, the function is plotted as a constant
quantity. Independent variable should be floating-
point, not integer.

Two-argument Uses increment specified by
form previous —delta— instruction.

Five-argument Specifies beginning and ending

form value of the independent vari-
able plus an increment size; no
previous —delta— instruction is
required.

5-43

POLAR

Instruction format:

polar

polar scale
polar sex,sey
polar neg

Tag definition:

scale Mutual scale in x and y directions
sex Scale in x direction (§=0or 8 = 7)
scy Secale in y direction (8 = 7/2 or 8 =
37/2)
neg Negative number of any magnitude
Effect:

Replaces Cartesian coordinates with polar coordi-
nates, with or without scaling. Negative tag turns off
polar conversion and returns to Cartesian coordi-
nates.

Comments:

Blank tag does not affect scaling. Single argument
nonnegative tag scales both horizontal and vertical
directions equally. Two-argument tag scales hori-
zontal direction to first value and vertical direction
to second value. Conversion remains in effect past
—unit— bounds. All graphing commands are affected

by —polar—.

LESSON CONTROL INSTRUCTIONS

The following instructions are used to control lesson
execution.

unit helpop keylist
imain helpl pause
next helplop collect
nextop data keytype
nextl dataop force
nextlop datal change
jump datalop use
join lab step
do labop in
goto labl initial
exit lablop lesson
nextnow base score
iferror term backgnd
entry termop foregnd
finish * ¢, $$ cpulim
timel estop route
timer estart routvar
end cstop* allow
back restart leslist
backop status addlst
backl return removl
backlop press Iname
stop jumpout findl
help inhibit

5-44

UNIT

Instruction format:

unit name (argl,arg2,...,argl0)

Tag definition:

name Unit name
argl, Argument list (maximum of 10)
arg2,...,
argl0
Effect:

Denotes start of unit. Variables in the argument list
of the —unit— instruction are given the value of the
expression in the corresponding argument list of an
instruction referencing that unit.

Comments:
Unit name must be no longer than eight characters.
An instruction referencing an argumented unit may
have fewer arguments than defined in the —unit-—
instruction but not more. When fewer arguments are

referenced than defined, the nonreferenced argu-
ments are unchanged.

IMAIN

Instruection format:
imain uname

imain expr,unamel ,uname2,...

Tag definition:

uname Unit name
expr Variable or mathematical expression
unamel, Unit names, x, or q
uname?2,...
Effect:

Executes unit named in tag at the start of every main
unit in a lesson. The —imain— instruection is in effect
for all main units executed after the unit containing
the —imain—. Place —imain— instruction in the lesson's
initial entry unit to have the imain unit in effect for
the entire lesson.

Comments:
Later occurrences of —imain— override any earlier

setting; q or —imain— with no tag clears previous
setting; x leaves the previous setting in effect.

97405100 C

NEXT

Instruction format:

next
next name
next expr,namel,name2,...

Tag definition:

name Unit name
expr Variable or mathematical expression
namel, Unit names, x, or q
name2,...
Effect:

Specifies unit which follows the present one when all
—arrow—s are satisfied in the present unit and the
NEXT key is pressed.

Comments:
Both unconditional and conditional forms. Speci-
fication of x causes instruction to have no effect;
specification of q clears the marker. The —next-—

instruction with a blank tag clears a previously speci-
fied —next— instruction.

NEXTOP
Instruction format:
nextop name

nextop expr,namel,name2,...

Tag definition:

name Unit name
expr Variable or mathematical expression
namel, Unit names, X, or q
name2,...
Effect:

Initiates a new main unit (specified by name) when all
—arrow—s are satisfied in the present unit and the
NEXT key is pressed.

Comments:

There is no full-panel erasure when —nextop— is
executed. Any graphies or text specified by the
—nextop— instruction is added to the current display
and remains on the panel. The —nextop— instruction
can have both unconditional and conditional forms.
Specification of x causes instruction to have no
effect; specification of q clears the marker.

97405100 C

NEXTI

Instruction format:

nextl
nextl name
nextl expr,namel,name2,...

Tag definition:

name Unit name
expr Variable or mathematical expression
namel Unit names, x, or q
name2,...
Effect:

Specifies unit which follows the present unit when the
SHIFT NEXT keys are pressed. -—arrow—s in present
unit need not be satisfied.

Comments:
Both unconditional and conditional forms. Speci-
fication of x causes instruction to have no effect;
specification of q clears the marker. The —nextl-

instruction with a blank tag clears a previously speci-
fied —nextl- instruction.

NEXTIOP
Instruction format:
nextlop name

nextlop expr,namel,name2,...

Tag definition:

name Unit name
expr Variable or mathematical expression
namel, Unit names, x, or q
name2,...
Effect:

Initiates a new main unit (specified by name) when
the SHIFT NEXT keys are pressed. —arrow- instrue-
tions in the present unit need not be satisfied.

Comments:

There is no full-panel erasure when —nextlop— is
executed. Any graphics or text specified by the
—nextlop— instruction is added to the current display
and remains on the panel. The —nextlop— instruction
can have both unconditional and conditional forms.
Specification of x causes instruction to have no
effect; specification of q clears the marker.

5-45

JUMP

Instruction format:

jump name
$$unconditional

jump expr,namel ,name2,...
$$conditional

jump name(argl,arg2,.,argl0)
$$argument

Tag definition:

name Unit name

expr Mathematical expression
namel, Unit names, X

namez2,...

argl,arg2,., Variable or mathematical expressions
argl0 that are passed to the unit as arguments

Effect:

Immediately transfers control to the specified new
unit, which is fully initialized as a main unit.

Comments:

An x in the conditional form allows execution to
continue past the instruction.

JOIN

Instruction format:

join name
$$unconditional
join expr,namel ,name2,...
$$conditional
join name,var<beg,end {,incy
$$iterative
5-46

join expr,namel,name2,...,var<&beg,end {,inc}
$$conditional-iterative

join name (argl,arg2,.,argl0)
$$argument

Tag definition:

name Unit name

expr Mathematical expression
namel, Unit names, X, or q

name2,...

var Variable to be incremented
beg Initial value of variable

end Final value of variable

ine Size of inerement (default is 1)

argl,arg2,., Variables or mathematical expressions
argl0 that are passed to the unit as arguments

Effect:

The unconditional form of the —join— instruction
executes the named (name) unit. The conditional
form evaluates the specified expression: if negative,
the first unit is executed; if 0, the second unit is
executed, and so on. The iterative form executes a
unit the specified number of times indicated in the
iterative loop. The conditional-iterative form exe-
cutes a specified unit from the list (namel,name2,...)
per the current value of the expression (expr) by the
number of times indicated in the iterative loop. The
argument form passes specified arguments to the
named unit and executes the named unit. After
execution of the named unit, execution continues
with the instruction following the —join— instruction.

Comments:

Conditional form x performs no action; q halts fur-
ther execution of current unit, except in the con-
ditional-iterative form (terminates iterative loop and
continues execution of current unit). The —join—
instruction is both a regular and a judging instruetion.
It never ends judging when the system is in the
judging state.

97405100 C

DO

Instruction format:

do name
$$unconditional
do expr,namel ,name2,...
$$conditional
do name,var<beg,end |,inc}
$$iterative
do expr,namel,name2,...,var<beg,end {,inc}

$$conditional-iterative

do name (argl,arg2,.,argl0)

$$argument

Tag definition:

name Unit name

expr Mathematical expression
namel, Unit names, X, or q

name2,...

var Variable to be incremented
beg Initial value of variable

end Final value of variable

ine Size of increment (default is 1)

argl,arg2,.,, Variables or mathematical expressions
argl0 that are passed to the unit as arguments

Effect:

The unconditional form of the —do— instruction exe-
cutes the named (name) unit. The conditional form
evaluates the specified expression: if negative, the
first unit is executed; if 0, the second unit is
executed, and so on. The iterative form executes a
unit the specified number of times in the same
manner as a —join— instruction. The conditional-
iterative form executes a specified unit from the list
(namel,name2,...) per the current value of the ex-
pression (expr) by the number of times indicated in
the iterative loop. The argument form passes
specified arguments to the named unit and executes
the named unit. After execution of the named unit,
execution continues with the instruction following the
—do— instruction.

Comments:

Conditional form x performs no action; q halts fur-
ther execution of current unit, except in the con-

97405100 C

ditional-iterative form (terminates iterative loop and
continues execution of current unit). —do— is a
regular instruection only.

GOTO

Instruction format:

goto name
$$unconditional

goto expr,namel ,name2,...
$$conditional

goto name(argl,arg2,.,argl0)
$$argument

Tag definition:

name Unit name
expr Mathematical expression
namel, Unit names, x, or q

name2,...
argl,arg2,., Variables or mathematical expressions
argl0 that are passed to the unit as arguments
Effect:
Executes specified unit without performing any ini-
tialization; does not return to accessing unit unless
used as part of response processing.
Comments:
Conditional form x specification permits execution of

instruction following —goto—. Conditional form q
specification halts unit execution.

EXIT
Instruction format:

exit { expr |

Tag definition:

expr Mathematical expression
Effect:

Blank tag terminates auxiliary unit structure. Nu-
meric tag backs out specified number of levels.

5-47

NEXTNOW

Instruction format:

nextnow name
nextnow expr,namel,name2,...
Tag definition:
name Unit name
expr Mathematical expression
namel, Unit names, X, or q
name2,...
Effect:

Disables all terminal keys except the NEXT key.
When NEXT is pressed, the unit specified in the tag is
entered. Stops execution of remainder of unit.

Comments:

Initialization of the new unit is the same as if the
current unit were completed.

IFERROR
Instruction format:
iferror name

iferror expr,namel,name2,...

Tag definition:

name Unit name
expr Mathematical expression
namel, Unit names, x, or q
name2,...
Effect:
Specifies unit to —goto— if an error occurs in a —cale—
instruction.
Comments:

Marker is cleared by a tag of g or when a new main
unit is entered.

5-48

ENTRY
Instruction format:

entry name

Tag definition:

name Unique name

Effect:

Supplies alternate entry point to a unit.

Comments:

name can be no longer than eight characters.

FINISH
Instruction format:
finish name

finish expr,namel,name2,...

Tag definition:

name Unit name
expr Mathematical expression
namel, Unit names, x, or q
name2,...

Effect:

Specifies a unit to be executed when student presses
the SHIFT STOP keys.

Comments:

This instruction does not execute if lesson is ended by
an —end lesson— or a —jumpout—. Some instructions
cannot be included in a —finish— unit. Only one
—finish— instruction is necessary (in IEU). Marker is
held past unit boundaries.

97405100 C

TIMEL
Instruction format:
timel

timel expr,name

Tag definition:

expr Mathematical expression (in seconds)
name Unit name within current lesson
Effect:

Provides a —helpop— type branch to the specified unit
when the given time limit has expired. A unit to be
branched to with a —timel- instruection is cleared if
the student exits from the current lesson or if a
—timel— instruction with a blank tag is executed. If
the time limit expires while the student is executing
instructions, the branch occurs when the student
reaches a waiting point (—pause—, —arrow—, or end of
the unit).

Comments:
The time limit is given in seconds, and the minimum

time limit is 0.75 second. The —timel- instruction is
not affected by any —time— instructions.

TIMER
Instruction format:
timer

timer expr,name

Tag definition:

expr Mathematical expression (in seconds)
name Name of unit within router lesson
Effect:

Causes a return to the specified unit of the router
lesson when the time limit expires. This branch
remains in effect until the student signs off the
system or executes a —timer— instruction with a blank
tag. The branch does not occur if the student is using
a system TERM feature (for example, TERM-cale)
when the time limit expires. The IEU of the router is
not executed when the student returns to the router.

97405100 C

Comments:
The time limit is given in seconds, and the minimum
value is 300 seconds (5 minutes). The —timer—

instruction cannot be used unless the author is writing
his own router.

END
Instruction format:
end {help}

end lesson

Tag definition:

help Optional tag equivalent to blank tag;
both end help sequences
lesson Logical end of lesson
Effect:

A blank tag or keyword help tag end help sequences.
Keyword lesson tag ends lesson execution and sets
system-reserved word ldone to -1.

Comments:
An —end- instruction with a blank tag in a base unit
has no effect. An —end- instruction in a help

sequence delimits the unit as well as ending the
sequence.

BACK
Instruction format:
back name

back expr,namel ,name2,...

Tag definition:

name Unit name
expr Variable or mathematical expressions
namel, Unit names, X, or q
name2,...
Effect:

Initiates a new main unit (specified by name) when
the BACK key is pressed.

5-49

BACKOP
Instruction format:
backop name

backop expr,namel,name2,...

Tag definition:

name Unit name
expr Variable or mathematical expression
namel, Unit names, x, or q
name2,...
Effect:

Initiates a new main unit (specified by name) when
the BACK key is pressed.

Comments:
There is no full-panel erasure when -backop— is
executed. Any graphics or text specified by the

—backop— instruction is added to the current display
and remains on the panel.

BACKI1
Instruction format:
backl name

back1l expr,namel,name2,...

Tag definition:

name Unit name
expr Variable or mathematical expression
namel, Unit names, x, or q
name2,...
Effect:

Initiates a new main unit (specified by name) when
the SHIFT BACK keys are pressed.

BACKIOP
Instruction format:
backlop name

backlop expr,namel,name2,...

Tag definition:

name Unit name

5-50

expr Variable or mathematical expression
namel, Unit names, X, or q
name2,...

Effect:

Initiates a new main unit (specified by name) when
the SHIFT BACK keys are pressed.

Comments:
There is no full-panel erasure when -backlop— is
executed. Any graphies or text specified by the

—backlop— instruction is added to the current display
and remains on the panel.

STOP
Instruction format:
stop name

stop expr,namel,name2,...

Tag definition:

name Unit name
expr Variable or mathematical expression
namel, Unit names, x, or q
name2,...
Effect:

Specifies unit which follows the present unit when the
STOP key is pressed.

HELP
Instruction format:
help name

help expr,namel,name2,...

Tag definition:

name Unit name
expr Mathematical expression
namel, Unit names, x, or q
name2,...

Effect:

Specifies beginning unit of a help sequence and en-
ables the HELP key for entry to that unit.

97405100 C

HELPOP HELP1OP

Instruction format: Instruction format:
helpop name helplop name
helpop expr,namel,name2,... helplop expr,namel,name2,...
Tag definition: Tag definition:
name Unit name name Unit name
expr Mathematical expression or variable expr Mathematical expression or variable
name name
namel, Unit names, X, or q namel, Unit names, X, or q
name2,... name2,...
Effect: Effect:
Specifies the beginning unit of a help-on-the-same- Specifies the beginning unit of a help sequence and
page sequence and enables the HELP key for entry to enables the SHIFT HELP keys for entry to that unit.
that unit.
Comments: Comments:
There is no full-panel erasure when —helpop— is exe- There is no full-panel erasure when -helplop— is
cuted. Any graphies or text specified by the —helpop— executed. Any graphics or text specified by the
instruction is added to the current display and re- —helplop— instruction is added to the current display
mains on the panel when control is returned to the and remains on the panel when control is returned to
main unit following execution of —helpop—. the main unit following execution of —helplop—.
HELP1 DATA
Instruction format: Instruction format:
helpl name data name
helpl expr,namel,name2,... data expr,namel,name2,...
Tag definition: Tag definition:
name Unit name name Unit name
expr Mathematical expression expr Mathematical expression
namel, Unit names, x, or q namel, Unit names, x, or q
name2,... name2,...
Effect: Effect:
Specifies the beginning unit of a help-on-the-same- Specifies the first unit of a help sequence and enables
page sequence and enables the SHIFT HELP keys for the DATA key for entry to that unit.

entry to that unit.

97405100 C 5-51

DATAOP
Instruction format:
dataop name

dataop expr,namel,name2,...

Tag definition:

name Unit name
expr Mathematical expression or variable
name
namel, Unit names, x, or q
name?2,...
Effect:

Specifies the first unit of a help-on-the-same-page
sequence and enables the DATA key for entry to that
unit.

Comments:
There is no full-panel erasure when —dataop— is
executed. Any graphics or text specified by the
—dataop— instruction is added to the current display

and remains on the panel when control is returned to
the main unit following execution of —dataop—.

DATAI

Instruction format:

datal name
datal expr,namel,name2,...
Tag definition:
name Unit name
expr Mathematical expression
namel, Unit names, x, or q
name2,...
Effect:

Specifies the first unit of a help sequence and enables
the SHIFT DATA keys for entry to that unit.

5-52

DATA1I0OP
Instruction format:
datalop name

datalop expr,namel,name2,...

Tag definition:

name Unit name
expr Mathematical expression or variable
name
namel, Unit names, x, or q
name2,...
Effect:

Specifies the first unit of a help-on-the-same-page
sequence and enables the SHIFT DATA keys for entry
to that unit.

Comments:
There is no full-panel erasure when —datalop— is
executed. Any graphics or text specified by the
—datalop— instruction is added to the current display

and remains on the panel when control is returned to
the main unit following execution of —datalop—.

LAB
Instruction format:
lab name

lab expr,namel,name2,...

Tag definition:

name Unit name
expr Mathematical expression
namel, Unit names, x, or q
name2,...

Effect:

Specifies the first unit of a help sequence and enables
the LAB key for entry to that unit.

97405100 C

LABOP
Instruction format:
labop name

labop expr,namel,name2,...

Tag definition:

name Unit name
expr Mathematical expression or variable
name
namel, Unit names, x, or q
name?2,...
Effect:

Specifies the first unit of a help-on-the-same-page
sequence and enables the LAB key for entry to that
unit.

Comments:
There is no full-panel erasure when —labop— is exe-
cuted. Any graphies or text specified by the —labop—
instruction is added to the current display and re-

mains on the panel when control is returned to the
main unit following execution of —labop—.

LABI
Instruction format:
labl name

labl expr,namel,name2,...

Tag definition:

name Unit name
expr Mathematical expression
namel, Unit names, x, or q
name2,...

Effect:

Specifies the first unit of a help sequence and enables
the SHIFT LAB keys for entry to that unit.

97405100 C

LAB1OP
Instruction format:
lablop name

lablop expr,namel,name2,...

Tag definition:

name Unit name
expr Mathematical expression or variable
name
namel, Unit names, X, or q
name2,...
Effect:

Specifies the first unit of a help-on-the-same-page
sequence and enables the SHIFT LAB keys for entry
to that unit.

Comments:

There is no full-panel erasure when —lablop— is exe-
cuted. Any graphies or text specified by the —lablop—
instruction is added to the current display and re-
mains on the panel when control is returned to the
main unit following execution of —lablop—.

BASE

Instruction format:

base
base name
base expr,namel,name2,...

Tag definition:

name Unit name
expr Mathematical expression
namel, Unit names, x, or q
name2,...

Effect:

Specifies a base unit.

Comments:

Blank tag or q clears base unit marker.

5-53

TERM * ¢, $$

Instruction format: Instruction format:
term * comment
term name ¢ comment
command tag $$comment

Tag definition:
name Author term (8-character maximum) Effect:

Allows comments to be placed in source code.

Effect:
When student presses TERM and types name, the unit Comments:
containing the —term name-— instruction is entered as
the initial unit in a help sequence. Units containing An asterisk or the letter e in the first space specifies
—term—s can be accessed from any part of the lesson. the entire line as a comment. The double-dollar sign
The —term— instruction with a blank tag matches any specifies remainder of a line as a comment.

term entered that is not matched by a specified
author term.

Comment: CSTOP
More than one —term— instruction can be used in a Instruction format:
single unit, but same tags must not occur in more
than one unit per lesson. estop
Effect:
TERMOP

Causes condensing to stop.
Instruction format:

termop Comments:

termop name Condensing can be restarted later in the lesson.

Tag definition:

CSTART
name Author term (8-character maximum)
Instruction format:
Effect: cstart
When the student presses TERM and types name, the
unit containing the —termop- instruction is entered as Effect:
the initial unit in a —term— sequence; the screen is
not erased. Units containing —termop—s can be Causes condensing to be started at current source
accessed from any part of the lesson. code line.
Comments: Comments:
More than one —termop— instruction can be used in a Only necessary following a —estop— instruction.

single unit, but tags must not occur in more than one
unit per lesson.

5-54 97405100 C

Effect:

CSTOP*
Instruection format: Sets the system-reserved word Istatus to the value in
var.
estop*
Comments:
Effect:

Noninteger values in var are rounded to integers.
Prevents rest of lesson from being condensed.

Comments: RETURN
Any -cstart— instructions following —estop*-— have no Instruction format:
effect.
return
RESTART Effect:
Instruction format: Ends the current time-slice.
restart
Comments:
restart uname
Ensures an entire time-slice for execution of follow-
restart Iname,uname ing instructions.

Tag definition:

PRESS
uname Unit name
Instruction format:
Iname Lesson name
press code {,station|
Effect: press name |{,station|
Specifies lesson and unit in which the student will press expr {,station}
restart lesson execution if lesson terminated before
I completion. Sets the system-reserved words rstartl
and rstartu. Tag definition:
code Character code
Comments:
name Key name, such as next or a
Blank tag specifies current lesson and main unit for
restart. One-argument tag specifies unit of current expr Variable or mathematical expression
lesson for restart. Two-argument tag specifies unit
and lesson for restart. station Station number
Effect:
STATUS
Places the specified key in the student's input buffer.
Instruction format: Can do only one keypress per second. The optional
second argument (station) is the station at which the
status var key is to be -press—ed. Two-argument form is
executed only if both stations are in the same lesson.
System-reserved word zreturn is set to =1 if —press—
Tag definition: was executed; it is set to 0 if not executed. A router
lesson may —press— a key at any station being used by
var Variable or mathematical expression a routed student.

97405100 C 5-55

JUMPOUT
Instruction format:
jumpout
jumpout Iname {,uname}

jumpout expr;lname {,uname| ;lnamel
{;unamel} ;.;.;.

jumpout Iname, (var)

jumpout opt

Tag definition:

Iname; Actual lesson names or leslist number

Inamel;... (constants, variables, or expressions) in
<> x,0rq

uname, Actual unit names or variable con-

unamel,,, taining unit name in ()

expr Variable or mathematical expression
var Variable containing a unit name
opt Options

Effect:

Transfers student to lesson and unit specified upon
execution. The following optional tags have special

meanings.

Tag Deseription

resume Takes the student to the restart
lesson and unit, thus allowing the
student to continue where he left
off

router Returns the student to the router
lesson

return Returns the student to the first
unit of the lesson from which this
lesson was entered

return, Returns the student to the unit

return following the unit from which this

lesson was entered

q or blank Returns the student to his router if
tag or (0) he has one; returns an author to
author mode page

X —jumpout— has no effect

Comments:

If no unit is specified, execution starts at the be-
ginning of the named lesson. The lesson named can
be the lesson currently being executed. The IEU, if
any, of the lesson to which the —jumpout— is per-
formed is always executed unless the —jumpout— goes

5-56

to the same lesson that it is in. If a unit name is |
specified, the —jumpout— codes of the lesson must
match.

INHIBIT

Instruection format:

inhibit {action |

Tag definition:

action arrow, erase, dropstor, edit, jumpechk,
term, charclear, blanks, from, anserase,
dropset l

Effect:

Prevents normal actions from being taken.

Comments:

Blank tag or a new main unit cancels all inhibits.

'KEYI.IST I

Instruction format:

keylist name,list

Tag definition:

name Name of the keylist (maximum of seven
characters)
list Single character and/or previously de-

fined list names

Effect:

Establishes a list of keys to be used in the —pause—
and —keytype— instructions.

Comments:

tion and should be placed in the IEU. System-defined

The —keylist— instruction is a nonexecutable instruc- I
lists available are:

numeric Digits (0, 1, 2, ..., 9)

alpha Alphabet (a through z and A
through Z)

funet Function keys (HELP, LAB, NEXT,
and so on)

touch Touch panel input (256 < key < 511)

ext External input (512 < key < 767)

97405100 C

PAUSE

Instruction format:

pause
$$pause until any key is pressed
pause n
$$pause for n seconds
pause keys=k1,k2,...
$$pause until one of the keys
$$in list is pressed
pause n, keys=k1,k2,...

$$pause for n seconds or until
$$one of the keys in the list is

$$pressed
Tag definition:
n Number of seconds of pause (n > 0.75)
k1,k2,... Key names
Effect:

Halts lesson execution until condition specified by tag
is satisfied.

Comments:

An enti‘y in the key list may be a group name (defined
by —keylist— instruction) or one of the following
system-defined groups.

numeric Digits (0,1,2,...,9)
alpha Alphabet (a through z and A
through Z)
funet Function keys (HELP, LAB, NEXT,
and so on)
touch Touch panel input (256 < key < 511)
ext External input (512 < key < 767)
COLLECT
Instruction format:
collect var,num
Tag definition:
var Beginning user variable (n) where key

information is to be stored

num Number of keys to accept

97405100 C

Effect:
Collects keys from external sources. Lesson exe-
cution is halted until the condition specified by num
is satisfied or time expires as a result of a previous
—time— command. The keys are stored one per
variable.

Comments:
An —enable— instruction must precede —collect— to

receive touch or external input. The upper limit is 20
keys.

KEYTYPE
Instruction format:

keytype var,list

Tag definition:
var Variable where result is to be stored
list Single character, previously defined
group names, external input, variable,
and/or touch panel input
Effect:
The —keytype— instruction compares the key pressed
by the student to the entries in list. If the key is not
found in list, var is set to —1. If the key is found, var
is set to 0 when the first entry in list is matched. var
is set to 1 if the second entry in list is matched, and
so on. Possible arguments for list are as follows:
Single keys: a, b, ¢, $, %, ?, =
System-defined key names: next, back, datal
Your own defined groups: mygroup, w, d, X, a
System-defined groups: funect, alpha, touch
ext(nx): value of external key in nx
(nx): value in nx

t(finex,finey): touch input, fine address

touch(coarse address): touch input, coarse ad-
dress

touch(finex,finey,xtol,ytol): tolerance in dots

t(coarse;xchars,ychars): tolerance in characters

Comments:
If a —keylist— name is used, the —keytype— var is set

to the same value when any one of the —keylist—
arguments is matched.

5-57

FORCE
Instruction format:

force { oplist }

Tag definition
oplist One or more of the character strings
font, micro, long, clear, left, and first-
erase (separated by commas).

Effect:

Forces specified action to be taken.

Comments:

Keyword font forces use of alternate characters,
miero foreces use of micro table, long forces judging
initiation when response length limit is reached, clear
or a blank tag clears previous —force— setting, left
forces response to appear right to left, and firsterase
forces an ERASE key after a no judgment so the
student can enter a new response without pressing
NEXT or ERASE first.

CHANGE
Instruction format:
change command ename to nname

change symbol character to ncharacter

Tag definition:

cname Instruction command (for example, at,
end, write)

nname New instruction command to be sub-
stituted
character A single character

ncharacter New character to be substituted

Effect:

The —change command- instruction causes instances
of the new name to condense as if it were the old
name. The —change symbol— instruction changes the
values of characters in the judging state.

Comments:

Both forms of the change instruction must be in the
IEU and both produce lesson-wide changes. The
—change symbol- instruction is processed in linear
order. It is used only in instructions in the judging
state.

5-58

USE
Instruction format:

use bname

Tag definition:

bname Block name

Effect:

Inserts code from specified block into current lesson
at condense time.

Comments:

The lesson to be accessed with the —use- instruction
is specified in the Author Information page of the
lesson containing the —use- instruction. Only one
lesson can be used per lesson; a block containing a
—use— cannot be used. Use codes of the lesson must
mateh.

STEP

Instruction format:

step on
step off
step { expr}

Tag definition:

on Keyword on must be used in the —step
on— instruction and turns on the step
feature
of f Keyword off must be used in the —step
off— instruction and turns off the step
feature
Effect:

Enables author to step-through his lesson, instruction
by instruction. @ When lesson is stepped through,
certain information is displayed on the lower lines of
the panel. Next instruction to be executed is shown
(press NEXT key to execute), and base, main, and
current units are listed. Student variables may be
examined at any time.

Comments:

When executing the lesson, step mode can also be
entered by pressing the TERM key and typing step.
The -step— mode is not operable for students.
Common variables or storage cannot be inspected.
Pressing the BACK key exits from step mode. User
editing security code must match lesson change code
to enter step mode.

97405100 C

IN
Instruction format:

in stanum

Tag definition:
stanum Station number in the range of 0 to
1023
Effect:
Indicates if a station is using the current lesson by
setting system-reserved word zreturn to —1.
Comments:
Current station number is obtained with system-
reserved word station.
INITIAL
Instruction format:
initial lesson,lessu

initial common,commu

Tag definition:

lesson Keyword lesson must be used in the
—initial lesson— instruction

lessu Name of unit to be executed when
—initial lesson— is encountered by first
user

common Keyword common must be used in the

—initial common- instruction

commu Name of unit to be executed when
—initial common— is encountered by
first user
Effect:

Specifies a unit which is executed when a lesson or
common is brought into ECS and encountered by first
user.

Comments:
If the lesson or common is already in ECS, the initial

unit is not executed. The initial unit is inserted (like
a —do-) at the location of the —initial— instruction.

LESSON
Instruction format:

lesson completed

97405100 C

lesson incomplete
lesson no end

lesson expr,completed,incomplete,...

Tag definition:
completed Lesson completed

incomplete Lesson not completed

no end Lesson has no logical end
expr Mathematical expression
Effect:

Assigns a value to system-reserved word Ildone.
Keyword completed sets ldone to —1, keyword in-
complete sets ldone to 0, and keyword no end sets
1done to 1.

Comments:
The system router uses the value of ldone. If ldone
equals —1, an asterisk is placed next to the lesson on
the student's index (sequence). Upon entering a
lesson, the system router checks if the lesson has

been completed, and if so, sets ldone to —1. If not,
1done is set to 0.

SCORE
Instruction format:
seore

score val

Tag definition:

val Value to be placed into Iscore

Effect:

Assigns a value (constant or any expression from -1
to 100) to the system-reserved word lscore. Value of
Iscore can then be stored in any data base or status
bank (student, common, router, ete.) for the student.

Comments:

The —score— instruction with no tag assigns a value of
-1 to Iscore. Values are rounded to the nearest
integer. Negative score is interpreted as "do not
store any score". Score which rounds to a value
greater than 100 produces an execution error.

5-59

BACKGND
Instruction format:

backgnd

Effect:
Allows the user more processing time during each
time-slice if the system is not busy.

Comments:
If the system is busy, the lesson receives less than the
average processing time. The —backgnd- instruction
should not be used with lessons which are used by the

students in an instructional setting. The —foregnd—
instruction cancels the effect of —backgnd-.

FOREGND
Instruction format:

foregnd

Effect:
Cancels the effeect of the -backgnd- instruction.
Normal execution state is restored.

Comments:

When used, —foregnd— normally follows a —backgnd-
instruction.

CPULIM
Instruction format:

cpulim var

Tag definition:

var Variable or mathematical expression
specifying time limit in thousand
instructions per second (TIPS) (maxi-
mum of 10)

Effect:

Allows author to place limit on CPU time for a given
lesson while that lesson is being used by students.
CPU time in TIPS is listed in the student records and
at sign-off time.

Comments:

The value for CPU TIPS remains in effect until sign-
off time. A maximum limit on the CPU time allows
the lesson author to test a lesson at a low CPU time
maximum and decide if there is any effect on a
lesson. If —cpulim— is set to a negative or zero time,
an execution error occurs.

5-60

ROUTE

Instruction format:

route end lesson,endlesu
route finish,finishu

route error,erroru

route resignon {, resignu |}

Tag definition:

end Keyword end lesson must be used in the

lesson —route end lesson— instruction and indi-
cates an end-of-lesson exit from the
instructional lesson

endlesu Entry unit which is executed when the
student leaves the instructional lesson
because of an -end lesson— or
—jumpout g- instruction

finish Keyword finish must be used in the
—route finish— instruction and indicates
a finished exit from the instructional
lesson

finishu Unit to be executed when a student
leaves the instructional lesson by pres-
sing the SHIFT STOP keys

error Keyword error must be used in the
—route error— instruction and indicates
an execution-error exit from the in-
structional lesson

erroru Unit which is executed when an exe-
cution error occurs in the instructional
lesson

resignon Keyword resignon must be used in the

—route resignon— instruction and gives
the options of signing off or of return-
ing to the router

resignu Router unit to which student is returned
(optional)

Effect:

Specifies which units of the router are to act as
reentry units when the student exits from an instrue-
tional lesson in the router.

Comments:

The —route— instruction must be executed each time a
student is in the router in order for the specified
units to be functional. Placing the —route— instruc-
tion in the router's index or decision unit sets these
flags each time a lesson is selected by or for the
student. The IEU of the router is only executed at
sign-on time or when -route resignon— without a
specified unit is executed.

97405100 C

ROUTVAR
Instruction format:

routvar num

Tag definition:

num Mathematical expression specifying the
number of router student variables
(maximum of 50); 50 locations are
referenced by nr or vr

Effect:

Specifies the number of student router variables to be
made part of the permanent student bank and
retained between sessions in addition to the 150
student variables. Fifty router student variables can
be added to the amount of ECS used at a logical site.

Comments:
Student router variables can be altered only in the

router. With an —allow read rvars— instruction in
effect, the values can then be read in an instructional

lesson.

ALLOW
allow
allow » read
allow write
allow read rvars

Tag definition:

read Keyword read must be used in the
—allow read— instruction and specifies
read-only access to the ECS router
common

write Keyword write must be used in the
—allow write— instruction and specifies
read and write access to the ECS router
common

read rvars Keyword read rvars must be used in the
—allow read rvars— instruction and spec-
ifies read-only access to the student
router variables

97405100 C

Effect:

Permits instructional lessons to reference the router's
common variables. The —allow— instruection is only
meaningful when executed by students in a course
using that router and in the router itself (not
instruectional lessons).

Comments:

An -allow— instruction with no tag clears —allow—
settings. A -—transfr— instruction must be used
following the —allow— to read and write the ECS
router common or to read router student variables.
(Refer to the —transfr— instruetion.)

LESLIST

Instruction format:

leslist {1esson, | block

Tag definition:

lesson Lesson containing the lesson list; op-
tional if lesson is same lesson con-
taining —leslist— instruection

block Actual block name or variable con-
taining block name

Effect:

Allows access to the specified leslist. A leslist is a
special block used to maintain a list of lesson names.

Comments:

Only one leslist may be used at a time, and the
—leslist— instruction must be executed before any
references are made to the leslist. The —leslist—
instruction may be used with the —jumpout—, —from—,
—restart—, and -lessin— instructions. A leslist can be
altered with the —addlst— and —removl- instructions.
After a —leslist— instruetion, zreturn has the follow-
ing values.

-1 leslist obtained successfully
0 leslist not found
1 Code word error

2 Already a leslist in use

5-61

ADDLST Comments:

Instruection format: After execution of the —removl- instruction, system-
I reserved word zreturn is set as follows:
addlst var {,position |
-1 Lesson name deleted successfully
Tag definition: 0 No leslist specified
var First of a set of three consecutive
variables specifying a valid lesson name
LNAME
position Variable or mathematical expression
specifying the list position the lesson Instruetion format:
should occupy
Iname var,position

Effect:
Tag definition:
One-argument form adds lesson names to a leslist
(next open slot on the list). In the two-argument var
form, position specifies the leslist slot which the
name is to occupy.

First of three consecutive variables
required to place the leslist information

position Constant, variable, or mathematical ex-
pression specifying the lesson number in

Comments: the leslist

An —addlst— instruection with the actual lesson named
in the tag (not a variable) produces errors. Additions Effect:
to a leslist should be done by storing the information
with a —storea— using a character count of 30. A
—storea— instruction must precede the —addlst— in-
struction. After execution of the —addlst— instruc-
tion, system-reserved word zreturn is set as follows:

Places lesson name at position into the three con-
secutive variables beginning with var. leslist infor-
mation can be displayed with a —showa— instruction
using a character count of 30.

-1 Lesson name added successfully
Comments:

0. No leslist specified . .
After execution of the —Iname-— instruction, system-

1 Illegal lesson name reserved word zreturn is set as follows:

2 Lesson name already in leslist -1 Lesson information transferred successfully

3 leslist is full 0 No leslist specified
4 Specified position is in use
FINDL
Instruction format:
REMOVL findl initial,return

Instruction format:
Tag definition:

removl lesson
initial Initial variable for a set of three con-
secutive variables specifying the lesson
Tag definition: name
lesson Number, mathematical expression, or return Return variable containing the position
variable specifying the lesson to be of the named lesson in the —leslist—
removed from the list
Effect:
Effect: :
Determines if a specified lesson name is included in a
Deletes lessons from a list, with a blank entry left in leslist. If the specified lesson is not found or a leslist
that list position. is not specified, the value of the return variable is set

to —-1.

5-62 97405100 C

RESPONSE HANDLING INSTRUCTIONS

The following instructions are used to process student
responses.

arrow list storen
endarrow concept storeu
iarrow miscon ntouch
arheada vocab ntouchw
arrowa vocabs touch
iarrowa endings touchw
long ok matech
jkey no or
storea okword ans
open noword compare
loada ignore speces
close exact markup
bump exacte judge
put exactv getword
putd ansv getmark
putv ansu getloe
answer wrongv edit
answerc wrongu copy
wrong store time
wronge

ARROW

Instruction format:
arrow loc

arrow finex,finey

Tag definition:

loe Coarse-grid location of arrow

finex Horizontal fine-grid location of arrow

finey Vertical fine-grid location of arrow
Effect:

Places arrowhead on student screen at specified
point, indicating a desire for student response.
Serves to delimit response handling portion of the
unit.

Comments:

Sets some default parameters.

ENDARROW

Instruction format:

endarrow

97405100 C

Effect:

Ends instructions that process response to preceding
arrow.

IARROW

Instruction format:

iarrow
iarrow name
iarrow expr,namel ,name2,...

Tag definition:

name Unit name
expr Mathematical expression
namel, Unit names, x, or q
name2,...

Effect:

Inserts named unit with a —join— after the first
—arrow— of a unit and just before the first judging
command for that —arrow—.

Comments:

The —iarrow— instruction with no tags (or q) clears
previous settings.

ARHEADA
Instruction format:

arheada char

Tag definition:

char Any character

Effect:

Specifies a character to act as an alternate arrow.

Comments:
The alternate arrow is limited to five character

codes. The —arheada— instruction is used with the
—arrowa— and —iarrowa— instructions.

5-63

ARROWA
Instruction format:
arrowa loc

arrowa finex,finey

Tag definition:

loc Coarse-grid location of alternate arrow
finex Horizontal fine-grid location of alter-
nate arrow
finey Vertical fine-grid location of alternate
arrow
Effect:

Identical in operation to the —arrow- instruction,
except that the alternate character previously speci-
fied in an —arheada- instruction is used instead of the
regular arrowhead.

IARROWA

Instruction format:

iarrowa name
Tag definition:

name Unit name
Effect:

Operates analogously to the —iarrow- instruction.

LONG

Instruction format:

long num
Tag definition:
num Number of characters in maximum stu-

dent response

Effect:

Specifies a length limit for student response.

Comments:

A -long 1- instruction initiates judging after the first

keypress. Default response length (with no —long—

instruction) is 150 characters.

5-64

JKEY
Instruction format:

jkey names

Tag definition:

names One or more function key names sepa-
rated by commas (for example, helpl,
back)
Effect:

Specifies function keys besides the NEXT key that
will initiate judging. Cannot specify SHIFT STOP.

STOREA Judging Instruction

Instruction format:

storea var |{,cent}
storea var,varl<jcount
Tag definition:
var Variable in which student response is
stored
ent Character count (default is 10)
varl Variable in which character count is
stored
jeount System-reserved word jeount
Effect:

Stores number of characters specified of the student
response, starting in indicated variable. Never ends

judging.
OPEN Judging Instruction
Instruction format:

open var

Tag definition:

var Starting variable for storage

Effect:
Places student response in variable beginning with the

variable specified. One character, right-justified,
with zero-fill, per variable. Never ends judging.

97405100 C

LOADA Judging Instruction
Instruction format:

loada var,ent

Tag definition:

var Starting variable of character string
ent Character count
Effect:

Replaces the judging copy of the student response
with the specified character string.

Comment:
Assumes the string is left-justified in the variable,

packed 10 character codes per word. Never ends
judging.

CLOSE Judging Instruction
Instruction format:

close var,cent

Tag definition:

var ‘ Starting variable
ent Character count
Effect:

Takes rightmost character code of number of vari-
ables specified in ent, beginning with the specified
variable, and uses the resulting string to replace the
judging copy.

Comments:

Reverse of the —open— instruction. Never ends
judging.

BUMP Judging Instruction

Instruction format:

bump char

97405100 C

Tag definition:

char Characters (up to eight) to be removed

Effect:

Removes indicated characters from the judging copy.
Never ends judging.

PUT Judging Instruction
Instruction format:

put stri=str2

Tag definition:

strl Character string (not including an equal
sign) to be replaced

str2 Character string replacing strl

Effect:
Replaces all occurrences in the student response of

the string on the left with the string on the right.
Never ends judging.

PUTD Judging Instruction
Instruction format:

putd char strl char str2 char

Tag definition:

char Any character not appearing in strl or
str2
strl String to be replaced
str2 String replacing strl
Effect:

Replaces all occurrences of first character string in
the student response with the second character
string.

Comments:

Allows the specification for replacement of strings
containing an equal sign. Never ends judging.

5-65

PUTV Judging Instruction

Instruction format:

putv beg,lengthchar,initial,lengthrepl
Tag definition:
beg Beginning location of character string
(1eft-justified)
lengthchar Length of character string
initial Variable specifying initial location of
replacement string (left-justified)
lengthrepl Length of replacement string (constant
or variable)
Effeect:

Replaces all occurrences of character string con-
tained in location beg of length lengthchar with
replacement string contained in location initial of
length lengthrepl. Never ends judging.

ANSWER Judging Instruction

Instruction format:

answer {<optwords> (synwords) | resp

Tag definition:

optwords Optional words that are allowed in the
student response

synwords Synonymous words that are required in
the student response

resp Answer to be matched

Effect:

Judges the student response ok if it adequately mat-
ches the tag.

Comments:

5-66

Unless inhibited by the —specs— instruction, some
marking of the answer may be done. Tag cannot
contain punctuation; however, the student may use
punctuation in his response. Cannot match any
student response which contains more than 39 words.

ANSWERC Judging Instruction
Instruction format:

answerc expr;respl ;resp2;...respn

Tag definition:
expr Variable or mathematical expression

respl, Answers to be matched; may contain
resp2,... optional words or synonymous words

respn

Effect:
Based on the value of expr, judges the student
response ok if the response adequately matches that
portion of the tag. For example, if expr is 0, the
—answerc— instruction has the same effect as the
instruction —answer resp2—.

Comments:
The —answere— instruction is the conditional form of
the —answer— instruction and is designed for use in
drill-and-practice lessons. Optional words are en-
closed in angular brackets. Synonymous words are
separated by commas and are enclosed in paren-
theses. Maximum number of tags is approximately
500.

WRONG Judging Instruction

Instruction format:

wrong {<optwords> (synwords)| resp

Tag definition:

optwords Optional words that are allowed in the
student response

synwords Synonymous words that are required in
the student response

resp Answer to be matched

Effect:
Judges the student response no if it adequately mat-
ches the tag.

Comments:
Identical in operation to the —answer— instruction,

except that a matched response is judged no instead
of ok.

97405100 C

WRONGC Judging Instruction

Instruction format:

wronge expr;respl sresp2;...respn

Tag definition:
expr Variable or mathematical expression
respl, Responses to be matched; may contain
resp2,... optional words or synonymous words
respn

Effect:

Based on the value of expr, judges the student re-
sponse no if the response adequately matches that
portion of the tag. For example, if expr is 0, the
—wronge— instruction has the same effect as the
instruction —wrong resp2—.

Comments:
The —wronge— instruction is the conditional form of
the —wrong— instruction. The —wronge— instruction is
identical in operation to the —answere— instruction

except that a matched response is judged no instead
of ok.

LIST
Instruction format:

list name,wlist

Tag definition:

name Name of the list (maximum of seven
characters)
wlist List of associated words with words

separated by commas

Effect:

Specifies list of equivalent words for synonyms or
optional words in —answer— and —wrong— instructions.

Comments:

The list is referenced by name. When specifying
synonymous or ignorable words, the markers setting

97405100 C

off the words are double for the list (that is,
<<name>> for ignorable words and ((name)) for
synonyms).

CONCEPT Judging Instruction
Instruction format:

concept senl
sen2

Tag definition:

senl, Equivalent concepts
sen2,...

Effect:

Judges student response ok if it matches one of the
concepts specified.

Comments:

Words used must occur in a previous —vocab— or
—vocabs— instruction. The —concept— instruction is
used for evaluation of complex responses or any of a
number of divergent responses. Judging is based on
word order only. Cannot match any student response
which contains more than 39 words.

MISCON Judging Instruction
Instruction format:

miscon senl
sen2

Tag definition:
senl, Equivalent concepts
sen2,...
Effect:
The —miscon— instruction is identical in operation to
the —concept— instruction except that the student

response is judged no if the response matches one of
the specified concepts.

5-67

VOCAB

Instruetion format:

voecab name
<opt words>

)
(syn2)

words
words with suffixes

Tag definition:

name Name of —vocab— (maximum of seven
characters)

opt words List of ignorable words

synl, List of synonymous words

syn2,...

words Nonignorable words without synonyms

words with Keyword/number or keyword/suffix
suffixes
Effect:
Constructs a list of useable and ignorable words for
use with —concept— instructions that follow —vocab—.
Comments:
More than one —vocab— can be used, but only one is in
use at any time. A previously defined but superseded

—vocab— can be brought into use by a —vocab—
instruction with only the name in the tag.

VOCABS

Instruction format:

vocabs name
. <opt words>

(synl)

(syn2)

w;mh

phrases

words with suffixes

Tag definition:

name Name of —vocabs— (maximum of seven
characters)

opt words List of ignorable words

synl, List of synonymous words

syn2,...

5-68

words Nonignorable words without synonyms
phrases Keywords separated by *
words with Keyword/number or keyword/suffix
suffixes

Effect:

Construets a list of useable and ignorable words, with

spelling and capitalization checks, for use with

—coneept— instructions that follow —vocabs—.
Comments:

More than one —vocabs— can be used, but only one is

in use at any time. A previously defined but super-

seded —vocabs— can be brought into use by a —vocabs—
instruction with only the name in the tag.

ENDINGS
Instruction format:

endings num,list

Tag definition:

num Number (0 through 9) identifying suf-
fixes list
list Actual list of up to eight suffixes
Effect:

The —endings— instruction must precede the —voecab—
or —vocabs— instruction. Adds suffixes to words
defined in vocabulary (—~vocab— or —vocabs-).

Comments:
The notation rootword/number in a voecabulary
(~vocab— or —vocabs-) defines as synonymous the root
word and all associated words formed in the suffix
list identified by num in the —endings— instruction.
However, the notation rootword//number does not
include the root word as one of the synonyms. Root

words can be no longer than 30 characters, and
suffixes can be no longer than 10 characters.

OK Judging Instruction
Instruction format:

ok
Effect:

Judges student response ok (correct). Always ends
judging.

97405100 C

NO Judging Instruction
Instruction format:

no

Effect:

Judges student response no (incorrect). Always ends
judging.

OKWORD
Instruction format:

okword message

Tag definition:

message Replacement message (maximum of
nine characters), including shift and
font codes)
Effect:

Permits the changing of the standard ok message.
The —okword— instruction can be inserted after the
first judging instruction and a different —okword-
after another judging instruction for the same
—arrow— instruction. The —okword— instruction re-
mains in effect until changed.

Comments:"
The —okword— instruction with a blank tag inhibits the

ok message, but not the no message. A space code is
automatically provided before any specified message.

NOWORD
Instruction format:

noword message

Tag definition:

message Replacement message (maximum of
nine characters, including shift and font
codes)
Effect:

Permits the changing of the standard no message.
The —noword— instruction can be inserted after the
first judging instruction and a different —noword—
after another judging instruction for the same
—arrow— instruction. The —noword- instruction re-
mains in effect until changed.

Comments:
The —noword- instruction with a blank tag inhibits the

no message. A space code is automatically provided
before any specified message.

97405100 C

IGNORE Judging Instructon
Instruction format:

ignore

Effect:

Erases student response and causes wait for new
student response.
Comments:

Regular instructions following an —ignore— instruction
are not executed. Always ends judging.

EXACT Judging Instruction
Instruction format:

exact resp

Tag definition:

resp Answer to be matched

Effect:
Judges student response ok if it exactly matches the
tag.

Comments:

Exact match includes spelling, punctuation spaces,
and so on.

EXACTC Judging Instruction

Instruction format:

exacte expr,respl,resp2,...

Tag definition:
expr Mathematical expression
respl, Possible answers to be matched
resp2,...

Effect:

Judges student response ok if it exactly matches the
answer selected by the expression.

Comments:

Conditional form of the —exact— instruction.

5-69

EXACTV Judging Instruction
Instruction format:

exactv start {,num |

Tag definition:

start Starting variable of string
num Number of characters (optional)
Effect:

Judges the student response ok if it exactly matches
the characters specified in the variables.

Comments:
Can be used as a conditional —exact— . If num
argument is omitted, comparison ends after the tenth
character or at the first occurrence of a 0 character

(six bits of zero). Segmented variables cannot be
used.

ANSY Judging Instruction
Instruction format:

ansv val {,tol}

Tag definition:

val Value to be matched
tol Tolerance permitted
Effect:

Judges algebraic student response ok if value of
response is equal to the specified value, within tol-
erance.

Comments:
One-argument form specifies no tolerance allowed.

Tolerance can be numeric or percentage. Value to be
matched can be an expression.

ANSU Judging Instruction
Instruction format:

ansu ans {,tol }

Tag definition:

ans Exact answer required or mathematical
expression
tol Tolerance permitted
5-70

Effect:

Judges numeric student responses with secientific
units ok if answer is equal to the specified answer
(ans), within specified tolerance.

Comments:
If argument ans is a mathematical expression and
argument tol is absent, the exact answer must be
given for an ok judgment. To store the numerie and
dimensional parts of the response, the -storeu—
instruction should precede —ansu—. The —ansu— tags

must be previously defined in a —define student—
instruction. Tolerance can be numeric or percentage.

WRONGYVY Judging Instruction
Instruction format:

wrongv val {,tol }

Tag definition:

val Value to be matched
tol Tolerance permitted
Effect:

Judges algebraic student response no if the value of
the response is equal to the specified value, within
specified tolerance.

Comments:

Operates like the —ansv— instruction but judges no
instead of ok. '

WRONGU Judging Instruction
Instruction format:

wrongu ans {,tol }

Tag definition:

ans Exact answer required or mathematical
expression
tol Tolerance permitted
Effect:

Judges numeric student responses with secientific
units no if answer is equal to the specified answer
(ans), within specified tolerance. .

Comments:

Operates like the —ansu- instruction but judges no
instead of ok.

97405100 C

STORE Judging Instruction
Instruction format:

store var

Tag definition:
var Variable in which value of student
response is to be stored
Effect:
Stores value of algebraic student response in var.

The response is judged no and judging ended only if
the student response ecannot be evaluated.

STOREN Judging Instruction

Instruction format:

storen var
Tag definition:

var Variable in which value is to be stored
Effect:

Searches student response for simple numeric ele-
ment, and if found, evaluates the element and stores
the value in var. The numeric element is removed
from the judging copy.

Comments:
If a simple numeric element is not found, judging is

ended with a judgment of no. Variable names are not
permitted in the numeric element.

STOREU Judging Instruction
Instruction format:

storeu var,array

Tag definition:

var Variable in which numeric part of stu-
dent response is to be stored

array Ten consecutive variables in which di-
mensional part of the student response
is to be stored. Must be v variable and
not n.

Effect:
Stores the numeric part of the student response in the

specified variable (var) and stores the dimensional
part of the student response in the 10 consecutive v

97405100 C

variables (array). The response is judged no and
judging ends only if the student response cannot be
evaluated.

Comments:
If the student response can be evaluated, judging is
not ended. The —-storeu— tags must be previously
defined in a —define student— instruction. The

—ansu—, —wrongu—, —ansv—, and —wrongv— instructions
should always follow the —storeu— instruction.

NTOUCH Judging Instruction
Instruction format:
ntouch

ntouch areal ;area2;...;arean

Tag definition:

areal, Touch areas of the forms:
area2,...
arean
coarse grid
loe {,charx,liney |
loc Coarse-grid location

charx Number of characters
wide

liney Number of lines high
fine grid
finex,finey { ,dotx,doty |

finex Fine-grid horizontal loca-
tion

finey Fine-grid vertical location
dotx Number of dots wide

doty Number of dots high

Effect:

Judges a student touch of the touch panel ok if it lies
within any of the specified areas; otherwise, the
system stays in the judging state and searches for
another judging instruction. Blank tag judges all
touches ok.

Comments:

Touch panel must be activated with a previous
—enable— instruetion or —pause keys=touch—
instruction and must be deactivated with a
subsequent —disable— instruction or a full sereen
erase. If widths or heights are 0 or omitted, the
default value is 1. If they are negative, the system
ignores that area. Cannot split an area designation
between lines.

