

PLATO

CONTROL DATA

I)ELrF®
AUTHOR LANGUAGE
REFERENCE MANUAL

@D
CONTROL

DATA

REVISION RECORD

REVISION DESCRIPTION

nl Preliminal.v manual.

(7-18-74)

A Manual released. This printing obsoletes the I)revious edition.

(9-19-75)

8 Manual I.evised to reflect changes and col.I'ections I.esultine from product development. This revision includes

(3r3|-77) minor editorial changes and adds index. This edition obsoletes all Previous editions.
C Manual revised to reflect changes and corrections resulting from product development. This edition obsoletes all

(4-2]-78) previous editions.

I

.

Publication No.
97405100

REvisloN LETTERs I, 0. a AND x ARE NOT usEI]

© 1974.1975,1977, I 978

by Control Data Corporation
Printed in the United States of America

Address comments concerning this
manual to:
Control Data Corporation
Pubncatious and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back Of
this manual.

LIST OF EFFECTIVE PAGES

New features, as weH as changes, deletiolis, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is alfected. A bar by the page number indicates pagination rather than content has changed.

97405100 C iii/iv

PREFACE

I The CONTROL DATA® PLAro (PI.ogrammed Logic for
Automatic Teaching Operations) system is a multimedia
computer-based educational delivery system.

This manual describes the PLATO author language used by
the PLATO system. It is intended as a refel`ence manual
for use by persons familiar with the author language.

Sections I through 4 provide a general intl.oduction to the
PLA'ro system, lesson structure, and execution of the
author language lessors.

Section 5 gives a brief, ready-reference descl.iption of
each PLATO author. language instruction.

Sections 6 through I 4 explain in detail each of the author
language instructions.

Readers with no previous knowledge of the author lan-
guage are encouraged to direct their initial attentions to
the following sections of the manual.

Sections I through 4 Introduction

Sections 6 and 7 Variables, expressions,
and functions

Section 9

Section I 0

Section I I

97405]00 C

Displays .

Lesson structure

Handling responses

Familiarity with the PLATO User.'s Guide may be helpful
to the user of this manual.

DISCLAIMER

This product is intended for use only as descl.ibed in this
document. Control Data cannot be I.esponsible for the
proper functioning of undescribed features or parameters.

RELATED PUBLICATIONS

The fouowing publications are refel.enced and related
PLATO manuals.

Control Data publication Publication No.

PLATO Terminal user's Guide 97404800

PLATO 0pel.Stol"s Guide 97405200

PLATO user's Guide 97405900

PLATO Author Language lnstl.uc-
tion Formats 97406600

PLATO system overview 97406700

v lv`\

CONTENTS

I. GENERAL SYSTEM DESCRIPTION 1-I

System components I -I
System operation I -I
Notation I -I

2. LESsON STRUCTURE AND EXECUTION 2-I

Branching
Execution

3. UNIT STRUCTURE

Initial Entry Unit
Main and Aurflial.y Units

4. UNIT EXECUTION

5. INSTRUCTION DESCRIPTIONS

Instruction Format
Calculation Instl.uctious

define
calc
addl
subl
Zel'O
calcc
calcs
set
pack
packc
itoa
Otoa
htoa
find
findall
search
finds
findsa
sol.t
sorta
inserts
deletes
move
compute
clock
date
day
name
group
from
lessin
pandu
setpel.in
randp
seed
I'emove
modperm
branch
if
elseif

97405] 00 C

2-I
2-1

3-I

3-I
3-I

4-I

else
endif
doto
loop
Outloop
reLOOp
endloop
Common
commorK
comload
coml'et
dataset
datain
dataout
setname
getname
addname
delname
rename
names
addl`ecs
delrecs
reserve
release
abort
storage
stoload
block
transfr

Display Instructions
at
atnm
rorigin
gorigin
I'at
gat
ratnm
gatnm
write
writec
show
showt
showo
showz
showe
showa
text
hidden
erase
el'aseu
size
rotate
dot
rdot
gdot
draw
rdraw
gdl.aw
circle
circleb
rcircle
gcil.Cle
box
rbox
gbox
vector

rvector
gvector
window
mode
color
embed
catchup
delay
char
plot
charset
chartst
nneset
altfont
micro
codeout
tabset
slide
enable
disable
audio
play
record
ext
extout
axes
bounds
scalex
scarey
lscalex
lscaley
labelx
labely
markx
rna,`ky
graph
hbal'
vbar
data
funct
polar

Lesson Control Instl.uctions
unit
imain
next
nextop
next]
nextl Op
jump
join
do
goto
exit
nextnow
ifel.ror
entry
finish
timel
timer
end
back
beckop
backJ
back] Op
stop
help
hdpop
hdpJ
helpl Op
data
dataop
datal
dataJ Op
lab

1abop
lab]
lab] Op
base
term
termop
*, c' SS
cstop
cstart
cstop*
restart
status
return
Press
jumpout
inhibit
keylist
Pause
couect
keytype
force
change
use
step
in
initial
lesson
Score
backgnd
foregnd
cpulim
route
routvar
allow
leslist
addlst
removl
Inane
final

Response Handling instructions
anow
endarrow
iarrow
arheada
arrowa
iarrowa
long
jkey
storea
Open
loada
close
bump
put
putd
putv
answer
arrswerc
WI'Ong
Wrongc
list
concept
miscon
vocab
vocabs
endings
ok
no
okword
nowopd
ignore
exact
exactc
exactv

97405] 00 C

ansv
ansu
Wrongv
Wrongu
store
storen
storeu
ntouch
ntouchw
touch
touchw
match
01.

ans
C0mpare
Specs
markup
judge
getword
getmark
8etloc
edit
Copy
time

Student Data Instructions
dataon
dataoff
area
setdat
Output
Outputl
readset
readd
I.eadr
notes

Resource Management Instructions
site
station

Printing Instruction
*1ist

6. VARIABLES

Studerit Variables
Integer Variables
Floating-Point Variables

NC and VC Variables
Assigning Names to Variables

7. EXPRESSIONS AND FUNCTIONS

Coustants
Expressions

Arithmetic Operations
Logical Operations
Bit Operations
Array Opel'ations

-calc- Instliuction
Functions

8. OTHER CALCULATION FEATURES

System-Defined AI.rays
Full-Word Arrays
Vertically Segmented Arrays

Author-Defined AI.rays
Full-Word Arrays
Segments
Vertical Segments

Nonnumeric Information
Enter.ing Alphanumeric Information

97405100 C

Locating Specific Information
Sorting Routines
Changing List Contents
Moving Character Strings
Compiling Character Stl.ings

Special Information
Random Numbers
Branching and Looping Witllin a Unit

Branching Within a <alc-Instruction
-if- Structure
ndoton lnstl.uction
LOoping
-arcs- Instruction

Common
Types of Common, <ommon-, and

~Ommonx-
Using Common
+eserve- and -release- Instructions
-abort- Instruction

Storage
ngtorager Instruction
ngtoload- Instruction

Dataset Files
ndataset- Instruction
ndatain- Instruction
ndataout- Instruction

Nameset Files
Structure
Dataset Instructions Used With Namesets
Nameset Instructions
Reserving Namesets

Moving Blocks of Data

9. DISPLAYS

Coarse and Fine GI.ids
Basic Display Presentation

Displaying Variables
Erasing

Large and Angled Writing
Graphics Instructions
Relocatable Instructions
Mode Control
Embedding
Timing
Constructing Alternate Characters

Charsets
Linesets

Micros
-codeout- Instruction
-tabset- hstruction
Nonscreen Display Instructions
Relative Graphics Instl.uctions
Creating Graphs

Setting Boundaries of a Graph
Scaling the Graph Axes
Labeling the Axes
WI.iting on the Graph
DI'awing Bars on the Graph
Graphing Functions
Polar Coordinates

10. LESsON SEQUENCE AND CONTROL

Authol.-Initiated BI.anching
Use of the -next- Instruction
-jump- Instruction
Auxiliary Unit Structul.es
ltel.ative -join- and -don lnstl.uctions
Conditional-Iterative -do- and -join-

Instructious
toto- Iustl'uction

Argumented Units
-exit- hstruction
-nextnow- Instructi on
-iferl.or- instruction
-entry- hstruction
Branching Within a Unit
-finish- hstruction
-imain- hstruction
Timed BI.anching

Student-Initiated Branching
Branching to a New Main Unit Sequence
Help Sequences
-end- instruction
Specifying a Help Sequence
-base hstruction
U§e of the -term- Instruction

Other Control hstructious
Comments
Condensing Control
Reentering Lessors
-I'eturn- hstl.uction
-press- Instruction
-jumpout- Instruction
-inhibit- Instruction
-keynst- Instruction
-pause- instruction
-collect- hstruction
-keytyper Instruction
-forcer Instruction
-chang- instruction
-usa Instl.uction
rstep- Instruction and TERMrstep Option
-initial- Instruction
-lesson- Instruction
-score- Instruction
-backgnd- and -for.egnd- Instructions
-cpun in-Instruction

Lesson Routing
-route- hstruction
-routvar- Instruction
-allow- hstruc tion

Lesson Lists
-leshist- Instl`uction
-addlst- Instruction
-removl- Instruction
-Inane- Instruction

A. CHARACTER AND KEY CODES
a. SYSTEM FUNCTIONS AND RESERVED

WORDS

6-I Format of Floating-Point variables
8-I Example of a Nameset
9-I Sample of character Definition
9-2 Micl`ofiche Layout

5-I Instruction Index
7-I Operator precedence
9-I Embedded Instructions
9-2 Relative Timing ExamE)1e
9-3 Pel`mitted -codeout-Tag values
I I-I Judging instructions
lJ-2 rspecsT options

JO-4
JO-4
JO-4
10-4
JO-4
JO-4
]0-5
JO-5
]0-5
10-5
10-5
]0-6
JO-6
10-6
]0-7
]0-8
JO-8
10-8
10-8
10-9
10-9
10-9
I 0-1 0
I 0-I 0
I 0-I I
I 0-I I
I 0-I I
I 0-I I
I 0-I 2
I 0-I 2
I 0-I 2
I 0-I 2
I 0-I 3
I 0-I 3
I 0-I 3
I 0-I 4
I 0-I 4
1 0-I 4
I 0-I 4
I 0-I 5
I 0-I 6
I 0-I 6
I 0-I 6
I 0-I 6
I 0-I 7
I 0-I 7

-findl-Instruction I 0-I 7

11. RESPONSE HANDLING 11-1

Execution of Response Handling I I -I
Initiating Judging I I -2
Manipulating the student Response I I-3

Storing a student Response H -3
Making a Judging copy I I -4
Altering the Judging copy 11 -4

Infol.motion from a student Response I I -5
Response Judging I I -5

Nonnumeric Response Judging I I -5
Numeric Judging I I -7
Touch panel Judging I I -8
Other Judging Instructions H -10

-spees-Instruction I I-10
Regular lnstl`uctions Affecting Response Handling I I-I I

-judge-Instruction I I -I I
-edit-and -copy-Instructions I I-I 2
-time-Instruction I I-I 2
-chang-Instruction I I -I 3

12. CONDITIONAL FORM 12-1

I 3. STUDENT DATA 13-1

Specifying Data collection 13-I
Specifying Data to be couected 13-I
Reading Data into a Lesson I 3-2
Notes I 3-5

I 4. RESOURCE MANAGEMENT 14-1

-site-Instl'uction I 4-I
rstation-Instruction I 4-I

I 5. PRINTING LISTINGS 15-I

-mist-Instruction I 5-I
Printing commons and Datasets I 5-I

APPENDIXES

A-1 C. BINARY, OCTAL, AND DECIMAL
NUMBER SYSTEMS

8-1 D. TERMINAL KEYBOARDS

INDEX

6-I
8-17
9-8
9-JJ

FICuRES

9-3 Example of -hbar-and -vbar-Instructions 9-14
I 0-I Key Locations for placing -router

Instructions

TABLES

5-I I 2-I
7-I I 3-I
9-6 13-2
9-7 I 3-3
9-I 0 I 3-4
]1-I I 3-5
I I -I I

Instructions with a Conditional Form
Legal Tags for ndataon- and -dataof f-
Area Summal`y Data Storage
-outputl- Data Storage
Signoff Data Storage
Student Statistics Storage

I 0-I 5

97405100 C

GENERAL SYSTEM DESCRIPTloN

The PLATO author language enables the development and
presentation of coul.se material using the PLATO system.

SYSTEM COMPONENTS

Two types of components necessary for operation of a
PLATO system are the actual equipment and the pro-
gramming that controls the equipment. The equipment
consists of a central computer, extended core storage
(ECS), mass storage, communications equipment, and
PLATO terminals. The programming consists of the
opel.ating system, the PLATO system, and the PLATO
author language.

The centl.al computer is the component that actually
executes the lessons, as well as per.forming other related
tasks. It consists of a central processing unit, which
perfol.ms the actual execution, and central memory, which
contains the lesson being executed.

ECS is used to store records and any lessons that al'e being
used, because information can be transferred quickly
between ECS and central memory.

Mass stol.age has a larger capacity than ECS, but the
associated infol.nation tl.ansfer rate is much less. Hence,
mass storage is used pl.imarily for storing lessons that are
not cul'rently in use. Mass storage consists of magnetic
disks and is therefol.e sometimes called disk storage, disk
memory, or simply disk.

The communications equipment allows the central com-
puter and the PLATO terminals to exchange infol.nation.

The PLATO terminal is the device used by the author or
student for constructing or executing lessons. Addi-
tionally, instructors use the terminal to construct the
necessary coul.seware (lesson selection and lesson se-
quence lists). A descl.iption of the PLATO terminal and
its use is given in the PLATO Terminal User's Guide.

The operating system performs such functions as handling
the tl.ansfer of information between components of the
system.

The PLATO system contl.ols the actions of the computer
as they relate specifically to PLATO. This programming
allows the author to construct a lesson, specify informa-
tion about the lesson, control lesson execution, and per-
fol.in various associated tasks.

The author language condenser is the part of the PLATO
system that converts author language instructions (also
called source code) into instructions that can be intel.-
preted or executed by the computer.

The PLATO author language is composed of a number of
instructions with which an author can construct a lesson
for presentation to students.

97405100 C

SYSTEM OPERATION

PLATO is a time-sharing system. This means that a
lesson that is being used, whether by an author or a stu-
dent, is not always in actual execution. Instead, each
lesson is given a certain amount of time in the central
processing unit and then waits while other lessons exe-
cute. Because of the speed of the computer, the delays
are not usually discernible to the user.. The period of time
during which a lesson is using the central pl.ocessing unit
is called a time-slice.

A condensed copy of the lesson is kept in ECS whenever
the lesson is being used. At the beginning of the time-
slice, the unit to be executed is copied into the central
memory for execution. The unit is not copied back to ECS
at the end of the time-slice, since the ECS copy was not
destroyed. The copy in central memory is simply
overwritten by the next lesson using the central processor.

When a lesson is not being used, it is kept on mass storage,
allowing room in ECS for lessons being used. Because the
total amount of ECS is limited, all lessons cannot be kept
in ECS. Hence, the mass storage is used for the lessons
that are not cul.rently needed. Mass storage is not
suitable for the temporary storage of lessons between
time-slices because of the longer access time and slower
information transfer I.ate in compal.ison with ECS.

Only one copy of a lesson is required to be in ECS, re-
gardless of the number of students using the lesson. This
results in a considerable saving of ECS space when sever.al
students al.e using a lesson concul.rently. Since thel.e are
I.ecol.ds and other data maintained for each student, more
ECS space is required when 15 students are executing the
same lesson concurrently than is used when only one
student is executing the lesson. Howevel., the space
required for additional usel.s of a lesson is much less than
would be requil'ed if each user had a separate copy of the
lesson.

NOTATION

To facilitate differentiation between text and author
language instructions, instructions are set off from normal
text with hyphens (-).

Names of function keys are in fun capitals, while author
language instructions are always given in lowercase let-
ters. For example, NEXT refers to the function key,
located to the right of the alphabetic keyboard, while
next- refers to the instruction that specifies the unit to
be executed after completion of the current unit. Where
an uppercase function key does not have a specific name,
it is refer.red to as in SHIFT BACK. Upperc8se keys that
have specific names, such as FONT and TERM, do not use
the SHIFT prefix.

1-1

Author language instructions that refer to an uppercase
function key that does not have a specific name have a 1
at the end of the key name. Thus, the instruction

h elpl unitnane

I enables the SHIFT HELp keys, while the instruction

h elp undtnrme

I enables the.HELp key.

1-2

When reference to a fun instruction (that is, both the
command and the tag of the instruction) is made in text,
the command and tag portions of the instruction are
sepal'ated by spaces, with the hyphens enclosing the entire
instruction. An example is the -long 1- instruction.
Additionauy, tags shown in bold typeface are abbreviated
descriptions of the tags and not the actual tags to be
entel`ed. Actual tags to be entered are in regular
typeface, the same as the associated commands. Tags en-
closed in braces. () , are optional.

97405100 a

LESSON STRUCTURE AND EXECUTION 2

Each PLATO author language lesson has two structul.es,
physical and logical. The physical structul.e is the same
for all lessons and is simply a sel'ies of instructions
grouped into entities called units. The system stol.es
these instructions sequentially in central memory, in ECS,
on mass-memory disks, or in any combination of these.
The logical structure is usually more complex and may
bear little relation to the physical structul.e. The concern
of this manual is pl.imarily with the logical structure of
lessons rather than the physical structul'e. Thus, when the
stl.ucture of a lesson is mentioned, without other qualifi-
cation, the logical stl.ucture is the structure meant.

The logical structure of the lesson is the pl.esentation of
the execution of the parts of the lesson. The basic part of
a lesson is the unit. A unit is usually enter.ed from only
one point in its structure, the beginning. Since all
I.efel.ences to code other than that being executed I.efer to
entire units, it is I.easonable to speck of units as black
boxes. The structul.e of the lesson then depends upon
what types of boxes are used and their connection with
each other. This is developed mol.e thoroughly, although
implicitly, in section 10.

A lesson is basically composed of one or more sequences
of main units, usually with some of the main units having
auxiliary units.

The difference between main and auxiliary units is given
in detail in Section 3. The relevant difference in tel.ms of
lesson structure is that auxiliary units cannot be formed
into a sequence and are invisible to the student as sepa-
rate entities.

BRANCHING

There are two types of branching within a lesson, author-
initiated and student-initiated. Author-initiated branch-
ing occurs when one of several paths is token, with the
lesson, rather than the student, making the selection. In
many situations, this is based on the per.formance of the
student, such as automatically branching the student to a
remedial sequence. The use of auxiliary units can be
considered a form of author-initiated bl.anching.

Student-initiated branching occurs when the student
chooses an option to execute. There are two major types,
function key branching and author-provided branching.
Function key branching occurs when the author gives the
student a choice which is accessible by a function key.
This includes the main unit sequences specified with the
NEXT, SHIFT NEXT, BACK, and SHIFT BACK keys and
the help sequences specified with the HELP, SHIFT HELP,
LAB, SHIFT LAB, DATA, and SHIFT DATA keys. An
example of author-provided bl.anching is when tlle author

97405100 C

gives the student a list of options and lets the student
select the next option to execute.

EXECUTION

The basic flow of execution of an author language lesson,
unless modified by the author, is sequentially through the
physical lesson. Thus, if a particular sequence of units
that is to be executed sequentially i§ also sequential in the
physical lesson, no specification of the next unit to be
executed is requil.ed. However, if any modification to this
simple linear flow is desired, as with the use of branching,
the author must explicitly sequence the units within the
physical lesson in order to give the order of execution of
the units in the logical lesson. The addition of branching
capabilities allows the sequential flow to be modified in
several ways.

The author-initiated branching modifies the sequence of
execution of units and can be used to select one of several
possible sequences of base units. The base unit sequences
usually contain the basic information that the lesson is
designed to convey.

The student-initiated branching usually adds a number of
units to the ol'der of execution, with execution resuming
at the unit fl.om which the help sequence was accessed.
However, this can be modified by the author thl.ough the
use of the base- instruction so that either the student
does not return from the help sequence (because it defines
itself as a base sequence, once entered) or the student
returns from the help sequence to a different unit than
the unit fl.om which he entered the help sequence. Thel'e
are three types of student-initiated function key branch-
ing: two of them have similar effects in that when the
student executes the sequence specified by the author, he
is returned to that part of the lesson from which the
branching was initiated; the third type of branching does
not return the student to that part of the lesson fl.om
which branching was initiated (refer to section 10).

Student-initiated branching is made possible by explicit
definition of the branching possibilities by the author.

:fhethsteugteun£:I:ntftiae[t:dk:ry%n:¥dngthceanTEeR[#:i:;.edEH:hese¥h:I
author has specified a help sequence or a -term-ed unit,
these keys have no effect on the lesson.

Auxiliary units are units that are executed under the
control of a main unit. Sometimes the main unit I.esumes
execution at the point where execution was suspended, but
this is not necessal.ily the case. Whether execution of the
main unit is resumed depends on the contents of the
auxiliary unit and the method used for accessing the
auxiliary unit.

2-1

UNIT STRUCTURE 3

The basic component of a PLATO author language lesson
is the unit. A unit is a semi-independent block of author
language instruction, beginning with a -unit- instruction
and ending immediately before the next -unit- iustruc-
tion. With one exception, the -unit- instruction must be
present. The tag of the -unit- instruction is the name of
the unit, which must be no mol.e than eight characters in
length. The unit is semi-independent because the unit can
be called into execution from another unit or from several
other units at different points in the lesson. To be
meaningful, however, the unit must have some connection
with the logical structure of the lesson.

The most general form of the unit has two parts. While it
is common for a unit to have both parts, it is not nec-
essary. Inclusion or exclusion of either part depends on
the intended use of the unit and the preference of the
author. When both parts are present, they are separated
by the -arrow- and -ndarrow- instructions.

One part of the unit is used for presentation of material
to the student that is not dependent on a I.esponse and for
some genel.al calculation. This pal.t of the unit consists
entirely of regular instructions.

The -arrow- instruction indicates that student response is
I'equested. The part of the unit following the -al.row-
instruction is the I.esponse judging part of the unit. Other
processing can also be done in this part of the unit.

Units without a response processing section al.e fairly
common and are used for special purposes, repetitive
pl'ocessing, and simple display presentation. Units con-
sisting entirely of a response processing portion are rare,
and their execution can be complex.

INITIAL ENTRY UNIT

The initial entry unit (IEU) is the one exception to the
requirement that a unit have a -unit-instruction as its
first instruction,

The IEU must physicauy be the first unit in the lesson. It
is differentiated by the lack of the -unit- instruction as
its first instl.uction. The use of an IEU is not mandatory
but is encouraged if the student is to be anowed to restal.t
an uncompleted lesson at some point other than the
beginning of the lesson.

When the student starts at some point in the lesson other
than the beginning, the physically preceding units are
skipped totally except the IEU. Thus, if these units load a
character set, define a micro table, or initialize the value
of some variables, these actions are not perfol.ned and
the lesson does not execute correctly, as seen by the
student, unless they are in the IEU.

The IEU, if present, is executed each time the student
entei.s the lesson, except when a lesson does a -jumpout-
to itself , or when the lesson is a router. Executing the
IEU upon each student entry makes the loading of char-
acter sets and other initializations simple and localized.

97405100 C

at
write

charset
micro
erase
unit

912
Now LOADING CHARACTER AND

MICRO SETS

Please be patient - loading takes
about 17 seconds
sindal'in, feanorian
sindal'in, mike

intl.o

This IEU causes a character set and a micro table to be
loaded and performs a full-scl.een erasul.e when the
loading is complete. This is necessary because the IEU is
executed as if it were accessed by a -join- instl.uction
from the first unit entered by the student. Thus, if an
erase is not performed, the display (if any) generated by
the IEU is not erased before the display from the actual
unit entered is placed on the screen.

MAIN AND AuXILIARY UNITS

Since the definition of a unit is the same for all units, the
units vary in usage rather than definition. Furthermore, it
is possible, although uncommon, for the usage of a
specific unit to change during lesson execution. Hence, a
refer.ence to a type of unit indicates only the way in which
the unit is to be used at that time.

There are two major types of units, main units and aux-
iliary units. Main units are further subdivided into base
units and help units. A full discussion of the types of units
and their use is given in section 10.

An auxiliary unit is executed undel` the control of another
unit. The auxiliary unit, as the name implies, furnishes
auxiliary instl`uctions to the unit from which it was
accessed. No unit initialization is performed.

A main unit is any unit which is not an auxiliary unit.
Such units usually lie in a sequence of units, which an
auxniary unit cannot do. There al.e two types of
sequences, base sequence and help sequences.

A help sequence is a sequence of one or more units that is
specified by the author as accessible by the student
through the use of the special student help keys. The
units composing such a sequence are called help units. A
help sequence usually contains background, definitional, or
review material. The help sequence is not executed
unless accessed by the student. When execution of a help
sequence is complete, the unit from which the help
sequence is accessed is reexecuted, unless the author
specifies otherwise within the help sequence.

The unit fl'om which the student can access a help se-
quence sel.ves as a base for that sequence. Hence, such
units are caned base units. A special marker., indicating
that the current unit is the base unit, is updated each time
a main unit, other than a help unit, is initialized.
Therefor.e, a sequence of main units that are not help
units is termed a base sequence. Thel.e can be mol.e than
one base sequence in a lesson, which is why the term base
sequence is prefel.able to primary sequence.

3-1

UNIT EXECUTION 4

The instructions in a unit are not necessarily executed in
order of occurrence. Particularly during I.esponse pl.oc-
essing, some instructions might be executed several times,
while others might not be executed at all.

Pal't of the I.eason is the possibility of authol'- and stu-
dent-initiated branching. However, it is usually because
of the manner in which student responses are processed.

The authol. language executer operates in two major
states, regular and judging. The author language instl.u-
tions are divided into two classes, based on which of the
two system-states allow theil. execution. Thus, display
instructions, which can be done independently of the
student response, are regular instructions, while thcrse
that determine whether the student's response will be
accepted as correct (plus some instl.uctions for manipula-
tion of the student response) are judging instructions.
Only one instruction, the -join- instruction, is executed in
both the regular and I.udging states.

The processor ignores judging instructions that do not
follow an marl.ow- instruction.

When a unit is enter.ed, any initialization is done first. If
the unit is an auxiliary unit, no initialization is done. If it
is a help unit, there is some initialization, usually
including a fulh5creen el.ase, but not complete initializa-
tion. Full initialization is perfol'med if the unit entered is
a base unit.

After initialization, all I'egulal. instructions up to the first
-arrow- instruction or the next +init- instruction,
whichever occurs fil.st, are executed.

If the aystem encounters a -unit- instruction, it waits for
the student to press the NEXT key or any active key,
indicating I.eadiness to continue. When the student
pl.esses an active key, the processor enter.s the new unit
with the pl.ocedure as before.

97405100 C

;flo::sff:#;w£:it:uacctt£:rnoistheencs:ui::rt:sd'sc:::niz#::
this has been disabled by the author with an -inhibit-
instl.uction) and then executes any regular iustructious
immediately following the nrl.ow-instl.uction. When the
first judging instruction is reached, the system then
switches into the judging state and waits for the student
to respond.

When the student presses the NEXT key, indicating that
he is finished typing his response, the system begins
checking the response against the specified answers
(answers may be specified as correct or incorrect). If an
adequate match is not found, the I.esponse is judged
incorl'ect by default. If a match is found, the response is
judged ok or no (col.I.eat or incorrect), whichever is
indicated by the instruction matched. Regular instl.uc-
tious following the matched answer are then executed, if
any, until an -ndarl.ow-, another rat.row-, a +nit-, or
another judging instruction is encountered.

Unless the author specifically constl.ucts the lesson other-
wise, a student is forced to pl.ess NEXT or ERASE, type a

:i::reevnetrrtehg::S3;nasnedi:ni:edrg:i?!c3::esscit?g,EE.¥fngagk:;:
al'e also available to the student under author control that
prevent the necessity of retyping the entire response.)

When the -arrow- has been satisfied (that is, when the
student has given a I.esporrse that has been judged ok and
all following regular instructions have been executed), the
system then checks for an -ndarrow-, -al.row- or -unit-
instruction. These ape then executed as before. If an
-al`row- or unit- instruction is found, the instruction is
executed as previously.

This execution sequence can be modified by the -1ong-
and rspecs- instl.uctions. For a complete discussion of
lesson execution during I.esponse processing, refer to
section 11.

4-1

INSTRUCTION DESCRIPTION'S 5

This section contains a shot.t description of each of the
PLA'ro author language instructions. A more complete
explanation is given in sections 6 through 14. Table 5-1
gives an alphabetic list of the instructions with their page
numbers.

INSTRUCTION FORMAT

Each author language instruction has two parts, command
and tag. The command is the same as the name of the
instruction. The tag gives the necessary specifications
and modifiers for execution of the Command. If none are
necessal.y, the tag can be left blank. The command field
begins in column 1 of the display. The tag field begins in

column 9. After entering the command, the TAB key
positions the cursor to the ninth column. (The cursor is
not visible.)

The tag consists of one or more arguments. Each nglr.
ment is one specification for the command portion of the
instruction. Arguments are usuall
Arguments enclosed in braces (Y ;;P::attehdebfynsct::cTiaos;
descriptions are optional and need not be included in the
instruction. Multiline entries give alternatives; only one
can be used in a single instruction.

For example:

(b`nack)

TABLE 5-1. INSTRUCTION INDEX

Instruction Description Explanation Instl.uction Description Explanation Instruction Description Instruction

abort 5-23 8-15 char 5-35 9-7 delname 5-21 8-19
addlst 5-62 10-16 charset 5-36 9-8 delrecs 5-21 8-19
addname 5-20 8-19 chat.tst. 5-36 9-9 delta 5-43 9-14
addl'ecs 5-21 8-19 circle 5-31 9-5 disable 5-38 9-10
addl 5-5 7-4 circleb 5-31 9-5 do 5-47 10-2
allow 5-61 10-16 clock 5-12 8-8 dot 5-29 9-4
altfont 5-37 9-9 close 5-65 11-4 doto 5-16 8-11
ans 5-73 11-10 codeout 5-37 9-10 draw 5-30 9-4
ansu 5-70 11-8 collect 5-57 10-11 edit 5-75 11-12
ansv 5-70 11-7 color 5-35 9-6 else 5-16 8-10
answer 5-66 11-5 comload 5-18 8-14 elseif 5-16 8-10
answerc 5-66 11-6 Common 5-18 8-13 enable 5-38 9-10
area 5-76 13-2 commonx 5-18 8-14 end 5-49 10-6
arheada 5-63 11-2 compare 5-73 11-10 endarrow 5-63 11-1
arrow 5-63 11-1 compute 5-12 8-7 endif 5-16 8-10
al'I`Owa 5-64 11-2 comret 5-19 8-15 endings 5-68 11-7
at 5-24 9-2 C0ncept 5-67 11-6 endloop 5-17 8-12
atnm 5-24 9-2 Copy 5-75 11-12 entry 5-48 10-4
audio 5-38 9-11 cpulim 5-60 10-14 erase 5-28 9-3
axes 5-39 9-12 c§tart 5-54 10-8 el`aseu 5-29 9-4
back 5-49 10-5 cstop 5-54 10-8 exact 5-69 11-7
backgnd 5-60 10-14 cstop* 5-55 10-9 exactc 5-69 11-7
backop 5-50 10-5 data 5-51 10-6 exactv 5-70 11-7
backl 5-50 10-5 datain 5-19 8-17 exit 5-47 10-4
backlop 5-50 10-5 dataoff 5-76 13-1 ext 5-39 9-11
base 5-53 10-7 dataon 5-76 13-1 extout 5-39 9-11
block 5-23 8-20 dataop 5-52 10-7 find 5-7 8-4
bounds 5-39 9-12 dataout 5-20 8-17 findan 5-8 8-5
box 5-32 9-5 dataset 5-19 8-16 findl 5-62 10-17
branch 5-15 10-4 datal 5-52 10-6 finds 5-9 8-5
bump 5-65 11-4 datalop 5-52 10-7 findsa 5-9 8-5
calc 5-5 7-3 date 5-12 8-8 finish 5-48 10-5
calcc 5-5 12-1 day 5-12 8-8 force 5-58 9-10
calcs 5-6 8-13 define 5-3 6-2 foregnd 5-60 10-14
catchup 5-35 9-6 delay 5-35 9-6 from 5-13 8-8
change 5-58 10-12 deletes 5-11 8-6 funct 5-43 9-14

97405100 C 5-1

TABLE 5-1. INSTRUCTION INDEX (Contd)

Instruction Description Explanation Instruction Descl.iption Explanation Instruction Description Explanation

gal 5-25 9-11 match 5-73 11-10 I.Vector 5-34 9-5
gatnm 5-26 9-11 micro 5-37 9-10 scalex 5-40 9-12
gbox 5-33 9-11 miscon 5-67 11-6 scaley 5-40 9-12
gcircle 5-32 9-11 mode 5-35 9-6 SC0I`e 5-59 10-13
gdot 5-30 9-11 modperm 5-15 8-9 search 5-8 8-5
gdraw 5-31 9-11 move 5-12 8-7 seed 5-14 8-9
getloc 5-75 11-5 name 5-13 8-8 set 5-6 8-2
getmal.k 5-74 11-5 names 5-21 8-19 setdat 5-77 13-2
getname 5-20 8-19 ` next 5-45 10-5 setname 5-20 8-18

getwoI.d 5-74 11-5 nextnow 5-48 10-4 setperm 5-14 8-9
goI,igin 5-25 9-11 nextop 5-45 10-5 show 5-26 9-2
goto 5-47 10-3 nextl 5-45 10-5 showa 5-28 9-3
gI`aph 5-42 9-13 nextlop 5-45 10-5 showe 5-27 9-2
group 5-13 8-8 no 5-69 11-7 showo 5-27 9-2
8vector 5-34 9-11 notes 5-79 13-5 showt 5-27 9-2
hbal. 5-42 9-13 noword 5-69 11-2 showz 5-27 9-2
help 5-50 10-6 ntouch 5-71 11-9 site 5-80 14-1
helpop 5-51 10-7 ntouchw 5-72 11-9 size 5-29 9-4
helpl 5-51 10-6 ok 5-68 11-7 slide 5-37 9-10
helplop 5-51 10-7 okwol.d 5-69 11-2 sot.t 5-10 8-6
hidden 5-28 9-3 Open 5-64 11-4 sol,ta 5-10 8-6
htoa 5-7 8-4 01. 5-73 11-10 Specs 5-73 11-10
iarrow 5-63 11-2 Otoa 5-7 8-4 station 5-80 14-1
iarrowa 5-64 11-2 Outloop 5-17 8-12 status 5-55 10-9
if 5-15 8-10 Output 5-77 13-2 step 5-58 10-12
if error 5-48 10-4 Outputl 5-77 13-2 stoload 5-23 8-16
ignore 5-69 11-7 pack 5-6 8-3 stop 5-50 10-5
imain 5-44 10-5 packc 5-6 8-4 storage 5-23 8-15
in 5-59 8-8 Pause 5-57 10-11 store 5-71 8-7
inhibit 5-56 10-10 play 5-38 9-11 storea 5-64 11-3
initial 5-59 10-13 plot 5-36 9-7 stol.en 5-71 11-8
Inserts 5-11 8-6 polar. 5-44 9-14 storeu 5-71 11-8
itoa _5-7 8-4 PI`ess 5-55 10-9 subl 5-5 7-4
jkey 5-64 11-3 put 5-65 11-4 tabset 5-37 9-10
join 5-46 10-2 putd 5-65 11-4 tel.in 5-54 10-8
judge 5-74 11-11 putv 5-66 11-4 termop 5-54 10-8
jump 5-46 10-2 randp 5-14 8-9 text 5-28 9-3
Jumpout 5-56 10-10 randu 5-14 8-9 time 5-75 11-12
keylist 5-56 10-11 rat 5-25 9-5 timel 5-49 10-5
keytype 5-57 10-11 ratnm 5-26 9-5 timel. 5-49 10-5
lab 5-52 10-6 I.box 5-33 9-5 touch 5-72 11-9
labelx 5-41 9-12 I.Oil.Cle 5-32 9-5 touchw 5-72 11-9
labely 5-41 9-12 I,dot 5-30 9-5 transfr 5-24 8-20
labop 5-53 10-7 rdl.aw 5-30 9-5 unit 5-44 10-1
labl 5-53 10-6 readd 5-78 13-3 use 5-58 10-12
lablop 5-53 10-7 readr 5-79 13-4 vbal` 5-43 9-13
leslist 5-61 10-16 readset 5-78 13-3 vectoI` 5-33 9-5
lessln 5-13 8-8 record 5-38 9-11 vocab 5-68 11-7
lesson 5-59 10-13 release 5-22 8-15 vocabs 5-68 11-6
lineset 5-36 9-9 reloop 5-17 8-12 window 5-34 9-5
list 5-67 11-6 remove 5-15 8-9 write 5-26 9-1
Inane 5-62 10-17 removl 5-62 10-17 wl.itec 5-26 9-1
loada 5-65 11-4 rename 5-21 8-19 Wrong 5-66 11-5
long 5-64 11-3 reserve 5-22 8-15 Wrongc 5-67 11-6
loop 5-17 8-12 restart 5-55 10-9 Wrongu 5-70 11-8
lscalex 5-40 9-11 retul,n 5-55 10-9 Wrongv 5-70 11-7
lscaley 5-40 9-11 rorigin 5-25 9-5 Zel`O 5-5 7-4
markup 5-74 11-10 rotate 5-29 9-4 *list 5-81 15-1
markx 5-42 9-12 route 5-60 10-14 *,c,SS 5-54 10-8
marky 5-42 9-12 routvar 5-61 10-15

®5-2 97405100 C

CALCULATION INSTRUCTIONS

The fonowing instructions are used to manipulate infor-
mation,

define a om pute
a ale cio ck
addl date
subl day
zer o . n8m e
calcc
calcs
set
pack
packc
itoa
Otoa
htoa
find
findall
search
finds
findsa
sOI't
sorts
inserts
deletes

endloop
common
commonx
comload
comret

group dataset
from datain
lessin dataout
randu setnam e
setp er in getnam e
randp addnam e
seed delname
remove rename
modperm
branch
if
elseif
else
endif
doto
loop
Outloop

move peloop

names
addl.ecs
delrecs
reserve
release
abort
storage
stoload
block
transfr

DEFINE ,

Instruction format:

define (name (Fetsl }
defmitiams

Tag definitions:

Ime Name of define set (optional)

sets Name of other define sets to be in-
eluded (names separated by commas)

der]nitierrs Definitions of any or all of the forms:

variable

nrmeeyer

nLane

Yap

nane-
qrme

tut

Name assigned to a vari-
able

Variable of type n, v, nc,
OrVC

constant

Name assigned to a corr
start

Number or mathematical
expression

t Two consecutive donap signs indicate a comment.

97405100 C

fn(I)-
fn

function

Name assigned to an
author-defined function

x Dun my variable

exp Definition of a function

gray
array,mmehun)eyar

SStonedimensionalal.ray

array,mlne(1nulnpLnum)ayor

Stonedimensional array with
off set index

array,name(row,col)eyar

Sstwo-dimensional array

array,mme(Iron,1cdprowpcd)eyar

Sstwondi mensional array with
offset index

array,nrme=Jar

S szercrdimensional array

nalneo[lF2r..,n)eyar(equ)

Sfauthordefined array

name Array mme

ntim Number of elements

van Starting variable of array

lnun First element

nmim Last element

rev Number of rows

col Number of columns

lDow First row

led First column

mow I.ast row

nod Last column

ri|E2, Index varinbles specifying
- number of dimensions in

array

ear Expression using index
variables, specifying nun-
her Of un

5-30

vertically segmented array

arraysegv,rmmethum)=varstartt)it,size

(fred)
Stone-di mensional vertical array

arraysegv,mme(lntmpn]m)]rar,
startbit,size

(:signed

Ssonedimeusional vertical array
with offset index

i;gel,n'eTctrow'cd)eyarctanit
Sstwo-dimensional vertical array

arraysegv,name(lrow,1cdquowDcaL)=
vargivbit,size

(::igned)

SStwo-dimensional vertical arl'ay
with offset index

name Arl.ay name

nun Number of elements

van Starting variable of arl.ay

startbit Starting bit for segment

size Number of bits in each
element

s or Segment elements have a
signed sign bit (optional)

lnum First element

nnum Last element

row Number of I.ows

cdl Number of columns

lrow First I.ow

led Fir.st column

nromr Last row

ncch Last column

segment

segment,seg-estartfize(::igned)

segname Segment name

start Starting variable of
segment

size Number of binary bits
in each segment ele-
ment

o5-4

s or signed Segment elements
have a sign bit (op-
tional)

vertical segment

segment,verticalpame=var]starthit,

she(fsigned}

startbit

SIze

Segment name

U nindex ed variable
such as nl or nc (con-
stant)

Starting bit for seg-
ment

Numbel. of binary bits
in each segment eler
ment

s or signed Segment elements
have a Sign bit (op-
tional)

units of measul'e

units,primlprim2r..,equivl,equiv2r..

SS must be in student define set

priml,
prim2„..

equiyl,
equiv2r..

Primary units antic-
ipated in student re-
sponse for use with
-ansu-, rstoreu-, and
-wrongu- instruct ions

Acceptable equiva-
lent units

Effect:

Assigns meaningful names to variables.

Comments:

Defined names can be fl'om 1 to 7 characters long.
Names cannot begin with a number and cannot con-
tain mathematical operators, FONT characters, or
backspaces.