5-71

N TO UCHW Judging Instruction
Instruction format:
ntouchw

ntouchw arealarea2;...;arean

Tag definition:

areal, Touch areas of the forms:
area2,...
arean

coarse grid

loc {,charx,liney)
loc Coarse-grid location

charx Number of characters
wide

liney Number of lines high
fine grid
finex,finey {,dotx,doty |

finex Fine-grid horizontal loca-
tion

finey Fine-grid vertical location
dotx Number of dots wide
doty

Number of dots high

Effect:
Judges a student touch of the touch panel no if it lies
within any of the specified areas. Blank tag judges
all touches no.

Comments:
The —ntouchw— instruction is identical in operation to

the -ntouch— instruction except that a matched
response is judged no instead of ok.

TOUCH Judging Instruction

Instruction format:

touch loe,tol
touch loc,width,height
touch list

Tag definition:
loe Coarse-grid location

tal Tolerance (in touch squares)

e 5-72

width Number of touch squares wide

height Number of touch squares high

list List of touch locations in either two-
or three-argument form, separated by
semicolons.

Effect:

Judges a student touch of the touch panel ok if it lies
within the specified area; otherwise, the system stays
in the judging state and searches for another judging
instruction.

Comments:

loe in the three-argument form is the lower-left
corner of the sensitive area. Touch panel must be
activated with a previous —enable— instruction. Up to
20 touch panel locations may be specified in the tag
of a single —touch— instruction. Judging is ended with
an anticipated ok if the screen is touched in any one
of the elements specified by list. The -ntouch—
instruction will replace —touch—.

TOUCHW Judging Instruction

Instruction format:

touchw loc,tol
touchw loc,width,height
touchw list

Tag definition:

loc Coarse-grid location

tol Tolerance (in touch squares)

width Number of touch squares wide

height Number of touch squares high

list List of touch locations in either two- or
three-argument form, separated by
semicolons

Effect:

Judges a student touch of the touch panel no if it lies
within the specified area.

Comments:

The —touchw— instruction is identical in operation to
the —touch— instruction except that a matched re-
sponse is judged no instead of ok. The —ntouchw-—
instruction will replace —touchw—.

97405100 C

MATCH Judging Instruction
Instruction format:

match var,list

Tag definition:

var Variable in which position number is to
be stored
list List of possible responses, separated by
commas
Effect:

Places position of matched response (0 for first
possible response, | for second, and so on) in var.
Places -1 in var if no match is found.

Comments:

Always ends judging.

OR Judging Instruction
Instruction format:

or

Effect:
Defines following judging instruction as equivalent to
preceding judging instruction.

Comments:
System-reserved word ansent is the same whichever
of the two (or more) instructions is matched. In-

structions judging ok and no can be specified as
equivalent. Never ends judging.

ANS Judging Instruection
Instruction format:

ans

Effect:

Executes regular instructions immediately following
if the student presses the ANS key.

Comments:

The —ans— instruction must be the first judging in-
struction following the —arrow— instruction.

97405100 C

COMPARE Judging Instruction

Instruction format:

compare wordl ,word2,return
Tag definition:
wordl Variable containing first of two words

to be compared

word2 Variable containing second word to be
compared with first word

return Location where result of word com-
parison is to be stored
Effect:

Compares wordl with word2 and returns the result in
return as follows:

-1 If they are different words
0 If they are the same word
+n If the words could be misspellings of one
another; the smaller the n, the closer the
spelling
Comments:

The words in wordl and word2 are ended by the first
character that ends author language judging.

SPECS Judging Instruction
Instruction format:

specs {opt list}

Tag definition:

opt list List of options desired

Effect:
Turns off special standard options or turns on speci-
fied nonstandard options. Regular instructions fol-
lowing a —specs— instruction are executed after every
response judgment.

Comments:

A list of the available options is given in table 11-2.
Never ends judging.

5-73

MARKUP
Instruction format:

markup

Effect:

Marks the student's answer with the markup saved by
—specs holdmark—.

Comments:

Used only with —specs holdmark—. Has no tag.

JUDGE

Instruction format:
judge opt
judge expr,optl,opt2,...

Tag definition:

opt,optl, ok, no, wrong, exit, continue, rejudge,
opt2,... X, ignore, okquit, noquit, quit
expr Mathematical expression

Effect:
Specifies an action to be taken regarding the judging
process.

Comments:

Executed in regular state only.

GETWORD
Instruction format:

getword numword,loc,num {,maxlength |

Tag definition:

numword Ordinal number of word in response

loe Location where word is to be stored
(packed 10 characters per word)

num Number of characters in word

maxlength Maximum allowable character length;
default is 10 (optional)

Effect:
Seeks a word (specified by numword) in a student
response; stores the word in a specified location (loe);

and then stores the number of characters in the word
(mum) in another location.

5-74

Comments:
System-reserved word weount contains the number of
words in the student response. Words are defined as

strings of characters separated by spaces, punc-
tuation characters, or letter/number boundaries.

GETMARK

Instruction format:

numword,loc

getmark

Tag definition:

numword Number of the word from which markup
information is desired
loc Location where return information
about desired word is stored
Effect:

The —getmark— instruction can be used after judging a
student answer to return information about the words
within the student answer. This instruction gives the
author the exaect information that the system uses to
mark up the student answer from the —answer— and
—concept— instructions.

Comments:

The value of the word at loe is as follows:

-2 No markup possible (for example, no
—answer— instructions)

-1 Word out of bounds (for example, numword
is greater than the number of words in the
student response)

0 Perfect word

>0 Various markup information

Various errors set bits in the word at loe as follows:

Bit Set Error

60 (rightmost) A word is missing before this
word

59 Word out of order (move it
left)

58 Capitalization incorrect

57 Bad spelling

56 Part of broken phrase

55 Extra word

54 Word missing at end (only for
last word)

97405100 C

GETLOC

Instruction format:

getloc numword,sfinex,sfiney {,efinex,efiney |

Tag definition:

numword Number of word whose location is de-
sired

sfinex Starting x location of word (fine-grid)

sfiney Starting y location of word (fine-grid)

efinex Ending x location of word (fine-grid),
optional

efiney Ending y location of word (fine-grid),
optional

Effect:

Returns the starting touch panel coordinates of a
word in the student's answer, and optionally, the
ending coordinates of the word. If the desired word is
out of bounds (numword is greater than the number of
words in the student answer), sfinex is set to —1.
Comments:

If the judging copy of the student answer is changed
via —put—, -bump—, and so on, the —getloc— instruction

attempts to return a best approximation of the touch
panel origin of the current word.

EDIT
Instruction format:

edit loc

Tag definition:

loc Starting variable of response buffer

Effect:
Sets up a response buffer where the student can

temporarily store his response, returning portions
with the EDIT key.

97405100 C

COPY
Instruction format:

copy loc,len

Tag definition:

loc Starting variable of character string
len Number of charaecters in string
Effect:

Allows the student to copy the author-specified string
into his response.
Comments:

String can only be used once per —arrow— instruction.
The string is not destroyed by use.

TIME

Instruction format:

time num

Tag definition:
num Number of seconds specified (must be
greater than or equal to 0.75)
Effect:

Requires student to respond within specified time.

Comment:
The value of the system-reserved word key is

—timeup— if the student does not respond within the
time limit.

5-75

STUDENT DATA INSTRUCTIONS

The following instructions are used to collect and access
lesson execution data.

dataon output readd
dataoff outputl readr
area readset notes
setdat

DATAON

Instruction format:
dataon

dataon optlist

Tag definition:

optlist List of data options to be turned on

Effect:
Starts data collection for current lesson and student
when executed.

Comments:
A —dataon— instruction is necessary in every lesson
that collects data. The options of the —dataon—
instruction can temporarily (that is, for the remain-
der of the lesson) override individual student data
options but ecannot turn on course record data options
which are turned off. Possible data options are ok,
no, unrec no, vocab, area, output, help, help no, term,

term no, errors, and signin. Blank tag turns on course
record data options.

DATAOFF
Instruction format:
dataoff

dataoff optlist

Tag definition:

optlist List of data options to be turned off
Effect:

Stops the collection of data for current student and
lesson.

5-76

Comments:
Blank tag stops all data collection. Data options
cannot override course record data options. Possible

data options are ok, no, unree no, vocab, area, output,
help, help no, term, term no, errors, and signin.

AREA

Instruction format:

area
area name

area (expr)

area incomplete
area cancelled

Tag definition:

name Name of area being entered (maximum
of 10 characters); cannot start with a
number

(expr) Variable or mathematical expression

indicating the area name; expression
must be placed in parentheses

incomplete The tag incomplete must be used in the
—area incomplete— instruction

cancelled The tag cancelled must be used in the

—area cancelled- instruction

Effect:

Delimits previous area for summary data collection
and begins new area. -area incomplete— terminates
collection of data for current area and marks that
area as incomplete. -—area cancelled— clears all
information in the current area without putting an
area summary in the data file, and no data collection
is done until a new —area— instruction is encountered.

Comments:

Blank tag delimits previous area, but no new data is
collected. Execution of an —area— instruction with
the same name as the current area stops data
collection until an —area— instruction with a different
tag is encountered.

97405100 C

SETDAT

Instruction format:

setdat resword expr

Tag definition:

resword One of the following system-reserved
words pertaining to areas:

aarea
atime
aarrows
aok
aokist
asno
auno
ahelp
ahelpn
aterm
atermn

expr Mathematical expression or variable

Effect:
Allows alteration of the value of system-reserved
words pertaining to areas.

Comments:
Any of the area-reserved words may be set by the

—setdat— instruction. They may contain only integers
and cannot have a value greater than 511.

OUTPUT
Instruction format:

output message

Tag definition:

message Message to be placed in data file

97405100 C

Effect:
Places the tag of the instruction into the datafile,
together with overhead information on student,
lesson, time, and so on.

Comments:

Variable contents can be included by a form of em-
bedding: <t,varm.

t Type (a, n, o, or v)
var Variable name

Tag can be longer than one line, but each line has all
associated overhead information written.

OUTPUTL
Instruction format:

outputl { 1abel, } start,num

Tag definition:
label Instruection label

start Starting variable of block to be placed
in datafile

num Number of variables to be stored (limit
is 20 variables)
Effect:

Places specified variable contents into datafile.
Comments:

Seven words of overhead information are placed in
the datafile unless label is absent.

5-77

READSET Value Meaning
Instruction format: 3 No room in ECS for disk buffer

readset fn {,access| |{,var| 4 System disk error

Tag definition:

READD
fn Datafile name or course file name
Instruction format:
access Access code word of datafile or course
file readd area,var,num
var Variable name containing number of readd outputl,var,num l
students in the course or number of
unused records remaining in a datafile readd signoff,var,num
Effect: Tag definition:
Establishes a link between the specified datafile or area Keyword area must be used in the
course file and the lesson so that the lesson can read -readd area— instruction
data from the datafile using —readd— or from the
course file using —readr—. var First of block of variables to receive
data
Comments: num Expression giving number of words to
transfer
Access code word is necessary only if change or
inspect code words for the file and the lesson are outputl Keyword outputl must be used in the I
different. System-reserved word zreturn is returned —-readd outputl- instruection
with the following values.
signoff Keyword signoff must be used in the
Value Meaning —readd signoff— instruction
-2 Connection to course file made
successfully Effect:
-1 Connection to datafile made suc- Reads appropriate records sequentially from student
cessfully datafile.
0 File does not exist or is not a
course or datafile Comments:
1 Code words do not match A -readset— instruction must be successfully exe-
cuted before attempting a -readd— instruection. An
2 File empty execution error occurs if an attempt is made to read

past the end of the datafile. System-reserved word
zreturn is set to —1 if there is more data and to 0 if
the end of the file is encountered (no more data).

5-78 97405100 C

READR

Instruction format:

readr

readr

readr

Tag definition:

name,n
stats,start;destin;num $$One to
svars,start;destin;num $$five tags
rvars,start;destingnum $$are used.
ldone,start;destin;num
Iscore,start;destinynum

sequential

stats,start;destin;num $$One to
svars,start;destin;num $$five tags
rvars,start;destingnum $$are used.
ldone,start;destin;num
Iscore,start;destin;num

roster,start;destinynum

name Keyword name must be used in the
—readr name— instruction

n Two contiguous variables specifying a
student name

sequential Keyword sequential must be used in the
—-readr sequential— instruction

roster Keyword roster must be used in the
—readr roster— instruction

stats Student statisties (maximum of 10)

svars Student variables (maximum of 150)

rvars Router variables (maximum of 50)

ldone System-reserved word ldone informa-
tion (3-bit signed segments)

Iscore System-reserved word Iscore informa-
tion (8-bit signed segments)

start Starting location in student statisties,
student variables, router variables,
lesson number in "mrouter", or student
roster

destin Destination into which student statis-
tics, student variables, router variables,
ldone or lscore information, or student
roster is read

num Number of variables (stats, svars, or
rvars) or student names to be read

Effect:

The —readr name-— instruction reads specified student
information (student statisties, student variables,

97405100 C

router variables, or ldone or lscore information from
"mrouter" lessons) into the work space (student
variables or common) for inspection.

The first —readr sequential— instruction in the lesson
reads the first student's course file (student statis-
ties, student variables, router variables, or ldone or
Iscore information from "mrouter" lessons) from the
roster into the work space (student variables or
common) for inspection. Each -readr sequential—
reads the next student's information until the roster
is exhausted.

The —readr roster— instruction reads a list of names
from the student roster into the work space (student
variables or common) for inspection.

Comments:

The -readset— instruction must precede the —readr—
instruction. The tag for —readset— must specify the
course to be read. The ldone and lscore information
is available only when "mrouter" is in use.

NOTES

Instruction format:

notes

notes var,len {,send }

Tag definition:

var Student variables (n or v) containing
heading information :

len Word length of heading information

send Keyword send sends note immediately

Effect:

Blank tag initiates TERM-comments for the student.
Two-argument tag allows the student to write a
comment and title it. The system heads the note
with the information stored in var. Three-argument
tag sends a note consisting of the information in var
and does not allow the student to write a comment or
to title it.

Comments:

System sends notes to the student note file named on
the course information page or to the lesson note file
named on the lesson information page.

5-79

RESOURCE MANAGEMENT
INSTRUCTIONS

The following instructions are used to manage terminals
and ECS.

site
station

SITE

Instruction format:

site set,name

site info,return

site active,start,return,num
site stations,start,return,num

Tag definition:

name Variable containing name of logical site
or name in quotes
return Variable in which information is stored
start First station number
num Number of stations
Effect:

The results of the tags are listed.

set Enables other -site— instructions for
site name
info Obtains current site ECS information

for site name

active Finds active station numbers for site
name

stations Finds station numbers permanently in
site name

Comments:

Used by site lessons.

5-80

STATION

Instruection format:

station info,statnum,return
station status,statnum

station send,statnum,loc,text,len
station stopl,statnum

station logout,statnum

station off,statnum

station onstatnum

Tag definition:

statnum Number of physical station or variable
containing number
return Variable in which information is stored
loe Coarse-grid coordinates
text Message to be sent
len Length of message in characters
Effect:

The results of the tags are listed.
info Obtains information on station statnum

status Returns current status of station
statnum in zreturn

send Sends a message in mode rewrite to
station statnum

stopl Presses SHIFT STOP keys on station
statnum

logout Signs off station statnum

off Turns off station statnum
on Turns on station statnum
Comments:

Used by site lessons. Requires a previous —site set—
instruection.

97405100 C

l" PRINTING INSTRUCTION format Code for printing datasets and common
bloeks

The following instruction is used to specify the format of
the printout of a lesson.

Effect:
*list
The results of the tags are listed.
label Puts specified string in printout
*LIST
title Prints subheading string for a page
Instruction format:
eject Performs a page eject
*ist label,string
text Prints only tags of —write— and
#ist title,string —writec— instructions
*ist eject ignore Ignores subsequent —*list— instruc-
tions
*list text
info Prints lesson information page
Hist ignore
symbols Prints a cross-reference table of
*list info symbols
*ist symbols commands Prints a table listing where instruc-
tions specified in list are used
*ist commands,list
of f Prevents printing of named blocks
*ist off {,blocks } or stops source printing if no blocks
are named
*]ist parts
parts Prints only condensed blocks
*list charset {,(db)}
charset Prints any charset in the lesson
*list leslist
leslist Prints any -leslist— block in the
*ist micro lesson
*ist vocabs miero Prints any —micro— block in the
lesson
I *ist mods
vocabs Prints any -vocab— block in the
#ist deleted lesson
*list common,comname,words,format mods Prints mod words
deleted Prints deleted lines
Tag definition:
common Prints a common block or a dataset
string Alphanumeric strings used for headings
list List of commands Comments:
blocks List of blocks The —*list— instructions specify options when printing
a lesson on hardeopy. The error directory printed
(db) Characters used to mark dots and back- toward the end of the listing gives the line numbers
ground in a charset on which there were errors. The only errors flagged
are *list option errors and duplicate unit names.
comname Name of common Putting the —*list— options at the beginning of block B
is usually the safest.
words Number of words of common

97405100 C 5-81

VARIABLES

It is often necessary to store information during execution
of a lesson. As a simple example, a unit that sends the
student to a remedial sequence of units after answering
the question incorrectly four times must keep track of the
number of times the student has answered incorrectly.

The PLATO system provides variables for storing such
information. Normally, the student cannot access these
variables, although the author can specify some of them
for use by the student. The author has access to all the
variables.

Each variable consists of one computer word of 60 binary
digits (bits). This is equivalent to 20 octal digits or ap-
proximately 15 decimal digits. (For a discussion of the
binary, octal, and decimal systems and their relationship,
refer to appendix C.) All information is stored in the
form of numbers. Alphanumeric information is converted
to character codes (numbers) for storage. The character
codes are each 6 bits so that 10 characters can be stored
in onc variable (word). Numbers are stored by magnitude
only so that the number stored can be quite large.

Information on manipulation of individual bits and groups
of bits is contained in sections 7 and 8.

STUDENT VARIABLES

The PLATO system provides each user with a bank of 150
student variables (sometimes called user bank variables)
for storing information. If the user is a student, the
system stores these variables on disk whenever the
student is not using the system. If the user is not a stu-
dent, the system does not store these variables between
sessions.

The primitive names for these 150 student variables are
nxx and vxx, where xx represents the variable number.
The n and v indicate an integer variable or a floating-
point variable, respectively.

A single variable in the student variables can be refer-
enced as both a floating-point variable and as an integer
variable in different parts of the lesson. This can be done
either by referring to the variable with the primitive
names (for example, n67 and v67) or by a defined name.
However, the defined names must be different.

INTEGER VARIABLES

Integer variables are used to store integers up to 59 binary
digits (259 -1). The first bit, which is the leftmost bit, is
used in indicating the sign of the number. If the sign bit is
0, the number is positive; if the sign bit is 1, the number is
negative.

Negative numbers are stored as the complement of the
positive number with the same absolute value. In binary,
this means that all bits that are 1 in the positive number
are set to 0, and all bits that are 0 in the positive number
are set to 1. Thus, an integer variable containing the
number 1 has the octal representation

97405100 C

00000000000000000001
while the value -1 has the representation:
TTT7TTTTITITTITTTITTT6

A variable is selected as an integer variable from the
student variables by prefixing the number of the variable
in the bank with an n. For example, the name n27 indi-
cates that the 27th of the 150 variables in the student
variables is an integer. Any variable in the student vari-
ables can be designated as an integer variable.

FLOATING-POINT VARIABLES

If the number to be stored is larger than 259-1 or contains
a fraction, an integer variable is not suitable. Instead, a
floating-point variable is used.

The term floating-point is used because the decimal point
is not fixed but floats to the right or left when operations
are performed. The number is stored in the form of an
exponent and mantissa. The format of the word is shown
in figure 6-1.

|2 1213 60
[ﬂ EXPONENT | MANTISSA J

\— EXPONENT SIGN

VARIABLE SIGN

Figure 6-1. Format of Floating-Point Variables

The mantissa is 48 bits long, so numbers that would re-
quire more than 48 bits, such as large numbers with digits
used in the lower places or extended fractions, lose some
accuracy. The rightmost (least significant) digits of such
numbers are lost. Usually, the accuracy provided by 48
bits is sufficient.

The exponent is 10 bits long, plus a sign bit for the ex-
ponent. Since the mantissa is treated as an integer but
with the number shifted so that the first bit of the man-
tissa is set to 1, the number 1, for example, has an ex-
ponent of -47 (decimal). The octal representation of the
value 1 in floating-point is:

17204000000000000000

The mantissa begins with the 4, which is 100 in binary, and
causes the leftmost bit of the mantissa to be set to 1.

Additionally, there is a sign bit for indicating the sign of
the entire number. This is the leftmost bit in the word.
Negative floating-point numbers are handled in the same
way as negative integers; that is, the negative number is
the complement of the positive number with the same
absolute value. Thus, the form of -1 would be

60573777T7TTTTTTTTT7
when stored as a floating-point variable.

Floating-point variables are referenced by prefixing the
variable number with the letter v. For example, v23
refers to the 23rd variable in the student variables and
specifies that it is a floating-point variable.

Floating-point numbers are sometimes called real numbers
because they can approximate the real numbers rather
than just the integers.

Variables can be indexed so that the actual variable used
depends upon the value of the index. An example is v(n3).
The value contained in n3 determines which variable is
referenced. For example, if the value of n3 is 47, the
reference v(n3) is equivalent to v47 but changes if the
value of n3 changes. An expression, rather than a simple
constant or variable name, can be used as the index.

NC AND VC VARIABLES

The PLATO system also provides each lesson with a bank
of 1500 variables for storing information. The system
does not store these 1500 variables with the student
variables, because these 1500 variables are temporary
variables in central memory. They are used with common
and storage (refer to section 8).

The primitive names for these 1500 variables are nexx and
vexx, where xx represents the variable number. The n and
v indicate an integer variable or a floating-point variable,
respectively, just as with the student variables. For
example, variables nel and vel are the same variable.
The way the author wants to use that variable determines
if the author should define it as an integer variable (nel)
or as a floating-point variable (vel).

ASSIGNING NAMES TO VARIABLES

While it is possible to write an entire lesson using only the
primitive variable names, it is neither necessary nor
desirable to do so. If there is more than one author of a
single lesson or if the author is coming back to the lesson
after an absence, it can be difficult to keep track of the
significance of the various variables used. Thus, it is
preferable to assign meaningful names to the variables.
This is done with the —define— instruction.

The —define- instruction is a continued instruction. Each
time the command —define- is encountered, a new set of
variable names is defined. As a result, the command
should only occur in the first line of the instruetion.

The name of the variable set (define set) is also on the
first line of the instruction. When it is used, it appears as
the first argument in the tag of the first line. The
definition of variable names may begin on the second line
or after the set name on this first line.

define setl,try=nl
right=n5
radius=v3,angle=v4
person=ncl,topscor=ve2

The effect of the —define— instruction during lesson ex-
ecution is to replace each occurrence of the item on the
left of the equal sign with the quantity on the right.
While this effeet is not important in defining variable
names, it is important when the —define— instruction is
used to define functions, arrays, and segments (covered in
sections 7 and 8).

As indicated in the preceding example, more than one
definition can be made in a single define set. If more than
one definition is to be made on a single line, the
definitions are separated by commas. Definitions on
separate lines do not require delimiters between defini-
tions. It is not permitted to extend a single name defini-
tion over more than one line; hence,

define set
upper=v1
lower=v7,medium=v8
mean=v149

is a permissible instruetion, but

define set
upper=
vl
lower=v7,medium=v8,mean=v149

is not permissible.

The variable names assigned can be no longer than seven
characters. The first character cannot be a number, and
the name cannot contain mathematical operators, FONT
characters, or backspaces.

Because a define set is assigned a name itself, it is pos-
sible to specify that a define set includes, besides those
definitions explicitly given, the definitions of one or more
previous sets. This is done by giving the names of the sets
whose definitions are to be included as arguments in the
tag of the first line of the instruction, following the name
of the new define set. For example, if the name one has
already been assigned to a define set, the instruection

define two,one
zot=n89

includes all of the definition in set one, as well as the new
definition of the variable name zot as set two.

The student define set is a special set of variable names.
This set defines names that can be used by the student.
For example, the instruection

define student
x=vl,y=v124

allows the student to type expressions such as 3x+y/4 and
have the response understandable by the system. The
student set is also necessary when using instruetions such
as —ansu-, —wrongu—, —storeu—, —ansv—, —wrongv-, —store-,
and —compute— to define units useable by the student.

The student define set can redefine system functions. For

example, cos(x)=cos(x”) allows the student to use degrees
instead of radians.

97405100 C

A lesson can have any number of define sets, with up to
five define sets active at any one time. When a sixth
define set is created, all previous sets (execept the define
set named student, if used) are discarded. The purge
option of the —define- instruction allows the author to
selectively discard define sets. This option is exemplified
by the instruection

define purge,one

which renders the define set named one unavailable. If
the second argument is omitted, as in

define purge

all define sets except the set named student are dis-
carded. Only one set can be purged by name in a —~define—

97405100 C

instruetion. A —define- instruetion using the purge option
cannol be a continued instruetion.

It is possible to make an available set active by simply
giving the.name as the tag of a one line —define- instruc-
tion. As an example, if the define set grelp was
previously defined and made inactive (although available),
but it is now desired to use the set grelp, the instruction
performing this operation is:

define grelp

Definition of a variable name must be done earlier in the
physieal (not logical) lesson than any use of that name,
because —define— is not an executable instruction. There-
fore, a good place to put define sets is at the beginning of
the lesson.

EXPRESSIONS AND FUNCTIONS 7

All information on the PLATO system is stored in the
form of numbers. However, there are two methods of
interpreting the numbers, numeric and nonnumeric. The
numeric method assumes the value of the number is of
primary importance. The nonnumeric method assumes the
number is a coded form of alphabetic information, such as
a name. The difference is in the method of inter-
pretation. Thus, a variable with the integer value 3 can
be interpreted either as the number 3 or as the coded
representation of the character c¢. (Character codes are
given in appendix A.) All student input is in the form of
characters. Instructions are available to convert student
input to numeric form (refer to section 11).

Since all information is stored in the form of numbers, all
information is manipulatable by means of expressions and
functions. However, caution should be exercised in the
use of expressions and functions on information that is to
be used as nonnumeric information. Methods of dealing
with specifieally nonnumeric information are given in
section 8.

CONSTANTS

There are two ways of expressing a constant in the author
language. The number can be given explicitly, such as
143.52, or it can be a defined constant.

A defined constant is specified in the —define— instruction
by assigning a specific value to a name. For example,

define byte=8
char=6

defines two constants equal to 8 and 6. These can usually
be used within an author language lesson interchangeably
with explicit constants.

EXPRESSIONS

An expression can usually be used in the author language
wherever a numeric value is required. Expressions are
composed of variables, functions, and constants separated
by operators. The simplest form of an expression is a
single constant, such as 3 or 237.36, or a single variable,
such as x. Real and integer variables can be intermixed in
an expression, with the result being rounded if an integer
value is required. An example of rounding with integer
variables is

v(2.5+6.8)
which is equivalent to

v(9)
Parentheses are used as in standard algebraic notation.
The extensive use of parentheses is encouraged, even

where not strictly necessary, for greater readibility and to
ensure the expression is evaluated in the manner desired.

97405100 B

There are four types of operators in the PLATO author
language: arithmetie, logical, bit, and array. All four
yield numeric values, but the usage is different. An
arithmetic operator returns a numeric value in the normal
arithmetic manner. Logical operators return a value of -1
(true) or 0 (false). Bit operators affect the bit setting
within a specified computer word. Array operators
manipulate arrays. Operator precedence is given in table
7-1. The four types of operators can be mixed in a single
expression, but because of the differing precedences,
great care should be exercised, and parentheses should be
used freely.

TABLE 7-1. OPERATOR PRECEDENCE

Precedence t Operator Operation
Binary
9 (superseript) Exponentiation
8 X Multiplication
7 +,/ Division
6 G Addition, subtraction
5 cls, ars, Refer to Bit
$mask$,$diff$ Operations
4 $union$ Refer to Bit
Operations
3 >,4,2,5,5,# Logical
relationals
2 and Boolean AND
1 or Boolean OR
0 < Replacement
Unary
2 -+ Arithmetic
sign

tOperations with a higher precedence are performed
first.

For example, if y has a value of 22, the expression
100 -25(y<25)

is equivalent to 125 [y is less than 25, so the logical op-
eration has a value of -1 (true)].

However, the expression
100-25y<25

because of the lower precedence of the logical operators
is equivalent to .

(100-25y)<25

whieh, in this example, gives a value of -1 (true), since
100-25y is -450 (quite a bit less than 25).

=1

ARITHMETIC OPERATIONS

Arithmetic operations are performed as in standard al-
gebra, with some differences in operator precedence from
many computer languages.

In the author language, multiplication has a higher prec-
edence than division, while many computer languages
place the two operations on the same precedence level.
The reason for giving multiplication a higher precedence
is that experience has shown that most students evaluate
an expression in that manner.

Because of the capabilities of the PLATO terminal, there
is no operator in the author language to indicate expo-
nentiation. Instead, the exponent is specified as a super-
seript through use of the SUPER (for superseript) key.
Pressing SUPER allows the next character, which may be
a number, to be written as a superseript. Pressing the
SHIFT SUPER keys locks the terminal into the superseript
mode, so expressions of more than one character can be
written as a single superseript without the repeated use of
the SUPER key. The mode is switched back from SHIFT
SUPER by pressing the SHIFT SUB keys.

There are two ways of indicating multiplication. There is
a special multiplication key in the cluster to the left of
the alphabetic portion of the keyboard that produces a
character resembling an x, called the multiplicative X .
The alphabetic x cannot be used to indicate multi-
plication. The second method is the use of an asterisk (*).
This functions like the multiplication key and is included
because this character is used to indicate multiplication in
many other computer languages. The use of the multiplie-
ative X is preferred to the use of the asterisk.

Because of the operation of the author language condenser
and executer, an author must indicate multiplication
explicitly. * Thus, while an expression such as rcos 8 is
permitted in algebra, the author must use r*cos(8) in the
author language. That is, multiplication must be
explicitly indicated, and the arguments of functions must
be enclosed in parentheses. These restrictions do not
apply to the user executing the lesson.

When an explicit constant is to be multiplied by a named
variable, concatenation to indicate multiplication is avail-
able to the author. For example, the author can use
23theta rather than 23*theta. However, theta23 cannot
be used since the condenser would not know whether the
23 is a part of the name or a constant.

Similar to multiplication, there are two operators that
indicate division, + and /. The + symbol is produced, like
the X symbol, by a special key to the left of the
alphabetic keyboard. The use of the / symbol is permitted
because of its use in other computer languages and
because it is commonly used to indicate division in
algebra.

Addition and subtraction have the same precedence and
are executed from left to right. The keys used to indicate
addition and subtraction are the + key and the — key, both
of which are near the multiplicative X and + keys.

LOGICAL OPERATIONS

There are two types of logical operators, relational and
Boolean. Relational operators have a higher precedence.

The relational operators are used to compare the numeric
magnitude of expressions. They return a value of true (-1)
or false (0), depending on whether the relation is true or
false. The relational operators are the standard mathe-
matical ones: > (greater than), < (less than), > (greater
than or equal to), < (less than or equal to), = (equal to),
and # (not equal to).

The Boolean operators permit the ecombination of logical
expressions. There are three Boolean operators: and,
or, and not. Note that the Boolean not (the unary
negation) is not enclosed in dollar signs ($). The not is
actually a system-defined function that changes the value
of a logical expression. As a result, it is necessary to
enclose the expression to be affected in parentheses.

The other two Boolean operators are binary and combine
two logical subexpressions into a single logical expression.
The and operator gives the expressions a value of true
(-1) if and only if both subexpressions are true. The or
operator gives a value of true if either or both of the
subexpressions are true (inclusive OR).

Although many computer languages give logical expres-
sions a value of 1 if true or 0 if false, the author language
assigns -1 and 0, respectively. This is to allow the use of
logical expressions in the conditional form of some
instructions (refer to section 12).

An expression other than a logical expression (such as
3x+5 or vname $mask$ 73) always has a logical value of
true (-1) when used as part of a logical expression.

BIT OPERATIONS

Bit operations manipulate the information contained in a
single word. On the PLATO system, one computer word
consists of 60 binary digits or bits. For convenience, octal
numbers can be used. One octal digit is equal to three
binary digits (refer to appendix C for comparisons of
binary, octal, and decimal numbers) and has the added
advantage of being quite close to decimal notation. An
octal number is identified in the author language by a
lowercase o preceding the number. For example, 0753 is
an octal number equivalent to 111 101 011 in binary and
491 in decimal.

All bit operators are enclosed in dollar signs ($) to dis-
tinguish them from variables. Except for the $union$
operator, all bit operators have the same precedence.
Therefore, the result of an expression depends not only on
the operators and operands but on their order of oc-
currence. For example,

077$mask$o70ars3
gives a value of o7, while
077ars3$mask$o70

gives a value of zero. As a result, parentheses are usually
necessary when using bit operations.

The author language provides two shift operators, cls
and ars, which are acronyms for circular left shift and
arithmetie right shift, respectively.

The circular left shift causes the contents of the word to
the left of the cls operator to be shifted to the left the

97405100 C

number of bit positions indicated by the expression to the
right of the operator. The bits that are shifted from the
word on the left are brought into the word on the right. A
circular left shift of 60 would leave all bits in precisely
the same position they originally occupied (hence, the
term cirecular in the name).

The arithmetic right shift operates in the same general
manner as the ecircular left shift, with three exceptions.
The shift is to the right rather than to the left. Bits that
are shifted from the word on the right are lost. The sign
is extended from the left, so the number remains positive
or negative, whichever it was originally.

The remaining bit operators ($union$, $mask$, and $diff$)
are used to compare the bit configurations of two com-
puter words. The $union$ operator sets the bits of the
result to 1 wherever either word being compared has a 1.
The $mask$ operator sets a bit in the result to 1 only if
both words have the bit in the same position set to 1. The
$diff$ operator sets a bit in the result to 1 only if the bits
in that position in the two comparison words have
different values.

For example, if the lower four bits of variable test are
1010 and the lower four bits of variable check are 1100,
the result of

test$union$check

has 1110 as its lower four bits,
test$mask$check

has 1000 as its lower four bits, and
test$diff $check

has 0110 as its lower four bits.

The $union$ operator has a lower precedence than the
other bit operators. The other operators all have the
same precedence and are executed from left to right if
the order of execution is not modified by parentheses.

The system funetion, bitent (x), counts the number of bits
set to 1 in the variable named in the argument.

The system funections, 1mask(x) and rmask(x), generate
left- or right-justified masks, respectively, of length x
bits.

ARRAY OPERATIONS

Array operations modify system-defined arrays (refer to
section 8). Because the system treats system-defined
arrays as ordinary elements, all the arithmetic and logical
operations are allowed (except exponentiation). When
referencing an array with indexes, the indicated operation
affects only the element referenced. When referencing an
array without indexes, the indicated operation affects all
the elements of the array. Using array-scalar operations,
such as

A< 4

B(3,4)< n5
C < DX10
E< a2 XE

97405100 C

is legal. All the elements of array A are set to four, the
element B(3,4) of array B is set to the value stored in n5,
all the elements of array C are set to values 10 times the
corresponding elements of array D, and all the elements
of array E are increased by a2.

Element-to-element array operations do not require in-
dexes. For example:

A < B/C
D < sin (E)

Here, each element in array A is set to the result of the
division of the corresponding elements in arrays B and C.
Each element in array D is set to the sine of the
corresponding element in array E. These operations
require that the arrays have the same dimensions.

Two operators are used only with arrays. One is o, the
vector dot product or matrix multiplication, produced by
pressing MICRO X . The other is X , the vector cross
product, produced by pressing MICRO SHIFT X.

var < veel ° vec?2
C< Ao°B
veed < veel X vece2

In this example, var contains the vector dot product of the
vectors vecl and vec2. If var is not a scalar, all its
elements are set to vecl o vec2. Array C contains the
result of the matrix multiplication of arrays A and B.
Vector vee3d contains the vector cross product of the
vectors veel and vec2.

The author must be cautious when chaining together more
than one array operation, because the computer might
lose the temporary storage buffers if too many operations
are attempted in one instruction.

-CALC- INSTRUCTION

For assigning a value to a variable, the author language
provides the —cale— instruction. This can be a continued
instruction, as is the —define- instruction. The tag con-
sists of the assignment desired.

Assignment is specified by having a variable name (either
an assigned or a primitive name) separated by an < from
the expression giving the value to be assigned the
variable. For example:

cale inum < 3Xtheta+y + 2

The assignment key (<) is located to the left of the
alphabetic keyboard. A variable may appear on both the
left and right sides of an assignment. In this case, the
current contents of the variable is used when evaluating
the expression. This value is then assigned to the
variable. For instance, if variable fiawol contains the
value 7, then

cale fiawol < fiawol2
assigns fiawol a value of 49.

A single statement can contain more than one assignment,
as in

cale fout € vl < jwe < 362 + x2

7-3

which assigns the value of the expression 362 =+ x2 to all
three variables: fout, vl, and jwe.

An error in a —cale- instruction gives an execution error.

There are three instructions that can be used for specific
calculation. The —addl- instruction adds one to the value
of the variable in the tag. The -subl- instruction
subtracts one from the value of the named variable. The
-zero— instruction can set an individual variable, or an
entire block of variables, to zero. The —zero- instruction,
when it is used to set a block of variables to zero, is much
faster than using a —cale- instruction. The —addl- and
—-subl- instructions are slower than a —cale— instruction.

The tag of the —zero- instruction can have either one or
two arguments. The first (or only) argument specifies the
starting location of the block of variables to be set to
zero. If the tag has one argument, only this variable is
zeroed. If the tag has two arguments, the second
argument gives the number of variables to be set 1o zero.
As an example, the instruection

zero v23,17

sets 17 variables to zero, beginning with variable 23.

FUNCTIONS

Functions are used to perform lengthy, complex, or re-
peated calculations. They allow the calculational state-
ments to be made once and then to be referenced by a
name.

Several useful functions, called system functions, are built
into the author language and need not be defined by the
author. An example is sin(x), which gives the value of the
trigonometric sine of x, where x (in radians) can be an
expression. The system functions which begin with a
capital letter deal specifically with system-defined arrays
(section 8). These array functions may be used with the
other system funetions. (For a list of system functions,
refer to appendix B.)

Often the function desired is not available as a system
function. Thus, the author language allows the author to
define his own functions. This is done in a —define-
instruction in a manner similar to defining a variable. The
method is probably best explained by the example

define circle
diam(a)=27 Xa

where a, acting as a dummy variable, has not been pre-
viously defined. #When used with a variable, such as
radius, this function gives the diameter of the circle
whose radius is contained in the variable. A variable that

7-4

has been previously defined cannot appear on the left of
the equal sign in a function definition, although it can
appear on the right side, as in:

define setl
x=vl 4
fune(t)=t “+sin(x)

A function can be used on the right side. The author
language allows this nesting of definitions to go down
seven levels (if the function is very simple). A funetion
can also be an assignment, as in

define set2
x=v1 3
cube(a)=a
root(a)=al/4
value=(x < root (cube(x)))

which permits the instruction
cale value

where the change in the value of x is implicit because of
the definition of the function value. Note that value
needs no arguments.

Any legal expression can be the definition of a funetion,
and as shown, an assignment is also possible. Since an
operator by itself is not a permissible expression, a def-
inition such as

define neg = not
is not legal, but

define neg(b) = not(b)
is legal.

A function can have up to six arguments. As an example
of a funetion of three arguments, consider:

define rootl = vl
root2 = v2
solnl (a,b,e) = (root12¢(—b+
sqrt(b“~4a X ¢))/(2a))
soln2 (a,b,e) = (root2,<(-b—
sqrt(b“—4a X ¢))/(2a))

Using these functions, the instruction

cale solnl (3,5,1)
soln2 (3,5,1)

puts the two solutions of the equation 3x2+5x+1=0 into
variables rootl and root2. Of course, some means of
determining if the equation has real roots should be used;
otherwise, an error is generated and lesson execution is
stopped when the roots are not real.

97405100 C

OTHER CALCULATION FEATURES 8

*

All computation necessary in a PLATO author language
lesson can usually be done using the instructions deseribed
in sections 6 and 7. However, the lessons that result are
often extremely complex in structure and clumsy in
execution. To further simplify the task of information
manipulation and to make lessons less complex and more
comprehensible, several more sophisticated data handling
capabilities are built into the author language.

SYSTEM-DEFINED ARRAYS

Ordered sets of data often can be usefully arranged into
arrays. The location of the data then bears a clear re-
lationship to the information which the data represents.
Arrays may be either system-defined or author-defined.
Author-defined arrays are discussed later. System-de-
fined arrays may be zero, one, or two dimensions. Several
operations and system functions (refer to section 7 and
appendix B) are available to manipulate system-defined
arrays.

The —define— instruction names an array. The indexes,
offsets, and base locations in the definition must be
literals or defined constants, because the array size must
be known at condense time. At this time, the system sets
aside enough storage to contain the array. Then,
whenever the lesson references the array, the system does
a bounds check on the array. Referencing values outside
the specified index limitls causes an execution error. The
two types of system-defined arrays are full-word arrays
and vertically segmented arrays.

FULL-WORD ARRAYS

Full-word arrays use one entire variable for each element
in the array. Variables may be n, v, ne, or ve type vari-
ables. A full-word array can be one, two, or zero dimen-
sions. An example of a one-dimensional array is:

define array,list(5)=v20

This defines a vector of five elements, starting with list(1)
in v20. The last element, list(5), is in v24. The elements
of list are floating-point numbers.

At times, the author may desire to begin the index with a
value other than one. Therefore, the author language
allows index offsetting. For example,

define array,year(1860;1880)=ve50
defines year (1860) as the first element in this 21-element
vector. Both the beginning and ending index values are
given, separated by a semicolon.
Two-dimensional arrays are defined similarly to one-

dimensional arrays; however, the size of both dimensions
must be specified. For example,

97405100 C

define array,A(4,4)=nl
array,B(0,0;4,5)=nc10

Array A is a 16-element square matrix. The elements of a
matrix are stored by rows; therefore, A(1,1) equals nl,
A(1,2) equals n2, A(1,3) equals n3, A(1,4) equals n4, A(2,1)
equals n5, A(2,2) equals n6, and so on.

Array B is a 30-element array with five rows and six
columns. The initial index is offset to B(0,0). The maxi-
mum value an offset may be is 213-1.

An array can also be defined to be of zero dimension, as
in:

define array,scale=vel0

An array of zero dimension is called a scalar and consists
of a single element. It is essentially the same as defining
a constant; however, the array operations discussed in
section 7 sometimes make the use of scalars desirable.

The —define- instruection allows the defining of individual
elements of an array after the array as a whole is defined.
For example:

define array,group(15)=v25
beg=group(1)
mid=group(8)
end=group(15)

VERTICALLY SEGMENTED ARRAYS

Vertically segmented arrays use one vertical segment for
each element in the array. That is, an element uses only
the specified bits in the computer word, rather than the
entire word, with consecutive elements in consecutive
computer words. Vertically segmented arrays can de-
crease the number of variables necessary, because the
same variables can contain more than one vertically
segmented array. As with full-word arrays, the variables
may be n, v, ne, or ve type variables; however, vertically
segmented arrays are restricted to one and two dimen-
sions.

An example of a one-dimensional vertical array is:

define arraysegv,name(15)=n12,5,25
Array name has 15 elements stored in integer variables
nl2 through n26, occupying bits 5 through 29. Vertical
arrays may also specify initial index offset, as in:

define arraysegv,grade(101;115)=n12,31,11,signed
Array grade also has 15 elements stored in integer vari-

ables n12 through n26; however, its elements occupy bits
31 through 41, including one bit for the sign.

8-1

Two-dimensional vertical arrays, with or without initial
index offset, are defined similarly to one-dimensional
arrays, except that both dimensions must be specified.

The system stores elements of segmented arrays as in-
tegers. To store a floating-point value, the author must
first scale the value up or down and then store it as an
- integer.

AUTHOR-DEFINED ARRAYS

Sometimes an author wants more than two dimensions in
an array. In this case, the author can define arrays of
more than iwo dimensions; however, these author-defined
arrays cannot be used with the system array functions and
operations. There are three types of author-defined
arrays: full-word arrays, horizontally segmented arrays,
and vertically segmented arrays.

FULL-WORD ARRAYS

Arrays can be defined by indexing the primitive variable
name (v, n, ve, and ne). This is done by putting the num-
ber or expression in parentheses, like v(num+10). The
value of the indexing expression is rounded, if necessary.

If the array starts in variable 37, the instruction
define mat(n)=v(36+n)

defines the array, with the assumption that n is not pre-
viously defined.

If the student is allowed to specify an element of an
array, the array must be defined by name with subseripts.
The definition must be in the student set of variables.

Because this definition of an array does not specify a limit
on the size of the array, a certain amount of care must be
taken to ensure that the index variable is within the
desired bounds. For instance, if the array mat has been
defined as given previously and is to contain 20 elements,
a value of n that is greater than 20 does not cause an
execution error but simply accesses a variable beyond the
bounds of the array. Similarly, if n has the value -10, a
reference to mat(n) references variable v26, which is
previous to the defined start of the array.

An example of a two-dimensional 3 by 15 array with index
variables i and j is:

define quad(g,m) = v(19+15(g-1)+m)

The actual index variables cannot be used in the defi-
nition. As in the definition of a function, dummy vari-
ables must be used.

The array starts in variable 20 (assuming that both q and
m are never less than one). For example, the fifteenth
element of the second row is then accessed by quad (2,
15). The expression (g-1) in the definition is used to start
the array at variable 20, rather than 35, as would happen
if simply q were used.

8-2

There is an alternative way to define the array so that no
arguments are visible. The previous example, defined in
this manner, would become

define setl
i=nl,j=n2
quad=v(19+15(i-1)+j)

and once values for i and j have been set, the use of the
word quad automatically gives the value of the proper
variable. This is especially useful when a long routine
that uses an array name quite often is used. The form of
array with no explicit arguments simplifies the writing of
the routine. Just as in function definition, previously
defined variables can appear on the right side of the array
definition. In faet, if the array is to be referenced
without specific arguments, as shown, it is necessary that
the indexes given in the definition be previously defined.

The -set— instruction is used to assign values to con-
secutive variables or to previously defined arrays. It
assigns values or mathematical expressions to full words,
and therefore, may not be used to assign segments. If
array boundaries or student or central memory (ne or ve)
variable boundaries are exceeded using a —set— assign-
ment, condense or execution errors oceur.

The following example —set—s n5 equal to 4, né equal to
sin(x), and n7 equal to 14.7.

set n5 <4,sin(x),14.7
Arrays may be partially or fully assigned.

set B<2,4

set B< 4,8,19
1,0,1
2,3,5

s

If B is defined as a 3X3 array, B(1,1) equals 2, and B(1,2)
equals 4. The second -set— reassigns the array to B(1,1)
equals 4, B(1,2) equals 8, B(1,3) equals 19, B(2,1) equals 1,
B(2,2) equals 0, and so on.

SEGMENTS

A segment is a special form of an array that uses less than
a full computer word for storing the values. For example,
if it is known that all the values to be stored are less than
200, that they are all positive integers, and there are 200
such scores to be saved, the student variables cannot store
all the values. Common variables can be used instead, but
a large amount of space is wasted since only part of each
word is used.

The instruction

define segment,list=v1,8
sets up an array composed of eight bit units, or bytes,
starting in variable 1, with the array having the name list.
As in an ordinary array definition, the quantities on the

right of the equal sign can be previously defined quanti-
ties. For example, the instruction

97405100 C

define start=vl
byte=8
segment,list=start,byte

has precisely the same effect as the previous definition of
a segment list. An indexed variable cannot be used in the
definition of the starting variable, and the byte size must
be specified by a constant.

A segment is referenced with a single index [for example,
list(3)].

If the bytes of a segment are notl necessarily positive, a
sign option is available. This is done by writing signed or s
as a final argument after the rest of the segment
definition. However, if signed bytes are to be used, an
extra bit must be included. This bit is used to indicate the
sign of the byte. Continuing the example of the segment
named list, this means that the definition should be:

define segment,list=v1,9,s

The size of the bytes in a segment can be from 1 to 59
bits. However, a byte larger than 30 bits occupies a full
word. The bytes of a segment do not cross computer word
boundaries. Thus, if the size of a byte is defined to be 16
bits, byte 4 of the segment starts at the left of the second
variable used.

A segment cannot be stored into by instruections such as
—store~ and —do—-. In general, a segment reference is
illegal anywhere a nonstorable expression such as nl+1 is
illegal, except when assigning a value in a —cale— in-
struetion. Thus, the instruetion.

pack list(1)
is not legal, while the instruction

at list(1)

is legal.

VERTICAL SEGMENTS

A vertical segment defines a segment where consecutive
bytes are in consecutive words.

For example, the instruction

define segment,vertical,list=n1,8,10
defines a vertical segment list such that list(1) occupies
bits 8 through 17 (where bit 1 is the sign bit of the word)

of nl. list(2) occupies bits 8 through 17 of n2, and so on.

Vertical segments execute faster than regular segments.

NONNUMERIC INFORMATION

One of the major uses for manipulation of bytes is working
with nonnumeric information. This is usually information
given by the student as a response. Some nonnumeric
information, however, is obtainable from the system.
Additionally, the author can deal with nonnumeric infor-
mation of his own specification, if desired.

97405100 C

Nonnumeric information is also called alphanumeric infor-
mation, since the data objects of concern are not the
numbers themselves but the alphabetic, numeric, and
special characters that the numbers represent.

In the PLATO system, all alphanumeric information is
represented by codes of six bits per character. Thus, the
character a has code 01, the character g has code 07, and
so on. There is a system-reserved word, called key, that
contains a code for the last key pressed. However, these
key codes are not the same as the actual internal
representation of the keys (called the character codes). A
complete list of the key codes, character codes, and the
characters they represent is given in appendix A.

A capital letter (for example, A) requires two character
codes. The first code is for the shift, and the second code
is the actual character code.

Some instructions, such as the —move- instruction, are
designed for manipulating alphanumeric information. In
addition, the bit operators described in section 7 can be
used for manipulating individual character codes, or
groups of character codes, as well as other bit operations.

ENTERING ALPHANUMERIC INFORMATION

There are two methods for the author to specify alpha-
numeric information in a lesson. The first method is
entering values into a variable which correspond to the
characters desired. This has the disadvantage of being
slow, prone to error, and difficult to interpret when
rereading the lesson. An alternate method is the use of
literals. An example of this use is the instruction:

cale n47 < "funk"

The character string funk is the literal. This instruction
puts the character codes for the literal in variable 47,
right-justified and zero-filled; that is, the k is at the right
end of the computer word, and the left part of the word is
set to zero. Since most instructions work with left-
justified strings, a single quote (apostrophe) stores a
literal left-justified. The previous example would, in this
case, become:

cale nd47 < 'funk'

Literals must be no longer than 10 character codes.
Capital or access characters usually require two or three
character codes. The extra codes are for the shift and
access characters. These extra codes must be counted as
part of the literal. Thus, the literal alpha is 5 character
codes long, while the literal ALPHA is 10 character codes
long.

Each variable, that is, each computer word, can contain
up to 10 character codes. It is good practice when storing
alphanumeric information to have the variable in which
the information is to be stored an integer rather than a
floating-point variable. In the case of storing a literal,
this is necessary for proper execution.

The —pack- instruction is used to store a string of alpha-
numeric characters (usually referred to as simply a
string). 3

The instruction has three arguments. The first argument
is the starting location where the string is to be stored.
The second argument receives the character count of the
string being stored, and the third argument is the string to
be stored. The string is stored left-justified. These
strings can cross word boundaries, unlike literals. The
second argument can be omitted by using successive
commas.

Partial words (that is, words that are not completely filled
by the character string) have the unspecified portion of
the word set to zero.

The —packe— instruction is the conditional form of the
—pack— instruction. Depending on the value of the expres-
sion in the first argument, different strings may be left-
justified —pack—ed into the variable specified. The
—packe— may have up to 100 arguments and may use the
various forms of embedded —show-. The separators
allowed are , ; §{ and end-of-line. The separator which
immediately follows the length variable is the only one
allowed to separate the strings. If the length variable is
not used, successive separators are used, as in:

packe n2-2;n4;; <a,count> ;number;; <ts,n50>

The —itoa— instruction is used to convert integer values to
the character string that the integer represents. The
instruction can have either two or three arguments. In
the two-argument form, the value in the first argument
variable is converted to a string and placed in the variable
name in the second argument. In the three-argument
case, the first two arguments function in the same
manner, and the third argument receives the numeric
character count of the string. In both cases, all argu-
ments must be variable names. Only integer variables
should be used. The converted string is left-justified, with
any excess set to zero.

As an example, the instructions

cale n27 <135
itoa n27,n35

would put the character code for the string 135 in variable
35. Similarly, the instructions

cale n27< 135
itoa n27,n35,n2

would place the same values in variables 27 and 35 and
would put the (numerie) value 3 in variable 2.