PI.eviously defined quantities cannot appear on the
lef t side of the equal sign but can appear on the right
side. More than one definition can be placed on a
single line if sepal.ated by commas. Names must be
defined before use. Placing definitions in initial
entry units is suggested. The define set named
student defines variable names that can also be
refer.enced by the student. An al.ray may not contain
more than 255 elements. The maximum value an
array index may have (when offset) is 213-1. The
indexes, offsets, and base locations in al.ray defini-
tion§ must be literals or pl.eviously defined constants.

97405100_ C

C^LC

Instruction format:

calc Uar € ear

calc varl€ var2 <...€ vani ¢ epr

Tag definitions:

var,verl, Variable mmes (primitive or defined)
yer2„..,
Yam

expr Mathe matical expression

Effect:

Lve¥tu:f°fh:X±=;i:nenistp;amcfd«isn)\±e)Variable(s)onthe

Comments:

The -ale- instruction can be a continued instruction.
The variable can be an element of an al'ray or
segment. If van is the unindexed name of an array,
the indicated operation is performed on each element
of tlie arl'ay.

ADD'

hstruction format:

addl van

Tag definition:

van Variable name

Effect:

Adds one to the value of the named variable.

SUBI

Instruction format:

subl van

Tag definition:

van Variable name

97405100 C

Effect:

Subtracts one from the value of the named variable.

ZERO

Instruction format:

zero start {plm)

Tag definition:

start Starting variable of block to be zeroed

nun Number of vapiables to be zeroed

Effect:

Sets indicated variables to numepic zero.

Comments:

One-argument tag sets only the named variable to
Zero,

CALCC

Instruction format:

calcc expp.assignl ,assign2 p.

Tag definition:

epr Expression whose value determines ac-
tion to be tat(en

assignl, -ale-assignments, separated by com-
assign2 ,.~ mag

Effect:

Performs one of several ngalc+ type actions, de-
pending on the value of the expression.

Comments:

First assignment done if expression is negative;
second if expression is zero, third if expression is one,
fourth if expression is two, and so on. Value of
expression larger than that corresponding to a posi-
tion uses last position. An x cannot be used to
indicate no action; a null entry (successive commas)
is used instead.

5-5

C^LCS

Instruction format:

calcs

Tag definition:

ear.
ur

whel,
whe2„..

expr,var<valuel,value2„..

Mathe in atical expression

Varichle to which a value is to be
assigned

Expressions one of whose value is to be
assigned to ur

Effect:

Performs one of several possible assignments, de-
pending on the value of the expression.

Comments:

First value is assigned if expression is negative,
second if expression is zero, and so on. Value of
expression largel` than that comesponding to a posi-
tion uses last position. An x cannot be used to in-
dicate no action; a null entry (successive commas) is
used instead.

SET

Instruction format:

set

Tag definition:

Yap

exprl,
expr2".

var<exprl,expr2,...

Starting val.iable or al.ray element of
block to be -set-

Variables or mathematical expressions

Effect:

Anows several values to be entered into coniecutive
whole-wol.d variables. The variables are set dul.ing
execution of the -set- instruction.

Comments:

The i5et- instruction cannot be used to assign values
to consecutive elements of a segment.

5-6

PACK

Instruction format:

pack

Tag definition:

mm

len

str

mm, { len) ,8tr

Variable in which characters are stored

Optional varichle which contains char
acter count

Character string to be stored

Effect:

Places specified character string in the named vari-
able, left-justified, with zero-fill.

Comments:

String storage can cl'oss variable boundaries. Using
two successive commas specifies an omitted len.

PACKC

Instruction format :

packc

Tag definition:

expr

nrm

len

strL-'Stro,
strl,...,
stm

expr,nrm, { len) ,str-,stro,strl ,..., strn

Mathematical expression

Variable in which chal'acter strings are
stol.ed

Optional variable in which character
count for specified string is stored

Character strings to be stored in nan

Effect:

Based on the value of the mathematical expression
(expr), places specified character stl.ing in the named
variable, left-justified, with zel.o-fill. i)ackc- is the
conditional form of the Pack- instruction.

Comments:

The following may be used Qs separators: , ; or |.
The separator after len is the only allowable string
separator. Endi)f-line also acts as a separator. If
the first tag une ends with len, the only allowable
separatol. is endrof-line.

97405100 C

lTOA

hstruction format:

itoa

Tag definitione

vd
lee

nun

Vquoc {,nun }

Integer variable to be converted

Location of converted string

Optional variable for storing character
count

Effect:

Value of the first variable is converted to an al-
phanumeric string. String is left-justified with zero-
fill starting in loo

Comments:

Only integer variables should be used. All arguments
must be variable names.

OTO^'

Instruction format:

Otoa

Tag definition:

yal

lac

nun

quoc(,nun)

Octal variable to be converted

Location of converted string

Optional variable for number of digits
to be converted

Effect:

Value of the first variable is converted to an alpha-
numeric string. String is left-justified in a 1- or 2-
word buffer named by second argument.

Comments:

If nuln is not apecified, the default value is 20.

HTO^

Instruction format:

htoa

97405100 C

vquoe(pun}

Tag definition:

yal

lee

nun

Hexadecimal variable to be converted

Location of converted stl.ing

Optional variable for number of digits
to be converted

Effect:

Value of the first variable is converted to an alpha-
numeric stl.ing. String is left-justified in a 1- or 2-
word buffer named by second argument.

Comments:

If nuni is not specified, the default value is 15.

flND

instruction format:

find

Tag definition:

Obj

stud

length

retun

increment

nlask

i,jffilengtlyetun (,inaement)

Variable containing object to be found

Starting variable of search

Number of variables to be searched

Variable in which number of variable
containing object is stored

Optionch variable which specifies only
every nth word for comparison with chj

Optional mask of variable containing
Object

Effect:

Searches specified number of variables for bit coTr
figuration in object (possibly modified by mastc). The
number of the variable in which the object first
occurs (relative to the starting variable) is placed in
the return variable. tf the object is not found, the
value of the return variable is set to -I.

Comments:

The search can be made backwards through the list by
specifying the length as negative. The value of
DetuD however, is the number relative to the
starting variable (that is, if there is only one occurL
Pence, a negative search gives the same result as a
positive search). If mastc is used, increment must be
specified.

5-7

F'ND^LL

instruction format:

findan

Tag definition:

Obj

stud

length

refro

fonow

increment

mask

ipr¥mp:ntiT,eHtdnow

Object to be found

Starting variable of lfst to seal`ch

Length of list

§:ar::nngt) return vat.iable (cannot be a

Number of following variables for stor-
age of found locations (0 for count only)

Optional variable which specifies only
every nth word for comparison with
object (assumed to be 1 if not given)

:bpjte£:tn#unm_:Sokrd°sfe::h{#]neotcg°£nvte#ng

Effect:

Searches a list of variables to find a specified object,
I'eturns a count of the number of matches, and lists
the locations of the matches. Increment between
variables searched can be specified to be other than
1.

Comments:

If object matches the first variable, the location
value returned is 0; if there is no match, retul.n is -1.
If mastc is used, increment must be specified (1 in
normal case). If increment specified exceeds the
length, an execution err.or occurs. The seal.ch can be
made backwards from the last variable in the list by
specifying increment as negative.

SEARCH

Instl.uction format:

search StrFtrlenstarqen,char,rot (,coiut)

5-8

Tag definition:

str

strlen

start

len

char

Variable containing character string to
be found

Number of Characters in str

Starting variable Of string to be
searched

Number of variables to be searched

==iicnic#±:teirp°Si:i°{:d?i?:astter:nfgfi°
character in string)

Variable storing result

Variable or mathematical expression

Effect:

Searches the specified variables for the object string
specified in str. Pet contains the relative character
number of the first occurrence if an occurrence is
found; otherwise, let is -1. If the optional count is
present and is 0, the entire string is searched for all
occurl.ences of the object and returns a count of the
number of occurrences in Pet. If colmt > 0, each of
that number of variables following let contains the
character position of one of the ret occurrences
within the string searched. The ret+ 1th variable is
set to -1 to indicate the end of the list of
occul`rences, and all following variables are urn
changed. Does a fol`ward search if len is positive, I
and does a backwal.d search if len is negative.

Comments:

The object string must be left-justified in the vari-
able. Search crosses wol`d boundaries, so ret is the
character position in which the occurrence begins.
The string searched for (contents of str) can be any-
where within a word. The string searched for can be
no longer than 10 characters. ret cannot be a
ngegment-d variable.

97405100 C

FINDS

Instruction format:

fi nds fj=Tgrc,istbi.nunbits,

Tag definition:

objeet

tist

Variable containing object to be found

Starting location of nst can be:

Student
variables

CM
variables

ECS
common

ECS
storage

Either n(x) or defined
name

nc(x)

common,2000
(=c, 2000)

storage,123
(=s,123)

length Number of entries in list; one entry can
be several words

inc Number of words per entry; must beLS.
500

1stbit First bit of search field

ntmbits Number of bits in search field

rettmL Variable containing the list entry nun-
ber if object is found; otherwise, nega-
tive of list entry numbel. where object
should be

flMlck Optional mask of variable containing
Object

Effects

Finds an object in a sorted numeric list.

Comments:

Does not check if the list is sorted. Each entry in the
fist can occupy one or more words, but must not be
partial words. The numepic field cannot cross word
boundaries. List length Of 0 sets retim to -1, and ire
must be at least I.

97405100 C

FINDSA

Instruction format:

findsa

Tag definitiorL:

Object

ng

length

inc

lstchar

nunchus

retun

nrack

:#ir¥prcilstctiar,nunchars,

Variable containing object to be found

Starting location of fist can be:

Student
variables

CM
varinbles

ECS
common

ECS
storage

Either n(x) or defined
name

nc(x)

common,2000
(=c,2000)

i±:,rLa293e).123

Number of entries in list; one entry can
be several words

Number of words per entry; must be <
500

First character of search field

Number of characters in search field

Vat.iable containing the list entry num-
ber if object is found; otherwise, neg8r
tive of list entry number where object
should be

Optional 1-word mask Of variable con-
taining object

Effect:

Finds an object in a sorted alphabetic list.

Comments:

Does not check if the list is sorted. Each entry in the
list can occupy one or more words, but must not be
partial words. The charactel. field can cross word
boundaries. List length of 0 sets retim to -1, and inc
must be at least 1.

5-9.

SORT

Instruction fol'mat:

sort

Tag definition:

tistl

ffi2

|eun

inc

|8tbit

nunbits

mach

listl?engrhrfucilstbit,nimbits(,mask)
m2fro

Starting location of the list to be sorted
in numerical order:

Student
variables

CM
varinbles

ECS
Common

ECS
storage

Either n(x) or v(x)

Either. nc(x) or vc(x)

common,2000
(=c,2000)

storage,123
(=s,123)

Starting location of the optional asso-
ciated list to be sorted in numerical
order

Number of entries in list; one entry may
be several words

Number of words pet. entry

First bit of field for sorting

Number of bits in sol.t field

Optional mask for sort field

Effect:

Places a list of variables (n or v variables) into nLr
merical order, smaller to larger. The second tng line
is optional; it causes Hst2 to be sorted at the same
time as Hstl, thus sorting pdil'ed lists.

Comments:

A semicolon is required as a separator after the list
tag. Each entry in the list may occupy one or several
whole variables. Entries cannot be partial words.
The numeric field for sorting may not cross wol.d

5-10

boundaries. For example, it is allowable to sort on
bits 43 through 53, but it is not allowable to sort on
bits 55 through 67. The command field for the peired
list (the optional second line for the instruction) must
be blank. Only two lists can be paired.

SORTA

Instruction format:

sorta

Tag definition:

rna

ustb

length

inc

lstchar

nunche
mask

listapength,inc,lstcharpunchars (,macs) I
listb;ire

Starting location of the list to be sol.ted
in alphabetical order

Starting location of the optional asscr
ciated list to be sorted in alphabetical
order

Number of entries in list; one entry may
be several words

Number of words per entry

First character of sort field

Number of characters in sort field

Optional 1-word mask for sort field I

Effect:

Places a list into alphabetical order according to the
internal codes for the characters. The second tag
line is optional; it causes listb to be sol'ted at the
same time as lista, thus sorting paired lists.

Comments:

A semicolon is required as a separator otter the list
tag. Each entry in the list may occupy one or several
whole variables. Entries cannot be partial words.
The character field may cross one word boundary,
such as characters 8 through 14. The command field
for the pail.ed list (the optional second line for the
instruction) must be blank. Only two lists can be
paired.

97405100 C

lNSE,TS

instruction format:

inserts t£:gee#g#Egrcuce(,nun)

Tag definition:

objectl Variable containing object to be in-
serted

objeet2 ¥gt¥:Ljen =::#endgns¥!:S:iotn°ai)be fn-

llstl Starting location of list can be:

Student
variebles

CM
variables

ECS
common

ECS
storage

Either n(x) or clef ined
name

nc(x)

common,2000
(=c'2000)

i±:,rLa293e).123

D I I. E T E S

instruction for mat:

deletes #£grclbe(purl

Tag definition:

listl Starting location of list can be:

Student
variables

CM
variables

ECS
common

ECS
storage

Either n(x) or defined
name

nc(x)

common,2000
(ac'2000)

i::,rL¥3e).123

list2 Starting location of optional associated
list

length Number of entries in list before iTr
sel.tion; one entry can be several words

incl, Number Of words per entry; must be <
inc2 500

loo Position objects are inserted into

nim Optional numbel` of inserted entries

Effect:

Inserts any number. of new entries into a list. The
second tag line is optional; it inset.ts object2 in the
optional associated list2 in the same position as
objectl is inserted in listl.

Comments:

Each entry in the list can occupy one or more words,
but must not be partial wol.ds. List entl.y size de-
termines object size. inc must be at least 1, and loo
must bet 1 ends leng(h + 1.

97405100 C

list2 Starting location of optional associated
list

length Number of entries in list before d-
letion; one entry can be several words

incl, Number of words per entry; must be <
inc2 500

loo Position of entry to be deleted

nllm Optional number of deleted entries

Effect:

Deletes any number of entries from a list. The
second tag line is optional; it deletes an entI'y in the
optional associated list2 from the same position as
the entry in listl is deleted.

Comments:

Fins the last entry with zeros after moving the list
together. Each entl'y in the list can occupy one or
more wol.ds, but must not be partial words. List
entry size determines object size. ine must be at
least 1, and loo must be ? 1 andslength + 1.

5-11 0

N\OYE

Instruction format:

move

Tag definition:

Ostut I

cehar

fstart

fcha

len

ostart,octiar,fstart*char (Jen)

Starting variable of object to be moved

Character location within variable
ostart of object to be moved

Starting variable of new location

Character location within variable
fstart of new location

Optional character count; if omitted,
one character is moved

Effect:

Copies a character string from one location to an-
other. A maximum of 1500 characters can be moved
witliin one -move+ iristruction.

COMPUTE

Instruction format:

compute vdL~en,van

Tag definition:

vat

stud

len

Van

Variable to contain value of expression

jsi%;tfi:5) Variable of expression (|ef t-

Numbep of characters in expression;
must be < 100

Variable to contain a pointer to compile
code

Effect:

Evaluates value of expression stored as a character
string and saves compile code for later use of the
ngompute- for the same string.

Comments:

The first time a character string is compiled, van
must have the value zel.o. On following evaluations
of the same string, van must have the value assigned

5-12

during the first compilation. Must use a student
define set with this instruction, if defined variables
are in the string.

CLOCK

Instruction format:

clock nalne

Tag definition:

name Variable name

Effect:

Places time (to nearest second) in variable in alpha-
numeric form with format such as

13.20.58

(that is, 24-hour clock).

DATE

Instruction format:

date name

Tag definition:

nalne Variable name

Effect:

Places current date in variable in alphanumeric
format with the format month/day/year.

DAY

hstruetion format:

day -e
Tag definition:

vrmme Floating-point variable mme

Effect:

:::Cs:SarTfun¥bdearte°in€aty£Sm:W(:::eb£?£stf:fi:tt!#)Since

97405100 C

NAME

Instruction format:

name liamel

Tag definition:

nanel . Name of first of two consecutive vari-
ables to be used

Effect:

First 10 characters of student sign-on name I)laced in
first variable, remaining eight in second variable,
left-justified, zerorfilled.

CROUP

hstruction format:

group lone

Tag definition:

name Variable name

Effect:

Places the student's group name in variable name,
left-just ifi ed, zero-fined.

FROM

instruction format:

from

from

I from

Tag definition:

Van

97405100 C

=T(:ULE)e)",.;
Sslesson name/unit name pairs

:¥F(:J=H:.),.;
Ssleslfst

lwar (,uvar)

Variable

b-;
hanel;-.
t-e;
tmanel;-.

ear

Lesson names

Unit names or variables containing unit
name, left-justified, zerofilled

Variable or mathematical expression
that references a leftist number en-
closed in <>

Variable in which lesson name is placed

Variable in which unit name is placed

Effect:

Permits author to determine the lesson (and unit)
from which his lesson was entered via a -jumpout-
instruction.

Comments:

If the current lesson was entered from the first lesson
name/ (unit name), the variable is set to 0; if from
the next pair, it is set to 1, etc. If the lesson is not
found in the list (lesson name/unit name pair list), the
variable is set to -1. Each line of the -from-
instruction must end with a semicolon. Last fol.in of
-from- places names of lesson and unit from which
student entered current lesson into lvar and trvar.

LESSIN

Instruction format:

lessin lesserL

Tag definition:

|eson Actual lesson name ol. leslist pefel.ence
in<>

Effect:

Checks to see if lesson named is credited to the
logical site and sets system-reset.ved word zreturn I
accordingly (zreturn is -1 if lesson is in ECS or in use
at site; zretul.n is 0 otherwise).

Comments:

Leslist reference may be a constant, a variable, or an
expression.

5-13

RANDu

Instruction format:

randu mme (dim)

Tag definition:

name ' Variable name in which value wnl be
stored

Hm Limit value

Effect:

One argument: Returns a fraction between zel.o
and one (0 < name < 1)

Two argument: Returns an integer between one
and value of limit, inclusive

Comments:

The variable storing the number should be a floating-
point variable and must be such in the onerargument
case. Sampling is done with replacement.

SETPERM

Instruction format:

I setperm urn(|ce}

Tag definition:

urn Upper bounds of integer set used (I <
Ism < 120)

loo Location for storing permutation

Effect:

Sets up a per.mutation of integers between one and
urn inclusive. Onerargument form stores the per-
mutation in the standard rystem location and creates
a second copy. Two-argument fol.in stol.es the per-
mutation in the user variables specified and does not
create a second copy. In the two-argument fol.in, Ifm
can be greater than 120.

Comments:

Second copy is for use by the -remove- and
-modperm- iustructious. When the two-argument
form is used, the number of variables required to

5-14

store the pet.mutation is the value of the author
language expression 2 + int ((Hm -1)/60).

RANDP

Instruction format:

randp store (Joe }

Tag definition:

store Variable used to stol.e result

loo Starting location of permutation is in
user bank variables

Effect:

Selects an integer fl.om the permutation without
I'eplacement and stores the result in store. One-
argument for.in uses system location; tworangument
form uses a permutation located in the user variables
specified. When the permutation is exhausted, a
value of zero is returned.

SEED

Instruction format:

seed lee

Tag definition:

loo Location of seed value for Lrse with the
iandu- and -randp- instl'uctious

Effect:

AIlows specification of a starting value for the vari-
able used in the algorithm for generating random
numbers. As long as the algorithm is unchanged, any
string of random numbers can be repeated by using
the same seed.

Comments:

A tseed- instruction with a blank tag indicates that
the system seed is to be used. When a student enters
a lesson, the system seed is assumed until a ngeed-
instruction is executed. The seed indicated by the
ngeed- instl.uction is then used until a ngeed- in-
struction with a blank tag is executed or the student
leaves the lesson.

97405100 a

•RtMOVE

Instruction format:

remove wine (Joc}

Tag definition:

ydre

lee

Number to be removed from the per-
mutation

Starting location of permutation is in
user bank variables

Effect:

Removes specified value from permutation. One-
argument form affects second system copy, and two-
argument form affects the user variable copy speci-
fied.

Comments:

The instruction is ignored if value specified is less
than or equal to zero, greater than the largest ele-
ment of the permutation, or previously removed by a
ie move+ instr uction.

MODPERM

Instruction format:

modperm

Effect:

Replaces first eystem copy of pel'mutation (accessed

#ec°tne=gygu+meemn:v+a.a)?dpl)Withsecondsystemcopy

BRANCH

Instruction format:

br anch labd

branch exprJabell]al)el2 ,...

Tag definition:

ear Mathematical expl`ession

97405100 C

dbdpabeu, Line label, x, or qdue

Effects

Branches to different lines of code within the same
unit. A line label appears in the command field,
starts with a number, and is seven or less characters
in length. x causes the torancl+ to have no effect; q
causes branching to the next non-ale- instruction.
The second form of the branch- instruction is the
normal conditionch form.

Comments:

If the toranch- is preceded by a -ale- instruction,
the branch- continues the preceding -ale- and can,
if desired, be put in the tag field. Otherwise, the
toranch- must be in the command field and initiates
calculation.

IF

Instruction format:

if ear
inrfu

Tag definition:

epr Logical or arithmetic expression

instr Indented author language instructions
(must be regular)

Effect:

Begins an -if- structure. If the value of expr is true,
the author language instructions immediately fouow-
ing if- are executed. If the value of expr is false,
execution resumes at the next -lseif-, uelscL, or
uendif- instruction at the current level of indenting.

Comments:

Every -if- structure must end with an -ndif- in-
struction. Instructions between -if- and uendif- must
be indented (except for -lseif- and -1se-.).

5-15

ELSEIF

instruction format:

elseif equ
instr

Tng definition:

exp Logical or arithmetic expression

fnd (tnmdues¥:: I:;;:ih::) langunge instructions

Effect:

If the value of expr is true, the author language
instl'uctious immediately following -1seif- are exe-
cuted. If the value of ear is false, execution
resumes at the next -lseif-, -1se-, or uendif-
instruction at the curl'ent levd of indenting.

Comments:

Evaluated when the preceding -if- or -1seif- is
false. Can have mol.e than one -lseif- instruction in
an -if- structure.

ELSE

Instruction format:

else
instr

Tag definition:

instr Indented author language instl.uctious
(must be I.egular)

Effects

When all preceding -if- and -lseif- expressions are
false, the author language iustructious immediately
fonowing uelser are executed.

Comments:

Must have a blank tag.

ENDIF

Instruction format:

endif

• 5-16

Effect:

Ends an -if- structure.

Comments:

Execution jumps to -ndif- after the execution of
author language instructions following a true ear.

DOTO

Instl.uction format:

doto

Tag definition:

label

Yap

beg

end

inc

bel,var<beg.end (,fro)

Statement label

Index val'iable to be incl.emented

Initial value of index variable (constant,
variable, or mathematical expression)

Final value of index variable (constant,
variable, or mathematical expression)

Size of increment for index variable
(default is 1; negative increments are
permitted)

Effect:

Allows an intel.active loop within the same unit, with
the ndoto- loop extending from the ndoto- command
to the statement label named in the tag. The
statement label is in the command field, starts with a
number, is seven or less characters in length, and has
a blank tag. The ndoton loop is executed the

:3:;i,f5:Ld€ui#rwofe;iTheesviEdui:a.tfe:h:nint:&i:e£::ix:
exceeds the final value (end) of the index variable,
the ndoto- loop is complete, and the command
fonowing the line label is executed.

ndotcL loops can be nested within ndotcL loops., A
negative inc value gives a decreasing loop.

Comments:

ndoto- in the command field initiates a -ale- func-
tion; if the ndotcL begins the tag field, it continues a
-ale-. Non-ale- commands are allowed within a
ndoto- loop. The statement label ending the ndoto-
may not contain a -ale- expression in the tag of the
statement label. The statement label of the ndoto-
loop must be in the same unit as the ndotor
statement. ndotcL can only be used in the iterative
form. An -ntry- in the middle of a ndotcr loop is
illegal. When nesting ndoto- loops, the inner ndoto-
loop cannot extend beyond the statement label of the
outer ndotcr loop.

97405100 C

LOOP

Instruction format:

loop (epp)
instr

Tag definition:

cxpr Logical or arithmetic expression

instr rmdues:t:: r:i;:Efir) language instructions

Effect:

Begins a loop. If the value of exp is tl.ue, the author
language instructions immediately following -loop-
al.e executed. If the value of ear is false, execution
resumes following the -ndloop-instruction.

Comments:

A blank tag is equivalent to a true expression. Every
loop starting with a -loop- instruction must end with
an -ndloop- irrstruction. Instructions between
-loop- and -ndloop- must be indented (except for
routloop- and teloopT).

OUTLOOP

Instruction format:

outloop ear

Tag definition:

ear Logical ol` arithmetic expression

Effect:

PI.ovides a conditional exit from a loop. If the value
of expr is true, execution resumes fonowing the
-ndloop- instruction. If the value of expr is false,
the author language instructions immediately follow-
ing -utloop- are executed.

97405100 C

Comments:

Must be at same level of indenting as last -loop--
instruction. Must have a tag.

RELOOP

Instruction format:

reloop ear

Tag definition:

err Logical or arithmetic expression

Effect:

Provides a conditional branch to the -1oap- instruer
tion. If the value of expr is true, execution resumes
with the previous -loop- instruction. If the value of
exp is false, the author language instructions immer
diatdy following ieloop- al.e executed.

Comments:

Must be at same level of indentation as last -loop-
instruction. Must have a tag.

ENDLOOP

Instruction format:

endloop

Effect:

Ends a loop. Branches immediately to the -loop-
instruction which began the loop.

Comments:

Must have a blank tag.

5-17 .

COMMON

Instruction format:

common

common

Tag definition:

nun

lesson

nun (,opt)

(leson} ,blockprm (,opt)

Number of variables declared (maxi-
mum of 8000 wol.ds)

Lesson containing permanent common;
optional if lesson is same lesson con-
taining -ommon-instruction

Name of block or blocks containing
permanent common

Options

Effect:

One argument: Specifies the number of variables
in temporal'y common

Three argument: Obtains specified number of vari-
able§ from permanent common lan
cated in lesson leson, block block

Options: Read only, no load, I.onl (combined
read only and no load), or checkpt
(permanent common is returned to
disk approximatcty every 8
minutes)

Comments:

This nonexecutable instruction can appear anywhere
in a lesson because common is allocated at condense
time. Can be used once per lesson. If common is less
than 1500 words, no -omload-instruction is required
otter -ommon-. If common is mol.e than 1500
words, a ngomload- instruction af ter ngommon- is
I'equired.

COMMONX

Instruction format:

commorK (lesson\ ,block,nun, (code) (,opt}

Tag definition:

lesson

5-18

Lesson containing permanent common;
optional if lesson is same lesson con-
taining -ommonx-instruction

Name of block or blocks containing
permanent com mon

Number of variables requested

Codeword of common (optional)

Options (read only, no load, ronl, and
checkpt)

Effect:

Common val`iables I`equested by -ommonx- ai.e
anocated when -ommonx-is executed.

Comments:I

An executable fol'm of the -ommon- instruction.
All arguments can be variables. Can be used once per
lesson.

COMLOAD

Instruction format:

comload

comload

Tag definition:

Cm

ees

cm,egnum

Starting position in central memory nc
or vc variables

Starting position in extended core stol'-
age common

Number of variables (maximum of 1500
words per instl.uction)

Effect:

Loads nun common variables from extended core
storage (set by preceding ngommon-) into central

tTime-osruycencan:nfetvucm:atri:b|;sda::dt:ius:saratt :ice::E I
of each time-slice.

Comments:

Unless diffel.ent variables are to be loaded, a single
instl.uction is sufficient. Can be a continued instrucr
tion (up to thl.ee lines) with one load specification per
nne. Subsequent -omload- instructions cause unload
before load. Only one ueomload- can be in effect at
one time. A -omload- must be preceded by a
-ommon- instruction. Blanl(tag stops -omload-
execution.

97405100 C

COMRET

Instruction format:

comret

Effect:

Copies current permanent common fl.om ECS to disk.

Comments:

ECS copy of common is not affected.

DATASET

Instruction format:

dataset

dataset

Tag definition:

fn

acK2es

code

fn (Bceess) (,code)

Dataset file name

Type of access desired (optional):

-1 > Read/write
I-1 > Read only
blank > Read/write

Common code word (for read/write ac+
cess) or inspect code word (for read-
only access) of dataset (required if
common code wol'd of lesson does not
match col.responding code word of
dataset); can be a variable or a literal;
optional

Effect:

Establishes connection between lesson and dataset or
nameset file. After successful execution, records
may be I.ead from or written to the dataset by using
ndatain- or ndataout-. A blank tag terminates the
connection to the current dataset.

Comments:

Operates in the same manner as the ieadset- in-
struction but successful only if the named file is a

97405100 C

d&taset or a nameset. System-reserved word zreturn I
is set to:

-1 Connection made (lesson and dataset code
words matched)

0 If the file is not found

I lf codes do not match

2 If file is in use elsewhere (file is being
edited)

>3 System disk errors

The system-reserved words zdsname, zrecs, end zwpr
are also set following successful execution of the
rdataset- instruction. If the dataset is a nameset,
the system-I'eserved words znscpn, znsmaxn,
znsmaxr, znsnams, and znsrecs are also set. Refer to
appendix 8.

DATAIN

instruction format:

detain

Tag definition:

SS\ee

loo

nun

sree:Joe (grun)

Number of the first record to be read

Location to which the first block is
written as follows:

Location For mat

storage stol.age,x or s,x

common common,x or c,x

st udent nx
variables

Number of recol.ds to be read (optional);
if omitted, 1 is assumed

Effect:

Reads nuln records fl.om the data§et file, beginning at
spec, into storage, common, or student variables.

Comments:

Up to 10 dataset-type instructions may be used in a
-finish- unit; requires a pl.evious ndataset- instl.uar
tion. Delimiters must be semicolons.

5-19

DATAOUT

Instruction format:

dataout

Tag definition:

Spec -

lee

nun

sree?oc {Dun}

Number of the first record to which
data win be written

Beginning location from which data win
be wl.itten as follows:

Locati on For rna t

storage storage,x or s,x

common common,x ol. c,x

st udent rix
variables

Number of recol.ds to be written (op-
tional); if omitted, 1 is assumed

Effect:

WI.ites nun I'ecords fl.om stol'age, common, or student
variables into the dataset file, beginning at srec.

Comments:

Up to 10 dataset-type instructions may be used in a
-finish- unit; requires a previous ndataset- instruo-
tion. Delimiters must be semicolons.

SETN^ME

instruction format:

setname

setname

setname

Tag definition:

ar

nextname

backname

(un)
nextname

backname

Variable in which name starts

Keyword nextname must be used in the
rsetname nextname- instl.uction

Keyword backname must be used in the
rsetname backname- instl.uction

Effect:

Selects a named set of records from a nameset for
future reference. Selects the next name in alpha-
betical ol.der when the tag is nextname. Selects the

® 5-20

preceding name in alphabetical order when the tag is
backname. A blank tag clears the current name.

Comments:

The al'gument van carmot be a constant or a literal.

GETNAME

Instl.uction format:

getname nane{,vu}

Tag definition:

name

Van

Starting variable for return of the name

Variable where the information associ-
ated with the name is stored (optional)

Effect:

Returns the name cuITently selected from a nameset
and its 24 bits of associated information. Returns a
full word of zel`o if no name is currently in effect.

Comments:

Returns only full words.

ADDN^ME

Instruction format:

addname

Tag definition:

name

ntm

Van

nrme{pun{,ver}}

Starting variable of name to add to
nameset

Number of records to add with mme;
default is 1

Variable containing 24 bits of associ-
ated information to add with name

Effect:

Adds a new name and new set of records to a
nameset.

Comments:

Wlien van is specified, rightmost 24 bits are taken.

97405100 C

DELNAME

Instruction format:

delname

Effect:

Deletes the current selected name and its records.

Comments:

This is the only method of deleting a name from a
nameset.

RENAME

Instruction format:

rename mme { ,van }

Tag definition:

name

Var

Starting variable of name to replace old
name

Variable containing 24 bits of new
associated infol.motion

Effect:

Changes the name of the currently selected name.
Can also change the 24 bits of associated informa-
tion®

Comments:

If van is not specified, the current associated infor-
motion stays the same.

NAMES

Instruction format:

names

Tag definitione

Par

Yap

nun

97405100 C

pos,varpun,retun

Starting position in list Of names

Starting variable for storing names

Maximum number of words available for
storing names

refro Variable returning number of names
actualy obtained

Effect:

Returns a set of names from the current list in the
nameset.

Comments:

Each name entry uses 1, 2, or 3 words for the name
plus 1 word fop the associated information.

ADDRECS

Instl.uction format:

addrees { record,} nun

Tag definition:

I-d
nrm

Record number assigned to first added
record

Number of records to add

Effect:

Adds records to the current named set of records.
On-argument form adds records to end of set of
records.

DELRECS

Instruction format:

debecs {recod,} nun

Tag definition:

I-a
nun

Starting record number to be deleted

Number of records to delete

Effects

Deletes records from the current named set Of recL
ords. On®argument form deletes records from end
of set of records.

Comments:

If all records are deleted, the name remains with no
records.

5-21 .

RESERVE

Instruction format:

reserve

reserve

reserve

Tag definition:

common

dataset

records

rermd

common

dataset

I.ecords,reccrd,nun

The tag common must be used in the
-reserve common-instruction

The tag dataset must be used in the
reserve dataset- instruction

The tag records must be used in the
-reserve records-instruction

Starting record number. of dataset to
ieserva
Number of records of dataset to
ie§el.Ve-

Effect:

Sets a flag to indicate that this terminal is using
common or dataset records.

Comments:

System-I.eserved word zl.etum is returned equal to -1
if common is I.esel.ved successfully or is I'eturned
equal to the station number of the terminal which has
common reserved. zretum is -2 if the terminal
already has common I.eserved. After a -reserve
dataset- instl.uction, zl.etul`n is set as follows:

-2 Records already reserved by this ter-
minal

-1 reserve-successful

0 No preceding ndataset-instruction

1 No such record number(s) in dataset

2 Terminal has I.Cad-only access to
dataset

5+n Record(s) of dataset I.eserved by ter-
minal numbel` n

The -reserve common- instl.uction does not lock out
access to the common variables. However, appropri-
ate branches can be used on the value of zreturn such
that a lock-out will occur in the lesson. The reserve
dataset- instruction prevents other user.s from writ-
ing into the entire dataset or nameset. The reserve
I.ecords- instruction pl.events other users from writ-
ing into the reserved I.ecords(s) of the dataset or
nameset. Dataset records which are reserved by
another terminal can still be read.

5-22

RELEASE

Instruction for.mat:

release

release

release

Tag definition:

common

dataset

recol'ds

record

nun

common

dataset

recordsrermdyun

The tag common must be used in the
release com mon-inst`ruction

The tag dataset must be used in the
release dataset- instl.uction

The tag records must be used in the I
-release records-instruction

Starting record number of dataset to
ielease-

Number of I.ecords of dataset to
-releaser

Effect:

Clears flag set by +eserve-. Not cleared if common
or dataset records are not I'eserved by this station.

Comments:

System-I.eserved word zretul.n is I.eturned equal to -1
if common is released successfully or is peturmed
equal to the station number. of the terminal which has
common resel.ved. zretul.n is -2 if common is not
reserved by any tel.minal. After a release dataset-
instruction, zl.eturn is set as follows:

-2 Dataset I.ecord(s) not reserved by any
terminal

-1 -release-successful

0 No preceding ndataset-instruction

1 No such recol.d number(s) in dataset

5+n Record(s) in dataset are reserved by
terminal number n

Common variables al.e automatically released if an
execution error occurs in the lesson ol. if the user
exits by pressing SHIFT STOP. Dataset records are
automatically released when the user exits fl'om the
lesson by any means, when another ndataset- instruc-
tion is executed, or when a ndataset (0)- instruction
is executed.

97405100 a

ABORT

Instl.uction format:

abort com mom

abort record

abort

abort
(Up to three tags can be
used with a single dbol't-
command.)

Effect:

The rdbort common- instruction transforms a per-
manent common into a tempol.ary common. Common
is not returned to the disk (updated) when the last
user leaves student mode. Lesson(s) containing
common continue to function as before, but all recent
changes to common are never returned to the disk.
Execution errors occur if thel.e is no common or read-
only common.

The dbort record- instruction causes student records
not to be returned back to the disk when the student
signs off. However, CPU time, number of sessions,
eta. are updated at sigrroff time. Autocheckpoint
function is included with rabol.t record-. An execur
tion error. occurs if user is not a registered student
with the rabort I`ecord- and -abort autocheck-
commands.

Autocheckpoint of Common does not occur when an
-abort autocheck- is in effect.

STORAGE

Instruction for mat:

st ol. age nun

Tag definition:

nun Number of words of storage

Effect:

Reserves the requested number. of words in ECS.

Comments:

Only one rstorage- instruction can be used in a
lesson. Maximum length of storage is 1500 words.

97405100 C

STOLO^D

Instruction format:

stoload

stoload

Tag definition:

Cm

star

nun

cmutquun

Starting variable position in central
memory nc or vc variables

Starting variable position in storage

Number of variables (maximum of 1500
words per instruction)

Effect:

:°taodrsa;g £Vn%£acbeL:tsrir°mmeito°rryagnec (as:: :g :£::;lees:E I
the beginning of each time.-slice and returns the
updated values at the end of each time-sHce.

Comments:

Unless different variables are to be loaded, a single
rstoload- is sufficient. Can be a continued instruc-
tion (up to three lines) with one load specification per
line. A blank tag cancels previous rstoload-. A
tstoload- must be preceded by a itorag- in-
struction.

BLOCK

Instruction format:

block

Tag definition:

stan
store

nun

stutriarepun

Starting location of block to be moved

Starting location of block destination

Number of variables to move (Can be 0)

Effect:

Copies nun variables from the block starting at start
to the block starting at store.

5-23

TRANSFR

Instruction format:

tr ansfr start;store;nuni

Tag definition:

start ' Starting location of block to be moved

stare Starting location of block destination

I mm Number of variables to move (can be o)

Effect:

Copies mim variable§ fl.om the block starting at start
to the block starting at store.

Comments:

More general than the Lblock- instruction but with
the same type of effect. The arguments must be
separated with semicolons. The locations can have
any of the following forms.

nx
VX

ncx
Vex

common,x
C,X

storage,x
S,X

)

)

)

)

Student variables

Central memory variables

ECS common variables

Storage variables

h all cases, x is the variable number.

DISPLAY INSTRUCTIONS

The following instructions are used to display information.

at
atnm
rorigin
gorigin
rat
got
ratnm
gatnm
write
writec

showz rdraw
show e gdraw
showa circle
text circleb
hidden r ci i`cle
erase gci role
eraseu
size
rotate
dot

box
rbox
gbox
vector

show r dot rv ector
show t gdot gv ector
showo draw w indow

5-24

mo de tabs et lscalex
colol. sli de
em bed enable
catc hup disabl e
d Clay audi o
a her play
plot I ecor d
chars et ext
chartst extout
li neset axes
altfont bounds
in icro sc alex
codeout scarey

AT

Instruction fol'mat:

at

at

Tag definition:

loo

fmex

rlney

he
finer,finey

1scaley
labelx
labely
markx
narky
graph
hbar
vbar
delta
funct
polar

Coarsgrgrid location

Finengl.id horizontal location

Fine-grid vertical location

Effect:

Sets position and margin for display instructions.

ATNM

Instruction format:

atnm

atnm

Tag definition:

loo

finer

finey

lee

rinexfmey

Coarse-grid location

FineTgrid horizontal location

Finengrid vertical location

Effect:

Sets position for display instructions but does not set

:uLeenfttnTnaersgfnoff°trhec°dn£:£pn]:;?]£gee;o(nsdeca°nnddsaunbdsi:::n:
If nes are displayed at the leftmost margin (default
left margin).

97405100 C

|O,ICIN

Instruction format:

rorigin

rorigin

rorigin

Tag definition:

be
rmez

rney
blank

be
rinex.riney

CoarseTgrid location

Finengrid horizontal location

Fineirid vertical location

Sets origin to current wherex and
wherey

Effect:

Specifies an origin for the I.elocatable instructions.

Comments:

Remains in effect until another -rorigii+ is executed.
If no -porigin- is specified when entering a lesson,
-rol.igin- i§ set to 0,0.

CORICIN

Instl'uction format:

gorigin

gorigin

gorigin

Tag definition:

lac

rmex

rmey

blank

be
rmex,rmey

Coarsengrid location

Fineirid horizontal location

FineErid vertical location

Sets origin to current wherex and
wherey

Effect:

Specifies an origin for the relative graphics instruo-
tious.

97405100 C

Comments:

Remains in effect until another iorigin- is executed.
If no iorigin- is specified when entering a lesson,
ngorigin- is set to o,o.

RAT

Instruction format:

rat

pat

rat

Tng definition:

lee

finer

rmey

blank

loo

fines,rmey

CoarseTgrid loee tion

Fineirid horizontal location

Finengrid vertical location

Sets screen position to current -rorigin-

Effect:

The -rat- (relocatable at) instruction determines a
new screen position relative to the specified
-rorigin-. The current state of the -size- and
-rotate+ instructions is taken into account. The
-rat- instruction is used with text display instructions
and with relocatable instructions.

CAT

Instruction format:

ga t x.y

Tag definition:

X

y

Scaled horizontal position

Scaled vertical position

Effect:

Places cursor (position) at specified location on the
screen for subsequent graphics instl.uctions.

Comments:

Equivalent to the fine gI.id -at- instl.uction, except
that the location is specified in scaled graph coor-
dinates I.elative to the specified ngorigin-.

5-25

RATNM

Instruction format:

ratnm

ratnm

Tag definition:

lee

rmex

rlney

lee

finer,rmey

Coarsengrid location

Finengrid horizontal location

Finengrid .vertical location

Effect:

Sets position for display instruction with I.espect to

:rn°ersisi=c:::die:nftb=:u%::fthiTeas;gfonff:£ec°:its!Ffaey€
Continued lines are displayed at tlie leftmost margin.

CATNM

instruction format:

gatnm I,y

Tng definition:

I Scaled horizontal location

Scaled vertical location

Effect:

Sets position for graphics instruction with respect to

ifn::£g(£=c::tdin°inedsn£;=qtu:n):I:i:e%;gfonff:Lec°:£tsjBLua#
Continued lines are displayed at the leftmost margin.

Comment:

Equivalent to the fine grid -Qtnm- instl'uction, except
that the location is specified in scaled graph ccordi-
notes relative to the specified ngol`igim.

WRITE

Instruction format:

wl. ite message

Tag definition:

message Text to be displayed (may include em-
bedded instl.uctions)

Effect:

Displays text, starting at current screen position
(may be specified by an -at-. -I.at-, ngat-, -atnm-,
-ratnm-, ol' iatnm- instruction).

5-26

Comments:

Tag can be more than one line in length. Refer also
to embed.

WRITEC

Instruction format:

wl.itec

writec

Tag definition:

expr

mesl,
mess2„..

expr.mesel,mess,...

exprtriessl|mess2|...

Mathematical expression

g:gfe:°inbsetr:gtp£[oanysid (may include em-

Effect:

Displays one of several possible messages on the
sot.een,

Comments:

Second form uses universal delimiters (ACCESS ,).
Omitted arguments use successive delimiters, not x
or q. Tag can be more than one line.

SHOW

Instruction format:

show

Tag definition:

Yar

nun

atrval

var{pun(givd}}

Variable whose value is to be displayed I

Number of significant figures desired

Minimum absolute value to be displayed
(0 to 1)

Effect:

Displays value of first argument, which can be an
expression. If the value to be displayed has more
than mim + 4 digits before the decimal point, it is

€isE[a]yoe94,£n{teBanfntdsalp,fa°yremda:;e`£#eenvt¥aTef;:::¥
If the value is less than the absolute value (al)evel), 0
is displayed.

Comments:

The default value of nun is 4. The default value of
abswd is |o-9.

97405100 C

SllowT

instruction format:

showt van {Jormt}

Tag definition:

van Variable whose value is to be displayed

format Format of number a.r, or 1,r)

Effect:

Displays the specified variable at the current screen
position, right-justified, with the length or format
specified.

Comments:

A value too large for the specified format displays
asterisks (****). Integer default length is eight
digits. Floating-point default format is 4,3.

SHOWO

Instruction fol.mat:

showo van {pun }

Tag definition:

van Variable whose value is to be displayed

nim Number of octal digits to be displayed
(default is 21)

Effect:

Displays value of specified variable in octal.

Comments:

If nim > 20 thuln-20) leading blanks are sup-
plied

nun > 64 nun is set to64

nun = 0 Instl.uction is ignol.ed

nun < 0 Execution error is generated

lf variable cannot be displayed in the specified nun-
ber of digits, nun asterisks are displayed.

97405100 C

SHOWZ '

hstruction format:

showz van (pun}

Tag definition:

Yap

nun

Variable whose value is to be displayed .

Number of significant figures desired

Effect:

Displays value of first argument, which can be an
expression. If value does not fit in the length speci-
fied in the second argument, exponential format is
used, displaying pt`ecisely the number of places
specified.

SHOWE

hstruction format:

showe

Tag definition:

Van

nun

format

van (pun (,formt)}

Variable whose value is to be displayed

Number of digits to be displayed (op-
tional); default is 4

Type of scientific notation (optionch);
default is 0

Effect:

Displays specified number of digits in exponential

:::Tda:.diforf:aTa£(a:;i:;gdt(E;rrdeax¥#F]:?t!.isofiot£):
If format is nonzet'o, the ** format is displayed (for
example, 3.00*10**2). Leading space or -is auto-
matica]ly supplied to permit tabular displays.

Comments:

Width of the display field depends on exponent size.

:fectohned:3:£u°#gntthdr#rmg:sTebnets.;Secu£Sf::a.the°Pti°nal

5-27

SHOWA

Instl.uction format:

show a varpim

Tag definition:

Van.

nlm

Variable whose value is to be displayed

Number of characters to be displayed

Effect:

Displays contents of specified variable in alpha-
numeric form. Assumes character stl.ing is left-
justified.

Comments:

Contents of more than one (consecutive) variable are
displayed if nun is gI.eater than 10. Most shifted and
access characters must be counted as two characters.

TEXT

Instruction format:

text var]i]Dn

Tag definition:

Vcr

nun

Starting variable of alphanumeric
buffer

Number of computer words to be dis-
played (must be < 468)

Effect:

Displays contents of an alphanumel.ic buffer, autcr
matically starting new lines.

Comments:

Does not allow litel'als in the tag, and is not affected
by the rsize- ol. iotate- instructions. Execution of
the -text- instruction does not update the system-
reserved word where.

HIDDEN

Instruction format:

hidden var{nun}

• 5-28

Tag definition:

Van

ntlm

Variable containing alphanumeric char-
acters

Number of characters to be displayed
(optional)

Effect:

Displays contents of van, showing all hidden 6-bit
codes,

Comments:

The default value of nun is 10. After execution of
the -hidden- instruction, the value of system-
resel.ved word whel.e is urureliable. Does not wol.k
well with -mode rewrite-.

ERASE

instruction f ormat:

erase

erase

erase

Tag definition:

0

nun

Thee

abort

Effect:

blank

0

nLm

nun,mes

abort

nun {]ines }

abort

Zero value

Positive value

Number of lines

The keyword abort must be used with
the -rase abort- instruction

Entil.e screen erased and pending output
not aborted

Instruction ignored

Number of characters erased

Block of nun characters by lines el.ased

Entire screen erased and pending output
aborted

97405100 C

ER^SEu

Instruction format:

eraseu

eraseu uname

er aseu apr,umlnel ,uname2 „..

Tag definition:

unalne Unit name

ummel, Unit names, x, or q
umme2r..

exp Variable or mathematical expl'ession

Effect:

Causes unit named in tag to be executed when any of
the following keys are pressed after an ok or no
judgment.

ERASE
SHIFT ERASE
NEXT (not aftel. ok)
EDIT
SHIFT EDIT

Comments:

Af ter execution, -raseur remains in effect for that
entil'e main unit. Conditional form x causes the
ueraseu- to have no effect; q or ueraseu- with no tag
clears previous -raseu-.

SIZE

Instruction format:

size s

si ze sizexfizey

Tag definition:

s Size of teext

sizex Hol'izontal character size

sizey Vertical character size

Effect:

Sets size of text to tag value times normal size.
rsize 0-returns to normal size.

97405100 C

Comments:

When size is other than zero, the text is displayed
slower than normal text. The rsize- instruction
remains in effect between unit boundaries. Alternate
characters display the associated nonppogrammable
character if the size is not zero and no -lineset-
instruction is in eff ect. If a -lineset- instruction is in
effect, the size is nonzel.o, and alternate-character
text is used, the appropriate -lineset- character is
displayed.

ROTATE

Instruction fol.mat:

I. ot at e angle

Tag definition:

angle Angle of rotation (in degl.ees)

Effect:

Rotates text through angle specified before display.

Comments:

Normal (size zero) and alternate character text
unaffected by -rotates instruction. -lineset- char
acters are affected by the -rotate-instruction.

DOT

Instruction format:

dot lee

dot rinex,riney

Tag definition:

loo Coarsengrid location

finer Horizontal finengl.id location

riney Vel.tical finergrid location

Effect:

Lights up one screen dot at specified location.

Comments:

Coarsergrid location lights dot in lower.-left corner of
character space.

5-29

RDOT

Instruction format:

dot

dot

Tag definitions:

lac

runex

finey

|ac

finer,rmey

Coarsengl'id location

Hol.izontal finengrid location

Vertical fineirid location

Effect:

Lights up one screen dot at specified location l`elative
to -rorigin-.

Comments:

Coal.sengrid location lights dot in lower-left col.ner of
char.acter space.

GDOT

Instruction format:

gdot

Tag definition:

fima

rmey

finer,fmey

Horizontal fineirid location

Vertical finengrid location

Effect:

Lights up one screen dot at specified location relative
to iorigin-.

Comments:

The tag for the ngdot- instruction must use finegrid
coordinate form.

I

DRAW

Instruction format:

draw loclpoc2;...

draw Poclpoc2;...

Tag definition:

1ocl; Coarse-or fineirid locations or key-
loc2;... word skip separated by semicolons

Effect:

Draws lines between locations specified, in the ordel.
specified. Initial semicolons stol.t fl.om cul.I.ent
screen position; sl{ip moves to next position without a
line being drawn.

Comments:

Fine- and coarsengrid coordinates can be mixed in a
single tag. Finengl.id coordinates give horizontal and
vel.tical positions, in that order, separated by com-
mas. System-reserved words where, wherex, and
wherey are not updated until the instruction com-
pletes execution.

RDRAW

Instruction format :

rdraw locl?oc2;...

rdl.aw -]ocl?oc2; _

Tag definition:

locl; Finengl.id locations relative to -rorigin-
lce2;... or keywol.d skip separated by semi-

colons

Effect:

Allows specification of a figure with respect to
-rorigirr. Allows sizing and potation of the figure
using the ngizer and -rotate- instructions.

97405100 C

CDRAW

Instruction format:

gdraw loci?oc2;..

gdraw ?ocl4oc2;..

Tag definition:

loci; Finengrid locations relative to iorigin-
loc2;... or keyword skip separated by semi-

colons

Effect:

DI.aws lines between locations specified. Initial
semicolons start from current ngorigin-position.

Comments:

The tag for the ngdraw- instruction must use the
finengrid coordinate form.

CIRCLE

Instruction format:

ci role radius

ci role radius,beg,end

Tag definition:

radius Radius of circle in finengrid dots

beg 8:#te£:sg) ; :neqg]uef r :a°#h etnhedr::r££nzg°n:gs (i n

end Ending angle from the hol.izontal (in
degrees); requil.ed when drawing arcs

Effect:

Draws a Oil.cle, as defined in the first instruction
format, or partial circle (arc), as defined in the

97405100 C

second instruction format. The center of the circle
or arc is defined by the current system-reserved
words wherex and wherey (usually set by a preceding
rat- or ratnm- instruction). wherex and wherey are
unchanged by the whole circle instruction but are
reset to the last point drawn on the circumference of
an arc.

Comments:

The ngircle- instruction also performs automatic
windowing at the end of the screen.

CIRCLEB

Instruction for.mat:

circleb

circleb

Tag definition:

radius

beg

end

radius

mdius,beg,end

Radius of circle in fine--gI'id dots

3:£te£:sg);:n£]ueir:a°#hetnhedr::r£!nzg°:tr%(in

Ending angle from the horizontal (in
degrees); required when drawing arcs

Effect:

Draws a broken (dashed) circle or ellipse, as defined
in the first instruction format, or partial circle (arc),
as defined in the second insti.uction format. The

:;snttee:_:feste¥:ecd{r%:r°:awrfefrsefeifnndedw%yertehye(Cu¥urfins
set by a preceding rdt- or ngtnm- instl.uction).
wherex and wherey are unchanged by the whole circle
instruction but are reset to the last point drawn on
the circumf erence of an arc.

Comments:

The ngircleb- instruction also per.forms automatic
windowing at the edge of the screen.

5-31

RCIRCLE

Instl.uction format:

I,Circle

I.Circle

Tag definition:

radius

beg

end

radius

mdius.beg,end

Radius of circle in fineil.id dots

§:::te!e¥);#ueir:a°#hetnhedr::r]`#:]s(!n
Ending angle from the horizontal (in
degrees); required when dl'awing al.cs

Effect:

Draws a circle ol. ellipse, as defined in the first
instruction format, or pal.tial circle (arc), as defined
in the second instruction format I.elative to the
current -rorigin-. The center of the circle, ellipse,
ol. arc is defined by the curl.ent system-reserved
wol.ds whel.ex and wherey (usually set by a preceding
-rat- or -ratnm- instruction). Ellipses are drawn
only if the sizex and sizey scales are different.
wherex and whepey are unchanged by the whole cit.cle
instruction but are reset to the last point dl`awn on
the circumference of an arc. The -rcircle- instruc-
tion is affected by the -size- and -rotat- instruc-
tions,

Comments:

The -rcircle- instruction also performs automatic
windowing at the edge of the screen.

GCIRCLE

Instruction format:

gc i pc le radius

gci rcle radius,beg,end

Tag definition:

radius

beg

end

Radius of circle in fineirid dots

§£:te!:g);::%]ueir:a°#het#edr:#££nzg°::%]s(£n

E:i::gs)?¥:euirf::mwh:Aedr:Owri:;natrac]s(£n

Effect:

Draws a circle or ellipse, as defined in the first
instruction format, or pal.tial circle (al.a), as defined
in the second instruction format relative to the
cur.rent ngorigin-. The center of the circle, empse,
or arc is defined by the curl'ent system-reserved
words whet.ex and wherey (usually set by a preceding
ngat- or iatnm- instl'uction). Ellipses ape drawn
only if the x and y scales al'e diffel'ent. wherex and
wherey are unchanged by the wliole circle instruction
but are reset to the last point drawn on the
cil`cumference of an arc.

Comments:

The ngcircler instl.uction also performs automatic
windowing at the edge of the screen.

BOX

Instruction format:

box ((lcol) ;} lce2 {;thick)

Tag definition:

lacl One col.ner (coarse- or fineirid coor-
dinates) of box to be displayed (op-
tional)

Opposite corner (coarse- or finengrid
coordinates) of box to be displayed

Thickness of the box wall in finengrid
dots (optional)

Effect:

Draws a rectangular box whose opposite (diagonal)
comers al.e at the two locations specified (locl and
lac2). If the first location is omitted (for example,
-box |ce2-), the current screen position is used for
the other corner.. If only one location is specified (for
example, -box 910-), a box is drawn with one col.ner
at the specified location and the other cornel. at
location 0,0.

Comments:

If the thickness value (thick) is positive, the box wall
is built in an outwal'd dil.ection from the col.ners. If
thickness is a negative value, the buildup is in an
inwal.d dil.ection. Thickness values of -1, 0, 1, end a
blank (thick al.gument not specified) mean that the
box wall is to be one line thick. This value must be
less than 50.

97405100 C

RBOX

Instl.uction format:

pbox

Tag definition:

1acl

{ (lael } ; } lac2 (;thick)

One corner (coarse- or finengrid coor-
dinates) of box to be displayed (op-
tioml)

Opposite corner (coarse- or fine-grid
coordinates) of box to be displayed

Thickness of the box wall in finengrid
dots (optional)

Effect:

Draws a I.ectangular box whose opposite (diagonal)
cornet.s are at the two locations specified (lcol and
loc2). If the first location is omitted (for example,
-I.box noc2-), the curl.ent screen position is used for

:i:£tph]::i:;:£r6]!f_f,n:yb°onxe±:°Cdra:]#;S£:£eoc#c:r(i::
at the specified location and the other corner relative
to the current -rorigin-. -I.box- locations al.e
affected by the -size- and -rotates instructions.

Comments:

If the thickness value (thick) is positive, the box wall
is built in an outward direction from the col.net.s. If
thickness is a negative value, the buildup is in an
inwal'd dil.ection. Thickness values of -1, 0, 1, and a
blank (thick argument not specified) mean that the
box wall is to be one line thick. This value must be
less than 50.

GBOX

Instruction format :

gbox

gbox

Tag definition:

flocl

flac2

thiek

97405100 C

{ { flcel) ; } flce2 (;thick}

gonxe toc3ren::sp`ii;:dng(roifti:::lr,d inates) o f

Opposite col.ner (finengrid coordinates)
of box to be displayed

Thickness of the box wall in finengrid
dots (optional)

Effect:

Draws a rectangular box whose opposite (diagonal)
corner.s al.e at the two locations specified (flocl and
flco2). If the first location is omitted (for example,
ngbox ;floc2-), the current scl.een position is used for
the other corner. If only one location is specified (for
example, ngbox 200,200-), a box is drawn with one
corner at the specified location and the other corner
relative to the current ngorigin-. The ngbox-
instl.uction uses scaled coordinates as specified by
previous ngcale- and -bounds/axes- instructions. A
ngbox- instl.uction with a blank tag draws a box
around the current toounds-.

Comments:

If the thicl(ness value (thick) is positive, the box wall
is built in an outward direction fl.om the col.ners. If
thickness is a negative value, the buildup is in an
inward direction. Thickness values of -1, 0, 1, and a
blank (thick argument not specified) mean that the
box wall is to be one line thick. This value must be
less than 50.

VECTOR

Instruction format:

vector

Tag definition:

locl

loc2

SIze

{ (locl } ; } lac2 (;size)

Horizontal and vertical location
(coarse- or finengl.id coordinates) of the
arl.ow's tail (optional)

Hor izon tal and vel.t ical loca ti on
(coarse- or finengl.id coordinates) of the
arrow's head

Size of arrow's head; default is 10.5
(optional)

Effect:

Draws a vector (pointer or arrow) with its tail at the
first location (locl) and its head at the second
location (loc2). If the first location is omitted (fol.
example, -vector ;loc2-), the tail is at the cut.rent
screen position. If only one location is given (for
example, -vector 910-), a vector is drawn with the
head at the specified location and the tail at location
0,0.

Comments:

A positive-size arrowhead is a closed triangle. A
negativesize arrowhead is open (barbed). When size
j± I, it specifies the absolute size of the art.owhead in
dots. When size < 1, it specifies the size of the
arl.owhead relative to the length of the vector. This
headsize changes with ngize-, rscalex-, and ngcaley-
instructions.

5-33

RVECTOR

Instruction format:

I`Vector

Tag definition:

|ocl .

|oc2

({lcelt ;) lce2 {*e)

Hop izont al and ver t ic al lo cation
(coarse-or finengl.id coordinates) of the
arrow's tail (optional)

Hol. izont al and v er t ic al locat i on
(coarse-ol. finengl.id coordinates) of the
arrow's head

Size of arrow's head; default is 10.5
(optional)

Effect:

DI.aws a vector (pointer or arrow) with its tail at the
first location (locl) and its head at the second
location (1oc2). If the first location is omitted (for
example, ivector ?oc2-), the tail is at the cuITent
screen position. If only one location is given (for
example, -rvector 1210-), a vector is drawn with the
head at the specified location and the tail at the
current iorigin-. Vectors dl.awn with the ivectol.-
instruction are affected by the ngize- and iotater
iustructious.

Comments:

£eg¥t:it5ii:jz:r#£:ahde:Sjse:(CbLa°r§beedd)¥inwnhg::.size

3o::.£tE£:if£:£Sz:h=ap,S°:tut:p:£cZ{:i::tthhee¥:£ewhoefadtE:
arrowhead I'elative to the length of the vector. This
headsize changes with iize-, icalex-, and rscaley-
instruetioTrs.

OVECTOR

instruction format:

gvector {{nocl} ;} noc2 (gze')

Tag definition:

flcel

nce2

5-34

Scaled horizontal and vertical location
(tfiE%rt££don%Ordinates) of the arrow.s

Scaled horizontal and vertical location
(finengrid coordinates) of the al.row's
head

Size of arrow's head; default is 10.5
(optional)

Effect:

Draws a vector (pointer or arrow) with its toil at the
first location Oocl) and its head at the second
location Ooc2). If the first location is omitted (for
example, ngvectol' ?oc2-), the tail is at the current
screen position. If only one location is given (for
example, ngvector 220,220-), a vector is drawn with
the head at the specified location and the tail at the
cur.rent ngorigin-. The ngvector- instruction uses
scaled coordinates as specified by previous rscale-
and bounds/axes- instructions. The tag for the
ngvectol'- instruction must use the finertyid coordi-
nate for.in.

Comments:

A positivesize arrowhead is a closed triangle. A
negativersize arrowhead is open (barbed). When size
21, it specifies the absolute size of the arrowhead in
dots. When size < 1, it specifies the size of the
arrowhead relative to the length of the vect6r. This
headsize changes with iize-, ngcalex-, and rscaley-
instructions.

W[NDOW

Instruction for.mat:

window

window { (locl} ;} lce2

Tag definition:

|cel

• |ae2

One corner (coarse- or finengrid ccordi-
nates) of window (optional)

Opposite comer (coars- or fineTgrid
coordimtes) of window

Effect:

Limits display area within rectangle bounded by
specified corners Oocl and loc2). If the first location
is omitted (for example, -window Poc2-), the c`urent
screen position is used for the other corner. If othy
one location is specified (for example, ilrindow
loc2-), one corner is at loc2 and the other corner is at
0,0. Blank tag turns off previous -window-instrucL
tion,

Comments:

The -window- instruction remains in effect across
unit boundaries. Size 0 text and ndot- are
unaffected. Fineurid coordinates are separated by a
Comma,

97405100 C

MODE

Instl.uction format:

mode

mode

Tag definition:

type,
typel,
type2"..

expr

type

expr,typel,type2,...

Keywords write, rewrite, or erase

Variable or mathematical expression

Effect:

Sets the mode in which the tel.minal operates.

Comments:

Mode rewrite erases an entire character space before
displaying text.

COLOR

Instruction format:

color type

Tag definition:

type Keyword orange means wl.ite; keyboal`d
black means erase

Effect:

The ngolor orange- iustl.uction is equivalent to the
-mode write- instruction, and the -olor black-
instruction is equivalent to the -mode el'ase- in-
struction.

EM B E D (Not an Instruction)

Normal Form Embedded Form

show al,a2,a3 < s,al,a2,a3 >

showt al,a2,at <t,al,a2,a3>

showz al,a2 <z,al,a2>

showo al,a2 <o,al,a2>

showe &1,a2 {,format) <e,al,a2 (,format}>

showa al,a2

at al,a2

atn in al ,a2

size al

rotate al

mode tag

97405100 C

< a,al,a2 >

< at'al,a2 >

a atnm,al ,a2 >

a size'al >

< rotate,al >

a in,tag >

Effect:

Causes specified display action within a -writer or
-writec- instl.uction.

Comments:

Normal default options are in effect, except that no
leading blank is specified for the embedded rshowo-
instruction. The embed mode featul.e does not work
with alternate font.

CATCHUP

Instruction format:

catchup

Effect:

Halts lesson execution until all display material
previously specified has been shown on the terminal.

DELAY

Instruction for.mat:

d Clay nun

Tag definition:

nun
]pr#Tpbo::t]ef:Srihaat7orequaltoone(float_

Effect:

Causes execution delay specified by tag (in seconds).

CHAR

Instl.uction fol.mat

char slot,al ,a2 ,a3 ,a4,a5 ,a6 ,a7 ,at

Tag definition:

slot Memory slot number

al ,..., a8 Dot specifications

Effect:

Defines a character associated with the specified slot
of the alternate chal.acter memory. Each dot
specification specifies one column of the character
matrix, each binary one signifies a lighted dot, and
each binary zero signifies an unlighted dot.

5-35 I

PLOT

Instruction format:

plot slot

Tag definition:

slot Memory slot number

Effect:

Displays alternate charp.cter in the specified memory
slot.

Comments:

Can only display one character per instruction.

CHARSET

Instl'uction format:

charset

I charset { less, } rome

Tag definition:

less

nrme

Lesson containing character set or vari-
able containing lesson name; optional if
current lesson contains character set

Name of character set or variable
containing name

Effects

Loads specified character set into alternate char-
acter memory of the terminal. Blank tag clears
information about which character set is loaded.

Comments:

Loading requires about 17 seconds for a full character
set. Loading` is not done if the character set has
already been placed in the terminal.

CHARTST

Instruction format:

I chartst {lesB,}mme

5-36

Tag definition:

less

name

Lesson containing character set or vari-
able containing lesson name; optional if
current lesson contains chal`acter set

Name of character set or variable
containing name

Effect:

Checks if character set named in the tag (mme) is
currently loaded into the tel.minal. System-reserved
wol.d zreturn is -1 if character set is loaded; it is 0 if
character set is not loaded.

Comments

The nghartst- instruction cannot determine if the
character set was properly loaded, but only if an
attempt lias been made by using the ngharset- in-
struction.

LINESET

Instruction format:

1ineset

lineset I less,} nrme

Tag definition:

less

name

Lesson containing lineset or variable
containing lesson name; optional if ctm
rent lesson contains uneset

Name of uneset or variable Containing
name

Effect:

Obtains specified lineset from specified lesson. Bland
tag clears information about which Hneset is loaded.

Comments:

The lineset- instruction may be used when sizing and
rotating alternate charactel.s; however, it can oTny be
used if the current size does not equal zero. As with
normal characters where size is other than zero,
characters are plotted slower than siz-0 alternate
characters. Fonowing a +ineset- instruction, sys-
ten-reserved word zreturn is set es follows:

Loaded successfuuy
Lineset not found
Error in lineset

97405100 C

ALTFONT

Instruction format:

altfont vat

Tag definition:

vcr on,1, art, off, 0, normal

Effect:

Switches displayed character.s into alternate char-
actor set for both student and author if tag is on,1,
or art. Returns to normal character set if tag is off,
o, Or normal.

Comments:

Soul.ce code remains in standard character set.

MICRO

Instruction format:

micro

micro less, } -e

Tag definition:

leg Lesson containing micro table; optional
if current lesson contains micro table

name Name of miero table

Effect:

Obtalus micro table from specified lesson. Blank tag
loads the aystem micro table.

Comments:

System-reserved word zreturn is set to -1 if the
micro table is loaded; zretum is 0 if the micl.o table
is not loaded.

CODEOUT

Instruction for.mat:

a odeout vat

97405100 C

Tag definition:

vtr Octal value between 010 and 017, in-
clusive

Effects

Sends specified octal code to the tel.minal when
executed.

T^BSET

instl.uction format:

tabset o al a2 a3 a4 a5 06 &7 a8 a9 ale

Tag definition:

alr~,ado Octal twondigit rields

Effects

Defines columns that student can use with the TAB
key.

Comments:

Ten fields must be used, with lowercase o preceding
first field only. Commas are not used.

SLIDE

Instruction format:

slid e Dun

Tag definition:

ntlm Number of slide selected

Effect:

Selects designated slide from microfiche and displays
it.

Comments:

There are thl.ee additional options.

512+n Selects the slide but leaves bulb off
256th Selects the slide but closes shutter
nosude Selects slide o, turns bulb off, and

closes shutter

5-37

ENABLE

Instruction format:

enable

enable

enable

Tag definition:

touch

ext

touch

ext

touch,ext

Keyword touch must be used in the
-noble touch- instruction.

Keyword ext must be used in the
-noble ext- instruction.

Effect:

Allows input from touch pand or external devices.

DISABLE

instruction format:

dis able t ouch

disable ext

dis able t ouch, ext

Tag definition:

touch

ext

Keyword touch must be used in the
rdsable touch- instruction.

Keyword ext mtrst be used in the
rdsable ea[t- instruction.

Effeot=

Allows no further input from toucli pond or external
devices.

^uD'O

Instruction format:

I audi o van

Tag definition:

Van Variable or mathematical expression (0
to 32767)

Effect:

If the terminal is equipped with the audio disk fea-

| ::::'edthmeesras"#;ec{]nf:terdu::i:fe avc£)V.ates the prere+

5-38

Comments:

The raudior instruction may be used instead of the
play- instruction.

PLAY

instruction for mat:

play

Tag definition:

track

sector

length

tr&ckgivor4giv

Audio disk track number (0 to 127) or
mathematical expression

Audio disk sector number (0 to 31) or
mathematical expl'ession

Number of consecutive sectors to be
played (0 to 4095) or mathematical
expression

Effect:

If the terminal is equipped with the audio disk fee-
tune, the play- instruction activates the prerecorded
message specified by the tag.

RECORD

Instruction format:

reccrd

Tag definitions

track

sectq

leDgiv

tradpea.Jag

Audio disk track number (0 to 127) or
mathematical expression

Audio disl(sector number (0 to 31) or
mathematical expression

Number of consecutive sectors to be
recorded (0 to 4095) or mathematical
expression

Effect:

If the terminal is equipped with the audio disk feel
ture, the +ecord- instruction activates recording
capabinty of the device at the location specified by
the tag.

Comments:

Audio messages entered with the record- instruction
are replayed with either an dudion or ilay-
instruction.

97405100 C

EXT

Instr uction for mat:

ext ver lrfution)

Tag definition:

Van Variable (type n or nc) or mathematical
expression containing information in
rightmost 15 bits

station Number of other station to I.eceive
nat- instruction.

Effect:

Sends rightmost 15 bits to external terminal acces-
sory. Two-argument form checks if the other station
wishes to receive -xt-instructions.

Comments:

Value of mathematical expression in van truncated to
15 bits. System-reserved word zreturn is set to -1 if
the data is sent or to 0 if data is not sent.

EXTOUT

hstruction format:

extout van (pun}

Tag definition:

Van

nun

Variable (type n or nc) containing infor-
mation in rightmost 16 bits

Number of words to be sent out; default
value is 1

Effect:

Sends rightmost 16 bits of nun words starting at van
to the external jack of the tel.minal.

Comments:

An -rose abort- or -jump- instruction aborts pend-
ing -xtout- output. To prevent this, use a ngatchup-
iustl.uction before -I'ase atx)rt-or -jump-.

97405100 C

AXES

Instruction I ormat:

axes

axes

axes

Tag definition:

I+

y+

I-

y-

I+,y+

TE=,FT¥+,ir

Positive length of hot.izontal axis in
finegrid dots

Positive length of vertical axis in fine-
grid dots

Negative length of horizontal axis in
finengrid dots

Negative length of vertical axis in finer
grid dots

Effect:

Draws axes of the graph and sets graph limits. Blank
tag redraws previously specified axes.

BOUNDS

Instruction format:

bounds

bounds

Tag definition:

I+

y+

I-

yL

X+,y+

T,FTS+,«+

Positive horizontal boundary of graph in
fine-grid dots

Positive vertical boundary of graph in
finengrid dots

Negative horizontal boundary of graph
in finengrid dots

Negative vet.tical boundary of graph in
fingrgl'id dots

Effect:

Establishes boundaries of graph without drawing the
axes.

5-39 .

SCALEX

Instruction format:

scalex mar (,offset)

Tag definition:

men Maximum hol`izontal value of graph

offset Value of horizontal axis at origin (d-
fault is 0)

Effects

Scales the horizontal axis, allowing later references
to be given in graph values, rather than fineirid
dots; offset allows graph origin to be other than
(0,0).

SC^LEY

Instruction format:

scaley max (drfset)

Tag definition:

max Maximum vertical value of graph

Offsct Value of vertieal axis at origin (default
iso)

Effect:

Scales the vertical axis, allowing later references to
be given in graph values, rather thou finengrid dots;
offset allows graph origin to be other than (0,0).

LSCALEX

Instruction format:

lscalex max (,offset }

5-40

Tag definitione

max Maximum horizontal value of graph

offset Value of horizontal axis at origin (der
fault is I)

Effect:

L¥galare€Sthamxe(SbffetLho;fgraE:t:rc:gf:|ne:cte::ffesect°E:::
author determination of value at origin.

Comments:

Logarithms of negative numbers cannot be used. If a
negative portion of the axis is specified, it is used for

3e:::£VLi.)°ginar::i#Sm (Lv°£:eft:amns b°ef enxupTepi=resdb::WLeoe4: I
instead of 10000.

LSC^|EY

Instruction f ormat:

1soaley max (plfset)

Tag definition:

max Maximum value of vertical axis

offset Value of vertical axis at origin

Effects

Scdes vertical axis according to the common logL
arithm (base 10) for later reference; offset allows the
author to specify axis value at the origin.

Comments:

Logarithms of negative numbers cannot be used. If a
negative portion of the axis is specified, it is used for

3¥::£Vi;.L#:lit::i(:°alguare:t:¥:b°::xTr3+=r:db:WLeoe4?
instead of 10000.

97405100 C

L^BELX

hstruction format:

labelx

labelx

Tag definition:

major

minor

sizre

format

mjar {pinrize {*crmt})
o. {pinpize (*erfmtt}

Major marl{ interval

Minor maplt intel.val

Size of major and minor marks

Format of labels (1.I or I,r)

Effect:

Places major and minor marks on horizontal axis at
specified scaled intervals and gives numeric labels of
value.

Comments:

If axis is normally scaled, the first form is used. If no
major mal.k interval is specified, a choice is autcr
matically made. The second form is used if the axis
is logarithmically scaled. In this case:

Minor Mark
Argument Marks Occur At:

-(minus sign) none

0, 3, ornone 1, 2, 5

5

10

within each decade.
made each decade.

The size may be:

0 or omitted

1

2

97405100 C

1, 2, 3' 5' 7

1, 2, 3, 4, 5, 6, 7, 8, 9,10

Major marks are automatically

Normal' length

Major marks extend to graph
boundaries

Major and minor marks extend
to graph boundaries

L^BEIY

Instruction form at:

labely

labely

Tag definition:

major

minor

size

format

Dajar { ,minqdr (,format))

0 (,minjha (Jormat)}

Major mark interval

Minor mark interval

Size of major and minor marks

Fol.mat of labels (I.I or I,I)

Effect:

Places major and minor marks on the vertical axis at
the specified (scaled) intervals and attaches numeric
value labels.

Comments:

If the axis is normally scaled, the first form is used.
If no major mark interval is specified, a choice of
interval is made automatically. The second form is
used if the axis is scaled logarithmically. The minor
mark intervals can be:

Minor Mark
Argument Marks Occur At:

-(minus sign) none

0, 3,ornone 1, 2, 5

1, 2, 3' 5' 7

1, 2, 3, 4, 5, 6, 7, 8, 9,10

within each decade. Major marks are made autor
matically at each decade.

The size may be:

0 ol. omitted Normal length

Major marks extend to graph
boundaries

All mal'ks extend to graph
boundaries

5-41

MARKX

Instruction format :

markx

Tag definition:

marry

min
size

major { ,minor,size)

Major mark interval

Minol' mal'k interval

Size of major and minor mat.ks

Effect:

Places major and minor marks on the horizontal axis
at the specified (scaled) intervals.

Comments:

Equivalent to -labelx-, except that no numel.ic label-
ino is done.

M^RKY

Instl.uction format:

marty

Tag definition:

major

minor

size

major (,minor,size }

Major mark interval

Minor mar.k interval

Size of major and minor marks

Effect:

Places major and minor. marks on the vertical axis at
the specified (scaled) intervals.

Comments:

Equivalent to -labely-, `except that no numeric label-
ing is done.

GRAPH

Instruction format:

gI.aph

graph

Tag definition:

I

I,y (,giv)
X,yrvar (,nun)

Scaled hol.izontal position

I

nun

Scaled vertical position

Character string to be displayed (op-
tioml)

Variable containing string to be dis-
played

Number of characters to be displayed
(optional)

Effect:

Two-argument form places a dot at specified loco-
tion. Three-argument form displays third argument,
beginning at specified location. Foul'-argument form
displays nun characters.

Comments:

Character string (if used) can be no longer than nine
character codes if string is used or 10 character
codes if var is used. The location of the string is
moved somewhat down and to the right of the
specified location to center the first character of the
string.

HBAR

Instl.uction format:

hbar

hbar

hbal.

Tag definition:

X

y

string

Yap

I,y (Jstring)

I.y (,van)

x,y (,var,nun)

Scaled hol`izontal location of end of bar

Scaled vertical location of center of bar

Character string used in plotting bar

Variable containing chal.acter string
used in plotting bar

Number of characters from variable to
be used

Effect:

Draws horizontal bar from vertical axis to location
specified.

Comments:

If a string is the thil.d argument, it must be no longer
than nine character codes. If the third argument is a
variable name, the alphanumeric contents of the
vat.iable is used. All 10 character. codes are used if
there is no foul.th al.gument. The fourth argument
gives the number of characters, starting from the
leftmost, to be used fl.om van.

97405100 C

Ve^R

Instruction foi.mat:

vbal'

vbar

vbar

Tng definition:

X

mm

I.y (Jfty)
I,y (,yap)

x,y (.varpum)

Scaled horizontal location of the center
of the bar

Scaled vertical location of the end of
the bar

Character stl.ing used in plotting bar

Variable containing character string
used in plotting bar

Numbel. of char.actel.s from variable to
be used in plotting bar

Effect:

Draws vel.tical bar from horizontal axis to location
specified.

Comments:

If a string is the third argument, it must be no longer
than nine chal'acter codes. If the third argument is a
variable name, the alphanumeric contents of the
variable is used. All 10 character codes are used if
there is no foul.th argument. The fourth argument
gives the number of characters, starting from the
leftmost, to be used fl'om van.

DELTA

Instruction format:

delta

Tag definition:

ire

97405100 C

Increment size for following -funct-
iustruction

Effects

Specifies the increment size for each iteration of a
fonowing -funct-instruction that does not specify its
own increment size.

Comments:

If ndelta-instruction is omitted, default value is 1.

EUNCT

instl'uction format:

funct

Tag definitio"

ro
X

xtng

rend

dx

ftD,I (< ng.Iend.dr)

Function to be plotted

Independent (horizontal axis) variable

Initial value of x

Final vchue of x

increment size during iteratious

Effect:

Plots lines connecting values of the function at
specified increments.

Comments:

tteration of the independent variable is done autcr
matically. If the independent variable does not
appear, explicitly or implicitly (through definitions) in
the function, the function is plotted as a constant
quantity. Independent variable should be floating-
point, not integer.

Two-argument Uses increment specified by
form previous ndelta-instruction.

Fiveral'gument Specifies beginning and ending
foI.in value of the independent vari-

able plus an increment size; no
previous ndelta- instruction is
required.

5-43

POLAR

Instruction format:

polar

Tag definition:

setle

Sex

Sty

Deg

Beg

Mutual scale in x and y directions

Scale in x direction (G= 0 or 0 = 7r)

Scale in y direction (0 = 7r/2 or G =
3 fr /2)

Negative number of any magnitude

Effects

Replaces Cartesian coordinates with polar coordi-
notes, with or without scaling. Negative tag tuI'us off
polal. conversion and retulins to Cartesian coordi-
nates,

Comments:

Blank tag does not affect scaling. Single argument
normegative tag scales both horizontal and vertical
directions equally. Two-argument tag scales hori-
zontal direction to first value and vertical direction
to second value. Conversion remains in eff ect past
unit- bounds. All graphing commands are affected
by aplar-.

LESSON CONTROL INSTRUCTIONS

The following instructions are used to control lesson
execution. `

htlpop
helpl
helplop
data
dataop
datal
datalop
lab
labop
labl

keyust
Pause
collect
keytype
force
change
use
step
in
initial

labl op lesson
base score
t er in beckgnd
ter mop foregnd
*' c' SS cpunm
cstop route
cst art r outv ar
cstop * allow
rest art lesnst
st atus a ddlst
return
Press
jumpout
inhibit

removl
inane
findl

5-44

uN'T

Instruction format:

unit mine (anglprg2„..,arglo)

Tag definition:

name Unit name

argl, Argument list (maximum of 10)
giv,.„
anglo

Effect:

Denotes stal`t of unit. Variables in the argument list
of the imit- instruction are given the value of the
expression in the corresponding argument list of an
instruction referencing that unit.

Comments:

Unit name must be no longer than eight characters.
An instruction peferencing an argumented unit may
have fewer arguments than defined in the +init-
instruction but not more. When fewer arguments are
referenced than defined, the noureferenced argur
ments are unchanged.

lMAIN

Instl.uction format:

i main uname

i main exp,tmalnel ,uname2r..

Tag definition:

uname Unit name

ear Variable or mathematical expression

unalDel, Unit names, x, or q-e2r-
Effect:

Executes unit named in tag at the start of every main

¥oit# ::)?nss#.tsThexee;iFead!na-fj:Pst:#:ti°mpt!Sc::teifL?£: I
the -imain-. Place -imain-instruction in the lessonts
initial entry unit to have the imain unit in effect for
the entire lesson.

Comments:

Later occ`mences of -imain- override any earlier
setting; q or -imait+ with no tag clears previous
setting; x leaves the previous setting in effect.

97405100 C

NEXT

Instruction format:

next

next

next

Tag definition:

mme

expr

mmel,-e2,...

mme

expr,Trmel,nune2,...

Unit name

Variable or mathematical expression

Unit names. x, or q

Effect:

Specifies unit which follows the present one when all
rarrowng are satisfied in the present unit and the

I NEXT key is pressed.

Comments:

Both unconditional and conditional forms. Speci-
fication of x causes instruction to have no effect;
specification of q clear.s the marker. The -next-
instruction with a blank tag cleal's a previously speci-
fied -next- instruction.

NEXTOP

Instruction for.mat:

nextop

nextop

Tag definition:

name

expr

mmel,
name2,...

mme

expr,mmel,name2,...

Unit name

Variable or mathematical expl.ession

Unit names, x, or q

Effect:

Initiates a new main unit (specified by mme) when all
-arrowng are satisfied in the present unit and the
NEXT key is pressed.

Comments:

There is no full-panel erasure when -nextop- is
executed. Any graphics ol. text specified by the
-nextop- instruction is added to the current display
and remains on the panel. The -nextop- instruction
can have both unconditional and conditional for.ms.
Specification of x causes instruction to have no
effect; specification of q clears the mar.ker.