The -otoa— and =—htoa- instructions are similar to the
—-itoa—~ instruction except for the third argument. The
—otoa- instruction converts the octal representation of a
number to the alphanumeric representation of the number
by converting each 3-bit octal code to a 6-bit alpha-
numeric code. The value in the first argument variable is
converted to a string and left-justified in the first word of
a 1- or 2-word buffer where the second argument variable
names the first word. The optional third argument is a
variable containing the number of octal digits to be
converted (eounting from the right). If this value is < 10,
the second word in the buffer does not change. The
default for the third argument is 20.

The —otoa- instruction is useful when the —showo~ instruec-

tion cannot be used; for example, when printing blocks of
alphanumeric characters.

8-4

The -htoa- instruction converts the hexadecimal repre-
sentation of a number to the alphanumeric representation
of the number, by converting each 4-bit hexadecimal code
to a 6-bit alphanumeric code. The -htoa- instruction
works exactly like the -otoa— instruction with one
exception; the default for the third argument of the
—htoa- instruction is 15.

LOCATING SPECIFIC INFORMATION

Five instructions that check for the occurrence of an
object are -find-, -findall-, -search-, -finds-, and
—~findsa-. The first two instructions look for an object
which can be any sequence of bits of arbitrary length in a
variable. The -search- instruction looks for an object
which is a character string. These instructions can use
sorted or unsorted lists. The -finds~- and -findsa-—
instructions look for numeric or alphabetic objects in
sorted lists.

The —find- instruction has four to six arguments. The
first four arguments are the same in all cases.

The first argument specifies the variable that contains the
object for which the other computer words are searched.
The second argument specifies the variable at which the
search is to start. The system searches through the
number of variables specified by the third argument. The
number of the word in which the object is found (relative
to the starting variable) is placed in the variable specified
by the fourth argument. If the object is not found, the
value of the variable specified in the fourth argument is
—-1. The optional fifth argument specifies that every nth
variable is to be compared with the object; the argument
is assumed to be 1 if not present. The fifth argument
must be present if the optional sixth argument is used.

The object for which the search is made need not be the
entire variable specified by the first argument. It can be
modified by the optional sixth argument, which is a mask.
It should be specified in octal for eclarity. Thus, if the
object for which the other variables are searched is
contained in the lower seven bits of variable n5, the
instruetion

find n5,start,length,return,1,0177
is equivalent to the instructions:

cale n5 < n5$mask$ol77
find n5,start,length,return

For a specific example, consider the instruction
find n5,n30,10,n17,2,0177

which attempts to find the object (bit pattern) in the
lower seven bits of variable n5 in every second variable of
the 10 variables starting with variable 30 (that is,
variables n30 to n39). If the object is found in variable 30,
the value of variable 17 is 4. The return value is
independent of the value of the optional increment argu-
ment. If the object is not found at all, variable 17 is
assigned the value -1.

The search can be made backwards through the variables

by specifying a negative length. The search then starts at
the high end of the variables to be searched and proceeds

97405100 C

back down the list. However, the variable number
returned if a mateh is found is then the same as in the
forward search. Hence, if in the previous example the
length was -10, the results would be precisely the same,
provided that only one occurrence of the object for which
the search is being made is contained in the variables
searched. If there is more than one occurrence of the
requisite pattern, a forward -find- finds the first in-
stance, and a backward —find- finds the last instance.

The —findall- instruction is similar to the —find- instruc-
tion in that it searches a list of variables to find a speci-
fied object. The —findall- instruction returns a count of
the number of matches, and it then lists the location of
the matches. The increment between variables searched
can be specified to be other than one.

The tag for the -findall- instruction consists of five
required and two optional arguments.

Argument Definition

1 objeet to be found

2 starting variable of list to search

3 length of list

4 Starting return variable (cannot be a
segment)

5 Number of following variables for stor-
age of found locations (0 for count only)

6 Optional variable inerement specifies
only every nth word for comparison
with object (assumed to be 1 if not
given)

7 Optional mask of variable containing

object (full-word search if not given)
For example, instruction
findall n3,n50,n2,return,0

counts the number of times object is matched.

Variable Return
n50 and n53 2
n53 only 1
no mateh 0

In contrast, the instruction
find n3,n50,n2,return

places in return the relative location of the first mateh of
the object.

The locations of matches are specified as the offset of the
location from the starting variable. Therefore, if the
object matches the first variable, the location value
returned is 0. If there is no mateh, the location value
returned is -1.

97405100 C

If the mask argument is used, the increment must be
specified (1 in normal case).

If either the increment or length is 0, no search is per-
formed, a count of 0 is returned, and the first entry of the
following list (if any) is set to -1. If the increment
specified exceeds the length, an execution error occurs.
The search can be made backwards from the last variable
in the list by specifying the increment as negative.

The —findall- instruction does not work with segmented
variables.

When the object to be found is a character string, the
—search— instruction is more efficient than the —find-
instruction. The -search— instruction functions in the
same manner as the —find- instruction, but it does not
allow a mask argument. It does, however, require an
argument specifying the length of the object string. When
the count is specified, —search— operates like a —findall-.

The object string is left-justified in the variable contain-
ing it. The length of the object string can be no longer
than 10 characters.

The search finds the object string regardless of the posi-
tion of the string within a variable or whether the string
crosses word boundaries.

As an example, the instruction
search nl,5,n37,15,1,n90

searches for an occurrence of the first five characters in
variable nl in the set of variables n37 through n51,
starting at the first character position of n37. If an
occurrence is found starting in n40, the variable n90
contains the value 3. If no occurrence is found, n90
contains the value -1. In the example above, however, if
the sixth argument (n90) were followed by the seventh
argument (count), the —search— instruetion would operate
like a ~findall- and give the locations of all occurrences
found.

If the fourth argument is negative, the search is back-
wards, from the end of the list to the beginning of the list.
The absolute value of the fourth argument gives the
number of variables to search. Occurrences are stored in
the order they are encountered, that is, in descending
order.

The -finds—- and -findsa- instructions find objects in
sorted lists. The -finds— instruction works for numeri-
cally sorted lists, and the -findsa- instruction works for
alphabetically sorted lists. Because these instructions do
not check if the list is sorted, the return on an unsorted
list is unpredictable. The —finds~ and -findsa- instrue-
tions have either seven or eight arguments and are similar
to the —sort—~ and —sorta— instructions.

The first argument of their tags is a variable containing
the object to be found. The second argument is the
starting location of the list which is to be searched. This
list can be in student variables n(x), in central memory
variables ne(x), in ECS common, or in ECS storage. This
argument must be followed by a semicolon (;) as a sepa-
rator. The other arguments are separated by commas.

8-5

The third argument specifies the number of entries in the
list. The fourth argument specifies the number of words
per entry. If this argument is 0, it causes an execution
error. The fifth argument gives the first bit of the
numeric field for —finds— (bits 1 through 60) or the first
character location of the character field for —findsa-.
The following argument gives the number of bits or char-
acters in the search field. The numeric field of the
—finds— instruction cannot cross word boundaries, but the
character field of the —findsa— instruction can cross word
boundaries if it doesn't cross into another entry of the list.

The seventh argument is a variable returning the list entry
number of the object that was found. This is unlike the
—find- instruction which returns the CM position of the
found objeet. If —finds— or -findsa~ cannot find the
object, the seventh argument is the negative of the
position where it would be if it had been found. This is
useful for later insertion.

The optional eighth argument, a mask, modifies the object
in the first argument. It can be used to clean up the bits
before and after the bits specified in the fifth and sixth
argument. A mask consisting of all zeros causes a
condense error. For the —findsa— instruction, the mask
can be at most one word, masking only the first word of
the object.

If variables n30 through n33 contain these values:

Variable Contents
n30 1
n3l 4
n32 9
n33 16

the instruection
finds n10,n30;4,1,1,60,n11

returns the following values in nl11:

n1o niL
1 1
5 -3
9 3
25 =H

SORTING ROUTINES

The -sort— and -sorta- instructions are used to sort
numbers and words, respectively, and are very similar.
The -sort~ instruction arranges a list of numbers in
numerical order, from smaller to larger. The -sorta-
instruction arranges a list in alphabetical order according
to the numeric codes for letters. The first argument of
their tags is the location of the list which is to be sorted.
This list can be in student variables n(x) or v(x), in central
memory variables ne(x) or ve(x), in ECS common, or in
ECS storage. The entries in the lists may be one or more
words in length but may not be partial words. The
numeric field in the list may not cross word boundaries.
For example, the sort may be on bits 24 through 34 but
not on bits 54 through 64. The character field in the list
may cross one word boundary.

8-6

The first argument in the tag must be followed by a
semicolon (;) as a separator. The other arguments are
separated by commas. The second argument is the length
of the list, which is the number of entries in the list. The
number of words per entry is specified in the third
argument. This must be an integer. The fourth argument
gives the first bit of the numerie field for —sort- or the
first character location of the character field for —sorta-.
The argument following this gives the number of bits or
characters in the sort field.

The optional sixth argument, a mask, modifies the entry
implied by the fourth and fifth arguments. A mask con-
sisting of all zeros causes a condense error. For the
—sorta— instruction, the mask can be at most one word,
masking only the first word of the object.

An option for paired list sorting allows an author to sort
linked lists. With this option an author may sort a list of
names and automatically sort the corresponding list of
addresses. To do this, the starting location of the
associated list is given in the second line of the tag,
followed by the number of words per entry, separated by a
semicolon. The command field of this line must be blank.

If common or storage variables in ECS are being loaded by
—comload~ or —stoload—, a ~sort— or —sorta— in ECS is not
permissible. An execution error results if this is
attempted.

CHANGING LIST CONTENTS

The —inserts— and —deletes— instructions change the con-
tents of lists. The —inserts— instruction inserts entries
into lists, and the -deletes— instruction deletes entries
from lists. The instructions work with either sorted or
unsorted lists and with either numeric or alphabetic lists.
Their arguments are similar to the argumentis of the
—sort— and ~finds~ instructions.

The first argument of the —inserts— instruction is a vari-
able containing the object to be inserted. This argument
must be a variable and must be the same word size as the
other entries in the list. The second argument is the
starting location of the list. This list can be in student
variables n(x), in central memory variables ne(x), in ECS
common, or in ECS storage. This argument must be
followed by a semicolon (;) as a separator. The other
arguments are separated by commas.

The third argument specifies the number of entries in the
list before the insertion occurs. The fourth argument
specifies the number of words per entry. If this argument
is 0, it causes an execution error. The fifth argument is
the position in the list where the object is to be inserted.
This argument cannot be less than 1 or greater than 1 +
the length of the list (the third argument). This allows the
insertion of an entry at the beginning or at the end of the
list. The optional sixth argument specifies the number of
entries to insert.

If variables n30 through n33 contain these values:

Variable Contents
n30 18
n3l 22
n32 16
n33 19

97405100 C

the instruction
inserts n5,n30;4,1,3,1

with n5=21, returns this list:

Variable Contents
n30 18
n3l 22
n32 21
n33 16
n34 19

The arguments of the —deletes— instruction are the same
as the arguments of the —inserts— instruction except for
the first argument. The —deletes— instruction does not
specify the object to be deleted; it only specifies the list
position of the object. Therefore, the tag of the ~deletes—
instruction starts with the starting location of the list.

The —deletes— instruction deletes an entry, moves the list
together, and fills the last position with zeros. For
example, using the instruection

deletes n30;4,1,3,1

on the original list in the example above, returns this list:

Variable Contents
n30 18
n3l 22
n32 19
n33 0

The —inserts— and —deletes— instructions have options for
associated list insertion and deletion, allowing an author
to insert or to delete entries from the same relative
position in two associated lists. To do this, the in-
structions add another line in their tags. The arguments
in the second line of the —inserts— instruction are the
variable containing the object to be inserted, the starting
location of the associated list, and the number of words
per entry. The arguments in the second line of the
—deletes— instruction are the starting location of the
associated list and the number of words per entry. The
instruetions

inserts n5,n30;10,2,5,4
n7,n100;3

deletes n30;14,2,5,4
n100;3

insert 4 entries in each associated list and then delete
those same entries. The entries are inserted starting in
position 5. The entries in the first list are 2 words long,
and the entries in the second list are 3 words long.

MOVING CHARACTER STRINGS

The -move- instruction copies a string from one location
to another. The first argument gives the variable in which
the string to be moved starts. The second argument gives
the location in that variable of the start of the string
(that is, the appropriate character loeation). The third
and fourth arguments perform the analogous functions for

97405100 C

the destination in the same order. The final argument,
which is optional, gives the length of the character string
to be moved. If not otherwise specified, a single
character is moved.

The character locations (the second and fourth arguments)
can cross word boundaries (that is, be larger than 10) but
must be greater than 0. Hence, the instruction

move nl,13,n123,2,6

moves the six characters starting in character location 3
of n2 (location 13 of nl) to the location beginning with
character position 2 of variable 123.

Up to 1500 characters can be moved in a single ~move-
instruction.

The moved characters are merged with the characters
already in the destination word; that is, characters that
are not overlaid with the moved characters are unaffected
by the instruction. Similarly, the characters at the origi-
nation point are left unchanged. Thus, the -move-
instruetion can be used to create a copy of a character
string without destroying or modifying the original string.

COMPILING CHARACTER STRINGS

The -compute~ instruction can be used to compile a
character string representing an expression. The tag has
four arguments. The first specifies the variable that
receives the value of the expression; the second specifies
the variable in which the expression begins; the third
specifies the length of the string (in character codes); and
the fourth is a variable that receives a pointer to the
compiled code, so the expression need not be recompiled
on reevaluations of the expression. If the value returned
in the pointer is zero, the compiled code was not saved.
The expression must then be recompiled if it is reeval-
uated.

The result of the —compute- instruction is similar to that
of the —store- instruction, but there are differences (refer
to section 11). The —compute- instruction is a regular
instruetion, while the -store- instruction is a judging
instruction. As a judging instruction, the —store- instruc-
tion works only with the student's response, while the
—compute— instruction can compile and evaluate any
character string in the variable bank (but not a student
response, unless the response has been stored previously
with a -storea- instruetion). Finally, the —compute-
instruection saves the compile code so reevaluation can be
done much more rapidly, while the ~store— instruction
does not save the compile code past the time-slice, which
means that it is useable only once.

The student define set must be used so that the string
compiles during execution.

Because the compile code is saved, if the string is changed
and the —compute- instruction is to be reexecuted, the
pointer (argument 4) must be set to zero to ensure proper
recompilation. If the expression is to be reevaluated at a
later time, the pointer should be saved so the expression
need not be recompiled. ’

8-7

String compiling sets system-reserved
varent, and formok.

words opent,

SPECIAL INFORMATION

The —clock- instruction stores the time, to the nearest
second, in the variable named in the tag. The author can
use the —showa- instruction to display the time, which is
in alphanumeric form hr.min.sec, based on the 24-hour
clock. For example, the time stored at 2:15 PM is
14.15.08. The system-reserved word clock contains the
current time in numeric form (in seconds since the PLATO
system was loaded that day) and is accurate to 0.001
second (1 millisecond).

The —date- instruction places the current date, in alpha-
numeric form, in the variable named in the'tag. Ten
characters are used, and the format is month/day/year
with a preceding and a trailing blank. For example, on
June 13, 1975, the instructions

date nl
showa nl

would display:
06/13/75

The —day- instruction gives the number of days since the
starting date and time, as set by the installation. As a
result, the value depends on the installation in which the
system is running. The value is in numerie, not alpha-
numeric form, and gives both the number of whole days,
and as a fractional part, the portion of a day (accurate to
the nearest 0.1 second) since the value was initialized by
the installation. Because of the fractional part, the
variable named in the tag must be a floating-point vari-
able, not an integer variable.

The other special information instructions deal with
information about the student, course, and lessons.

The -name- instruction puts the name under which the
student signed on in two consecutive variables, with the
tag giving the name of the first of these variables. Two
variables are necessary since the student's sign-on name
can be up to 18 characters long. The first 18 characters
of the two variables contain the name, left-justified and
zero-filled.

The —group- instruction performs the equivalent function
for the student's group. The group name, however, must
be no more than eight characters in length, so only one
variable is used. As with the -name- instruction, the
name is left-justified in the variable, with the remainder
set to zero.

The —from~ instruction gives the lesson or lesson and unit
from which the student entered the current lesson.

The unit name used is the name of the last main unit that
was executed in the lesson from which the student
entered. Thus, if an auxiliary unit contained the
—jumpout- instruction from which the student entered the
current lesson, that unit is not given as the unit from
which the student came. Rather, the main unit that used
the auxiliary unit is given (refer to section 10 for a full
discussion of unit types).

8-8

A student entering the lesson immediately after signing on
to the system, rather than entering from another lesson, is
—from- lesson "plato".

A student can be returned to the lesson from which he
entered by use of instruetions such as:

from nl0;lesl;les2
jumpout nl0;x;lesl;les2

If the student came from lesl, he is returned to lesl, if he
came from les2, he is returned to les2, and so on.

The 2-argument form of the —from- instruction places the
name of the lesson and the name of the unit from which
the student entered the current lesson into the variables
specified in the tag. The system-reserved words zfroml
and zfromu also contain the lesson and unit names,
regardless if the lesson executes —from-. Executing
—inhibit from- in the lesson prior to a —jumpout— to
another lesson inhibits both the —from- instruction and the
system-reserved words zfroml and zfromu from containing
information referencing that lesson.

The -lessin— instruction is used to check if the lesson
named in the tag (either in a variable or as a literal) is
credited to the logical site. After the instruction is
executed, the result is given in the system-reserved word
zreturn. The value of zreturn is -1 if the lesson named is
in ECS and is in use by someone in the student's logical
site. The value is 0 otherwise. This allows a check before
a —jumpout- instruction to determine if the lesson to
which the student is sent is already condensed and
available, or if it must be brought into the system and
condensed before the student can execute it.

The —in- instruction is used to indicate whether a partic-
ular station is executing the current lesson. The tag
(variable or expression) for the instruction specifies a
station number (0 to 1023), with the current station
number obtained with the system-reserved word station.

Following execution of the —in- instruction, the system-
reserved word zreturn has one of the following values.

Value Meaning
-2 Station was routed by current lesson
(routers only)
=] Station is in your lesson
0 Station is not in your lesson

The system-reserved word usersin contains the number of
students currently in the lesson. Students routed to
another lesson (via a router lesson) are considered to be in
the router lesson and the current instructional lesson.

RANDOM NUMBERS

There are two methods of accessing random numbers in
the PLATO author language, sampling with replacement
and sampling without replacement.

Actually, the numbers generated in either method are not

truly random but are termed psuedo-random. The
numbers are generated by the computer and cannot be

97405100 C

truly random since, by definition, there is a mechanical
(logical) sequence that generates the numbers. However,
the difference on the practical level is inconsequential.

Sampling with replacement means that the values are
treated as if they were returned to the pool of values
from which they were drawn. Thus, if the value 3 were
returned in one sample, the value 3 could occur again in
another sample. In fact, the value could occur in the next
sample.

Sampling with replacement is done in the author language
with the —randu- instruction. The tag has either one or
two arguments, with the first (or sole) argument being a
variable name. This is the variable in which the value is
stored. It must be a floating-point variable if the one-
argument tag is used.

The one-argument tag returns a fractional number be-
tween 0 and 1. A two-argument tag returns an integer
between 1 and the value of the second argument, inclu-
sive.

Sampling without replacement means that once a value
has occurred, it does not occur again. The author lan-
guage does sampling without replacement on permutations
of integers. The numbers are from 1 to the limit specified
in the —setperm— instruction, inclusive. There are five
instructions dealing with these permutations. They
provide two methods of sampling, using the system
permutation loecations or using locations in the variable
bank specified by the author.

The -setperm— instruction sets up the permutation, with
the first (or only) argument specifying the limit. If the
single-argument tag is used, the system location for the
permutation is used. This consists of two locations of
three words each. The first location is the working copy
of the permutation. The second copy is not changed by
ordinary sampling and can be used to regenerate the
permutation. The first word of each location contains the
number of elements remaining. Each bit of the other two
words signals a single element. Thus, permutations with
limits up to and including 120 can use the system
locations.

If the two-argument form of the —setperm-— instruction is
used, the second argument specifies a starting location of
contiguous words in the user bank variables that are used
for holding the permutation. These words contain one
word (the first) that specifies the number of elements
remaining in the permutation and one word for every 60
elements in the permutation. If the number of elements is
not an even multiple of 60, the number of words required
is the same as for the next larger multiple of 60. Thus, a
permutation with 50 elements requires two words, a
permutation of 60 elements requires two words, and a
permutation of 70 elements requires three words (the
same as a permutlation of 120 elements). The words
following the first word contain flag bits that indicate
whether an element has been sampled. The bit for each
element is 1 if the element is still available for sampling
and 0 if the element is not available. Since the location is
specified, more than one permutation can be set up, so
sampling from different permutations can be done. A
second copy is not generated; if the author desires such a
copy, he must generate it himself. The —block— instruc-
tion (described later in this section) can be used to create
the second copy.

97405100 C

The -randp- instruction is used to sample the permutation
previously specified. Again, two forms are available, with
the single-argument form referring to the system location
for a permutation and the two-argument form referring to
a permutation located in the bank of variables.

The first (or only) argument specifies the variable in
which the element obtained is to be stored. If the one-
argument tag is used, this is obtained from system per-
mutation location using the first copy of the permutation
only. If the two-argument tag is used, the permutation
starting in the user variable specified in the second
argument is used to obtain the element. In either case,
the corresponding bit is set to zero, so the element is not
selected again. If the system permutation location is
used, only the first copy of the permutation is affected.
The second system copy is left unchanged for purposes of
regenerating the permutation. When the permutation is
exhausted, a value of 0 is returned.

The -remove- instruction is used to modify the second
system copy. The element contained in the variable
specified in the first argument is removed from the per-
mutation.

If the system location is used, a single argument is suf-
ficient. If a second copy of a permutation in an author-
specified location is to be modified, the second argument
gives the starting location in the student variables of the
second copy. The -remove- instruction differs from the
—randp- instruction in that it simply removes a specified
element from consideration for selection, while the
-randp— instruction selects a new element and then
eliminates it from further consideration.

The —modperm- instruction is used only with the system
location for a permutation and has a blank tag. The
effect is to replace the first copy of the permutation
(accessed and modified by the —randp— instruetion) with
the second copy (which can be modified by the ~-remove-
instruetion).

An example of the advantage of having two copies of the
permutation is when the author wishes to give a number of
problems in random order, requiring the student to retry
the problems initially answered incorrectly. The problems
are selected using the -randp- instruction from the first
copy of the permutation. If the student answers correct-
ly, the corresponding value is deleted from the second
copy with the —-remove~ instruction. When the first copy
is empty (that is, all problems have been tried), the
—modperm- instruction moves the second copy, containing
only the numbers of problems originally answered incor-
rectly, into the first copy so that the —randp- instruction
can be used to reselect from among these numbers for
representing the problems to the student, again in random
order.

The —seed- instruction is used with —randu— and —randp—
to specify the location of the variable used in beginning
the generation of a series of random numbers. If there is
no -seed- instruction or if the —seed- instruction has no
tag, the system seed is used. Pseudo-random numbers are
generated by the system using an algorithm which needs
an initial number, a seed, to begin. Thus, it is possible to
repeat a sequence of pseudo-random numbers using the
—seed— instruction; however, the algorithm used by the
system is subject to change, which will also change the
sequence of random numbers initiated by a specific seed.

8-9

BRANCHING AND LOOPING
WITHIN A UNIT

It is possible to do branching and looping using units or
—entry- instructions as the point to which the lesson
branches; however, such construction is elumsy and slow,
and it can interfere with the screen display unless the
author takes repetitive and tedious precautions. Four
types of instructions are available for branches and loops
within a unit. These are the —branch- instruction, the —if-
structure, the -—doto- instruction, and the -loop—
structure.

BRANCHING WITHIN A -CALC- INSTRUCTION

Branching can be done within a single —cale— instruction
with a multiple line tag (that is, a continued —cale-). A
line to go to must be specified and identified by a name in
the command field. To distinguish the name from
ordinary author language instructions, the name must
begin with a numeric rather than an alphabetic character.

The branching is done with the —branch- instruction. This
instruction is not necessarily in normal form but ean have
the command portion begin in the first character space of
the tag field in a line of the —cale— instruction. The
command portion consists of the character-string branch.
After the command portion, a space should be left, and
the label (name) of the line to which the branch is to take
place is then given. Alternatively, a conditional form is
available, operating in the normal manner except for the
relocation of the fields.

As an example of the use of the -branch- instruction,
consider the problem of computing the factorial of a
number. The instructions

cale v2<v3<l

10 V2< v2+1
branch v2> v1,20,x
V3 < v3*y2
branch 10

20

compute the factorial of the contents of vl and place the
result in v3.

This can also be written as:

cale v2<v3i<i

10 v2< v2+l

branch v2>v1,20,x
v3< v3*v2

branch 10

20

The x in the tag part of the —branch- instruection in the
example causes processing to fall through the branch and
continue executing the —cale— instruction as though the
-branch— had not been encountered. A tag of q in a
—branch— causes all calculation to halt when the con-
ditional selects the q. Processing then continues at the
first instruction following the —cale— instruction contain-
ing the -branch-, or processing halts and waits for a
control key, if the -cale— instruction was the last
instruetion in a main unit.

8-10

A —cale— instruction with a branch containing a q in the
tag portion should not be followed by another ~cale—
instruction without other intervening instructions. If the
q is selected, a —cale~ instruction immediately following
is ignored. Therefore, the second —cale- should be part of
the first, with an appropriate branching. For example, the
instructions

cale

branch v2>vl1,q,20
20 S

cale v2< vl
should be replaced by the single instruetion:

cale

branch v2>v1,30,20
20

30 v2< vl

If a —branch- instruetion is not part of a continued -cale—,
it begins a —cale— sequence. It can occur in the command
field whether it is part of a continued —cale— or not.

The -branch— instruction can be used to branch around
non—cale— instructions within a single unit (refer to see-
tion 10).

-IF- STRUCTURE

The -if- structure is useful when the author wants the
lesson to do different actions based on a logical or arith-
metlic expression. Four instructions form the -if-
structure: -if—, —elseif-, —else—, and —endif-, in that
order. The —if- and —endif- instructions are required; the
—elseif— and —else— instructions are optional. The —if-—
structure usually executes faster than an equivalent
—braneh- structure.

The tags of the —if- and —elseif- instructions are logical
or arithmetic expressions. Logical expressions have two
values: true (-1) and false (0). Arithmetie expressions are
evaluated and rounded before testing. If the expression is
less than 0, it takes the value true. If the expression is
greater than or equal to C, it takes the value false. When
the tag of an —-if- or —elseif- instruction is evaluated as
true, the author language instructions immediately follow-
ing it are executed up to the next -elseif- or —else—
instruction. Execution then goes directly to the instrue-
tion following the -endif- instruction, leaving the —if-
structure. The —else— instruction always has the value
true.

The —-if-, —elseif-, and —else- instructions must be fol-
lowed by at least one line of indented author language
instructions. The indented instructions can be any regular
instructions. They cannot be judging instructions. To
indent, press ACCESS period (.), (or type a period, then

97405100 C

TAB) and start the command of the instruction in the
ninth space. The tag of the instruction starts in the
sixteenth space. The period followed by 7 spaces is an
implied then. (If the tag is true, then the next instruction
is executed.) A simple —if— structure is

if nl<n2

. box 1244;1550;5
else

5 box 2240;2550;4
endif

In this example, the first box is drawn when n1<n2 and the
second box is drawn when n1>n2.

An —if- structure can be nested within another —if- strue-
ture. A nested —if- can be inserted anywhere in an outer
—if—; however, the entire nested —if— must be between the
two outer —if— statements. Each nested instruction has a
period followed by 7 spaces for each level of indenting.
There is no limit to the number of levels of indenting as
long as each instruction fits on one line.

The following is an example of a nested —if- structure.

if nl<10

3 box 1244;1550;5
elseif nl<20

. box 2240;2550;4
e $$if 10<n1<20

% if nl=15

» . erase 20
k else

. . box 2344;2446
. endif

else

o box 0235;0550;3
¥ $$if n1>20

endif

An —if- structure can be nested within a —doto- loop or a
—loop— structure, or it can nest a —doto— loop or a —loop—
structure within itself.

-DOTO- INSTRUCTION

The —doto- instruction allows an author to have an itera-
tive loop within the same unit. The —doto— loop extends
from the —doto- to the statement label named in the tag
of the —doto- instruction.

The format of the —doto- instruetion is analogous to the
format of the iterative —do-.

doto 4finish,n1 < 1,12,3
L S S

t— increment for

index variable

final value of index
variable

—initial value of index
variable

“index variable

-statement label

97405100 C

The statement label must begin with a number and contain
seven or less characters (no shift, access, or fonts). The
initial and final values of the index variable may be
constants, variables, or expressions. The increment for
the index variable may be omitted if it equals 1. A
negative increment for the index variable is permitted.

For example, the following instructions

doto 3finish,n1 < 1,12,3
area <area+nl
cire < circ+4*nl

3finish $$must have a blank tag

at 1513

write the sum of the area is <ts,area»
the sum of the circumferences is
<s,cire >

perform the following.

The —doto— loop is executed four times with nl equal to 1,
4, 7, and 10. When the current value of the index variable
(plus the increment) is greater than the final value of the
index variable, as specified in the tag of the —doto-
instruection, the loop is completed and the instruetion
following the statement label is executed. In this
example, the —at 1513~ instruction is executed. After the
loop, the value of the index variable is undefined.

When using the —doto— instruction, the following con-
siderations should be noted.

® A —doto- in the command field initiates a —cale—
function; if the —doto- begins in the tag field, it
continues a —cale-.

® Non -cale- instructions are allowed within a
—doto— loop.

® The statement label ending the -doto— may not
contain a —cale- expression.

® If a —-dolo— statement continues a —ecale— in-
struection, it can be moved to the tag field. When
the —doto— is in the tag field, at least one space
must be left between the doto and the statement
label named in the tag of the —doto- instruction.

® The —doto- instruction can be used only in the
iterative form. The -branch— instruction should
be used for conditional and unconditional
branches.

® The statement label of the —doto— loop must be
in the same unit as the —doto— statement and
must not be referenced by any other branching
instructions in that unit. The same statement
label can be used in different units because the
—doto— (or —branch-) loops operate only within
units.

® An -entry- instruction within a —doto- loop is
illegal. .

It is also possible to have —doto— loops nested within a
—doto- loop. For example, the following instructions

doto lentry,nl< 1,7
n3< 1
inner doto 1fact,n2< 1,n1
outer | —doto— n3< n3*n2
—doto— | loop 1fact
loop at n1*100+2550
showt nl1,3.0
at where+5
showt n3,4.0
lentry

construet a table of numbers and their factorials. The
outer loop is executed seven times, and the inner loop is
executed nl times (nl is the outer loop index and goes
from 1 to 7) as part of each outer loop.

The following list of factorials (N!) is produced from the
above —doto- loops.

N N!

1

2

6

24
120
720
5040

N O U W N

When nesting —doto— loops, the inner loop cannot extend
beyond the statement label of the outer loop.

The -branch~ instruction can be used in a —doto- loop to:
® Branch within loops
® Branch to the end of —doto— loops
® Branch out of a —doto— loop
® Fall through a ~branch— with an x
® Branch to the next non—cale— instruetion with q

It is possible to branch into a —doto— loop; however, this
should not be done because the current value of the index
variable may contain an unexpected value, resulting in an
unexpected number of iterations of the —doto— loop. If
the value of the index variable is assigned prior to the
entry into the loop, the results are predictable.

LOOPING

The —loop— structure allows an author to have a loop based
on logical or arithmetic expressions. Four instructions
form the —loop— structure: -loop—, -reloop—, —outloop—,
and —endloop—. The -loop— and —endloop— instruetions are
required; the -reloop— and —outloop— instructions are
optional. Unlike the —doto- instruction, the =-loop-
instruction does not initiate or continue a —cale— instrue-
tion. The -loop- structure usually executes faster than an
equivalent -branch~ structure.

The tags of the —loop—, —reloop—, and —outloop— instrue-
tions are logical or arithmetic expressions. Refer to the
—if— structure for comments on logical and arithmetic
expressions. The tag of the —loop- instruction is evalu-
ated at the beginning of each pass through the loop. When

e 8-12

the tag of the —loop- instruction is evaluated as true, the
author language instructions immediately following it are
executed. If it is evaluated as false, execution resumes
following the -endloop— instruction. When execution
reaches the —endloop- instruction from within the loop,
the loop is executed again beginning at the -loop-
instruction.

The author language instructions within the loop must be
indented. These instructions can be any regular in-
structions. They cannot be judging instructions. Refer to
the —if- structure for directions on indenting.

The following loop moves data from array temp to array
final as long as nl is less than 20. The loop begins with the
—loop— instruction and ends with the -endloop— in-
struction.

define array,final(20)=n40
array,temp(20)=n100
cale nl<o0

n2<1
loop nl < 20
s cale nl < nl+l
§ final(n2) < temp(n1)
n2 < n2+1

endloop

The —reloop— instruction allows execution to go back to
the beginning of the loop without going all the way to the
—endloop— instruction. If the tag of the -reloop-
instruction is true, execution goes back to the -loop-
instruction; otherwise, it continues with the next line.
Using the same array definitions and adding the -reloop-
instruction, the previous loop now also deletes entries
whieh are 0.

cale nl<o0
n2<1

loop n2 < 20

: cale nl < nl+1

reloop temp(nl)=0

* $$do not move a zero entry

cale final(n2) < temp(n1)

s n2 < n2+1

endloop

The —outloop— instruction allows execution to jump out of
the loop. If the tag of the —outloop- instruction is true,
execution goes to the instruetion following the —endloop—
instruction; otherwise, it continues with the next line.
Using the same array definitions and adding the —outloop—
instruction, the previous loop now also sums the entries
and stops moving the data if the total would exceed 100.

cale nl<0
n2<1
n3 <0

loop nl < 20

. cale nl < nl+l

reloop temp(n1)=0

outloop (n3+temp(nl)) > 100

% $$exit if sum > 100
cale final(n2) < temp(nl)

: n3 < n3+temp(nl)

% $$add to sum

. n2 < n2+1

endloop

97405100 C

The -reloop— and —outloop— instructions can appear any-
where in a loop, and each can appear more than once in
the same loop.

A loop can be nested anywhere within another loop; how-
ever, the entire nested loop must be between the two
outer —loop— instructions. Each nested instruction has a
period followed by seven spaces for each level of
indenting. There is no limit to the number of levels of
indenting as long as each instruction fits on one line. A
loop can be nested within an —if— structure or a —doto—
loop, or it can nest an —if— structure or a —doto— loop
within itself.

-CALCS- INSTRUCTION

There are two instructions that perform calculations in a
conditional form. The —calec— instruction functions in the
manner normal to conditional instructions and is the
counterpart of the —writee— instruction. Both of them are
dealt with in section 12. The other conditional calculation
instruction is the —cales— instruction.

The —cales— instruction is used to perform one of a num-
ber of variable assignments, depending on the value of an
expression. The variable to which a value is to be
assigned must be the same in all cases. Other than the
fact that it gives an assignment of value based on the
expression, it functions in the same manner as other
conditional instructions. Up to 61 specific values can be
entered in the -cales—- and —calce— instructions. An
example of the use of the —cales— instruection is:

cales 3+filk,grun < 17 ,filkz,grun/z

COMMON

Common is a type of variable in which users can store
information. In contrast to the 150 student variables,
common stores information which is common to all users
of a lesson. The system keeps only one copy of the
common variables for each lesson, regardless of the
number of users executing the lesson concurrently. Sev-
eral users can read from or can write to the same common
locations, allowing one user to pass information to another
user when both are executing the lesson. When a lesson is
executing, a copy of that lesson is in ECS. Also, any
common that the lesson accesses is in ECS.

TYPES OF COMMON, -COMMON -,
AND -COMMONX-

Two types of common are available, temporary common
and permanent common.

Temporary common is in ECS while the lesson is in exe-
cution, but it is not saved on disk between sessions. This
type of common is specified by the —common~- instruction
with a one-argument tag. The tag indicates the number of
variables that are to be used as temporary common. As
an example, the instruction

common 257

97405100 C

specifies that common is a block of 257 variables, num-
bered from 1 to 257. The tag may be a constant or an
expression but not a variable.

Permanent common is on disk and is saved between ses-
sions. The system creates an ECS copy of the common
whenever it executes a lesson which uses the common.
This type of common is useful for storing statisties about
the lesson, such as the number of times the lesson has
been executed or for functioning as an extension to the
standard variable bank through author manipulation of
variable assignments and use of the —comload- instrue-
tion.

Permanent common is formed by specifying the space for
the variables as a portion of a lesson. The lesson
containing the common need not be the same lesson as
that using the common, providing the two lessons have the
same common access code. For each set of 320 or fewer
words, a new block is specified. This block should be
placed at the end of the lesson. The block should be
specified as a common block upon block ereation, and all
of the common blocks should be given the same name.

As an example of the creation of permanent common,
consider the following example: lesson vrap requires 410
words of permanent common. However, all possible
blocks of the lesson are in use. If lesson vlunge is avail-
able to the author and has the same common access code
as lesson vrap, two common blocks (since the number of
variables necessary is greater than a single block, but
smaller than two blocks) can be created at the end of
lesson vlunge, and both blocks are given the name
scrounge. The required permanent common can then be
accessed by lesson vrap with the instruction:

common vlunge,scrounge,410

As implied by the example, permanent common is ac-
cessed by means of a —common- instruction with a three-
argument or four-argument tag. The first argument is the
lesson containing the common blocks. If the referenced
common blocks are in the lesson that uses them, this
argument is optional. In either case, a comma must
appear before the second argument. The second argument
is the name of the common blocks, and the third is the
number of words contained in the common. As with the
one-argument tag, the number of variables (indicated by
the third argument) may be a constant or an expression,
but not a variable. All lessons which reference the same
common must have the same length of common (third
argument) defined in their —common-s. The —common-—
instruction allows a maximum of 8000 words for actual
use.

There are four additional options with the —common—
instruction. If one of these options is desired, it is speci-
fied as a fourth argument to the —common- instruction.
The first option is specified by having the last argument
consist of the two words no load. This prevents normal
loading and unloading of common, so the —comload—
instruction must be used by the author to specify these
actions. If the last argument consists of the two words
read only, changes to common are not allowed. If the last
argument is the four characters ronl, both the no-load and
the read-only options are used. The fourth option is
checkpt which returns permanent common to disk approxi-
mately every 8 minutes. The checkpt option ensures
system recovery after a system failure. (Refer also to
the —comret- instruetion.)

Only one —common- instruection is permitted in a lesson.
The IEU is a convenient place to put this nonexecutable
instruetion.

The —commonx- instruction is an executable form of the
—common- instruction. The —commonx— instruction allows
a lesson to determine what common it needs after it
condenses, using information that is not available until the
lesson begins execution.

The —commonx- instruction can have up to five argu-
ments. The first argument is the lesson containing the
common blocks. If the referenced common blocks are in
the lesson that uses them, this argument is optional. In
either case, a comma must appear before the second
argument. The second argument is the name of the
common blocks, and the third is the number of variables
contained in the common.

The fourth argument is the codeword of the common. If
this codeword is present, the system compares it with the
common codeword of the lesson that contains the com-
mon. If this codeword is not present, the system
compares the common codeword of the lesson containing
the ~commonx~- instruction with the common codeword of
the lesson that contains the common. Unlike some
instruetions, if the codeword is present but does not
mateh the common codeword of the lesson that contains
the common, the system does not check the common
codewords of the lessons against each other.

The fifth argument can be one of four options which are
the same as the four options in the —common- instruction.
This argument can also be blank.

The —commonx~— instruction makes heavy demands on the
system, and therefore, is restricted as follows:

® A user can execule one —commonx— instruction
per lesson.

® After a user executles three —commonx— in-
struetions (resulting from jumpouts), the system
limits execution of the —commonx— instruetion to
one per minute.

® When a student leaves a router lesson, the router
releases common declared by a —commonx—
instruction. This means it is not possible to
allow the reading of common variables with the
—allow— instruetion in a router lesson.

After execution of the —commonx- instruection, the sys-
tem-reserved word zreturn is set to the following values:

Value Meaning
=] Common ok
0 Common not found
1 Code words do not mateh
2 Already have a common
3 Common in ECS has different
length
4 Bad length

® 8-14

USING COMMON

The author usually does not reference common locations
directly. Instead, the author accesses a portion of the
common (up to 1500 words) using the ne and ve variables
and the —comload- instruction. The —comload- instruction
transfers a portion of ECS common to the ne and ve
variables at the beginning of each time-slice. At the end
of the time-slice the contents are transferred back from
the ne and ve variables to the ECS common. Therefore,
the author can refer to ne and ve variables without regard
to when time-slices occur during lesson execution.

The —comload- instruction has three arguments in its tag.
The first is the starting position in ne or ve variables; the
second is the starting position of the block of variables in
the ECS copy of the entire set of common variables; and
the third specifies the number of variables in the block to
be loaded and unloaded. As an example, the instruction

comload ne53,40,10

transfers the contents of the 10 variables starting with
position 40 in the ECS copy of common variables to the 10
variables starting with ne or ve variable 53 at the
beginning of each time-slice. At the end of each time-
slice, the process is reversed. This occurs for each stu-
dent, individually, although all students share the same
variables.

If a —comload- instruction with a blank tag is encountered
during the lesson, the common variables are unloaded as if
the time-slice has expired. @ No further loading or
unloading of common variables is done until or unless
another —comload- instruction is encountered.

If a second —comload- instruction is encountered while the
first is still in effect, the variables specified in the first
—comload- are unloaded before the second —comload-
instruection is executed.

An error is generated if an attempt is made to —comload—
into the user variable bank, as in the following instruction.

comload v14,12,10

The —comload— instruction can also be used to set aside
specific portions of common for individual students, while
allowing the author to use simple common variable
references. This is possible because the second argument
in the tag of the —comload- instruction can be an ex-
pression. In particular, it can be an expression based on a
student identification. Thus, if ID represents the student
identification, the instruction

comload nel,500+200*ID,200

effectively gives each student his own copy of 200 vari-
ables, located in the common variable area, which is as
fully individualized as the standard variable bank (provid-
ing, of course, that no other -comload- instructions or
references to these variables are made). For example, at
the same time, the author can deal with variable nel
rather than having to use the cumbersome expression
ne(500+200*ID).

Up to three separate automatic loads and unloads can be

done for each time-slice by using a continued —comload—
instruction. Each tag line consists of one normal

97405100 C

—comload- tag. The command comload appears only on
the first line. An example is the following instruction.

nc24,10,5
ne30,50,12
nec48,293,300

comload

This is not the same as:

comload nc24,10,5
comload ne30,50,12
comload nc48,293,300

These three instructions (not a single instruction) perform
three loads and two unloads. Only the third —comload- is
in effect thereafter. In the first example, all three blocks
are loaded and unloaded each time-slice.

If the common has a length of 1500 words or less, the
author does not need to include a —comload- instruction in
the lesson, because the system inserts a default
—comload- at the beginning of the lesson. For example, if
a lesson has a common named mycom of length 650, the
following —comload— is automatically in effect at the
beginning of the lesson, although it does not appear in the
lesson source code.
comload ncl,1,650

The author can prevent the execution of this default
—comload—- with the no load option of the —common—
instruction.

The —comret- instruction copies the current permanent
common from ECS to disk. Execution of the —comret—
instruction has no effect on the ECS copy of common;
therefore, —comret— cannot delete common from ECS.
The —comret— instruction has a blank tag. After exe-
cution of the —comret- instruction, the system-reserved
word zreturn is set to the following values:

Value Meaning
=1 Common returned
0 No common found
1 Unable to return common

In a —finish- unit, the execution of a —comret— instruction
counts as one of the 10 disk accesses allowed.

The —comrel~ instruction is not needed when the number
of users of common drops to zero, because the system
automatically copies common from ECS to disk at that
time. The -comret- instruction is useful only when the
author wants to preserve ECS common on disk in its state
at the moment —comret- is executed.

-RESERVE- AND -RELEASE- INSTRUCTIONS

The -reserve— and -release— instructions make the pro-
tection of common and dataset records easier. Both
instructions have keyword tags of 'common', 'dataset’, and
records'.

97405100 C

The -reserve— instruction sets a flag to indicate that this
terminal is using common or dataset records. The flag is
not set if common or dataset records are already
-reserve—d by another terminal. The system-reserved
word zreturn is set to -1 if the -reserve common- and
—-reserve dataset- instructions have executed successfully.

The -release- instruction clears the flag set by the
-reserve— instruction. The flag does not clear if this
terminal does not have common or dataset records
-reserve—d. The system-reserved word zreturn is set to
-1 if the —reserve- instruction has executed successfully.

-ABORT- INSTRUCTION

The —abort- instruction is available in three forms.

abort common
abort record
abort autocheck

Up to three keyword tags also may be used with a single
—abort- instruction.
abort common,record,autocheck

The —abort common- instruction causes permanent com-
mon not to be returned to the disk (updated) when the last
user leaves the student mode. The permanent common, in
effect, is transformed into a temporary common. The
lesson(s) containing common continue to funection as
before, but all recent changes to common are never
returned to the disk.

Student records are not returned to the disk when the
student signs off as a result of an —abort record- instruc-
tion. However, the CPU time, the number of sessions, and
so on, are updated at sign-off time. This option requires
more access time, and for that reason, should not be used
when CPU time is at a premium.

Autocheckpoint (automatice return of records) is included
as a function of the —abort record- instruction.

The automatic return of records does not occur when the
—abort autocheck—- instruction is in effect.

An execution error occurs if a user is not registered as a
student and the -abort record- or -—abort autocheck-
instruetion is in effect.

STORAGE

Storage is essentially a variety of temporary common, in
that the contents of storage cannot be preserved between
sessions unless some special action is taken (refer to
datasets). An author cannot reference storage locations
directly.

-STORAGE- INSTRUCTION

The -storage- instruction, which creates storage, is
comparable to the —common- instruction used to create

temporary common. An example is the following in-
struction.

storage 400

This instruetion creates 400 storage variables for use by
the lesson. Unlike common variables where there is only
one copy of the variables per lesson, the storage is
specific to the user in the same manner as the student
variables. As a result, some caution should be exercised
in the amount of storage used. The —storage— instruction
in the example uses an extra 400 words of ECS for each
person executing the lesson. There is a limit on the
amount of ECS a logical site is allowed, so storage can use
up the ECS allotment rather quickly.

The maximum length of storage available to a user (that
is, the maximum size that can be specified in a —storage—
instruection) is 1500 words.

The —storage—- instruction can only be executed once in a
lesson, much like the ~common- instruction. Therefore, it
is not possible to destroy the storage if it is no longer
needed.

-STOLOAD- INSTRUCTION

In order to use storage, there must be a mechanism for
bringing the storage variables to a location where they
can be referenced. This is done with the -stoload- in-
struetion.

The -stoload- instruction is similar to the —comload—
instruction, but it references storage locations rather than
locations in the ECS copy of common. The format of the
instruetion is precisely the same, and the —stoload- also
brings the storage into the ne and ve variables. As a
result, if both —stoload- and —comload- instructions are
used in a lesson, the author must make sure that they do
not load the variable values into the same nc and ve
variables. If storage and common locations overlap in the
nc and ve variables, the storage variables overwrite the
common variables, because —comload— executes before
—stoload- at the beginning of each timeslice.

All of the capabilities and restrictions of the —comload—
apply to the —stoload-. This includes the behavior when a
second —stoload- is executed and the fact that a —stoload—
with no tag cancels loading and unloading of variables.

DATASET FILES

A means for saving information, other than permanent
common, is available to the author. This method uses
another type of file as an auxiliary to the lesson. This
auxiliary file is a dataset.

A dataset is not the same as a student datafile. A student
datafile stores lesson execution data. The data is
collected automatically by the PLATO system, with the
author simply specifying the data to collect. A dataset is
under complete control of the author (with the exeception
of the first block of the file). It is more like permanent
common than a student datafile.

It is not possible to execute a dataset. The file is used
entirely to store information, and as such, is not con-
sidered to contain author language instructions.

All transfer of information to or from a dataset is done by
records; that is, a minimum of one record of data can be
transferred, and the data transferred is an integer number
of contiguous records. The number of records contained
in a dataset depends on the number of words per record
and the length of the dataset. The number of words per
record is determined when the dataset is created and must
be between 64 and 512 words, with the default as 320
words.

A maximum of 10 dataset accesses, including the
—datasetl— instruction may be executed in a finish unit.
Because of code word checks, the —dataset— instruction
counts as two accesses.

-DATASET- INSTRUCTION

Before a lesson can use a datasetl, the system must be
informed of the name of the dataset. The —dataset-
instruction gives the name to the.system. The —dataset—
instruction performs a funection similar to that performed
by the -readset- instruction (refer to section 13) execept
that a dataset, rather than a student datafile, is the file
processed.

The tag of the —dataset— instruction may have three
arguments. The first argument must be the name of the
dataset. The second argument (optional) is the type of
access desired, read/write or read only. The third
argument (also optional) is the code word. If the code
word is specified, it must match the dataset common code
word for read/write access, or it must match the dataset
inspect code word for read only access. If these code
words do not match, the system-reserved word zreturn is
set to 1 and the dataset is not attached. If no code word
is specified, the code words of the dataset are compared
to the code words of the lesson in which the —dataset—
instruction occurs. If the common code words match,
either read/write or read only access is granted, and if
only the inspect code words matech, read only access is
granted, if requested. If these code words do not match,
the system-reserved word zreturn is set to 1 and the
dataset is not attached.

The -—dataset— instruction sets system-reserved word
zreturn to -1 if the link is successful. The author can
check zreturn to ensure that the file has been located.

Since —dataset- is an executable instruction, the link to
the named dataset is effective until another —dataset—
instruction is executed. For operations such as copying
from one dataset to another, the author can keep records
reserved in two datasets at the same time: the current
active dataset and an inactive dataset. If a second
—dataset— instruction is executed while a previous dataset
is still attached, the first dataset becomes inactive with
all its record reservations preserved. The author can
reactivate the first dataset with its record reservations
intact by reexecuting the -dataset— instruction. The
system can hold only one dataset in the inactive state. If
a third —dataset— instruction is executed, the link to the
current inactive dataset is closed and all its reservations
are released. A —dataset- instruction with a blank tag

97405100 C

closes the current dataset without preserving its record
reservations and without affecting the current inactive
dataset, if any. A SHIFT STOP exit or a —jumpoutl- re-
leases all datasets unless an —inhibit dropset- is in effect.

-DATAIN- INSTRUCTION

Data is transferred from the dataset to storage, common,
or student variables with the —datain— instruction. The
instruction has two or three arguments in the tag.

The first argument is the number of the first record to be
transferred. The second argument gives the location in
storage, ECS common, or student variables to which the
record is to be transferred. For example, the fourth word
of storage is formatted as storage,4 or s,4. The 90th word
of ECS common is formatted as common,90 or ¢,90.
Student variables are formatted as n15 or n24. CM nc and
ve variables eannot be used.

The optional third argument gives the number of records
to be transferred. The total size of the records to be
transferred cannot exceed the amount of space available
following the beginning location given by the second
argument. Hence, if the size of storage is 500 words, two
320-word records cannot be read in with a single instrue-
tion, regardless of the starting position of the first record.
Similarly, if the size of common is 1000 words and the
first record begins at location 100, the maximum number
of 320-word records that can be transferred is two, rather
than the three that can be transferred if the starting
location in storage is word 1. If a third argument is not
specified, a value of 1 is assumed.

As an example of the —datain- instruction, the instruction
datain 5;n2;2

reads records 5 and 6 of the dataset into student vari-
ables, beginning with variable 2.

After a —datain— instruction, the system-reserved word
zreturn is set to the following values.

Value Meaning
-1 Transfer successful
0 System pack error
1 System file error
2 Record numbers are out of range
3 Addresses (storage, common, or student

variable) are out of range

6 System disk error

-DATAOQUT- INSTRUCTION

Data is sent to the dataset from storage, ECS common, or
student variables with the —dataout- instruction. The
format of the instruction is precisely the same as the
format of the —datain- instruction; however, instead of
reading in the data from the dataset, the data is written
out to the dataset.

97405100 C

As an example, the instruction
dataout 2;s,30;1

transfers the contents of storage locations 30 to (30 plus
record length) to the second record of the dataset file.

The values for system-reserved word zreturn are the same
as the —datain— instruction with these additions.

e Meaning
4 No write permission
5 Record is —reserve—d or dataset is being
edited

NAMESET FILES

A nameset is a dataset that contains sets of records.
Each set has an alphanumeric name and some records for
storing data. Namesets are useful for the storage and
retrieval of easily-categorized data because each set of
records can be one set of information.

Namesets are easier to use than datasets for categorizing
information because all the instructions dealing with
records reference the records relative to the name of the
set. The namesetl keeps track of all its record pointers so
that it automatically finds information in the nameset
when given a name and a record number.