97405100 C

NEXTI

Instruction format:

nextl

nextl

nextl

Tag definition:

mme

expr

namel
mme2....

mme

expr,mmel,mme2,...

Unit name

Variable or mathematical expression

Unit names, x, ol. q

Effect:

§Eefj££eNSEu# #;Sha::n;rwessstehde. Pr=ernotwursritfnwB:gs::: I
unit need not be satisfied.

Comments:

Both unconditional and conditional forms. Speci-
fication of x causes instruction to have no effect;
specification of q clears the marker. The -nextl-
instruction with a blank tag clear.s a previously speci-
fied -nextl- instruction.

NEXTIOP

Instruction for.mat:

nextlop

nextlop

Tag definition:

name

expr

mmel,
mme2,...

name

expr,mmel,mme2,...

Unit name

Variable or mathematical expl.ession

Unit names, x, ol. q

Effect:

:E{et£Siefif #g¥Tmka:;s u#: i:%:::fd{.edrab¥ronwT:tstwrtecn_n I
tions in the present unit need not be satisfied.

Comments:

Thel.e is no full-panel erasure when -nextlop- is
executed. Any graphics or text specified by the
-nextlop- instl.uction is added to the cul'I.ent display
and remains on the panel. The -nextlop- instruction
can have both unconditional and conditional forms.
Specification of x causes instl.uction to have no
effect; specification of q clears the marker.

5-45

JUMP

Instruction format:

lump

Tag definition:

name

ear
nrmel,
nane2r..

Dane

Ssunconditional

eprquelque2r..
SSconditional

mme(arglgiv„arglo)

SSargument

Unit name

Mathematical expression

Unit names, x

arglprg2„ Variable or mathematical expressions
arglo that are passed to the unit as arguments

Effect:

Immediately transfers control to the specified new
unit, which is fully initialized as a main unit.

Comments:

An k in the conditional form allows execution to
continue past the instl'uction.

JOIN

Instruction format:

join

join

join

name

Ssunconditional

ear,rrmel-e2r..
SSconditional

name,var¢beg,end (,inci

Ssiterative

5-46

join

join

Tag definition:

name

ear
nanel,
nane2r~

Van

beg

end

inc

expr]iamel,m]ne2„..,ver®qg,end.(.ire)

Steonditional-iterative

name (argl rty„angl o)

Ssangument

Unit name

Mathematical expression

Unit names, x, or q

Variable to be incremented

initial value of variable

Final value of variable

Size of incl.ement (default is 1)

ngL us2m yha::a:):SpfrseE::hteh:auti9talase:Pgr::::ntss I
ngl0

Effect:

The unconditional fol`m of the -join- instruction
executes the named (mme) unit. The conditional
form evaluates the specified expression: if negative,
the first unit is executed; if 0, the second unit is
executed, and §o on. The iterative form executes a
unit the specified number of times indicated in the
iterative loop. The conditional-iterative form exer
cutes a specified unit from the list hemelpame2r-)
per the curt.ent value of the expression (epr) by the
number of times indicated in the iterative loop. The
argument form passes specified arguments to the
named unit and executes the named unit. After
execution of the named unit, execution continues
with the instruction following the -join- instruction.

Comments:

Conditional form x performs no action; q halts furl
then execution of current unit, except in the eorL
ditional-iterative form (terminates iterative loop and
continues execution of current unit). The -join-
instruction is both a regular and a judging instruction.
It never ends judging when the system is in the
judging state.

97405100 C

DO

Instruction format:

do

do

do

do

do

Tag definition:

name

exp
nanel,
nane2,..

Ver

beg

end.

inc

qrme

Ssunconditional

eprquelxpe2~.
SSconditional

name,var<beg,end {,ire }

SSiterative

exprpemel,rmme2 ,..., var<beg,end (,ire }

SSconditional-iterative

name (argl#„argl0)
Ssargument

Unit name

Mathematical expression

Unit names, x, or q

Variable to be incremented

Initial value of variable

Final value of variable

Size of increment (default is 1)

I ¥:orrg2m yh:ja:I:Sp:eT::hteh:a#aseip5::::¥

Effect:

The unconditional form of the ndcL instruction ex-
cutes the named (mme) unit. The conditional form
evaluates the specified expression: if negative, the
first unit is executed; if 0, the second unit is
executed, and so on. The itel'ative form executes a
unit the specified numbei. of times in the same
manner as a -joirr instruction. The conditional-
iterative form executes a specified unit from the list
thamelrlame2p.) pep the current value of the ex-
pression (expr) by the number of times indicated in
the iterative loop. The argument form passes
specified arguments to the named unit and executes
the named unit. After execution of the named unit,
execution continues with the instruction following the
ndo- irtstruction.

Comments:

Conditional form x performs no action; q halts fur-
then execution Of current unit, except in the corL

97405100 C

ditional-iterative form (terminates iterative loop and
continues execution of cument unit). ndo- is a
regular instruction oltly.

COTO

Instruction format:

goto

goto

goto

Tag definition:

name

exp
nanel,
nane2r..

name

Ssunconditionch

expr,nanelrme2r..

SSconditional

name(ngl,ng2"nglo)

Ssargument

Unit name

Mathematical expression

Unit names, x, or q

arglgiv„ Variables or mathematical expressions
nglo that are passed to the unit as arguments

Effect:

Executes specified unit without performing any ini-
tialization; does not return to accessing unit unless
used as part of response processing.

Comments:

Conditional form x specification permits execution of
instruction fonowing ngoton. Conditional form q
specification halts unit execution.

EXIT

Instruction format:

exit (expr)

Tag definition:

exp Mathematical expression

Effect:

Blardc tag terminates auxiliary unit structure. Nun
meric tag backs out specified number of levels.

5-47

NEXTNOW

Instruction format:

nextnow nalne

nextnow exprylamel ,mme2 „..

Tag definition:

name Unit name

apr Mathematical expression

I)abel, Unit names, x, or q-2_
Effects

I #!f::]frsEx¥ istgr::neald, ¥:g:un?¥C£%tcfftjted £#¥eTtfeyis.
entered. Stops execution of remainder of unit.

Comments:

Initialization of the new unit is the same as if the
current unit were completed.

lFERRok

Instruction format :

iferror mme

if error expr.mmel ,mme2 ,...

Tag definition:

name Unit name

expr Mathematical expression

namel, Unit names, x, ol. q
mrme2".

Effect:

Specifies unit to ngotcL if an error occul.s in a ngalc-
instruction.

Comments:

Marker. is cleared by a tag of q or when a new main
unit is entered.

5-48

ENTRY

Instruction format:

entry name

Tag definition:

mme Unique name

Effect:

Supplies alternate entry point to a unit.

Comments:

mme can be no longer thaTi eight characters.

FIN'SH

Instruction format:

finish name

finish expr,mmel ,name2„..

Tag definition:

name Unit name

expr Mathematical expl.ession

mmel, Unit names, x, ol. q
-me2"..

Effect:

Specifies a unit to be executed when student pI'esses
the SHIFT Srop keys.

Comments:

:nh£Si:#r.uec£{o°id:resan:;ug::#:=.{f s:::n££ternudcetfobE I
cannot be included in a -finish- unit. Only one
-finish- instruction is necessary (in IEU). Marker is
held past unit boundaries.

97405100 C

TIMEL

Instruction format:

timel

t i me I expT,name

Tag definition:

expr Mathematical expression (in seconds)

name Unit name within curl`ent lesson

Effect:

PI.ovides a -helpop- type bl.anch to the specified unit
when the given time limit has expired. A unit to be
branched to with a -timel- instruction is cleal'ed if
the student exits fl.om the current lesson or if a
-timel- instruction with a blank tag is executed. If
the time limit expires while the student is executing
instructions, the bl.anch occur.s when the student
reaches a waiting point (pause-, -arl.ow-, or end of
the unit).

Comments:

The time limit is given in seconds, and the minimum
time limit is 0.75 Second. The -timel-instruction is
not affected by any -time- instl.uctions.

TIMER

Instruction fol'mat:

timer

ti mer expr]lanle

Tag definition:

expr Mathematical expression (in seconds)

name Name of unit within I.outer. lesson

Effect:

Causes a I.etum to the specified unit of the I.outer.
lesson when the time lf nit expil.es. This bl.anch
I.emains in effect until the student signs off the
system or executes a -timer- instruction with a blank
tag. The branch does not occur if the student is using
a system TERM featul.e (for example, TERM-calc)
when the time limit expires. The IEU of the router is
not executed when the student returns to the I.outer.

97405100 C

Comments:

?:ieuet£Tse [3{Foft s£:c%£nvdesn i(E Semc£°nnudt:'s):nd ihhee mjT{£::rT
instl.uction cannot be used unless the author is writing
his own I.outer.

END

Instl.uction format:

end (help)

end lesson

Tag definition:

help

lesson

Optional tag equivalent to blank tag;
both end help sequences

Logical end of lesson

Effect:

£ebiaoidt:8ss°:nk:¥;°::dshe::::: :¥€chu¥£Po:eqi::n:e¥j I
system-reserved word ldone to -1.

Comments:

An -nd- instruction with a blank tag in a base unit
has no effect. An -nd- instl.uction in a help
sequence delimits the unit as weu as ending the
sequence.

BACK

Instruction format:

back

back

Tag definition:

name

expr

nrmel,
nane2r..

name

exprprmelpane2r..

Unit name

Vat.iable or mathematical expressions

Unit names, x, or q

Effect:

Initiates a new main unit (specified by name) when
the BACK key is pressed.

5-49

BACKOP

Instl.uction format:

backop

backop

Tag definition:

name

expr

-el,-e2....

mme

expr,n&mel,mme2,...

Unit name

Variable or mathematical expression

Unit names, x, or q

Effect:

Initiates a new main unit (specified by name) when
the BACK key is pressed.

Comments:

There is no full-panel erasure when backop- is
executed. Any graphics or text specified by the
hoackop- instruction is added to the current display
and remains on the panel.

BACKI

Instruction format:

backl.

backl

Tag definition:

mme

expr

mmel.-e2'...

mme

expr,mmel,nane2„..

Unit name

Variable or mathematical expl.ession

Unit names, x, or q

Effect:

Initiates a new main unit (specified by mme) when
the SHIFT BACK keys are pressed.

BACKIOP

Instruction fol'mat:

back 1 op nrme

back 1 op expr,mmel ,mme2 ,...

Tag definition:

name

5-50

Unit name

expr

namel'
name2„..

Variable or mathematical expression

Unit names, x, or q

Effect:

Initiates a new main unit (specified by name) when
the SHIFT BACK keys are pressed.

Comments:

Thel.e is no full-panel erasul.e when toacklop- is
executed. Any graphics or text specified by the
hoacklop- instl'uction is added to the curl'ent display
and I'emains on the panel.

STOP

Instruction format:

stop

stop

Tag definition:

nrme

expr

namel.
mme2'...

name

expr,mmel,mme2,...

Unit name

Variable or mathematical expression

Unit names, x, or q

Effect:

Specifies unit which follows the present unit when the
STOP key is pl.essed.

HELP

Instruction format:

help

help

Tag definition:

mme

expr

-mel,
mme2'...

name

expr.namel,mme2,...

Unit name

Mathematical expl.ession

Unit names, x, or q

Effect:

Specifies beginning unit of a help sequence and en-
ables the HELP key for entry to that unit.

97405100 C

HELPOP

Instruction fol.mat:

helpop

helpop

Tag definition:

name

expr

-mel.
Thrme2,...

mme

expr.namel.-e2„..

Unit name

Mathematical expl.ession or variable
name

Unit names, x, or q

Effect:

Specifies the beginning unit of a help-on-thesame-
page sequence and enables the HELP key for entl.y to
that unit.

Comments:

Thel.e is no full-panel el.asure when -helpop- is exe-
cuted. Any graphics or text specified by the -helpop-
instruction is added to the current display and re-
mains on the panel when control is returned to the
main unit fonowing execution of -helpop-.

HELP'

Instruction format:

helpl

helpl

Tag definition:

nrme

expr

mnel.
mrme2,...

frame

expr,namel,tia[ne2„..

Unit name

Mathematical expression

Unit names, x, or q

Effect:

I gp£:]fs{=Su:::eb:ngin:|nagbL:¥:h:fs:EiLE¥[ihk=Sfmf:=
entry to that unit.

97405100 C

HELP10P

Instruction format:

helplop

helplop

Tag definition:

name

expr

mmel,
-me2'...

mme

expr,namel,mme2„..

Unit name

Mathematical expression or variable
name

Unit names, x, ol. q

Effect:

:£:3i:{se:h:h;HE#[nHninLgp ¥:£yts ::rae:t¥; tso¥#:FCuen{:.nd I

Comments:

There is no full-panel erasure when -helplop- is
executed. Any gI.aphics or text specified by the
-helplop- instruction is added to the cur.rent display
and remains on the panel when control is returned to
the main unit following execution of -helplop-.

DATA

Instruction format:

data

data

Tag definition:

mme

expr

-mel,
mme2"..

name

expr,mmel,mme2,...

Unit name

Mathematical expression

Unit names, x, or q

Effect:

Specifies the first unit of a help sequence and enables
the DATA key for entry to that unit.

5-51

DATAOP

Instl.uction format:

dataop

dataop

Tag definition:

nrme

expr

nrmel,
mme2....

name

exprpemel,mme2„..

Unit name

Mathematical expression or variable
name

Unit names, x, ol. q

Effects

Specifies the first unit of a help-on-thesame-page
sequence and enables the DATA key for entry to that
unit.

Comments:

Thel.e is no full-panel erasul.e when ndataop- is
executed. Any graphics or text specified by the
-dataop- instl'uction is added to the current display
and I.emains on the panel when control is returned to
the main unit following execution of ndataop-.

D^TA'

Instruction fol.mat :

datal

datal

Tag definition:

-e
apr
mmel,
mrme2,...

mme

exprplamel,name2,...

Unit name

Mathematical expression

Unit names, x, ol. q

Effect:

I Sg:C#{|eFSTtBeAfjBtk:#tf:: %nht:[yptsoeqtE::Cuen{at?d enables

5-52

DATA'OP

Instl.uction format:

datalop

datalop

Tag definition:

name

apr

mmel'
name2"..

mme

expr,namel,name2„..

Unit name

Mathematical expression or variable
name

Unit names, x, or q

Effect:

S3ie::fn£:: at:: ef::btie:nt}£e°sfH:FFeiHi|tEe:§af:I-epn:i; I
to that unit.

Comments:

Thel.e is no full-panel erasure when ndatalop- is
executed. Any gI'apliics or text specified by the
ndatalop- instruction is added to the cut.rent display
and remains on the panel when contl.ol is returned to
the main unit following execution of ndatalop-.

LAB

Instruction format:

lab

lab

Tag definition:

name

expr

namel,
mme2,...

mme

expr,mmel,rmme2,...

Unit name

Mathematical expression

Unit names, x, or q

Effect:

Specifies the fit.st unit of a help sequence and enables
the LAB key for entry to that unit.

97405100 C

LABOP

Instruction for mat :

labop

labop

Tag definition:

nrme

expr

-el.-e2„..

mme

expr,nalnel,name2„..

Unit name

Mathematical expression or variable
name

Unit names, x, or q

Effect:

Specifies the first unit of a help-orrthersame-page
sequence and enables the LAB key for entry to that
unit.

Comments:

There is no fullpanel erasure when -labop- is exe-
cuted. Any graphics or text specified by the -labop-
instruction is added to the current display and I.e-
mains on the panel when control is returned to the
main unit following execution of -labop-.

LABI

Instruction format :

labl

labl

Tag definition:

name

expr

mmel.-e2"..

lmme

expr,mmel,tmme2,...

Unit name

MQthematical expression

Unit names, x, ol. q

Effect:

I i£:C5£]|eFSTtieA3£E:yTi:r°:natrhyeLtpost#aute:i:.and enables

97405100 C

LAB10P

Instl`uction format:

1ablop

lablop

Tag definition:

name

expr

mmel,
-me2"..

name

expr,mmel,name2,...

Unit name

Mathematical expression ol. variable
name

Unit names, x, or q

Effect:

Specifies the first unit of a help-on-thesame-page
sequence and enables the SHIFT LAB keys for entry
to that unit.

Comments:

Thel'e is no full-panel erasure when -lablop- is exer
cuted. Any graphics or text specified by the -lablop-
instl.uction is added to the current display and re-
mains on the panel when control is I.eturned to the
main unit following execution of -lablop-.

BASE

Instruction format:

base

base

base

Tag definition:

mme

expr

mmel'
nrme2„..

name

apr,namel,name2,...

Unit name

Mathematical expression

Unit names, x, op q

Effect:

Specifies a base unit.

Comments:

Blank tag or q clears base unit marker.

5-53

TERM

Instruction format:

term

term name

Tag definitiom

I nalne Author term (8-character maximum)

Effect:

When student presses TERM and types name, the unit
containing the -term rmmc> instl.uction is entered as
the initial unit in a help sequence. Units containing
-tel.mng can be accessed from any part of the lesson.
The -term- iustl.uction with a blank tag matches any
term entel.ed that is not matched by a specified
authol' tez.in.

Comment:

More than one -term- instruction can be used in a
single unit, but same tags must not occur in mol.e
than one unit per lesson.

TERMOP

Instruction format:

term9P

termop -e

Tag definition:

name Author term (8-charactel. maximum)

Effects

When the student presses TERM and types name, the
unit containing the -termop-instt.uction is entel.ed as
the initial unit in a -term- sequence; the scl.een is
not erased. Units containing -termoprs can be
accessed from any part of the lesson.

Comments:

More than one -tel.mop- instruction can be used in a
single unit, but togs must not occur in more than one
unit per lesson.

5-54

*, c, SS

Instruction fol.mat:

* comment

c comment

command tag S Scom ment

Effect:

Allows comments to be placed in source code.

Comments:

An asterisk or the letter c in the first space specifies
the entire line as a comment. The double-dollar sign
specifies remainder of a line as a comment.

CSTOP

Instruction format:

cstop

Effect:

Causes condensing to stop.

Comments:

Condensing can be restal.ted later in the lesson.

CSTART

Instruction format:

cstart

Effect:

Causes condensing to be started at current source
code line.

Comments:

Only necessary following a -stop-instruction.

97405100 C

CSTOP*

Instruction fol'mat:

cstop*

Effect:

PI.events rest of lesson from being condensed.

Comments:

Any -start- instructions fouowing ngstop*-have no
effect.

RESTART

instruction format:

restart

r estart imame

I est art inane,uname

Tag definition:

uname Unit name

]name Lesson name

Effect:

Specifies lesson and unit in which the student win
I'estart lesson execution if lesson terminated before
completion. Sets the aystem-reserved words rstartl
and rstartu.

Comments:

Blank tag specifies current lesson and main unit for
restart. Onerargument tag specifies unit of current
lesson for restart. Two-argument tag specifies unit
and lesson for I'estart.

STATUS'

hstruction format:

st atlas van

Tag definition:

van Variable or mathematical expression

97405100 C

Effects

Sets the system-reserved word lstatus to the value in
Van,

Comments:

Noninteger values in van are I'ounded to integers.

RETURN

Instruction format:

return

Effect:

Ends the curt`ent timerslice.

Comments:

Ensures an entil.e time-slice fol' execution of follow-
ing instructions.

PRESS

Instruction format:

Press

Press

Press

Tag definition:

code

name

expr

station

code (rfution)

name (Fation)

ear (qution)

Character code

Key name, such as next or a

Vat.iable or mathematical expression

Station number

Effect:

Places the specified key in the student's input buffer.

Seacnondd°£#iym:::(k%=rfrss]getrh:esct°antf;n#ew£LPct#h:
key is to be press-d. Two-argument form is
executed only if both stations are in the same lesson.
System-reserved word zretul.n is set to -1 if press-
was executed; it is set to 0 if not executed. A router
lesson may press- a key at any station being used by
a routed student.

5-55

JUMPOUT

Instruction format:

jumpout

jumpout inane (,uname)

jumpout eTEL=g=L; ::Fe, ananeL

ju in pout inalne, (var)

ju in pout opt

Tag definition:

home; Actual lesson names or leslist number
inamel;~. (coustants, variables, or expressions) in

<>, x, Or q

umme, Actual unit names or variable con-
unamel„, taining unit name in ()

expr Variable or mathematical expression

vcr Val.iable containing a unit name

Opt Opt ious

Effects

Transfers student to lesson and unit specified upon
execution. The following optional tags have special
meanings.

Eg
resume

return,
return

q or blank
tag or (0)

X

Description

Takes the student to the restart
lesson and unit, thus allowing the
student to continue where he left
off

Returns the student to the router
lesson

Returns the student to the first
unit of the lesson from which this
lesson was entered

Returns the student to the unit
following the unit fl.om which this
lesson was entered

Retul.ns the student to his I.outer if
he has one; retul'ns an author to
author mode page

-jumpout-has no effect

Comments:

If no unit is specified, execution starts at the be-
ginning of the named lesson. The lesson named can
be the lesson currently being executed. The IEU, if
any, of the lesson to which the -jumpout- is per-
formed is always executed unless the -jumpout- goes

5-56

to the same lesson that it is in. If a unit name is
specified, the -jumpout- codes of the lesson must
match.

INHIBIT

Instruction format:

inhibit (action)

Tag definition:

action arrow, erase, dropstor, edit, jumpchk,
term, charclear, blanks, from, anset`ase,
dropset

Effect:

PI.events normal actions from being taken.

Comments:

Blank tag or a new main unit cancels all inhibits.

KEYLIST

Instruction format:

keylist nameJist

Tag definition:

name

fist

gha::a::r:tekeylist(maximumofseven

Single character and/ol' pl.eviously den
fined nst names

Effects

Establishes a list of keys to be used in the paus-
and |{eytyper instructions.

Comments:

The |<eylist- instruction is a nonexecutable instruct
tion and should be placed in the IEU. System-defined
lists available are:

numeric Digits (0,1, 2 ,..., 9)

alpha Alphabet (a through z and A
thl.ough Z)

funct :#E%toioonn)keys (HELpt LAB, NEXT,

touch Touch panel input (256 < key < 51l)

ext External input (512 < key < 767)

97405100 C

PAUSE

Instruction format:

Pause

Sspause until any key is pressed

Pause n

Sspause for n seconds

pause k eys±cl ,k2 ,...

Sspause until one of the keys
Ssin list is pressed

pause n, keys±cl,k2 ,...

SSpause for n seconds or until
Ssone of the keys in the list is
SSppessed

Tag definition:

n Number of seconds of pause (n > 0.75)

kl,k2 ,... Key names

Effect:

Halts lesson execution until condition specified by tag
is satisfied.

Comments:

. bS eLRteryn{snt_th:n5:ryu::{to#ayorbeoanegroo:p :£emef:fieof;E:g
system-defined groups.

numeric Digits (0,1,2 ,..., 9)

alpha Alphabet (a through z and A
through Z)

funct Function keys (HELP, LAB, NEXT,
and so on)

touch Touch penel input (256 < key < 511)

ext External input (512 < key < 767)

COLLECT

Instruction format :

collec t van,nun

Tag definition:

van Beginning user vat.iable (n) where key
information is to be stored

nun Numbel' of keys to accept

97405100 C

Effect:

Conects keys from extel.nal soul.ces. Lesson exe-
cution is halted until the condition specified by nun
is satisfied or time expires as a result of a pl.evious
-time- command. The keys al.e stol.ed one per
variable.

Comments:

An -nable- instruction must pl.ecede -ollect- to
receive touch or external input. The upper limit is 20
keys.

KEYTYPE

Instl.uction format:

l{ey type var,nat

Tag definition:

van Val.iable whel.e result is to be stored

list Single charactel`, previously defined
gI.oup names, external input, variable.
and/or touch panel input

Effect:

The lceytype- instruction compal.es the key pressed
by the student to the entl.ies in list. If the key is not
found in fist, van is set to -1. If the key is found, van
is set to 0 when the fit.st entl.y in list is matched. var
is set to 1 if the second entry in list is matched, and
so on. Possible al.guments for list al.e as follows:

Single I(eys: a, b, c, S, %, ?, =

Systemndefined key names: next, back, datal

Your own defined groups: mygl'oup, w, d, x, a

Systemndefined groups: funct, alpha, touch

ext(nx): value of external key in nx

(nx): value in nx

t(finex,finey): touch input, fine address

touch(coarse address): touch input, coarse ad-
dress

touch(finex,finey,xtol,ytol): tolerance in dots

t(coarse;xchars,ychars): tolerance in characters

Comments:

If a I(eylist- name is used, the I(eytype- van is set
to the same value when any one of the i(eylist-
arguments is matched.

5-57

FORCE

Instruction format:

foz'ce (oplist }

Tag definition

oprst One or more of the character strings
font, micro, long, clear, left, and first-
erase (separated by commas).

Effect:

Forces specified action to be taken.

Comments:

Keyword font for.ces use of alternate characters,
micro forces use of micro table, long forces judging
initiation when response length limit is I.eached, clear
or a blank tag clears previous -for.ce- setting, left
for.ces response to appear right to left, and firsterase
forces an ERASE key after a no judgment so the
student Can enter a new response without pressing
NEXT op ERASE first.

CHANGE

Instruction for.mat:

change com mend ename to rmame

change symbol character to ncharacter

Tag definition:

Cname

rumlne

Instl.uction command (for example, at,
end, write)

New instruction command to be sub-
stituted

character A single character

ncharacter New chal.acter to be substituted

Effect:

I :fheth=hn%nwgen:i:mt%ngTonfdnes:::C:{s°:f cjatusweesr:n:th%n:::
name. The uehange symbol- instruction changes the
values of characters in the judging state.

Comments:

Both fol.ms of the change instl`uction must be in the
IEU and both produce lesson-wide changes. The
nghange symbol- instruction is processed in linear
ol'del.. It is used only in instructions in the judging
state.

5-58

USE

Instl.uction format:

use bname

Tag definition:

bname Block name

Effect:

Insel.ts code from specified block into current lesson
at condense time.

Comments:

The lesson to be accessed with the -use- instl.uction
is specified in the Author Information page of the
lesson containing the -use- instruction. Only one
lesson can be used per lesson; a block containing a
-use- cannot be used. Use codes of the lesson must
match.

STEP

Instl.uction fol.mat:

step On

step off

step (expr)

Tag definition:

On

off

Keyword on must be used in the rstep I
on- instruction and turns on the step
feature

Keywoi.d off must be used in the ngtep I
off- instI'uction and tut.ns off the step
feature

Effect:

Enables author to step-thl.ough his lesson, instruction
by instruction. When lesson is stepped through,
certain information is displayed on the lower lines of

(tJreefanNeL.xTNekxetyfntsotr:£:[c°untet)? baendexbeacsuet,edm{asjns,h°a¥E I
current units are listed. Student val.iables may be
examined at any time.

Comments:

When executing the lesson, step mode can also be
entered by pressing the TERM key and typing step.
The ngtep- mode is not operable for students.
Common variables ol. storage cannot be inspected.
Pressing the BACK key exits from step mode. User
editing security code must match lesson change code
to enter step mode.

97405100 C

lN

Instruction fol.mat :

in stanum

Tag definition:

stanum Station number in the range of 0 to
1023

Effect:

indicates if a station is using the current lesson by
setting system-reserved word zl.etul.n to -1.

Comments:

Current station number is obtained with system-
I.eserved word station.

INITIAL

Instl.uction format:

initial

initial

Tag definition:

lesson

I-

lesson,lesEill

common,commu

Keyword lesson must be used in the
-initial lesson- instl'uction

Name of unit to be executed when
-initial lessor+ is encountered by fit.st
user.

Keywol.d common must be used in the
-initial com mom-instruction

Name of unit to be executed when
-initial commorr is encountered by
fir.st user

Effect:

Specifies a unit which is executed when a lesson ol.
common is brought into ECS and encounter.ed by first
user,

Comments:

If the lesson or common is already in ECS, the initial
unit is not executed. The initial unit is inserted (like
a -do-) at the location of the -initial- instruction.

LESSON

Instruction for.mat:

lesson

97405100 C

completed

1e sson inc o mple te

lesson no end

lesson expr,completed, incomplete„..

Tag definition:

completed Lesson completed

incomplete Lesson not completed

no end Lesson has no logical end

expr Mathematical expression

Effect:

Assigns a value to system-reserved word ldone.
Keyword completed sets ldone to -1, keyword in-
complete sets ldone to 0, and keyword no end sets
ldone to 1,

Comments:

The system router uses the value of ldone. If ldone
equals -1, an asterisk is placed next to the lesson on
the student's index (sequence). Upon entering a
lesson, the system router checks if the lesson has
been completed, and if so, sets ldone to -1. If not,
ldone is set to 0.

SCORE

Instruction format:

Score

score vat

Tag definition:

vcr Value to be placed into lscore

Effect:

Assigns a value (constant or any expl.ession from -1
to 100) to the system-reserved word lscore. Value of
lscol.e can then be stored in any data base or status
bank (student, common, routel., etc.) for the student.

Comments:

The -score- instruction with no tag assigns a value of
-1 to lscore. Values are rounded to the nearest
integer.. Negative score is interpl.eted as ''do not
stol.e any score''. Score which rounds to a value
greater than 100 pl.oduces an execution el.ror.

5-59

BACKOND

Instruction fol'mat :

backgnd

Effect:

Allows the user mol.e processing time dul`ing each
time-Slice if the system is not busy.

Comments:

If the system is busy, the lesson I.eceives less than the
average processing time. The toackgnd- instruction
should not be used with lessons which are used by the
students in an instructional setting. The -foregnd-
instruction cancels the effect of backgnd-.

FOREGND

Instruction fol.mat :

foregnd

Effect:

Cancels the effect of the backgnd- instruction.
Normal execution state is restored.

Comments:

When. used, -foregnd-normally follows a backgnd-
instruction.

CPULIM

Instruction fol.mat:

cpuli in van

Tag definition:

Yap Variable or mathematical expression
specifying time nmit in thousand
instructions pel. second (TIPS) (maxi-
mum of 10)

Effect:

Auows author to place limit on CPU time for a given
lesson while that lesson is being used by students.
CPU time in TIPS is listed in the student recol.ds and
at signroff time.

Comments:

The value for CPU TIPS remains in effect until sign-
off time. A maximum limit on the CPU time allows
the lesson author to test a lesson at a low CPU time
maximum and decide if there is any effect on a
lesson. If -pulim- is set to a negative or zero time,
an execution el.ror occurs.

5-60

ROUTE

Instruction fol`mat:

route

I.Oute

route

route

Tag definition:

end
lesson

endlesu

finish

finishu

resignon

Iermu

end lesson,endlen

finish,fiinishu

el.ror,eIToru

I.esignon (, restgnu)

Keyword end lesson must be used in the
-route end lesson- instruction and indi-
cates an end-of-lesson exit from the
instructional lesson

Entry unit which is executed when the
student leaves the instructional lesson
because of an -nd lesson- or
-jumpout q- instl.uction

Keyword finish must be used in the
-I.oute finish- instruction and indicates
a finished exit from the instructional
lesson

Unit to be executed when a student
leaves the instructional lesson by pl.es-
sing the SHIFT STOP keys

Keyword error must be used in the
-t`oute el`I'or- iustl`uction and indicates
an executionngl'I`or exit from the in-
structional lesson

Unit which is executed when an exer
cution error occul's in the instructional
lesson

Keyword resignon must be used in the
-route I.esignon- instruction and gives
the options of signing off or of return-
ing to the I'outer

Router unit to which student is returned
(optional)

Effect:

Specifies which units of the router are to act as
reentry units when the student exits from an instruc-
tional lesson in the routel..

Comments:

The -route- instl.uction must be executed each time a
student is in the router in ol.der for the specified
units to be functional. Placing the -route- instl.uc-
tion in the router's index ol. decision unit sets these
flags each time a lesson is selected by or for the
student. The IEU of the I.outer is only executed at
sign-on time ol' when -route resignon- without a
specified unit is executed.

97405100 C

R0uTVAR

Instruction format:

routvar nun

Tag definition:

nun Mathematical expression specifying the
number of I.outer student variables
(maximum of 50); 50 locations are
referenced by np or vr

Effect:

Specifies the number of student I.outer variables to be
made part of the permanent student bank and
retained between sessions in addition to the 150
student val.iables. Fifty I.outer student variables can
be added to the amount of ECS used at a logical site.

Comments:

Student router variables can be altered only in the
pouter. With an -allow I.Cad rvars- iustl`uction in
effect, the values can then be read in an instructional
lesson,

ALLOW

anow

allow

allow

allow

Tag definition:

read

write

read

write

read I.vars

Keyword read must be used in the
-allow I`ead- instruction and specifies
readronly access to the ECS I`outer
common

Keyword wl.ite must be used in the
-allow write- instruction and specifies
read and wl.ite access to the ECS router
common

read rvars Keywol.d read rvars must be used in the
-allow I.Cad rval's- instruction and spec-
ifies I`eadronly access to the student
router varichles

97405100 C

Effect:

Permits instl.uctional lessors to reference the I.outer's
common variables. The ranow- instruction is only
meaningful when executed by students in a course
using that router and in the router itself (not
instl.uctional lessors).

Comments:

An callow- instruction with no tag clears utuow-
settings. A -transfr- instruction must be used
following the rillow- to read and write the ECS
router common ol. to read router student variables.
(Refer to the -tl'ausfr instl'uction.)

LESLIST

Instruction fol.mat:

leslist (lesson,) block

Tag definition:

|eson

block

Lesson containing the lesson list; op-
tional if lesson is same lesson corr
taining -leslist- instruction

Actual block name or variable cot+
taining block name

Effect:

Allows access to the specified leslist. A lesnst is a
special block used to maintain a list of lesson names.

Comments:

Only one lesnst may be used at a time, and the
-1eslist- instruction must be executed before any
refel.ences al.e made to the leslist. The -1eslist-
instruction may be used with the -jumpout-, -from-,
restart-, and -lessin- instructions. A leslist can be
altered with the dddlst- and iemovl- instl'uctions.
After a -leslist- instruction, zreturn has the follow-
ing values.

-1 leslist obtained successfu)ly

0 leslist not found

I Code word error

2 Alreadyaleslist in use

5-61

ADDLST

Instruction format:

addlst van (,position)

Tag definition:

Van First of a set of thl.ee consecutive
variables specifying a valid lesson name

position Val.iable or mathematical expl.ession
specifying the list position the lesson
should cecupy

Effect:

One-argument form adds lesson names to a leslist
(next open slot pn the list). h the two-argument
form, position specifies the lesnst slot which the
name is to occupy.

Comments:

An iaddlst- instruction with the actual lesson named
in the tag (not a variable) produces errors. Additions
to a leslist should be done by storing the information
with a ngtorea- using a character count of 30. A
ngtorea- instruction must precede the riddlst- in-
struction. After execution of the riddlst- instrucL
tion, system-reserved wol'd zretupn is set as fouows:

-1 Lesson name added successfully

0 Nolesfist specified

I lllegallesson name

2 Lesson name already in lesnst

3 lesnst is fun

4 Specified position is in use

REMOVL

Instl.uction format:

I.e movl lesson

Tng definition:

I-n Number, mathematical expression, or
val.iable specifying the lesson to be
removed fl.om the list

Effect:

Deletes lessons from a list, with a blank entry left in
that list position.

5-62

Comments:

After execution of the -removl- instruction, system-
I.eserved word zl.etum is set as follows:

-1 Lesson name deleted successfully

0 No leslist specified

LNAME

Instruction format:

Inn in e van,position

Tag definition:

Van First of thl.ee consecutive variables
required to place the leslist information

position Constant, variable, or mathematical ex-
pl.ession specifying the lesson number in
the leslist

Effect:

Places lesson name at position into the three con-
secutive vat.iables beginning with van. Ieslist infor-
motion can be displayed with a -showa- instruction
using a character count of 30.

Comments:

After execution of the -Inane- instruction, system-
I'eserved wol`d zl.eturn is set as follows:

-1 Lesson information tl.ansferl.ed successfully

0 Noleslist specified

FINDL

Instruction format:

f indl initial,retim

Tag definition:

initial

retun

Initial val.iable fop a set of three con-
secutive variables specifying the lesson
name

Retul.n variable containing the position
of the named lesson in the -leslist-

Effect:

Determines if a specified lesson name is included in a
leslist. If the specified lesson is not found or a leslist
is not specified, the value of the return variable is set
to -1.

97405100 C

RESPONSE HANDLING INSTRUCTIONS

The following instl.uctious al.e used to pl'ocess student
I.esponses.

arrow
endarrow
iarrow
arheada
arrowa
iarrowa
long
jkey
storea
Open
loada
close
bump
put

list storen
c oncept stor e u
miscon ntouch
v ocab ntouc hw
vocabs touch
endings t ouchw
ok rna tch
moor
okword ans
noword
ignore
exact
exactc
exactv

put d ansv
putv an§u
ans wer wrongv
arts we pc wrongu
w Pong store
WI'Ongc

C0mpare
Specs
markup
judge
getword
getmark
getloc
edit
Copy
time

ARROW

Instruction for.mat:

ar ow loo

err ow rinex,riney

Tag definition:

loo Coarseirid location of art.ow

finer Horizontal fineirid location of arrow

finey Vet.tical fineirid location of arrow

Effect:

Places arrowhead on student screen at specified
point, indicating a desire for student response.
Serves to delimit response handling portion of the
unit.

Comments:

Sets some default parameters.

ENDARROW

Instruction format:

endarl'ow

97405100 C

Effect:

Ends instructions that process response to preceding
arrow,

IARROW

Instruction format:

iarrow

iarr ow nalne

ial'row expr,mmel ;lame2 r-.

Tag definition:

name Unit name

expr Mathematical expression

nrmel, Unit names, x, or q
name2„..

Effect:

Inserts named unit with a -join- after the first
unrrow- of a unit and just befol.e the first judging
command fol. that utrl.ow-.

Comments:

The -iarrow- instruction with no tags (or q) clears
previous settings.

ARHEADA

hstl.uction format:

ar heada char

Tag definition:

char Any character

Effect:

Specifies a character to act as an alternate arrow.

Comments:

The alternate arrow is limited to five character
codes. The -arheada- instruction is used with the
raprowa- and -iarrowa- instructions.

5-63

ARROWA

Instruction format:

arrowa lac

arrowa finer,finey

Tag definition:

loo Coarseirid location of altel.mte arl`ow

finer Horizontal fineirid location of altel.-
note arrow

rmey Vertical finengl.id location of alternate
arrow

Effect:

Identical in opel`ation to the -arrow- instruction,
except that the alternate character previously speci-
fied in an -arheada- instruction is used instead of the
regular arrowhead.

l^RROW^

Instruction format:

i arro wa mme

Tag definition:

name Unit name

Effect:

Operates analogously to the -iarrow- instruction.

LONG

instruction format:

long

Tag definition:

nun

nth

Number of characters in maximum stur
dent response

Effect:

Specifies a length limit for student response.

Comments:

A -long 1- instruction initiates judging after the first
keyppess. Default I.esponse length (with no -longL
instruction) is 150 characters.

5-64

JKEY

Instruction format:

jkey mmes

Tag definition:

names One op more function key names sepa-
rated by commas (for example, helpl,
back)

Effects

Specifies function keys besides the NEXT key that
will initiate judging. Cannot specify SHIFT Srop.

STOREA Judging Instruction

Instruction format:

stored

stopea

Tag definition:

Yer

eat

vapl

jcount

van (,eat)

van,unl<jcount

Variable in which student response is
stol`ed

Char.acter count (default is 10)

Variable in which character count is
stored

System-reserved word jcount

Effect:

Stol'es number of characters specified of the student
I'esponse, starting in indicated variable. Never ends
judging.

O P EN Judging Instruction

Instruction format:

Open ,ar

Tag definition:

Yar Starting variable for storage

Effect:

Places student response in variable beginning with the
variable specified. One character., rightTju§tified,
with zero-fill, per. variable. Nevel. ends judging.

97405100 C

L 0 A DA Judging Instruction

Instruction format:

loads van,ent

Tag definition:

Tar Starting variable of charactel. string

ant Character count

Effect:

Replaces the judging copy of the student response
with the specified character string.

Comment:

Assumes the string is left-justified in the variable,
packed 10 character codes per wot'd. Never ends
judging.

C I O S E Judging Instruction

Instruction format:

close van,ant

Tag definition:

van Starting variable

eat Chal'acter count

Effect:

Takes rightmost character code of number of val.i-
able§ specified in eat, beginning with the specified
variable, and uses the resulting string to replace the
judgino copy.

Comments:

Reverse of the ropen- instruction. Never ends
judging.

B U M P Judging Instruction

Instruction format:

bu in p char

97405100 C

Tag definition:

char Charactel.s (up to eight) to be removed

Effect:

Removes indicated characters from the judging copy.
Never ends judging.

P u T Judging Instruction

Instruction foz'mat:

put strl =str2

Tag definition:

strl

str2

Chal.acter stl'ing (not including an equal
sign) to be I.eplaced

Charactel. stl'ing I.eE>lacing stol

Effect:

Replaces all occurrences in the student I`esponse of
the string on the left with the string on the right.
Never ends judging.

P U T D Judging Instruction

Instruction format:

putd

Tag definition:

elm

strl

str2

cttar strl char str2 char

Any character not appearing in strl or
str2

String to be replaced

Stl.ing replacing strl

Effect:
• Replaces all occurrences of first character String in

the student response with the second character
string.

Comments:

Allows the specification for I.eplacement of stl.ings
containing an equal sign. Never ends judging.

5-65 I

P U TV Judging Instruction

lnstl.uction fol'mat:

putv

Tag definition:

beg

lapcl-
initid

lengthrepl

beg,leTgivchar,initial,lengthrepl

(ie¥:TjnufsnIf}]e°dc)at£°n Of character string

Length of character string

yeapri:?:eme¥te:i:¥#(I:::i;3|st{]f°{:i;ion °f

Length of replacement string (constant
or variable)

Effect:

Replaces all occurl'ences of chal'actep string con-
tained in location beg of length lengthehar with
replacement string contained in location initial of
length leDgthrepl. Nevel. ends judging.

ANSWER Judging Instruction

Instruction format:

answer (<opt"rds> (synworddy } resp

Tag definition:

opt-ends Optional words that are allowed in the
student response

aynwords Synonymous wol.ds that are I`equil'ed in
the Student response

rest) Answer to be matched

Effect:

Judges the student response ol(if it adequately mat-
ches the tag.

Comments:

Unless inhibited by the rspees- instruction, some
marking of the answer may be done. Tag cannot
contain punctuation; howevel., the student may use
punctuation in his response. Cannot match any
student response which contains more than 39 words.

5-66

ANSWERC Judging Instruction

hstruction format:

answerc

Tag definition:

exp
Tesp|,
reap2r..
requ

exEngespl?eap2+.restli

Variable or mathematical expl.ession

Arrswers to be matched; may contain
optional words ol. synonymous words

IIffects

Based on the value of exp, judges the student
response ok if the response adequately matches that
portion of the tag. For example, if qu is 0, the
dnswepc- instruction has the same effect as the
instruct ion ranswel. rap2-.

Comments:

The rdrrswerc- instruction is the conditional form of
the answer- instruction and is designed for use in
drmdnd-practice lessons. Optional words are err
closed in angular brackets. fynonymous words are
separated by commas and are enclosed in pareTr
theses. Maximum numbel. of tags is approximately
500.

WRONG Judging Instruction

Instruction fol.mat:

wrong (<optwords> (ayrmords}) re?

Tag definition:

optwonds Optional words that al.e allowed in the
student response

aynwords Synonymous words that are required in
the student response

reap Answer to be matched

Effect:

Judges the student response no if it adequately mat-
ches the tag.

Comments:

Identical in opel.ation to the -answer- instruction,
except that a matched response is judged no instead
of ok.

97405100 C

WRO NCC Judging Instruction

instl.uction for mat:

Wrongc

Tag definition:

ear
.eapl,
reap2r..
requ

expr;reapl?esp2;-.reapn

Variable or mathematical expression

Responses to be matched; may contain
optional words or synonymous words

Effect:

Based on the value of ear, judges the student r-
sponse no if the response adequately matches that
pol.tion of the tag. For example, if expr is 0, the-wrongc- instruction has the same effect as the
instl.uction -wrong reap2-.

Comments:

The -wl.ongc- instruction is the conditional form of
the -wrong- instruction. The -wl'onger instl'uction is
identical in opel'ation to the -answerc- in§tpuction
except that a matched response is judged no instead
of ok.

LIST

Instruction.format:

1is t name, wlist

Tag definition:

name

whist

Name of the list (maximum of seven
charactel's)

List of associated words with words
separated by commas

Effect:

Specifies list of equivalent words for synonyms or
Optional words in -answerL and -wrong- instl.uctions.

Comments:

The list is I.eferenced by name. When specifying
synonymous or ignorable wol.ds, the markers setting

97405100 C

off the words al.e double for the list (that is,
<<name>> for ignol.able words and ((rmme)) for
synonyms).

CONCEPT Judging Instruction

Instruction format:

Tag definition:

senl,
sen2"..

Equivalent concepts

Effect:

Judges student response ok if it matches one of the
concepts specified.

Comments:

Words used must occur in a pl.evious -vocab- or
+rocabs- instruction. The -oncept- instruction is
used for evaluation of complex responses or any of a
number. of divergent responses. Judging is based on
word order only. Cannot match any student I.esponse
which contains more than 39 wol`ds.

MISCON Judging Instruction

Instruction format:

Tag definition:

se,u,
sen2r..

Equivalent concepts

Effect:

The -miscon- instruction is identical in operation to
the ngoncept- instruction except that the student
response is judged no if the I.esponse matches one of
the specified concepts.

5-67

VOCAB
-Instl.uetion format:

vocab

Tag definition:

name

opt VArds

giv,
syn2r..

ode

words witll
suffixes

name
<Opt word>

gr2!

Ords
words with suffixes

Name of -vocab- (maximum of seven
characters)

List of ignorable wol.ds

List of synonymous words

Nonignorable words without synonyms

Keywol.d/number or keyword/suffix

Effect:

Constructs a list of useable and ignorable words for
use with -concept- instructions that follow -vocab-.

Comments:

More than one -vocab- can be used, but only one is in
use at any time. A previously defined but superseded
-vocab- can be brought into use by a -vocab-
instruction with only the name in the tag.

VOC^BS

Instruction fol.mat:

v ocabs name
<Opt wordp

#)
wordsph-
vods with suffixes

Tag definition:

name

5no8

Name of +rocabs- (maximum of seven
characters)

opt verdi List of ignorable words

apl, List of synonymous words
ryn2r..

words Nonignol.able words without synonyms

phmses Keywords separated by *

words with Keyword/number or keyword/suffix
suffixes

Effect:

Constl.ucts a list of useable and ignorable words, with
spelling and capitalization checks, for use with
-oncept- instructions that follow -vocabs-.

Comments:

More than one -vocabs- can be used, but only one is
in use at any time. A previously defined but super-
seded -vocabs- can be brought into use by a -vocabsT
instruction with only the name in the tag.

ENDINGS

Instruction format:

endings nungiv

Tag definition:

nun Number (0 through 9) identifying suf-
fixes list

list Actual list of up to eight suffixes

Effects

The -ndings- instruction must precede the -vocab-
or -vocabs- instruction. Adds suffixes to words
defined in vocabulary (-vocab- or +rocabs-).

Comments:

The notation I.ootword/number in a vocabulary
(i/ocab- or irocabs-) defines as synonymous the root
word and all associated words formed in the suffix
list identified by nun in the -ndings- instruction.
However, the notation rootword//number does not
include the root word as one of the synonyms. Root
words can be no longer than 30 characters, and
suffixes can be no longer than 10 characters.

O K Judging lnstl.uction

Instruction format:

ok

Effect:

Judges student response ok (correct). Always ends
judgino.

97405100 C

N O Judging Instruction

Instruction for.mat:

no

Effect:

Judges student I.esponse no (incol.I.eat). Always ends
judging.

OKWORD

Instruction for.mat:

ok word message

Tag definition:

message Replacement message (maximum of
nine characters), including shift and
font codes)

Effect:

Permits the changing of the standal.d ok message.
The rokword- instruction can be insel.ted after the
first judging instruction and a different cokword-
after another judging instl.uction for the same
-arrow- instruction. The rokword- instruction re-
maims in effect until changed.

Comments: .

The rokword- instruction with a blank tag inhibits the
ok message, but not the no message. A space code is
automatically provided before any specified message.

NOWORD

Instruction format:

noword message

Tag definition:

message Replacement message (maximum of
nine char.acters, including shift and font
codes)

Effect:

Pet.nits the changing of the standal.d no message.
The -nowol'd- instruction can be insel.ted after the
first judging instruction and a dif fel.ent -nowol.d-
after another judging instl.uction for the same
-arrow- instruction. The -noword- instruction I.e-
mains in effect until changed.

Comments:

The -noword- iustz.uction with a blank tag inhibits the
no message. A space code is automatically pI.ovided
before any specified message.

97405100 a

lcN 0 R E Judging Instructon

Instl.uction format:

ignore

Effect:

Erases student response and causes wait for new
student response.

Comments:

Regular instructions fonowing an -ignore- instruction
are not executed. Always ends judging.

E XA C T Judging lnstl.uction

Instruction format:

exac t reap

Tag definition:

reap Answer to be matched

Effect:

Judges student I.esponse ck if it exactly matches the
tag.

Comments:

Exact match includes spelling, punctuation spaces,
and so on.

E XACTC Judging lnstl.uction

Instruction format:

exac tc expr,respl ,reap2 ,...

Tag definition:

expr Mathematical expression

respl, Possible answers to be matched
resp2,...

Effect:

Judges student response ok if it exactly matches the
answer selected by the expression.

Comments:

Conditional form of the -xact- instl'uction.

5-69 I

E X AC T V Judging Instruction

Instruction format :

exactv start {,nun) i

Tag definition:

stun

mm

Starting variable of string

Number of characters (optional)

Effect:

Judges the student response ok if it exactly matches
the characters specified in the vat.iables.

Comments:

Can be used as a conditional -xact- . If nun
al'gument is omitted, compal'ison ends after the tenth
character or at the first occur.Pence of a 0 character
(six bits of zero). Segmented variables cannot be
used.

A N S V Judging Instruction

lnstl'uction format :

ansv vtr (,tol I

Tng definition:

yal

tol

Value to be matched

Tolel.Once permitted

Effect:

Judges algebraic student response ok if value of
response is equal to the specified value, within tol-
erance.

Comments:

One-argument form specifies no tolel.ance allowed.
Tolerance can be numeric ol. percentage. Value to be
matched can be an expl.ession.

A N S U Judging Instruction

lnstl.uction format:

ansu

Tag definition:

BIB

tot

5-70

ams (.to|)

Exact answer required ol. mathematical
expression

Tolerance permitted

Effect:

Judges numeric student responses with scientific
units ok if answer is equal to the specified answer
(ans), within specified tolel.Once.

Comments:

If argument ans is a mathematical expression and
argument tol is absent, the exact answer must be
given for an ok judgment. To stol.e the numeric and
dimensional parts of the response, the tstoreu-
instl.uction should precede -ansu-. The -ansu- tags
must be previously defined in a ndefine student-
instruction. Tolel.ance can be numeric or percentage.

WRONGV Judging Instruction

Instruction format:

wrongv vat { ,tol }

Tag definition:

vat Value to be matched

tol Tolerance permitted

Effeot3

Judges algebl.die student response no if the value of
the I.esponse is equal to the specified value, within
specified tolerance.

Comments:

Operates like the tinsv- instruction but judges no
instead of ok.

WRONCU Judging Instruction

Instruction format:

wrongu ans (,tot)

Tag definition:

ans Exact answer required or mathematical
expression

tol Tolerance pel'mitted

Effect:

Judges numel.ic student responses with scientific
units no if answer is equal to the specified answer
(ans), within specified tolel.ance.

Comments:

Operates like the -ansu- instruction but judges no
instead of ok.

97405100 C

STO R E Judging hstruction

lnstl.uction format:

st ol. e var

Tag definition:

Van Variable in which value of student
response is to be stored

Effect:

Stores value of algebraic student response in van.
The response is judged no and judging ended only if
the student I.esponse cannot be evaluated.

STO R EN Judging hstruction

instruction format:

st oren van

Tag definition:

VOI, Variable in which value is to be stored

Effects

Searches student response for simple numeric ele-
ment, and if found, evaluates the element and stores
the value in var'. The numepic element is removed
from the judging copy.

Comments:

If a simple numepic element is not found, judging is
ended with a judgment of no. Variable names are not
permitted in the numel.ic clement.

ST O R E u Judging Instruction

Instruction format:

st oreu varpriay

Tag definition:

Van

an013

Variable in which numeric part of stun
dent response is to be stored

Ten consecutive variables in which di-
mensional part of the student I.esponse
is to be stored. Must be v variable and
not n,

Effect:

Stores the numeric part of the student response in the
specified variable (van) and stores the dimensional
part of the student response in the 10 consecutive v

97405100 C

variables (array). The response is judged no and
judging ends only if the student I.esponse cannot be
evaluated.

Comments:

If the student response can be evaluated, judging is
not ended. The ngtol.eu- tags must be previously
defined in a ndefine student- instruction. The
dnsu-, -wl.ongu-, -ansv-, and -wrongv- instructions
should always fouow the rstoreu- instruction.

NT0uCH Judging Instruction

Instruction format:

ntouch

ntouch areal ;area2;.~iarean

Tag definition:

areal, Touch areas of the forms:
area2r-ar-

couse grid

be (petprgivney)

loo C oarsengrid location

etlar= Number of characters
wide

limey Number of linesliigh

fine grid

rinexriney(,dotbdrty)

rinex Finengrid horizontal loca-
tion

riney Finengrid vertical location

doll Number of dots wide

doty Number of dots high

Effect:

Judges a student touch of the touch panel ok if it lies
within any of the specified areas; otherwise, the
system stays in the judging state and searches for
another I.udging instruction. Black tag judges all
touches ok.

Comments:

Touch panel must be activated with a previous
-noble- instl.uction or pause keys=touch
instruction and must be deactivated with a
subsequent ndisable- instruction or a full screen
erase. If widths or heights are 0 or omitted, the
default value is 1. If they are negative, the system
ignores that area. Cannot split an area designation
between lines.

5-71 .

N T 0 u C H W Judging Instruction

Instruction format:

ntouchw

ntouchw

Tag definition:

ueal,
area2_
area

erealprea2;-.-

Touch areas of tlie forms:

coarse grid

lee(pehmJiney)

loo CoarseTgrid location

charx Number of characters
wide

limey Number of lines high

fine grid

rinexriney(,detx,arty)

finer Finegl.id horizontal loca-
tion

rifiey Fineirid vertical location

dotx Number of dots wide

drty Number of dots high

Effect:

Judges a student touch of the touch panct no if it lies
within any of the specified areasL Blank tag judges
all touches no.

Comments:

The +itouchw- instruction is identical in operation to
the +itouch- instl`uction except that a matched
response is judged no instead of ok.

TO U C H Judging instruction

Instruction format:

touch

touch

touch

Tag definition:

loo

tdL

• 5-72

loo,td

lee,width,height

Hst

Coarsegrid location

Tolerance (in touch squares)

Number of touch squares wide

Number of touch squares high

List of touch locations in either two-
or threerangument form, separated by
semicolons.

Effect:

Judges a student touch of the touch pond ck if it lies
within the specified area; otherwise, the aystem stays
in the judging state and searches for another judging
instruction.

Comments:

loo in the thre®argument form is the lower-left
corner of the sensitive area. Touch panct must be
activated with a previous -noble- instruction. Up to
20 touch panel locations may be specified in the tag
of a single -toucl+ instruction. Judging is ended with
an anticipated ok if the screen is touched in any one
of the elements specified by list. The +ttouch-
instruction win replace -touch-.

TOUCHW Judging Instruction

Instruction format:

touehw

touctw

touohw

Tag definition:

be
td

idtlt

height

rm

kx>tdfro-
T

Coarsegrid location

Tolerance (in touch squares)

Number Of touch squares wide

Number Of touch squares high

List of touch locations in either twcr or
thre-argument form, separated by
semicolons

Effect:

Judges a student touch of the touch panel no if it lies
within the specified area.

Comments:

The -touchw- instl`uction is identical in operation to
the -toucl+ instruction except that a matched rep
sponse is judged no instead of ol(. The iitbuchw-
instruction win replace -touchw-.

97405100 C

M ATC H Judging Instruction

Instruction format:

match varrty

Tag definition:

Van Variable in which position number is to
be stored

list List of possible responses, separated by
commas

Effects

Places position of matched response (0 for first
possible response, I tot. second, and so on) in van.
Places -I in van if no match is found.

Comments:

Always ends judging.

O R Judging hstruction

Instruction format:

Or

Effect?

Defines following judging instruction as equivalent to
preceding judging instruction.

Comments:

System-reserved word anscnt is the same whichever
of the two (or more) instructions is matched. In-
structious judging ok and no can be specified as
equivalent. Never ends judging.

A N S Judging nstruction

Instruction format:

ans

Effect:

Executes regular iustructious immediately fonowing
if the student presses the ANS key.

Comments:

The rdns- instruction must be the first judging irL
struction following the dprow- instruction.

97405100 C

COMPARE Judging instruction

Instruction format:

c om pare wordl ,iord2retim

Tng definition:

ordD

word2

retm

Variable containing first of two words
to be compared

Variable containing second word to be
compared with first word

Location where result of word com-
parison is to be stored

Effect:

Compares word with word2 and returns the result in
retun as follows:

-I lf they are different words

0 lf theyarethesameword

+n lf the words could be misspenings of one
another; the smaller the n, the closer the
speuing

Comments:

The words in "ortl and vord2 ape ended by the first
character that ends authoE. language judging.

S P E C S Judging Instruction

Instruction format:

specs (opt in)

Tag definition:

opt list List of options desired

Effect:

Turns off special standard options or turns on speci-
fied nonstandard options. Regular instructions fol-
lowing a rspecs- instruction are executed otter every
response judgment.

Comments:

A list of the available options is given in table 11-2.
Never ends judging.

5-73

MARKUP

Instruction format:

markup

Effect:

Marks the student's answer with the markup saved by
ipecs holdmark-.

Comments:

Used omy with ipees hchdmark-. Has no tag.

JUDGE

Instruction for mat:

judge qpt

judge ear,apu ,opt2r..

Tag definition:

optxptl, ok, no, wrong, exit, continue, rejudge,
opt2~.. x, ignore, ckquit, noquit, quit

epr Mathematical expression

Effects

Specifies an action to be taken regarding the judging
process.

Comments:

Executed in regular state orny.

CETWORD

hstruetion format:

getword nunworquoqurm (,maxlength)

Tag definition:

ntmword Ordinal number of word in response

loo Location where word is to be stored
(packed 10 characters per word)

nurn Number of characters in word

manength Maximum allowable character length;
default is 10 (optional)

Effect:

Seeks a wol.d (specified by numword) in a student
response; stores the word in a specified location Ooc);
and then stores the number of characters in the word
drtm) in another location.

5-74

Comments:

System-reserved word wcount contains the number of
words in the student response. Words are defined as
strings of characters separated by spaces, puncL
tuation characters, or letter/number boundaries.

GETMARK

Instruction fopmQt:

get in art(nunvorq]oe

Tag definition:

ntmvord Number of the word from which markup
information is desired

loo Location where return information
about desired word is stored

IIffect:

The ngetmark- instruction can be used after judging a
student answer to return information about the words
within tlie student answer. This instruction gives the
author the exact information that the system uses to
mark up the student answer from the dnswer and
-oncept- instruct ions.

Comments:

The value of the word at loo is as follows:

-2 ¥nsw:¥_ki:Pstru¥t¥o!:)e (for example, no

-1 Word out of bounds (for example, numword
is greater than the number of wol.ds in the
student response)

0 Perfect word

>0 Various markup information

Various el`I.ors set bits in the word at]oc as follows:

Bit set Error

60 (rightmost) A word is missing before this
word

59

58

57

56

55

54

Wol.d out of order (move it
left)

Capitalization incol.rect

Bad spelling

Part of broken phl.ase

Extra woz.a

Wol.d missing at end (only for
last word)

97405100 C

CETLOC

Instruction format:

getloc nimvordyfinexFiney (,ermex,ermey)

Tag definition:

nunword

sfineB

8finey

erlnex

erlney

Number of word whose location is der
sired

Starting x location of word (finengrid)

Starting y location of word (fineirid)

Ending x location of word (fine-grid),
Optional

Ending y location of word (finegrid),
Optional

Effects

Returns the starting touch panel coordinates of a
word in the student's answer, and optiomlly, the
ending coordinates of the word. If the desired word is
out of bounds humvord is greater than the number of
words in the student answer), srmex is set to -I .

Comments:

If the judging copy of the student answer is changed
via Put-, +umpT, and so on, the ietloc+ instruction
attempts to return a best approximation of the touch
panct origin Of the cument word.

EDIT

Instruction format:

edi t be

Tag definition:

lee Starting variable Of response buffer

Effect:

Sets up a response buffer where the student can

I twe£Th?:£:£i![Tst%;. his respousei returning portions

97405100 C

COPY

instruction format:

c opy loc|en

Tag definition:

loo Starting variable of character string

len Number of characters in string

Effects

Allows the student to ccpy the author-specified string
into his response.

Comments:

String can only be used once per mrrow- instruction.
The string is not destroyed by use.

TIME

Instruction format:

ti me nun

Tag definition:

nun Number of seconds specified (must be I
greater than or equal to 0.75)

Effect:

Requires student to respond within specified time.

Comment:

T.he value Of the system-reserved word I(ey is
-timeup- if the student does not respond within the
time limit.

5-75

STUDENTPATA INSTRUCTIONS

The fonowing iustructious are used to collect and access
lesson execution data.

dataon
dataoff
area
setdat

Output
Outputl
rendset

D^T^ON

Instruction for mat:

dataon

dataon optist

Tag definition:

apdist List of data options to be turned on

Effects

Starts data collection for current lesson and student
when executed.

Comments:

A ndataorr instruction is necessary in every lesson
that collects data. The optious of the ndataor+
instruction can temporarily (that is, for the remain-
der of the lesson) overl'ide individual student data
options but carmot turn on course record data options
which are turned off. Possible data options al.e ok,
no, unl.ec no, vocab, area, output, help, help no, term,
tel.in no, el.rors, and signin. Blank tag turns on course
record data options.

DATAOFF

Instruction format:

dataoff

dataof f optust

Tag definition:

qptlist List of data options to be turned `off

Effect:

Stops the couection of data for current student and
lesson.

5-76

Comments:

Blank tag staps all data collection. Data options
cannot override course I.ecord data options. Possible
data options are ok, no, ururec no, vocab, area, output,
help, hctp no, term, term no, errors, and signin.

^RE^

Instruction format:

area

area

area

area

area

Tag definition:

name

(exp)

name

(eFT)

incomdete

cancoued

gfaT::£arara::±e)i;n8cfto:esdtimta#hu:
number

Variable or mathematical expression
indicating the area name; expression
must be placed in pat.entheses

incomplete The tag incomplete must be used in the
drea incompLeter instruction

cancelled The tag cancelled must be used in the
-area cancelled- instruction

Effect:

Delimits previous area for summary data Collection
and begins new area. -area ineompleter terminates
collection of data for current area and marks that
area as incomplete. tlrea cancdled- clears all
information in the current area without putting an
area summary in the data file, and no data cctlection
is done until a new rarea- instruction is encountered.

Comments:

Blank tag delimits previous area, but no new data is
couected. Execution of an -area- instruction with
the same name as the current area stops data
collection until an rarea- instl.uction with a different
tag is encountered.

97405100 a

SETDAT

instruction format:

setdat resverd qu

Tag definition:

reENord One of the following system-I'eserved
words pertaining to areas:

aarea
atime
aanows
aok
aokist
asno
auno
ahelp
ahelpn
aterm
atermn

expr Mathematical expression or variable

Effect:

Allows alteration of the value of system-reserved
words pertaining to areas.

Comments:

Any of the area-reserved words may be set by the
rsetdat- iustl.uction. They may contain orny integers
and cannot have a value greater than 511.

OUTPUT

Instruction format:

I output message

Tag definition:

I mesnge Message tobe placedin data file

97405100 C

Effect:

Places the tag of the instl'uction into the datofile,
together with ovel'head information on student,
lesson, time, and so on.

Comments:

Variable contents can be included by a foI.in of em-
bedding: <t,val.>.

t Type (a, n, o, or v)

vap Val'iable name

Tag can be longer than one line, but each line has all
associated overliead information wl.itten.

OUTPuTL

hstruction format:

outputl (label,) start,nun

Tag definition:

label Instruction label

stud Starting vat.iable of bloclt to be placed
in datafile

nun Number of variables to be stored (limit
is 20 variables)

Effect:

Places specified variable contents into datofile.

Comments:

Seven words of overhead information al.e placed in
the datafile unless labd is absent.

5-77

READSET

Instruction format:

readset

Tag definition:

fn

acKes

fn (pcees} (,van)

Datafile name or course file name

Access code wol'd of datofile or course
file

Variable name containing number of
students in the course or number of
unused I.ecords remaining in a datofile

Effect:

Establishes a link between the specified datofile or
course file and the lesson so that the lesson can read
data from the datofile using ieadd- or from the
course file using +eadr-.

Comments:

Access code word is necessary only if change or
inspect code words for the file and the lesson al.e
different. System-I.esel.ved word zretul.n is I.eturned
with the following values.

Value

-2

-1

0

1

2

Meaning

Connection to course file made
successfully

Connection to datafile made suc-
cessfully

File does not exist or is not a
course or datofile

Code words do not match

File empty

5-78

Value
/

Meaning

3 No room in ECs for disk buffer

4 System disk error

READD

Instruction fol.mat:

r eadd ar ea,varplm

I' eadd outputl ,verpim

r eadd signoff ,varpLm

Tag definition:

area Keyword area must be used in the
ieadd area- instruction

var First of block of variables to receive
data

nun Expression giving number of words to
transfel.

outputl Keyword outputl must be used in the
ieadd outputl- instruction

signoff Keyword signoff must be used in the
ieadd signoff- instruction

Effect:

Reads appropl.iate records sequentiany from student
datafile.

Comments:

A ieadset- instruction must be successfully exe-
cuted before attempting a ieadd- instruction. An
execution error occul.s if an attempt is made to read
past the end of the datafile. System-reset.ved word
zreturn is set to -1 if there is more data and to 0 if
the end of the file is encountered (no more data).

97405100 C

READR

Instl'uction format:

readr name,n
stats,start;destin;nim Ssone to
svarsystart;destin;nuni S sfive tags
rval's,start;destin;nun Ssal'e used.
Idone,start;destinapum
lscorestart;destinptm

readr

readl.

Tag definition:

name

sequential
stets,start;destin;nuni Ssone to
svars,start;destin;ntm S sfive tags
I.vars,start;destin;nlm S sal'e used.
Idonestart;destin;nun
lscol.estart;destin;nim

rosterFtart;destin;nim

Keyword name must be used in the
-readr name- instruction

n Two contiguous val.iables specifying a
student name

sequential Keywol.d sequential must be used in the
-readt' sequential- instl'uction

rostel. Keyword roster must be used in the
-readr roster-instruction

stats Student statistics (maximum of 1 0)

svars Student variables (maximum of 1 50)

rvars Router variables (maximum of 50)

ldone System-reserved word ldone informa-
tion (3-bit signed segments)

lscore System-resel`ved wol.d lscore infol.rna-
tion (8-bit signed segments)

start Starting location in student statistics,
student variables, router variables,
lesson number in "mroutel`", or student
roster

destin Destination into which student statis-
tics, student variables, router variables,
ldone or lscore infol.nation, or student
roster is read

Number of variables (stets, svars, or
rvars) or student names to be read

Effect:

The --readr name- instruction reads specified student
information (student statistics, student variables,

97405100 C

I'outer variables, or ldone ol. lscore information from
''mroutepr lessons) into the work space (student
variables or common) for inspection.

The first -readl. sequential- instruction in the lesson
reads the first student's course file (student statis-
tics, student variables, router variables, or ldone or
lscore infol.nation from ''mrouter" lessons) from the
roster into the wol.k space (student variables or
common) fol' inspection. Each Lpeadr sequential-
reads the next student's infol.nation until the roster
is exhausted.

The +eadr roster- instruction reads a list of names
from the student roster into the wol.k space (student
variables or common) for inspection.

Comments:

The -readset- instruction must precede the ieadrL
instruction. The tag for -readset- must specify the
course to be read. The ldone and lscore information
is available only when ''mrouter" is in use.

NOTES

Instl.uction format:

notes

notes var4en (,send }

Tag definition:

Van Student variables (n ol' v) containing
heading infol.nation

len Word length of heading information

send Keyword send sends note immediately

Effect:

Blank tag initiates TERM-comments for the student.
Two-argument tag allows the student to wl.ite a
comment and title it. The system heads the note
with the information stored in van. Threerargument
tag sends a note consisting of the information in van
and does not allow the student to write a comment or
to title it.

Comments:

System sends notes to the student note file named on
the course information page or to the lesson note file
named on the lesson information page.

5-79 .

RESOURCE MANAOEMENT

INSTRUCTIONS

The fouowing instructions are Lised to manage terminals
and ECS.

site
station

SITE

hstruction format:

site

site

site

site

Tag definition:

TLane

retun
start

nun

setque
info-
activestart+ethmptm

stationsctartrettmiprmi

Variable containing name of logical site
or name in quotes

Variable in whicll information is stored

First station number

Number of stations

Effect:

The results of the tags are listed.

set Enables other rsite- instructions forsite -e
info Obtdrus current site ECS information

for site -e
active Finds active station numbers for site

name

stations Finds station numbers permanently in
site nrme

Comments:

Used by site lessors.

• 5-80

STATION

Instruction format:

st ation info,statnmnrettm

st ation st atusstatmm

st ation send,st&tnlm|oc,testJen

st ation st opl ctatmm

station logout ctatrlun

station off sta:tmm

st ation onst&tnlm

Tag definition:

statmm Number of physical station or variable
containing number

retim Variable in which information is stored

loo C oars engrid coon dimt es

text Message to be sent

len Length of message in characters

Effects

The results of the tags are listed.

info Obtains information on station st&tnum

status Returns cut.rent status of station
st&tnim in zreturn

send Sends a message in mode rewrite to
st ation statnun

stopl Presses SHIFT STOP keys on station
statnun

logout Signs off station statn`m

off Turns off station st&tnun

on Turns on station statRIm

Comments:

Used by site lessoTis. Requires a previous ngite set-
instruction.

97405100 C

|'- PRINTING INSTRUCTION

The following instruction is used to specify the format of
the printout of a lesson.

"st

*LIST

Instruction format:

mist

"st
"st
*list

"st
*list

mist

mist

mist

*list

"st
qist

Thst

mist

mst

list
*list

Tag definitions

string

tist

blocks

(db)

C0nD-e

words

97405100 C

iabelFtring

titlegiving

eject

text

ignore

info

symbols

commandsyst

of f (,blocs)

parts

charset {,(db))

1esnst

micro

vcoabs

mods

deleted

common,comnanle,wordbformat

Alphanumeric strings used for headings

List of commands

List of blocks

Characters used to mark dots and back-
ground in a charset

Name of common

Number of words of common

format Code for printing datasets and common
blocks

Effect:

Tl`e I'esults of the tags al.e listed.

label Puts specified string in printout

title Prints subheading string foI. a page

eject Performs a page eject

text Prints only tags of -write-- and
-writeo- instructions

ignore Ignores subsequent -*1ist-instruc-
tions

info Prints lesson information page

symbols Prints a cross-reference table of
symbols

commands Prints a table listing where instru®
tions specified in list are used

off Prevents printing of named mocks
or stops source printing if no blocks
are named

parts Prints only condensed blocl(s

charset Prints any charset in tlie lesson

leslist Pt'ints any -lesust- block in the
lesson

micro Prints any -micrcr block in the
lesson

vocabs prints any +rocab- block in the
lesson

mods Prints mod words

dcteted Prints dcteted nnes

common Prints a common block or a dataset

Comments:

The -mist- instructions specify options when printing
a lesson on hardcopy. The error directory printed
toward the end of the listing gives the line numbers
on which there were eITors. The only errors flagged
are mist option errors and duplicate unit names.
Putting the -mist- options at the beginning of block 8
is usuany the safest.

5-81

VARIABLES 6

It is often nece`rsary to store information dul.ing execution
of a lesson. As a simple example, a unit that sends the
.it`Ideiit to a I.emedial sequence of units after answering
tl`c qiiestion incorrectly four times must keep track of the
i``il``bc.r of times the student has answered incorl'ectly.

'l`l`t` 1'1,^'1`0 s.ystem provides val.iables for storing such

ii`l`oi't``!itiot`. Normtilly, the student cannot access these
vt`i.i!`l.lcs. !`lthoLigh the author can specify some of them
I.{`i. `isc` i.y the sludenl. The author has access to all the
v!\t.i!\l)lcs.

I':t`t.h v!`[`i!`blc consists of one computer word of 60 binary
tliivit`` (bits). This is equivalent to 20 octal digits or ap-
pi`o`im{`tcly 15 decimal digits. (For a discussion of the
hit`t`i..v, oc.t!`l, t`nd decimal systems and their relationship,
I.t`l.i`i. to !`ppendix C.) All information is stol.ed in the
I'ot.in ol' iiLil`ibers. Alphanumeric infol'mation is convel`ted
to t.h!`i.!`c.ter codes (numbers) for storage. The character
t.odc`s !`..c. cnch 6 bits so that 10 chal.acters can be stored
ill oi`c v!`riable (wol.d). Numbel's are stol.ed by magnitude
oi`ly so tl`at the niimber stored can be quite large.

Ii]l.ol.mation on manipulation of individual bits and gI.oups
of bits is contained in sections 7 and 8.

STUDENT VARIABLES

The PLATO system provides each user with a bank of 150
student val.iables (sometimes called user bank variables)
for storing information. If the user is a student, the
system stol.es these val.iables on disk whenever. the
student is not using the system. If the user. is not a stu-
dent, the system does not stol.e these variables between
sessions.

The primitive names for these 150 student variables are
nxx and vxx, whel'e xx repl.esents the variable number.
The n and v indicate an integer variable or a floating-
point val.iable, respectively.

A single variable in the student variables can be refer.-
enced as both a floatingpoint variable and as an integer.
variable in different parts of the lesson. This can be done
either by referring to the variable with the primitive
names (for example, n67 and v67) or by a defined name.
However, the defined names must be diffel.ent.

lNTECER VARIABLES

:E::tgsei2V5agria[3:esTgeef¥::tdbt£Ot,stwo£:cintiseE:res}:3ttmoo%:3£i::rig
used in indicating the sign of the number. If the sign bit is
0, the number is positive; if the sign bit is 1, the number is
negative.

Negative numbers are stored as the complement of the
positive number with the same absolute value. In binal`y,
this means that all bits that are 1 in the positive number
al.e set to 0, and all bits that are 0 in the positive number
are set to 1. Thus, an integer val.iable containing the
number 1 has the octal representation

97405100 C

00000000000000000001

while the value -1 has the I.epl.esentation:

r,77r,r,r,mr,r,rr,r,r,7r,7r,76

A variable is selected as an integer variable from the
student variables by prefixing the number of the variable
in the bank with an n. For example, the name n27 indi-
cates that the 27th of the 150 val.iables in the student
val`iables is an integer. Any variable in the student val.i-
ables can be designated as an integer variable.

FLOATING-POINT VARIABLES

If the numb-er .to be stored is lal.ger than 259-1 or contains
a fl`action, an integer variable is not suitable. Instead, a
floating-point variable is used.

The term floating-point is used because the decimal point
is not fixed but floats to the right or left when operations
al.e performed. The number is stol.ed in the for.in of an
exponent and mantissa. The for.mat of the word is shown
in figure 6-1.

12 12'3 60

EXPONENT MANTISSA

Figure 6-1. Format of Floating-Point Variables

The mantissa is 48 bits long, so numbers that would re-
quire more than 48 bits, such as large numbers with digits
used in the lower places ol. extended fractions, lose some
accuracy. The rightmost (least significant) digits of such
numbers are lost. Usually, the accuracy provided by 48
bits is sufficient.

The exponent is 10 bits long, plus a sign bit for the ex-
ponent. Since the mantissa is tl`eated as an integer but
with the number shifted so that the first bit of the man-
tissa is set to 1, the number 1, for example, has an ex-
ponent of -47 (decimal). The octal repl.esentation of the
value 1 in floating-point is;

17204000000000000000

The mantissa begins with the 4, which is 100 in binary, and
causes the leftmost bit of the mantissa to be set to 1.

Additionally, there is a sign bit for indicating the sign of
the entire numbel`. This is the leftmost bit in the word.
Negative floating-point numbers al.e handled in the same
way as negative integel.s; that is, the negative number is
the complement of the positive number with the same
absolute value. Thus, the form of -1 would be

6-1

6o5737r,r7rn77777777r,r7

when stored as a floating-point variable.

Floating-point val.iables are I.efel.enced by pl.efixing the
variable number with the lettel. v. For example, v23
refel`s to the 23rd variable in the student variables and
specifies that it is a floating-point variable.

Floating-point numbers are sometimes called I.eal numbel.s
because they can appl`oximate the I.eal number.s rather
than just the integers.

Vat.iables can be indexed so that the actual variable used
depends upon the value of the index. An example is v(n3).
The value contained in n3 determines which variable is
referenced. For example, if the value of n3 is 47, the
reference v(n3) is equivalent to v47 but changes if the
value of n3 changes. An expression, rather than a simple
constant or variable name, can be used as the index.

NC AND VC VARIABLES

The PLATO system also provides each lesson with a bank
of 1500 variables for storing information. The system
does not store these 1500 variables with the student
variables, because these 1500 variables are temporary

:::i:3?::gi:(cr:::rra:oms:Ft::X.8,Theyal.eusedWithCommon

The pl.imitive names for these 1500 val.iables are ncxx and
vcxx, where xx repl.esents the variable number. The n and
v indicate an integer var.iable or a floating-point val.iable,
respectively, just as wit.h the student val.iables. For
example, variables ncl and vcl al.e the same variable.
The way the author wants to use that variable determines
if the author should define it as an integer variable (ncl)
or as a floating-point variable (vcl).

ASSICNINC NAMES,TO VARIABLES

While it is possible to wl.ite an entire lesson using only the
primitive variable names, it is neither necessary nor
desirable to do so. If there is more than one author of a
single lesson or if the author is coming back to the lesson
after. an absence, it can be difficult to keep tl`ack of the
significance of the various variables used. Thus, it is
prefer.able to assign meaningful names to the val.iables.
This is done with the ndefine- instruction.

The edefine- instruction is a continued instl`uction. Each
time the command ndefine- is encountel.ed, a new set of
val.iable names is defined. As a result, the command
should only occur in the fir.st line of the instruction.

The name of the variable set (define set) is also on the
first line of the instruction. When it is used, it appears as
the first argument in the tag of the fil.st line. The
definition of variable names may begin on the second line
or after the set name on this first line.

define setl,try=nl
right=n5
radius=v3,angle=v4
person=ncl,topscor=vc2

6-2

The effect of the ndefine- inst.ruction dul.ing lesson ex-
ecution is to replace each occurrence of the item on the
left of the equal sign with the quantity on the right.
While this effect is not important in defining variable
names, it is important when the ndefine- instruction is
used to define functions, arrays, and segments (covered in
sections 7 and 8).

As indicated in the preceding example, mol.e than one
definition can be made in a single define set. If more than
one definition is to be made on a single line, the
definitions al`e separated by commas. Definitions on
separate lines do not require delimiters between defini-
tions. It is not pel.mitted to extend a single name defini-
tion over more than one line; hence,

define set
upper=vl
lower=v7,medium=v8
mean=vl49

is a permissible instl.uction, but

define set
upper=
vl
lower=v7,medium=v8,mean=vl49

is not permissible.

The val.iable names assigned can be no longel. than seven
characters. The first character. cannot be a number., and
the name cannot contain mathematical operators, FONT
cliaracters, or backspaces.

Because a define set is assigned a name itself , it is pos-
sible to specify that a define set includes, besides those
definitions explicitly given, the definitions of one or more
pl.evious sets. This is done by giving the names of the sets
whose definitions al.e to be included as arguments in the
tag of the first line of the instruction, following the name
of the new define set. For example, if the name one has
all.eady been assigned to a define set, the instruction

define two,one
zot=n89

includes all of the definition in set one, as well as the new
definition of the variable name zot as set two.

The student define set is a special set of val`iable names. .
This set defines names that can be used by the student.
For example, the instruction

define student
x=vl,y=vl24

allows the student to type expressions such as 3x+y/4 and
have the I`esponse understandable by the system. The
student set is also necessal.y when using instl`uctions such
as -ansu-, -wrongu-, -storeu-, -ansv-, -wrongv-, -stol`e-,
and -compute- to define units useab]e by the student.

The student define set can redefine system functions. For
example, cos(x)=cos(xC) allows the student to use degrees
instead of radians.

97405100 a

A lesson can have any numbel. of define sets. with up to
five define sets active at any one time. When a sixth
define set is created, all previous sets (except the define
set named student, if used) are discarded. The purge
option of the -define- instl.uction allows the author to
selectively discal.d define sets. This option is exemplified
by the instruction

define purge,one

which I.endel.s the define set named one unavailable. If
the second argument is omitted, as in

clef ine purge

all define sets except the set named student are dis-
carded. Only one set can be purged by name in a ndefine-

97405100 C

instruction. A ndefineL instruction using t.he purge option
cannot be a continued instruction.

It is possible to make an available set active by simply
giving the name as the tag of a one line ndefine- instl.uc-
tion. As an example, if the define set grelp was
previously defined and made inactive (although available),
but it is now desil.ed to use the set grelp, the instruction
performing this operation is:

define grelp

Definition of a variable name must be done earlier in the
physical (not logical) lesson than any use of that name,
because rdefiner is not an executable instruction. There-
fore, a good place to put define sets is at the beginning of
the lesson.

6-3

EXPRESSIONS AND FUNCTIONS 7

All information on the PLATO system is stol.ed in the
fol`m of numbers. However, there al.e two methods of
interpreting the numbers, numeric and nonnumel.ic. The
numeric method assuines the value of the number is of
primary impol.tance. The nonnumeric method assumes the
number is a coded form of alphabetic infol.nation, such as
a name. The differ.ence is in the method of inter-
pretation. Thus, a vat.iable with the integer value 3 can
be interpreted either as the numbel. 3 or as the coded
representation of the character c. (Character codes al.e
given in appendix A.) An student input is in the for.in of
charactel's. Insti.uctions are available to convert student
input to numeric form (refer to section 11).

Since all information is stol.ed in the form of numbers, all
information is manipulatable by means of expressions and
functions. However, caution should be exercised in the
use of expl'essious and functions on information that is to
be used as nonnumeric information. Methods of dealing
with specifically nonnumeric information al.e given in
section 8.