STRUCTURE

A nameset contains sets of names and records. Each set
has an alphanumeric name of up to 30 characters. After
the name, each set has a computer word of associated
information. In the first 15 bits of this word, the nameset
stores the number of records associated with the name. In
the last 24 bits, the user can store any alphanumeric
information associated with the name. In addition to the
name and the associated information, each set has a
variable number of records. Figure 8-1 shows a nameset
with three names (three sets).

aleph beth daleth
associated associated associated
information information information
[[[
record 1 record 1 record 1
[|
record 2 record 2
|
record 3

Figure 8-1. Example of a Nameset

A nameset has a directory that stores the names and the
associated information of each set. The system reads this
directory into ECS during execution of the —dataset—
instruction referencing the nameset and keeps the diree-
tory in ECS throughout the use of the nameset. The
system accesses information in the directory quickly and
efficiently.

At creation of a nameset, the author must specify the
parameters of the nameset. The author can set the maxi-
mum length of the names in a nameset between 10 and 30
characters. (The actual length can be less.) The record
size can be between 64 and 512 words. The number of
parts in a nameset can be between 1 and 63. (The number
of words per part is 7 X 320.) The author also must
specify the maximum number of names in a dataset. More
names means fewer records are available for each name;
conversely, fewer names means more records are avail-
able for each name.

DATASET INSTRUCTIONS USED
WITH NAMESETS

Before using a nameset, the author must establish a
connection to the nameset with the —dataset— instruction.
The tag of the —dataset- instruction is the name of the
namesel. Aftler execution of the —datasel— instruection,
the system-reserved word zreturn is set to the same
values that are used for connections with a dataset.
These values are:

Value Meaning
=1 Connection made
0 No such nameset
1 - Codewords do not match
2 File directory being edited
>3 System disk errors

The system-reserved word znscpn tells if the current
connection is with a nameset (value is nonzero) or with a
dataset (value is 0).

After the —dataset— instruction connects a nameset, the
lesson can manipulate the records in a nameset and the
information in the records. The —datain— instruction reads
data from the nameset, and the —dataoul— instruction
writes data into the namesetl. These instructions function
for namesets in the same way as for datasets except that
references to namesel records are relative to the current
named set of records. For example:

dataset hebrewset
cale n20 < 'daleth'
setname n20

datain 1;c,100;2

The —datasel- instruction connects nameset hebrewset.
The -setname- instruction accesses the set of records
named daleth, and the —datain— instruction reads records 1
and 2 of set daleth into common, beginning in location
100.

Refer to the —dataset—, —datain—, and —dataout— instruec-
tions for more information.

NAMESET INSTRUCTIONS

The author language has eight nameset instructions:
—setname-—, —getname—, —addname-, —delname-—,
—-rename—, -names—, -addrecs-, and -delrecs-—. The
—setname- instruction seleets a named set of records from
a nameset for further reference. It must precede
—datain— and -dataout- instructions referencing the
nameset. After executing a —setname- instruection which
has a variable tag storing the name of a set, such as
—setname n20-, the system-reserved word zreturn is set
to:

Value Meaning
~1 Name matches exactly
0 Name matches as far as possible
with an existing name; set to refer-
ence it
1 Name matches as far as possible

with more than one existing name;
set to reference the first one

2 Name does not match any existing
name; reference cleared

3 No nameset in effect

If the list of names in the nameset is

aleph
beth
daleth
he
heth

then the instruction
setname n20

with n20 storing the following names, returns the follow-
ing values of zreturn and produces these actions:

n20 zreturn Result

aleph -1 References aleph
dal 0 References daleth
h 1 References he
mem 2 Clears reference

When the -setname- tag is nextname, the instruction
selects the next name in alphabetic order. If no name is
currently in effeet, the —setname nextname- instruction
selects the first name in the list. The system-reserved
word zreturn is set to -1 upon selection of a new name and
to 2 when the last name has already been selected.

When the -setname- tag is backname, the instruction
selects the preceding name in alphabetic order. If no
name is currently in effect, the —setname backname-—
instruction seleets the last name in the list. The system-
reserved word zreturn is set to -1 upon selection of a new
name and to 2 when the first name has already been
selected.

97405100 C

A -setname- instruction with a blank tag clears the

current name and sets system-reserved word zreturn to -1.

The author can select the names in a nameset in
alphabetical or reverse alphabetical order by using
-setname— with a blank tag and the nextname and
backname tags.

Because the system allows sequential selection and partial
matches, the author might not always know what name is
in effect. To find out, the author can use the —getname—
instruction. This returns the current name in 1, 2, or 3
full words, depending on the size of the name. Any
additional part of the last word after the end of the name
is zero-filled. Segmented variables are not allowed. If
the —getname~- instruction has two arguments in its tag, it
returns the 24 bits of associated information in the
rightmost bits of another word, clearing the leftmost bits.

The —addname- instruction adds a new name and a new set
of records to a namesel. After a successful addition, the
name added is the current name, eliminating the need for
a —setname- instruction. After an —addname- instruction,
the system-reserved word zreturn is set to the following
values.

Value Meaning
-1 Completed ok

0 No nameset in effect

1 No write access

2 New name duplicates an existing
name

3 Number of records out of range

4 Nameset reserved; additions not
permitted

The —delname- instruction deletes the current name and
its records from a nameset. After a —delname- in-
struction, the system-reserved word zreturn is set to the
following values.

Value Meaning
-1 Completed ok
0 No nameset in effect
1 No write access
2 No name selected
4 Records reserved; deletions not
permitted

The —rename- instruction changes the name of the current
name. It can also change the 24 bits of associated in-
formation. If the new name is the same as the current
name, then only the associated information changes.
After a -rename- instruction, the system-reserved word
zreturn is set to the following values.

97405100 C

Value Meaning

=L Completed ok
0 No nameset in effect
1 No write access
2 No name selected
3 New name duplicates an existing
name
4 Records reserved in current name

To get a set of names from the current list in the
nameset, the author can use the —names— instruction.
This returns each name in 1, 2, or 3 full words, depending
on the size of the names. Following each name is a word
containing its associated information. The first 15 bits
contain the number of records associated with the name
and the last 24 bits contain the associated information. A
mask or a defined vertical segment allows easy reading of
the last 24 bits. After a —names- instruction, the system-
reserved word zreturn is set to the following values.

Value Meaning
=1 Completed ok
0 No nameset in effect
1 Invalid starting position

The —addrees— and —delrees— instructions add records to
and delete records from the current named set of records.
For example:

cale n35 < 'aleph’
n36 < 'heth’

setname n35

delrecs 1,2

setname n36

addreecs 1

This deletes the first two records from the set named
aleph and adds one record after the last record in the set
named heth. The addition or deletion of records from a
name does not affect the content of the records.
Therefore, the record added to heth might be one of the
records deleted from aleph.

After an —addrecs- instruction, the system-reserved word
zreturn is set to the following values.

Value Meaning
-1 Completed ok
0 No nameset in effect
1 No write access
2 No name selected
3 Record number not in name
4 Records reserved; additions not
permitted
5 Not enough records available

8-19 e

After a —delrees— instruction, the system-reserved word
zreturn is set to the following values.

Value Meaning
=1 Completed ok
0 No nameset in effect
1 No write access
2 No name selected
3 Record number not in name
4 Records reserved; deletions not
permitted

RESERVING NAMESETS

When changing information in a nameset record, the
author can reserve and release records to prevent access
to them by other users. Reserving a record or a nameset
allows you to access it, bul prevents access by other
users. The -reserve— and -release— instructions reserve
and release records relative to the current named set of
records. For example:

dataset hebrewset
cale n53 < 'heth’
setname n53

reserve records,l,4

. reserves the first 4 records of the set named heth in the
nameset hebrewset.

reserve dataset

reserves all the records in the nameset hebrewset, and it
prevents the addition of new names or new records to the
end of existing names by another user. Refer to the
-reserve— and -release— instructions for more informa-
tion.

For operations such as copying from one nameset to
another, the author can keep records reserved in two
namesets at the same time: the current active nameset
and an inactive nameset. If a second —dataset— instrue-
tion is executed while a previous nameset is still attached,
the first nameset becomes inactive with all its record
reservations preserved. The author can reactivate the
first nameset with its record reservations intact by re-
executing the —dataset— instruction. The system can hold
only one nameset in the inactive state. If a third
—dataset— instruction is executed, the link to the current
inactive nameset is closed and all its reservations are

e 8-20

released. A —dataset- instruction with a blank tag closes
the current nameset without preserving its record reser-
vations and without affecting the current inactive
nameset, if any. A SHIFT STOP exit or a —jumpout—
releases all namesetls unless an —inhibit dropset— is in
effect.

MOVING BLOCKS OF DATA

When a number of variables continuous in the student
variables or nc and ve variables are to be copied to an-
other contiguous location within the student or ne and ve
variables, the —block—- instruction can be used.

The —bloek- instruction has three arguments in the tag.
The first argument is the variable in the bank at which the
block of values to be transferred begins. The second
argument gives the first variable in the block of variables
to which the values are to be transferred. The third
argument gives the number of variables (or words) that
are to be transferred. Thus, the instruction

block v22,v50,7

transfers the contents of variables v22 to v28 into vari-
ables v50 to v56.

The transfer of values is nondestructive; that is, the
values of the variables from which the values are trans-
ferred are left unchanged. Thus, the transfer is actually
the creation of a copy rather than the removal of the
values from the point or origin and placement of the
values in a different location. An attempt to transfer
more than 1500 variables results in an execution error.

The —transfr— instruction is a more general form of the
—block— instruction. The arguments are the same as in the
—block— instruction but are separated by semicolons and
can have a more general form.

The first two arguments, specifying the origin and desti-
nation of the block of variables moved, can have any of
several forms. If the form is nx or vx (where x is a
number), the location is in the student variables. If the
form is nex or vex, the location is in central memory. If
the form is nrx or vrx, the location is in the user router
variables. If the form is common,x or ¢,x, the location is
in the copy of lesson common in ECS. Finally, if the form
is either storage,x or s,x, the location is in the storage for
the lesson (set by a preceding -storage— instruction).
Thus, the —transfr— instruction allows transfer of variable
values between any of the variables available to the
lesson.

The CM variables which are transferred must be previous-

ly loaded and unloaded by a —comload- or a —stoload—
instruction.

97405100 C

DISPLAYS

The PLATO author language includes a large number of
instructions for creating displays. The author can, if
desired, create pictures, show slides, create animated
sequences, or simply display text.

COARSE AND FINE GRIDS

Before material, in whatever form, can be displayed on
the screen, it is necessary to specify just where on the
screen it should appear. There are two ways of specifying
a scereen position, coarse grid and fine grid. Coarse grid is
usually sufficient for text display; in fact, it is designed
specifically for text display. Fine grid is used to give
more accurate positioning of display material.

Coarse grid divides the screen into 32 lines of 64 char-
acters per line. The lines are numbered from top to
bottom, beginning from 1. The character positions on
each line are numbered from 1 to 64, running from left to
right.

A coarse grid specification is a three- or four-digit num-
ber, with the last two digits specifying the character
position (or column) and the first one or two digits speci-
fying the line number. Thus, the position 214 indicates
the second line and the fourteenth character position on
that line. Similarly, 3210 specifies the bottom line of the
screen, tenth character position (column) from the left of
the screen.

The fine grid is somewhat different. The sereen is divided
into a 512-by-512 matrix, with each point pair repre-
senting a single dot on the screen. The numbers run from
0 to 511, both horizontally and vertically. The horizontal
numbering is from left to right, as with the coarse grid,
but vertical numbering is from bottom to top rather than
from top to bottom.

A grid position is indicated by giving first the horizontal
position and then the vertical position (the opposite of the
coarse grid), with the positions separated by a comma.
Thus, 234,175 indicates the 235th dot from the left of the
screen al the 176th line above the bottom of the screen
(the extra number is due to numbering starting at 0 rather
than 1).

Some instructions permit more than one position to be
specified in the tag. When this is done, the position
numbers are separated by semicolons, as in:

draw 1230;702;153,254;1230

There are three system-reserved words that give the
current screen position (cursor location). The reserved
word where gives the coarse-grid screen position, and the
reserved words wherex and wherey give the fine—grid
horizontal and vertical position, respectively. The values
of these system-reserved words are automatically updated
by the system upon completion of a text display instrue-
tion. T

If it is desired to convert coarse grid to fine grid, or vice
versa, the formulas are

finex =800 frac (coarse/100)-8

finey =512-16 int (coarse/100)

coarse = 100 (1+int((511-finey)/16)) + int (finex/8)+1
where

int(x) = the largest integer whose value is < x

frae(x) = x-int(x)

For the current screen position, wherex, wherey, and
where can be substituted for finex, finey, and coarse,
respectively. The functions frac(x) and int(x) are the
system functions.

BASIC DISPLAY PRESENTATION

What an author most commonly wants to place on a stu-
dent's sereen is text. The —write— instruection is used for
this purpose.

The —write~ instruction prints whatever is contained in
the tag of the instruction on the screen. The tag can be
more than one line long, provided that the lines after the
first line are in the tag field (that is, they do not occupy
the command field). For example, the instruction

write The purple unicorn
rides high on a sea of
tuna fish.

displays the text just as it appears, including placing the
text on three separate lines.

The —writec- instruction is a conditional instruction which
acts as a conditional —write— instruction (refer to section
12).

1hThe system-reserved words where, wherex, and wherey are not always properly updated, unless special action is taken.

For example, the instructions

cale ni < 'xxxx'
showa nl,6

cause the system-reserved words to be set as if six, rather than four, characters were displayed. Proper update to the
reserved words is made if a —return— instruction is executed immediately following the —showa— instruction.

97405100 B

9-1

Unless otherwise specified, the first writing in a unit
begins al coarse-grid position 101 (upper-left corner of
the sereen), and subsequent writing starts wherever the
last writing ended. To specify a specific position on the
screen where text is to be written, the —at— instruection is
used.

The —at- instruction has as its tag a single screen position,
which can be in either coarse or fine grid. When used for
a —write— instruction (or some other display instructions
discussed later), it specifies the position at which text
presentation begins. It also sets a margin, so subsequent
lines of text start at the same character position.

Because the tag refers to a screen position, the tag must
be a permissible sereen position. Therefore, if an expres-
sion or variable is used in the tag, the value of the ex-
pression or variable cannot, for example, be less than 101
(for a coarse-grid position). Similarly, a coarse-grid
position such as 375 is not permitted.

The example of the —write— instruction previously given
would appear in the upper-left corner of the screen,
beginning at coarse-grid position 101, if it were the first
such instruetion in a unit and no —at- instruction was used.
However, the instructions

at 1520

write The purple unicorn
rides high on a sea of
tuna fish.

would position the text near the center of the sereen, with
all three lines starting at character position 20.

Screen locations for displaying text, data, and drawings
may also be set with an —atnm- instruction. This instrue-
tion works like the —at- instruction except that it does not
change the left margin for continued lines of the display.
Continued lines are aligned with the margin previously set
by an —at-. If no —at— has been specified, the default for
the margin is character position 1 (left edge of the
sereen).

DISPLAYING VARIABLES

The -show- instruction displays the value of the first
argument in a form dependent upon the contents of the
next two optional arguments. For example, the instrue-
tion

show vl,3

displays the contents of v1. If the value to be displayed
has more than seven digits before the decimal point or is
less than 10-4, it is displayed in exponential format. If
the value is less than 10-9, a zero value is displayed. If a
third argument (specifying minimum absolute value to be
displayed) is used, a zero value is displayed if vl is less
than the absolute value.

The —showt- instruection displays the numerie value of a
variable in tabular form. The first argument of the tag
gives the variable to be displayed, and the second gives
the number of digits displayed. This argument is an
integer or a floating-point number of the form Lr or 1,r
where 1 specifies the number of digits to the left of the
decimal point, and r specifies the number of digits to the

right of the decimal point. If r equals 0 or is omitted, it
specifies an integer number. If r is less than or equal to 9,
either Lr or L,r is allowed. If r is greater than 9 or if 1and
r are variables rather than constants, then only lr is
allowed. If the value of the variable cannot be displayed
in the specified length, the display is a line of asterisks.
As an example, if the value of variable check is 625.38
and the instruction is

showt check,2,5
the display is:

% ok ok ok ok ok ok ok

The existence of more digits beyond those specified to the
right of the decimal point in the case of a floating-point
number does not cause asterisks to be displayed. The
value is rounded to the number of digits required.

If the second argument of the tag is omitted, the default
number of decimal digits, in the case of an integer vari-
able, is assumed to be 8. The default format, in the case
of a floating-point variable, is assumed to be 4,3.

The —showo— instruction displays the value of the variable
in octal. The first argument of the tag specifies the
variable, as with the —showt- instruction, and the second
specifies the number of octal digits that are to be
displayed. If the second argument is omitled, a default
value of 21 is assumed. Since one computer word is
precisely 20 octal digits on the PLATO system, this allows
an extra space, so tabulated results can be displayed
without the necessity of worrying about space to be left
between entries.

When the lesson author cares only about the most sig-
nificant digits of a value, the —showz— instruction is most
appropriate. This instruction has either one or two
arguments. The first argument gives the value the
instruction displays. The second argument specifies the
number of significant figures of the value of interest to
the author. If the second argument is omitted or zero, a
default of four significant figures is used.

However, the number of significant figures desired and
the number of digits displayed are not necessarily the
same. The reason is the space required to display a value.
If the value is 193752.675, displaying only the four most
significant figures would give

1.937X 10°

where the scientific (exponential) notation is used to give
the magnitude of the number. The use of the period,
multiplicative X, and 105, however, require five char-
acter spaces in addition to the significant figures. Since
the full integer value uses only seven characters, as
opposed to the nine characters used with the exponential
format, it is shorter to display the full integer value,
rounded if necessary, as in:

193753
The -showz— instruction checks whether full integer or
exponential format is shorter and uses the shorter of the

two formats.

When exponential form is desired, the —showe- instruection
is used. As with the other forms of —show-, the first

97405100 C

argument gives the variable name and the second argu-
ment gives the number of digits. The third argument
indicates the format. Standard format (for example,
4.00X103) is indicated by a 0 or by omitting the argu-
ment, and ** format (4.00%10**3) is indicated by a non-
zero third argument. The width of the display field (that
is, the width of the line used in the display on the screen)
depends on the size of the exponent. A leading blank or a
negative (-) is automatically provided to assist in the
creation of the tabular displays. If the exponent power is
zero, 100 is not displayed. If the second argument is
omitted, four digits are displayed.

If the data in the student variable is in alphanumeric
form, it can be displayed by using the —showa- instruction.
In this case, the second argument of the tag gives the
number of characters to be displayed. If omitted, the
second argument is assumed to be 10. The instruction
assumes that the information is packed left (left-justified)
in the variable. This is the case if it was stored with a
—pack— or -storea— instruction. Otherwise, it may be
necessary to shift the data to the left of the word using
the bit operator cls (refer to section 7).

Character spaces containing (numeric) zeros are ignored
when displaying the variable, but the system-reserved
word where is updated as if the characters were displayed.
Thus, the instructions

cale nl<¢ 'xxx'
n2 < 'abe’
at 1510
showa nl,20
display
xxxabe

beginning at screen location 1510. After display, the
system-reserved word where has a value of 1530, although
the actual current screen position is 1516. The system
updates where after each line of writing and at the end of
a timeslice. It does not update where after each —showa-.

The —text- instruction displays the contents of an alpha-
numeric buffer, automatically executing carriage returns
at the end of each line of text. The —text— instruction
displays lines of text faster than a loop of -at— and
—showa—- instructions can. CDC software identifies an
end-of-line by two 6-bit zero codes at the end of the
computer word. The —text- instruction converts these
lowest 12 bits of zero into a carriage return and displays
the entire buffer, ignoring any extra zero codes. If the
variables nl through n10 contain the following codes

Variable Octal code
nl 24101123551411160555
n2 03171624011116230000
n3 34430000000000000000
n4 03100122010324052200
n5 00000000000000000000
né 03170405235502050617
n7 22055524100555061122
n8 23245534355502112423
n9 00000000000000000000
nl0 17065532052217570000
97405100 C

the instructions

at 1010
text nl,10

display the following with the t from the word this at
screen position 1010.

this line contains

18

character

codes before the first 12 bits
of zero.

The —hidden— instruction displays the contents of a vari-
able, showing all the internal 6-bit codes, including the
characters that normally are not displayed (hidden char-
acters). Following are the symbols used to designate
these characters.

Symbol Code Character
o o000 Zero
055 Blank

7] 066 Subseript

n 067 Superseript

L 3 070 Shift

¢ 071 Carriage return
- 074 Backspace
@ 075 Font

a 076 Access

ERASING

It is sometimes desirable to erase text that has already
been displayed. Entering a new main unit erases the
entire sereen, unless the author specifies otherwise with
the —inhibit- instruection (refer to section 10), but entering
a new unit is not necessarily the way the author wants to
construet the lesson. Additionally, it may be that only
part of the displayed text is to be erased. This type of
erasing is done through use of the —erase— instruction.

There are three forms of the —erase- instruction; the form
used depends on the type of erasing desired.

If the tag is blank or negative, the —erase— instruction

erases the entire terminal screen. If the tag is zero, the

instruection is ignored.

If the instruction tag is a positive value n, the instruction
erase n

erases n characters, starting at the current cursor posi-

tion. A character is an 8-by-16 dot area. If the value n is
not an integer, it is rounded before erasing is done.

9-3

An —erase- instruction with a tag of two arguments speci-
fies a block of character positions to be erased. The first
argument specifies the number of character positions on
each line that are to be erased (starting from the current
sereen position), and the second argument specifies the
number of lines that are to have these characters erased.

For example, the instructions

at 1520
erase 20,5

erase character positions 20 through 39 of lines 15 through
19. The two arguments are separated by commas. The
one- and two-argument —erase— instructions do not affeect
the system-reserved word wherc.

The —erase— instruction with the tag abort erases the
entire screen and aborts any pending output in the buffer.

To erase a complicated display after a response is judged
no, an —eraseu- instruction is used. The unit named in the
tag of this instruction is executed (and remains in effect
for the entire main unit) when any of the following keys
are pressed after an ok or no judgment.

ERASE

SHIFT ERASE
NEXT (not after ok)
EDIT

SHIFT EDIT

Default erasing (occurs when one of the above keys is
pressed after a no judgment) is done in addition to the
eraseu unit. If a —write— instruction with a blank tag is
the last writing done after a no judgment, defaull erasing
is turned off.

If the tag for the —eraseu— instruection is blank or q, pre-
vious —eraseu- instructions are cleared.

LARGE AND ANGLED WRITING

It is sometimes desirable to use writing that is larger than
normal to emphasize a point, to give a heading, and so on.
This can be accomplished by means of the -size—
instruetion.

The form of the lag is a number or expression specifying
the size of the writing. Normal writing is called size 0,
instead of 1. Oversize writing is slower than normal
writing, so whenever oversize writing has been used, a
—size 0— instruction should be used to return to normal
size. An example is:

unit header

size 3 $$writing is 3 times normal size
at 1010

write PSYCHOHISTORY

size 0

Any writing (assuming no further modifications of size)
that is done after these instructions is normal in size and
speed. If a —size 1- instead of a —size 0— instruction were
used, writing would be at normal size but at the slower
speed of large size writing.

9-4

The -size— instruction can have either one or two argu-
ments. If one argument is used, it is the size of both the
horizontal and the vertical directions. If two arguments
are used, the first gives the size in the horizontal
direction and the second gives the size in the vertical
direction. Since the -size— instruction is affected by the
-rotate— instruction, the terms horizontal and vertical
refer to the directions when the -rotate— instruction is
not used.

The instructions which are affected by —size- are —write—,
-writec~, -rat—-, -rdraw-, -recircle-, -rbox-, -rvector—,
—labelx—, —labely—, —graph—, and -erase-.

The system-reserved words size, sizex, and sizey are set
to the current values of size specified in the one- and
two-argument tags, respectively.

The -size— instruection without a tag is equivalent to the
—size 0~ instruetion.

It is also possible to write at an angle to the normal,
horizontal presentation. This is specified by the -rotate—
instruction. The tag gives the angle, in degrees, through
which the line of text is to be rotated. Normal (size 0)
text is unaffected by the —rotate- instruetion, so if it is
desired to write normal-sized text at an angle, the
—size—1- instruction must be used prior to writing.

The zero angle is the point direetly to the right of the
center of the circle, with the angle increasing in a
counterclockwise direction. This is standard mathemat-
ical notation.

Alternate character sets cannot be used when either the
-size— or —rotate— instruction is in effeect.

GRAPHICS INSTRUCTIONS

There are seven basic instructions for creating drawn
displays on the student's screen.

The —dotl- instruction places a single dot on the student's
screen. The tag of the instruction can be either a coarse-
or a fine-grid location. A fine-grid location specifies the
dot to be placed explicitly. If a coarse-grid location is
used, the dot is placed in the lower-left corner of the
character block specified. It is possible to draw entire
figures using the —dot- instruction; however, it is not
recommended. The procedure is slow, difficult to read in
the lesson code, and liable to error. A single, isolated dot
on the screen will not always light, especially when the
sereen is blank.

For drawing figures, the —draw- instruction should be
used. The tag of this instruction specifies a number of
points, with separate points being separated by a semi-
colon. The point specifications can be either coarse or
fine grid, and the two types can be mixed in a single
instruction. The skip option is also available.

For example, the instruction

draw 2015;100,200;1500;skip;205;2015
draws a line from the lower-left corner of character
position 2015 (coarse-grid) to dot position 100,200 (fine-

grid), and from there to the lower-left corner of character
position 1500 (coarse-grid, again). The cursor then skips

97405100 C

to coarse-grid position 205 without drawing a line and
draws a line from character position 205 to character
position 2015.

The system-reserved words where, wherex, and wherey
are not updated until the end of execution of a —draw-
instruction. Hence, an instruction such as

draw 131;1015;where+504
is not the same as:
draw 131;1015;1015+504

Drawing starting from the current cursor position (at the
beginning of execution of a —draw— instruection) can be
done by having a semicolon as the first character of the
tag. The line is then drawn from the current character
position to the location specified in the next argument.
An example of this usage is

draw ;where-6

This instruction underlines the last six character positions.
If the —draw- instruction is given with a single argument,
it functions as a —dot— instruction. The single argument is
evaluated to give the point.

Each argument of a —draw- instruction can be an ex-
pression rather than a number or variable name. A maxi-
mum of 63 arguments can be used in a single —draw—
instruction.

For drawing circles, there are two instruetions, —circle—
and -circleb-. The —circle— instruction draws a solid
circle or are, while the —circleb- instruction draws a
broken circle or arc.

Both instructions have the same form of tag. The tag can
have either one or three arguments. The first argument
specifies the radius of the circle in fine—grid dots. If the
three-argument tag is used, the second and third argu-
ments specify the beginning and ending angles, re-
spectively, for drawing an are. The angles are in degrees
rather than radians, and the degree sign is not used.

The zero angle is the point directly to the right of the
center of the circle, with the angle increasing in a coun-
terclockwise direction. This is standard mathematical
notation.

The center of the cirele or arc is set with a preceding
—at— or —atnm-. If these instructions are not present, the
center is set at the current value of wherex,wherey. The
edge of the screen provides automatic windowing.

The —-window—- instruction limits the display area of the
screen for display of anything except size 0 text display.
The effect is to show only that part of the display that
lies within the bounds of the window. Thus, a —circle—
instruction executed after a —window- instruction shows
the entire circle only if it lies completely within the
window. Otherwise, it shows only a part of the circle, or
if the circle lies entirely outside the window, nothing at
all.

The —window— instruetion limits the display area within a
rectangle specified by opposite corners at the two

97405100 C

locations given. If only one location is given, the window
has opposite corners at 0,0 and the specified location. If
the first location is omitted but the semicolon precedes
the second location, the opposite corners are at the
current screen position and the specified location.

The window specified is active until superceded by an-
other —window~ specification or until turned off by a
—window~ instruction with a blank tag. Entering a new
unit does not turn off the window, just as it does not turn
off the size specification.

The instruetions affected by the —window— instruction are
all of the display instructions except text display of size
0, the —dot- instruction, and author-designed characters.
This includes the graphing instructions discussed later in
this section.

The -box— instruction draws a rectangular box with oppo-
site corners at the two locations given. If only one loca-
tion is given, the box is drawn with opposite corners at 0,0
and the specified location. If the first location is omitted
but the semicolon precedes the second location, the
opposite corners are at the current sereen position and the
specified location. Wherex and wherey are set to the last
point drawn. An optional third argument specifies the
thickness of the border of the box.

The —vector— instruction draws a vector with the tail at
the first location specified and the head at the second
location specified. If only one location is specified, the
tail is drawn at 0,0. If the first location is omitted but
the first character in the tag is a semicolon, the tail is at
the current sereen position. If the size of the head is
specified, the full three-argument form of the instruction
must be used. If the vector is smaller than the size of the
head, the arrowhead is automatically reduced in size. At
some angles the arrowheads may look unusual because of
the dot patterns that form the arrowheads. Often, this
can be corrected by use of a different arrowhead size.

RELOCATABLE INSTRUCTIONS

Certain display instructions are relocatable with respeect
to a specified origin. With this feature, a set of instrue-
tions may display a drawing in one section of the screen at
the beginning of a lesson, and then using the same set of
instructions, display the drawing in another section of the
screen later in the lesson. The relocatable origin is
specified with the -rorigin~ instruction. It serves as a
reference point for the relocatable instructions. An
-rorigin—- setting remains in effect until another -rorigin—~
instruction is executed. If no —rorigin— is specified when
entering a lesson, it is set to 0,0. Fine-grid coordinates
are preferable over coarse-grid coordinates.

The relocatable instruetions whiech -rorigin- affect are
-rat-, -ratnm-, -rdot-, -rdraw-, -rcircle—, —-rbox—, and
—rvector—. These instructions work in the same manner as
the corresponding instructions obtained by deleting the
beginning r's, except that all are affected by the -size—
and -rotate- instruections. For example, figures made
with -rdraw— may be sized larger or smaller or may be
rotated. If the figure is rotated, the size may be 0.

9-5

The -rat— instruction relocates screen positions relative
to —rorigin—. When the —ratnm- instruction is used, con-
tinued lines are aligned with a margin previously set by
—-rat-. The default margin, in this case, is set by
—rorigin—.

The -reirele- instruetion draws an ellipse if the values of
sizex and sizey are different. The —rbox— instruction uses
the current -rorigin— as a corner when only one location
has been specified. The -rvector— instruction uses the
current -rorigin— as the tail position if only one location
has been given.

MODE CONTROL

The PLATO terminal operates in three modes under
control of the author. The standard mode is the write
mode. This is the mode the terminal is in when the stu-
dent signs on. In this mode, new text is written over the
character spaces without any display that might be there
being affected. Hence, if text was already present, the
new text is written without the original text being erased.

The rewrite mode erases a character space and then
writes the new text in the space. This is useful for pre-
senting new text on a portion of the sereen without dis-
turbing the rest of the screen. However, care should be
exercised if this mode is used for line displays using such
instructions as —draw— and —dot-. Writing must be size 0
in rewrite mode.

A method of erasing presented texts with a minimum
effect on any background displays is through the use of
the erase mode. In this mode, anything written or drawn
is actually erased, but only those sereen dots that would,
in a different mode, be lighted upon execution are
cleared. By changing the erase mode and reexecuting
display instructions (whether graphics or text), only the
dots of a character are affected. Thus, background dis-
plays are less disturbed than they would be by the
—mode rewrite— instruction.

The mode of the terminal is set by the author using the
—-mode— instruction. The three keyword tags permissible
are wrile, rewrite, and erase for the write, rewrite, and
erase modes, respectively. A conditional form of the
—mode- instruction is available (refer 1o section 12).

The —color— instruction may be used in much the same
manner as the -mode- instruetion for writing and erasing.
In fact, the —color orange- instruection is equivalent to the
—mode write— instruction, and the —color black- instruc-
tion is equivalent to the -mode erase— instruction.

EMBEDDING

For simplicity of presentation and manipulation of ma-
terial, several of the display instructions can be embedded
in a —write- (or —writec-) instruction. As an example, the
instruction

write The value of the expression is
<t, result».

places the value of variable result on the screen in the
appropriate place.

The left delimiter of an embedded instruction is obtained
by pressing ACCESS 0, and the right delimiter by pressing
ACCESS 1. A list of the instructions that can be
embedded, together with their embedded form, is given in
table 9-1. The al, a2, and so on, are the arguments of the
tags. Some of these are optional for certain instructions.
The standard default options for nonspecified parameters
are in effect, except that no leading blank is supplied for
the embedded form of the —showo- instruction.

The embedded —mode- instructions are rather different
from the normal -mode- instructions. Rather than
switeching the mode of the terminal unconditionally, the
embedded —mode- is in effect only until the end of the
character text string that follows. The end of the —write—
instruction or another embedded instruction of any kind
returns the terminal to the mode the terminal was in prior
to the beginning of the —write- instruetion.

TIMING

To control the timing of displays, the author language
provides two instructions, —catchup~ and —delay-.

TABLE 9-1. EMBEDDED INSTRUCTIONS

Embedded Form Comments

Normal Form
show al,a2,a3 <s,al,a2,a3>»
showt al,a2,a3 <t,al,a2,a3>
showz al,a2 <z,al,a2>
showo al,a2 <o0,al,a2»
showe al,a2 <e,al,a2>
showa al,a2 <a,al,a2>
at al,a2 <at,al,a2»
atnm al,a2 <atnm,al,a2>»
size al <size,al>
rotate al <rotate,al>
mode write <m,w>
mode erase <m,e>
mode rewrite <m,r >

No trailing zero
Tabular - fixed field
No leading blanks
Octal number
Exponential format
Character strings
Writing position
Writing position
Size of writing
Angle of writing
Write mode

Erase mode
Rewrite mode

9-6

97405100 C

TABLE 9-2. RELATIVE TIMING EXAMPLE

Instruection t x? tf t
unit drill .000 ok
randu nl .001 b
randu n2,50 .002 49
size 2 .003 i
at 510 .004 g
write Add these numbers .005 .005
at 1010 .015 i
showt n1,3 .016 2.006
at 1208 .018 -
write + .019 2.087
at 1210 .020 0e
showt n2,3 .021 2.017
draw ;1210 .024 2.127
catchup .025 g
arrow 1410 2.129 2.129
time 5 2.130 e

t1x is an approximate time of execution of the instruction relative to the time the unit was entered (in seconds).
t t1 is the approximate time the event indicated by the instruction would be observed to begin relative to the time the unit
was entered (in seconds).

The —catchup— instruction has a blank tag. It is used to
coordinate the timing of execution of a lesson and
presentation of material. The computer, in general,
processes instructions at a mueh faster rate than material
can be displayed on the screen. The —catchup- instruction
causes the lesson to stop execution until all material sent
to the terminal for display has been displayed. An
example of this usage is given in table 9-2. (The times,
tx and t, vary depending on system load and other
factors.)

The —delay- instruction can be used to give precise speci-
fication of output delays. The tag is a number less than or
equal to 1. The tag specifies the time delay in seconds (1
second maximum). This instruction is especially useful for
blinking or animations.

CONSTRUCTING ALTERNATE CHARACTERS

Besides the 126 characters that the author language
provides for all lessons, there are 126 characters that can
be programmed by the author. For special characters in a
lesson that use few such characters, the —char— instrue-
tion can be used. If many characters are used, it is
possible and usually desirable to create an alternate
character set. This is the case when teaching a language
that does not use the Roman alphabet, such as Russian, or
when complex but repetitious displays of small size are
used.

Each character possesses an area 8 fine-grid dots wide and
16 dots high. The dots that are lighted when the
character is plotted determines the appearance of the
character.

97405100 C

The —char— instruction specifies a slot in the alternate
character memory and the dots within the 8 by 16 pattern
that are to be lighted. The slot can be specified either by
the actual number or by a defined constant (refer to
section 7) as the first argument in the tag. The in-
struction clears the alternate-character-set flag that
indicates which alternate character set is loaded in the
terminal, unless prevented by the -inhibit charclear—
instruction (refer to section 10).

The specification of the character is usually done in the
tag field of the two lines following the —char— command.
The tag is nine arguments which can be entered in a single
line if space permits. However, the multiple line tag is
clearer and easier to edit in case of a change. Four of the
columns of the character space are specified in each of
these rows. The specification is done by identifying the
positions in the column that are to be lighted with a set
bit, that is, a value of 1 wherever the dot is to be lighted.
For this reason, it is usually best (but not necessary) to
give the specifications in octal, which has an easily
interpreted relationship to binary (refer to appendix C).
The specifications for each column are separated by
commas. An example of a character definition is given in
figure 9-1.

When the character has been defined, the —plot- instruc-
tion is used to show the character on the screen. The tag
of the instruction is the name (or memory slot number) of
the character to be plotted. The -plot- instruction
displays only one character but otherwise functions as a
—write— instruetion funections. That is, the cursor must be
placed prior to plotting, with the default of plotting the
character in either location 101 (if no display instructions
were previously executed in the unit) or just after the last

9=1

v

QOO0QOOOQQQ FRSTDIGIT IN (0CTAL) TAG
oooooooq
O@0O0OOOOQQ | SECOND DIGIT IN TAG
00200000
0020000
OQOO0OO® O OO THIRD DIGIT IN TAG
90000000
O00000eOo

O0QQ Q@@ @} FOURTHDIGIT IN TAG
00020000
O0O0O@OQQ} FIFTHDIGITIN TAG
000000C0)
Oo222e

OO000000 OJ' SIXTH DIGIT IN TAG

OOOO?OOO

COLUMN
NUMBERS
(IN OCTAL)

©O O OO0 o o
& O Oo N O
& O MO - O
HdH O w p» OO
p O MM OO
H O M- OO
Hd O ® O O O
& O MO OO

INSTRUCTIONS:
DEFINE klatha = 11
CHAR klatha

0000000,0020004,0010204,0004304
0002264,0001204,0000604,0000204

Figure 9-1. Sample of Charaecter Definition

display (that is, at the value of the system-reserved word
where). As an example, if character klatha has been
defined as in figure 9-1, the instructions

at 1010
write This is character klatha: $$with a space
plot klatha $$following the:

would display
This is eharacter klatha: ®

on the screen.

The —plot- instruction can also be used to display a char-
acter from the nonprogrammable character set. In such a
case, the value of the tag is between 0 and 126, depending
on the character to be displayed.

CHARSETS

When a large number of alternate characters are used in a
lesson, it is easier lo specify a character set. This can be
done by creating a new block in the lesson, specifying it as
a —charset- block, and then following instructions. With
this method, you can associate each character with a key
or shifted key by simply specifying which key is to be
used.

9-8

Once the character set is defined, it is necessary to load
it into the alternate character memory of the terminal.
This is done in the regular lesson code by the use of the
—charset- instruction.

The —charset— instruction has two arguments in its tag.
The first argument gives the lesson in which the character
set is contained, and the second argument gives the name
of the character set. As an example, the instruection

charset philk,blach

would obtain set blach from lesson philk and load the
characters into the alternate character memory of the
terminal. Additionally, it sets a flag identifying the
character set to be used with the —chartst- instruetion. If
the character set is in the same lesson that uses the
—charset~ instruction, the first argument is optional.

A blank tag clears the alternate character set flag.

New character sets do not blank out the alternate char-
acter memory but merely replace those characters speci-
fied by the new character set. Hence, if an alternate
character is not replaced by a new alternate character,
the character is still contained within the terminal
memory and can be used by the student or author.

After a —charset- instruction, the system-reserved word
zreturn allows the author to check if the character set
was properly loaded. The system-reserved word zreturn
has the following values.

Value Meaning
=1 Character set is successfully
loaded
0 Character set is not found
1 < STOP key is pressed
2 Character set is loaded improperly
5 No character set name is given

It requires about 17 seconds to load a complete character
set, so it is usually desirable to write a message on the
screen informing the student of the reason for the delay.
If the required character set is already in the terminal
memory, the terminal remembers this and loading does
notl occur.

Because different character sets can be moved into the
terminal between sessions, the best location for the
—charset- instruction is in the IEU. For example, the IEU

at 1221

write Now loading character set.
Please be patient, loading requires
about 17 seconds.

charset philk,blach

erase

loads the desired character set and performs an erase

when done to prevent cluttering (or blocking) the display
of the unit in which the student begins lesson execution.

97405100 C

The —chartst— (character test) instruction determines if
the character set named in the instruction tag is currently
loaded into the terminal. The first argument of the
instruction tag specifies the lesson containing the char-
acter set, and the second argument is the name of the
character set. If the character set is in the same lesson
that uses the —chartst- instruction, the first argument is
optional.

Sometimes it is confusing to a student when a 'loading
characters' message quickly flashes on and off the screen.
The system-reserved word zreturn has the following
values.

Value Meaning
-1 Character set is loaded
0 Character set is not found

After a —chartst— instruction, the author can use the value
of system-reserved word zreturn to determine whether or
not to place a message on the screen.

Alternate characters associated with a key are accessed
by use of the FONT key. Unlike the SHIFT or ACCESS
keys, the FONT key need not be pressed before each
character to type the alternate character set. Instead,
the FONT key switches the terminal back and forth be-
tween the two character sets. When the FONT key is
pressed, the alternate character set is used until the
terminal is switched back to the standard character set by
again pressing the FONT key.

Alternate characters, whether of a full character set or
construeted through use of the —char— instruction, are not
affected by —size— or —rotate— instructions. In faect, using
alternate font characters following a —size— instruction
with a tag other than 0 (if no lineset is in use) results in
the keys associated with the alternate font characters
being written at the larger size rather than the alternate
characters.

If all the text, both by the author and the student, is to be
in an alternate character set, the —altfont- instruction
can be used. This instruction switches the terminal into
the alternate font if the tag is on, 1, or alt and switches
back to the normal character set if the tag is off, 0, or
normal. After an -altfont— instruction, the normal
character set can be accessed temporarily by use of the
FONT key, but a new line in a —write- instruction causes
the terminal to return to the alternate character set. The
effect of placing an —altfont on— instruction in the lesson
is much the same as the author pressing the FONT key and
using a —force font- instruction for the student responses.
A difference is that the lesson code is in the standard
character set, which can make editing difficult, unless
there is a clear relationship between the normal char-
acters and the alternate characters.

A pseudo-conditional form of the —altfont— instruction can
be constructed by using a variable or simple expression as
the tag. However, only integer variables should be used.
Great care must be taken in the construction of the
expression, since a value other than exactly 0 or 1 causes
an execution error. (Hence, a floating-point variable
assigned the value 0 cannot be used, since the value is not
precisely 0).

97405100 C

LINESETS

A lineset is similar to a charset. Both are character
blocks designed by the author; however, the line-drawn
characters in a lineset may be sized and rotated using the
—size— and -rotate- instructions. In fact, the size must be
nonzero to display lineset characters; otherwise, charset
characters are displayed instead. This allows a lesson to
use a lineset and a charset at the same time. Since
lineset characters are line drawings, they take as much
time to plot as sized writing does.

The ~lineset— instruction loads a lineset in a lesson. The
first argument of the tag is the name of the lesson which
the lineset is in, and the second argument of the tag is the
name of the lineset. The lineset block does not need to be
in the same lesson in which it is used; however, if it is, the
first argument is optional. Since the -lineset- instruction
is executable, different linesets may be used in one lesson.
A blank tag cancels a previous -lineset-.

Lineset characters take only as much space as is neces-
sary because they are variable length characters. A one-
block lineset can have 128 small lineset characters or 30
intricate ones. A lineset may be from one to three blocks
long and automatically expands or contracts depending
upon the space it needs.

When an author is using the editor, pressing FONT and a
letter shows a charset character rather than a lineset
character because the editor is size 0.

MICROS

Micros are used to save work for the author or student.
They allow two keypresses to do the work of up to 40
keypresses. In the student response buffer, the codes look
exactly as if the student has performed each keypress
manually instead of using the micro option. Thus, use of
the micro does not affect judging of student responses.
When a -long- is in effect at an —arrow—, the system does
not substitute a miero if it is longer than the -long-
specification. Where the author has used a -long 1-
instruction, the miero substitution is made if it is less
than or equal to 8 characters.

Each micro is contained in a micro table. A micro table
has a maximum length of 256 words, with one word
capable of holding up to 10 characters. As a result, the
maximum number of miero definitions possible is 256,
with a maximum of 10 characters per micro. This is
because each micro requires at least one word. Micros
can be defined as longer, with a corresponding decrease in
the number of micros available. A micro table with 20-
character mieros has a maximum of 128 micros available,
and a micro table with 40-character micros has a
maximum of 64 micros available.

A micro table is contained in a special block of a lesson.
Upon creation of the new block, the author must specify
that it is to be a micro block and follow the directions
given. When the table is first being edited, the author
must choose the length of each micro. All mieros in the
same block have the same maximum length (although all
available space is not necessarily used for each micro).
Thus, if the author needs one miecro that is 37 characters

long, all of the micros must be 40 characters long. The
available lengths for a micero definition are 10, 20, and 40
characters per micro.

A micro table is obtained for lesson use by the —miecro—
instruction. This instruction is similar to the —charset—
instruction. The tag specifies the lesson in which the
miecro table is located in the first argument and the name
of the micro table in the second argument. If the micro
table is in the same lesson that uses the —micro— instrue-
tion, the first argument is optional. A blank tag loads the
system micro table.

The micro table is used by pressing the MICRO key (refer
to section 1) and then the key associated with the micro.
For example, if the key K is associated with the miero
Kinnison, typing MICRO K places the word Kinnison on
the sereen, whether it is the student or the author who
accesses the micro. The system micro table is always
available with the ACCESS key, even if another micro
table is loaded.

The —foree- instruction can be used to force the student
to use the alternate character set or to force all student
keypresses 1o be sent through the miero table. The key-
word tag of the instruction is font and micro for the
respective cases. Additionally, the —force- instruection
can be used to force response judging when the student
response-length-limit is reached (refer to section 11).
Options can be combined within a single —force— instrue-
tion by giving the desired tags, separated by commas, as
in:

force font,miero

-CODEOUT- INSTRUCTION

It is sometimes desirable to perform some special opera-
tions when writing on the screen. These can be done by
pressing the appropriate key in a —write— instruction, but
these can be difficult to spot when editing the lesson.
Therefore, the —codeout- instruetion is provided.

The tag of the —codeout- instruction is an octal number

that specifies the action that is to take place. The per-
missible values of the tag are given in table 9-3.

TABLE 9-3. PERMITTED —codeout— TAG VALUES

Value Action
ol0 Backspace
oll Tab
012 Line feed, with no carriage return
013 Vertical tab (up one line)
ol4 Form feed (to upper left corner)
ol5 Carriage return (to left of sereen)
0l6 Locking superseript
ol7 Locking subseript

-TABSET- INSTRUCTION

The —tabset- instruction enables the author to give a set
of tabs that the student can use in his response. The tag
consists of exactly 10 two-digit fields, with a preceding o.
All values are in octal. For example, the instruction

tabset 0 10 20 30 40 50 00 00 00 00 00

sets tabs for student use at columns 8, 16, 24, 32, and 40
(in decimal). The fields are not separated by commas.
They can be made contiguous, as in:

tabset 010203040500000000000

NONSCREEN DISPLAY INSTRUCTIONS

These are instructions for controlling the nonsereen
capabilities of the PLATO terminal. Not all of them
apply to every terminal or every installation.

The —slide— instruction selects a slide from the microfiche
and projects the slide on the terminal screen. The tag is
the number of the slide to be shown. There are 256 slides
on each microfiche sheet, so slide numbers can range from
0 to 255.

There are two additional options with the —slide- instrue-
tions. If slide n is the slide desired, a tag of 512+n selects
the slide but leaves the bulb of the projector turned off.
If the tag is 256+n, the slide is selected, the bulb is turned
on, but the shutter remains closed.

The locations of slides on the microfiche sheet can be
specified by row and column (refer to figure 9-2). If the
row (y) and column (x) of a particular slide are known, it
can be referenced by an instruction of the following form.

slide y+16*x

The use of defined constants (refer to section 7) can
simplify the manipulation of slides so that the action
taken is apparent from the code. For example, the in-
struection

define shut=256
off=512
rowcol=16

enables the use of instructions such as

slide ytroweol*x
slide shut+nl

slide off+nl

slide shut+y+rowecol*x

where shut, off, and rowcol give mnemonies for closing
the shutter, turning the projector bulb off, and locating a
slide by its row and column position.

The —enable— and —disable- instructions apply to the touch
panel and to the external input devices of the terminal.
Caution should be used when construeting lessons using
external devices because not all terminals have these
capabilities. Therefore, an alternate method of student
response is usually desirable, such as using the -or-
instruction (refer to section 11) when using the touch
panel option.

97405100 C

COLUMN COLUMN
15 0o

' !

g

<ROW O

Olo(N|lOo|O|D|lw|N|—

29(13

1255] 31|15 [« ROW IS

O O

Figure 9-2. Microfiche Layout

The -enable touch- instruction allows input from the
touch panel. It remains in effect until a —disable touch- is
execuled, an -endarrow— or another -arrow— is en-
countered, or a new main unit is entered with a full sereen
erase. (An exception is that —inhibit erase— allows
—enable touch— to remain in effect when starting a new
unit.) In a unit with an —-arrow- instruction, the —enable
touch- instruction should follow the —arrow- instruction.
In a unit with no —arrow- instruction, the —enable touch—
instruction allows the touch panel to funetion in the same
manner as the NEXT key.

The —enable ext- instruction allows input from all other
external devices. Its effect is cancelled only by —disable
ext-.

The -play—, -record—, and —audio— instructions are used
with the optional audio disk feature of the terminal. The
audio disk has 128 tracks, each of which is 32 sectors long,
with each sector lasting about 0.33 second. One track,
therefore, is about 10 to 12 seconds long.

Playing and recording (up to 32 sectors with one com-
mand) can start anywhere on a track. However, recording
separate words and then putting them together to form
messages should not be tried; phrasing and pitch will sound
unusual, and messages over track breaks will not repro-
duce.

Both the -play- and -record- instructions have a tag
consisting of three arguments: track number, sector
starting place, and number of sectors to be played or
recorded. For example:

play 2,0,23
activates the prerecorded message on track 2, sector 0,

which is 23 sectors long. All arguments may be mathe-
matical expressions.

97405100 C

The —audio- instruction has a single-argument tag (vari-
able or expression) that identifies the prerecorded mes-
sage to be activated.

The -play- and -record- instructions, in most cases,
should be used instead of the —audio- instruetion.

The one-argument form of the —ext- instruction sends the
rightmost 15 bits of the rounded integer value of the
expression or variable in the tag to any external device
connected to the terminal. The two-argument form
checks if another station wishes to receive —ext~ instrue-
tions. The —extout— instruction sends the 16 rightmost
bits of a word to any external device connected to the
terminal. It sends the rightmost bits of each word for as
many words as specified in the second argument, starting
with the variable in the first argument. Because the
result of sending —ext— and —extout— values depends on the
device attached, it is necessary to be familiar with the
device and to know which device is connected.

RELATIVE GRAPHICS INSTRUCTIONS

The —gorigin— instruction works in a parallel fashion to the
—rorigin— instruction. The -gorigin~ instruction affects
the graphing instructions and the relative graphies in-
structions. The graphing instructions are -axes-,
—bounds-, -scalex-, -scaley—, -Iscalex-, -lIscaley-,
—labelx-, -labely-, —-markx-, —-marky-, —~graph—, -~hbar-,
—vbar—, —funet—, —delta—, and -polar-. These are de-
scribed later in this section. The relative graphics
instructions are -gat-, -gatnm-, -gdot-, -gdraw-,
—geirele—, —-gbox—, and —gvector—. These instructions work
in the same manner as the corresponding instructions
obtained by deleting the beginning g's, with the following
exceptions.

The —gat- instruction tag specifies scaled units relative to
—gorigin—. If no —scalex- or —scaley- instructions have
been previously executed, —gat— locates a position x dots
to the right and y dots above the gorigin. In the absence
of a —gat- instruction, continued lines of ~gatnm— default
to —gorigin—.

The —gdraw- instruction tag also specifies scaled units
relative to -gorigin—. Ellipses may be drawn with the
—geirele— instruction if the x and y scales are different.

The —gbox— and —gvector— instructions use scaled coordi-
nates as specified by previous -scale- and —-bounds— or
—axes- instructions. If —gbox— has a blank tag, it draws a
box around the current —bounds—-. If a —polar— instruction
precedes a —-gvector— instruction, the vector is drawn
assuming the tag specifies radians.

The tags of the relative graphiecs instructions must specify
fine-grid coordinates.

CREATING GRAPHS

The graph-creating capabilities of the author language are
extensive and make the construction of graphs extremely
simple.

9-11

The horizontal axis (abeissa) of the graph is usually re-
ferred to as the x axis, thus following the general
algebraic convention. Similarly, the vertical axis
(ordinate) of the graph is usually referred to as the y axis.
In some of the graphing instruetions, such as —markx— and
—lscaley—, there is an instruction pair that performs in
identical fashion, except that they refer to different axes.
These instructions are differentiated by the final char-
acter in the command portion of the instruction. Instrue-
tions with an x as the final character in the command
refer to the abeissa. Those with a y as the final character
refer to the ordinate. It is not necessary that the vari-
ables which the axes represent, if any, be named x and y.