CONSTANTS

Thel.e are two ways of expl.essing a constant in the author
language. The number can be given explicitly, such as
143.52, or it can be a defined constant.

A defined .constant is specified in the ndefiner instl.uction
by assigning a specific value to a name. For example,

define byte=8
chap=6

defines two constants equal to 8 and 6. These can usually
be used within an author language lesson interchangeably
with explicit constants.

EXPRESSIONS

An expl'ession can usually be used in the author language
wherever a numeric value is required. Expl'essions are
composed of variables, functions, and constants separated
by opel'ators. The simplest fol'm of an expression is a
single constant, such as 3 or 237.36, or a single variable,
such as x. Real and integer variables can be intermixed in
an expression, with the result being rounded if an integer
value is requil'ed. An example of rounding with integer
vapiables is

v(2.5+6.8)

which is equivalent to

v(9)

Parentheses are used as in standard algebraic notation.
The extensive use of parentheses is encouraged, even
where not strictly necessary, for gI.eater readibility and to
ensure the expl.ession is evaluated in the mannel. desired.

97405100 8

There are four types of operatol.s in the PLATO author
language: al.ithmetic, logical, bit, and array. All four
yield numel.ic values, but the usage is different. An
ai.ithmetic operator I.etul.ns a numel.ic value in the nor.mal
arithmetic mannel'. Logical opel`atol`s return a value of -1
(tl.ue) or 0 (false). Bit opel.ators affect the bit setting
within a specified computer word. Array opel.atolls
manipulate arrays. Opel'ator precedence is given in table
7-1. The four types of operators can be mixed in a single
expression, but because of the differing pl.ecedences,
gI.eat care should be exel.cised, and parentheses should be
used freely.

TABLE 7-1. OPERATOR PRECEDENCE

PI.ecedence t Operator. Operation

Binary

9 (superscript) Exponentiation
8 *,X Multiplication
7 +,/ Division
6 +,- Addition, subtraction
54 Sclss,Sal.SS, Refer to Bit

SmaskS,SdiffS Operations
Sunions Refer to Bit

Opel.ations
3 > ,< ,> ,< ,-- .+ Logical

relationats
2 Sonds Boolean AND
1 Sors Boolean OR
0 € Replacement

Unal'y

2 -,+ Arithmetic
sign

toperations with a higher precedence are perfol.ned
first.

For example, if y has a value of 22, the expl'ession

100 -25(y<25)

is equivalent to 125 [y is less than 25, so the logical op-
eration has a value of -1 (true)].

Howevel., the expression

100-25y<25

because of the lower precedence of the logical operator.s
is equivalent to

(100-25y)<25

which, in this example, gives a value of -1 (tl'ue), since
100-25y is -450 (quite a bit less than 25).

7-1

ARITHMETIC OPERATIONS

Arithmetic operations al`e performed as in standal`d al-
gebl.a, with some differences in operator precedence from
many computer languages.

In the author language, multiplication has a higher prec-
edence than division, while many computel` languages
place the two operations on the same precedence level.
The reason for giving multiplication a higher precedence
is that expel.ience has shown that most students evaluate
an expression in that manner..

Because of the capabilities of the PLATO terminal, thei`e
is no operator in the author language to indicate expo-

s:rnEtpftati::;u#Stuesaed'oih:h:X%°un;EtRfs(fgrecsfuf;:€s::istr£:i:
Pressing SUPER allows the next character, which may be
a number, to be written as a superscript. Pressing the
SHIFT SUPER keys locks the terminal into the superscl.ipt
mode, so expressions of mol.e than one character can be
written as a single superscript without the I`epeated use of
the SUPER key. The mode is switched back from SHIFT
SUPER by pressing the SHIFT SUB keys.

There are two ways of indicating multiplication. There is
a special multiplication key in the cluster to the left of
the alphabetic portion of the keyboard that produces a
character resembling an x, called the multiplicative X .
The alphabetic x cannot be used to indicate multi-
plication. The second method is the use of an astel.isk (*).
This functions like the multiplication key and is included
because this character is used to indicate multiplication in
many other computer languages. The use of the multiplic-
ative X is preferred to the use of the asterisk.

Because of the opel'ation of tlie author language condenser
and executel., an author must indicate multiplication
expucitly. . Thus, while an expression such as rcos 0 is
permitted in algebra, the author must use r*cos(G) in the
author language. That is, multiplication must be
expncitly indicated, and the arguments of functions must
be enclosed in parentheses. These restrictions do not
apply to the user executing the lesson.

When an explicit constant is to be multiplied by a named
variable, concatenation to indicate multiplication is avail-
able to the author. Fol. example, the author can use
23theta rather than 23*theta. However, theta23 cannot
be used since the condenser would not know whether the
23 is a part of the name or a constant.

Similar to multipfication, there are two opel.ators that
indicate division, + and /. The + symbol is produced, like
the X symbol, by a special key to the left of the
alphabetic keyboard. The use of the / symbol is permitted
because of its use in other computer languages and
because it is commonly used to indicate division in
algebra.

Addition and subtraction have the same pl.ecedence and
al.e executed from left to right. The keys used to indicate
addition and subtraction are the + key and the -key, both
of which are near the multiplicative X and + keys.

LOGICAL OPERATloNS

There are two types of logical operators, I.elational and
Boolean. Relational operators have a higher pl.ecedence.

7-2

The I.elational opel.Stol.s are used to compal.e the numeric
magnitude of expressions. They return a value of true (-1)
or false (0), depending on whether the I.elation is true or
false. The I.elational opel.atol.s al.e the standard mathe-
matical ones: > (greater than), < (less than), 2 (greater
than or equal to), i (less than or equal to), = (equal to),
and £ (not equal to).

:E;reBs%%::.n°Tpheerraet°arrseptehrr::tBt::]eca°nm:;neartaft°onrs?f]S°ag#:
Sors, and not. Note that the Boolean not (the unary
negation) is not enclosed in dollar signs (S). The not is
actually a system-defined function that changes the value
of a logical expression. As a I.esult, it is necessary to
enclose the expression to be affected in parentheses.

The other two Boolean operal.ors are binal.y and combine
two logical subexpl.essions into a single logical expression.
The Sands operator gives the expressions a value of true
(-1) if and only if both subexpl.essions al.e true. The Sors
operator gives a value of true if either or both of the
subexpressions are true (inclusive OR).

Although many computer languages give logical expi`es-
sions a value of 1 if true or 0 if false, the author language
assigns -1 and 0, respectively. This is to allow the use of
logical expressions in the conditional form of some
instructions (refer to section 12).

An expl'ession ol.her tlian a logical expl.ession (such as
3x+5 or vname Smask$ 73) always has a logical value of
true (-1) when used as part of a logical expression.

BIT OPERATIONS

Bit opel.ations manipulate the information contained in a
single wol.d. On the PLATO system, one computer. word
consists of 60 binal.y digits or bits. For convenience, octal
numbers can be used. One octal digit is equal to three
binary digits (refer to appendix C for comparisons of
binary, octal, and decimal numbers) and has the added
advantage of being quite close to decimal notation. An
octal number is identified in the author language by a
lower.case o pl.eceding the number. For. example, o753 is
an octal number equivalent to 111 101 011 in binary and
491 in decimal.

All bit operatol's al.e enclosed in dollar signs (S) to dis-
tinguish them from variables. Except for the Sunion$
operatol', all bit operators have the same precedence.
Therefol'e, the result of an expression depends not only on
the opel'ators and opel.ands but on their order of oc-
currence. For example,

o77Smaskso70Sal.s$3

gives a value of o7. while

o77Sars$3Smaskso70

gives a value of zero. As a result, parentheses are usually
necessary when using bit operations.

The author language provides two shif t operators, Sclss
and Sal'sS, which are acl`onyms for Oil.cular left shift and
al'ithmetic right shift, respectively.

The Oil.cular left shift causes the contents of the word to
the left of the Sclss operator to be shifted to the left the

97405100 C

number of bit positions indicated by the expression to the
right of the operator. The bits that are shifted from the
wol.d on the left are bl'ought into the wol.d on the I.ight. A
circular left shift of 60 would leave all bits in pl.ecisely
the same position they ol.iginally occupied (hence, the
term circular in the name).

The al.ithmetic right shift opel.ates in the same general
manner as the circular left shift, with three exceptions.
The shift is to the I'ight I'ather than to the left. Bits that
are shifted from the word on the I`ight are lost. The sign
is extended from the left, so the numbel. remains positive
or negative, whichever it was originally.

The remaining bit operatol.s (Sunions, Smasks, and Sdiffs)
al.e used to compare the bit configurations of two com-
puter words. The Sunions opel.atop sets the bits of the
I.esult to 1 wherevel. either wol`d being compal.ed has a 1.
The Smasks operator sets a bit in the result to 1 only if
both words have the bit in the same position set to 1. The
Sdiff S operator sets a bit in the I.esult to 1 only if the bits
in that position in the two comparison words have
dif f erent values.

For example, if the lower four bits of val.iable test are
1010 and the lower four bits of variable check are 1100,
the result of

testsunionscheck

has 1110 as its lower four bits,

testsmaskscheck

has 1000 as its lower foul` bits, and

testsdiffscheck

has 0110 as. its lower foul' bits.

The Sunions opel.atop has a lower pl`ecedence than the
other bit operatol`s. The other. operator.s all have the
same precedence and al.e executed from left to right if
the order of execution is not modified by parentheses.

The system function, bitcnt (x), counts the number of bits
set to 1 in the variable named in the al`gument.

The system functions, lmask(x) and rmask(x), generate
left- or I.ight-justified masks, I.espectively, of length x
bits.

ARRAY OPERATIONS

AI.I.ay opel.ations modify system-defined arrays (refer to
section 8). Because the system tl`eats system-defined
al.rays as ol`dinal.y elements, all the arithmetic and logical
operations al`e allowed (except exponentiation). When
referencing an array with indexes, the indicated operation
affects only the element referenced. When referencing an
arl.ay without indexes, the indicated operation affects all
the elements of the array. Using array-scalar opel.ations,
such as

A€4
8(3,4)€ n5
C € DX10
E € a2 x E

97405100 C

:SieLigean]{Bt3i4;h:fea[rer:;n:S;s°fseatrrt%ytfea;:I::tstt:r:°du:itnh5:
all the elements of array C are set to values 10 times the

:;raprersapy°nEd:nr% len):rme:::i 3; :£:ay D. and all the elements

Element-to-element array operations do not I`equire in-
dexes. For example:

A < B/C
D < sin (E)

Here, each element in array A is set to the I.esult of the
division of the corresponding elements in arl.ays 8 and C.
Each element in arl.ay D is set to the sine of the
col.I.esponding element in al.I`ay E. These opel.ations
require that the arrays have the same dimensions.

Two operators al'e used only with arl.ays. One is o , the I
vector dot pl`oduct or matrix multiplication, produced by
pressing MICRO X . The other is X , the vector cl`oss I
pl.oduct, produced by pl.essing MICRO SHIFT X .

val' € vecl o vec2
C € AOB
vec3€ vecl X vec2

In this example, var contains the vector dot product of the
vectors vecl and vec2. If var is not a scalar., all its
elements are set to vecl a vec2. Arl.ay C contains the
result of the matrix multiplication of arl.ays A and 8.
Vector vec3 contains the vectol` cl.oss product of the
vectors vecl and vec2.

The author must be cautious when chaining together more
than one al.I'ay operation, because the computer might
lose the temporal.y stol.age buffel's if too many opel.ations
are attempted in one instruction.

-CALC- INSTRUCTION

For assigning a value to a variable, the author language
pl.ovides the uealc- instruction. This can be a continued
instl.uctioh, as is the ndefine- instruction. The tag con-
sists of the assignment desired.

Assignment is specified by having a variable name (either
an assigned or a primitive mme) separated by an € from
the expl.ession giving the value to be assigned the
variable. For example:

calc inum € 3Xtheta+y + 2

The assignment key (<) is located to the left of the
alphabetic keyboard. A variable may appear on both the
left and I.ight sides of an assignment. In this case, the
cul.I.ent contents of the val`iable is used when evaluating
the expression. This value is then assigned to the
val'iable. For instance, if variable fiawol contains the
value 7, then

calc fiawol< fiawo|2

assigns fiawol a value of 49.

A single statement can contain more than one assignment,
asin

calc fout<v|€ jwc€362+x2

7-3

which assigns the value of the expression 362 + x2 to all
three variables: foul, vl, and jwc.

An erl.ol. in a ngalc- instl`uction gives an execution errol..

There are three instl.uctions that can be used for specific
calculation. The -addl- instruction adds one to the value
of the variable in the tag. Tlie -subl- instruction
subtracts one from the value of the named variable. The
-zel.on instruction can set an individual variable, or an
entil.e block of variables, to zero. The -zel`o- instruction,
when it is used to set a block of variables to zero, is much
faster I.ham using a ngalc- instruction. The -addl- and
-subl- instructions al.e slowel. than a ngalc- instruction.

The tag of the -zero- instl.uction can have either one ol`
two arguments. The fil.st (or only) argument specifies the
starting location of the block of vapiables to be set to
zero. If the tag has one argument, only this variable is
zeroed. If the tag has two arguments, the second
argument gives the number of variables to be set to zero.
As an example, the instruction

zero v23,17

sets 17 val.iables to zero, beginning with variable 23.

FUNCTIous

Functions are used to perform lengthy, complex, or I.e-
peated calculations. They allow the calcul8tional state-
ments to be made once and then to be referenced by a
name.

Several useful functions, called system functions, are built

:nutt°h:rh.e&:tt:raiapn]Eu%g:}na(:;,nwehef€hn&tv:sets:f;#eboyf:£:
trigonometric sine of x, whel'e x (in radians) can be an
expression. The system functions wliich begin with a
capital letter deal specifically with system-.defined arrays
(section 8). These arl.8y functions may be used with the
other system functions. (For a list of system functions,
I.efer to appendix 8.)

Often the function desired is not available as a system
function. Thus, the author language allows the author to
define his own functions. This is done in a ndefine-
instl`uction in a mannel' similar to defining a variable. The
method is pl'obably best explained by the example

define Oil.cle
diam(a)=2 7r x a

where a, acting as a dummy variable, has not been pre-
viously defined. When used with a variable, such as
radius, this function gives the diameter of tlie circle
whose radius is contained in the variable. A variable that

7-4

has been pl.eviously defined cannot appear on the left of
the equal sign in a function definition, although it can
appeal. on the right side, as in:

define sell

E:::(t)=t4+Sin(x)

A function can be used on the right side. The author
language allows this nesting of definitions to go down
seven levels (if the function is very simple). A function
can also be an assignment, as in

define set2
x=vl
cube(a)=a
root(a)=al/4
value=(x € root (cube(x)))

which pet.nits the instruction

calc value

whel.e the change in the value of x is implicit because of
the definition of the function value. Note that value
needs no arguments.

Any legal expression can be tlie definition of a function,
and as shown, an assignment is also possible. Since an
operator by itself is not a permissible expression, a def-
inition such as

define neg=not

is not legal, but

define meg(b) = not(b)

is legal.

A function can have up to six argtiments. As an example
of a function of three arguments, consider:

define rootl =vl
rcot2 = v2
solnl(a.b.C)=(±#i52i(aTJ+c)}/(2a»

so|n2(a.b.C)=(±={b¥i(:Fc))/(2a))

Using these functions, the instl.uction

calc solnl (3,5,1)
soln2 (3,5,1)

puts the two solutions of the equation 3x2+5x+1=O into
variables rootl and I.oot2. Of course, some means of
determining if the equation has real roots should be used;
otherwise, an error is generated and lesson execution is
stopped when the roots al.e not real.

97405100 C

OTHER CALCULATION FEATURES 8

All computation necessary in a PLATO author language
lesson can usually be done using the instruc.lions described
in sections 6 and 7. However, the lessons that result are
often extremely complex in structul.e and clumsy in
execution. To furthel` simplify the task of information
manipulation and to make lessons less complex and more
compl.ehensible, several more sophisticated data handling
capabilities are built into the author language.

SYSTEM-DEFINED ARRAYS

Ordered sets of data often can be usefully al.ranged into
arrays. The location of the data then bears a clear re-
lationship to the information which the data I.epresents.
Arrays may be either system-defined or author-defined.
Author-defined arrays al.e discussed later.. System-de-
fined apt.ays may be zero, one, or two dimensions. Sever.al
operations and system functions (refer to section 7 and
appendix 8) al.e available to manipulate system-defined
arrays.

The ndefine- instruction names an array. The indexes,
offsets, and base locations in the definition must be
litel'als or defined constants, because the arl.ay size must
be known at condense time. At this time, the system set.s
aside enough storage to contain the array. Then,
whenever the lesson I.eferences the arl.ay, the system does
a bounds check on the array. Refel.encing values outside
the specified index limits causes an execution el.ror. The
two types of system-defined arrays are full-word al.rays
and vertically segmented arrays.

FULL-WORD ARRAYS

Full-word arl.ays use one entire variable for each element
in the arl.ay. Val'iables may be n, v, nc, or vc type vari-
ables. A full-wol.d array can be one, two, or zero dimen-
sions. An example of a onendimensional array is:

define array,list(5)=v20

This defines a vector of five elements, starting with list(1)
in v20. The last element, list(5), is in v24. The elements
of list are floating-point numbers.

At times, the author may desire to begin the index with a
value other than one. Therefore, the author language
allows index offsetting. For example,

define array,year(1860;1880)=vc50

defines year (1860) as the fil.st element in this 21-element
vector. Both the beginning and ending index values are
given, separated by a semicolon.

Twondimensional arrays al.e defined similarly to one-
dimensional al.I.ays; however, the size of both dimensions
must be specified. Fol. example,

97405100 C

define aarr::y;£((#;)i,n5])=ncl0

Array A is a 16-element square matrix. The element.s of a
matrix are stol.ed by rows; thel.efol.e, A(1,1) equals nl,
A(1,2) equals n2, A(1,3) equals n3, A(1,4) equals n4, A(2,1)
equals n5, A(2,2) equals n6, and so on.

Array 8 is a 30-element arl'ay with five rows and six
columns. The initial index is offset to 8(0,0). The maxi-
mum value an offset may be is 213-1.

An array can also be defined to be of zero dimension, as
in:

define arl.ay,scale=vcl0

An art.ay of zero dimension is called a scalar and consists
of a single element. It is essentially the same as defining
a constant; however, the arl.ay opel`ations discussed in
section 7 sometimes make the use of scalars desirable.

The ndefine- instruction allows the defining of individual
elements of an array after the arl`ay as a whole is defined.
For example:

define array,group(15)=v25
beg=group(1)
mid=group(8)
end=group(15)

VERTICALLY SEGMENTED ARRAYS

Vel.tically segmented arrays use one vertical segment for
each element in the arl.ay. That is, an element uses only
the specified bits in the computer wol.d, rather than the
entil.e word, with consecutive elements in consecutive
computer words. Vertically segmented al.rays can de-
crease the number of variables necessal.y, because the
same variables can contain more than one vel.tically
segmented array. As with full-word arrays, the variables
may be n, v, nc, ol. vc type variables; howevel`, vertically
segmented arrays al.e restricted to one and two dimen-
sions,

An example of a one-dimensional vertical al.ray is:

define arraysegv,mme(15)=nl2,5,25

Arl.ay name has 15 elements stored in integer val.iables
nl2 through n26, occupying bits 5 through 29. Vertical
al.rays may also specify initial index offset, as in:

define arraysegv,grade(101;115)=nl2,31,11,signed

AI.I.ay grade also has 15 elements stol.ed in integer. val.i-
ables nl2 through n26; however, its elements occupy bits
31 thl.ough 41, including one bit fol. the sign.

8-1

Twondimensional vertical arrays, with or without initial
index offset, are defined similarly to onendimensional
arrays, except that both dimensions must be specified.

The system stores elements of segmented arl'ays as in-
tegers. To stol`e a floating-point value, the author must
first scale the value up or down and then store it as an
integer..

AUTHOR-DEFINED ARRAYS

Sometimes an author wants more than two dimensions in
an art.ay. In this case, the author can define al.rays of
more than two dimensions; however, these author-defined
arl'ays cannot be used with the system arl`ay functions and
operations. There are thl.ee types of author-defined
arrays: full-word art.ays, horizontally segmented al.rays,
and vertically segmented arrays.

FULL-WORD ARRAYS

Art.ays can be defined by indexing t.he primitive variable
name (v, n, vc, and nc). This is done by putting the num-
ber or expl.ession in parentheses, like v(num+10). The
value of the indexing expression is I.ounded, if necessal.y.

If the array starts in variable 37, the instl.uction

define mat(n)=v(36+n)

defines the array, with the assumption that n is not pre-
viously defined.

If the student i§ allowed to specify an element of an
al.ray, the array must be defined by name with subscripts.
The definition must be in the student set of variables.

Because this definition of an arl'ay does not specify a limit
on the size of the array, a certain amount of care must be
taken to ensure that tlie index val.iable is within the
desil.ed bounds. For instance, if the al.ray mat has been
defined as given previously and is to contain 20 elements,
a value of n that is greater than 20 does not cause an
execution el.rol. but simply accesses a val`iable beyond the

i:fuenrde§n:: tthoe amp::(yn.) ::Te!::LIZ;s!fv:r?:gi:h:2V6:]ufh;:£ ' i:
previous to the clef ined start of the array.

An example of a twondimensional 3 by 15 array with index
variables i and j is:

define quad(q,in) = v(19+15(q-1)+in)

The actual index variables cannot be used in the defi-
nition. As in the definition of a function, dummy vat.i-
ables must be used.

The array stal.ts in variable 20 (assuming that both q and
in are never less than one). For example, the fifteenth
element of the second row is then accessed by quad (2,
15). The expression (q-1) in the definition is used to start
the arl`ay at variable 20, rather than 35, as would happen
if simply q were used.

8-2

Thel.e is an alte_rnative way to define the array so that no
arguments are visible. The previous example, defined in
this manner, would become

define sell
i=nl,j=n2
quad=v(19+15(i-1)+j)

and once values for i and j liave been set, the use of the
word quad automatically gives the value of the proper
val.iable. This is especially useful when a long I.outine
that uses an al.I.ay name quite often is used. The form of
al.I.ay with no explicit arguments simplifies the writing of
the routine. Just as in function definition, pl.eviously
clef ined variables can appear on the right side of the array
definition. In fact, if the al.I.ay is to be referenced
without specific arguments, as shown, it is necessal.y that
the indexes given in the definition be previously defined.

The -set- instruction is used to assign values to con-
secutive variables or to previously defined arrays. It
assigns values or mathematical expressions to full words,
and therefol.e, may not be used to assign segments. If
arl.ay boundaries or student or central memol.y (nc or vc)
variable boundaries al'e exceeded using a -set- assign-
ment, condense or execution errors occur.

The fonowing example -set-s n5 equal to 4, n6 equal to
sin(x), and n7 equal to 14.7.

set n5 <4,sin(x),14.7

Arrays may be partially or fully assigned.

set 8< 2,4

set 8€ 4,8,19
1,0,1
2,3,5

If 8 is defined as a 3X3 art.ay, 8(1,1) equals 2, and 8(1,2)
equals 4. The second -set-I.eassigns the al`I.ay to 8(1,1)
equals 4, 8(1,2) equals 8, 8(1,3) equals 19, 8(2,1) equals 1,
8(2,2) equals 0, and so on.

SEGMENTS

A segment is a special form of an al.I.ay that uses less than
a full computer word for storing the values. For example,
if it is known that all the values to be stol.ed are less than
200, that they are all positive integel`s, and there are 200
sucli scot.es to be saved, the student variables cannot stol.e
all the values. Common variables can be used instead, but
a large amount of space is wasted since only part of each
word is used.

The instl.uction

define segment,list=vl,8

sets up an arl.ay composed of eight bit units, ol. bytes,
starting in variable 1, with the array having the name list.
As in an ol.dinary al.ray definition, the quantities on the
right of the equal sign can be pi.eviously defined quanti-
ties. For example, the instl.uction

97405100 C

define stol.t=vl
byte=8
segment,list=start,byte

has precisely the same effect as the previous definition of
a segment list. An indexed variable cannot be used in the
definition of tlie starting variable, and the byte size must
be specified by a constant.

A segment is I.efel.enced with a single index [for example,
list.(3)].

If the bytes of a segment are not necessarily positive, a
sign option is available. This is done by wl.iting signed or s
as a final argument after the rest of t.he segment
definition. However., if signed bytes are to be used, an
extra bit must be included. This bit is used to indicate the
sign of the byte. Continuing the example of the segment
named list, this means tliat the definition should be:

define segment,list=vl,9,s

The size of the bytes in a segment can be from 1 to 59
bits. However, a byte lal.gen than 30 bits occupies a full
word. The bytes of a segment do not cross computer word
boundal'ies. Thus, if the size of a byte is defined to be 16
bits, byte 4 of t.he segment s(arts at the left of the second
variable used.

A segment cannot be stored into by instructions such as
-store- and ndo-. In general, a segment reference is
illegal anywhere a nonstorable expression such as nl+1 is
illegal, except when assigning a value in a -ale- in-
stl.uction. Thus, the instruction.

pack list(1)

is not legal, vyhile the instruction

at list(1)

is legal.

VERTICAL SEGMENTS

A vertical segment defines a segment where consecutive
bytes are in consecutive woz.ds.

For example, the instruction

define segment,vertical,list=nl,8,10

i:tf:::e§t]E:rto(V#h:£c:cSu];i:h:eg:::bt;t:itri:Su:gfh:1;hg:n:#£S,t!a;n)£££C{§;a;

Vertical segments execute faster than regulal. segments.

NONNUMERIC INFORMATION

One of the major uses for manipulation of bytes is working
with nonnumeric information. This is usually information
given by the student as a response. Some nonnumeric
infol`mation, howevel., is obtainable from the system.
Additionally, the author can deal with nonnumel.ic infol.-
mation of his own specification, if desired.

97405100 C

Nonnumeric information is also called alphanumeric infol.-
motion, since the data objects of concel.n are not the
numbel`s themselves but the alphabetic, numeric, and
special chal.actel.s that the numbers I.epresent.

In the PLATO system, all alphanumeric information is
represented by codes of six bits per character. Thus, the
chat.acter a has code 01, t.he charactel` g has code 07, and
so on. There is a system-I.eserved wol.d, called key, that
contains a code for the last I(ey pressed. However., these
key codes al.e not t.he same as the actual internal
representation of the I(eys (called the character codes). A
complete list of the key codes, charactel` codes, and the
chal.acters they represent is given in appendix A.

A capital letter (for example, A) requires two character
codes. The first code is fol. I.he shift, and the second code
is the actual character code.

Some instructions, such as the -mov- instruction, are
designed for manipulating alphanumel.ic information. In
addition, the bit operators described in section 7 can be
used for manipulating individual chal.acter codes, or
groups of chal.actel. codes, as well as other bit opel.ations.

ENTERING ALPHANUMERIC INFORMATION

Thel.e al.e two methods for the author. to specify alpha-
numeric infol.motion in a lesson. The first method is
entering values into a variable which correspond to the
characters desil.ed. This has the disadvantage of being
slow, prone to error, and difficult to inter.pret when
rereading the lesson. An alternate method is the use of
literals. An example of this use is the instl.uction:

calc n47 € "funl(''

The character string funk is the litel'al. This instruction
puts the character codes for the literal in variable 47,
right-justified and zeronfilled; that is, the k is at the right
end of the computer word, and the left I)art of the word is
set to zero. Since most instructions work with left-
justified strings, a single quote (apostrophe) stores a
literal left-justified. The previous example would. in this
case, become:

calc n47 € 'funk'

Literals must be no longer than 10 character codes.
Capital or access char.acters usually require two or three
charact.er codes. The extra codes al.e for the shif t and
access characters. These extl.a codes must be counted as
part of the literal. Thus, the literal alpha is 5 character
codes long, while the litel.al ALPHA is 10 charactel. codes
long.

Each variable, that is, each computer wol.d, can contain
up to 10 cllaracter codes. It is good practice when stol.ing
alphanumel.ic infol.mation to have the val.iable in which
the infol`mation is to be stored an integer I`ather than a
floating-point variable. In the case of stol.ing a literal,
this is necessary for proper execution.

The -pack- instruction is used to stol`e a string of alpha-
numeric characters (usually I'eferred to as simply a
string).

8-31

The instruction has thl.ee arguments. The first argument
is the starting location where the string is to be stored.
The second argument receives the character count of the
string being stored, and the third argument is the string to
be stored. The stl'ing is stored left-justified. These
strings can cross word boundaries, unlike literals. The
second al`gument can be omitted by using successive
commas.

Partial wol'ds (that is, words that are not completely filled
by the character string) have the unspecified portion of
the word set to zel.o.

The packc- instruction is the conditional form of the
i>ack- instruction. Depending on the value of the expres-
sion in the first argument, different strings may be left-
justified -packued into the variable specified. The
packc- may have up to 100 arguments and may use the
vat.ious fol`ms of embedded -show-. The separators
allowed are , ; I and endrof-line. The sepal.atop which
immediately fonows the length variable is the only one
allowed to separate the strings. If the length vat.iable is
not used, successive separator.s are used, as in:

packc n2-2;n4;; <a,count> ;numbel';; <s,n50>

The -itoa- instruction is used to convel.t integer values to
the character string that the integer represents. The
instruction can have either two or thl.ee arguments. In
the two-argument form, the value in the first argument
variable is convel'ted to a stl.ing and placed in the variable
name in the second argument. In the three-argument
case, the fil'st two arguments function in the same
manner, and the third argument I.eceives the numeric
chat.acter count of the stl.ing. In both cases, all al`gu-
ments must be variable names. Only integer variables
should be used. The converted string is left-justified, with
any excess set to zero.

As an example, the instructions

calc n27 < 135
itoa n27 ,n35

would put the character code for the stl'ing 135 in variable
35. Similarly, the iustl.uction§

calc n27< 135
itoa n27 ,n35 ,n2

would place the same values in val.iables 27 and 35 and
would put the (numeric) value 3 in variable 2.

The cotoa~ and -htoa- instl.uctions are similar to the
-itoa- instl.uction except for the third argument. The
-otoa- instruction convel.ts the octal representation of a
number to the alphanumel.ic repl.esentation of the number
by converting each 3-bit octal code to a 6-bit alpha-
numeric code. The value in the first argument val.iable is
converted to a string and left-justified in the first word of
a 1- or 2-wol`d buffer where the second argument variable
names the first word. The optional third argument is a
variable containing the number of octal digits to be
converted (counting from the right). If this value is < 10,
the second word in the buffer does not change. The
default for the third argument is 20.

The cotoa- instl.uction is useful when the -showo- instruc-
tion cannot be used; for example, when printing blocks of
alphanum erie char.acters.

8-4

The -htoa- instruction convel'ts the hexadecimal repl.e-
sentation of a number to the alphanumeric representation
of the number, by converting each 4-bit hexadecimal code
to a 6-bit alphanumel.ic code. The -htoa- instruction
works exactly like the cotoa- instruction with one
exception; the default for the thil`d al.gument of the
-htoa-instl'uction is 15.

LOCATING SPECIFIC INFORMATION

Five instl.uctions that check for. the occurrence of an
object al`e -find-, -findall-, -search-, -findsl, and
-findsa-. The first two instructions look for an object
which can be any sequence of bits of al.bitral.y length in a
variable. The -search- instruction looks for an object
which is a char.acter string. These instructions can use
sorted or unsorted lists. The -finds- and -findsa-
instructions look fol. numeric or alphabetic objects in
sol.ted lists.

The -find- instl.uction has four to six arguments. The
fil.sl four arguments are the same in all cases.

The first argument specifies the variable that contains the
object for which the other computer words are seal.ched.
The second argument specifies the variable at which the
search is to stol.t. The system searches through the

:::g::::Yf:i:b.Ire:i¥ewci::ehdtE:t.hbeietchtirfs%guTEe,::iatT3:
to the starting variable) is placed in the val.iable specified
by the foul.th argument. If the object is not found, the
value of the val.iable specified in the fourth argument is
-1. The optional fifth argument specifies that evel`y nth
val`iable is to be compal.ed with the object; the argument
is assumed to be 1 if not present. The fifth al.gument
must be present if the optional sixth argument is used.

The object for which the search is made need not be the
entil`e variable specified by the fil'st argument. It can be
modified by the optional sixth argument, which is a mask.
It should be specified in octal for clarity. Thus, if the
object for which the other val.iables are searched is
contained in the lower seven bits of variable n5, the
instruction

find n5 ,start ,length,return,1,ol 7 7

is equivalent to the instl.uctions:

calc n5 € n5Smasksol77
find n5 , start , length , I.eturn

For a specific example, consider the instruction

find n5,n30,10,nl7,2,ol77

which attempts to find the object (bit pattern) in the
lower seven bits of val.iable n5 in ever.y second variable of
the 10 variables starting with val`iable 30 (that is,
variables n30 to n39). If the object is found in val.iable 30,
the value of val.iable 17 is 4. The retul`n value is
independent of the value of the optional increment argu-
ment. If the object is not found at all, val.iable 17 is
assigned the value -1.

The search can be made backwards thl.ough t.he val.iables
by specifying a negative lengl.h. The seal.ch then stal.ts at
the high end of the variables to be searched and proceeds

97405100 C

back down the list. However., the variable number
retul.ned if a match is found is then the same as in the
forward search. Hence, if in the previous example the
length was -10, the result.s would be precisely the same,
pl.ovided that only one occuITence of the object for which
the search is being made is contained in the variables
searched. If there is more than one occur.I.ence of the
requisite pattern, a forward -find- finds the fir.st in-
stance, and a backward -find- finds the last instance.

The -findall- instruction is similar to the -find-instruc-
tion in that it searches a list of variables to find a speci-
fied object. The -findall- instruction petupns a count of
the number of matches, and it then lists the location of
the matches. The increment between variables seat.ched
can be specified to be othel. than one.

The tag for the -findall- irrstruction consists of five
required and two optioml arguments.

4_I_gyTnent Definition

1 objecHo be found

2 starting variable of ust to search

3 length of list

4 §#rmt:#t)retun variable (cannot be a

5 #emobfe:o:fndfig:awt!£¥nsv(#obrLecsouf:: ostn:;7

6 Optional variable increment specifies
only every nth wol.d for comparison
with object (assumed to be 1 if not
given)

Optional mast(of variable containing
object (full-wol.d sear.ch if not given)

For example, instl.uction

findall n3,n50,n2,return.0

counts the number of times object is matched.

Variable Return

n50 and n53 2

n53 only 1

no match 0

In contrast, the instruction

find n3,n50,n2,retul.n

places in I'etum the relative location of the fil.st match of
the Object.

The locations of matches are specified as the offset of
location from the starting val`iable. Therefore, if
object matches the first variable, the location va
retul.ned is 0. If thel.e is no match, the location va
returned is -1.

97405100 C

:;etci;ieT?fkinanr8ruTaeLn:asise).used. the incl.ement must be

If either the increment or length is 0, no search is per-
fol`med, a count of 0 is returned, and the fil.st entl.y of the
following list (if any) is set to -1. If the increment
specified exceeds the length, an execution erl.or occur.s.
The search can be made backwards from tlie last variable
in the list by specifying the increment as negative.

The -findall- instruction does not work with segmented
variables.

When the object to be found is a character string, the
rsearch- instruction is more efficient than the -find-
instruction. The tsearch- instruction functions in the
same manner as the -find- instruction, but it does not
allow a mask argument. It does, however, require an
argument specifying the length of the object string. When
the count is specified, usearch-operates like a -findall-.

The object string is left-justified in the variable contain-
ing it. The length of the object string can be no longer
than 10 characters.

The searcli finds the object sLping regardless of the posi-
tion of the string within a variable or whether the string
crosses word boundaries.

As an example. the instruction

search nl,5,n37,15,I,n90

searches for an occurrence of the fil.st five characters in
variable nl in the set of val.iables n37 thl.ough n51,
starting at the first character position of n37. If an
occurl.ence is found starting in n40, the variable n90
contains the value 3. If no occurrence is found, n90
contains the value -1. In the examE)le above, however, if

:::u:::i(a#i):n:h!n:s°:arwcehr_e{:::]r°u::i:nb%otuh]::::::::
like a -findall- and give the locations of all occurrences
found.

If the foul.th al.gument is negative, the seal.ch is back-
wal.ds, fl.om the end of the list to the beginning of the list.
The absolute value of the foul.tli argument gives the
number of val.iables to search. Occur.rences are stol.ed in
the ol.der they are encount.ered, that is, in descending
Order.

The -finds- and -findsa- instl`uctions find objects in
sorted lists. The -finds- instruction works fol` numeri-
cally sol.ted lists, and the -findsa- instruction wol.ks for
alphabetically sorted lists. Because these instructions do
not check if the list is sol.ted, the return on an unsorted
list is unpredictable. The -finds~ and -findsa- instruc-
tions have either seven ol` eight arguments and are similar
to the -sort- and -sot.ta- instl.uctions.

The fil`st argument of their tags is a variable containing
the object to be found. The second al.gument is the
starting location of the list which is to be searched. This
list can be in student variables n(x), in central memory

:::iamb:enstn:(uxs)t,;neEf:I?.:oeTmb;n;osreinicEF.sns,:fraasg:..s:ph::
I'ator. The other arguments are separated by commas.

8-5

The thil.d al`gument specifies the number of entries in the
list. The fourth argument specifies the number of words
per entl.y. If this argument is 0, it causes an execution
el.ror. The fifth argument gives the first bit of the
numel`ic field for -finds- (bits 1 through 60) or tlie first
chal.actel. location of the character field fol. -findsa-.
The following argument gives the number of bits or char-
actel.s in the seal.ch field. The numeric field of the
-finds- instl.uction cannot cl'oss word boundal.ies, but the
chal.acter field of the -findsa- instruction can cl'oss wol.d
boundaries if it doesn't cross into anothel` entl.y of the list.

The seventh argument is a variable I'etul.ning the list entl.y
number of the object that was found. This is unlike the
-find- instruction which I.etul.ns the CM position of the
found object. If -finds- or -findsa- cannot find the
object, the seventh argument is the negative of the
position whel.e it would be if it had been found. This is
useful for later insel.lion.

The optional eighth argument, a mask, modifies the object
in the first argument. It can be used to clean up the bits
befol.e and otter the bits specified in the fifth and sixth
argument. A mask consisting of all zeros causes a
condense error. For. the -findsa- instl'uction, the mask
can be at most one wol.d, masking only the first word of
the object.

If variables n30 through n33 contain these values:

Variable Contents

the instruction

finds nl0,n30;4,1,1,60,nll

I.etums the following values in nll:

nl0 nil

1
5
9
25

SORTING ROUTINES

The -sort- and ngorta- instructions al`e used to sort
numbers and words, I.espectively, and are very similar.
The -sort- instl.uction arranges a list of numbers in
numerical order., from smaller to larger.. The -sorta-
instruction arranges a list in alphabetical order according
to the numeric codes for letters. The first al.gument of
their tags is the location of the list which is to be sorted.
This list can be in student variables n(x) or v(x), in central
memol.y variables nc(x) ol. vc(x), in ECS common, or in
ECS storage. The entries in the lists may be one or mol.e
wol`ds in length but may not be partial words. The
numeric field in the list may not cross wol.d boundaries.
For example. the sort may be on bits 24 thl'ough 34 but
not on bits 54 through 64. The character field in the list
may cross one word boundary.

®8-6

The first al.gument in the tag must be followed by a
semicolon (;) as a separator. The other al.guments are
separated by commas. The second argument is the length
of the list, which is the number of entl.ies in the list. The
number of wol.ds per entry is specified in the third
al.gument. This must be an integer. The foul.th argument
gives the first bit of the numeric field for -sort- or the
first character location of the character field for -sol.ta-.
The al.gument following this gives the number of bits or
characters in the sort field.

The optional sixth argument, a mask, modifies the entry
implied by the fourth and fifth arguments. A mask con-
sisting of all zel`os causes a condense el.roll. For the
-sorta- instruction, the mask can be at most one word,
masking only the fir.st wol.d of the object.

An option for paired list sol.ting allows an author to sort
linked lists. With this option an author may sort a list of
names and automat.ically sort the corresponding fist of
addresses. To do this, the starting location of the
associated list is given in the second line of the tag,
followed by the number of words per entry, sepal.ated by a
semicolon. The command field of this line must be blank.

If common ol` stol.age val.iables in ECS are being loaded by
ngomload- ol` -stoload-, a -sol.I- or ngorta~ in ECS is not
pel.missible. An execution el.ror I.esults if this is
attempted.

CHANCING LIST CONTENTS

The -insel`ts- and ndeletes- instructions change the con-
tents of lists. The -inserts- instruction insel.ts entl.ies
into lists, and the ndeletes- instruction deletes entries
from lists. The instl`uctions work with eithel. sorted ol`
unsorted lists and with either numel.ic or alphabetic lists.
Their arguments are similar to the arguments of the
-sort- and -finds- instructions.

The fil`st al.gument of the -insel`ts- instl`uction is a vari-
able containing the object to be inserted. This argument
must be a variable and must be the same word size as the
other entries in the list. The second al.gument is the

;tsar::£bni€s]°n::i,i::::nttt:i]jfte.moTrSjsv:psitabc]::::(#.fnufecns
common, or in ECS storage. This argument must be
followed by a semicolon (;) as a separator. The other
arguments are separated by commas.

The third argument specifies the number of entries in the
list before the insertion occurs. The foul`th al.gument
specifies the number of wol.ds per entry. If this argument
is 0, it causes an execution error. The fifth al.gument is
the position in the list where the object is to be inserted.
This argument cannot be less than 1 or greater than 1 +
the length of the list (the thil.d argument). This allows the
insel.lion of an entry at the beginning or at the end of the
list. The optional sixth argument specifies the number of
entries to insel.t.

If val`iables n30 through n33 contain these values:

Variable Contents

18
22
16
19

97405100 C

the instl.uction

inserts n5,n30;4,1,3,1

with n5=21, retut`ns this list:

Val.iable Contents

The arguments of the ndeletes- instruction are the same
as the arguments of the -inserts- instruction except for
the first argument. The ndeletes- instl.uction does not
specify the object to be deleted; it only specifies the list
position of the object. Therefore, the tag of the -deletes-
instl.uction starts with I.he starting location of the list.

The ndeletes- instl.uction deletes an entl.y, moves the list
together, and fills the last position with zeros. For
example, using the instl.uction

deletes n30;4.1,3,I

on the original list in the example above, I.etul.ns this list:

Variable Contents

18
22
19

0

The -inserts- and ndeletes- instructions have options for
associated list insel.lion and deletion, allowing an author
to insert ol` to delete entries from the same I.elative
position in two associated lists. To do this, the in-
structions add another line in their tags. The arguments
in the second line of the -inserts- instruction are the
vai.iable containing the object to be inserted, the starting
location of the associated list, and the number. of words
per entl.y. The al.guments in the second line of the
ndeletes- instruction al.e the starting location of the
associated list and the number of wol.ds per entl.y. The
instructions

insel`ts n5,n30;10,2,5,4
n7,nl00;3

deletes n30;14,2,5,4
nl00;3

insel`t 4 entries in each associated list and then delete
those same entries. The entries are inserted starting in
position 5. The entl.ies in the fil'st list are 2 wol.ds long,
and the entries in the second list are 3 words long.

MOVING CHARACTER STRINGS

The -move- instl`uction copies a string from one location
to anothel`. The first argument gives the variable in which
the string to be moved starts. The second argument gives
the location in that val'iable of the start of the stl.ing
(that is, the appropl.iate character location). The thil.d
and four.th arguments perform the analogous functions for

97405100 C

the destination in the same order. The final argument,
which is optional, gives the length of the character string
to be moved. If not other.wise specified, a single
character is moved.

The character locations (the second and fourth arguments)
can cl.oss word boundal.ies (that is, be larger than 10) but
miist be greater than 0. Hence, the instruction

move nl.13,nl23,2,6

moves the six character.s stol.ting in character location 3
of n2 (location 13 of nl) to the location beginning with
chal.actel. position 2 of variable 123.

Up to 1500 charactel.s can be moved in a single -move-
instruction.

The moved characters are mel.ged with the charactel.s
all`eady in the destination wol.d; that is, characters that
are not overlaid with the moved charact.ers are unaffected
by the instl.uction. Similarly, the characters at the origi-
nation point al'e left unchanged. Thus, the -move-
instruction can be used to create a copy of a charactel.
string without destroying or modifying the original string.

COMPILING CHARACTER STRINGS

The ngompute- instruction can be used to compile a
character string representing an expression. The tag has
four al.guments. The fir.st specifies the variable that
receives the value of the expression; the second specifies
the variable in which the expression begins; the thil.a
specifies the length of the string (in character codes); and
the fourth is a variable that receives a pointer to the
compiled code, so the expl.ession need not be recompiled
on I.eevaluations of the expression. If the value I`eturned
in the pointer. is zel.o, the compiled code was not saved.
The expression must then be I.ecompiled if it is I.eeval-
uated.

The I.esult of the -compute- instl.uction is similar to that
of the -store- instruction, but there are dif f erences (I.efer
to section 11). The -computer instruction is a regular
instl.uction, while the -store- instl.uction is a judging
instruction. As a judging instruction, the -store- instruc-
lion wol.ks only with the student's response, while the
-compute~ instruction can compile and evaluate any
character string in the variable bank (but not a student
I.esponse, unless the response has been stored previously
with a -storea- instruction). Finally, the ueompute-
instl.uction saves the compile code so I.eevaluation can be
done much mol.e rapidly, while the -stol.e- instruction
does not save the compile code past the timerslice, which
means that it is useable only one.e.

The student define set must be used so that the string
compiles dul.ing execution.

Because the compile code is saved, if the stl.ing is changed
and the ueompute- instl.uction is to be reexecuted, the
pointer (argument 4) must be set to zero to ensul.e proper
recompilation. If the expression is to be I.eevaluated at a
later time, the pointer should be saved so the expression
need not be recompiled.

8-7.

String compiling sets system-reset.ved words opcnt,
varcnt, and for.mok.

SPECIAL INFORMATION

The H€lock- instruction stores the time, to the neal'est
second, in the variable named in the tag. The author can
use the -showa- instl.uction to display the time, which is
in alphanumeric form hr.min.see, based on the 24-hour
clock. For example, tlie time stored at 2:15PM is
14.15.08. The system-reserved word clock contains the
current time in numeric form (in seconds since the PLATO
system was loaded that day) and is accurate to 0.001
second (1 millisecond).

The ndate- instruction places the current date, in alpha-
numel.ic for.in, in the vat.iable named in the.tag. Ten
characters al'e used, and the format is month/day/year
with a preceding and a trailing blank. For example, on
June 13, 1975, the instructions

date nl
showa nl

would display:

06/13/75

The nday-instruction gives the number of days since the
starting date and time, as set by the installation. As a
I'esult, the value depends on the installation in which the
system is running. The value is in numeric, not alpha-
numeric form, and gives both the number of whole days,
and as a fractional part, the pol.lion of a day (accul`ate to
the nearest 0.1 second) since the value was initialized by
the installation. Because of the fractional pal.t, the
variable named in the tag must be a floating-point vari-
able, not an integer variable.

The othel. special infol.mation instructions deal with
information about the student, coul.se, and lessons.

The -name- instruction puts the name under which the
student signed on in two consecutive vat.iables, with the
tag giving the name of the first of these variables. Two
val.iables are necessary since the student's sign-on name
can be up to 18 characters long. The fil`st 18 char.actel.s
of the two val.iables contain the name, left-justified and
zero-filled.

The ngl.oup-instruction per.forms the equivalent function
fol` the student's gI.oup. The group name, however, must
be no more than eight chal.acters in length, so only one
variable is used. As with the -name- instl.uction, the
name is left-justified in the variable, with the I.emainder
set to zero.

The -from-instruction gives the lesson or lesson and unit
fl.om which the student entel.ed the current lesson.

The unit name used is the name of the last main unit that
was executed in the lesson from which the student
entered. Thus, if an auxilial.y unit contained the
-jumpout-instruction fl`om which the student entered the
current lesson, that unit is not given as the unit from
which the student came. Rathel., the main unit that used
the auxilial.y unit is given (I.efer to section 10 for a full
discussion of unit types).

8-8

A student entel`ing the lesson immediately after signing on
to the system, rather than entering fl.om another lesson, is
-from- lesson "plato".

A student can be I.eturned to the lesson fl.om which he
entel`ed by use of instructions such as:

from nl0;lesl;les2
jumpout nl0;x;lesl;les2

If the student came fl.om lesl, he is returned to lesl, if he
came from les2, he is I.eturned to les2, and so on.

The 2-argument form of the -from-instruction places the
name of the lesson and the name of the unit from which
the student. enter.ed the curl.ent lesson into the variables
specified in the tag. The`system-resel'ved words zfroml
and zfl.omu also contain the lesson and unit names,
I.egal`dless if the lesson executes -from-. Executing
-inhibit from- in the lesson prior to a -jumpout- to
another lesson inliibits both the -fl.om-instl.uction and the
system-reserved wol.ds zfroml and zfromu from containing
information I.efel.encing that lesson.

I

The -lessin- instruction is used to check if the lesson
named in the tag (either in a variable or as a liter.al) is
credited to the logical site. After the instruction is
executed, the result is given in the system-reserved word

Znre£%rsn.anTdh:s V£¥uues:fb;I:toumr:oj:e-]£njft£:es]teuge°nnt,:a]::]qci: I
site. The value is 0 other.wise. This allows a check before
a -jumpout- instl.uction to determine if the lesson to
which the student is sent is all'eady condensed and
available, or if it must be brought into the system and
condensed before the student can execute it.

The -in- instl.uction is used to indicate whether a par.tic-
ular station is executing the curl.ent lesson. The tag
(vat.iable or expression) for the instruction specifies a
station numbei. (0 to 1023), with the current station
number obtained with the system-I`eserved word station.

Following execution of the -in- instl'ucl.ion, the system-
reserved word zl.eturn has one of the following values.

v aiu e pr_9_e±±n__g

-2 Station was routed by current lesson
(routers only)

-1 Station is in your lesson

0 Station is not in your lesson

The system-I.eserved wol.d user.sin contains the number of
students cur.rently in the lesson. Students I.outed to
another lesson (via a router lesson) are considered to be in
the router lesson and the current instructional lesson.

RANDOM NUMBERS

Thel.e are two methods of accessing I.andom numbers in
the PLATO author language, sampling with replacement
and sampling without I.eplacement.

Actually, the numbers generated in either method are not
tl.uly random but al.e tel'med psuedo-random. The
numbers al'e genel.ated by the computer and cannot be

97405100 C

truly random since, by definition, there is a mechanical
(logical) sequence that genel.ates the numbers. However,
the cliff el.ence on the practical level is inconsequential.

Sampling with replacement means that the values ape
treated as if they were returned to the pool of values
from which they were dl.awn. Thus, if the value 3 were
I.eturned in one sample, the value 3 could occur again in
another sample. In fact, the value could occur in the next
sample.

Sampling with replacement is done in the author language
with the ~randu- instruction. The tag has either one or
two al`guments, with the first (or sole) argument being a
variable name. This is the variable in which the value is
stored. It must be a floatingpoint val.iable if the one-
al.gument tag is used.

The one-argument tag retul.ns a fractional number be-
tween 0 and 1. A two-argument tag I`etul.ns an integer
between 1 and the value of the second argument, inclu-
sive,

Sampling without replacement means that once a value
has occurl.ed, it does not occur again. The author lan-
guage does sampling without replacement on permutations
of integers. The numbers are fl.om 1 to the limit specified
in the ngetperm- instl.uction, inclusive. There are five
instructions dealing with these permutations. They
provide two methods of sampling, using the system
pel.mutation locations or using locations in the variable
bank specified by the author.

The usetperm- instruction sets up the permutation, with
the first (or only) argument specifying the limit. If the
Single-al.gument tag is used, the system location for the
permutation is used. This consists of two locations of
three wol.ds each. The first location is the wol.king copy
of the permutation. The second copy i§ not changed by
ordinary sampling and can be used to regenerate the
permutation. The first word of each location contains the
number of elements I.emaining. Each bit of the ot.hel. two
words signals a single element. Thus, permutations with
limits up to and including 120 can use the system
locations.

If the two-argument form of the -setpel`m-instruction is
used, the second argument specifies a starting location of
contiguous words in the user. bank variables that are used
for holding the permutation. These words contain one
word (the fir.st.) that specifies the number of elements
remaining in the pel.mutation and one wol.d for evel.y 60
elements in the permutation. If the numbel` of elements is
not an even multiple of 60, the number of wol.ds requil.ed
is the same as for the next larger multiple of 60. Thus, a
permutation with 50 elements requires two wol.ds, a
permut.ation of 60 elements requil'es two words, and a
pel.mutation of 70 elements I.equires three wol.ds (the
same as a pet.mutation of 120 elements). The wol.ds
following the first word contain flag bits that indicate
whether an element has been sampled. The bit for each
element is 1 if the element is still available for sampling
and 0 if the element is not available. Since the location is
specified, more than one permutation can be set up, so
sampling from different permutations can be done. A
second copy is not genel.ated; if the author desires such a
copy, he must genel.ate it himself. The -block- instruc-
tion (descl.ibed latel. in this section) can be used to cl'eate
the second copy.

97405100 C

The -randp-instl.uction is used to sample the permutation
previously specified. Again, two forms are available, with
the single-al.gument for.in referl.ing to the rystem location
for a pel`mutation and the two-al`gument form referl.ing to
a permutation located in the bank of variables.

The first (or only) argument specifies the variable in
which the element obtained is to be stored. If the one-
argument tag is used, this is obtained fl.om system pel.-
mutation location using the first copy of the pel'mutation
only. If the two-al.gument tag is used, the permutation
starting in the user variable specified in the second
argument is used to obtain t.he element. In either. case,
the col.responding bit is set to zel.o, so the element is not
selected again. If the system permutation location is
used, only the first copy of the permutation i§ affected.
The second system copy is left unchanged for purposes of
I.egenerating the per.mutation. When the permutation is
exhausted, a value of 0 is I.eturned.

The -I`emove- instruction is used to modify the second
system copy. The element contained in the variable
specified in the first al`gument is removed from the per.-
mutation.

If the system location is used, a single argument is suf-
ficient. If a second copy of a pel.mutation in an author-
specified location is to be modified, the second argument
gives the starting location in the student variables of the
second copy. The -remove- instl`uction differs from the
-randp- instruction in that it simply I`emoves a specified
element from consider.at.ion for selection, while the
-randp- instl.uction selects a new element and then
eliminates it from ful.ther consideration.

The -modperm- instruction is used only with the system
location for a pel.mutation and has a blank tag. The
effect is to replace the fil.st copy of the per.mutation
(accessed and modified by the -randp- instl.uction) with
the second copy (which can be modified by the -remove-
instruction).

An example of the advantage of having two copies of the
permutation is when the author wishes to give a number of
pl.oblems in random ol.del., I.equil.ing the student to I`etl.y
the pl.oblems initially answer.ed incorl`ectly. The problems
are selected using the -randp- instruction from the first
copy of the pel.mutation. If the student answers corl.ect-
ly, the corresponding value is deleted from the second

:sop#ttyh,tthhea,-I:sTo:|TpiF£::itsioE.av:hf:e;he,rfii:3;,c:::
-modperm-instl.uction moves the second copy, containing
only the numbers of problems originally answel.ed incor-
I.ectly, into the first copy so that the -randp- instruction
can be used to I.eselect fl.om among these numbel`s for
repl.esenting the problems to the student, again in random
ol.der.

The rseed- instruction is used with -randu- and -randp-
to specify the location of the variable used in beginning
the genel.ation of a series of random numbers. If there is
no -seed- instl`uction or if the -seed- instruction has no
tag, the system seed is used. Pseudo-I.andom numbers are
genel.ated by the system using an algorithm which needs
an initial number, a seed, to begin. Thus, it is possible to
repeat a sequence of pseudo-random numbers using the
-seed- instruction; however, the algorithm used b.y the
system is subject to change, which will also change the
sequence of I.andom numbel`s initiated by a specific seed.

8-9

BRANCHING AND LOOPINC
WITHIN A UNIT

It is possible to do branching and looping using units or
uentl.y- instl.uctions as the point to which the lesson
branches; however, such construction is clumsy and slow,
and it can intel.fere with the screen display unless the
author takes repetitive and tedious pl.ecautions. Four
types of inst.ructions are available for bl.anches and loops
within a unit. These ape the -bl`anch-instl.uction, the -if-
structul.e, the ndoto- instruction, and the -loop-
structure.

BRANCHING WITHIN A -CALC- lNSTRUCTloN

Branching can be done within a single uealc- instruction
with a multiple line tag (that is, a continued -calc-). A
line to go to must be specified and identified by a name in
the command field. To distinguish the name from
ol`dinary author language instructions, the name must
begin with a numeric rather than an alphabetic chal.acter.

The bl.anching is done with the -bl.anch- instl.uction. This
instl.uction is not necessal.ily in nor.mat form but can have
the command portion begin in the fil'st character space of
the tag field in a line of the -ale- instl'uclion. The
command portion consists of the character-stl.ing branch.
After the command portion, a space should be left, and
the label (name) of the line to which the bl.anch is to take
place is then given. Alternatively, a conditional form is
available, opel.ating in the normal manner except for the
relocation of the fields.

As an example of the use of the -bl.anch- instruction,
consider the pl`oblem of computing the factol.ial of a
numbel`. The instructions

calc v2< v3€ 1
10 v2< v2+1

bl.anch v2> vl,20,x
v3< v3*v2
branch 10

20

compute the factorial of the contents of vl and place the
I`esult in v3.

This can also be written as:

calc
10
branch

bl'anch
20

v2 < v3 < 1
v2 < v2+1
v2>vl,20,x
v3< v3*v2
10

The x in the tag part of the -bl'anch- instl.uction in the
example causes pl.ocessing to fall through the branch and
continue executing the -calc- instruction as though the
toI.anch- had not been encountel`ed. A tag of q in a
-branch- causes all calculation to halt when the con-
ditional selects the q. PI.ocesging then continues at the
first instl.uction following the uealc- instruction contain-
ing the -branch-, ol. processing halts and waits for a
contl.ol key, if the -calc- instl.uction was the last
instl'uction in a main unit.

8-10

A -c8lc- instl`uction with a branch containing a q in the
tag portion should not be followed by another ~calc-
instruction without other intel.vening instructions. If the
q is selected, a -ale- instl`uct.ion immediately following
is ignored. Therefore, the second -calc- should be part of
the first, with an appropriate branching. For example, the
instl.uctions

calc ,

branch v2>vl,q,20
20

calc v2€ vl

should be replaced by the single instruction:

calc .

branch v2>vl,30,20
20

30 v2€ vl

If a -branch- instruction is not part of a cont.inued -calc-,
it begins a cealc-sequence. It can occur in the command
field whether it is part of a continued ngalc- or not..

The -branch- instruction can be used to branch al.oulid
non-calc- instl`uctions within a single unit (refer to sec-
tion 10).

•lF- STRUCTURE

The -if- stl.uctul.e is useful when the author wants the
lesson to do differ.ent actions based on 8 logical or arith-
metic expression. Four instructions for.in the -if-
stpucture: -if-, -elseif-, uelse-, and uendif-, in that
order. The -if- and -endif- instl`uctions are I.equired; the
-elseif- and ~else- instructions al.e optional. The -if-
structul.e usuany executes faster than an equivalent
-branch- structure.

The tags of the -if- and -elseif- instl`uctions are logical
or arithmetic expressions. Logical expressions have two
values: true (-1) and false (0). Arithmetic expressions are
evaluated and rounded befol.e testing. If the expression is
less than 0, it takes the value tl.ue. If the expl.ession is
greater than or equal to C, it takes the value false. When
the tag of an -if- or -elseif- instruction is evaluated as
true, the author language instructions immediately follow-
ing it are executed up to the next -elseif~ or -else-
instruction. Execution then goes directly to the instruc-
tion following the -endif- instl.uction, leaving the -if-
structure. The -else- instruction always has the value
true.

The -if-, uelseif-, and -else- instructions must be fol-
lowed by at least one line of indented author language
instructions. The indented instl.uctions can be any regular
instl.uctions. They cannot be judging instructions.. To
indent, press ACCESS period (.), (or type a period, then

97405100 C

TAB) and start the command of the instruction in the
ninth space. The tag of the instruction starts in the
sixteenth space. The period followed by 7 spaces is an
impned then. (If the tag is true, then the next instl'uction
is executed.) A simple -if-stl.ucture is

if

else

endif

nl<n2
boa 1244;1550;5

box 2240;2550:4

In this example, the fir.st box is dl.Own when nl<n2 and the
second box is drawn when nl>n2.

An -if- stt`uctul.e can be nested within anothel' -if- struc-
ture. A nested -if~ can be insel.ted anywhere in an outer
-if-; however, the entil.e nested -if-must be between the
two outer -if- statements. Each nested instruction has a
period followed by 7 spaces for each level of indenting.
There is no limit to the number. of levels of indenting as
long as each instruction fits on one line.

The following is an example of a nested -if-structure.

if nlsl0
box 1244;1550;5

elseif nl£20

else

*

endif

box 2240;2550;4
Ssif 10<nls20
if nl=15

erase 20
else

box 2344; 2446
endif

box 0235;0550;3
Ssif nl>20

An -if- structure can be nested within a ndotc+ loop or a
-loop- structure, or it can nest a rdoto- loop op a -loop-
structul.e within itself.

•DOTO-INSTRUCTION

The ndoto- instruction allows an author to have an itel.a-
live loop within the same unit. The ndoto- loop extends
from the ndotc+ to the statement label named in the tag
of the ndoto-instl.uction.

The fol`mat of the ndoto- instruction is analogous to the
format of the itel`ative ndcL.

doto

97405100 C

<"I:,

vari8

initial v(

increment for
index variable

value of index
variable

Linitial value of index
variable

index variable

statement label

The statement label must begin with a number and contain
seven or less characters (no shift, access, or fonts). The
initial and final values of the index variable may be
constants, variables, or expressions. The incl.ement for
the index val`iable may be omitted if it equals 1. A
negative increment for the index variable is permitted.

Fol. example, the following instl.uctions

doto :::najs€.:pLe€+Ln'LL2"

3finish
at
write

circ < circ+4*nl
Ssmust have a blank tag

1513
the sum of the area is <s.area>
the sum of the circumferences is
a s,circ >

perfol`m the following.

The ndoto-loop is executed four times with nl equal to 1,
4, 7, and 10. When the cur.rent value of the index variable
(plus the increment) is greater than the final value of the
index variable, as specified in the tag of the riot.o-
instl.uction, the loop is completed and the instruction
following the statement label is executed. In this
example, the -at 1513-instruction is executed. After the
loop, the value of the index variable is undefined.

When using the ndotor instruction, the following con-
siderations should be noted.

• A ndoto-in the command field initiates a -ale-
function; if the ndoto- begins in the tag field, it
continues a -ale-.

• Non -ale- instructions al.e allowed within a
ndotor loop.

• The statement label ending the ndotor may not
contain a -ale- expl'ession.

• If a ndotcL statement continues a -ale- in-
struction, it can be moved to the tag field. When
the ndoton is in the tag field, at least one space
must be left between the doto and the statement
label named in the tag of the ndotc+ instruction.

• The ndoto- instl.uction can be used only in the
itel.alive fol'm. The -branch- instl.uction should
be used for conditional and unconditional
branches.

• The statement label of the ndoto- loop must be
in the same unit as the ndotcr statement and
must not be refel.enced by any othel. bl.anching
instl`uctions in that unit. The same statement
label can be used in different units because the
ndoton (or -branch-) loops operate only within
units,

• An uentry- instl'uction within a ndoto- loop is
illegal.

It is also possible to have ndoto- loops nested within a
ndotc+ loop. For example, the following instl'uctions

8-11

doto lentry,nl€ 1,7
n3<1

doto lfact,n2< 1,nl
n3< n3*n2

1fact
at nl*100+2550
showt nl,3.0
at wtiel'e+5
showt n3,4.0
lentry

construct a table of numbel.s and their factor.ials. The
outer loop is executed seven times, and the inner loop is
executed nl times (nl is the outer loop index and goes
fl.om 1 to 7) as part of each outer loop.

The following list of factor.ials (N!) is produced from the
above ndoto- loops.

NN!

When nesting ndoto- loops, the inner loop cannot extend
beyond the statement label of the outer loop.

The -bl.anch- instl'uction can be used in a ndoto-loop to:

• Branch withinloops

• BI.anch to the end ofndoto-loops

• Branch out ofa ndoto-loop

• Fall through a-branch-with an x

• BI.anch to the next nonngalc-instruction with q

It is possible to branch into a ndoto-loop; however, this
should not be done because the current value of the index
variable may contain an unexpected value, I.esulting in an
unexpected number of iterations of the ndoto- loop. If
the value of the index variable is assigned pl`ior to the
entl.y into the loop, the results are predictable.

LOOPING

The -loop-stl`ucture allows an author to have a loop based
on logical or arithmetic expressions. Four instructions
fol.in the -loop- structure: -loop-, -I.eloop-, coutloop-,
and -endloop-. The -loop- and uendloop- instructions are
required; the -reloop- and coutloop- instructions al.e
optional. Unlike the -doto- instruction, the -loop-
instl.uct.ion does not initiate or continue a -calc- instl'uc-
tion. The -loop- structure usually executes faster than an
equivalent -branch- stl.ucture.

The tags of the -loop-, -reloop-, and t®utloop- instruc-
tions are logical or arithmetic expressions. Refer to the
-if- structure for comments on logical and arithmetic
expl.essions. The tag of the -loop- instruction is evalu-
ated at the beginning of each pass through the loop. When

• 8-12

the tag of the -loop- instruction is evaluated as true, the
author language instructions immediately following it are
executed. If it is evaluated as false, execution I.esumes
following the -endloop- instruction. When execution
I`eaches the -endloop- instl.uction from within the loop,
the loop is executed again beginning at t.he -loop-
instruct.ion.

The author language instl.uctions within the loop must be
indented. These instructions can be any regular in-
stl.uctions. They cannot be judging instructions. Refer to
the -if- structure for dil`ections on indenting.

The following loop moves data from al.ray temp to al.I.ay
final as long as nl is less than 20. The loop begins with the
-loopr ins1.ruction and ends with the -endloop- in-
struction.

define ::#:n£]p((22°o))==nn4]°oo

calc nl € 0
n2€1

loop nl < 20
calc nl € nl+1

final(n2) ¢ temE)(nl)
n2 € n2+1

endloop

The -reloop- instruction allows execution to go back to
the beginning of the loop without going all the way to the
-endloop~ instl`uction. If the tag of the -I'eloop-
instruction is true, execution goes back to the -1oop-
instruction; otherwise, it continues with the next line.
Using the same array definitions and adding the -I.eloop-
instruction, the previous loop now also deletes entries
which are 0.

calc nl € nl+1
;eloop temp(nl)=0
* Ssdo not move a zero entry

calc final(n2) € temp(nl)
n2 € n2+1

endloop

The routloop- instl.uction allows execution to jump out of
the loop. If the tag of the routloop- instruction is true,
execution goes to the instruction following the -ndloop-
instl.uction; otherwise, it continues with the next line.
Using the same array definitions and adding the routloop-
instl.uction, the previous loop now also sums the entl`ies
and stops moving the data if the tot.al would exceed 100.

nl+1
reloop temp(nl)=O
outloop (n3+temp(nl)) > 100
* Ssexit if sum > 100

*

endloop

calc final(n2) € temp(nl)
n3 € n3+temp(nl)
Ssadd to sum
n2 € n2+1

97405100 C

The -I'eloop- and routloop- instl.uctions can appear any-
where in a loop. and each can appear more than once in
the same loop.

A loop can be nested anywhere within another loop; how-
evel`, the entire nested loop must be between the two
outer -loop- instructions. Each nested instruction has a
pel'iod followed by seven spaces for each level of
indenting. There is no limit to the number of levels of
indenting as long as each instruction fits on one line. A
loop can be nested within an -if- structure or a ndoto-
loop, or it can nest an -if- stl.uctul.e or a ndotor loop
within itself.

-CALCS-INSTRUCTION

There are two instructions that per.form calculations in a
conditional form. The -calcc-instruction functions in the
manner. nol`mal to conditional instl.uctions and is the
counter.part of the -wl.itec- instruction. Both of them al`e
dealt with in section 12. The other. conditional calculation
instruction is the -calcs- instruction.

The uealcs- instruction is used to perform one of a num-
ber of variable assignments, depending on the value of an
expression. The variable to which a value is to be
assigned must be the same in all cases. Other than the
fact that it gives an assignment of value based on the
expression, it functions in the same manner as other
conditional instructions. Up to 61 specific values can be
entered in the ngalcs- and ngalcc- instl.uctions. An
example of the use of the uealcs-instruction is:

calcs 3+filk,grun < 17 ,filk2 ,grun/2

COMMON

Common is a type of variable in which user.s can store
information. In contrast to the 150 student variables,
common stores information which is common t.o all users
of a lesson. The system keeps only one copy of the
common variables for each lesson, regardless of the
number of users executing the lesson concurrently. Sev-
er.al users can read from or can write to the same common
locations, allowing one user to pass infol.motion to another
user when both are executing the lesson. When a lesson is
executing, a copy of that lesson is in ECS. Also, any
common that. the lesson accesses is in ECS.

TYPES OF COMMON, -COMMON-,
AND -COMMONX-

Two types of common al.e available, temporary common
and permanent common.

Temporal`y common is in ECS while the lesson is in exe-
cution, but it is not saved on disk between sessions. This
type of common is specified by the -common-instruction
with a one-argument tag. The tag indicates the number of
variables that are to be used as temporal.y common. As
an example, the instruction

common 257

97405100 C

specifies that common is a block of 257 variables, mum-
bered from 1 to 257. The tag may be a constant or an
expression but not a variable.

Permanent common is on disk and is saved between ses-
sions. The system creates an ECS copy of the common
whenever. it executes a lesson which uses the common.
This type of common is useful for storing statistics about
the lesson, such as the number of times the lesson has
been executed ol. for functioning as an extension to the
standard variable bank through author manipulation of
val.iable assignments and use of the -comload- inst.ruc-
tion,

Pel.manent common is formed by specifying the space for
the variables as a portion of a lesson. The lesson
containing the common need not be the same lesson as
that using the common, pl.oviding the two lessons have the
same common access code. For. each set of 320 or fewer
wol'ds, a new block is specified. This block should be
placed at the end of the lesson. The blocl(should be
specified as a common block upon blocl(cl.eation, and all
of the common blocks sliould be given the same name.

As an example of the creation of permanent common,
consider the following example: lesson vl.ap requil`es 410
words of permanent common. However, all possible
blocks of the lesson are in use. If lesson vlunge is avail-
able to the author and has the same common access code
as lesson vrap, two common blocks (since the number of
variables necessary is gI.eater than a single block, but
smaller than two blocks) can be created at the end of
lesson vlunge, and both blocks are given the name
sol.ounge. The I.equired permanent common can then be
accessed by lesson vl.ap with the instl'uction:

common vlunge,scrounge,410

As implied by the example. permanent common is ac-
cessed by means of a ngommon-instl.uction with a thl.ee-
al`gument or four-argument tag. The first al.gument is the
lesson containing the common blocks. If the refer.enced
common blocks are in the lesson that uses them, this
argument is optional. In eithel. case, a comma must
appear before the second argument. The second argument
is tlie name of the common blocks, and the thil`d is the
numbel. of words contained in the common. As with the
one-argument tag, the number of variables (indicated by
the third argument) may be a constant or an expression,
but not a variable. All lessons which I.efel.ence the same
common must have the same length of common (third
argument) defined in their -common-s. The -common-
instruction allows a maximum of 8000 words for actual
use,

There are four additional options with the ngommon-
instl.uction. If one of these options is desil.ed, it is speci-
fied as a fourth al.gument to the ngommon- instl'uction.
The first option is specified by having the last argument
consist of tlle two words no load. This prevents nor.mal
loading and unloading of common, so the -omload-
instruction must be used by the author to specify these
actions. If the last al.gument consists of the two wol.ds
read only, changes to common are not allowed. If the last
al.gument is the foul. char.actel.s ronl, botli the no-load and
the I.eadronly options are used. The foul.th option is
checkpt which I.eturns per.manent common to disk approxi-
mately ever.y 8 minutes. The checkpt option ensul.es
system recovery after a system failul.e. (Refer also to
the ngomret-instruction.)

8-13 .

Only one -common- instruction is permitted in a lesson.
The IEU is a convenient place to put this nonexecutable
instruction.

The ueommonx- instruction is an executable for.in of the
ngommon-instl.uction. The ngommonx-instruction allows
a lesson to determine what common it needs after it
condenses, using information that is not available until the
lesson begins execution.

The -commonx- instl`uction can have up to five argu-
ments. The first al'gument is the lesson containing the
common blocks. If the referenced common blocks are in
the lesson that uses them, this al.gument is optional. In
either case, a comma must appear before the secorid
al.gument. The second ai.gument is the name of the
common blocks, and the thil.d is the number of val`iables
contained in the common.

The fourth al.gument is the codewol.d of the common. If
this codewol.d is present, the system compares it with the
common codeword of the lesson that contains the com-
mon. If this codeword is not present, the system
compares the common codeword of the lesson containing
the ngommonx- instl.uction with the common codewol.d of
the lesson that contains the common. Unlike some
instl.uctions, if the codeword is present but does not
match the common codeword of the lesson that contains
the common, the system does not check the common
codewol.ds of the lessons against each other..

The fifth argument can be one of four options which are
the same as the four options in the -common-instruction.
This argument can also be blank.

The -commonx- instruction makes heavy demands on the
system, and therefore, is I.estricted as follows:

• A user can execute one ueommonx- instl.uction
per lesson.

• After a usel. executes tliree ngommonx- in-
stl.uctions (resulting from jumpouts), the system
limits execution of the -commonx-instruction to
one per minute.

• When a student leaves a router lesson, the router
releases common declared by a ngommonx-
instruction. This means it is not possible to
allow the reading of common variables with the
-allow- instruction in a router lesson.

After execution of the ueommonx- instruction, the sys-
tem-I`eserved word zreturn is set to the following values:

v aiu e _qu_e_e_n_ing

-1 Common ok

0 Common not found

1 Code words do not match

2 Already have a common

3 Common in ECS has different
length

4 Bad length

• 8-14

USING COMMON

The author usually does not reference common locations
directly. Instead, the authol. accesses a portion of the
common (up to 1500 words) using the nc and vc variables
and the -comload- instruction. The ueomload- instruction
transfers a portion of ECS common to the nc and vc
v8riables at the beginning of each timei5lice. At the end
of the time-slice the contents al.e transferred back from
the nc and vc val`iables to the ECS common. Therefore.
the author can I`efer to nc and vc val`iables without I.egard
to when timei;rices occur during lesson execution.

The -comload- instruction has three arguments in its tag.
The first is the stal.ting position in nc or vc val'iables; the
second is the starting position of the block of variables in
the ECS copy of the entire set of common variables; and
the third specifies the number of variables in the block to
be loaded and unloaded. As an example, the instruction

comload nc53,40,10

transfers the contents of the 10 variables starting with
position 40 in the ECS copy of common val.iables to the 10
variables starting with nc or vc vat.iable 53 at the
beginning of each time-slice. At the end of each time-
shice, the pl.ocess is revel.sed. This occurs for each stu-
dent, individually, although all students share the same
vat.iables.

If a -comload- instl.uction with a blank tag is encountered
during the lesson, the common variables are unloaded as if
the time-slice has expired. No further loading ol.
unloading of common val.iables is done until or unless
anothel. i3omload- instruction is encountered.

If a second ueomload- instl.uction is encountered while the
fil.st is still in effect, the variables specified in the first
-comload- al`e unloaded before the second -comload-
instruction is executed.

An error is generated if an attempt is made to ueomload-
into the user variable bank, as in the following instruction.

comload vl4,12,10

The -comload- instruction can also be used to set aside
specific pol.lions of common for individual students, while
allowing the author to use simple common val.iable
I.efel`ences. This is possible because the second argument
in the tag of the ngomload- instruction can be an ex-
pression. In particular., it can be an expression based on a
student identification. Thus, if ID I`epresents the student
identification, the instruction

comload ncl,500+200*ID,200

effectively gives each student his own copy of 200 vari-
ables, located in the common val.iable area, which is as
fully individualized as the standard variable bank (provid-
ing, of course, that no other. -comload- instructions ol.
refer.ences to these variables are made). For example, at
the same time, the author. can deal with variable ncl
rather than having to use the cumbel.some expression
nc(500+200*ID).

Up to three separate automatic loads and unloads can be
done for each time-slice by using a continued -comload-
instruction. Each tag line consists of one nor.mal

97405100 C

ngomload- tag. The command comload appeal.s only on
the first line. An example is the following instl`uct.ion.

comload nc24,10,5
nc30,50,12
nc48,293,300

This is not the same as:

comload nc24,10,5
comload nc30,50,12
comload nc48,293,300

These three instructions (not a single instruction) perform
thl.ee loads and two unloads. Only the third ueomload- is
in effect thereafter. In the first example, all thl.ee blocks
are loaded and unloaded each timerslice.

If the common has a length of 1500 words or less, the
author does not need to include a acomload-instl`uction in
the lesson, because the system inserts a default
ngomload- at the beginning of the lesson. For example, if
a lesson has a common named mycom of length 650, the
following ~comload- is automatically in effect at the
beginning of the lesson, although it does not appear in the
lesson source code.

comload ncl,1,650

The authol. can prevent the execution of this default
ngomload- with the no load option of the ngommon-
instruction.

The ueoml.et- instl.uction copies the current permanent
common from ECS to disk. Execution of the ueoml.et-
instruction has no effect on the ECS copy of common;
therefore, -comret- cannot delete common from ECS.
The ueomret- instruction has a blank tag. After exe-
cution of the ceomret~ instruction, the system-reserved
word zretum is set to t.he following values:

valu e M_e_ep_i_ng

-1 Common returned

0 No common found

1 Unable to return common

In a -finish-unit, the execution of a ueomret-instl'uction
counts as one of the 10 disk accesses allowed.

The ngomret- instruction is not needed when the number
of user.s of common drops to zel.o, because the system
automatically copies common from ECS to disk at that
time. The -comret- instruction is useful only when the
author wants to preserve ECS common on disk in its state
at t.he moment ngomret-is executed.

-RESERVE-AND -RELEASE- INSTRUCTIONS

The -resel.ve- and -release- instructions make the pro-
tection of common and dataset records easier. Both
instructions have keyword tags of 'common', 'dataset', and
'records'.

97405100 C

The -reserve- instruction sets a flag to indicate that this
t.erminal is using common or dataset I.ecol.ds. The flag is
not set if common or dataset I.ecords are all.eady
-resel`vend by another terminal. The system-reserved
wol.d zreturn is set to -1 if the -reserve common- and
-resel.ve dataset- instructions have executed successfully.

The -I.elease- instruction clear.s the flag set by the
-reserves instl`uction. The flag does not clear if this
terminal does not have common or dataset records
-resel.vend. The system-reserved word zretul.n is set to
-1 if the -reserve- instruction has executed successfully.

-ABORT- lNSTRuCTloN

The -abort- instruction is available in thl.ee for.ms.

abort com mom
abort recol.d
abol.t autocheck

Up to three keyword tags also may be used with a single
-abort- instl.uction.

abol.t com mom,record,autocheck

The -abol.t common- instruction causes permanent com-
mon not to be retul.ned to the disk (updated) when the last
user leaves the student mode. The permanent common, in
effect, is transformed into a temporary common. The
lesson(s) containing common continue to function as
before, but all recent changes to common are never
returned to the disk.

Student recol.ds are not I`eturned to the disk when the
student signs off as a result of an -abol.t record- instruc-
tion. However, the CPU time, the number of sessions, and
so on, are updated at sign-off time. This option requil.es
mol.e access time, and for that reason, should not be used
when CPU time is at a premium.

Autocheckpoint (automatic return of records) is included
as a function of the -abort record- instruction.

The automatic retul.n of recol.ds does not occur when the
-abol`t autocheck- instruction is in effect.

An execution error occurs if a user is not I.egistered as a
student and the -abol.t recol`d- ol. -abort autocheck-
instl.uction is in effect.

STORAGE

Storage is essentially a val.iety of temporary common, in
that the contents of storage cannot be preserved between
sessions unless some special action is taken (refer to
datasets). An author cannot reference stol.age locations
dil'ectly.

-STORAGE-INSTRUCTION

The -storage- instruction, which creates storage, is
compal.able to the -common- instl.uction used to create

8-15

tempol.ary common. An example is the following in-
struction.

stoI`age 4 00

This instruction cl.eates 400 storage variables for use by
the lesson. Unlil{e common variables whel.e there is only
one copy of the val.iables per lesson, the stol`age is
specific to the user in the same manner as the student
variables. As a result, some caution should be exercised
in the amount of stol.age used. The -storage- instruction
in the example uses an extl.a 400 words of ECS for each
pel.son executing the lesson. There is a limit on the
amount of ECS a logical site is allowed, so stol.age can use
up the ECS allotment rather quickly.

The maximum length of storage available to a user (that
is, the maximum size that can be specified in a -storage-
instruction) is 1500 wol.ds.

The -stol.age- instruction can only be executed once in a
lesson, much like the ueommon- instl`uction. Therefol.e, it
is not possible to destl'oy the storage if it is no longer
needed.

-STOLOAD- lNSTRUCTloN

In order to use stol.age, there must be a mechanism fol`
bl.inging the storage variables to a location where they
can be referenced. This is done with the -stoload- in-
struction,

The -stoload- instruction is similar to the ueomload-
instruction, but it I.eferences stol.age locations I.Other than
locations in the ECS copy of common. The format of the
instl`uction is precisely the same, and the -stoload- also
brings the storage into the nc and vc variables. As a
I.esult, if both -stoload- and -comload- instl.uctions are
used in a lesson, the author must make sure that they do
not load the variable values into the same nc and vc
variables. If storage and common locations ovel'lap in the
nc and vc variables, the storage variables overwrite the
common val`iables, because ueomload- executes before
-stoload-at the beginning of each timeslice.

All of the capabilities and restrictions of the ngomload-
apply to the -stoload-. This includes the behavior when a
second -stoload- is executed and the fact that a -stoload-
with no tag cancels loading and unloading of variables.

DATASET FILES

A means for saving infol.mation, other than pel`manent
common, is available to the author. This method uses
another type of file as an auxiliary to the lesson. This
auxiliary file is a dataset.

A dataset is not the same as a student data file. A student
data file stores lesson execution data. The data is
collected automatically by the PLATO system, with the
author simply specifying the data to collect. A dataset is
under complete control of the author (with the exception
of the fil.st block of the file). It is more like permanent
common than a student data file.