SETTING BOUNDARIES OF A GRAPH

The -gorigin— instruction specifies the location that
serves as the origin of the graph. This is not necessarily
the 0,0 point of the graph, but it is the point where the
axes cross. The tag of the —gorigin— instruction is the
screen location of the origin. A default —gorigin— in-
struction of 0,0 is executed at lesson initialization. A
—gorigin— instruction remains in effect past unit bound-
aries.

The axes of the graph are drawn with the —axes— instruc-
tion. The tag of this instruction has two forms. If it is
desired to draw the axes only in the positive direction
starting at the origin, the tag is the length of the axes,
with the x axis specified first, in fine-grid dots. If it is
desired to have the axes extend in the negative direction
as well, a tag with four arguments is used. The first two
arguments give the length of the negative portions of the
axes and are negative numbers. The second two argu-
ments give the length in the positive direction. The x axis
is the first argument in each pair. Both forms of tag have
all arguments separated by commas. A blank tag redraws
the axes after erasure.

If it is desired to draw a graph without showing the axes,
the —bounds— instruction should be used instead of the
—axes— instruetion. The format of the instruetion tag is
the same as for the —axes— instruction, and it has the
same effect but does not draw the axes. In both
instructions, the x and y values refer to the number of
fine-grid dots.

SCALING THE GRAPH AXES

The two instructions for scaling the graph, -scalex— and
—scaley—, allow later references to specific points in
terms of the graph coordinates rather than the normal
sereen grids. Both instructions have a similar tag, which
can have either one or two arguments.

A tag with one argument gives the maximum value of the
axes. For example, the instruction

scalex 300

specifies that the maximum value that the x (horizontal)
variable can attain on the graph is 300. Since the length
of the axes should have been specified previously, this
instruction indicates the scale of the graph (for the x
axis). After both -scaley- and -scalex— instructions,

following references to points on the graph, refer to the
coordinate values of the graph rather than to the fine-grid
locations on the screen. This form of the tag assumes
that the value of the variable at the origin is 0. If this is
not desired, the two-argument form of the tag is used.
The second argument, separated from the first by a
comma, specifies the value of the relevant axis at the
origin. Thus, the instructions

scalex 300,50
scaley 200

indicates that the maximum value of x is 300, the value of
x at the origin is 50, and the maximum value of y is 200,
with a value of 0 at the origin.

There are also instructions to scale the axes logarith-
mically. These are the —Iscalex— and -lscaley- instruc-
tions. They are equivalent to the —scalex- and -scaley—
instructions but scale the axes accordingly to the common
logarithm of the variable value. If an offset value is not
specified, a value of 1 (100) at the origin is assumed.

LABELING THE AXES

It is usually desirable, if axes are drawn, to mark units on
the axes. There are two methods of marking axes in the
author.

The -labelx— and -labely— instructions mark the axes and
provide appropriate numeric labels. The tag can have
either of two general forms depending on whether the axis
has been scaled or log-scaled.

If the axis has been normally scaled, the tag specifies the
location of major and minor marks, together with the size
of these marks. The first argument gives the spacing of
major marks, and the second gives the spacing of the
minor marks. This argument can be omitted. An
execution error occurs if either of these arguments are
greater than 100. The third argument specifies the length
of the marks. If the third argument is 0 or omitted, the
marks are of normal length. If the third argument is 1,
major marks are extended to the boundaries of the graph.
If the third argument is 2, all marks, both major and
minor, are extended to the graph boundaries. The fourth
argument is an integer or a floating-point number of the
form 1,r or L.r where 1 specifies the number of digits to the
left of the decimal point and r specifies the number of
digits to the right of the decimal point. If r equals 0 or is
omitted, no decimals are shown. If r is less than or equal
to 9, either L,r or L.r is allowed. If r is greater than 9 or if
1 and r are variables rather than constants, then only 1,r is
allowed.

As an example, the instruction (assuming that the x axis
has been scaled)

labelx 25,5:1
places a major mark every 25 scaled units and a minor
mark every 5 units. The major marks extend to the top of

the graph, but the minor marks are of normal length.

The numeric labels are placed by the major marks when-
ever possible.

97405100 C

If a major mark interval of 0 is specified, as in the in-
struction

labely 0

the author language executer attempts to make a reason-
able decision on where marks should be placed, but the
result is not always optimum.

If the axis has been log-scaled, a slightly different tag is
used. In this case, the first argument specifies the format
and must be 0. The second argument specifies the
interval of minor marks (major marks are automatically
placed each decade). If the second argument is -, no
minor marks are made. If the second argument is 0, 3, or
omitted, minor marks are placed at 1, 2, and 5 within each
decade. If the second argument is 5, minor marks are
placed at 1, 2, 3, 5, and 7 within each decade. The third
argument specifies the mark size, the fourth argument
specifies the format, and both funetion as in labeling of
normally scaled axes.

If it is not desirable to give the numeric labels on the
axes, the -markx— and —marky- instructions are used.
These instructions function exaetly like the —labelx— and
—labely- instructions but omit the numeric labeling.

It is, of course, possible to use a —label- instruction on one
axis and a —mark- instruetion on the other.

WRITING ON THE GRAPH

There are two approaches to writing on the graph. The
first uses a standard —write— instruction. The location can
be specified by an -at- instruction, as in other lesson
creations. Additionally, there is the —gat— instruction,
which functions in the same manner as the —at- instrue-
tion, but which is relative to —gorigin— and uses scaled
coordinates.

The other approach is the use of the —graph—- instruction.
The tag of this instruction can have up to four arguments.
If the tag contains two arguments, they are assumed to be
an x,y location, and a dot is placed at that location. If the
graph has been scaled previously, the x and y are assumed
to be scaled quantities. Otherwise, the —graph- instrue-
tion is the same as a fine-grid —dot- instruction.

If the —graph- instruection has three arguments, the third
argument can be a text string and is written on the
screen, with the first character placed at the location
specified by the x and y arguments. The string can be up
to nine character codes long. A capital letter uses two
character codes rather than one. The instruction

graph X,y,string
is equivalent to the instructions

gat X,y
write string

except that the starting location of the string in the
—graph- instruction is moved somewhat down and to the
right of the location specified so that the first character
is centered on the location.

97405100 C

If the third argument is a variable containing the string to
be written, the string can be up to 10 character codes
long. This form can have an optional fourth argument,
specifying the number of characters to be plotted.

DRAWING BARS ON THE GRAPH

There are special facilities for drawing bars on a graph,
the —hbar- and —vbar— instructions. The —hbar— instrue-
tion draws a horizontal bar (that is, parallel to the x axis
or abeissa), and the —vbar- instruction draws a vertical
bar (that is, parallel to the y axis or ordinate). The two
instruetions function identically except for the difference
in direction. The tag of these instructions can have two,
three, or four arguments. The two-argument tag specifies
a location (x,y) to which the bar is to be drawn. As an
example, the instruction

vbar 35,20

draws a vertical bar, centered on abceissa location 35, that
is 20 units in height. Similarly, the instruction

hbar 35,20

draws a bar from the ordinate axis to the same location,
with the bar centered over ordinate position 20. (These
instructions display bars as in figure 9-3). The units are
fine-grid dots, unless a -scalex— or —scaley- instruction
has been executed. When an axis has been scaled, any
later references to that axis use the scaled units.

A tag with three arguments uses the third argument as a
string to be plotted and plots the bar using this string.
The string can be up to nine character codes long. For
example,

vbar Xy, hs

draws a vertical bar to location (x,y) (assuming that values
for these have been previously specified) that is three
characters wide. The leftmost character is centered
(horizontally) over the abeissa specified. The lower part
of the character is usually the actual value, so the bar is
somewhat higher than it should be.

If the third argument in a three-argument tag is a variable
name, the contents of that variable, interpreted as a
string of characters, is used to plot the bar and must be
separated by a semicolon. All 10 character codes
contained in the variable are used.

Because of the use of double dollar signs ($$) for com-
ments (refer to section 10), a string of two or more dollar
signs cannot be used to plot a bar, as they are treated as a
comment.

A four-argument tag assumes that the fourth argument,
whether a variable name or a number, specifies the num-
ber of characters to be written from the variable named
in the third argument. Thus, if the variable groaci
contains the characters hisop, and variable bolo contains
the number five, the instruction

vbar 100,150;groaci,bolo

draws the vertical bar using the characters hisop.

The three- and four-argument forms cannot be used to
draw bars in a negative direction. Hence, instructions
such as

hbar -10,13,*

are nol allowed.

20

hbar 35,20

<«— vbar 35,20

5 10 15 20 25 30 35 40 45 50

Figure 9-3. Example of —hbar— and —vbar—
Instructions

GRAPHING FUNCTIONS

If it is desired to plot a given function of one variable, the
—funet— instruction can be used. Associated with this
instruction is the -—delta— instruction. The -—delta—
instruction specifies an increment size in its tag. This is
the inerement size that is to be used unless the extended
form of the —funet- instruction is used.

The simplest form of the —funet- instruction has two
arguments in its tag. The first argument is the function
to be plotted, and the second is the independent variable
that is to be used. If the independent variable does not
appear in the function, either explicitly or implicitly
through —define— definitions, the function is plotted as a
constant quantity. In this form of the instruection, the
bounds of plotting are the bounds of the independent
(abeissa) variable.

An extended form of the —funet— instruction allows
greater flexibility in controlling the plotting of the
funetion. The instruction takes the form

funet f(x),x < xbeg,xend,dx

which is similar to the iterative —do— instruetion (refer to
section 10). The first argument is the function to be
plotted and can be any compilable expression. The x is
the independent variable. Therefore, if the variable

specified is not present, explicitly or implicitly in the
function to be plotted, the function is plotted as a con-
stant quantity. The third argument (immediately to the
right of the <) specifies the initial value of the
independent variable. The fourth argument gives the final
value, beyond which the function is not plotted. Finally,
the last argument gives the size of the increment to be
used in inerementing the independent variable. The sign
of the last argument controls the direction of plotting.

Plotting of complicated funections, in either form of the
—funet- instruction, can cause time-slice errors in the
lesson if the increment specified is too small. As a
general guide, the increment should be larger than 0.02 X
(xmax-xmin). The independent variable should also be a
floating-point rather than an integer variable.

When the graph to be plotted does not fit well into the
form of a funection or when evaluating it as a funection
causes time-slice errors, the —gdraw- instruction can be
used.

The -gdraw- instruction is exaectly like the ordinary
—draw- instruction, but it operates relative o the current
—gorigin—, can use scaled units, and only uses fine-grid
form.

POLAR COORDINATES

Up to this point, all of these instructions have assumed
the use of Cartesian (that is, rectangular) coordinates. If
desired, polar coordinates can be used in all except the
—hbar- and -vbar— instructions. The use of polar
coordinates is enabled by the —polar— instruction.

When a —polar— instruction with a nonnegative or blank
tag is executed, all coordinate references following are
assumed lo be in polar coordinates. Polar conversion is
turned off, and Cartesian coordinate usage resumed, upon
execution of a —polar— instruction with a negative tag.
The magnitude of the negative tag is irrelevant.

If the tag of the —polar— instruetion is blank, polar conver-
sion is turned on, and any scaling that has been done is
unaffected and is used in the polar coordinates. A tag
consisting of a single argument scales both the x and y
axes to the value of the tag. (In terms of polar
coordinates, this means that the actual length of a radius
is independent of the angle.) A tag with two arguments
scales the x and y axes separately, with the x axis being
scaled by the value of the first argument.

Polar conversion remains turned on, even past unit bounds.
Hence, the author should always include a -polar—
instruction with a negative tag when he is finished using
polar coordinates, or unanticipated results can occur.

When polar coordinates are used, the first argument is the
radius, and the second argument is the angle (in radians),
in all cases. Thus, if the radius is represented by r and the
angle by 8, r and 6 replace x and y, respectively, in all
instructions. The relationship between the two coordinate
systems is:

x=r X cos (8)
y=r X sin(9)

97405100 C

LESSON SEQUENCE AND CONTROL 10

The PLATO author language provides a number of
methods for branching within a lesson. The resulting
structure can be complex. The instructions fall into two
major categories, author-initiated branching and student-
initiated branching. In addition, several instructions for
lesson control other than branching are available. Many
of these also have a conditional form (refer to section 12).

Nearly all lesson sequencing is done in terms of sections
of source code. These sections are called units. The
—unit— instruction delimits the sections (units) of the
lesson. The tag of the instruction is the name of the unit,
and it must be no more than eight characters in length.
Because of the use of characters x and q in branching
instructions, neither of these can be used as the name of a
unit. The block of source code following the —unit—
instruction until the next —unit— instruction or the end of
the lesson, whichever comes first, can generally be
thought of (in terms of lesson structure) as a single box
that performs some specified actions. This is an over-
simplification, since it is possible to enter a unit at a
point other than the beginning and to leave at a point
other than the end. However, the concept has utility as a
conceptual device, provided the limitations are kept in
mind.

Several methods of accessing a unit are available. The
execution of the unit depends, to an extent, on the method
of access. The system has several reserved words that
store information about the unit currently being executed.
When a new unit is accessed, some or all of these reserved
words are changed. If all of them are changed, the new
unit is called a base unit. If only some of them are
changed, the new unit is usually a help unit. Another
type, the auxiliary unit, changes only one of the reserved
words. (The terms base unit, help unit, and auxiliary unit
are explained in detail later in this section.) Besides
changing the reserved words, accessing help units and base
units usually erases the entire terminal screen. A base
unit is said to have full initialization as the reserved
words are changed and the screen erased. Help units have
partial initialization as the sereen is usually erased, but
only some of the reserved words are changed. An
auxiliary unit is said to have no initialization (although
this is not, strictly speaking, true), because only one
reserved word is changed and the sereen is not erased.

AUTHOR-INITIATED BRANCHING

The author can use several sequencing methods to impose
a logical structure on a lesson. Each method of branching
within a lesson specifies a certain type of execution, as
well as structure, on the lesson.

USE OF THE -NEXT- INSTRUCTION
The simplest structure of an author language lesson con-

taining more than one unit is a simple sequence of the
units.

97405100 B

This simple structure requires no effort at sequencing on
the part of the author, since the author language assumes,
unless otherwise specified, that the next unit in the
physical lesson is also the next unit in the logical lesson.

If it is desired to execute the units in a different
sequence, the —next— instruction is used. The tag of the
instruction is the name of the unit that is to be executed
after the current unit. If more than one -next-—
instruction is used in a single unit, the last one encoun-
tered is used.

The —next— instruction is most often used to skip over
units that are part of a different sequence or auxiliary and
help sequences. As an example, the structure might be
similar to:

ey I B B S S) [y B

Here the logical lesson is quite different from the physical
lesson, since the physical order of the units is not the
order in which they are executed.

The —next— instruction can be used to completely reorder
the sequence of execution. The physical lesson structure
for

unit one
next two
unit three
next four
unit two
next three
unit four

is:

10-1

—

but the logical lesson structure is:

one two }——>[three four

For the remainder of this section, any sequence of units is
given in logical order rather than physical order. This
order is not necessarily the same as the physical order,
but it is the sequence in which the units are executed.

-JUMP- INSTRUCTION

It is sometimes desirable to start a new unit immediately,
although the current unit has not been completely exe-
cuted. The —jump- instruction causes the unit named in
the tag to be executed immediately. All normal ini-
tializations are made, including erasing the screen, unless
the —inhibit erase— instruction is in effect.

For example, if part of the unit being executed is

wrong hamilton
jump review
wrong burr

the —=jump- instruetion causes unit review to be started if
the student answered hamilton.

The logical structure might be similar to

where a is the unit containing the jump instruction and b
is the next unit to be executed if the —jump- instruction is
not executed.

The —jump- instruction also has a conditional form. As
with most conditional forms in the author language, a unit
is selected on the basis of the value of an expression.
Conditional forms of instructions are covered in detail in
section 12.

AUXILIARY UNIT STRUCTURES

The —-join— and —do- instructions allow one unit to be
executed inside another. (All statements made in the
following paragraphs about the -join— instruection apply
equally to the —do— instruction, unless otherwise noted.)
No unit initialization takes place. Rather, the —join—
instruction usually acts as if the —join—ed unit (minus the
—unit— instruction) replaced the —join— instruction. This
text-insertion characteristic of the -—join— instruction
makes it useful for eliminating repetition of groups of
identical instructions in various places within the lesson.
Instead, a single copy of each group of code is written and
then —join—ed to other units when needed.

10-2

A unit that is —join-ed to another is an auxiliary unit.
Program control causes auxiliary sequences to be only one
unit deep. However, an auxiliary unit ean have auxiliary
units of its own, and these also can have auxiliaries. In
fact, the author language allows the author to go as many
as 10 levels deep in —join-s. Thus, while it is not possible
to have an auxiliary unit sequence, it is possible to have
an auxiliary unit structure attached to a unit.

Some care must be taken concerning -—join—ed units,
however. Since no unit initialization is done, all instrue-
tions in the —join—ed unit are executed as if they were in
the main unit, except for the -goto- instruction. For
example, a -next- instruction is valid and sends the
student to the unit named in the -next- instruction after
the current main unit is executed. Since a unit may be
—join-ed from a number of other units, this is not
necessarily desirable. In general, any instruction that
could affect unit and lesson execution in a main unit acts
similarly in an auxiliary unit.

Graphically, an auxiliary unit (with possible auxiliaries of
its own) might be represented by:

main main main
unit unit unit

auxiliary =
unit

s L e

| |auxiliary /" |auxiliary

| unit s unit

| i ————

auxiliary
unit

The effect of an auxiliary unit depends on the value of the
variables (if any) used in the unit. As an example, the unit

unit assign
cales n3,n17<0,1,15,27,2,8

assigns different values to variable n17, depending on the
value of variable n3 when the unit is —join-ed. The
instructions

cale n3<-1
join assign

assign variable n17 a value of 0, while the instruetions

cale n3< 2
join assign

assign variable n17 a value of 27.

The —join—- instruetion is unique in that it is executed both
in the judging state and in the regular state. This makes
the —join— instruction more useful and permits the use of
auxiliary units anywhere within a unit. The =do-
instruction is executed only in the regular state.

While the —join~ instruetion can usually be thought of as a
text insertion device, there is an exception. If the unit
that is —join—ed contains a -goto~- instruction, the —goto~
does not stop execution of instructions following the
—join— instruetion, as would be the case if the ~goto— were
contained in the main unit. Instead, when the auxiliary

97405100 C

units are completed, they are un—join—ed, and the instrue-
tions following the —join— instruction are executed. This
permits looping among auxiliary units through use of the
—goto— without affecting execution of the main unit.
Furthermore, the —goto— instruction does not affect the
level of —join—s, so auxiliary units can be attached to a
depth greater than 10, providing that some of these are
accessed by a —goto— instruetion.

ITERATIVE -JOIN- AND -DO- INSTRUCTIONS

(All statements made in the following paragraphs about
the —do— instruction apply equally to the —join— instrue-
tion.)

The format of the iterative —do— instruction is
do name,var<beg,end,inc

where name is the name of the unit the author wants to
execute repeatedly, var is the name of the variable that is
used as an index for the repetitions, beg is the initial
value this variable is given, end is the final value of the
variable for which execution of the unit is desired, and ine
is the amount the value of the variable is incremented at
each repetition. ine is optional, with a default of 1, and
may be negative or a fraction. beg, end, and inc may be
mathematical expressions. The instruetion

do filk,index < 10,20,10

executes unit filk twice, with the variable named index
having values 10 and 20, whereas the instruction

do filk,index < 10,20

executes unit filk 11 times, with the variable named index
having values 10, 11,...,19, 20.

Just as a —join—ed unit can contain a —do— instruction, a
unit accessed by a —do- instruction can contain a —join—.

Units accessed with a —do- instruction are auxiliary units.

CONDITIONAL-ITERATIVE -DO- AND -JOIN-
INSTRUCTIONS

(ALl statements made in the following paragraphs about
the —do- instruction apply equally to the —join— instrue-
tion.)

The conditional-iterative form of the —do- instruction
combines the features of iterative execution of a unit
with the ability to conditionally specify which unit is
executed as the iteration proceeds. For example, the
instruction

do exp,ul,u2,ul,ud,index < 0,4,1
is executed the same as the iterative —do- instruction,
except the value of the conditional expression (exp) is

evaluated every time the variable index is incremented
and the proper unit (ul,...,u4) is executed.

97405100 C

If exp is negative, unit ul is executed. If exp is zero, unit
u?2 is executed, and so on. Since exp is evaluated each
time index is incrememted, a different unit may be
executed as the iteration continues.

Unit names x and q have special meanings: X means do
nothing, and g means stop execution of this instruction
and continue execution with the instruction that follows.

-GOTO- INSTRUCTION

The -goto— instruction is a hybrid of the —jump- and
—join— instructions. Instruction execution is done in the
same manner as with the —=jump- instruction, but as with
the —join— instruction, a new unit is not initialized. For
example:

unit first

goto third

at 1012

write This is never written
*

unit second

&

unit third

.

*

While the -goto~ instruction generally does not return to
the unit in which it occurred, there are two cases in which
it does return.

If the —goto— instruction is part of the response to a
matched answer, the fact that markers are not changed
causes control to return to the calling unit and search for
another —arrow- instruction. If there is another —arrow-,
it is processed and execution follows the same pattern as
would be executed in the absence of the —goto—. If there
is no other —arrow-, no actual return to the unit for
execution is made.

If the —goto- is contained in an auxiliary unit, after the
—goto— unit has been executed, control returns to the
auxiliary unit that contains the —goto- instruction. The
remainder (if any) of the auxiliary unit is not executed,
but the auxiliary unit is un—join—-ed, and control returns to
the unit that called the auxiliary unit.

The ~goto- instruetion also can have a conditional form.
If the action specified by the conditional expression is the
tag g, execution of the current unit stops and goes to the
end of that unit. For a full discussion of the conditional
form of instructions, refer to section 12.

10-3

The practice of sorting units into different types is some-
what artificial (refer to section 3). The —goto- instruection
furnishes an excellent example of the reason. Since no
unit initialization is done, a unit accessed by a -goto—
instruetion could be considered an auxiliary unit. How-
ever, the instructions following a —goto— are not executed,
and the unit from which access was done is not returned
to. Because it is not a base unit (the base unit marker is
not initialized), it is not in a sequence (the next unit
executed, unless modified by other instructions, is the unit
following that from which access was obtained). In
particular, it is not part of a help sequence, and it is
usually considered an auxiliary unit.

ARGUMENTED UNITS

The —do—, —jump—, —goto—, and —join— instructions can pass
arguments to the unit branched to at execution. As an
example, the unit

unit assign(n3)
cales n3,n17< 0,1,15,27,2,8

assigns different values to variable n17 depending on the
value of variable n3 when the unit is executed. The
instruction

join assign(-1)
assigns variable n17 a value of 0, while the instruction
join assign(2)

assigns variable nl17 a value of 27. A unit may have up to
10 arguments.

The branching instruetions (-do-, —jump-, -goto-, and
—join-) may specify fewer arguments than the unit has
defined, but they may not specify more arguments.

-EXIT- INSTRUCTION

The —do— and —join— structures can be complex and can
achieve their desired end before normal termination. The
—exit— instruction allows termination of these structures
before normal completion.

There are two types of tags that can be used in the —exit—
instruction, blank and numerie. A blank tag or a tag of —1
causes the entire structure to terminate, with control
returning to the main unit. A numeric tag causes the
structure to back out from the structure the specified
number of levels. If the tag is 0, the instruction is
ignored. As usual, a variable or expression can be used
instead of a constant in the numeric tag.

-NEXTNOW- INSTRUCTION

The —nextnow- instruction terminates processing of the
unit and disables all terminal keys except the NEXT key.
It is usually used to give the student feedback on the
correctness of his answer without allowing him to change
his answer if wrong.

10-4

There are two tags that can be used with the —nextnow-
command. If the tag is a unit name, control is transferred
to that unit when the student presses the NEXT key. The
tag can also be in conditional form, in which case it
follows normal conditional form conventions (refer to
section 12).

-IFERROR- INSTRUCTION

The —iferror— instruction specifies the unit to which a
~gotlo— is made if an error is detected in a —cale- in-
struetion. The —goto— is performed by the -iferror—
instruction upon error detection, not by the author.

The unit specification marker clears in the same manner
as the —next— marker; that is, it clears when a main unit is
entered or by the following instruetion.

iferror q

-ENTRY- INSTRUCTION

The —entry- instruction specifies an alternate entry point
to the unit. The tag, as with the —unit- instruction, is a
unique name of eight or fewer characters. The name is
then used as a unit name is used.

When a unit is entered from an alternate entry point,
initialization is performed in the same manner as if the
entry point were a —unit- instruction; however, it does not
do a full screen erase, and it does not initiate a new main
unit. The actual initialization performed, as usual,
depends on the manner of access. Thus, an entry point
accessed with a —jump-~ has full initialization, an entry
point accessed as a help sequence has partial initializa-
tion, and an entry point accessed with a —=join— instruetion
has no initialization.

Use of the —entry- instruction permits looping within a
unit. A faster looping method is to use the -branch-,
—~doto~, or ~loop- instructions.

BRANCHING WITHIN A UNIT

A -branch- instruction branches to different lines of code
within the same unit; the branching is to a line with a
statement label. A statement label is a name that starts
with a number, is seven or less characters in length, and
begins in column 1 of the line. The following instructions
draw a box in one of two locations, depending on the
values of nl1 and n2.

branch nl<n2,x,100
box 1244; 1550
branch 2out

100

box 2240; 2550
2out

Branching cannot be done between units or around —entry—
statements.

97405100 C

Two statement labels in the same unit cannot have the
same name, but the same statement label can be used in
more than one unit.

A conditional form of the =branch- instruction is available
(refer to section 12).

-FINISH- INSTRUCTION

The —finish~ instruction causes one more unit to be exe-
cuted when the student exits a lesson by pressing the
SHIFT STOP keys. This allows the author to process data
before the student leaves the lesson. No input or output
to the sereen can be performed in this unit. The —finish—
instruction need only oceur once in a lesson. Therefore,
the logical location for it is the IEU, although this is not
mandatory. The tag of the instruction is the name of the
unit to be executed upon lesson exit. A conditional form
is available.

Some instructions are not legal in a —finish— unit (the unit
to be executed) and result in an execution error display.
These instructions include the -pause-, —catchup—, and
—-return— instruetions.

The execution of an -end lesson— instruction or a
—jumpout~ instruction does not cause the —finish— unit to
be executed.

A —finish— unit allows only 10 disk accesses or 10 time-
slices.

-IMAIN- INSTRUCTION

The —imain- instruction causes the unit named in the tag
to be executed at the start of every main unit in a lesson.
For example, with this instruction an author can specify
the help-type keys he wishes to have active throughout a
lesson.

The —imain-~ instruction is in effect for all main units
executed after the unit containing —imain—. Placing the
—imain- instruction in the lesson's initial entry unit causes
the imain unit to be effective for the entire lesson. A
later occurrence of an —imain— instruction overrides any
earlier settings.

A conditional form is available. The —imain— instruction
with a blank tag clears previous setting. The imain unit
is not executed in auxiliary units.

TIMED BRANCHING

Two instructions allow an author to branch a student to
another unit or to the router after a specified time, the
—timel- and the —timer- instructions.

The first argument in the tags of these instructions is an
expression which specifies the length of time in seconds.
For the —timel- instruction, the second argument is the
name of a unit in the current instructional lesson. For the
—timer— instruction, the second argument is the name of a
unit in the router lesson.

97405100 C

The —timel- and —timer- instruetions with blank tags clear
the existing -timel- and -timer— instructions, re-
spectively. The —timel- instruction also clears when the
student exits from the current lesson, and the —timer-
instruction clears when the student signs off the system.

The ~timel- instruction provides a -helpop- type branch
to the specified unit when the time limit is reached. It
allows timing to continue over several units in a lesson
and may be used in any unit of the lesson. The -~timel-
instruction is not affected by any —~time- instruction
which may be used in any of the units. The minimum time
limit whieh can be specified is 0.75 second.

The -timer— instruection causes a branch to the specified
unit of the router lesson when the time limit is reached.
This instruction may only be used when an author is
writing his own router lesson. When the student is
branched to the router, the IEU of the router is not
executed. The minimum time limit which can be specified
is 300 seconds.

STUDENT-INITIATED BRANCHING

The PLATO author language allows the author to give the
student the ability to branch within the lesson. Student-
initiated branching permits the lesson to better fit the
needs of the individual student by providing additional
information or background (remedial) information.
Further, all of the branching capabilities of the author
language are available so that the student, if the author
desires, can be sent back to review material already
covered or to an entirely different sequence of main units.
Student-initiated branching can be achieved three dif-
ferent ways with funection keys. The first is a branch to a
new main unit sequence, the second is the help sequence,
and the third is the use of the TERM key.

BRANCHING TO A NEW MAIN UNIT SEQUENCE

Five instructions branch to a new main unit sequence
when the appropriate key is pressed: -next-, —nextl-,
-back-, ~backl-~, and —stop~. The corresponding keys are:
NEXT, SHIFT NEXT, BACK, SHIFT BACK, and STOP.

These instructions take a unit name as their tags. When
the student presses one of these keys, execution goes to
the unit named in the tag. These instructions may also be
used in the conditional form (refer to section 12).

If -nextl-, -back-, and -backl- instructions have not
been included in a unit, pressing these keys has no effect.
If the —next- instruection is not in a unit, pressing NEXT
branches the student to the next unit in the physical
sequence. When STOP is pressed with no —stop~ instrue-
tion in the unit, the sereen display stops.

The instructions -nextop-, -nextlop-, -backop-, and
-backlop~ also provide branching to a new main unit.
These instructions work exactly like -next-, -nextl-,
-back—, and -backl—~ except that the screen is not erased
when the student is branched to the unit named in the tag
of the instruction. The values of system-reserved words
where, wherex, and wherey do not change when the new
tfmit is entered. These instructions also have conditional
orms.

10-5

The system evaluates expressions in the conditional forms
of these instructions when it executes the instruection, not
when the student presses the corresponding key.

HELP SEQUENCES

A help sequence is an author-supplied sequence of units
available to the student through use of the HELP, LAB,
DATA, or other specified help keys. The names help
sequence and help key are used because these units
provide the student with additional information or other
help. Since the help sequence is accessed from certain
keys, these are called help keys.

There are a number of structural differences between help
sequences and auxiliary unit struetures. The most
significant is that a help sequence is just that: a sequence
of one or more units that are executed in order. An
auxiliary unit strueture, on the other hand, can have a
number of units, but they are executed by —join-, —do-,
and/or —goto— commands. The help sequence is executed
as a series of main units, not auxiliary units. Therefore, a
help sequence can be arbitrarily long rather than having a
predetermined cutoff point.

-END- INSTRUCTION

A consequence of this arbitrary length is the necessity to
specify where the help sequence ends. This is done with
the —end- instruction. Where the instruection is

end lesson

it indicates the final unit in the logical lesson. After this
unit is executed, the student is returned to the system.
This form of the instruction is necessary because the end
of the logical lesson is often not the end of the physical
lesson. The keyword tag is lesson, as given, not the name
of the lesson. More than one —end lesson- instruection can
oceur in a single lesson. The ~end lesson- instruction sets
ldone to -1 (refer to -lesson— instruction). An
—end lesson- instruction in the IEU stops execution of the
IEU and begins execution of the first unit of the lesson.
The —end lesson- instruction does not execute the finish
unit of a lesson.

The form used to end a help sequence has a blank tag or
the keyword tag help. The instruction

end

halts processing in the help sequence. The instruction is
executed regardless of the state of the system. No
instruction following the —end- instruction is executed.
The —end- instruction delimits the unit. Thus, if an —end—
instruction follows a response judging instruction, no
response judging instructions (or regular instruetions)
following are perceived by the system as belonging to the
same unit.

10-6

The —end- instruction with a blank tag affects only help
units, not base or auxiliary units. This allows a unit to be
in a help sequence, base sequence, and auxiliary unit
structure within the same lesson. An -end lesson—
instruction in a help sequence behaves like an —end-
instruetion.

Both forms should be the last instruction in the relevant
unit. Since it is simply a place marker, there are no
difficulties caused by response judging in the unit.

SPECIFYING A HELP SEQUENCE

The unit from which a help sequence is accessed is re-
ferred to as the base unit, since it is the base of the help
sequence and is the unit to which the help sequence
returns when completed (or when the student presses the
SHIFT BACK keys). Only main units can be the base unit
for a help sequence, since the base unit marker is not
reset for auxiliary units. However, the help sequence can
be specified in an auxiliary unit. Although a help
sequence can have another help sequence accessible from
it, the base unit marker is not reset, so the base unit
remains the same. Consequently, a help unit cannot be a
base unit, although it is considered a main unit.

In a main unit sequence (other than a help unit sequence),
the base unit marker is automatically set to zero. Be-
cause such units can act as base units (if a help sequence
is accessed), such main sequences are called base unit
sequences.

Six help sequences can be attached to any unit. The keys
that can be used are the HELP, DATA, and LAB keys.
The HELP, DATA, and LAB keys can also be used with a
shifted form, such as SHIFT HELP.

The commands all have the same form, exemplified by the
—help- instruction.

help unitname

helpl unitname

A conditional form is also available (refer to section 12).
The ~help- instruction enables the HELP key, and the
-helpl- instruction enables the SHIFT HELP keys.

If an x is the instruction tag, the instruction has no effect;
if a q is the instruction tag, the relevant marker is
cleared.

The SHIFT BACK keys cause a student in a help sequence
to return to the base unit. When the student is in a help
unit that does not have a -back—~ instruction, the BACK
key operates in the same manner as the SHIFT BACK
keys; that is, the student is returned to the base unit.

For example, in the portion of the lesson

97405100 C

unit grog
next pheep
lab helpa
unit helpa
unit helpb
end

unit pheep

the logical struecture is:

grog ‘I—l helpa l[=|] helpbi—-J

If the student presses the LAB key while in unit grog, he is
sent to unit helpa. If unit helpa does not contain a -back—
instruetion, pressing either the BACK or SHIFT BACK
keys causes the student to return to unit grog. The NEXT
key sends him to unit helpb. Again, the BACK or SHIFT
BACK keys returns him to unit grog, but since helpb is the
last unit in the help sequence, pressing the NEXT key also
returns the student to unit grog. This feature makes help
sequences flow back to their base unit.

Additionally, six author language instruections provide help
on the same page: -helpop—, -labop-, -—dataop-,
—helplop—, ~lablop—, and —datalop-. (All references to
—helpop- apply equally to the other five instructions.)

All six instructions have the same formats as the ~helpop—
(help on page) instruction.

helpop unitname

helpop expression,unitnamel,unitname2,...
* $$conditional form

A conditional form (second format above) is available
(refer to section 12).

The -helpop- instruction enables the HELP key, and the
—helplop- instruetion enables the SHIFT HELP keys.

Once a -helpop- instruction is encountered, its funetion
remains in effect for the rest of the current main unit. A
—helpop q- or -helpop- with no tag clears the previous
setting. If another -helpop- or -help- instruction is
encountered in the same main unit, the unit named in the
tag of the most recent —help— or —helpop—~ instruction is
executed when the HELP key is pressed.

The unit named in the tag of one of these instructions is
executed when the corresponding key is pressed. After
the helpop unit is executed, control returns to the main
unit. There is no full screen erasure when any of these

97405100 C

instructions are executed. Any graphics or text in the
helpop unit is added to the current display. After the
helpop unit is executed, control returns to the unit con-
taining the -helpop- instruction. The graphies and text
remain on the panel when control is returned to the main
unit.

If successive keys are pressed (each activating a help-on-
the-same-page sequence), the last displayed text (via
—write— or —writee~) from the helpop unit is automatically
erased before the new text is displayed from the next
helpop unit. If the helpop unit contains more than one
—-write- or -writec—, only the last displayed text is
automatically erased when successive helpop units are
accessed.

-BASE- INSTRUCTION

The base unit of a help sequence is not necessarily fixed.
It can be changed by use of the -base- instruetion. The
instruction has the form

base name

where name is the name of the unit which is the base unit.
If the tag is blank, the unit being executed is stipulated as
the base unit, and execution continues as a sequence of
base units. The following are graphic examples.

b indicates base units and h indicates help units. Dotted
arrows represent the path of control if the SHIFT BACK
keys are pressed, hl is a help unit defining another main
unit as the base unit, and h* is a help unit defining itself
as the base unit.

h/b is a unit that is executed once as a help unit (with h*
as the base unit) and again as a base unit when the help
sequence is terminated by an —end- instruction (or student
pressing the SHIFT BACK keys).

As previously mentioned, a help unit possesses the full
branching capabilities of the author language. This in-
cludes the capability of having help sequences of its own.
If such sequences are appended to a help sequence, the
base unit does not change. Hence, pressing the SHIFT
BACK keys returns control to the same main unit.
Graphically, this is exemplified by:

10-7

A help sequence attached to another help sequence does
not return to the first help sequence but to the base unit.
If it is desired to return to the original sequence, the
sequencing must be made explicit by the author. This can
be done by the use of a —goto— instruction or by a student-
initiated branch. Use of the —next—- instruction is ignored,
as the —end— instruction has precedence.

USE OF THE -TERM- INSTRUCTION
A unit containing an instruction of the form
term name

can be accessed by the student from anywhere in the
lesson by pressing the TERM key and typing the name
specified in the tag. If the —term- instruction has a blank
tag, the student accesses the unit containing it by pressing
the TERM key and typing any name which is not a
previously defined term. Previously defined terms include
these system terms: consult, talk, cale, cursor, grid,
operator, reject, step, comment(s), and time. Desecrip-
tions of these terms are in the PLATO User's Guide.

If there is no —base— instruction in the unit thus accessed,
the unit funetions as a help sequence. In this form, it is
especially useful for defining terms used elsewhere in the
lesson with which the student may not be familiar. As a
help sequence, an —end- instruction is necessary.

The other form of the unit is most useful when a lesson
has several base sequences and the student is to be pro-
vided an index to these sequences. The use of the —term-
instruction allows the student to return to the index from
anywhere in the lesson.

Because of the dual nature of the —term— instruection, two
representations are possible when drawing the block

structure of a lesson. A —term- sequence that is used as a
help sequence is represented by:

A —term- unit that defines itself as a base unit is repre-

sented by:

t indicates that the unit is accessible by the TERM key.

Analogously to a help unit, a —term— unit can define
another unit as the base unit. This can be represented by:

or

H

10-8

The dashed arrows are necessary in this case to show the
unit to which control returns on completion of the —term-—
sequence.

The —termop—- instruction works like the ~term- instrue-
tion except that the screen is not erased when the student
branches to the unit containing the —termop-. The exe-
cution of a termop unit is identical to that of a helpop
unit.

OTHER CONTROL INSTRUCTIONS

Several instructions permit the author to control other
aspects of lesson execution.

COMMENTS

It is often useful to have comments in a lesson explaining
the purposes of various portions of the lesson or of
specific instructions. The author language contains three
methods for inserting comments. While the comments
have no effect on lesson execution, they make the source
code much more understandable to either another author
or the original author after a period of time. As a result,
the extensive use of comments is encouraged.

Comments used to explain a large section of code or a
complex set of manipulations generally should use one or
more full lines. An asterisk or the letter e (followed by at
least one space) placed in the first column of a line
indicates that the entire line is a comment and is ignored
by the condenser. Such comments can be inserted
anywhere in a lesson because they are ignored and do not
affect lesson execution.

An example of the use of a comment line for purposes of
increasing readability, rather than actual comments, is
separating units by a line (or partial line) of asterisks.
This makes unit boundaries easier to locate, and because
of the asterisk in the first column, has no effect on unit
execution.

For comments on a single instruection, it is not always
necessary to use an entire line. Two consecutive dollar
signs after the tag indicate that what follows is a com-
ment and should be ignored.

CONDENSING CONTROL

Three instructions indicate the parts of a lesson that are
Lo be condensed, if it is not desired to condense the entire
lesson. All three have a blank tag.

Since the instruetions can be somewhat difficult to see in
the source code, il is preferable to use the partial
condense option of the editor.

The —estop— instruction causes condensing to stop. Thus,
when the lesson is executed, any instructions following a
—cslop- instruetion are not available for execution.

The -estari— instruction causes condensing to be done
after it has been halted by a -estop— instruction. All
instruetions, until the next —estop— instruction, are con-
densed. Hence, the —cstart—- and ~estop— instructions ean

97405100 C

indicate portions of source code in a lesson that are not to
be condensed for execution. Since condensing starts
automatically when the lesson is called for execution, a
—cstart- before the first —~estop— is not meaningful.

The -cstop*- instruction halts all further condensing,
regardless of any following —cstart-s. No instructions
whatsoever are condensed following a —ecstop*- instrue-
tion.

REENTERING LESSONS

The -restart- and —status- instructions allow an author to
permit the student to reenter a lesson at a point other
than at the beginning.

The -restart- instruction allows the author to specify
where a student starts the lesson if he did not complete it
the first time. If not otherwise specified, the student
must reexecute the entire lesson. There are three forms
of the instruction.

If the tag is blank, the student starts in the unit contain-
ing the instruction when he signs on again. If the tag has
one argument, that argument is the name of the unit
where the student starts. This unit must be in the same
lesson as the instruction. If the tag has two arguments,
the first specifies the lesson name and the second the unit
name where the student starts. It is not necessary that
the lesson be the one containing the instruetion. The two
arguments are separated by a comma.

For example, if the student is in unit add of lesson mathl,
and the instruction

restart

is encountered, the student can then quit, and when he
enters the lesson again, start at unit add. The student
starts in this unit regardless of whether further units were
executed before the original sign-off, as long as another
-restart—~ instruction was not encountered. As a result,
the student can be forced to execute the same unit more
than once.

If the instruetion

restart addhelp
is executed, the student, upon entering the lesson mathl
again, starts in unit addhelp, regardless of whether he has
or has not previously executed this unit.
If the instruetion is

restart algebra,addl
the student is automatically sent to unit addl of lesson
algebra. The IEU of lesson algebra is executed prior to
unit addl.
Since the student is not automatically notified of the
execution of a -restart- instruction, the author must so

inform the student if it is desired that the student be
notified.

97405100 C

The -status- instruction allows the author to specify
where a student starts the lesson again after the student
has worked partially on the lesson and then executed other
lessons. The difference between —restart— and —status- is
that -restart- is used when a student quits a lesson and
then resumes working on that lesson without executing
any other lesson, and -status— is used when a student quits
a lesson, executes some other lesson(s), and then resumes
working on the first lesson. When using -restart—, the
system saves all the student variables and the student
status if the student does not execute any other lesson. If
the student does execute another lesson, the system saves
only a limited amount of information; therefore, the
author should not use -status— unless there is a real need
for the student to come back to a lesson.

The -status— instruction sets the system-reserved word
Istatus to the value of the variable in the tag. The
student's router lesson can save the lstatus value and can
reset Istatus to that saved value later when the student
reenters that lesson. The lesson must check Istatus upon
entry of the student and must do its own branching to
restart the student correectly.

The lesson author and the router author should agree on
the initial value of lstatus. Zero is recommended. Then if
Istatus is equal to zero, the lesson does not do any special
restarting for the student. When the student completes
the lesson, the author can execute -status 0- so that
Istatus equals 0.

The system router "mrouter" saves up to eight nonzero
Istatus values, allowing students to start again in eight
lessons.

-RETURN- INSTRUCTION

This instruction affects the time-sharing aspeets of the
PLATO system. The tag is left blank. When a -return—
instruction is encountered, the lesson relinquishes the
central processor. The system behaves as if the lesson has
exceeded its current time-slice. Thus, when execution
resumes, an entire time-slice is available.

-PRESS- INSTRUCTION

The -press—- instruction controls lesson execution by
simulating a student response keypress. The tag of the
instruction specifies the key. The tag can be either the
key code or the name of the key. Use of the key name is
preferable, as the meaning is clearer when the lesson code
is read.

As a sample usage of the instruetion, an author might
want a student to enter a help sequence if a certain
response to a question is given (for example, pressing the
ANS key). Rather than using a —jump- instruction, with
the necessity of determining the proper unit to return to
when the sequence is completed, the author can use the
instruction

press lab

10-9

(or whatever key name is appropriate). The help sequence
is executed as if the student had pressed the appropriate
key.

Most of the function keys have predefined names that can
be used, as in the previous example. However, most keys
do not have such names. In such a case, the character
desired is given, placed in double quotation marks. For
example:

press ITh!
This instruetion is equivalent to
press 010

but is easier 1o interpret. The named keys do not need the
quotation marks, as they are interpreted in the same
manner as defined constants.

Each —press— instruction enters a single key code into the
student's input buffer. Only one such press can be done
per second. As a resull, if il is desired to enter two
consecutive keys with -press— instructions, the two
instructions should be separated by a —pause 1- instruction
to ensure proper execution.

The —-press— instruction has an optional two-argument
form. The optional second argument is the station number
at which the key is to be —press—ed. The two-argument
form is executed only if both stations are in the same
lesson or if the station is routed by the lesson executing
the —press-.

System-reserved word zreturn is set to -1 if the —press—
instruction is executed; it is set to 0 if —press— is not
executed.

-JUMPOUT- INSTRUCTION

The —jumpout- instruection is actually a drastic form of
author branching. Execution of a —jumpout- causes the
student to leave the current lesson and to enter the lesson
specified in the instruction tag.

For a number of reasons, care must be exercised in the
use of the —jumpout~ instruction. If the lesson specified is
not currently condensed, it will be condensed for exe-
cution. However, this can cause a delay of up to several
seconds. A delay this long is apparent to the student.

If a unit name is specified, the —jumpout- codes of the
lesson must match. If the lesson to which the —jumpout-
is performed has no =-jumpout- code, any lesson can
perform a successful —jumpout-.

Any character set used in the original lesson is still used,
unless the new lesson initializes a new set. The standard
miero table is loaded between —jumpout-s.

In contrast, any common or storage used is not saved.
This requires some care if information contained in
common is to be retained. Storage may be retained by
using the —inhibit dropstor- instruction.

If sufficient ECS for the new lesson is not available, the
—jumpout- is ignored. The author can then test, in the
instructions following the —jumpout- instruction, if the
—jumpout- has occurred.

10-10

The ECS check can be stopped by the instruction
inhibit jumpehk

but caution should be used, since the new lesson ecannot be
used if insufficient ECS is available.

The —jumpout— instruction, particularly when used in
conjunction with the -restart- instruction, allows much
more flexibility in lesson construction by allowing lessons
to be interconnected. Because of initialization factors,
caution should be exercised in the use of these instruc-
tions.

-INHIBIT- INSTRUCTION

Various standard processes of the author language can be
disabled by the use of the —inhibit- instruetion. For
example, if it is desired to request a student response
without showing the arrow at the position where the
response appears, the instruction

inhibit arrow

placed before the -arrow- instruction suppresses the
arrow on the screen.

The tag of the instruction determines which option or
options are to be inhibited. If the tag is blank, all pre-
vious inhibits are cancelled. When a new main unit is
entered, all —inhibits—- are cancelled.

An -inhibit erase- instruction prevents the usual full-
screen erase when a new main unit is entered. Since all
previous inhibits are cancelled in the new main unit,
erasure occurs following the new unit, unless a new
—inhibit- instruection is given.

An -inhibit dropstor- instruction retains storage after a
—jumpout- instruction.

An -inhibit edit- instruction deactivates the EDIT key,
and an —inhibit term- deactivates the TERM key.

The -inhibit jumpechk- instruetion ignores ECS check
before a ~jumpout- instruection.

If it is not desired to accept a blank answer to a request
for student response, the —inhibit blanks— instruction is
used.

The —inhibit from- instruction prevents setting the from-
reserved words (refer to the —from~ instruection).

The —-inhibit anserase- instruction prevents the erasing of
any answer-contingent writing after a no judgment when
the student presses the NEXT, ERASE, or SHIFT ERASE
keys.

The —inhibil charclear- instruction prevents the charset
flag from being cleared. This is used preceding a —char—
instruetion to prevent the necessity to reload an alternate
character set.

The ~-inhibit dropset- instruction retains the current

dataset connection and prevents the release of any
reserved records over a —jumpout-.

97405100 C

-KEYLIST- INSTRUCTION

The —keylist- instruction is useful when establishing a list
of keys to be used in the -pause— and -keytype-—
instructions. Since —keylist— is a nonexecutable instrue-
tion, it should be placed in the IEU.

The instruction's tag consists of two or more arguments:
the first is the actual name of the list, and the second
and/or successive arguments are the keys to be in that
list.

List names must be from two to seven characters in
length, and lists can be combined.

Five system-defined lists are available.

numeric Digits (0 through 9)

alpha Alphabet (a through z and A through Z)

funet Function keys (BACK, HELP, DATA,
and so on)

touch Toueh panel input (256 < key < 511)

ext External inputs (512 < key < 767)

-PAUSE- INSTRUCTION

The -pause- instruction has four forms. If the tag is
blank, processing is suspended until the student presses
any key on the keyboard. If the tag is a number, exe-
cution halts for the number of seconds specified. Thus,
the instruetion

pause 3

causes lesson execution to be suspended for 3 seconds,
while the instruction

pause

causes suspension of execution until the student presses
any key on the keyboard. The minimum time that can be
specified in'the tag of a -pause- instruetion is 0.75
second.

The third form of the —pause- instruction uses a key list.
For example:

pause keys=next,back

With this example, lesson execution is suspended until one
of the tested keys (NEXT or BACK) is pressed. If a
branching key such as BACK or HELP is listed, and if that
branching instruction is in effect in the unit, pressing that
key branches the student to the unit specified in the
instruction tag. An exception is the NEXT key which
terminates the pause and does not branch.

The fourth form of the —pause- instruction is a combi-
nation of a numeric tag and a key list. For example, the
instruection

pause 3,keys=touch

97405100 C

suspends lesson execution for 3 seconds or until one of the
keys in the group touch is pressed.

An entry in the key list can be a list name. Five system-
defined list names are available (refer to the —keylist-
instruction above). In addition, the keyword all specifies
that all keys terminate the pause.

If the author wishes to perform actions that use the key
the student pressed to decide the particular course of
action, the system-reserved word key contains the key
code of the key pressed. The -keytype~ instruction may
also be used.

-COLLECT- INSTRUCTION

The -collect- instruction collects several keys at the
same time. It executes faster than an equivalent loop
using the -pause- instruction. The key inputs are stored
one per variable, and as many as 20 may be stored. A
preceding -enable— instruction is required to receive
touch or external inputs. The —collect- instruction ter-
minates when the specified number of keys have been
received or when the keyname timeup occurs as a result
of a previous —time- instruction. In the later case, the
timeup key is also stored.

-KEYTYPE- INSTRUCTION

The —keytype— instruction provdes an easy method for
determining which key from a specified list has been
pressed. For example:

group mine,a,b,c,d,w
keytype nl0,mine,funct,z,0

If the pressed key is in the tag of -keytype-, the variable
named as the first argument is set as follows:

Key Pressed ni0 Comment
z 2 Listed key
d 0 Defined with —group—
NEXT 1 System-defined group
w 0 Defined with —group—
LAB 1 System-defined group
[3 Listed key

The search for a listed key is made from left to right,
stopping when the key is found. If no key is found, the
variable is set to ~1.

If a —keylist—- name or system-defined list is used, a value
is assigned to the variable for any of the entries in the
—keylist-.

If external keys or variables are to be checked, use an
instruction similar to

keytype n7,ext(n3),(n14)

10-11

This echecks the 10 bits of reserved word key. If the first
bit is 1, an external input is indicated and the remaining
bits are compared with the value in n3. The key may also
be compared with the value in n14. The value in n14 may
be any type of input: external, touch, function, numerie,
or alpha. Parentheses are required in this instruction, and
any of these values may be expressions.

If touch panel input is used, the instruction may look like:
keytype n7,touch(1419;4,2)

The fine- or coarse-grid lolerances are optional and are
separated from the address by a semicolon. Either t or
touch may be used.

-FORCE- INSTRUCTION

The -force- instruction initiates actions in the author
language. The instruction can have six arguments in its
lag.

A —force font— instruction causes any characters the
student enters to be in the alternate character set, unless
I the student presses the FONT key. A —force micro-
instruction causes all keypresses to be sent through the
micro table. A —force long- instruction causes judging to
be initiated when the student response length-limit is
reached. The -force left— instruction causes any response
the student enters to appear right to left on the screen.

The -force firsterase— instruction allows the student to
type a new response after a no judgment without first
] pressing the NEXT or ERASE key. The first character of
the new response erases the entire old response and any
wrong-response-contingent writing. Additionally, the
~force firsterase— instruction executes an —eraseu— unit if
required.

All —force- options are cancelled by a —force- instruction
with a blank tag, by ~force clear—, or when a new main
unit is entered.

-CHANGE- INSTRUCTION

The —change command- instruction allows the author to
redefine the names of normal author language instructions
to names of his own devising. This can be especially
useful in the case of language lessons, where use of the
—change command- instruction at the beginning of the
lesson (in the IEU) can allow virtually the entire lesson to
be written in the language with which the lesson deals
(refer to section 11 for the ~change symbol- instruction).

The tag of the instruction consists of the word command,
followed by the old instruction command, followed by the
word 1o, and ending with the new name for the instruction
command, all set off by spaces. An example is:

change command at to wo
command write to schreib

These instructions could be used in a lesson teaching
German (or a lesson teaching English as a second language

10-12

with German as the basis) to replace the —at— and —write—
instructions. The lesson is then more readable to persons
familiar with German and more closely resembles its
subject matter.

One of the disadvantages of using the —change command-
instruction in this manner is that it makes the lesson
difficult to understand for persons not familiar with the
language to which the instructions are changed.

When instructions have been altered by use of the
—change command- instruction, it is imperative that all
subsequent uses of the instructions use the new defini-
tions. Otherwise, the lesson does not execute properly
and may cause a fatal execution error. It is, of course,
possible to use the -change command- instruction to
return the instructions to their original definitions.

-USE- INSTRUCTION

It is often desirable to use parts of other lessons rather
than duplicate the source code. This can be done with the
—use- instruetion.

The effect of the —use~ instruction is to insert the source
code from the accessed lesson at the position of the —use-
instruction when the lesson is being condensed.

The tag of the —use~ instruction specifies the name of the
block which is to be condensed as part of the current
lesson. The name of the lesson to be ~use~d is specified
on the Author Information page of the lesson which con-
tains the -use-— instruction. Only one lesson may be
—use—d per lesson.

Consecutive —~use- instructions allow more than one block
to be accessed. If consecutive blocks share the same
name, a single —use— instruction accesses all of them.

The -use~ instruetion is particularly helpful when using
large vocabularies. By means of the —use- instruction, the
vocabularies need only be written once, thus saving the
author time while writing the lessons and also saving
storage space.

The -use- security codes of the two lessons must match.
If the code of the lesson —use~d is zero, the —use~ instruc-
tion is permitted.

-STEP-INSTRUCTION AND TERM-STEP OPTION

Both the -step— instruction and the TERM-step option
enable an author to execute his lesson instruction by
instruction. Executing a lesson one instruction at a time
helps the author find program errors. When stepping
through a lesson, the lower lines on the sereen display the
next instruction to be executed, the current state (regular
or judging), and the base, main, and current unit. Student
variables may be examined at any time.

To enter the step mode while viewing a lesson in the
student mode, the author presses the TERM key and then
types the word step. The bottom lines on the screen are
erased, and the step information is plotted.

97405100 C

The step mode is also entered by the author placing a
—step— instruction in his lesson. The -step— instruction
can have a keyword tag of on or off, or the tag can be an
expression with 0 equal to off and non-0 equal to on.

While in step mode, the instruction listed is executed
when the NEXT key is pressed. At each press of NEXT,
the instruction presently listed is executed, and the suc-
ceeding instruction is then displayed.

The waiting for key message means the system is waiting
for a student's response or keypress. A response should be
entered and the NEXT key should be pressed to have the
response judged and step mode continued.

The arrow character at the bottom of the sereen enables
the author to see the current values of any of the student
variables. The author should press the a, o, v, or n
character to indicate the format and then the number of
the specified variable.

By typing the character s and a number at the arrow
character, the lesson is skipped forward by the number of
instructions specified before reentering the step mode.

Step mode is exited by pressing the BACK key.

Only authors can use step mode. The author's security
code must match the change code of the lesson. Step
mode cannot be entered nor is it operable when a student
enters TERM-step or when a student encounters a —step
on- instruction.

Common variables and storage variables cannot be in-
spected in the step mode.

-INITIAL- INSTRUCTION

The =initial- instruction specifies a unit for execution
when a lesson or common is entered by the first user. If
the lesson or common is already in ECS, the —initial- unit
is not executed.

The formats for the —initial- instruction are as follows:

initial lesson,unit
initial common,unit

The tag for the instruction consists of two arguments.
The first argument is a keyword indicating the type of
-initial- command (lesson or common) and is not the name
of the lesson or the name of the common. The second
argument specifies the unit to be executed after the
~initial lesson— or —initial common- is executed.

The first user to execute an —initial- instruction causes
the initial unit (lesson unit or common unit) to be inserted
(like a —do- instruction) at the location of the —initial-
instruction. Any subsequent encounters of —initial lesson—
or —initial common-, whichever applies, are ignored.

If the initial unit contains a -jump- or =—jumpout-
instruction, the completion flag for the —initial- instrue-
tion is never set, thus preventing all other users from
continuing in the lesson.

97405100 C

-LESSON- INSTRUCTION

The -lesson— instruction assigns a value to the system-
reserved word ldone. Upon entering a lesson, the system
router checks to see if the lesson is completed. If the
lesson is completed, ldone equals -1, and an asterisk is
placed next to the lesson on the student's index (se-
quence). However, if the lesson is not completed, the
value of ldone is set to 0.

The tag for the instruction consists of a single keyword
argument indicating completed, incomplete, or no end.
The tag no end is used for instructional lessons which have
no logical end, and it sets ldone to 1.

A conditional form of the ~lesson— instruction is available
(refer to section 12).

-SCORE- INSTRUCTION

It is often necessary for an instructor to determine if a
student has worked on a particular lesson and what
relative progress the student has made on that lesson.
The -score- instruction can be used for that purpose.

The -score- instruction assigns a value to the system-
reserved word Iscore. The value of Iscore can then be
stored in any data base or status bank (student, common,
router, and so on) for the student.

The tag for the instruction can be either a constant or any
expression from -1 to 100 indicating the value to be
placed in system-reserved word lscore. Values are
rounded to the nearest integer.

Any negative score is interpreted as do not store any
score. Any score that rounds to a value greater than 100
produces an execution error.

A —score- instruction with a blank tag assigns a value of
-1 to system-reserved word Iscore. If lscore already has a
value and a —score- instruction is then executed, the new
value overwrites the previous value; lscore contains the
new score. However, if a —score- instruction has not been
executed for a lesson, Iscore has a value of 0.

If the students are routed by the system router, scores are
stored as part of the student's permanent record. These
scores may be displayed through an option of the student
roster. If the score is negative, no score is displayed. The
scores are kept only as part of the permanent record if
the system router is used. When the system router is not
used, the scores may be stored in some status bank
(common, router variables, and so on). Only the most
recent score for each lesson is stored as part of the
permanent record.

When creating a router lesson, the -=score- instruction can
be used to place a value in Iscore, with the value
representing the status for the lesson. Branching could
then be done on that condition.

10-13

-BACKGND- AND -FOREGND- INSTRUCTIONS

The ~backgnd— (background) instruction allows the user to
obtain more CPU time during each time-slice if extra
CPU time is available (PLATO system not busy). With a
-backgnd- instruction in effect, sections of lessons
receive more CPU time if it is available.

If the system is busy and -backgnd- is in effect, the lesson
receives less than the average processing time. This
instruction should therefore not be used with lessons that
are 1o be used by students in an instructional setting.

The —foregnd— (foreground) instruction cancels the effect
of a -backgnd- instruction and indicates the end of a
section of a lesson that is to be run on the background
priority.

The foreground priority is the normal state. Both
—foregnd- and -backgnd- are executable instructions, so
portions of lessons can be specified to run on either
priority. It is possible to switch between background and
foreground priorities in the same lesson by executing a
-backgnd- or —foregnd- instruction.

No tags are used with either the -backgnd- or the
—~foregnd- instruction.

-CPULIM- INSTRUCTION

The -ecpulim- instruction should be used if an author
wishes to place a limit on the CPU time for a given lesson
while that lesson is being used by students. The CPU time
in milliseconds/second is listed in the student records and
at sign-off time. If this instruction is not used, the CPU
limit is 10 TIPS.

A maximum limit on the CPU time allows the lesson
author to test a lesson at a low CPU time maximum and
decide if there is any effect on a lesson.

LESSON ROUTING

A router allows the management of student progress in a
course by sequencing lessons according to student per-
formance. An author should write a router for a course
only after thoroughly studying the features of the system
routers and after determining that the course requires
additional capabilities.

Author-initiated routing and system routing are desecribed
and their use explained in the PLATO User's Guide. The
following is a summary of router features.

® Automatic entry into the router at sign-on time.

® Automatic return to the router when a lesson is
complete.

® All -roule- instructions are functional.
® All -allow- instructions are functional (no
—transfr-s with router variables or common

without —allow-).

® Routler variables can be used (maximum of 50 per
student)

10-14

Routers remain in ECS as long as a student from the
course is signed-on. The system router, maintained by
system-support personnel, requires a minimum of ECS.

A user-written router should execute the following
instructions before doing a —jumpout- to a lesson for the
first time.

restart (0), (0)
lesson incomplete
score

status 0

These instructions initialize the values of the system-
reserved words rstartl, rstartu, ldone, Iscore, and lstatus.
If the router does not initialize these system-reserved
words, the lesson receives values from a previous lesson,
possibly causing errors. If the router saves the new values
of these system-reserved words upon return from a lesson,
the router can give the values back to the lesson the
second time the student enters it.

-ROUTE- INSTRUCTION

The -route— instruction is used in the router to specify
which units of the router are 1o act as reentry units when
the student exits from one of the instructional lessons in
the router.

The instruction tag for ~route- consists of two arguments:
the first argument is a keyword (end lesson, finish, error,
or resignon) which specifies the type of exit from an
instructional lesson, and the second argument specifies
the entry unit in the router when the corresponding exit
occurs. The -route— instruction has five forms.

route end lesson,unit
route finish,unit
route error,unit
route resignon,unit
route resignon

The unit specified in the second argument of the
instruction is executed as follows:

Kexword

end lesson

When executed

When the student leaves the in-
structional lesson as a result of
—~end lesson- or =jumpout g-, the
router unit, unit, is executed.

finish When the student leaves the in-
structional lesson as a result of
SHIFT STOP, the finish unit in the
instructional lesson is executed
first and then the router unit, unit.

error When an execution error ocecurs in
the instructional lesson, the router
unit, unit, is executed. (The
system-reserved word errtype is
also set.)

97405100 C

Keyword When executed
resignon Same sequence as for keyword

finish. If unit is not specified, the
IEU and the first unit of the router
are executed. The student is also
given the option of returning to the
router or of signing off the system.

The -route- instruction must be executed each time the
student is in the router for the specified units to be
functional. Placing the -route- instructions in the
router's index or decision units sets the corresponding
flags each time a lesson is selected by or for the student.

When an execution error occurs and a -route error— in-
struetion is in effect, system-reserved word errtype is set
to one of the following values.

Value Meaning
0 Unknown error
1 Execution error
2 Fatal condense error
3 Memory allocation exceeded
4 Error in -finish- unit of instructional
lesson
5 SHIFT STOP from the condense queue

A —jumpout- to another router causes an execution error
(errtype set to 2).

If errtype is set to 4, the student is returned to the unit of
the router named in the second argument of the
—-route finish— instruction.

An errtype of 5 occurs only if the student exits from the
condense queue with a SHIFT STOP and the student has
been waiting in the queue for more than 30 seconds.

When a student returns to the router, the router's IEU is
not usually executed. The router's IEU is only executed
when the session begins (sign-on time), when
—-route resignon— without a specified unit is executed, and
when a lesson does a —jumpout- to the router.

For the -route~ instruetions to be in effect at all times,
the student must execute the -route- instruetions each
time he is in the router.

Some of the key locations for placing the —route- instruc-
tions are illustrated in figure 10-1.

-ROUTVAR- INSTRUCTION

In addition to the 150 student variables available, there
can be up to 50 additional variables called router student
variables. Like student variables, each student in an
instruetor's course has these router student variables.

The -routvar- instruction is used by the instructor to
specify the number of router student variables to be made
part of the permanent student bank and retained between
sessions. Authors may not have router student variables.

The router student variables are referred to as nr or vr
locations and can be used in the router in any manner as
the n or v variables can be used. The -routvar- in-
struction should be executed before the nr or vr variables
are referenced.

The tag for the -routvar— instruction is an expression
specifying the number of router student variables (50
maximum). These variables are added to the amount of
ECS used at an instructor's logical site; therefore, 20
students with a —routvar 40 - instruction in effect require
800 additional words of ECS.

Router student variables can be altered only in the router.
With an -allow read rvars— instruction in effeet, the
values can be read by an instructional lesson.

ROUTER Description
initial ———— Set -route- units for the initial
entry routing of the session.
unit
end
| lesson
or q unit
index —— Set -route- units when choices from
el =] the router's index are made.
logic —> Set -route- units when branching
table decisions are made on student's performance
T Rre=p and place in specified curriculum.
execution| = Set -route- units, then return to
error last -restart- location (-jumpout resume-)
unit router's index, or router's logic table.
finish
| unit
SIGN-OFF
statistics

Figure 10-1. Key Locations for Placing -route— Instructions

97405100 C

10-15

-ALLOW. INSTRUCTION

Instructional lessons can reference common variables that
the router uses. To allow this, an —allow— instruection
must be previously executed in the router.

The instruetion tag for —allow— consists of a single key-
word argument (read, write, or read rvars). The —allow—
instruetion with a blank tag clears —allow— settings. An
asterisk merges successive —allow-s.

An -allow read- instruction permits read-only access to
the router common. An -allow write~ instruction,
however, permits read and write access to the router
common. The —transfr— instruetion is then used to write
the router common.

The -allow read rvars— instruction permits read-only
access for the router student variables, as established by a
-routvar- instruction. The router student variables can be
read by using the —transfr— instruction.

The —allow- instruction is meaningful only when executed
by students in a course using that router and in the router
itself (not instructional lessons).

If an -allow- instruetion is not present in the router
lesson, an attempted -transfr— with router ecommon or
router variables yields an execution error.

In the router, nr, vr (student), ne, ve, and e,1 (common)
locations should be referenced directly with a —transfr—
instruction.

LESSON LISTS

A lesson list (leslist) is a special block used 1o maintain a
list of lesson names. This list can be referenced by
variables used with the —jumpout—, ~from-, —restart—, and
-lessin- instructions.

The leslist is two blocks long and stores 320 lesson names.
The lessons are numbered 0 to 319.

Leslists are created so authors do not have to be con-
cerned with system lesson-naming conventions, which are
subject to change. Since lessons are accessed by position
in the list rather than by name, the actual format of the
leslist is unimportant for users.

A lesson list for a user's file (one of the type-of-block
options) is ecreated by the author language editor. The
contents of the block is displayed as a list of lesson
names. For example:

0 spanish202
1 germanl3
2 german?

3

4 german3

5

6

10-16

Directions for editing the list are in the leslist bloeck.
Lessons are added at the first empty slot. Deleting a
lesson leaves a blank entry. In the example above, lesson
3 is empty. The next lesson to be added is placed in the
first empty slot, 3.

Leslists can also be altered (edited) by using the —addlst—
and -removl- instructions from the student mode.

The leslist editor does not do a lesson-name check; it
assumes the lesson names entered actually exist.

-LESLIST- INSTRUCTION

The -leslist—- instruction allows user access to the speci-
fied leslist. Only one leslist at a time may be used. The
—leslist— instruction must be executed before any ref-
erences are made to the lesson list. The -leslist—
instruction is an executable instruction.

The tag for —leslist— consists of two arguments: the first
specifies the lesson name or a variable containing the
lesson name, which contains the leslist. If the referenced
leslist is in the lesson that uses it, this argument is
optional. The second argument specifies the actual block
name or variable containing the block name.

For example:

leslist mylesson,mylist
*common codes must match

The common access code words for the current lesson and
the lesson containing the leslist blocks must mateh.

-ADDLST- INSTRUCTION

The -~addlst- instruction has a one- and two-argument
form.

The one-argument form adds a lesson name to the next
open slot on the leslist. With either form, the first argu-
ment must be the first of a set of three consecutive
variables (n or v type) specifying a valid lesson name.

For example, the following code adds a lesson to the
leslist and finds the position in which it was added.

leslist myless, myllist
* more code
arrow 1430
storea n4,30 $$reserves three
< $$consecutive variables
ok
addlst nd $$n4, n5, and n6 are
* $$used
findl n4,n130
write lesson «a,n4,30> added as number
<s,n130>
97405100 C

The two-argument form adds a lesson name to the speci-
fied slot (position) on the leslist. The second argument
(position) may be a variable or expression. Blank slots
may be left, but the lesson named in the first argument is
not added to the list if that slot (specified in the second
argument) is occupied.

An -—addlst- instruction with the actual lesson named in
the tag (not a variable) produces an error. Tags such as
"lesson', 'lesson', <lesson>, <'lesson'>, or <"lesson"> are
illegal.

Additions to a leslist should be done by storing the infor-
mation with a =storea- instruction using a character count
of 30. The -storea- instruction must precede the
-addlst-.

-REMOVL. INSTRUCTION

The -removl- instruction is used to delete lessons from a
leslist; a blank entry is left in that list position.

The tag for the —removl- instruction specifies the lesson
to be removed from the list; the tag can be a number, an
expression, or a variable. Tags such as "lesson" or 'lesson'
do not remove the lesson from the list. The tag is
interpreted as a number, and the lesson corresponding to
that number is removed.

For example, the instruction
removl 8

removes lesson number 8 from the leslist.

97405100 C

-LNAME- INSTRUCTION

The -lname- instruction permits the user to place entries
from his leslist into variables.

The first argument of the tag specifies the first of three
consecutive variables required to place the leslist infor-
mation. The second argument specifies the lesson number
in the leslist and can be a constant, a variable, or an
expression. The lesson number can be from 0 to 319 for a
two-block lesson list.

The leslist information is displayed with a -showa- in-
struction using a character count of 30.

For example, the following instructions

Iname nlo,1
showa n10,30

place the information from position number 1 of the
leslist in variables n10, nl11, and n12.

-FINDL- INSTRUCTION

The -findl- instruction determines for a user whether a
specified lesson name is included in his leslist.

The first argument of the tag is an initial variable for a
set of three consecutive variables (n or v type) specifying
the lesson name.

The second argument is the return variable containing the
position of the named lesson in the leslist.

If the specified lesson is not in the user's leslist or a leslist
is not in use, a value of -1 is returned.

All lesson names used with the —findl- instruction should

be specified by storing the lesson name with a -storea=-
instruction using a character count of 30.

10-17

Chy e - - . e R
B . - . Y
e, - .
- -1 - ok o EL] <" Fa - I .
. 1 = e m .
- . . L " - - =
- I. = - ™ x e
CLCI s =k
LoCE S e . . . i
iert g 1. - - - '
~ 1 1 L] - ll.) -
- r:l..:."'-"- . . r - .:: ._'I. ru.r_ 'I:I
", 1 e
.I-'--n'l' 2 SR =k - - cis, B
. . -
i o = L f
.o B - o oo, - i b L -
' : MRt s R ok cH g m g,
-l . la = S - - = = =]
EEIR ¢ = i B
=8 .
et e mplam = . =
L _ AR TFRT PR P
P LI T T Y
. S it R = | e e -
I T T e - : . - T
. - =y
L] - - . B -...l
G e 4 e e uoew L T S e) pla
. . . = . = ul - : : - d
- B - T T .'u.:':_?#.-l
.. a4 T . mrs om" T. Seem " .
- '-."::I."'"'."'- i Iy = =& = = =" r.=1 A= - = FAS & - B
N s s T -
Wt e LI
r
L - e aons 1 - o g rf"':.'*‘
- - B - 1
n L] R 1
. & ra .
| = - 1=t . N - . - Y
1 . .
: =t qu, regl cooEt
. . 1 i i
=1y «C k O R
. == g e I-
-1 .
L3 -.. .Ll -
..' '_-r"."
T Iy
2ol 2
: "o
L . |
1 El .
- 1
5 B
-
. -
1
1 B 1
N 1
-
1
= E
< I.q: " -
".l-r-. - -
- L] 1 " m

RESPONSE HANDLING [}

The heart of a computer assisted instruetion (CAI) system
is judging student responses. This is what differentiates a
CAI system from a textbook, because a textbook cannot
give immediate feedback to student responses.

The first necessity is to inform the student and the system
that student input is desired. This is done with the
—arrow— instruction. The tag of the instruection is the
location at which the student's answer is to appear; it can
be in either fine or coarse grid. The author language exe-
cuter automatically plots an arrow indicating the location,
unless the author specifies otherwise with an —inhibit-
instruction (refer to section 10).

Besides indicating the desire for a student response, the
—arrow— instruction also sets a default length for the
student response of 150 characters, disables the copy
option, and specifies the NEXT key as the only key that
starts the system judging the student response. All three
features can be overridden by the author through the use
of the appropriate instruections (-long—, -copy-, and
—jkey—, respectively). Finally, the —arrow— instruction is
used by the author language executer as a marker for the
beginning of the response judging portion of the unit.
Since this portion can be executed several times, it is
important to have a marker that prevents the entire unit
from being reexecuted.

At times it is desirable to have more than one student
response in a single unit (acecomplished with more than one
—arrow— instruction in the unit) or to perform some
regular instructions at the end of the unit, regardless of
how the -arrow- instruction was satisfied. For this
purpose, the —endarrow- instruction is provided. The tag
of the instruetion is blank. The —endarrow— instruetion
itself serves as an indicator that the author language
executer should not go past this instruction in trying to
satisfy the —arrow—; it also serves as a location point for
beginning execution when the —arrow- has been satisfied.
If no -endarrow- instruction is present, the PLATO
system, if necessary, searches to the end of the unit in
trying to satisfy the —arrow- instruction. Because of the
text-insertion characteristic of the -—join— and -do-
instructions, an —endarrow— should always be used if arrow
processing is contained in an auxiliary unit.

EXECUTION OF RESPONSE HANDLING

In the most common form, a student must give an answer
that the lesson recognizes as correct before the student
leaves the part of the lesson containing the instructions
following the -—arrow- instruetion and preceding the
—endarrow— instruction, or the end of the unit if no
—endarrow— instruction is present. Since there are many
more wrong answers than right, it is often necessary for
the instructions to be reexecuted.

When the -arrow— instruction is encountered, the limits
and actions previously described are done. All regular

97405100 C

instructions immediately following the —arrow— instruec-
tion are then executed. When the first of the judging
instructions is encountered (refer to table 11-1), the
system is changed from the regular to the judging state.
Henceforth, with one exception described later, no regular
instructions are executed. @ The system waits, upon
changing states, for the student to type in his response.
When this has been done, the system searches the judging
instruetions, in order of their occurrence, to try and
mateh the response. If no match is found, the response is
judged no, and the student must enter a different
response. If a match is found, any regular instructions
immediately following the matched instruction are exe-
cuted. This, combined with the ability to recognize
specific wrong responses, enables the author to comment
on the student response. Display instructions such as
—write— are automatically positioned following a matched
response, unless overridden by an —at— instruction. The
position is three lines below the student response, begin-
ning in the same column position.

TABLE 11-1. JUDGING INSTRUCTIONS

Instruction | Effectt Instruction | Effectt
ans S ok a
ansu s open n
ansv s or n
answer S put n
answerc S putd n
bump n putv n
close n specs n
concept s store S
exact S storea n
exacte S storen S
exactv S storeu S
ignore a touch S
join n touchw s
loada n wrong S
match a wronge S
miscon S wrongu S
no a wrongv s

ta Always ends judging

n Never ends judging

s Sometimes ends judging

The exception mentioned previously occurs with the
—specs— instruction. The —spees— instruction is a judging
instruction that can be used to disable standard judging
options or to enable others. In addition, it serves as a
locator. After a student response has been judged,
whether it is judged correct or incorrect, all regular
instructions immediately following the —spees— instruetion
are executed. This is done after the regular instructions,
if any, following the matched answer are executed. Since
this execution is done for all matched answers, it is done

for responses that have been judged ok as well as for those
judged no. If the response has been judged ok, the arrow
is satisfied when the regular instructions, if any, following
the matched answer and the -specs— instruetion (if
present) have been executed.

Unless prevented by the tag of the —specs— instruction,
when all instructions following a matched judging instruc-
tion and all regular instructions, if any, following the
—-spees— instruction have been executed, an ok or no is
placed on the screen following the student response. This
is done last so that any modification of the original
judgment (made possible by the —judge— instruction) is
reflected in the message displayed. Thus, a response can
be judged ok, processing done on the response, and the
response judged again, yielding a judgement of no, and
only the no message appears on the student's screen.

The standard ok and no messages can be changed with the
—okword- and -noword- instructions, respectively. The
tag for these instructions specifies the new message
desired by the author. The tag with the new message,
however, must be less than nine characters. Shift and
font characters are allowed and are counted as part of the
nine characters.

When the —arrow— has been satisfied (that is, the student
response judged ok) and if there is no —endarrow- instruc-
tion, the next unit is entered. If an -endarrow-
instruction is present, any regular instructions imme-
diately following the —endarrow- instruction are executed.
If another —arrow- instruction is then encountered, proc-
essing occurs as previously. If there is no other —arrow—
instruetion, the unit has been completed.

When the unit completes execution, whether through
satisfaction of an -arrow— with no corresponding
—endarrow— or through the execution of the regular
instructions following the last —arrow— and —endarrow-
pair in the unit, the system then waits for the student to
press the NEXT key. When this is done, the next unit is
initialized.

This execution can be complicated by the presence of a
—join— instruction. The —join- instruction is unique, since
it is both a regular and a judging instruction. In fact, it is
also executed in the search state when the system is
looking to see if another —arrow- instruction should be
execuled before leaving the unit. As a result, a unit
containing judging instructions that is —join—ed to another
can cause the execution of the originating unit to be
somewhat different than intended by the author.

As an example, a —join— following a —speecs— instruction is
executed when first encountered, since the —join— instrue-
tion is a judging instruction. The contents of the unit that
has been —join—ed is then examined, and any judging
instructions are executed as if they were contained in the
original unit. This includes any —join— instructions in the
—join—ed unit. If a response-judging instruction matching
the student response is found in the —join-ed unit, the
appropriate action is taken, as if the answer were in the
origina) unit. Then, if there is a —specs— instruetion, all
regular instructions immediately following the —specs—
instruction are executed, including any —join— instructions.
This can include the —join— that contains the answer that
was matched to the student response. Any regular
instruections in a —join—ed unit following a —spees— instrue-
tion are executed, down to the first judging instruetion, if

any. If the —join—ed unit contains no judging instruetions,
the entire unit is executed, and any regular instructions
following the —join— instruction are then executed. If the
—join—ed unit contains any judging instruetions, execution
of regular instructions halts when the first is encountered.
Regular instructions following the —join~ instruction are
not executed.

In general, the execution of the response judging area of a
unit that contains a —join— instruction can be understood
by thinking of the —join— instruction as a text-insertion
device that executes in all states of the system (refer to
section 10).

Additionally, the —iarrow— instruction inserts the unit
named in the tag after the —arrow- instruction and just
before the first judging instruction for that —arrow—. For
example,

unit test

iarrow iarrow

arrow 1115
_>

specs bumpshift
*more judging instructions

inserts unit iarrow (with —join-) after the —arrow- instrue-
tion and before the first judging instruction (—spees-) for
the —arrow-.

The iarrow unit is in effeet for all —arrow- instructions
encountered after the —iarrow- instruction and while still
execuling in the same main unit. However, the ~iarrow—
instruction clears when a new main unit is started. A
later occurrence of an —iarrow- instruction in the same
main unit overrides any earlier setting.

An —iarrow— instruction with a blank tag (or q) turns off
the insertion feature.

Placing the —iarrow- instruction in the imain unit causes
an iarrow unit to be effective for an entire lesson.

A conditional form of the —iarrow~ instruction is available
(refer to section 12).

An alternate arrow character may be set up so that a
lesson can use two different arrows. The -arheada—
instruction specifies the alternate character. This is
usually placed in the IEU. The -arrowa- instruction
displays the alternate character at the specified location
and continues executing like an —arrow= instruction. The
—iarrowa— instruetion inserts the specified unit after the
—arrowa— instruction and operates analogously to the
—iarrow- instruction.

INITIATING JUDGING

When a student types in a response, the PLATO system
makes two copies. One copy is stored for later reference
and for possible use in conjunction with instruetions such
as —edit- and -copy-, while the other copy, called the
judging copy, is used for determining how well the
response fits the answer (or answers) specified by the
author. It is extremely important to remember that this
form of answer judging is not the same as determining if
the student response is correct. If the student responds

97405100 C

with a word or phrase that, while correct, was unantici-
pated by the author, the response is still judged no
(incorrect).

Judging usually starts when the student presses the NEXT
key, indicating that he has completed typing his response.
The maximum length of the student response permitted is
150 characters, unless otherwise specified by the author
through use of the -long- instruction. If this instruction is
used, the tag gives the number of characters that the
student response is allowed to contain as a maximum. The
default limit of 150 characters can be either decreased or
increased to as many as 300 characters. Since the
—arrow— instruction resets the default length limit, the
—long— instruetion, if used, must follow and not precede
the —arrow- instruction to be effective.

Specification of a single character as the maximum stu-
dent response length causes special action to be taken by
the system. First, despite the limit, a capital letter can
be used as a response. A capital letter is stored as two
characters (refer to section 9), so that a limit of one
character would, except for this special handling, not
allow the use of capital letters. If the limit is greater
than one, a capital that would cause the response to
exceed the limit is ignored, so it does not appear on the
sereen. Second, judging is started automatically when a
response length limit of one character is given. In other
cases, the student must press the NEXT key to start
judging, but this is done automatically by the system if
the limit has been set to one by a ~long— instruetion.

The number of characters in the student response is kept
in the system-reserved word jeount. As with all system-
reserved words, jeount can be used in expressions, so it is
possible for the author to test the student response for
length.

Although response judging normally is not automatically
initiated when the response length limit is reached (except
in the case where the limit is one), judging can be forced
to start when the limit is reached by use of the —force-
instruction (refer to section 10 for a full description of
the —foree- instruetion). The instruction is:

force long

The -jkey— instruction allows the author to specify keys
other than the NEXT key for initiating judging. The
NEXT key remains active. The tag of the instruction
gives the keys that initiate judging. The keys are speci-
fied by name. For example:

jkey back,helpl

helpl represents a shifted HELP key. Only funetion keys,
such as ERASE, BACK, and so on, can be used as the
named keys in a —jkey- instruction. The funetion keys are
those with key codes greater than 0200. If more than one
—jkey~ instruction is used with a single —arrow- instrue-
tion, the -jkey— instructions are merged, so any key
specified by any one of the —jkey- instructions initiates
judging. The —jkey- instruction is a regular instruction.
The —arrow— instruction resets the —jkey— options, so the
instruetion should follow the —arrow— instruction and must
be included following each —arrow- instruction for which
the options specified are desired. (Refer to —iarrow- for
another method.)

97405100 C

MANIPULATING THE STUDENT RESPONSE

The response made by the student is not necessarily in the
form that the author desires it to be for judging. As a
result, instructions are included for modifying the student
response prior to actual judging of the response. How-
ever, these instructions, since they work with the student
response, are judging and not regular instructions. The
author should exercise some caution in their use, since it
is possible to alter the student response beyond recog-
nition.

These instructions never end judging. Therefore, if the
author desires to perform more complex operations on the
student response, it is necessary to use one of the judging
instructions described later in the section to end judging
before the manipulation can be done. The =judge—
instruction (covered in detail later in this section) allows
judging to be restarted when the manipulations are
finished.

The manipulation judging instructions fall into three
classes: storing a student response, making a judging copy
of stored characters, and directly altering the judging
copy.

STORING A STUDENT RESPONSE

There are two ways of storing a student response. The
most often used is the —storea— instruction, which stores
the student response in the variable specified with any
excess stored in the following variables. The -open-—
instruction puts one character into each variable.

The —storea— instruction specifies the variable in which
the response is stored as its first argument. Since the
student response is often more than 10 characters in
length (the maximum number of characters that can be
stored in a single variable), the variables immediately
following the one specified hold the remainder of the
response, if necessary. The —storea- instruction produces
left-justified, zero-filled storage.

For example, if the student response is 23 characters long,
the instruction

storea nll,30

stores the response in variables nll, nl12, and nl13. The
second argument, 30 in this case, gives the number of
characters to be stored. The last seven character codes,
in this case, are zero. If the second argument is omitted,
up to 10 characters are stored. An alternative allows the
author to store only the exact number of characters in the
response.

storea res,nl < jeount

This instruction stores the number of characters in the
student response and also stores the value of jeount in
variable nl. Either integer (n type) or floating-point (v
type) variables can be specified as the starting storage
location in the —storea— instruction. The action taken is
the same in either case.

The ~open- instruction puts one character of the student
response into each variable. The starting location is the
only argument in the tag. Each character is right-
justified within the variable. The remainder of each
variable is filled with zeros. Only integer variables should
be specified as the starting location of an -~open— in-
struetion.

MAKING A JUDGING COPY

The -loada— and -close- instructions are used to place
characters already stored in the bank of variables in the
judging copy. The judging copy is blanked before the new
characters are put in, so the characters constitute the
judging copy in its entirety. The -loada— and -close-
instructions are the complementary instructions to the
—storea- and —open- instruetions, respectively.

The -loada- instruction places the character starting in
the location given in the first argument in the judging
copy. The number of characters is given as the second
argument and can be a variable reference. An execution
error results if a character code of 000 is encountered
(neither a blank nor a zero have 000 as a character code).
It assumes that the characters are packed 10 per variable,
left-justified (as from a -storea— or —pack— instruction).

The —close— instruction takes the rightmost character
code of the number of variables specified in the second
argument of the tag, beginning with the variable specified
as the first argument of the tag. These characters then
become the judging copy. |

ALTERING THE JUDGING COPY

Two operations can be performed on the judging copy
without requiring that it be stored, manipulated, and then
replaced. These operations are performed by the —bump-,
—put-, -putd-, and ~putv- instructions.

The ~bump- instruction removes any of the characters in
its tag (up to eight characters can be specified in a single
—bump- instruction) from the judging copy. Spaces can be
included but should be between two other characters for
clarity.

All occurrences of any of the characters specified are
removed from the judging copy. Thus, the judging in-
structions following a -bump- instruetion should not
contain any of the —bump-ed characters as a part of the
specified answer.

As an example, the instructions

bump etr cond
answer 5fps

allow the student to respond with 5 feet per second and
still judge the response as correct.

The —put- instruction substitutes strings. Any occurrence
of the string on the left of the first equal sign in the tag is
replaced by the string to the right of the same equal sign.
As with the -bump- instruction, all occurrences of the

11-4

string to be replaced are replaced with the execution of
the single instruction. As an alternative example to that
given for the ~bump~ instruction, the instructions

put fps = feet per second
answer 5 feet per second

allow the student to answer with 5fps and still mateh the
tag of the —answer- instruction.

Problems arise if the character string to be replaced
contains one or more equal signs. In this case, the —putd-
instruetion should be used.

The tag of the —putd- instruction gives the two character
strings along with delimiters. As with the —put— instrue-
tion, ocecurrences of the first character string in the
student response are replaced by the second string. The
major difference is the use of delimiters for the character
strings. The first character in the tag is the delimiter
used. The next occurrence of the same character
indicates the end of the first string and the beginning of
the second. The third occurrence gives the end of the
second string.

An example of the —putd- instruection is:
putd ,irregardless, regardless,

Because the delimiter is defined as the first character in
the tag field, this instruction could also be

putd "irregardless'regardless"

and have precisely the same effect. The restriction on
the delimiters allowed is the obvious one: the delimiter
used must not appear in either of the character strings.

The —putv- instruction is similar to the ~put- instruction
except that the original and replacement charaecter strings
are in variables.

The tag field for the —putv~ instruction consists of four
arguments specifying the following.

Argument Definition
1 Original character string (left-jus-
tified)
2 Length of original string
3 Replacement character string
(left-justified)
4 Length of replacement string

An example of the —putv- instruction is:
putv nl,4,n5,n8

A maximum of 50 characters can be replaced with each
-putv—- instruetion. If the replacement of characters
causes the judging copy to exceed 300 characters, an
automatie no judgment is made. The limit of the judging
copy is 300 characters.

97405100 C

If successive —putv— instructions are used, they are exe-
cuted in the order of occurrence and may possibly modify
the previous —putv- instructions.

INFORMATION FROM A STUDENT
RESPONSE

Sometimes an author needs information about the words in
a student response. The -getword-, -getmark-, and
—getloe~ instructions supply information about a specified
word in the student response by specifying the ordinal
number of the word in the first argument of the tag. The
instructions are regular rather than judging instructions
and are executed only in the answer-contingency state
which is the regular state following judging and preceding
an —endarrow—, an —arrow—, or end-of-unit.

The system-reserved word weount contains the number of
words in the student response. A word is defined as a
string of characters separated from other strings by
spaces, punctuation, or letter/number boundaries.

The -getword- instruction finds the word in the student
response which is specified by number in the first argu-
ment of the tag. The word is stored in the location given
in the second argument of the tag, and the number of
characters in the word is stored in the location given in
the third argument of the tag. The optional fourth
argument specifies the maximum character length
allowed. When this value is not given, the default
character length is 10. If the value in the first argument
is greater than weount, the third argument containing the
number of characters is zero, and the second argument is
unaffected. The third argument always contains the
number of characters in the requested word regardless of
limits set by the fourth argument.

The -getmark— instruetion returns markup information
about the word specified by number in the first argument
of the tag. The markup information is stored as a number
in the location specified in the second argument of the
Lag.

The —getloe- instruction returns the sereen coordinates of
the word specified by number in the first argument of the
tag. The second and third arguments are the starting x
and y coordinates, respectively, and the optional fourth
and fifth arguments are the ending x and y coordinates,
respectively.

The following instructions store the second word of the
student's response in storage locations n10 and n11 and the
length of the word in n9. Location n8 contains markup
information about that word. The starting sereen position
is in n12 and n13, and the ending screen position is in n14
and nl5.

getword 2,n10,n9,20
getmark 2,n8
getloe 2,n12,n13,n14,n15

RESPONSE JUDGING

The most important part of response handling is judging
whether the response was anticipated by the author and is

97405100 C

the one that the author will accept as a correct answer.
Any response not specified by the author is judged no
(incorrect).

NONNUMERIC RESPONSE JUDGING

Two instruetions that are usually used for judging student
responses when the response is most apt to be a word,
phrase, or short sentence are the —answer— and —-wrong-
instructions. They operate in the same manner, except
that the —answer- instruction judges the response ok if it
adequately matches the tag of the instruetion, and the
—wrong— instruction, if matched, judges the response no.
The —wrong- instruction allows the author to give the
student a message following the wrong answer, and if
desired, to do other processing. The —answer— or —wrong—
instruction with a blank tag is matched by a NEXT
keypress, a space bar press, or a punctuation mark.

The tag of the —answer-— or —wrong— instruction is the
answer to be matched. Three options are available for
words within the tag.

Words that are simply written in the tag, as in a —write—
instruction, must be present in the student response and in
the order in which they appear (unless —specs noorder— is
used).

Words within a set of parentheses are considered syn-
onyms, and while it is necessary for one of the words to be
present in the proper position, any one of the words within
parentheses is judged correct. Each set of parentheses
should have a list of two or more words, separated by
commas.

Optional words are enclosed in angular brackets (<,>).
This list ecan occur anywhere in the tag, and the tag may
contain more than one optional word list. Any words in
the student response that are included among the optional
words are ignored, whatever their position in the student
response.

A phrase is indicated in the tag by using an asterisk be-
tween the words of the phrase. Phrases must be com-
pletely on one line. The system-reserved word phrase is
set to -1 if no errors are in the phrase, and it is set to 0 if
a phrase is incomplete.

The answer tag cannot contain punctuation except for the
commas within a bracket or parentheses set. Punctuation
is allowed in the student's response, but it is ignored. The
words in the tag are separated by spaces only and are in
the order in which the student's response must occur for a
mateh. Thus, the instruetion

answer <the,is> (square, rhomboid) blue

accepts the square is blue or rhomboid blue as a correct
response, but it does not accept blue rhomboid as correct.
It is possible to accept keywords in any order as a correct
response o an —answer- or —wrong- instruction through
the use of the —speecs— instruction with the tag noorder.
The —specs— instruection is discussed in detail later in this
section.

The —answer— and -wrong- instructions also check for
extra words, spelling, and numeric tolerance, as well as
the word order. These options, like the word-order check,
can be cancelled by the author thorugh the -specs—
instruction.

The student response is marked for words not contained in
the —answer— tlag, for correet words out of place, for
misspelled words, and for numeric answers that are close
to that required but not quite accurate. Extira words are
underlined with x's, misspelled words and improper
numeric values are indicated with equal signs, and
misordered words are indicated with arrows. Because of
the complexities of spelling and spelling errors, a mis-
spelled word is not always recognized as misspelled but
might instead be indicated as an extra word. The response
is not marked unless the response is close 1o a match or if
a —no— instruction (deseribed later in this section) is used.
Thus, the instruction

answer Johann Kepler

does not accept Leonardo da Vinei as a correct response
nor is the response marked to indicate an error. The
tolerance for numeric answers or numeric portions of
answers is 10 percent for marking the answer (that is, the
response is labeled as misspelled if the answer is within 10
percent of being correct). Numeric answers that are more
than 10 percent from the correct value are not underlined
with x's but are left unmarked. All of the options for
marking a student response can be modified or disabled by
the author with the —spees— instruction (described later in
this seection).

The -wrong- instruction performs the same sort of
marking of the answer, which can be a disadvantage, since
it leads the student to answer incorrectly by following the
markings. However, messages and actions taken following
a matched —wrong- answer can be helpful to the student,
and these are only executed when the tag of the —wrong-
instruction has been adequately matched.

The —answerc— and —wronge— instructions are conditional
forms of the —answer— and —wrong- instructions, respec-
tively. The variable in the first argument of the tag
indicates which response is anticipated. The responses
may be anything which is legal in an —answer- or —wrong—
instruetion. A response for a condition may extend onto
the next line since end-of-line is not a delimiter for these
instructions.

At times, the author wishes to allow a number of igno-
rable words or wants to specify a number of synonyms for
words. This can make the -answer— and -wrong-
instructions unwieldy because of the number of words that
must be specified in the tag. One alternative is the use of
the -list- instruetion.

The -list- instruction sets up a list of synonyms that can
be used interchangeably. The synonymous words are given
in the tag of the instruction, separated by commas. The
first argument in the tag, however, is not one of the
synonyms but the name to be associated with the list.
This is necessary because more than one -list— can be
used, even within a single —answer— or —wrong- instruc-
tion. Each list name must be unique with respect to other
list names in the same lesson, and it must be no more than
seven character codes long.

The synonyms in the list can be used as either synonymous
important words or as a list of ignorable words. The list is
referenced in the tag of the —answer- instruction by the
name (first argument) of the list. The name of the list
must be enclosed in either parentheses or angular
brackets, whichever is appropriate to the usage, contained
within another matching set of parentheses or brackets.
These outer brackets allow further synonyms to be defined
for use during a single —answer- or —wrong- instruction.
As an example of the use of the -list- instruction,
consider the following instruetions.

list extra,a,the

list saurian, brontosaurus, stego-
saurus, diplidocus

at 510

write Name a dinosaur

arrow 1010

answer <<extra>> ((saurian), tyrannosaurus,
trachodon)

If the lesson concerns dinosaurs, a =list= instruction
specifying synonymous names is much more readable and
easier to write than spelling out all the alternatives in
each relevent judging instruction.

If the vocabulary to be used in judging student responses is
quite large, or if something approaching a dialog is to be
allowed between the student and the lesson, the —answer—
and -wrong— instructions might not be appropriate.
Instructions that make the judging of complex responses
faster and easier are the —concept—~, —miscon-, —vocabs—,
—vocab-, and —endings— instructions. These instructions
allow student responses to match any of a number of
anticipated responses.

The tag of the —concept~ instruction specifies the concept
to be matched, judging the student response ok if the tag
is matched. The -vocabs— or ~vocab— instructions must be
used with the —concept— instruction. All of the words in a
—concept— instruction must be in a preceding —vocabs—
instruction to prevent condense errors. Using a number of
—concept- instructions is fast and efficient because the
—concept- instruction converts the student response to a
sequence of numbers. If more than one line is used in the
tag of the —concept- instruction, each line is taken to
represent an equivalent concept. This allows the author
to enable the student to use grammatically different but
semantically identical responses and to allow those re-
sponses to match the same judging instruction. It also
requires the author to keep each concept less than one
line long. Every word in a —concept—- instruction must be
part of an active vocabulary established by a previous
—vocabs— or —vocab- instruction. A —concept- instruetion
with a blank tag is matched when the student's response
consists only of ignorable words.

The analog of the —wrong- instruction for judging con-
ceptls is the —miscon— instruction. It judges the student
response no if the tag is matched. All the features of
—concept~ can be used with -miscon=-.

The -vocabs— instruction specifies the vocabulary to be
used by a —concept— instruction. Just as a —define- set
has a name so that the set can be referenced by name at
other points in the program, the first line of the tag of the
—vocabs— instruction gives a name to be associated with
the vocabulary that the instruction specifies. Succeeding

97405100 C

lines may be comprised of ignorable words, keywords,
synonymous words, and phrases. Ignorable words are
separated by commas and enclosed in angular brackets.
Keywords are separated by commas. Synonymous words
are separated by commas and enclosed in parentheses.
Synonymous words with suffixes may be used (refer to
—endings— instruction in this section). Phrases are desig-
nated with an asterisk between the words of the phrase.
A phrase may not be split between lines and cannot use
plurals and —endings—. If a word begins with a number and
contains letters also, treat it as a phrase (for example, 3rd
does not work, but 3*rd does work). The -vocabs—
instruction also has spelling and capitalization checks.

The -vocab— instruction is almost identical to the
—vocabs— instruction except that it does not allow phrases,
has no spelling checks, and has no capitalization checks;
therefore, it uses less space than a —vocabs— instruection.

The —endings— instruetion adds suffixes to words defined
in a vocabulary (-vocab— or —vocabs=) and must precede
the —vocab— or -vocabs- instruction. The tag of the
—endings— instruction consists of two arguments: the first
argument is a number (0 through 9) identifying the
suffixes list, and the second argument is the actual list of
up to eight suffixes. For example, the instructions

endings 0,ed,ing,s
endings 1,ed,ing

define two suffix lists as shown below.

vocab work/0
fir//1
hire/s/d

The first line of the -vocab- instruction defines as
synonymous the words work, worked, working, and works.
The second line defines as synonymous the words fired and
firing but not fir. The third line defines as synonymous
the words hire, hires, and hired.

The —concept- instruction uses the vocabulary specified
by the last voeab type instruction encountered prior to the
—conecept- instruction. If more than one —vocab— type
instruetion has been encountered and the author wishes to
use one of the earlier ones in judging a response, the
relevant vocabulary is called into activity by a —vocab—
type instruction with only the name of the desired vo-
cabulary in the tag of the instruction. Because of this
ability to recall vocabularies to activity, the name asso-
ciated with each -vocab- vocabulary must be unique
within the lesson.

The -concept- instruction functions by reducing the
synonyms given in the —vocab- instruction to a positional
reference within the list, associating the important words
in the tag of the instruction with the same numbers, and
checking the student response to see if a similar reduction
yields the same result. Thus, if the important words
specified in the tag of the —concept- instruction are in the
order taken from the first, sixth, and second sets of
synonyms in the -vocab- instruction, the -concept-
instruction reduces the answer to be matched to the
numbers 162. The student response is subjected to a
similar reduction and judged ok if the reduction of the
student response also yields 162. Words specified in the
—vocab~— instruction as ignorable do not affect judging of
the student response, regardless of the position of
occurrence or number of appearances in the student
response.

97405100 C

The —ok— instruction judges the student response ok and
ends judging. It can be used for acceptance of arbitrary
criteria or any other purpose in which the exact form of
the response is immaterial, such as storing a name by
which to address the student. In such an instance, the
—storea~ instruction is probably the best instruetion to
use, but the -storea— instruction does not end judging so
that further processing can be done. The —ok— instruction
can be used for this purpose.

The —no- instruction functions in the same manner as the
—ok— instruction, except that the student response is
judged no rather than ok. As with the —ok— instruction,
the tag of the —no- instruction is blank.

The —ignore- instruection, which also possesses a blank tag,
has a somewhat different effeect. The student response,
rather than being judged ok or no, is ignored. The
response is erased, processing stops, and the system waits
for a new student response. Regular instructions follow-
ing the —ignore- instruction are not executed, nor are the
regular instructions, if any, following a -specs— instruec-
tion.

At times it is necessary to judge the student response
correct only if it exactly matches the specification given
by the author. The —answer- instruetion is too general for
this purpose. Three instructions are supplied for requiring
exact matehes: —exact-, —exacte—, and —exactv-.

The —exact- instruction judges the student response ok
only if it precisely matches the tag of the instruction.
This includes punctuation, spaces between letters, and all
other characteristics of the tag. The —exacte- instruction
is equivalent, but it is a conditional form. The first
argument in the tag is the variable or expression whose
value determines which argument is to be used as the tag.
The remaining arguments are the possible responses the
student can be required to matech. Since the arguments
are separated by commas, the responses may not contain
commas. This can be altered by a —change symbol—
instruction (deseribed later in this seection), or else an
—exactv- instruction can be used.

The —exactv— instruction has two arguments in its tag.
The first argument specifies a variable name, and the
second argument specifies the number of characters to be
matched. The instruction compares the student response
against the specified number of characters in the variable
bank, starting with the specified variable. The response is
judged ok if an exact match is achieved. This allows a
form of conditional judging with punctuation, since the
characters to be matched can change either by change of
characters or by change of variable reference. If the
character count in the second argument is omitted, the
comparison ends after 10 characters or after a zero string
of six bits. If the second argument is zero, the student
response is judged correct if no keys are entered.

NUMERIC JUDGING

When a purely numeric response is required, which may be
an algebraic expression, several instructions are available
for processing the response.

The -answer— instruction is limited, since only simple
numeric responses, such as 200+32, are permitted. The
-wrong- instruction has the same limitation. The —ansv-
and —-wrongv- instructions are specifically designed for

judging numeric and algebraic responses. The tags of
these instructions have either one or two arguments. The
one-argument form requires that the value of the student
response be precisely equal to the value specified by the
author. The optional second argument specifies a range
within which the response is judged ok. The first
argument can be an expression, if desired. The second
argument can either specify an actual value range or a
percentage range.

For example, the instruction
ansv 23+y2,5%

judges the student response correet if it is within 5 per-
cent of the value given by tlie expression 23+y2. An
example of the use of a specific numeric range is the
instruction

wrongv 237,4

which judges the response no if it is between 233 and 241,
inclusive.

The -store- instruction also judges algebraic responses.
The manner of evaluation is somewhat different from that
of the —ansv~ and —wrongv- instructions. The response is
evaluated, and the value is stored in the variable which is
the tag of the instruction. No value is specified as
correct. The response is judged no if the response cannot
be evaluated. If the response can be evaluated, the
response is not judged ok, and the judging is not stopped.
Thus, an instruction such as the -ok- instruetion is
necessary Lo end judging with an ok judgment.

The system-reserved word formok is set by the —store—,
—ansv-, and —wrongv— instructions. The value of formok is
-1 if the response can be evaluated. If the response
cannot be evaluated, the value of formok is set to any of
various values, depending on the type of error. A list of
these values, together with the type of error they
represent, is given in appendix B.

The -storen- instruction searches the student response for
a numeric element, and if found, evaluates the element
and stores the value in the variable specified in the tag.
Judging, in this case, is not ended. If no numeric element
is found, the response is judged no, and the variable is
given the value 0. Only simple numerics are permitted in
the student response, such as -2/3 or 4.75. Variable
names cannot be used in the response. The numeric
element can be embedded in text but must, in this case,
be set off by spaces or punctuation. Only the first
numeric element is searched for, but that element is
removed from the judging copy so that responses with
more than one element can be broken down by multiple
—-storen- instructions.

The -ansu-, -wrongu-, and -storeu- instructions are
useful when judging student responses that involve both
numbers and scientifie units, such as 3 .7 kg-m/sec2.

These instructions are similar to the —ansv-, —wrongv-,
and -store- instructions except that the dimensionality
(units) of the student response is handled, not just the
numerical element.

11-8

The dimensions used in the —ansu— and —wrongu~ tags must
be previously defined in a —define student- instruction.
For example:

define student
units,kg,m,sec $$primary units:

¥ $$the keyword units

= $$is required
em=m/100, $$equivalent units
min=60xsec

*

ansu 3.7 m/sec

*

wrongu 10.9 kg—m/secz

The —ansu- instruction judges numeric student responses
(with scientific units) ok if the answer is equal to the
specified answer within a specified tolerance. The
-wrongu- instruction judges numeric student responses
(with scientifie units) no if the answer is equal to the
specified answer within a specified tolerance.

When a tolerance is specified as a deviation, it is taken to
be a primary unit from the student define set, no matter
what units were specified in the —ansu- instruction. To
make sure the deviation is what is intended, the deviation
units must be specified explicitly. When the tolerance is a
percentage, the units used when none are specified are the
units specified in the first argument of ~ansu-.

To store the numeric and dimensional elements of the
—ansu- or -wrongu- response, the —storeu- instruection is
used. The =-storeu— instruction must precede the —ansu-—
or —wrongu~ instruetion.

The numeric element of the student response is stored in
the variable specified in the first argument of the
-storeu- instruction tag, and the dimensional element of
the response is stored in the 10 consecutive variables
specified in the second argument of the instruction tag.

The response is judged.no, and judging ends if the student
response cannot be evaluated. Judging does not end,
however, if the student response can be evaluated.

Again, the —storeu- tags must be previously defined in a
—define student- instruction. The -ansu-, =-ansv-,
-wrongu—, and -wrongv- instructions must follow the
—storeu-—.

TOUCH PANEL JUDGING

The -ntouch- and -touch- instructions are used to judge
student responses when the optional touch panel is used.
Since not all terminals have the touch panel capability,
these instructions should usually be accompanied by a
keyboard-input-response-judging instruction. The instrue-
tions can be linked with the -or- instruction discussed
later, if necessary.

The touch panel is composed of 256 squares. Each square
is two coarse-grid rows in height and four coarse-grid
columns in width. Thus, the screen has 16 rows and 16
columns of touch squares, each 32 dots by 32 dots.

97405100 C

The fine-grid coordinates of the center of the last square
touched are returned in system-reserved words ztouchx
and ztouchy. This information is also returned in the
system-reserved word key in the bit format 1xxxxyyyy,
where xxxx is the horizontal location and yyyy is the
vertical location of the touch square, both expressed in
binary. Since the key code for the touch panel is greater
than 255 (0377), it is simple to test if touch panel input
has occurred by simply testing the magnitude of key. The
keyboard input codes are all less than 255 (0377).

The touch panel, if enabled (refer to section 9), ter-
minates a —pause- instruction and can also funetion as a
NEXT key if a touch instruetion is not included in the
judging instruetions of the current —arrow- instruction or
in units that do not contain an —arrow- instruction.

The —ntouch- instruction judges a touch ok if it lies within
one of the areas specified in the tag. The arguments in
the tag specify rectangles either in coarse-grid coor-
dinates or in fine-grid coordinates. Touch squares which
are partially or completely covered by these rectangles
are the areas used to mateh touches on the touch panel.

Areas specified in coarse-grid coordinates can have one or
three arguments. The first argument is the coarse-grid
location of the lower left corner of the area. The optional
second and third arguments are the number of characters
wide and the number of lines high, respectively. Areas
specified in fine-grid coordinates can have two or four
arguments. The first two arguments are the fine-grid
location of the lower left corner of the area. The optional
third and fourth arguments are the number of dots wide
and the number of dots high, respectively. Default values
for widths and heights are | and 1. Commas separate the
arguments.

When the -ntouch- instruction specifies more than one
area in the tag, semicolons separate the areas. The
inequality

(3 X number of coarse-grid areas) + (4 X number of
fine-grid areas) < 62

gives the maximum number of areas which can be
specified in an —ntouch- instruction. Omitting the width
and height of an area does not increase the maximum
number of areas possible in an —ntouch- instruction.

Touch panel input in a location other than that specified
by an —ntouch- instruction is judged no.

The -ntouchw- instruction judges anticipated no re-
sponses. It funetions exactly like the —ntouch- instruction
except that a matched response is judged no instead of ok.
If the response is an anticipated no, system-reserved word
judged is set to 0. If a square defined by —ntouch-
overlaps a square defined by -ntouchw-, the square
defined last is ignored.

The ~touch— and —touchw- instruetions are early forms of
the —ntouch- and -ntouchw- instructions and are being
phased out.

The —touch- instruction specifies the location to be
touched as the first argument of the tag. This location is

97405100 C

a single coarse-grid screen coordinate. There can be
either one or two more arguments. If there is one more
argument, it specifies the tolerance in terms of touch
squares and in all directions from the touch square
containing the coordinate reference.

The three-argument form is used when the area that is to
give a judgment an ok is not square. The first argument
again specifies a coarse-grid coordinate position. This
position is the lower-left corner of the area to be
delimited. The second argument specifies the width of
the area in touch squares. The third argument specifies
the height of the area, also in touch squares. Thus, the
instruction

touch 2021,1

judges ok any touch panel response ocecurring in the square
delimited by coarse-grid coordinates 1717, 1728, 2228, and
2217. The instruction

touch 1013,6,1

judges a touch panel response ok if it lies within the
rectangle bounded by coarse-grid coordinates 913, 1013,
1036, and 936. Since the first argument specifies the
lower-left corner of the sensitive area, the location
requires an even line number and a column number ob-
tained by the formula: (4 X integer) + 1. Any coarse-grid
location can be used in the tag, but the system activates
the square corresponding to a proper touch location as
defined previously.

An important difference between the two- and three-
argument forms of the —touch- instruction is that the
two-argument form specifies the center touch square of
the desired touch area, whereas the three-argument form
specifies the lower-left corner of the desired touch area.
These are the areas specified by the above -touch—
instructions.

—
|

The —touch- instruction may also have a list in the tag of
up to 20 areas as correct responses. These areas may be
either two- or three-argument forms and are separated by
semicolons. Judging is ended with an anticipated ok if any
one of the specified areas is touched.

Touch panel input in a location other than that specified
by a —touch- instruction is judged no.

The —touchw— instruction judges anticipated no responses.
It functions exactly like the —touch— instruction except
that a matched response is judged no instead of ok. If the
response is an anticipated no, system-reserved word
judged is set to 0.

11-9 o

OTHER JUDGING INSTRUCTIONS

When one of several possible actions expressed in one or
more conditional instructions is to be executed, depending
on the student response, the —mateh- instruetion is usually
the best way to determine which action to take.

The first argument of the —match— instruction is a vari-
able name that gives the variable that will contain the
number of the answer matched. Succeeding arguments
give the possible responses, separated by commas. The
value of the variable specified is -1 if no match is found,
0 if the student response matches the first item in the list
of responses, 1 if it matches the second, and so forth.
Continued lines (that is, lines immediately following, with
the command field blank) are considered part of the same
—match- instruction. Judging is ended in any case, with a
judgment of ok if a mateh is found and no if otherwise.

The —or- instruetion is used to define consecutive judging
instructions as equivalent. The regular instructions, if
any, following the last such judging instruction are
executed if any one of the instructions in that set of
equivalent instructions has been matched. Similarly, the
system-reserved word ansent, which counts the number of
judging instructions that have been scanned in searching
for a mateh, has the same value regardless of which of the
instructions is matched. The tag of the —or— instruction is
blank.

As an example of the use of the —or— instruetion, the
instruetions

answer 1
or
touch 515

allow the student to specify either a number or a location
on the touch panel as the response. Either is judged as
equivalent. The value of ansent is the same, and any
regular instructions immediately following the —touch—
instruction are execuled if either the —touch— instruetion
or the —answer— instruction is matched.

However, the actual judging ok or no is done separately
for each instruetion. Thus, it is possible to mix —answer—
and —wrong— instructions in a single equivalent set of
instructions. Actual judging ok or no is done as it would
be done if the instructions were not connected.

It is sometimes desirable to furnish the student with the
correct answer; this can be done with the —ans— in-
struection.

The effeet of the —ans— instruetion is to enable the ANS
key on the student's keyboard. If the student then presses
the ANS key, judging is terminated, the response is judged
ok, and any regular instructions immediately following the
—ans— instruction are executed. These would ordinarily be
the display instruetions for informing the student of the
correct answer.

The only restriction on the —ans- instruction is that it
must be the first judging instruction to occur following
the relevant —arrow- instruction. This means that the
—ans— instruction must precede the —specs— instruction if
both are used.

11-10

If a unit does not contain an —ans— instruetion, the ANS
key has no effeet. Similarly, if there is an —ans—
instruetion following an -arrow- instruction and the
student does not press the ANS key, the instruction has no
effect. The value of ansent is not incremented by the
—ans— instruetion.

The —compare— instruetion allows an author to compare
the spelling of two words. These words may be either
alphabetic or numerie. The —compare- instruction fune-
tions according to the system judging symbols.

The tag consists of three arguments. The first two argu-
ments are the storage locations of the two words to be
compared. The third argument is the location of the
result of the comparison. This result is:

-1 If the words are different
0 If the words are the same

+n If the words are misspellings of each other,
where a smaller n indicates less of a misspelling

If the result of the comparison is +n, the system-reserved
words capital and spell are set. (Refer to appendix B.)

-SPECS- INSTRUCTION

The -specs— instruection has already been mentioned
earlier in this seetion because of its effeet on instruetion
execution during response judging. This instruetion
modifies the normal judging processes for the current
—arrow—. It also acts as a marker which is returned to
after each ok or no judgment.

The tag of the instruction consists of specifications of
standard author language options that are to be turned off
during response judging or nonstandard options that are to
be turned on during judging. Each specification is
represented by an appropriate word. When more than one
specification is to be given, the specifications are
separated by commas. If the —spees— instruction is to be
used only as a marker, a blank tag may be used.

A list of the options, with a short description of the effect
of each, is given in table 11-2. Options affect only the
student response.

The —markup— instruction marks the student's answer with
the markup saved by the —spees holdmark- instruction. If
—spees holdmark— is not specified, the system auto-
matically marks the student's answer during judging,
unless the markups are canceled by the —spees nomark—
instruction. Student answer markups consist of the
following.

Mark Meaning
< Word out of correct order, move left
=== Misspellings
XXX Unknown words
TS Broken or incomplete phrases
4 Capitalization errors
A Missing items

97405100 C

TABLE 11-2. -specs— OPTIONS

Option Effect

allwords Numbers are interpreted as words,
not numeric quantities.

alphxnum Word-number boundary is treated
as punctuation.

bumpshift All shift codes in the response are
ignored.

exorder The order of ignorable words is
important.

holdmark Withholds an answer markup until
—markup— instruction is executed.

nodiff The numeric approximation judger
is turned off.

nomark The normal marking-up of an
answer is not done.

nookno The ok or no is not displayed fol-
lowing the response when judging is
complete.

noops No arithmetic operations are per-
mitted.

noorder The order of occurrence of key
words is unimportant.

nospell Spelling judger is turned off (no
misspellings recognized).

novars No variable references are per-
mitted.

okassign The student can assign values to
variables which are defined in set
student.

okeap Capitalization of a word is ignored
in a response if, and only if, the
word is not capitalized in its
—vocabs— entry.

okextra Extra words in the response are
permitted.

okspell Recognizable misspellings are per-
mitted as a match.

toler Numeric answers within 1 percent
of value given are judged ok.

REGULAR INSTRUCTIONS AFFECTING
RESPONSE HANDLING

Some regular instructions also affect either the judging
copy of the student response or the judging process. Since
these are not judging instructions, judging must have been
terminated or not yet begun for these instructions to be
executed.

97405100 C

The —judge- instruction can be used to alter the judging
process or the final judgment. The —edit- and ~copy—
instructions can be used to increase the ease with which
the student can modify a response. The —time- instrue-
tion sets a time limit within which the system waits for
the student response. The —change- instruction changes
the judging values of characters.

-JUDGE- INSTRUCTION

The =judge— instruction can be used to restart judging
with or without changes made in the judging copy, to
cancel a previous judgment, or to specify the judgment to
be made. The instruction has both a conditional and an
unconditional form except that an argument of q is not
permitted. The —judge- instruction is only executed in the
regular state.

There are 11 possible specifications.

judge ok $$set judgment to ok, continue
processing regular instructions
judge no $$set judgment to no, continue

processing regular instrue-
tions, answer is considered
unanticipated

$$set judgment to no, continue
processing regular instrue-
tions, answer is considered
anticipated

judge wrong

$$rescind previous judgment,
wait for further keys of re-
sponse

judge exit

$$restart judging, using judg-
ing copy as modified by
-bump-, —put—, and so forth

judge continue

judge rejudge $$replace modified judging
copy with original response
and restart judging

judge x $$no action taken

$$student response erased,
system waits for another
response

judge ignore

judge quit $$stops the processing of
regular instructions without
changing judgment

judge okquit $$set judgment to ok, stops

processing of regular instruc-

tions

judge noquit $$sets judgment to no, stops

processing of regular instrue-

tions

The judge rejudge option uses the other copy of the stu-
dent response, which is not modified by any author
language instructions. This is why two copies are made,
so the second copy can be used for reference or rejudging.

11-31

The continue and rejudge options start judging, so the
system is switched into the judging state following exe-
cution of either of these options. The —ok— and -no-—
instruetions are the equivalent instructions used to switeh
from the judging state to the regular state.

An example of the conditional form is:

judge exp,no,X,ok,ignore,no

-EDIT- AND -COPY. INSTRUCTIONS

The student can be allowed to place words into his input
buffer by means of the —edit~ and —copy- options. They
function in a similar but not identical manner.

The -edit- instruction sets up a buffer starting at the
variable location specified in the tag of the instruction,
and it continues until the length limit of the student
response is reached. Unless modified with a -long~ in-
struction, this is 150 characters or 15 variables.

A default —edit- buffer is always active unless a —long—
instruction with a tag greater than 150 is used. If a
-long- instruction with a tag greater than 150 is used and
the -edit— feature is desired, the —edit— instruetion must
be used.

The EDIT key causes operation of the —edit— option. When
the student has typed in a response, pressing the EDIT key
removes the response from the display (and from the input
buffer). Each press of the EDIT key after this brings in
one word of the student response, both on the sereen and
into the input buffer, until the entire response is again on
the screen. A press of the EDIT key following full display
of the response causes the entire cycle to repeat.
Pressing SHIFT EDIT copies the remaining portion, at any
point in the cyele, into the input buffer and onto the
screen.

The square key (O), when pressed, brings in one char-
acter of the student response, both on the sereen and into
the input buffer.

A word, in the case of the —edit- and —copy- instructions,
is not a computer word, which would consist of 10 char-
acters. Rather, it is a string of alphanumeric characters
bounded by punctuation. In this case, punctuation also
includes spaces, as well as periods, commas, parentheses,
and so on.

Modifications that the student makes to the displayed
response are reflected in the —edit— option. That is, if a
word is added or deleted partway through the original
response, use of the EDIT key includes the new change in
the —edit— copy.

The starting location, which is the only argument of the
tag, must be a variable name (or be reducible to a variable
name by the system). The variable must be in the student
variables and not in common or storage variables. In
addition, the author must be sure that a sufficient number
of variables are available to contain an entire response to
ensure proper operation of the edit option. Thus, an
instruetion such as

edit nl40

11-12

should be used only if the permitted length of the student
response (set by a ~long— instruetion) is no more than 100
characters.

The —copy- option funetions similarly to the —edit— option,
but it uses a character string given by the author rather
than the student response. The —~copy- instruction has a
two-argument tag. The first argument gives the starting
location of the character string, and the second gives the
total length of the character string in number of char-
acters. As with the -edit- instruction, the starting
location must be in the student bank of 150 variables.

The COPY key activates the copy option. When the key is
first pressed, the first word from the copy buffer is placed
in the input buffer and displayed on the screen. As with
the —edit- instruetion, a word, in this context, is not a
computer word but an alphanumeric string bounded by
punctuation. Repeated presses of the COPY key cause
the entire character string in the copy buffer to be copied
into the input buffer. Again, similar to the —edit— option,
pressing the SHIFT COPY keys copies the remainder of
the string into the input buffer and displays it on the
sereen. The square key operates the same as the —edit-
option.

However, unlike the —edit— option, the string can only be
used by the student once. The string is not destroyed, so
the author can specify the same string as the object of the
—copy- option for a different —arrow- instruction. How-
ever, the student can only access the copy string once in
each ~arrow-.

For both the —copy— and the —edit~ instructions, a blank
tag clears the associated buffer, if placed after an
—arrow—, and disables the option. Thus, if the author
wishes to prevent the student from using the edit option,
even though the student response length limit is less than
151 characters, an —edit- instruction with a blank tag
should be used. The edit option may also be cancelled
with an —~inhibit edit~ instruction.

The copy option is turned off when the system encounters
an —arrow- instruetion, so the ~copy~- instruction should
follow, not precede, the appropriate —arrow- instruction.

-TIME- INSTRUCTION

The —time— instruction is used to limit the time the stu-
dent has to give a response. The tag of the instruection is
the time allowed in seconds. If the time is exceeded, the
system-reserved word key is assigned the value timeup
and processing is done as if the NEXT key had been
pressed. The system-reserved word key can be tested to
find if the student was timed out or entered a response.
An example is:

time 10
ok
writec key=timeup, Time limit exceeded,,

Other conditional instructions, such as the =judge~ in-
struction, can also be used to test system-reserved word
key, and if desired, start or modify judging on that basis.

97405100 C

-CHANGE- INSTRUCTION

The -change symbol- instruction is used in the IEU to
change the values of characters when they are used in the
judging state. The change is lesson-wide.

The tag of the instruction consists of the word symbol,
followed by a character, which is followed by the word to,
and ending in a new character to be substituted or the
word letter. An example is:

change symbol [to (
symbol] to)
symbol (to letter
symbol) to letter

97405100 C

The order is important in a —change symbol- instruction.
In the example above, [and] are read by the system as (
and), respectively, in all judging instructions in the
lesson. The symbols (and) are then treated as letters.
This permits students to have symbols (and) in their
answers. For example,

answer [aluminum sulfate,AlZ(SO4)3'17H20]

accepts aluminum sulfate as a student answer, and it also
accepts AlZ(SO4)3'17H20.

11-13 |

- 1 v e " -
li L. i .
g i

1 _.#-.“.,EI.F*'-'I:‘-' - - - I
. 2 . N . T = .

. B II-I .

. oo T = - == = ﬁa-'-ﬁ'-:i.

" a ﬂ:'.: . . - P = . . T 1 B .-
SRR B i-:-

. .S . 1 . - -
- B » - . .) l.-l]
. N - - n ") = " IJL R = at® L
" B " " N u = = s - = "'F.._‘ o
=y - . " . . . - LR L S
L] 1 . .
= = B i... o ‘
- LT] . r - B -.- i E
n n LI n u B - o i]
: . . =~ 2. . = 1 - :5. T
n . - S m . - " ;L P i
) . . -
B - " a -
B I u . .l "
B [
) : . aPF i
B l‘l
B - K a'. . .
L] - . ‘ .
- B N “ N .-
a B . " I - '--.'-I B
- R
- = v - . R . - '.
- _ : R
1 - n - " .--
L] . . : . L] ’
. i N
o . i H
L] L] N
- . . D
o " o=
u = - . .
. L. - -l - ..- l-
lll '-
- - e LT '
B . . .) - ne ::
. . f fat.
. - . B B =" .
i . . 0
- o : R
. . : . L] - LI] I.J'.-
o . "1 o
- N - .
L] l .

IH .. B
. N . - . i
.-1. o
. : - . .
L .
-. o
H
-~ n -
. - .l'. I) .
1= - = - - . i
' SEEL . ' . .
[, - _l__-. . . - i
- .. -)

CONDITIONAL FORM 12

T Y T e A Y T T T S e S R e v AR 2 TS ey T T PR P U O U

Several of the PLATO author language instructions have a
conditional form. In this form, the action taken depends
on some condition. The condition is the value of an
expression. The general form is

command expr,al,a2,...

where expr is the expression whose value is the deter-
minant of the action, and al,a2,... are the different op-
tions to be taken. The first option is selected if the value
of the expression is negative, the second if the value is 0,
the third if the value is 1, and so forth through the list of
options, in increments of one. If the expression is larger
than the number associated with the last option specified,
the last option is selected. The option is usually, but not
always, a name lo be associated with the instruetion.
Thus, the instruction

jump funge/2-3,first,blat,zilch,threlp

jumps to unit first if the value of the expression funge /2-
3 is negative, to unit blat if the value is 0, to unit zileh if
the value is 1, and to unit threlp if the value is greater
than 1. The value of the expression is rounded, if
necessary. The effect is as if the option selected were
the entire tag of the instruction.

Two special characters can be used to take no action or to
clear markers. Usually, if an x is encountered as one of
the actions, no action is taken, and the instruction has no
effect. When the instruction is one that sets markers
(such as the ~base- and —next- instruections), the character
q clears the marker, and the effeet is that of having the
instruetion with a blank tag. As an example, the
instruetion

base 2x-2,unl,x,q,grilk

has no effect if the value of the expression 2x-2 is 0, and
it specifies the current unit as the base unit if the value
of the expression is 1.

A q as the action to be performed in a conditional —goto—
or —join— instruction does not execute any other unit, but
execution of the current unit is halted and not resumed.
If the current unit is a main unit, the student must press
the NEXT key to continue, and the next unit is then
initialized. If the current unit is an auxiliary unit,
execution goes back to the main unit immediately.
Similarly, an x does not cause a unit to be executed, but
the current unit is continued so that the instructions
following the —join— or —goto- instructions are executed.

Since the expression can be any legal expression, a logical
expression can be used. In this case, only two possible
actions should be specified, since there are only two
values that the expression can take; -1 (true) and 0 (false).
It is because the first action specified must correspond to
a negative value of the expression that the values of a
logical expression are not 0 and 1 as in the semistandard
notation of Boolean algebra.

97405100 C

There are some special cases of the conditional form.

The -writec—~ instruction is the conditional form of the
—-write~ instruction. Because the actions to be taken are
separated by commas in normal conditional form, the
messages to be written by the -writee— instruetion
ordinarily cannot contain commas or other punctuation.
However, there is a universal terminator available with
the —writec~ instruetion which, when used, allows punctu-
ation in the messages. This terminator is obtained by
pressing the ACCESS key and then a comma; it looks like

If it is desired to write nothing in some cases, the appro-
priate position should be indicated by successive delimi-
ters, either commas or the universal delimiter. This is
necessary since an x, used to indicate no action to be
taken in other forms, would be treated as text to be
displayed. If the last condition is not to display a
message, successive delimiters should be used rather than
simply omitting use of the position. For example:

writee y < 3, Too small,,
If the final comma were not present, the message

Too small
would be displayed regardless of the value of y.
The —calee~ instruction is the conditional —cale~ instrue-
tion and performs the appropriate —cale— type action. The
possible actions consist of different assignments of value,
with the variable to which the value is assigned having the
potential of being different in each action. For example:

calec expr, v2< 31,gun< sin(blet) +2,v7< 7 /4

When one of several possible values is to be assigned to a
single variable, it is more efficient to use the -cales—

‘instruction. The —cales- instruction assigns one of several

possible values to a single, specified variable. For
example:

cales expr,fout< en(grun),36,2y+7

Neither the —calec— nor the —cales— instruetion can use an
X lo indicate no operation. The —calce— can use a 0, and
both the —calce—- and —cales~ can use successive commas,
as in:

cales expr,glitch<1,5,,23

The instructions that can have a conditional form are
listed in table 12-1.

12-1

TABLE 12-1. INSTRUCTIONS WITH A
CONDITIONAL FORM

answerc t
back
backop
back1
backlop
base
branch
caleet
calest
data
dataop
datal

datalop
do
eraseu
exactet
finish
from
goto
help
helpop
helpl
helplop
iarrow

iferror
imain
join
judge
jump
jumpout
keytypet
lab
labop
lab1l
lablop
lesson

mateht
mode
next
nextop
nextl
nextlop
nextnow
packet
stop
writect
wronget

t These instruetions are only used in the conditional form.

97405100 C

STUDENT DATA 13

#

The author or instructor can collect data on the execution
of a lesson or lessons in his course by using a datafile, a
file that is used exclusively for the collection of student
data. All data stored is course-, lesson-, and student-
specific. That is, the author or instructor can collect data
only for students in his course, only for lessons that
specify data collection, and only for students that have
the data collection option turned on through their course
records. Further, the lesson and student are indicated on
the data collected as overhead information.

Various types of information can be collected. This
includes summaries of areas of the lesson, requests by the
student via the TERM and help keys (found or not found),
execution error information, and student answers, whether
judged ok, no, or u-no (unrecognized no judgment).
Unrecognized words associated with a —concept— instrue-
tion can also be stored in the datafile.

Any or all of these options are specified in the records for
each student in the course records. It is not recommended
that all data be collected for all students, as this causes
the datafile to fill quickly. The datafile can be cleared
when full, but this loses any earlier information, and data
can be lost between the time the datafile fills and the
time the author empties the datafile. In particular, it is
not recommended that all of the student responses be
stored, as this can use a great deal of space in a short
time. While it may be useful to store all responses when
the lesson is still being intensively developed, it later is
probably sufficient to colleet the u-no judged responses.
These are the responses that are not anticipated by the
author, so they are judged no by default.

SPECIFYING DATA COLLECTION

As previously mentioned, the data options in the course
records must be turned on for each student who is to
collect data during lesson execution. Additionally, the
course must have an associated datafile. This is done by
going to the course records, specifying the proper student,
and once the student's records have been obtained,
choosing the proper option to find the data option specifi-
cations. These can then be modified by the author or
instructor. Pressing the letter or number associated with
any of the options switches the state of that option. That
is, if the option is off, it is switehed on, and vice versa.
The data collection option number 1 must be on for data
collection to occur.

Every lesson for which data is to be collected must
contain a -dataon— instruction. The options of the
—dataon— instruction can override student data options for
the remainder of the lesson, but they cannot turn on
course-wide data options that are {urned off. The
available options for data collection, with the tag associ-
ated with each, are given in table 13-1. More than one
option can be specified in a single —dataon- instruetion,
separating the arguments representing the different
options with commas. Thus, the instruction

97405100 C

dataon no, unreec no

places all student responses that were judged no into the
datafile, whether the answer was anticipated by the
author or not.

TABLE 13-1. LEGAL TAGS FOR
—dataon— AND —dataoff—

Tag Stores

ok Responses judged ok

no Responses judged no that mateh an
author-specified wrong answer

unrec no Responses judged no that were un-
anticipated by the author

errors Execution error

vocab Unrecognized words in response to
—concept—

area Area summary information

output —output- and ~outputl- instructions

help Requests for help keys (HELP, LAB, and
so on) that were satisfied

help no Requests for help keys that were not
satisfied

term TERM requests found

term no TERM requests not found

signin Time and data student entered lesson

The —dataoff- instruction stops data collection for that
lesson. It can be restarted later in the lesson by another
—dataon- instruction. If the tag of ~dataoff- is blank, no
more data is collected. If the tag has arguments (the
same as the arguments permissible for the -dataon-—
instruction), only those options specified in the tag are no
longer collected, provided that the options were originally
specified in a —dataon— instruction.

SPECIFYING DATA TO BE COLLECTED

The author must, in some manner, indicate the data that
is to be collected. For most types of data, such as storing
the student responses or the number of TERM requests
that were not satisfied, this is done through the course
records or with the —dataon- instruction, as deseribed
previously. In faet, it is necessary to use these areas in

all cases. However, some types of data, specifically area
summary information and the —output- and -outputl-
instructions, require more work on the part of the author.

Area summary information refers to specific portions of
the lesson. The areas are indicated by the author with the
—area— instruction. If the tag is blank, the data for the
area just completed is put in the datafile, and no more
area data is collected until an —area— instruction with a
nonblank tag is encountered. The tag of the instruction
gives the name to be associated with the area of the
lesson following. An area is delimited by the -—area—
instruetion as encountered during lesson execution.
Hence, if two students take different paths through an
area of the lesson (for example, one executes more or
different help sequences), the area summary data appears
to refer to different areas, as the number of —arrow—
instructions encountered can quite easily be different.
Similarly, if a student is branched to a new area but at a
later unit than that containing the —area— instruction, the
new area is not recognized, and the summary data for the
area is included as part of the previous area.

If an -area— instruetion with a nonblank tag is encoun-
tered while data is still being collected for an area
summary, one of two things happens. If the names of the
two areas are different, the summary data for the
previous area is written into the datafile, and collection
of data in the new area begins. If the names of the two
areas are the same, the second —area— instruction is
ignored. No data is written to the datafile until an —area—
instruction with either a blank tag or a different tag is
encountered during execution.

The name of an area, that is, the tag of the -area—
instruction, must be no longer than 10 characters and
cannot start with a numeral. The tag can be a variable, in
which case the alphanumeric contents of the variable is
taken as the name. This also means that a (limited)
expression can be used as the tag of the —area— instruc-
tion, as in

area n3$union$o73
or
area name $union$ var9

where var9 is a variable name, and name is an alpha-
numerie string.

The tag for the —area- instruction can also be one of two
keywords available, incomplete and cancelled. The
keyword incomplete ends data collection for current area
and marks the area as incomplete, and cancelled ends data
collection for the current area but does not enter any data
in the datafile.

The -setdat- instruction allows an author lo alter the
value of system-reserved words pertaining to areas.
Sometimes the numbers returned in area summaries are
not meaningful because of the way a particular lesson
operates. The —setdat— instruction makes it possible to
collect more meaningful data. The system-reserved words
which may be altered by —setdat— are:

aarea auno
atime ahelp
aarrows ahelpn

aok aterm
aokist atermn
asno

13-2

These reserved words may contain only integers and may
not have values greater than 511. An exception is atime.
It cannot be set to a value greater than the time signed on
for the current session. It is accurate only to 1/10 second.

When the data the author desires is not contained in any
of the standard data options, the —output- and —outputl—
instructions are used. This is the case particularly where
the author wishes to store the contents of one of the
variables or wishes to insert a comment in the data, or
both.

The -output- instruction funetions in much the same
manner as a —write— instruction except the text is placed
in the datafile. That is, whatever character string is
contained in the tag of the instruction is placed into the
datafile.

The contents of variables can be placed in the datafile by
using the embedding feature. This is much more re-
stricted in the case of the —output— instruetion than in the
—write— or -writec— instructions but functions in an
analogous manner. The embedded portion is set off by the
same symbols (<, 3), but the contents between these
symbols is different.

Only two argumenis are used when embedding in an
—output— instruection. The first argument specifies the
format in which the variable is to be stored in the datafile
and can be one of four possible arguments: a (alpha-
numeric), n (integer), o (octal), or v (floating-point). The
second argument names the variable to be written in the
datafile. The name can be either the primitive name (v23)
or an assigned name (luft).

Information written into the datafile also has overhead
information associated with it. This information consists
of the student, lesson, and area names, plus the time
elapsed since the student entered the lesson. The tag of
the instruction can be longer than one line, but each line
has all of this information written into the datafile with
it, so a three-line tag would have three copies of the
student, lesson, area, and time information.

The —outputl- instruection is used to place consecutive
variable values in the datafile, with a label to identify the
part of the lesson containing the —outputl- instruction.

The label is the first argument of the tag. This label is
placed, together with the other overhead information, into
the datafile each time the instruction is executed. Also
placed into the datafile are the variables specified in the
second and third arguments. The second argument gives
the starting variable, and the third gives the number of
variables. No more than 20 variables can be stored by an
—outputl- instruction, and the variables stored must be
contiguous. If the —outputl- instruetion is used without a
label, no overhead information is stored.

When the author is in the datafile editor looking at the
datafile, the -outputl- instruction shows the variable

contents in integer, floating-point, octal, and alpha-
numeric formats.

READING DATA INTO A LESSON

If the author desires to manipulate data in a manner other
than what is available from the data editor, some

97405100 C

information can be read into a lesson from the datafile.
The information that can be accessed in this manner is
that from area summaries, from —outputl- instructions,
and from signoff data.

However, before information can be read into the lesson,
a —readset- instruction must be executed. The tag of the
-readset— instruction consists of one to three arguments.
The first argument is the name of the datafile or the
name of the course file. The optional second argument is
the code word of the datafile or course. The code word is
enclosed in single quotes or it may be a variable, and it
must be included in the tag when the inspect or change
code words of the receiving lesson do not match the code
words of the datafile or course. The optional third
argument returns the number of students in the course
when the first argument is a course name.

If the first argument is a datafile name, the third
argument returns the number of unused records remaining
in the datafile. This is set to -1 when the datafile is full,
to 0 when storage into the last record begins, to 1 when
storage into the next-to-last record begins, and so on.

The system-reserved word zreturn can be used to check if
there is information on the datafile. If an attempt is
made to read data from an empty file, an execution error
results.

The system-reserved word zreturn is also used to check
for the existence of readable data. The -readd- instruc-
tion reads data from a datafile into an existing lesson and
causes an execution error if there is no appropriate data
to be read. The value of zreturn is -1 if there is more
data, and it is 0 if the end of the datafile is reached. The
author must include a check of reserved-word zreturn in
the lesson.

If the author desires the most complete information
possible, he should wait until all students have stopped
executing the lesson. The data is not complete if students
are still executing one or more lessons that send infor-
mation to the datafile. However, datafiles are automati-
cally checkpointed about every 8 minutes in the same
manner as common and student records.

The -readd- instruction reads one of three types of data
from the datafile: -area— summaries, —outputl—- infor-
mation, and signoff information. The first argument of
the tag specifies which type of data to read by one of the
keywords: area, outputl, or signoff. A -readset-—
instruction must be successfully executed before a
—-readd- is attempted. An end of file check must be done
using zreturn. The -readd— reads the datafile
sequentially.

The -readd area— instruction reads area summary data
from the datafile to student or common variables. The
second argument of the tag is the beginning of the vari-
ables in which the data is to be stored, and the third
argument is the number of variables. If the entire area
summary data is to be stored, 15 variables are needed in
the block of variables. This instruction, when executed,
reads the next area summary block of data from the
datafile. If there is no such block of data, an execution
error results. The contents of the 15 words from the area
summary is given in table 13-2.

97405100 C

TABLE 13-2. AREA SUMMARY
DATA STORAGE

Locationt Contents
0 First part of student name
1 Second part of student name
2 Lesson name
3 Area name
4 Elapsed time in the area (in millisec-

onds)
5 Number of —arrow— instructions in the
area
6 Number of ok judgments in the area
7 Number of ok judgments on the first
attempt
8 Number of anticipated no judgments
(matehed by —wrong— or —wrongv-)
9 Number of unanticipated no judgments
10 Number of help requests satisfied
11 Number of help requests not satisfied
12 Number of term requests satisfied
13 Number of term requests not satisfied
14 Completion/noncompletion of area (-1
if completed, 0 if not completed)

t Locations are relative to the starting variable in
the block of variables containing the area
summary. Thus, if ne300 is the first (starting)
variable, the lesson name is in ne302, the area
name is in ne303, and so on.

The -readd outputl- instruction reads data placed in the
datafile by an —outputl- instruection, from the datafile to
the lesson. The number of words (variables) necessary to
store this information can vary between 7 and 27. The
variability occurs because the author specifies the number
of variables whose contents is to be stored in the
—outputl- instruction. Seven variables are required as a
minimum for the overhead information from the corre-
sponding -outputl~ instruction. The storage of the
information is given in table 13-3.

The second and third arguments of the -readd outputl-
instruction are precisely like those of the -readd area-—
instruetion. The only difference is that the number of
variables required can be as many as 27 or as low as 7. If
an attempt is made to store the information from an
—outputl- instruetion in fewer words than are necessary
for storage of all the information, part of the tag of the

13-3

TABLE 13-3. —outputl- DATA STORAGE

Locationt Contents

0 Number of variables saved

1 First word of student's name

2 Second word of student's name

3 Lesson name

4 Area name

5 Execution time (from -dataon-) of
—outputl- (in milliseconds)

6 —outputl- label

7-16 Tag of —outputl—

t Locations are relative to the starting variable in
the block of variables containing the data from
the —outputl- instruction. Thus, if ne300 is the
first (starting) variable, the lesson name is in
nc303, the area name is in ne304, and so on.

—outputl- instruction is lost. Conversely, if more space is
allocated for storage than is required, the remainder is
filled with zeros. If the information in the datafile is the
result of an —outputl- instruction without a label so that
there is no overhead information, the first seven variables
of the block specified by —-readd outputl- instruction are
sel to zero.

The -readd signoff- instruetion funetions in mueh the
same manner as the two previous forms of the —readd-
instruetion; however, data is entered as a result of ex-
ecuting a —dataoff— instruction or as a result of exiting
from the lesson. Seven words are necessary to store all
the data read by this instruction. The information
transferred is given in table 13-4.

Student variables are read from the course records by
using the -readr- instruction. The -readr— instruction can
either be set to read only one record, or the -readr— can
continue to execute and read the next record in sequence.
A -readset— instruction (naming the course) must be
executed successfully before executing a —readr— instrue-
tion.

The -readr- instruction has three basic forms, with the
keyword in the tag indicating the type of —readr—instruc-
tion to be executed: name, sequential, or roster. The
name and sequential forms have the same continuation tag
lines available for specifying student data options:
student statistics, student variables, router variables,
ldone information, and lscore information. At least one
and as many as five tag lines may accompany each
—readr— instruction. The roster form of the instruction
does not have continuation lines.

The author must do an end-of-file check with the system-
reserved word zreturn. The values of zreturn are:

13-4

TABLE 13-4. SIGNOFF DATA STORAGE

Location Contents

0 First word of student name

1 Second word of student name

2 Lesson name

3 Elapsed time for this session (in min-
utes)

4 Total time to complete the lesson (in
minutes) if the lesson was completed
this session; if the lesson was not com-
pleted this session, this word contains
-1

5 Date

6 Time

t Locations are relative to the starting variable in
the block of variables containing the signoff
information. Thus, if ne300 is the first (starting)
variable, the date is in ne305, the time is in
ne306, and so on.

Value Meaning
-1 More information is in the file
0 When last record of course is read
1 Name is not in the course
2 Attempted to read ldone or Iscore

information when "mrouter" not in use

Continuing to read the course file after all records are
read (that is, zreturn equal to 0) causes an execution
error.

The —readr name- instruction reads the specified student
information (student statisties, student variables, router
variables, ldone information, and lscore information) into
a work space (student variable area or common area) for
inspection by the author or instructor. As many named
records as desired can be read, but a -readr- instruection
must be provided for each record. Additionally, the
—-readr name- instruction sets a pointer to that name so
that a subsequent —readr sequential- instruction starts
with the next name in the roster.

The first —readr sequential- instruction reads the record
of the first student in the course file (desired student data
is specified in the tag lines) from the roster into a
specified work space for inspection by the instructor.
Each -readr sequential- instruction reads the next stu-
dent's record; this process continues until the roster is
exhausted.

97405100 C

The —-readr name— and -readr sequential— instructions read
student statisties from the course records, using eleven
variables to store all the student statisties. These
variables are v-lype variables. The contents of the eleven
words of student statisties is given in table 13-5. To
display these variables, use the —showa— instruction for
the first six and the —show- instruction for the last five.

TABLE 13-5.- STUDENT STATISTICS STORAGE

Location t Contents
0 First word of student name
1 Second word of student name
2 User type
3 Date created
4 Last day on
5 Last time on
6 Total hours on system
7 CPU usage in TIPS
8 Total days on system
9 Number of sessions on
10 Cumulative DAPM
t Locations are relative to the starting variable in
the block of variables containing the student
statisties. Thus, if ne300 is the first (starting)
variable, the first word of the student's name is
in ne300, the second word of the student's name
is in ne301, and so on.

The —readr name— and —readr sequential— instructions can
provide information from the system-reserved words ldone
and Iscore only when "mrouter" is in use. This information
is stored in student variables or common. The ldone
information is in 3-bit signed segments and the lscore
information is in 8-bit signed segments. Therefore, one
computer word stores ldone information for 20 lessons, or
one computer word stores lscore information for seven
lessons. Refer to appendix B for values of ldone and
1score. If the -readr name— or -reader sequential—
instruction attempts to read ldone or lscore information
when "mrouter" is not in use, system-reserved word
zreturn is set to 2.

The -readr roster— instruction provides a list of student
names. Each student name takes two words; therefore, 30
words are needed for a list of 15 names. The total number
of students in a course is returned in the optional third
argument of the —readset- instruction.

Once the student record data is in the lesson, it ean be

sorted to eliminate unwanted information, it can be
packed, or it can be manipulated in any manner.

97405100 C

NOTES

The author can collect student comments during a lesson
with the -notes— instruction. The system sends these
notes to the student note file named on the course infor-
mation page. If this is NONE or left blank, the notes go
to the lesson note file named on the lesson information
page. If the author specifies this as NONE or leaves it
blank, the note is not sent anywhere.

The —notes— instruction has three forms. Upon execution
of the —notes— instruction with a blank tag, the system
initiates a TERM-comments (erases lines 30 and 31 and
gives help on line 32). The student can enter a comment
of up to 20 lines or 120 words and after completing it, can
give it an identifying title. The system stores this note
with the usual heading consisting of date, time, and sign-
on and adds a subheading consisting of lesson, unit, and
site information. (The student can also initiate a TERM-
comments from anywhere in the lesson by pressing the
TERM key and entering the word comments.)

The second form of the —notes— instruction has two
arguments. The first argument is an n- or v-type variable
containing author-supplied heading information. This
information must be in a form suitable for display by the
—text— instruction. The second argument is the word
length of the heading information. Upon execution, the
system allows the student to enter a comment and an
identifying title. The system stores this note with the
usual heading and adds a subheading consisting of the
name of the lesson and the author-supplied information.
The instruections

pack nl2,nl1, <« s,ntries » attempts at arrow in
unit < a,zunit »>.

cale nl0 <int(n11/10)+1

notes nl2,n10

provide student feedback to the author if the student
enters a comment. The student can choose to continue
with the lesson without entering a comment by pressing
the SHIFT BACK keys.

The third form of the —notes— instruction has three
arguments. The first two arguments are the same as in
the previous form of the —notes— instruction. The third
argument is the keyword send. Upon execution, the
system stores this note with the usual heading and a
subheading consisting of the name of the lesson. The body
of the note is the author-supplied information. The
system titles the note with the name of the lesson. The
student cannot enter a comment or the title with this type
of note and is not aware that a note has been sent.

After execution of the —notes— instruction, execution
resumes on the same display with the next author
language instruction, and the system-reserved word
zreturn is set to the following values.

w Meaning
= Note sent
0 Student did not send note (pressed
SHIFT BACK)
1 TERM-comments not allowed
2 Error in format of heading information
3 Error in connecting note file

- = kL - =]
' - =

) - '

o+ - -
£- 1= 1 -

1= LT

g
P =

=
- %

=
T

L
-
[
-
=P
F

=

y
B

. g
b i
Il..

i

1
-

[, ¥ p—— ;
L

.
L
1

"

.5:'4'-.-"'- -
L T - .. a-

1
wh w7 -
r'! o . 1
ag il 8¢ -
.t Hiy ==

{2

1

]

4

"

i

.
e
LR PP

e

RESOURCE MANAGEMENT 14

Site directors can manage terminal and ECS resources at
a logical site with a site lesson. A logical site is a group
of terminals which. share ECS. A site lesson is a lesson
specified by the site director who uses it to control
terminal use and ECS use. A lesson must be specified as a
site lesson to enable execution of the -site— and —station—
instructions.

-SITE- INSTRUCTION

The —site— instruction returns information about terminals
and ECS at a logical site. The instruection has four forms,
each with its own keyword in the first argument of the tag
and each returning a value in system-reserved word
zreturn.

The —site set- instruction enables the other —site— instruc-
tions for the logical site named in the second argument of
the tag. The first argument of the tag is the keyword set.
The system-reserved word sitenam can be used to deter-
mine the name of the user's logical site. Succeeding —site
sel— instructions cancel previous ones. The system-
reserved word zreturn is set to -1 if the —site set— instrue-
tion executes correctly and to 0 if the lesson containing
this instruection is not a site lesson for the site named.

The -site info— instruction gets the current site ECS
information for the site named in the —site set— instruec-
tion and stores the information in four words, starting at
the variable named in the second argument. The contents
of these words follows.

Word Contents
1 ECS base allotment
2 ECS current allotment
3 Amount of ECS in use
1 Number of active terminals

The system-reserved word zreturn is set to -1 if the —site
info— instruction executes correctly and to 0 if no site is
set.

The —site active— instruction finds the station numbers of
the active terminals for the site named in the —site set—
instruction. The first argument in the tag is the keyword
active. The second argument in the tag is the number of
the station at which checking begins. The numbers of the
active stations are stored in variables beginning with the
variable in the third argument. The fourth argument
determines the number of variables needed to store the
numbers of the active stations. This argument specifies
the number of active stations to be found. If this number
is greater than the actual number of active stations, the
final variable is set to -1. The system-reserved word
zreturn is set to -1 if the instruction executes correctly,
to 0 if no site is set, and to 1 if the starting station
number is incorrect.

97405100 C

The -site stations— instruction finds the station numbers
permanently on the site named in the -site set— instruc-
tion. The first argument in the tag is the keyword
stations. The second, third, and fourth arguments are the
same as the corresponding arguments in the -site active—
instruction except that they look for permanent stations
instead of active stations. The system-reserved word
zreturn is set to the same values as with the —site active—
instruction.

-STATION- INSTRUCTION

The -station— instruction returns information about in-
dividual stations (terminals) in the site named in the —site
set— instruction and controls the use of those stations.
The instruction has seven forms, each with its own
keyword in the first argument of the tag and each
returning a value in system-reserved word zreturn. The
system-reserved word station can be used to determine
the number of the user's station. The system stores the
station number as a single number, obtained by multiply-
ing the site number by 32 and adding the station number
within that site. For example, if the user's site and
station number is 4 - 13, the system stores the station
number as (4 X32)+13=141.

The -station info— instruetion obtains information for the
station specified in the second argument of the tag and
stores the information in 10 words, starting at the
variable named in the third argument. The contents of
these words follows.

Word Contents
1 First word of user name
2 Second word of user name
3 User's course
4 Type of user record
5 User's account
6 Session statistics in three 20-bit fields

(number of disk accesses, number of
CPU seconds used, and elapsed time)

7 Name of lesson or system lesson

8 ECS usage in four 15-bit fields (first
field empty, ECS storage, ECS common,
and lesson ECS)

9 Name of router

10 Router ECS usage in four 15-bit fields
(same as word 8)

After execution of the -station info— instruction, the
system-reserved word zreturn is set to the following
values.

14-1 o

Value Meaning

-1 Execution successful
0 No site set
| Station number error
2 Station not in site
3 -Station inactive

The —station status— instruction gets the current status of
the station specified in the second argument of the tag
and returns the status in system-reserved word zreturn.
Values of zreturn are as follows.

Value Meaning

-2 Station is signing on

-1 Station active
0 No site set
1 Station number error
2 Station not in site
3 Station inactive
4 Station is signing off
5 Station locked out

The —station send— instruction sends a message to another
terminal. The first argument in the tag is the keyword
send, the second argument is the number of the station to
which the message goes, the third argument is the coarse-
grid coordinates of the screen location, the fourth
argument is the message, and the fifth argument is the
length of the message in characters. The instruction
sends the message in mode rewrite and resets the mode
and screen position of the receiving terminal to its
previous state. After execution of —station send-, zreturn
is set to the following values.

Value Meaning
=] Message sent
0 No site set
1 Station number error
2 Station not in site
3 Station inactive or tried to send to own
station

The -station stopl- instruction presses the SHIFT STOP
keys al the station specified in the second argument of
the tag. The system-reserved word backout is set to 1 at
that station until the station enters a non-router lesson,
allowing finish units and routers to distinguish between a
SHIFT STOP pressed by the system and one pressed by the
user. After execution of —station stopl-, zreturn is set to
the following values.

o 14-2

Value Meaning
-1 SHIFT STOP pressed
0 No site set
1 Station number error
2 Station not in site
3 Canpol press SHIFT STOP on this
station

The -station logout— instruction signs off the user at the
station specified in the second argument of the tag. The
system-reserved word backout is set to -2 at that station
until it is completely signed off. It then displays the
message, Press NEXT to begin. After execution of
—station logout—, zreturn is set to the following values.

Value Meaning
=1 Station signed off
0 No site set
1 Station number error
2 Station not in site
3 Cannot sign off this station

The -station off- instruction turns off the station
specified in the second argument of the tag, locking out
use of the terminal. The system-reserved word backout is
set to -2 at that station and the terminal displays the
message - -lerminal not available- -. After execution of
—station off—, zreturn is set to the following values.

Value Meaning
-1 Station turned off
0 No site set
1 Station number error
2 Station not in site
3 Cannot turn off this station

The —station on- instruction turns on the station specified
in the second argument of the tag, clearing the off status
for a locked out station. The terminal displays the
message, Press NEXT to begin. After execution of
—station on—, zreturn is set to the following values.

Value Meaning
=1 Station turned on
0 No site set
1 Station number error
2 Station not in site
3 Station already active

97405100 C

PRINTING LISTINGS 15

#

When an author wants a hardcopy printout of a lesson, he
can specify to the printer exactly what he wants printed
using the —*list— instruction. This instruction, along with
its various tags, is inserted in a lesson and is noticed by
the printer when it makes its pass through the lesson but
is ignored when a lesson is condensed in the system
(because of the *). Usually, the safest place to put —*list—
options in a lesson is at the beginning of block B.

An error directory is printed toward the end of the listing
of the lesson. It lists the line numbers on which errors
occurred. The errors flagged are —*list— option errors and
duplicate unit names. The printer does not flag regular
condense-type errors.

-*LIST- INSTRUCTION

The —*list label,string— instruction labels small sections of
the lesson. Because this instruction puts blank lines above
and below the label with no line numbers, it stands out
better than a comment. The position in the printout of
the label given in string is the same as where it is placed
in the instruction in the lesson. To center the label, string
must be centered in the instruction. The —*list label- is
blanked out. The —*list title,string— instruction ejects a
page and prints the title given in string.

To eject a page from anywhere in the source of a lesson,
use —*list eject—. This instruction ejects a page and
begins printing again with the line immediately following
the instruction. The standard heading is printed.

The —*list text— instruction tells the printer to list only
the tags in —write— and —writec— instructions. The con-
ditional expression of the —writee— instruection is blanked
out, and anything embedded in these instruetions is also
blanked out.

The —*list ignore~ instruction specifies to the printer that
all —*list— instructions after this one be ignored. This can
be helpful when an author wants to put all the —*list—
options at the beginning of a lesson where they can be
found. If the options are ended with —*list ignore—, the
author is assured that no other —*list— instructions hidden
later in the lesson will be executed.

Lesson information from the lesson directory display is
listed toward the end of the printout when the —*list info—
option is used.

The —*list symbols— instruction causes a cross-reference
table of symbols to be printed at the end of the listing.
The symbols included are variables, defined names, and
system-reserved words. The dummy arguments in funec-
tion definitions are also listed. The reference table
includes only those symbols used in the printed portions of
the lesson.

97405100 C

To produce a table listing all the places where certain
instructions are used in a lesson, the —*list commands,list—
option is used. Up to 10 instructions can be specified in
list. This instruction does not continue; to specify more
than one line of instructions in list, the —*list commands—
must be repeated.

The —*list off- instruction stops the source listing and
proceeds to print any tables previously selected. To
prevent printing certain blocks, use —*list off,blocks—. An
example is:

*list off,triangle-square,circle,rectangle—

This prevents printing blocks triangle through square,
block circle, and all blocks from rectangle on. These
blocks ean be common, miecro, charset, or normal blocks.

The —*list parts— instruction allows only condensed blocks
to be printed. Blocks marked by the parts option in a
lesson are not printed since they are marked to not be
condensed.

The —*list charset(db)- option causes any charset in the
lesson to be printed. The on dots are marked with the
first character in the parenthesis (d), and the background
dots are marked with the second character (b). A more
readable charset listing may be obtained using
—*]ist charset(*)—, which marks each dot with * and leaves
the background blank. The default case, —*list charset-,
marks on dots with 0 and background dots with —. This
option must precede any —*list off- instruction in order
for the charset to be printed.

A normal print of a lesson does not list leslist, micro, or
vocab blocks. To print a block of this kind, the ap-
propriate —*list leslist—, —*list micro—, or *list vocabs—
instruction must precede the block to be printed.

When the mod words option for the lesson editor is turned
on, the —*list mods— instruction prints the mod word and
the corresponding line of code that was changed. Mod
words are an option in the editor to record line-by-line
changes in a lesson. They show the first 5 characters of
the user's name and the date of the change. The —*list
deleted- instruction prints deleted lines with an asterisk
at the beginning of each deleted line.

PRINTING COMMONS AND DATASETS

Print commons using instruetion —*list common,comname,
words,format-. When printing a common, if a preceding
source block has the same name as the common blocks,
the printer does not see the common, and it is not printed.
Datasets do not use a —*list— instruction in the lesson.
They are printed according to the print directives given on
the data page of the dataset. The formats that commons
and datasets use are similar. These formats may be one
of the following.

15-1

Integer or i (ne variables)
Exponential or e (ve variables)
Octal or o

Alpha or a

Hexadecimal or h

x (all of the above)

(Your own format)

Special or s

Alpha (a), integer (i), and exponential (e) print 10 words
per line, octal (o) prints 5 words per line, and x prints 2
words per line. An example of the instructions used to
print a common is:

*list common,septvar,320,0

This prints the first 320 words of the common named
septvar in octal format.

To print a dataset, insert the appropriate directives on the
data page of the dataset. These directives include page
eject information if desired, starting record number,
number of records to print, and format. An example is:

2,7,a;2,7,e

This instruetion prints records 2 through 8 in the dataset,
first in alpha format and then in exponential format.

If the directive is omitted on the data page, the entire
dataset is printed in special format.

To print a namesel (a type of dataset), insert the
appropriate directives on the data page of the nameset.
These directives include name, page eject information if
desired, starting record number, number of records to
print, and format. Some examples are:

namel;1,3,0
namel-namel0;2,4,h

The first instruction prints records 1 through 3 of namel
in octal. The second instruction prints records 2 through 4
for names namel through namel0 in hexadecimal.

If the directive is omitted on the data page, the entire
nameset is printed in special format. The directive can
specify more records than a name has, but only existing
records are printed. A name with no records is not
printed.

An automatic page eject occurs after each name in a
nameset for all formats. The following comments on
datasets refer also to namesets.

An author may design his own format for a line of print.
The format information is enclosed in parentheses.

*list common,comname,words,(your format)

(your format) may consist of characters, numbers, and
spaces or commas or both.

15-2

Characters:
a Alpha (10 characters)
e Exponential (ve variables, 10 characters)
i Integer (ne variables, 10 characters)
o Octal (20 characters)
h Hexadecimal (15 characters)

X Number of spaces between words (the num-
ber preceding the x is the number of spaces;
default is 1)

p Number of words to go forward before
printing (the number preceding the p is the
number of words to go forward; default is 1)

1 Common or dataset location (four charac-
ters)

Numbers:
0 through 9
An example of three equivalently designed formats is:

(ad4xidxo4xe)
(a,4x,i,4x,0,4x,€)
(adxid4xodxe)

These formats print each word in four formats with four
spaces between words, taking 62 characters. Each line
can have up to 135 characters. The letter p may be used
to print more than one word per line.

(05X p o 5x po5xpo5xpo)
This format uses 120 characters per line.

Special format ignores words, but the field must be there.
An example of the acceptable form is:

*list common,janvar,,s

When printing a dataset in special format, the format is
specified on the data page. The number of records is
ignored, but the field must be there. To print the entire
dataset in special format, one of the equivalent instrue-
tions, -1,,s- or —special-, may be used.

Special or s format prints the common or dataset in alpha
format. Therefore, all numerical information must be
converted to alpha strings before storing in the common
or dataset. To put spaces between information on the
print, use the —pack- instruction to pack the common or
dataset words with blanks (code is 055) and then use the
-move~ instruction to insert the information to be
printed.

In special format, lines are limited to 120 characters, and
words in which all bits are 0 are ignored unless they are
preceded by at least one nonzero word on the same line.
The last word on a line must end with 12 bits set to 0. If
you cannot alter the last word so that the final 12 bits are
0, add a word after it with at least the last 12 bits set to

97405100 C

0. Do this by adding a word with all 0 bits or a word with
eight blank characters and the final 12 bits set to 0:
055555555555555550000. A space code (055) may be
inserted between characters within a word for printed
blanks. For blanks between words, insert a space code for
each space.

The special or s format is the only format which uses page
eject information. (Page ejects are automatic with the
other formats, printing about 56 lines of the specified
format per page.)

Page ejects are specified with —*format eject—, —*format
blocks—, —*format records—, or —*format pages—. These
directives must be contained in the words of the common.
Each takes two words. These directives may also be in
the words of a dataset, or they may be included in the
specifications on the data page of a dataset.

For a page eject after each block or record, insert
—*format blocks— or —*format records— at the location in
the common or dataset where it is to take effeect, often at
the beginning. The last word of each block or record must
end with 12 bits set to 0. These directives, may be

97405100 C

specified on the data page of the dataset by —blocks—,
—records—, or —blocks;records—. Another acceptable form
is —blocks;3,,s-.

For automatic page ejects, insert —*format pages— in the
common or dataset at the location where it is to take
effect, often at the beginning. This directive provides
uniform margins at the top and bottom of each printed
page. On the data page of the dataset, it is indicated by
—pages— or by —pages;2,,s—.

The —*format eject— at the beginning of a dataset or
common starts the print on a new page. If —*format
eject— is embedded in a common or dataset, the new page
begins after the instruection. The word preceding
—*format eject— must end with 12 bits of 0's. To insert
—*format eject— in the two words it needs, use the —pack—
instruction.

To end the print before the end of the file, insert
—*format end- with the —pack- instruection into the next
word following the last one to be printed, which must end
in 12 bits of 0's. The special print ends at —*format end-,
end of file, or the first noncommon block.

15-3 ||

CHARACTER AND KEY CODES A

Character codes and key codes are not the same on the
PLATO system. Character codes are the 6-bit codes
stored in variables and used for display. Key codes are
numbers associated with each key. The character codes
of a response are put in the judging copy of the student
response. In contrast, the system-reserved word key
contains the key code of the last key pressed (refer to
table A-1).

Some keys have names associated with them, as well as
key codes. Many of the function keys have a name and a
key code but no character code, as they do not display a
character. An example of this is the NEXT key.

97405100 B

Because there are 126 characters available (alternate
characters use the same character codes, with a preceding
FONT character code), and the 6-bit character codes can
only specify 63 codes, some keys have two or three
character codes rather than one character code associated
with them.

ACCESS CHARACTERS

These characters (table A-2) are obtained by pressing the
ACCESS (shifted O key) key and then an associated key.
Refer to appendix D for a description of this process.

A-1

TABLE A-1. CHARACTER AND KEY CODES

Character Key Character Key
Code Code Code Code
Character (octal) t (octal) t 1 Character (octal) t (octal) t 1
a 01 001 < 65 065
b 02 002 (SUB) 66 066
c 03 003 (sup) 67 067
d 04 004 (SHIFT <) 70 070
e 05 005 (CR) 71 071
f 06 006 < 72 072
g 07 007 > 73 073
h 10 010 (bksp) 74 074
i 11 011 (FONT) 75 075
j 12 012 (ACCESS) 76 076
k 13 013 s 77 077
1 14 014
m 15 015 A 7001 101
n 16 016 B 7002 102
o 17 017 C 7003 103
p 20 020 D 7004 104
q 21 021 E 7005 105
r 22 022 F 7006 106
S 23 023 G 7007 107
t 24 024 H 7010 110
u 25 025 I 7011 111
A 26 026 B 7012 112
w 27 027 K 7013 113
X 30 030 L 7014 114
y 31 031 M 7015 115
z 32 032 N 7016 116
0 33 033 (o} 7017 117
1 34 034 P 7020 120
2 35 035 Q 7021 121
3 36 036 R 7022 122
4 37 037 S 7023 123
5 40 040 T 7024 124
6 41 041 U 7025 125
7 42 042 A 7026 126
8 43 043 w 7027 127
9 44 044 X 7030 130
g 45 045 Y 7031 131
= 46 046 Z 7032 132
o 47 047
/ 50 050 - 7041 141
(51 051 v 7042 142
) 52 052 Z (SHIFT+) 7045 145
$ 53 053 A (SHIFT-) 7046 146
= 54 054 ? 7050 150
(space) 55 055 1 7056 156
. 56 056 ! 7057 157
‘ 57 057 n (SHIFT =) 7060 160
+ 60 060 U (SHIFT X) 7064 164
[61 061 (locksub) 7066 166
] 62 062 (locksup) 7067 167
% 63 063 : 7077 177
X 64 064
tThe character code is the actual internal code used in processing information.
(Value of codes in literal strings.)
t t The key code identifies terminal key(s) pressed for use relative to checking.

97405100 B

TABLE A-2. ACCESS CHARACTERS

Lowercase Uppercase
Character Actual Character Actual
Code Key Code Key
Character (octal) (with ACCESS) Character (octal) (with ACCESS)
(erase mode) t 767035 SHIFT < then 2 = (identity) 7652)
(write mode) t 767036 SHIFT < then 3 # 7653 $
(rewrite mode)t 767037 SHIFT < then 4 7661 [
a 7601 a } 7662]
B 7602 b (form feed) 7671 CR
, (cedilla) 7603 c < 7672 <
] 7604 d 2 7673 >
/(acute accent) 7605 e - 767001 A
A 7614 1 © 767003 C
K 7615 m - 767004 D
~ (tilde) 7616 n | 767011 I
° (degree) 7617 o t 767027 w
T 7620 p t 767030 X
‘ (grave accent) 7621 q X 767060 SHIFT X
P 7622 r (lock down one line) 767066 SUB1tt
o 7623 S (lock up one line) 767067 SUP1tt
8 7624 t
(umlaut) 7625 u
v (hacek) 7626 v
w 7627 w
A (eircumflex) 7630 X
(half space) 7631 y
(half backspace) 7632 z
< 7633 0
> 7634 1
@ 7640 5
> 7641 6
a 7645 +
\ 7650 /
7654 =
(half space) 7655 (space)
$ 7656 .
o 7664 X
(line feed) 7665 <€
(down one line) 7666 SUB
(up one line) 7667 SUP
(half backspace) 7674 (bksp)
~ (equivalence) 7677 ;

t Used in animation displays.

t1The number 1 after the key name indicates that the SHIFT key must also be pressed.

97405100 C

FUNCTION KEYS

These keys do not have an associated character code, as they are never displayed. For clarity, the key name should be used
(as when testing a variable key) rather than the key code (refer to table A-3).

TABLE A-3. FUNCTION KEYS

Key/System- Key/System-

Defined Key Defined Key
Key Name Code Key Name Code

(if different) (octal) (if different) (octal)
FUNKEY T 200 TERM 216
NEXT 202 ANS 217
NEXT1t+t 203 COPY 220
ERASE 204 COPY1tt 221
ERASE1tt 205 EDIT 222
HELP 206 EDIT17 t 223
HELP1t 1t 207 MICRO 224
BACK 210 (square) 225
BACK1t+t 211 STOP 226
LAB 212 TAB 230
LAB1t+ 213 TIMEUP functiont t t 233
DATA 214 CATCHUP functiont t t t 235
DATA1tt 215

tSpecial-purpose key which is not associated with any key on the keyboard.

t 1 The number 1 after the key name indicates that the SHIFT key must also be pressed.

t 1 tThe key returned at the end of a time period specified in a -time- or a timed -pause- instruction.

t 1 t 1 The key returned whan all output is displayed following a -ecatchup- instruction.

A-4 97405100 B

SYSTEM FUNCTIONS AND RESERVED WORDS

The PLATO author language predefines several functions
for the author. These can be used in mathematical ex-
pressions or in the definition of other functions. Addi-
tionally, there are several reserved words, which are also
useable in mathematical expressions and definitions. The
reserved words furnish the author with information other-
wise unobtainable or obtainable only after extensive
manipulation by the author. Additionally, some key codes
are named. These are given in appendix A.

System functions, together with a brief description of

each, are given in table B-1. Reserved words are given in
table B-2.

All of these names can be redefined by the author using a
—define— instruction. In such a case, the author's speci-
fication has priority, and the reserved words become
unavailable to the author. Hence, the names of reserved
words should be redefined only if the author is certain
that the information contained in those words is not
necessary.

TABLE B-1. SYSTEM FUNCTIONS

Funetiont Description

abs(x) Absolute value

arctan(x) Aretangent (value in radians)

bitent(x) Returns the number of bits set to 1 in the argument

comp(x) Bit complement of x

cos(x) Cosine (x in radians)

exp(x) Returns value of e (2.713+) raised to the power of the argument

frac(x) Fractional part of the argument (x-int(x))

int(x) Integer part (largest integer with a value < x)

log(x) Common logarithm (base 10)

Imask(x) Left-justified mask of x bits

In(x) Natural logarithm (base e)

not(x) Boolean (logical) negation

rmask(x) Right-justified mask of x bits

round(x) Value of the argument rounded to the nearest integer

sign(x) Returns +1 corresponding to sign of x, or 0 for x equal to 0

sin(x) Sine (x in radians)

sqrt(x) Square root
Attempting to find sqrt(x) if x is negative results in
an execution error, and execution of the lesson is
stopped.

varloe(x) Returns the number of user variable x

97405100 B B-1

B-2

TABLE B-1. SYSTEM FUNCTIONS (Contd)

Functiont Description
And(A) -1 if every element of array A is true

Max(A) Maximum value in array A

Min(A) Minimum value in array A

Or(A) -1 if any element of array A is true

Prod(A) Produet of elements in array A

Rev(A) Reverse of array A

Sum(A) Sum of elements in array A

Transp(A) Transposition of array A

tIn these definitions, x is a dummy argument that can be replaced by any permissible mathematical ex-
pression, and A is a dummy argument that can be replaced by any system-defined array.

TABLE B-2. SYSTEM-RESERVED WORDS

Name Description
Words for General Use
args Last number of arguments transferred to an argumented unit
backout Distinguishes between student sign-off (SHIFT STOP) and system backout:
0 Not system backout
not 0 System backout
baseu Name of current base unit, 0 if no base unit
clock Value of system clock in seconds (nearest millisecond)
error Returns values for specific instructions; being phased out by zreturn
key Contains 10-bit key code of last key pressed
mainu Name of current main unit
mallot ECS allotment for the logical site in which the user is registered
muse Total ECS usage by users registered at same logical site
nhelpop Number of successful requests for help on the same page (~helpop— type branch) cleared
on entry Lo a new main unit and every time an —arrow- instruetion is found while not in a
—helpop— state
proctim CPU usage in seconds (floating-point number); updated only at the beginning of a timeslice
ptime -1 if current time is prime time, and 0 if not
sitenam Name of user's logical site
station Number assigned to terminal by system

97405100 C

TABLE B-2. SYSTEM-RESERVED WORDS (Contd)

Name Desecription
tactive Total number of active terminals currently on the system
user Type of user: student, author, multiple, instructor, sabort (student records are aborted), or
snockpt (autocheck is aborted)
usersin Number of users currently in lesson (routed students are counted as being in the router and in the
routed lesson)
zacenam Name of account containing user's course, left justified
zcondok 0 if condense errors or warning messages, and -1 if none
zeusers Number of users signed into current common
zdsname Name of current dataset or nameset
zdusers Number of users currently connected to dataset
0 No dataset connection
1 User requesting value is the only user currently connected
zfroml Name of —from- lesson
zfromu Name of —from- unit
zgroup Name of user's group
zinfo Contains 24 bits of additional associated information for the current name in a nameset
zlesson Name of current lesson
zpnfile -1 if course is prepared for personal notes, and 0 if user has no personal notes file
zpnotes -1 if user has personal notes not yet read, and 0 if user has read all personal notes
zretrnu Name of the unit user returns to after a —jumpout return,return—
zreturn Status returned from specific instructions
zsessda Disk accesses this session
zsesset Elapsed time this session
zsesspt Processing time this session
zsnfile Used with student notes:
-1 Student note file is attached to course
0 No student note file specified
1 Lesson and student notes disabled
zsnotes -1 if student has student notes not yet read, and 0 if student has read all student notes
zterm Last term requested
zunit Name of current unit
Words for Displays
mode Current text display mode:
-1 Erase
0 Rewrite
1 Write
97405100 C

B-3 o

® B-4

TABLE B-2. SYSTEM-RESERVED WORDS (Contd)

Name Description
size Current -size—
sizex Current horizontal —size~
sizey Current vertical -size—
where Coarse-grid coordinates for next sereen output
wherex Fine-grid horizontal coordinates for next sereen output
wherey Fine-grid vertical coordinates for next sereen output
ztouchx Fine-grid horizontal coordinates of center of last touched square, -1 if last input was not a touch
zlouchy Fine-grid vertical coordinates of center of last touched square, -1 if last input was not a touch
Words for Lengths
lecommon Length in words of common currently in use
llesson Length in words of current lesson
Istorag Length in words of storage currently in use
zbpe Bits per character
zbpw Bits per word
zZCpw Characters per word
zdsrees Same as zrecs; being phased out by zrees
zdswpr Same as zwpr; being phased out by zwpr
znsepn Number of characters per nameset name
znsmaxn Maximum number of names per nameset
zZnsmaxr Maximum number of records per nameset
znsnams Current number of names in use in the nameset
znsrees Current number of records in entire nameset
zrecs Number of records in dataset if connected to a dataset, or number of records in current name if
connected to a nameset, 0 if no dataset or nameset is connected
zZwpb Number of words per block
ZwWpr Number of words per record in dataset or nameset, 0 if no dataset or nameset is connected
Words for Answer Judging (0 is condition not true)
ansent Number of answer-judging instructions encountered before match is made:
0 -store- failure
-1 Nothing matches
-2 Response is over 40 words
ansok -1 if all specifications ok
capital -1 if no capitalization errors

97405100 C

TABLE B-2. SYSTEM-RESERVED WORDS (Contd)

Name Desecription
entire -1 if all required words are present
extra -1 if no extra (unspecified) words are in response
jeount Number of internal 6-bit character codes in student response
judged -1 for any ok judgment, 0 for any anticipated no judgment, and 1 for any unanticipated no
judgment
ntries Number of attempts at arrow
order -1 if word order ok
phrase -1 if no errors in phrases
spell -1 if spelling of response ok
vocab -1 if all words in student response are in vocabulary
weount Number of words in student response (set after ~match—, —answer— or —concept-)
Words for Formula Judging
for mok Error diagnostic information from expression compilation:
-1 Formula ok
0 Bad function argument or variable index [for example, sqrt(-3) or n (i+70) where i is 90]
1 Illegal character
2 Unbalanced parentheses
3 Too many decimal points (for example, 34...243)
4 Undefined variable name
5 Logical operator does not have two $ signs (for example, $and or and$ instead of
and)
6 Expression has bad form (for example, 3//4 or (/-55)
7 Value assigned to nonvariable (for example, 5< 3)
8 Octal constant contains 8 or 9
9 Err in alphanumerie string, such as (3+"ab)
10 A number has too many digits
11 Array index is out of bounds
12 Variables are used with —specs novars—
13 Operations are used with —specs noops—
14 There are assignments without —specs okassign—
15 Improper use of units, such as 5kg+3sec
16 Expression takes too long to compile
17 Too many nested functions
18 Wrong number of arguments in a function
60 Too many temporary variables needed
62 Expanded version too long
63 Too many literals
66 Too many indexed assigns
opent Number of arithmetic operations in response; counts arithmetic operators (+, -, + , X), logical
operators (and), bit operators (els), and full functions (system- or user-defined)
varent Number of variables or functions (user-defined only) in response
97405100 C B-5

e B-6

TABLE B-2. SYSTEM-RESERVED WORDS (Contd)

Name Desecription
Words for Routers and Leslists
errtype Used with router lessons:

0 Unknown error type

1 Execution error

2 Fatal condense error

3 Specific fatal condense error:

No ECS available

Lesson deleted

No room in ECS for common
Lesson tables full

ECS allocation exceeded

4 Error in finish unit of routed lesson

5 SHIFT STOP exit from condense queue
fromnum Leslist number of lesson the current lesson was entered from; -1 if lesson is not in the leslist or if

no leslist is in use
ldone Set by last —=lesson=- instruetion
-1 -end lesson- or -lesson completed-

0 Student has not entered lesson or -lesson incomplete~

1 ~lesson no end-

2 Student has entered lesson but not completed it
lessnum Leslist number of current lesson; -1 if lesson is not in the leslist or if no leslist is in use
lleslst Length of the leslist
Iscore Score for current lesson; set by last =score- instruction
Istatus Status of current lesson; set by last =status= instruction
reallow Router common variable aceess, set by last —allow— instruction:

0 No access (-allow-)

1 Read-only (~allow read-)

2 Read and write (-allow write=)
rstartl Name of current -restart- lesson
rstartu Name of current —restart- unit
router Name of router lesson assigned to course
rvallow Router student variable access, set by last —allow—~ instruetion:

0 No access (~allow-)
1 Read-only (~allow read rvars—)

Words for Data Keeping (refer o current area only; can use even if data off, if —area— has been executed)

aarea

atime

Name of current area

Elapsed time in area (milliseconds)

97405100 C

TABLE B-2. SYSTEM-RESERVED WORDS (Contd)

Name Description

aarrows Number of —arrow- instructions encountered

aok Number of answers judged ok

aokist Number of answers judged ok on first try

asno Number of anticipated no judgments

auno Number of unanticipated no judgments

ahelp Number of successful help requests

ahelpn Number of unsuccessful help requests

aterm Number of TERM requests found

atermn Number of TERM requests not found

dataon -1 if data is being collected; 0 if otherwise
97405100 C

= . w : T : — T - =1 T : T . : -
P T A O L DT AT R e s O
- N - B - - - N - o | N . - = . - N L L " -t
1.... - .._.“..u...u PRI uﬂ ..“- ..m.....m.u_....n.h . . |...1.) ..__... ...__ - --.. -l .|.. .n... _..““....|w_.T..n.-...._._... .
L ﬂ.'.. N ...|.. BTl ... AR |ﬂ.. el .. “.._uu.t ir .o ...|. e W Ry .“ ta e ..__...H..... -"...m.-
..—u. ot L L R T - - I. - ..I.ll.ﬁl. . . R . . . |. - o - . 1 ”. . . =
P - fe= R : .. . = = . " - = .
e, e L T o . A A oo
% . o . = - .= . o . : o . - g - : - . .
..-. I : i . . . i . ._. _l . "=
n" o ll ' [L] -
- . = -
= = = L] 1
.. . s i i i .
o [. i - o .
ﬁ N = . . - - .)
i . & " et N i N ¥
. . 1 - g - : E 1. . 1
Lry ._. . i : = : . : . : .
' . . _ . .
. 1 . - i))
ll)) " L]
B - o . . . B . "
- |_“_. " . f . . .
[o . . - . .
e . . i Xy
- -) :
: 1
1 . - . .
L] . - 1)
L] 4 : n"
S . . ! . . . : . =
s ..") . i) . . " . o . . i B
" . - " . .) - . = %, -*
. ...- o i o . o . = -) o o . i - L ..".. o
ll "l L] L]) i " - N l - L l-) - L] ll L] - L] . »
“ B 1 = LR e .-"
1 " =m - - e = n | mm sama 4- . b B u . - . n ”-
i g= = - . : a - . - -
: u e . o o E1 S . . i

BINARY, OCTAL, AND DECIMAL NUMBER SYSTEMS

NUMBER SYSTEMS

Any number system may be defined by two character-
isties, the radix or base and the modulus. The radix or
base is the number of unique symbols used in the system.
The decimal system has 10 symbols, 0 through 9. Modulus
is the number of unique quantities or magnitudes a given
system can distinguish. For example, an adding machine
with 10 digits (or counting wheels) would have a modulus
of 1010-1, The decimal system has no modulus because an
infinite number of digits can be written, but the adding
machine has a modulus because the highest number which
can be expressed is 9,999,999,999.

Most number systems are positional; that is, the relative
position of a symbol determines its magnitude. In the
decimal system, a 5 in the units column represents a
different quantity than a 5 in the tens column. Quantities
equal to or greater than 1 may be represented by using the
10 symbols as coefficients of ascending powers of the base
10. The number 984, is represented as:

9 x 102 =9 x 100 = 900
1

+8x10t=8x 10= 80
+4x100=4x 4= 4
984,

Quantities less than 1 may be represented by using the 10
symbols as coefficients of ascending negative powers of
the base 10. The number 0.5931(is represented as:

5x101=5x.1 =.5

+9x102=9x.01 =.09
+3%x1070=3x.001 =.003
0.593,

BINARY NUMBER SYSTEM

Computers operate faster and more efficiently by using
the binary number system. There are only two symbols, 0
and 1; the base equals 2. The following shows the posi-
tional value.

4 3

.29 9% 93 92

1,0

27 2

3216 8 4 2 1 Binary point
The binary number 0 1 1 0 1 0 represents:
0x2%=0x32= 0

sx2t=1x16=16

97405100 B

1x2%=1x 8

]
o

+0x22=0x 4= 0

sxal=1x 2= 2
w0x2=0x 1= 0
26,

Fractional binary numbers may be represented by using
the symbols as coefficients of ascending negative powers
of the base.

Binary point 1/2 1/4 1/8 1/16 1/32

The binary number 0.10110 is represented as:

1x2l=1x1/2 =1/2 =8/16
+w0x2t=0x1/4 =0 =0
1x2°%=1x1/8 =1/8 =2/16
1x2%=1x1/16=1/16 = 1/16
+0x27°=0x1/32=0" =0
11/16,,

OCTAL NUMBER SYSTEM

The octal number system uses eight disecrete symbols, 0
through 7. With base 8, the positional value is:

5 4 3 o2 ol 0

8 8 8" 8" 8 8

32,768 4,096 512 64 8 1

The octal number 5138 represents:

5x 82 =5x 64 =320
s1x8l=1x8 = 3
+3x8%=3x1 = 3

331,

Fractional octal numbers may be represented by using the
symbols as coefficients of ascending negative powers of
the base.

g1 872 g3 g4
1/8 1/64 1/512 1/4096™

The octal number 0.4520 represents:

axsl=4x1/8 =4/8 =256/512
+5x82=5x1/64 =5/64 = 40/512
+2x83=2x1/512 =2/512 = 2/512
+0x 874 = 0x 1/4096 = 0/4096 = 0/512
: 298/512
149/256.
ARITHMETIC

ADDITION AND SUBTRACTION

Binary numbers are added according to the following
rules.

0+
0+
1+
1+

LN]

nwouonon

0
1
1
0 with a carry of 1

The addition of two binary numbers proceeds as follows
(the decimal equivalents verify the result):

Augend 0111 (7)
Addend +0100 +(4)
Partial Sum 0011

Carry i

Sum 1011 (11)

Subtraction may be performed as an addition.

8 (minuend) 8 (minuend)
-6 (subtrahend) or +4 (tens complement of
subtrahend)

2 (difference) 2 (difference; omit carry)

The second method shows subtraction performed by the
adding the complement method. The omission of the
carry in the illustration has the effect of reducing the
result by 10.

ONE’'S COMPLEMENT

The computer performs all arithmetic and counting op-
erations in the binary one's complement mode. In this
system, positive numbers are represented by the binary
equivalent and negative numbers in one's complement
notation.

The one's complement representation of a number is found
by subtracting each bit of the number from 1. For
example:

1913
-1001 9
0110 (one's complement of 9)

This representation of a negative binary quantity may also
be obtained by substituting 1's for 0's and 0's for 1's.

C-2

The value zero can be represented in one's complement
notation in two ways.

Positive (+) zero
Negative (-) zero

000000
1111 - 012

The rules regarding the use of these two forms for com-
putation are:

® Both positive and negative zero are acceptable
as arithmetic operands.

® If the result of an arithmetic operation is zero, it
is expressed as positive zero.

One's complement notation applies not only to arithmetie
operations performed in A but also to the modification of
execution addresses in the F register. During address
modification, the modified address equals 77777g only if
the unmodified execution address equals 77777g and b
equals 0 or (BP) equals 77777 g

MULTIPLICATION

Binary multiplication proceeds according to the following
rules.

e —)
oo oMo
L — R)
LI 1 I T 1
—_OoOoOOo

Multiplication is always performed on a bit-by-bit basis.
Carries do not result from multiplication, since the pro-
duct of any two bits is always a single bit.

Decimal example:

multiplicand 14

multiplier 12

partial 28

products 14 (shifted one place
left)

product 16810

The shift of the second partial product is a shorthand
method of writing the true value 140.

Binary example:

multiplicand (14) 1110
multiplier (12) 1100
0000

0000 shift to

partial products 1110 place digits
1110 in proper
—— columns
product (16810) 10101000,

The computer determines the running subtotal of the
partial products. Rather than shifting the partial product
to the left to position it correctly, the computer right-
shifts the summation of the partial products one place
before the next addition is made. When the multiplier bit
is 1, the multiplicand is added to the running total, and
the results are shifted to the right one place. When the
multiplier bit is 0, the partial product subtotal is shifted
to the right (in effect, the quantity has been multiplied by
10,).
2

97405100 B

DIVISION

The following examples show the familiar method of dec-
imal division.

14 quotient
divisor 13 llgs dividend
|

55 partial dividend
52

3 remainder

The computer performs division in a similar manner (using
binary equivalents).

1110 quotient (14)

divisor 1101 | 10111001 dividend

1101
10100
1101
1110 partial dividends
1101
11 remainder (3)

However, instead of shifting the divisor right to position it
for subtraction from the partial dividend (shown above),
the computer shifts the partial dividend left, accom-
plishing the same purpose and permitting the arithmetie
to be performed in the A register. The computer counts
the number of shifts, which is the number of quotient
digits to be obtained; after the ecorrect number of counts,
the routine is terminated.

CONVERSION

The procedures that may be used when converting from
one number system to another are power addition, radix
arithmetic, and substitution.

POWER ADDITION

To convert a number from rj to r¢ (rj< rf), write the

number in its expanded rj polynomial form and simplify

using rg arithmetic.

Example 1: Binary to Decimal (Integer)
010111, = 1 #0112

=1 (16)+0(8) +1(4) +1(2) +1(1)

=16 +0 +4 +2 #1

=23

10
Example 2: Binary to Decimal (Fractional)
0101, = 0@ e w0 e
=0 +1/4 +0 +1/16
= 5/1610
97405100 B

TABLE C-1. RECOMMENDED
CONVERSION PROCEDURES
(INTEGER AND FRACTIONAL)

Conversion Recommended Method

Binary to decimal Power addition

Octal to decimal Power addition
Decimal to binary Radix arithmetic
Decimal to octal Radix arithmetic
Binary to octal Substitution

Octal to binary Substitution

General Rules

r; > ret use radix arithmetie, substitution
r; < rgi use power addition, substitution
r Radix of initial system

re Radix of final system

Example 3: Octal to Decimal (Integer)

324, =3(8%)+2(8V)+4(8"

8
= 3(64)+2(8) +4(1)
=192 +16 +4
= 21210

Example 4: Octal to Decimal (Fractional)

44 = 487 1)+a(87%)

8
=4/8 +4/64
=36/64

= 9/1610

RADIX ARITHMETIC
To convert a whole number from r; to re (1-i > rf):
1. Divide L by re using T arithmetic

2. The remainder is the lowest order bit in the new
expression

3. Divide the integral part from the previous op-
eration by re

4. The remainder is the next higher order bit in the
new expression

5. The process continues until the division produces

only a remainder which will be the highest order
bit in the re expression.

C-3

To convert a fractional number from r to rel
1. Multiply r by re using T arithmetic

2. The integral part is the highest order bit in the
new expression

3. Multiply the fractional part from the previous
operation by re

4. The integral part is the next lower order bit in
the new expression

5. The process continues until sufficient precision is
achieved or the process terminates

Example 1: Decimal to Binary (Integer)

45 + 2 = 22 remainder 1; record 1
22 + 2 = 11 remainder 0; record 0
11 + 2 = 5 remainder 1; record 1
5 +2 = 2 remainder 1; record 1.
2 + 2 = 1 remainder 0; record 0
1 +2 = 0 remainder 1; record 1
101101

Thus: 4510 = 1011012

Example 2: Decimal to Binary (Fractional)
25x2=0.5;record 0
5 x 2 =1.0; record 1
.0 x 2 =0.0; record 0

Thus: .25, = .010 -010
us: . 10—.01 9

Example 3: Decimal to Octal (Integer)

273 = 8 = 34 remainder 1; record 1
34 + 8 = 4 remainder 2; record 2
4 + 8 = 0 remainder 4; record 4

. - 421
Thus: 27310 = 4218

Example 4: Decimal to Octal (Fractional)

.55 X 8=4.4;record 4
.4 x 8 =3.2; record 3

.2 x 8 =1.6; record b

.431...

Thus: .55 0° .431...8

1

SUBSTITUTION

This method permits easy conversion between octal and
binary representations of a number. If a number in binary
notation is partitioned into triplets to the right and left of
the binary point, each triplet may be converted into an
octal digit. Similarly, each octal digit may be converted

into a triplet of binary digits.

Example 1: Binary to Octal
Binary = 110 000 . 001 010
Octal = 6 0 . 1 2

Example 2: Octal to Binary
Octal = 6 5 0 . 2

Binary = 110 101 000 . 010 010 111

2

7

97405100 B

TERMINAL KEYBOARDS D

The PLATO terminal consists of 64 keys similar to a
standard keyboard, with some additions. The additions are
for the funection keys and some special characters as in A.

The lowercase keyboard (B) contains the lowercase alpha-
betic keys, some of the function keys, numerals, and
special characters.

The uppercase keyboard (C) is accessed by holding down

97405100 B

the SHIFT key while pressing the desired key. The upper-
case keyboard contains the capital letters, the remaining
function keys, and special characters.

In addition, there are hidden characters. These are ac-
cessed by pressing and releasing the ACCESS key and then
pressing the desired key. There are both lowercase and
uppercase access characters, shown in D and E, re-
spectively.

COGEEERECCHEEO e

HEHBHanannnn=EEEEE ACT’LAL
< EHELEMDML OO E) E) k] KEYBOARD
LEHEIEEHBULOEOOEE])
[v]
DUOEEHBEHOMEE e () ()]
I.OWE::(:ASE HHHOHOOHHOME]) e (=]
KEYBOARD =] = e e o e 0 I D] s] o] o] o]
HEEOOOHOHOUOMED =)
C]
HEHOEHOHEOMEMCIE) e
DoooooocoRnnZSE= UPPE::CASE
LEEEEEE M E0] b o] KEYBOARD
CIECE-EEEEEEE E R E G g e
e |

NE000EE000EEE00
lOWE:CASE DBBDDG@DQDD

access KevBoAar () J(-](-](x))(J)OIOHOUOUO
D000 C0E0HD0O0O00:

f AAAAAAAAA 1
HHLOEOUODOEEREOD
LUHOL0OO0O00000d UPPEECASE

DUEHOHO000000O000ON] Access KEYBOARD
DEHC)OMEODU00000.d

aarea 13-2; B-6

aarrows 13-2; B-7
-abort- 5-23; 8-15

abs B-1

ACCESS eharacters A-1,3
ACCESS keys D-1,2
Addition 7-2

-addlst- 5-62; 10-16
-addname- 5-20; 8-19
-addrecs- 5-21; 8-19
-addl- 5-5; 7-4

ahelp 13-2; B-7

ahelpn 13-2; B-7

-allow- 5-61; 10-16
Alphanumerie information 8-3
Alternate characters 9-7
-altfont- 5-37; 9-9

And B-2

Angled writing 9-4

-ans- 5-73; 11-10

ansent 11-10; B-4

ansok B-4

-ansu- 5-70; 11-8

-ansv- 5-70; 11-7
-answer- 5-66; 11-5
-answere- 5-66; 11-6; 12-2
aok 13-2; B-7

aokist 13-2; B-7

arctan B-1

-area- 5-76; 13-2

args B-2

Argument 5-1
argumented units 10-4
-arheada- 5-63; 11-2
Arithmetic operations 7-2
Array operations 7-3

Arrays (Refer to author-defined arrays and system-

defined arrays)

-arrow- 5-63; 11-1

-arrowa- 5-64; 11-2

asno 13-2; B-7

Assignment 7-3

-at- 5-24; 9-2

aterm 13-2; B-7

atermn 13-2; B-7

atime 13-2; B-6

-atnm- 5-24; 9-2

-audio- 5-38; 9-11

Audio disk feature 9-11

auno 13-2; B-7

Author-defined arrays 8-2
Full-word arrays 8-2
Horizontal segments 8-2
Vertical segments 8-3

Author-initiated branching 2-1; 10-1

Author language condenser 1-1

Auxiliary unit 3-1; 10-1,2

-axes- 5-39; 9-12

97405100 C

INDEX

-back- 5-49; 10-5; 12-2

-backgnd- 5-60; 10-14

-backop- 5-50; 10-5; 12-2

backout 14-2; B-2

-backl- 5-50; 10-5; 12-2

-backlop- 5-50; 10-5; 12-2

-base- 5-53; 10-7; 12-2

Base sequence 3-1; 10-6

Base unit 3-1; 10-1,6

baseu B-2

Bit operations 7-2

bitent 7-3; B-1

Bits 6-1

-block- 5-23; 8-20

-bounds- 5-39; 9-12

-box- 5-32; 9-5

-branch- 5-15; 8-10; 10-4; 12-2

Branching 2-1; 8-10; 10-1,5
Author-initiated 2-1; 10-1
Student-initiated 2-1; 10-5

-bump- 5-65; 11-4

-cale- 5-5; 7-3; 8-3,10
-calee- 5-5; 12-1,2

-cales- 5-6; 8-13; 12-1,2
Calculation instructions 5-3
capital 11-10; B-4
-catchup- 5-35; 9-6
Centrel computer 1-1
Central processing unit 10-14
-change- 5-58; 10-12; 11-13
-char- 5-35; 9-7

Character codes A-1,2,3
Character strings 8-7
-charset- 5-36; 9-8
Charsets 9-8

-chartst- 5-36; 9-9

-circle- 5-31; 9-5

-circleb- 5-31; 9-5

clock 8-8; B-2

-clock- 5-12; 8-8

-close- 5-65; 11-4

Coarse grid 9-1

-codeout- 5-37; 9-10
-colleet- 5-57; 10-11
-color- 5-35; 9-6

-comload- 5-18; 8-14
Command 1-2; 5-1
Comments 10-8 (Refer also to notes)
-common- 5-18; 8-13
Common variables 8-13
-commonx- 5-18; 8-14
comp B-1

-compare- 5-73; 11-10
-compute- 5-12; 8-7
Computer word 6-1

T e e L e e e e T S S ST

Index-1

-comret- 5-19; 8-15

-concepl- 5-67; 11-6
Condenser, author language 1-1
Condensing control 10-8
Conditional instructions 12-1
Conditional-iterative instruetions 10-3
Constants 7-1

Conversion C-3

-copy- 5-75; 11-12

cos B-1

CPU 10-14

-cpulim- 5-60; 10-14

-cstart- 5-54; 10-8

-cstop- 5-54; 10-8

-estop*- 5-55; 10-9

-data- 5-51; 10-6; 12-2
Data collection 13-1
Datafile 13-1

-datain- 5-19; 8-17,18
-dataoff- 5-76; 13-1
dataon B-7

-dataon- 5-76; 13-1
-dataop- 5-52; 10-7; 12-2
-dataout- 5-20; 8-17,18
Dataset 8-16

-dataset- 5-19; 8-16,18
-datal- 5-52; 10-6; 12-2
-datalop- 5-52; 10-7; 12-2
-date- 5-12; 8-8

-day- 5-12; 8-8

-define- 5-3,4; 6-2; 7-1,4; 8-1
Define set 6-2

-delay- 5-35; 9-6
-deletes- 5-11; 8-6
-delname- 5-21; 8-19
-delrecs- 5-21; 8-19
-delta- 5-43; 9-14
-disable- 5-38; 9-10
Display instructions 5-24
Displays 9-1

Disk memory 1-1
Division 7-2

-do- 5-47; 10-2; 12-2
-dot- 5-29; 9-4

-doto- 5-16; 8-11

-draw- 5-30; 9-4

ECS 1-1

-edit- 5-75; 11-12
-else- 5-16; 8-10
-elseif- 5-16; 8-10
embed 5-35; 9-6
Embedding 9-6
-enable- 5-38; 9-10
-end- 5-49; 10-6
-endarrow- 5-63; 11-1
-endif- 5-16; 8-10
-endings- 5-68; 11-7
-endloop- 5-17; 8-12
entire B-5

-entry- 5-48; 10-4
-erase- 5-28; 9-3
Erase mode 9-6
-eraseu- 5-29; 9-4; 12-2
error B-2

Index-2

Error directory 15-1
errtype 10-14; B-6
-exact- 5-69; 11-7
-exaete- 5-69; 11-7; 12-2
-exactlv- 5-70; 11-7
Execution 2-1

-exit- 5-47; 10-4

exp B-1

Exponentiation 7-2
Expressions 7-1

-ext- 5-39; 9-11
Extended core storage 1-1
External devices 9-10
-extout- 5-39; 9-11
extra B-5

-find- 5-7; 8-4

-findall- 5-8; 8-5 -

-findl- 5-62; 10-17

-finds- 5-9; 8-5

-findsa- 5-9; 8-5

Fine grid 9-1

-finish- 5-48; 10-5; 12-2
Floating-point variables 6-1
-force- 5-58; 9-10; 10-12
-foregnd- 5-60; 10-14
Format 5-1

formok 8-8;11-8; B-5

frac B-1

Framing (Refer to -window- and -box-)
-from- 5-13; 8-8; 12-2
fromnum B-6

-funet- 5-43; 9-14

Function keys A-1,4
Functions 7-4; B-1,2

-gat- 5-25; 9-11
-gatnm- 5-26; 9-11
-gbox- 5-33; 9-11
-geircle- 5-32; 9-11
-gdot- 5-30; 9-11
-gdraw- 5-31; 9-11
-getloe- 5-75; 11-5
-getmark- 5-74; 11-5
-getname- 5-20; 8-19
-getword- 5-74; 11-5
-gorigin- 5-25; 9-11,12
-golo- 5-47; 10-3; 12-2
-graph- 5-42; 9-13
Graphies instructions 9-4
Graphs 9-11
Drawing on 9-13
Funections 9-14
Labeling axes 9-12
Polar coordinates 9-14
Scaling axes 9-12
Setting boundaries 9-12
Writing on 9-13
-group- 5-13; 8-8
-gveector- 5-34; 9-11

Hardcopy printout 15-1
-hbar- 5-42; 9-13
-help- 5-50; 10-6; 12-2

97405100 C

Help keys 10-6

Help sequence 3-1; 10-6
Help unit 3-1; 10-1
-helpop- 5-51; 10-7; 12-2
-helpl- 5-51; 10-6; 12-2
-helplop- 5-51; 10-7; 12-2
-hidden- 5-28; 9-3

-htoa- 5-7; 8-4

-iarrow- 5-63; 11-2; 12-2
-iarrowa- 5-64; 11-2
I[EU 3-1
=if- 5-15; 8-10
-iferror- 5-48; 10-4; 12-2
-ignore- 5-69; 11-7
-imain- 5-44; 10-5; 12-2
-in- 5-59; 8-8
Indenting 8-10
-inhibit- 5-56; 10-10
-initial- 5-59; 10-13
Initial entry unit 3-1
Initialization 4-1
-inserts- 5-11; 8-6
Instruction formats 5-1
Instructions
Calculation 5-3
Conditional 12-1
Conditional-iterative 10-3
Display 5-24
Graphies 9-4
Iterative 10-3
Judging 4-1; 11-1,5
Lesson control 5-44
Printing 5-81
Regular 4-1; 11-11
Relative graphies 9-11
Relocatable 9-5
Resource management 5-80
Response handling 5-63
Student data 5-76
int B-1
Integer variables 6-1
Iterative instructions 10-3
Iterative loop 8-11
-itoa- 5-7; 8-4

jeount 5-64; 11-3; B-5

-jkey- 5-64; 11-3

-join- 5-46; 10-2; 11-2; 12-2
-judge- 5-74; 11-11; 12-2
judged 11-9; B-5

Judging 11-2,5

Judging instructions 4-1; 11-1,5
-jump- 5-46; 10-2; 12-2
-jumpout- 5-56; 10-10; 12-2

key 8-3;10-11,12; 11-9,12; A-1; B-2
Key codes A-1,2,3

Keyboards D-2

-keylist- 5-56; 10-11

-keytype- 5-57; 10-11; 12-2

97405100 C

-lab- 5-52; 10-6; 12-2

-labelx- 5-41; 9-12

-labely- 5-41; 9-12

-labop- 5-53; 10-7; 12-2

-labl- 5-53; 10-6; 12-2

-lablop- 5-53; 10-7; 12-2

Large writing 9-4

lecommon B-4

ldone 10-13,14; 13-5; B-6

Leslist 10-16

-leslist- 5-61; 10-16

-lessin- 5-13; 8-8

lessnum B-6

Lesson 2-1

-lesson- 5-59; 10-13; 12-2

Lesson control instruetions 5-44

Lesson list 10-16

Lesson routing 10-14

Lesson structure 2-1

-lineset- 5-36; 9-9

Linesets 9-9

-list- 5-67; 11-6

Literals 8-3

lleslst B-6

llesson B-4

Imask 7-3; B-1

In B-1

-lname- 5-62; 10-17

-loada- 5-65; 11-4

log B-1

Logical lesson structure 2-1

Logical operations 7-2
Boolean 7-2
Relational 7-2

-long- 5-64; 11-3

-loop- 5-17; 8-12

Looping (Refer to branching)

-lscalex- 5-40; 9-11

-Iscaley- 5-40; 9-11

Iscore 10-13,14; 13-5; B-6

Istatus 10-9,14; B-6

Istorag B-4

Main unit 3-1; 10-5
mainu B-2

mallot B-2

-markup- 5-74; 11-10
-markx- 5-42; 9-12
-marky- 5-42; 9-12
Mass storage 1-1
-matech- 5-73; 11-10; 12-2
Matrix multiplication 7-3
Max B-2

-miero- 5-37; 9-10
Miecro table 9-9
Microfiche 9-10

Min B-2

-miscon- 5-67; 11-6
mode B-3

-mode- 5-35; 9-6; 12-2
-modperm- 5-15; 8-9
-move- 5-12; 8-7
Moving data 8-20
Multiplication 7-2
muse B-2

Index-3

-name- 5-13; 8-8
-names- 5-21; 8-19
Nameset 8-17

ne and ve variables 6-2
Nested loops 8-11,12,13
-next- 5-45; 10-1,5; 12-2
-nextnow- 5-48; 10-4; 12-2
-nextop- 5-45; 10-5; 12-2
-nextl- 5-45; 10-5; 12-2
-nextlop- 5-45; 10-5; 12-2
nhelpop B-2

-no- 5-69; 11-7

no judgment 11-2,5

not 7-2; B-1

Notation 1-1

Notes 13-5

-notes- 5-79; 13-5
-noword- 5-69; 11-2
-ntouch- 5-71; 11-9
-ntouchw- 5-72; 11-9
ntries B-5

Number systems C-1

Octal number 7-2
-ok- 5-68; 11-7
ok judgment 11-2,5
-okword- 5-69; 11-2
opent 8-8; B-5
-open- 5-64; 11-4
Operations 7-2
Arithmetic 7-2
Array T7-3
Bit 7-2
Logical 7-2
Operator precedence T7-1
Operators T7-1
Arithmetic 7-1
Array T7-1
Bit 7-1
Logical 7-1
Or B-2
-or- 5-73; 11-10
order B-5
-otoa- 5-7; 8-4
-outloop- 5-17; 8-12
-output- 5-77; 13-2
-outputl- 5-77; 13-2

-pack- 5-6; 8-3

-packe- 5-6; 8-4; 12-2
-pause- 5-57; 10-11
Permanent common 8-13
phrase 11-5; B-5

Physical lesson structure 2-1

-play- 5-38; 9-11

-plot- 5-36; 9-7

-polar- 5-44; 9-14

Polar coordinates 9-14
-press- 5-55; 10-9
Printing instruction 5-81

Printing lessons, commons, and datasets 15-1

proctim B-2
Prod B-2

ptime B-2

-put- 5-65; 11-4
-putd- 5-65; 11-4
-putv- 5-66; 11-4

Index-4

gasatag 12-1

Random numbers 8-8
-randp- 5-14; 8-9

-randu- 5-14; 8-9

-rat- 5-25; 9-5

-ratnm- 5-26; 9-5

-rbox- 5-33; 9-5

rcallow B-6

-rcirele- 5-32; 9-5

-rdot- 5-30; 9-5

-rdraw- 5-30; 9-5

-readd- 5-78; 13-3

-readr- 5-79; 13-4

-readset- 5-78; 13-3
-record- 5-38; 9-11

Regular instructions 4-1; 11-11
Relative graphies instruetions 9-11
-release- 5-22; 8-15,20
Relocatable instruetions 9-5
-reloop- 5-17; 8-12
-remove- 5-15; 8-9

-removl- 5-62; 10-17
-rename- 5-21; 8-19
-reserve- 5-22; 8-15,20
Reserved words B-2,3,4,5,6,7
Resource management instructions 5-80
Response handling 11-1
Response handling instructions 5-63
-restart- 5-55; 10-9

-return- 5-55; 10-9

Rev B-2

Rewrite mode 9-6

rmask 7-3; B-1

-rorigin- 5-25; 9-5

-rotate- 5-29; 9-4

round B-1

-route- 5-60; 10-14

router B-6

Router variables 10-15
Routing 10-14

-routvar- 5-61; 10-15

rstartl 10-14; B-6

rstartu 10-14; B-6

rvallow B-6

-rvector- 5-34; 9-5

Sampling 8-8
With replacement 8-9
Without replacement 8-9
-scalex- 5-40; 9-12
-scaley- 5-40; 9-12
-score- 5-59; 10-13
-search- 5-8; 8-5
Searching 8-4
-seed- 5-14; 8-9
Segment (Refer to author-defined arrays)
-set- 5-6; 8-2
-setdat- 5-77; 13-2
-setname- 5-20; 8-18
-setperm- 5-14; 8-9
-show- 5-26; 9-2
-showa- 5-28; 9-3
-showe- 5-27; 9-2
-showo- 5-27; 9-2
-showt- 5-27; 9-2
-showz- 5-27; 9-2

97405100 C

sign B-1

sin 7-4; B-1

-site- 5-80; 14-1

sitenam 14-1; B-2

size 9-4; B-4

-size- 5-29; 9-4

sizex 9-4; B-4

sizey 9-4; B-4

-slide- 5-37; 9-10

-sort- 5-10; 8-6

-sorta- 5-10; 8-6

Sorting routines 8-6

-spees- 5-73; 11-1,10

spell 11-10; B-5

sqrt B-1

station 8-8; 14-1; B-2

-station- 5-80; 14-1

-status- 5-55; 10-9

-step- 5-58; 10-12

-stoload- 5-23; 8-16

-stop- 5-50; 10-5; 12-2

-storage- 5-23; 8-15

Storage variables 8-15

-store- 5-71; 8-7; 11-8

-storea- 5-64; 11-3

-storen- 5-71; 11-8

-storeu- 5-71; 11-8

Strings 8-3

Student data 13-1

Student data instructions 5-76

Student define set 6-2

Student-initiated branching 2-1; 10-5
Author-provided branching 2-1
Funetion key branching 2-1

Student variables 6-1

Subtraction 7-2

-subl- 5-5; 7-4

Sum B-2

System components 1-1

System-defined arrays 8-1
Full-word arrays 8-1
Vertically segmented arrays 8-1

System funetions 7-4; B-1,2

System operation 1-1

System-reserved words B-2,3,4,5,6,7

Tabs 9-10

-tabset- 5-37; 9-10
tactive B-3

Tag 1-2; 5-1
Temporary common 8-13
-term- 5-54; 10-8
Terminal 1-1
-termop- 5-54; 10-8
-text- 5-28; 9-3

Text display 9-1
-time- 5-75; 11-12
Time-sharing 1-1
Time-slice 1-1

-timel- 5-49; 10-5
-timer- 5-49; 10-5
-touch- 5-72; 11-9
Touch panel 9-10; 11-8
-touchw- 5-72; 11-9
_-transfr- 5-24; 8-20
Transp B-2

97405100 C

Unit 3-1; 10-1

-unit- 5-44; 10-1

-use- 5-58; 10-12

user B-3

User bank variables 6-1
usersin 8-8; B-3

varent 8-8; B-5
Variable display 9-2
Variables 6-1; 8-13,15
varloc B-1

-vbar- 5-43; 9-13

ve and ne variables 6-2
-vector- 5-33; 9-5
Vector cross product 7-3
Vector dot produet 7-3
voeab B-5

-vocab- 5-68; 11-7
-vocabs- 5-68; 11-6

weount 5-63; 11-5; B-5
where 9-1,3,5; B-4
wherex 9-1,5; B-4
wherey 9-1,5; B-4
-window- 5-34; 9-5
-write- 5-26; 9-1

Write mode 9-6

-writec- 5-26; 9-1; 12-1,2
-wrong- 5-66; 11-5
-wronge- 5-67; 11-6; 12-2
-wrongu- 5-70; 11-8
-wrongv- 5-70; 11-7

x asatag 12-1

zaccnam B-3
zbpe B-4

zbpw B-4
zcondok B-3
zepw B-4
zcusers B-3
zdsname B-3
zdsrees B-4
zdswpr B-4
zdusers B-3
-zero- 5-5; 7-4
zfroml 8-8; B-3
zfromu 8-8; B-3
zgroup B-3
zinfo B-3
zlesson B-3
znsepn 8-18; B-4
znsmaxn B-4
znsmaxr B-4
znsnams B-4
znsrecs B-4
zpnfile B-3
zpnotes B-3
zrecs B-4
zretrnu B-3

Index-5

zreturn B-3 -*list- 5-81; 15-1
zsessda B-3 *c,$$% 5-54; 10-8
zsessel B-3 and 7-2
zsesspt B-3 ars 7-2

zsnfile B-3 cls 7-2
zsnotes B-3 $diff$ 7-3

zterm B-3 $mask$ 7-3
zlouchx 11-9; B-4 or 7-2
ztouchy 11-9; B-4 $union$ 7-3
zunit B-3

zwpb B-4

zwpr B-4

e Index-6 97405100 C

CUT ALONG LINE

AA3419 REV. 4/79 PRINTED IN U.S.A.

COMMENT SHEET

MANUAL TITLE: CDC PLATO Author Language Reference Manual
PUBLICATION NO.: 97405100 revisioN: C

NAME:

COMPANY:

STREET ADDRESS:

CITY: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND STAPLE

STAPLE

ST

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 8241

MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Publications and Graphics Division
ARH219

4201 North Lexington Avenue
Saint Paul, Minnesota 55112

APLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD

CUT ALONG LINE