8-16

It is not possible to execute a dataset. The file is used
entirely to store information, and as such, is not con-
sidered to contain author language instructions.

All transfer of information to or fl.om a dataset is done by
records; that is, 8 minimum of one record of data can be
tl`ansferred, and the data transfer.red is an integer number
of contiguous I.ecords. The numbel. of I.ecords contained
in a dataset depends on the number of wol'ds per I`ecord
and the length of the dataset. The number of wol.ds per
recol.d is determined when the dataset is created and must
be between 64 and 512 words. with the default as 320
words.

A maximum of 10 dataset accesses, including the
ndataset- instruction may be executed in a finish unit.
Because of code word checks, the ndataset- instruction
counts as two accesses.

-DATASET-INSTRUCTION

Before a lesson can use a dataset, the system must be
infol.med of the name of the dataset. The ndataset-
instl.uction gives the name to the. system. The ndataset-
instruction pel`forms a function similar to that pel.formed
by the -readset- instruction (refer to section 13) except
that a dataset, rathel. than a student data file. is the file
pl`ocessed.

The tag of the ndataset- instl.uction may have three
arguments. The fil`st al'gument must be the name of the
dataset. The second argument (optional) is the type of
access desil.ed, read/wr'ite or read only. The third
argument (also optional) is the code word. If the code
wol'd is specified, it must match the dataset common code
word for read/wl.ite access, or it must match the dataset
inspect code word for read only access. If t.hese code
words do not match, the system-I.eserved word zreturn is
set to 1 and the dataset is not attached. If no code word
is specified, the code words of the dataset al.e compared
to the code words of the lesson in which the ndataset-
instruction occurs. If the common code wol.ds match,
either read/write or read only access is granted, and if
only the inspect code wol`ds match, read only access is
granted, if I'equested. If these code words do not match,
the system-resel.ved wol.d zretul`n is set to 1 and the
dataset is not attached.

The ndataset- instruction sets system-I'esel`ved wol.d
zl.eturn to -1 if the link is successful. The author can
check zretum to ensure that the file has been located.

Since ndataset- is an executable instruction, the link to
the named dataset is effect-ive until another ndataset-
instruction is executed: For operations such as copying
from one dataset to anothel`, the author can keep I'ecords
I`eserved in two datasets at the same time: the current
active dataset and an inactive dataset. If a second
-dataset- instruction is executed while a pl.evious dataset
is still attached, the first dataset becomes inactive with
all its I.ecord reservations preserved. The author can
reactivate the first dataset with its record reservations
intact by reexecuting the ndataset- instruction. The
system can hold only one dataset in the inactive state. If
a third ndataset- instruction is executed, the link to the
curl`ent inactive dataset is closed and all its resel.vations
are released. A ndataset- instl.uction with a blank tag

97405100 C

closes the current dataset without preserving its recol`d
reservations and without affecting the curl`ent inactive
dataset, if any. A SHIFT STOP exit or a -jumpout- re~
leases all datasets unless an -inhibit dropset- is in effect.

-DATAIN- INSTRUCTION

Data is transferl.ed fl.om the dataset to storage, common,
or student variables with the ndatain- instruction. The
instl.uction has two or three arguments in the tag.

The first al.gument is the number of the fir.st I.ecord to be
tl.ansferred. The second argument gives the location in
storage, ECS common, or student variables to which the
I.ecord is to be tl`ansferl.ed. For example, the fourth wol.d
of storage is formatted as storage,4 or s,4. The 90th word
of ECS common is for.matted as common,90 or c,90.
Student variables are formatted as nl5 or n24. CM nc and
vc variables cannot be used.

The optional third argument gives the numbel` of records
to be transfel.red. The total size of the records to be
transfel`red cannot exceed the amount of space available
following the beginning location given by the second
argument. Hence, if the size of storage is 500 words, two
320-wol.d I.ecords cannot be read in with a single instruc-
tion, regardless of the starting position of the first record.
Similal.ly, if the size of common is 1000 words and the
first recol.d begins at location 100, the maximum number
of 320-word I.ecords that can be tl.ansferred is two, rather
than the three that can be transferred if the stal.ting
location in storage is word 1. If a thil`d argument is not
specified, a value of 1 is assumed.

As an example of the ndatain- instruction. the instruction

datain 5;n2;2

reads records 5 and 6 of the dataset into student val.i-
ables, beginning with val.iable 2.

After a ndatain- instruction, the system-reserved wol.d
zretum is set to t.he following values.

Value

-1

0

1

2

3

6

M_e_a_n_ipg

TI.ansfer successful

System pack el.ror

System file err.ol.

Record numbers are out of range

Addl.esses (storage, common, or student
variable) al.e out of range

System disk error

-DATA0uT-INSTRUCTION

Data is sent to the dataset from storage, ECS common, or
student variables with the ndataout- instruction. The
fol.mat of the instruction is precisely the same as the
format of the ndatain- instl.uction; however, instead of
reading in the data from the dataset, the data is wl.itten
out t,o the dataset.

97405100 C

As an example, the instl`uction

dataout 2;s,30;1

transfers the contents of storage locations 30 to (30 plus
record length) to the second I.ecord of the dataset rile.

The values for system-I.eserved word zl.etul.n are the same
as the ndatain- instl.uction with these additions.

value M_e_e_n_i_n_g

4 No write permission

Record is -reservend or dataset is being
edit.ed

NAMESET FILES

A nameset is a dataset that contains sets of I.ecol.ds.
Each set has an alphanumeric name and some records for
storing data. Namesets are useful for the storage and
retrieval of easily-categorized data because each set of
records can be one set of infol`mation.

Namesets are easier to use than datasets for categorizing
information because all the instl.uctions dealing with
I.ecords I.eference the I.ecords I.elative to the name of the
set. The nameset keeps tl.ack of all its recol.d pointers so
that it automatically finds infol.motion in the nameset
when given a name and a recol'd numbel`.

STRUCTURE

A nameset contains sets of names and records. Each set
has an alphanumeric name of up to 30 char.acters. After.
the name. each set has a computer. word of associated
information. In the fil.st 15 bits of this word, the nameset
stores the number of records associated with the name. In
the last 24 bits, the user can store any alphanumeric
infol.nation associated with the name. In addition to the
name and the associated information, each set has a

#:La?i:e:unmabme:s°(:hrreece°:::;).Figure8-1Showsanameset

Figure 8-1. Example of a Nameset

8-17

A nameset has a directory that stores the names and the
associated information of each set. The system I`eads this
director.y into ECS during execution of the ndataset-
instruction referencing the nameset and keeps the direc-
tory in ECS throughout the use of the nameset. The
system accesses infol.mation in the directory quickly and
efficiently.

At creation of a nameset, the author must specify the
parameters of the nameset. The author can set the maxi-
mum length of the names in a nameset between 10 and 30
characters. (The actual length can be less.) The I`ecol'd
size can be between 64 and 512 words. The number of
parts in a nameset can be between 1 and 63. (The number
of words per. part is 7 X 320.) The author also must
specify the maximum number of names in a dataset. More
names means fewel. I`ecords are available for each name;
convel.sely, fewer names means more I.ecol'ds are avail-
able for each name.

DATASET INSTRUCTIONS USED

WITH NAMESETS

Before using a nameset, the author must establish a
connection to the nameset with the ndataset- instruction.
The tag of the ndataset- instruction is the name of the
nameset. After execution of the ndataset- instl.uction,
the system-reserved wol.d zretul.n is set to the same
values that are used for connections with a dataset.
These values are:

Value

-1

0

1

2

23

Meaning

Connection made

No such nameset

Codewords do not match

File directory being edited

System disk el.rors

The system-I.eserved word znscpn tells if the cur.I.ent
connection is with a nameset (value is nonzero) ol. with a
dataset (value is 0).

Aftel. the ndataset- instruction connects a nameset, the
lesson can manipulate the records in a nameset and the
information in the records. The ndatain-instruction reads
data from the nameset, and the ndataout- instruction
writes data into the nameset. Tliese instl.uctions function
for namesets in the same way as for datasets except that
refel`ences to nameset I`ecol.ds are I.elative to the current
named set of recol.ds. For example:

dataset hebrewset
calc n20 € 'daleth'
setname n20
datain 1;c,100;2

The ndataset- instruction connects nameset hebrewset.
The -setname- instruction accesses the set of records
named daleth, and the ndatain- instruction reads recol.ds 1
and 2 of set daleth into common, beginning in location
100.

Refer to the ndataset-, ndatain-, and -dataout- instruc-
tions for mol.e information.

• 8-18

NAMESET INSTRUCTIONS

The author language has eight nameset instructions:
-setnam e-, ngetname-, -addname-, ndelname-,
-I'ename-, -namesT, -addl'ecs-, and ndelrecs-. The
-setname- instruction selects a named set of records from
a nameset for further reference. It must precede
-detain- and ndataout- instructions I.eferencing the
nameset. After executing a -setname- instruction which
has a val.iable tag stol`ing the name of a set., such as
-setname n20-, the system-reserved wol.d zreturn is set
to:

Meaning

Name matches exactly

Name matches as far as possible
with an existing name; set to refer-
ence it

Name matches as far as possible
with mol`e than one existing name;
set to reference the fil.st one

Name does not match any existing
name; refel.ence cleared

No nameset in effect

If the list of names in tlie nameset is

aleph
beth
daleth
he
heth

then the instruction

setname n20

with n20 storing the following names, I.etums the follow-
ing values of zreturn and produces these actions:

n2 0 zreturn Result

aleph -1 References aleph

dal 0 References daleth

h 1 References he

mem 2 Cleal.s reference

When the -setname- tag is nextname, the instl.uction
selects the next name in alphabetic order. If no name is
cul'I.ently in effect, the -setname nextname- instl.uction
selects the first name in the list. The system-reserved
word zreturn is set to -1 upon selection of a new name and
to 2 when the last name has already been selected.

When the -setname- tag is backname, the instl.uction
selects the pl`eceding name in alphabetic order. If no
name is currently in effect, the -setname backname-
instruction selects the last name in the list. The system-
I.eserved word zreturn is set to -1 upon selection of a new
name and to 2 when the first name has already been
selected.

97405100 C

A -setname- instl.uction with a blank tag cleal.s the
current name and sets system-reserved word zretul.n to -1.
The author. can select the names in a nameset in
alphabetical or I.everse alphabetical ol.der by using
-setname- with a blank tag and the nextname and
backname tags.

Because the system allows sequential selection and partial
matches, the author. might not always know what name is
in effect. To find out, the authol. can use the ngetname-
instl.uction. This returns the cul.rent name in 1, 2, or 3
full words, depending on the size of the name. Any
additional part of the last wol.d after the end of the name
is zero-filled. Segmented variables are not allowed. If
the ngetname-instl.uction has two argument.s in its tag, it
I.etul.ns' t.he 24 bits of associated information in the
rightmost bits of another wol`d, clear.ing the leftmost bits.

The -addname- instruction adds a new name and a new set.
of records to a nameset. After a successful addition, the
name added is the current name, eliminating the need for
a ngetname- instl.uction. After an -addname- instruction,
the system-reserved wol.d zl.eturn is set to the following
values.

Value

-1

0

1

2

3

4

Meaning

Completed ok

No nameset in effect

No writ.e access

New name duplicat.es an existing
name

Number of I.ecords out of I.ange

Nameset reserved; additions not
permitted

The ndelname- instruction deletes the cuITent name and
its records from a nameset. After a ndelname- in-
struction, the eystem-I.eserved word zreturn is set to the
follow ing values.

-1

0

1

2

4

Meaning

Completed ok

No nameset in effect

No write access

No name selected

Records resel.ved; deletions not
permitted

The -I.ename- instruction changes the name of the cul.rent
name. It can also change the 24 bits of associated in-
formation. If the new name is the same as the current
name, then only the associated infol'mation changes.
After a -rename- instruction, the system-reset.ved word
zretum is set to the following values.

97405100 C

Valu e M eaning

-I Completed ol(

0 No nameset in effect

1 No write access

2 No name selected

3 New name duplicates an existing
name

4 Recol.ds reserved in cul.rent name

To get a set of names from the current list in the
nameset, the author can use the -names- instl.uction.
This retul.ns each name in 1, 2, ol. 3 full words, depending
on the size of the names. Following each name is a word
containing its associated infol.nation. The first 15 bits
contain the number of recol.ds associated with the name
and t.he last 24 bits contain the associated information. A
mask or a defined vel.tical segment allows easy I.eading of
the last 24 bits. After a -names-instruction, the system-
I.eserved word zretum is set to the following values.

Value M eani ng

-1 Completed ok

0 No nameset in effect

1 Invalid starting position

The dddrecs- and ndelrecs- instructions add records Lo
and delet.e I.ecol.ds fl'om the current named set of i`ecords.
For example:

calc n35 € 'aleph'
n36 € 'heth'

setname n35
dell.ecs 1.2
setname n36
addrecs 1

This deletes the fir.st two records from the set named
aleph and adds one I.ecol.d after the last record in the set
named heth. The addition ol. deletion of records from a
name does not affect the content of the records.
Therefore, the recol.d added to heth might be one of the
I.ecords deleted from aleph.

After an utddrecs- instruction, the eystem-I.esel.ved word
zretum is set to the following values.

Value

-1

0

1

2

3

4

5

Meaning

Completed ok

No nameset in effect

No write access

No name select.ed

Record number not in name

Recol.ds I.eserved; additions not
permitted

Not enough records available

8-19 .

After a ndell'ecs- instruction, tlie system-reserved word
zretum is set to the following values.

Value

-1

0

1

2

3

4

Meaning

Completed ok

No nameset in effect

No write access

No name selected

Record number not in name

Records I.esel.ved; deletions not
permitted

RESERVING N^MESETS

When changing information in a nameset recol`d, the
author can reserve and release records to prevent access
to them by other users. Reserving a I.ecord or a nameset
allows you to access it, but prevents access by other
users. The -I.eserve- and -release- instructions I.esei.ve
and release I.ecords relative to the current named set of
records. For example:

dataset hebl.ewset
calc n53 € 'heth'
setname n53
reset.ve records,1,4

` I.eserves the first 4 records of the set named heth in the
nameset hebrewset.

reserve dataset

I.eserves all the I.ecords in the nameset hebrewset, and it
pl.events the addition of new names or new recol'ds to the
end of existing names by another user. Refer to the
-reserve- and -I.elease- instructions for more informa-
tion.

For operations such as copying from one nameset to
another, the author. can keep I.ecords reserved in two
namesets at the same time: the cuITent active riameset
and an inactive nameset. If a second -dataset- instl.uc-
tion is executed while a previous nameset is still attached,
the first nameset becomes inactive with all its recol.d
I.eservations pl.eserved. The author can I.eactivate the
fir.st nameset with its record I'eservations intact by re-
executing the ndataset- instruction. The system can hold
only one nameset in the inactive state. If a third
ndataset- instl.uction is executed, the link to the cuITent
inactive nameset is closed and all its reservations are

• 8-20

I`eleased. A ndataset- instruction with a blank tag closes
the current nameset without preserving its recol.d reser-
vations and without affecting the curl.ent iriactive
nameset, if any. A SHIFT STOP exit or a -jumpout-
releases all namesets unless an -inhibit dl`opset- is in
effect.

MOVING BLOCKS OF DATA

When a number of variables continuous in the student
variables or nc and vc vat.iables al`e to be copied to an-
other contiguous location within the student or nc and vc
variables, tlie tolock-instruction can be used.

The -block- instruction lias three al.guments in the tag.
The first al.gument is the vai.iable in the bank at wllich the
block of values to be tl.ansferred begins. The second
argument gives the fil.st val.iable in the block of val.iables
to which the values are to be tl.ansferred. The third
argument gives the number of variables (or words) that
are to be transfer.I.ed. Thus, the instruction

blocl(v22,v50,7

transfer.s the contents of variables v22 to v28 into vari-
ables v50 to v56.

The transfer, of values is nondestructive; that is, the
values of the vat.iables from which the values al`e trans-
ferred are left unchanged. Thus, the transfel. is actually
the creation of a copy I.ather than the removal of the
values from t.he point or origin and placement of the
values in a different location. An attempt to tl.ansfel.
more than 1500 variables results in an execution error.

The -tl.ansfr- instl`uction is a more general for.in of the
-block- instruction. The arguments are the same as in the
tolock- instruction but are separated by semicolons and
can have a more general form.

The first two arguments, specifying the origin and desti-
nation of the block of variables moved, can have any of
several forms. If the form is nx or vx (where x is a
number.), the location is in the student variables. If the
form is ncx ol. vex, the location is in central memory. If
the form is nrx or vl.x, the location is in the user router
val'iables. If the form is common,x ol. c,x, the location is
in the copy of lesson common in ECS. Finally, if the fol'm
is either storage,x or s,x, the location is in the storage for
the lesson (set by a preceding -storager instruction).
Thus, the -transfr- instruction allows transfer of variable
values between any of the variables available to the
lesson,

The CM val.iables which al.e tl.ansferred must be previous-
ly loaded and unloaded by a ngomload- or a -stoload-
instruction.

97405100 C

DISPLAYS 9

The PLATO author language includes a large number of
instructions for creating displays. The author can. if
desired, cl.eate pictul.es, show sfides, create animated
sequences, or simply display text.

COARSE AND FINE GRIDS

Befol.e material, in whatever form, can be displayed on
the sol.een, it is necessary to specify just whel.e on the
screen it should appear. There are two ways of specifying
a screen position, coarse grid and fine grid. Coarse gI.id is
usually sufficient for text display; in fact, it is designed
specifically for t.ext display. Fine grid is used to give
mol.e accurate positioning of display material.

Coal.se grid divides the scl.een into 32 lines of 64 cllal.-
acters per line. The lines are numbered from top to
bottom, beginning from 1. The character positions on
each line al.e numbei.ed fl.om 1 to 64, I.unning from left to
right.

A coarse grid specification is a three- or fourndigit num-
ber, with the last two digits specifying the character
position (or column) and the first one or two digits speci-
fying the line number. Thus, the position 214 indicates
the second line and the fourteenth chal.actel. position on
that line. Similarly, 3210 specifies the bottom line of the
scl.een, tenth character position (column) from the left of
the screen.

The fine grid is somewhat different. The screen is divided
into a 512by-512 matrix, with each point pair repl.e-
senting a single dot on the screen. The numbers run from
0 to 511, both horizontally and vertically. The horizont.al
numbering is fl`om left to right, as with the coarse grid,
but vertical numbering is from bolt.om to top rather than
from top lo bottom.

A grid position is indicated by giving first the horizontal
position and then the vel`tical position (the opposite of the
coal.se grid), with the positions sepal.ated by a comma.
Thus, 234,175 indicates the 235th dot from the left of the
screen at the 176th line above the bottom of the scl.een
(the extra number is due to numbering starting at 0 rather
than 1).

Some instl.uctions permit mol.e than one position to be
specified in the tag. When this is done, the position
numbers are sepal.ated by semicolons, as in:

draw 1230;702;153,254;1230

There are thl.ee system-I.eserved words I.hat give the
cul'I.ent scl'een position (cursor location). The reserved
wol.d whet.e gives t.he coarsengrid screen position, and the
I.esel.ved words wherex and whel.ey give the finengrid
horizontal and vertical position, respectively. The values
of these system-reserved wol.ds al.e automatically updated
by the system upon completion of a text display instl`uc-
tion. t

If it is desired to convel.I coarse grid to fine grid, or vice
vel.sa, the formulas are

finex = 800 frac (coarse/100)-8

finey =512-16 int (coarse/100)

coarse = 100 (1+int((511-finey)/16)) + int (finex/8)+1

where

int(x) = the largest integer whose value is < x

fl.ac(x) = x-int(x)

For the cul'I.ent screen position, whet.ex, whet.ey, and
where can be substituted fol` finex, finey, and coal.se,
respectively. The functions frac(x) and int(x) are the
system functions.

BASIC DISPLAY PRESENTATION

What an author most commonly wants to place on a stu-
dent's scl.een is text. The -write- instruction is used for.
this pul.pose.

The -wl.ite- instruction prints whatever. is contained in
the tag of the instl.uction on the screen. The tag can be
more than one line long, provided that the lines after the

:Lrestc;i:em:rnedifletlE;.tg5rf:exl:m`;I:,ttihs:i:setyrudco,i::toccupy

write The purple unicorn
rides high on a sea of
tuna fish.

displays the text just as it appears, including placing the
text on thl.ee separate lines.

The -wl.itec- instruction is a conditional instruction which
acts as a conditional -write- instruction (refer to section
12).

tThe system-reserved words whet.e, wherex, and wherey al.e not always pl.operly updated, unless special action is taken.

For. example, the instructions

calc ni < 'xxxx'
showa nl,6

cause the system-reserved words to be set as if six, rather than four, character.s were displayed. Proper update to the
reset.ved words is made if a -I.etum-instl`uction is executed immediately following the -showa-instruction.

97405100 8 9-1

Unless otherwise specified, the first writing in a unit
begins at coarsengrid position 101 (upper-left corner of
the scl`een), and subsequent writing starts whel`ever the
last writing ended. To specify a specific position on the
screen where text is to be wl`itten, the -at- instruction is
used.

The -at-instruction has as its tag a single scl.een position,
which can be in either coal.se or fine grid. When used for
a -wl.ite- instruction (or some other display instructions
discussed later), it specifies the position at which text
presentation begins. It also sets a margin, so subsequent
lines of text start at the same character position.

Because the tag I.efers to a sol.een position, the tag must
be a pel.missible screen position. Therefol'e, if an expres-
sion or variable is used in the tag, the value of the ex-
pl.ession or val.iable cannot, for example, be less than 101
(for a coarsengl`id position). Similal'ly, a coarse-grid
position such as 375 is not permitted.

The example of the -wl.ite- instruction pl.eviously given
would appear in the upper-left col.nel. of the screen,
beginning at coarsengrid position 101, if it were the fil`st
such instruction in a unit and no -al.- instruction was used.
However, the instl.uctions

at 1520
wl`ite The purple unicorn

rides high on a sea of
tuna fish.

would position the text near the center of the screen, with
all three lines starting at char.acter position 20.

Sol.een locations for displaying text, data, and dl.Swings
may also be set with an -atnm-instruction. This instruc-
tion works like the -at-instruction except that it does not
change the left margin for continued lines of the display.
Continued lines are aligned with the margin previously set
by an -at-. If no -at- has been specified, the default for
the margin is char.acter position 1 (left edge of the
screen).

DISPLAYING VARIABLES

The -show- instruction displays the value of the first
argument in a for.in dependent upon the contents of the
next two optional arguments. For. example, the instruc-
tion

show vl,3

displays the contents of vl. If the value to be displayed
has more than seven digits befol.e the decimal point or is
less than 10-4, it is displayed in exponential format. If
the value is less than 10-9, a zero value is displayed. If a
third argument (specifying minimum absolute value to be
displayed) is used, a zero value is displayed if vl is less
than the absolute value.

The -showt- instruction displays the numeric value of a
val.iable in tabular form. The fil.st argument of the tag
gives the variable to be displayed, and the second gives
the number of digits displayed. This al.gument
integel` or a floating-point number of the form I.r
where I specifies the number of digits to the left
decimal point, and r specifies the number of digits

9-2

right of the decimal point. If r equals 0 or is omitted, it
specifies an integer number. If r is less than or equal to 9,
either I.r or I,r is allowed. If r is greater than 9 or if I and
r al`e variables I.ather than constants, then only 1,r is
allowed. If the value of the variable cannot be displayed
in the specified length, the display is a line of asterisks.
As an example, if tlie value of variable check is 625.38
and the instruction is

showt check,2,5

the display is:

The existence of more digits beyond those specified to the
right of the decimal point in the case of a floating-point
number does not cause asterisks to be displayed. The
value is rounded to the number of digits I`equired.

If the second argument of the tag is omitted, the default
number of decimal digits, in the case of an integer vari-
able, is assumed to be 8. The default format, in the case
of a floating-point val`iable, is assumed to be 4,3.

The -showo- instruction displays the value of the variable
in octal. The first ai.gument of the tag specifies the
variable. as with the -showt- instruction, and the second
specifies the number of octal digits that al.e to be
displayed. If the second al.gument is omitted, a default
value of 21 is assumed. Since one computer wol`d is
precisely 20 octal digits on the PLATO system, tliis auows
an extl.a space, so tabulated I.esults can be displayed
without the necessity of worrying about space to be left
between entl.ies.

When the lesson author cares only about the most sig-
nificant digits of a value, the -showz- instruction is most
appropriate. This instruction has either one or two
arguments. The first argument gives the value the
instl.uction displays. The second argument specifies the
number of significant figures of the value of interest to
the author. If the second argument is omitted ol. zero, a
default of four signif icant figures is used.

However, the number of significant figul`es desired and
the number of digits displayed are not necessarily the
same. The reason is the space required to display a value.
If the value is 193752.675, displaying only the four most
significant figures would give

1.937X io5

whel.e the scientific (exponential) notation is used to give
the magnitude of the number. The use of the period,
multiplicative X , and 105, however., require five char-
acter spaces in addition to the significant figures. Since
the full integer value uses only seven charactel.s, as
opposed to the nine characters used with the exponential
for.mat, it is shorter to display the full integel. value,
rounded if necessary, as in:

193753

The -showz- instl.uction checks whether full integer or
exponential format is shol.ter.and uses the shorter of the
two for.mats.

When exponential form is desired, the -showe-instl.uction
is used. As with the other forms of -show-, the first

97405100 C

argument gives the val.iable name and the second al.gu-
ment gives the number of digits. The third argument
indicates the format. Standard for.mat (for example,
4.00X103) is indicated by a 0 or by omitting the al.gu-
ment, and ** format (4.00*10**3) is indicated by a non-
zero thil.d argument. The width of the display field (that
is, the width of the line used in the display on the screen)
depends on the size of the exponent. A leading blank or a
negative (-) is automatically provided Lo assist in the
creation of the tabular displays. If the exponent power is
zero, 100 is not displayed. If the second al.gument is
omitted, four digits al.e displayed.

If the data in the student variable is in alphanumeric
form, it can be displayed by using the -showa-instruction.
In this case, the second al.gument of the tag gives the
number of chal`acters to be displayed. If omitted, the
second al.gument is assumed to be 10. The instl.uction
assumes that the information is packed left (left-justified)
in the variable. This is the case if it was stored with a
-pack- or -storea- instruction. Otherwise, it may be
necessary to shift the data to the left of the word using
the bit operator Sclss (refer to section 7).

Character spaces containing (numeric) zeros are ignored
when displaying the variable, but the system-reserved
word where is updated as if the chat.acters wet.e displayed.
Thus, the instructions

calc nl € 'xxx'
n2 € ,abc'

at 1510
showa nl, 20

display

xxxabc

beginning at screen location 1510. After display, the
system-reserved word where has a value of 1530, alt.hough
I.he actual cuITent screen position is 1516. The system
updates where after each line of wl.iting and at the end of
a timeslice. It does not update where after each -showa-.

The -text- instl'uction displays the contents of an alpha-
numeric buffer, automatically executing carriage retul.ns
at the end of each line of text. The -text- instruction
displays lines of text faster than a loop of -at- and
-showa- instructions can. CDC software identifies an
end-of-line by two 6-bit zel.o codes at the end of the
computer word. The -text- instruction converts these
lowest 12 bits of zero into a carriage return and displays
the entire buffer, ignoring any extra zel.o codes. If the
variables nl thl.ough nl0 contain the following codes

Variable

97405100 C

Octal code

24101123551411160555
03171624011116230000
34430000000000000000
03100122010324052200
00000000000000000000
03170405235502050617
22055524100555061122
23245534355502112423
00000000000000000000
17065532052217570000

the instructions

at 1010
text nl,10

display the following with the t from the word this at
sol.een position 1010.

this line contains
18
character
codes before the first 12 bits
of zero.

The -hidden- instruction displays the contents of a val.i-
able, showing all the inter.nal 6-bit codes, including the
characters that nor.mally are not displayed (hidden char-
acters). Following al.e the symbols used to designate
these chal.acters.

Eel C ode
OOOO

o55

uo66

no67

+o70

o71

-o74

®o75

Bo76

Chal.actel.

Zel.o

Blank

Subsc,.ipt

Supepscript

Shift

Carriage return

Bacl(space

Font

Access

ER^SING'

It is sometimes desirable to erase text that has already
been displayed. Entering a new main unit erases the
entil.e screen, unless the author specifies otherwise with
the -inhibit-instruction (refer to section 10), but entering
a new unit is not necessal.ily the way the author wants to
construct the lesson. Additionally, it may be that only
pal.t of the displayed text is to be erased. This type of
el.asing is done thl.ough use of the -erase- instruction.

There are t.hree forms of the uel.ase-instruction; the form
used depends on the type of erasing desil.ed.

If the tag is blank or negat.ive, the eel.ase- instruction
erases the entire terminal screen. If the tag is zero, the
instl`uction is ignored.

If the instl.uction tag is a positive value n, the instl.uction

erase n

erases n characters, starting at the curl`ent cursol. posi-
tion. A character is an 8-by-16 dot area. If the value n is
not an integer, it is rounded before erasing is done.

9-3

An -erase- instruction with a tag of two al.guments speci-
fies a block of character positions to be erased. The fil.st
al.gument specifies the number of char.acter positions on
each line that al.e to be erased (starting fl.om the cur.rent
screen position), and the second argument specifies the
number of lines that are to have these characters erased.

For. example, the instructions

at 1520
el`ase 20,5

el.ase character positions 20 through 39 of lines 15 through
19. The two arguments are separated by commas. The
one- and two-argument -el.ase- instructions do not affect
the system-reserved word wherc..

The ngrase- instruction with the tag abort el.ases the
entire scl`een and aborts any pending output in the buffer.

To erase a complicated display after a I.esponse is judged
no, an -eraseu- instruction is used. The unit named in the
tag of this instruction is executed (and I.emains in effect
for the entire main unit) when any of the following keys
are pressed after an ok or no judgment.

ERASE
SHIFT ERASE
NEXT (not after ok)
EDIT
SHIFT EDIT

Default erasing (occurs when one of the above keys is
pl.essed after a no judgment) is done in addition to the
eraseu unit. If a -write- instl.uction with a blank tag is
the last wl.iting done after a no judgment, default erasing
is turned off .

If the tag for the -el.aseu- instruction is blank or q, pre-
vious ueraseu- instl.uctions are cleared.

LARCE AND ANCLED WRITING

lt is sometimes desirable to use writing that is larger than
normal to emphasize a point, to give a heading, and so on.
This can be accomplished by means of the -size-
instruction.

The fol.in of the tag is a number or expression apecifying
1.he size of the writing. Normal writing is called size 0,
instead of 1. Ovel.size wl.iting is slower than nor.mal
writing, so whenever oversize writing has been used, a
-size 0- instruction should be used to I.eturn to normal
size. An example is:

lleadel.
e 3 Sswl`iting is 3 times normal size

1010
te PSYCHOHISTORY
eo

Any writing (assuming no ful'ther modifications of size)
that is done after these instl.uctions is normal in size and
speed. If a -size 1- instead of a -size 0- instruction were
used, writing would be at nol`mal size but at the slower
speed of lal.ge size writing.

9-4

The -size- instl.uction can have either one or two argu-
ments. If one argument is used, it is the size of both the
horizontal and the vertical dil'ections. If two arguments
al.e used, the first gives the size in the horizontal
dil.ection and the second gives the size in the vertical
dir.ection. Since the -size~ instl.uction is affected by the
-rotate- instruction, the terms horizontal and vertical
refer to the directions when the -rotate- instl.uction is
not used.

Trle instl'uctions which are affected by -size- are -wl.ite-,
-wl`itec-, -rat-, -I.draw-, -I.circle-, -rbox-, ~rvector-,
-labelx-, -labely-, ngl.aph-, and -erase-.

The system-I.eserved words size, sizex, and sizey are set
to the cul.I`ent values of size specified in the one-and
two-al.gument tags, respectively.

The -size- instl.uction without a tag is equivalent to the
-size 0- instl'uction.

It is also possible to write at an angle to the normal,
horizontal presentation. This is specified by the -rotate-
instruction. The tag gives the angle, in degrees, through
which tlie line of text is to be rotated. Nol'mal (size 0)
text is unaffected by the -rotate- instruction, so if it is
desired to write nol.mat-sized text at an angle, the
-size-1-instl`uction must be used prior to writing.

The zel.o angle is the point dil`ectly to the right of the
center of the circle, with the angle increasing in a
counterclockwise dil.ection. This is standard mathemat-
ical notation.

Alternate character sets cannot be used when either the
-size-or -rotate-instruction is in effect.

GRAPHICS INSTRUCTIONS

Thel.e al.e seven basic instructions for creating dl.Own
displays on the student's screen.

The ndot- instruction places a single dot on the student's
scl`een. The tag of the instruction can be either a coarse-
or a finengl.id location. A finengrid location specifies the
dot to be placed explicitly. If a coarsengrid location is
used, the dot is placed in the lower-left corner of the
character block specified. It is possible to draw entire
figures using the ndot- instruction; howevel', it is not
recommended. The procedure is slow, difficult to read in
the lesson code, and liable to el.ror. A single, isolated dot
on the screen will not always liglit, especially when the
screen is blank.

For drawing figures, the ndraw- instl.uction should be
used. The tag of this insll'uction specifies a number of
points, with separate points being separated by a semi-
colon. The point specifications can be eithel. coarse or
fine grid, and the two types can be mixed in a single
instruction. The skip option is also available.

For example, the instl.uction

draw 2015;100,200;1500;skip;205;2015

draws a line fl.om the lower-left col.ner of chal.actel.
position 2015 (coarsengrid) to dot position 100,200 (fine-
grid), and from there to the lower-left corner of character
position 1500 (coarsengrid, again). The cursor then skips

97405100 C

:3a::arase.fnreidfrBo:it:ohnar:::erwi5;h:i:i.:r3*nE.acii:reaca,::
position 2015.

The system-reserved words whel'e, wherex, and wherey

fnrfr::tti::.da#c:T`:[n :#setr::i;o°nf seuxcehc::ion of a nil.aw-

dl.aw 131;1015;where+504

is not the same as:
I

draw 131;1015;1015+504

Drawing starting from the current cul.sor position (at the
beginning of execution of a nil.aw- instruction) can be
done by having
tag. The line i8

semicolon as the first character of the
then drawn from the current charactel`

position to the location specified in the next al'gument.
An example of this usage is

draw ;where-6
I

This instruction :underlines the last six character positions.
If the ndl`aw- instl`uction is given wit.h a single argument,
it functions as a ndot-instruction. The single argument is
evaluated to give the point.

Each argument| of a ndraw-instl`uction can be an ex-
pression rather than a number or variable name. A maxi-
mum of 63 arguments can be used in a single nil.aw-
instruction.

For drawing cilicles, there are two instructions, ueircle-
and -ircleb-. The -it'cle- instruction dl'aws a solid
circle or arc, while the ueircleb- inst.ruct.ion draws a
broken Oil.cle or arc.

g:t:.:n£:threurc:£noeTsofatvheretehearsummee:ot:T:fh:aEj.rsTh:I;:gin::I
specifies the radius of the circle in fineil`id dots. If the
three-argument tag is used, the second and thil.d argu-
ments specify the beginning and ending angles, I`e-
spectively, for drawing an arc. The angles ape in degrees
I.athel. than radipns, and the degl.ee sign is not used.

The zero angle is the point dil`ectly to the right of the
center of the cil'cle, with the angle increasing in a coun-
terclockwise direction. This is standard mathematical
notation. I

The center of the Oil.cle or al.c is set with a preceding
-at-or -atnm-. If these instructions are not pl.esent, the
center is set at the curl.ent value of wherex,wherey. The
edge of the scrqen pl.ovides automatic windowing.

The -window- instl.uction limits the display area of the
screen for display of anything except size 0 text display.
The effect is to show only that part of the display that
lies within the bounds of the window. Thus, a -circle-
instruction exe¢uted after a -window- instruction shows
the entil.e Oil.cle only if it lies completely within the
window. Otherwise, it shows only a part of the circle, ol.
if the Oil.cle lies entirely outside the window, nothing at
all.

Fehceta-nwgLL:d°;-ecL|nf:terductb£;n:Lp;:tss]t:hec:Lrsnp::yaarteat#h)tnw:

97405100 C

locations given. If only one location is given, the window
has opposite col`nel`s at 0,0 and the specified location. If
the first location is omitted but the semicolon pl.ecedes
the second location, the opposite corner.s are at the
current screen position and the specified location.

The window specified is active until superceded by an-
otller -window- specification or until turned off by a
-window- instruction with a blank tag. Entering a new
unit does not turn off the window, just as it does not turn
off the size specification.

The instructions affected by the -window- instl.uction are
all of the display instl.uctions except text display of size
0, the ndot- instruction, and author.ndesigned chal.acters.
This includes the graphing instructions discussed later in
this section.

:£t:ciixe-rsfnasttrtuhcetft°#:cwastj%nrsecg:3:ErLa[rfbo°niyw;:he°]38:=
tion is given, the box is drawn with opposite cornel`s at 0,0
and the specified location. If the fil.st location is omitted
but the semicolon precedes the second location, the
opposite corners are at the cul.I.ent screen position and the
specified location. Wherex and whet.ey are set to the last
point drawn. An optional third al.gument specifies the
thickness of the border of the box.

The -vector- instruction dl.aws a vector with the tail at
the first location specified and the head at the second
location specified. If only one location is specified, the
tail is dl.Own at 0,0. If the first location is omitted but
the first charact.er in the tag is a semicolon, the tail is at
the current screen position. If the size of the head is
specified, the full three-argument form of the instl.uction
must be used. If the vector. is smaller than the size of the
head, the arrowhead is automatically I.educed in size. At
some angles the arrowheads may look unusual because of
the dot patterns that form the arrowheads. Often, this
can be corl.ected by use of a differ.ent al.powhead size.

RELOCATABLE INSTRUCTIONS

Gel.lain display instl`uctions are relocatable with I'espect
to a specified ol.igin. With this feature. a set of instruc-
lions may display a drawing in one section of the screen at
the beginning of a lesson, and then using the same set of
instl.uctions, display the drawing in another section of the
sol.een later in the lesson. The relocatable origin is
specified with the -rorigin- instruction. It serves as a
refel.ence point fol. the relocatable instructions. An
-rot.igin- setting I.emains in effect until another -rorigin-
instruction is executed. If no -rol`igin~ is specified when
entel.ing a lesson, it is set to 0,0. Fineirid coordinates
are preferable over coarsengrid coordinates.

The relocatable instl.uctions which -rorigin- affect are
-rat-, -I'atnm-, ~rdot-, -I`draw-, -I.circle-, -rbox-, and
-rvectol`-. These instructions wol.k in the same manner as
the corresponding instructions obtained by deleting the
beginning r's, except that all are affect.ed by the -size-
and -I`otate- instructions. For example, figures made
with -rdraw- may be sized lal.ger or smaller or may be
rotated. If the figure is rotated, the size may be 0.

9-5

The -rat- instruction relocates scl'een positions relative
to -rol.igin-. When the -I.atnm- instruction is used, con-
tinued lines are aligned with a mat.gin previously set by
-rat-. The default mal.gin, in this case, is set by
-rorigin-.

The -rcil`cle- instruction draws an ellipse if the values of
sizex and sizey are differ.ent. The -I.box-instruction uses
the current -rorigin- as a corner when only one location
has been specified. The -I.vector- instruction uses the
current -I.origin- as the tail position if only one location
has been given.

MODE CONTROL

The PLATO terminal operates in three modes under
control of the author. The standard mode is the write
mode. This is the mode the terminal is in when the stu-
dent signs on. In this mode, new text is written over the
character spaces without any display that might be there
being affected. Hence, if text was already pl`esent, the
new text is written without the original text being el.ased.

The rewrite mode erases a character space and then
writes the new text in the space. This is useful for pre-
senting new text on a portion of the screen without dis-
turbing the rest of the screen. However, care should be
exercised if this mode` is used for line displays using such
instructions as ndraw- and ndot-. Writing must be size 0
in rewrite mode.

A method of erasing presented texts with a minimum
effect on any background displays is thl.ough the use of
the erase mode. In this mode, anything written or drawn
is actually el.ased, but only those screen dots that would,
in a different mode, be lighted upon execution are
cleared. By changing the erase mode and I.eexecuting
display instl.uctions (whet.her graphics or text), only the
dots of a character are affected. Thus, background dis-
plays are less distul.bed than they would be by the
-mode rewrite- instl`uction.

The mode of the terminal is set by the author using the
-mode- instruction. The three keywol'd tags permissible
al.e wl.ite, I.ewrite, and el.ase for the wl.ite, rewl.ite, and
erase modes, respectively. A conditional form of the
-mode-instruction is available (refel. to section 12).

9-6

The -color- instruction may be used in much the same
manner as the -modes instruction for writing and erasing.
In fact, the -color orange-instruction is equivalent to the
-mode write- instruction, and the -color black- instruc-
tion is equivalent to the -mode erase- instruction.

EMBEDDING

For simplicity of presentation and manipulation of ma-
terial, several of the display instructions can be embedded
in a -write- (or -wl`itec-) instl`uction. As an example, the
instl.uction

write The value of the expression is
< t, result > .

places the value of variable result on the screen in the
appropriate place.

The left delimiter of an embedded instl`uction is obtained
by pressing ACCESS 0, and the right delimiter by pressing
ACCESS 1. A list of the instructions that can be
embedded, together with their embedded fol.in, is given in
table 9-1. The al, a2, and so on, are the arguments of the
tags. Some of these al.e optional for certain instructions.
The standard default options for nonspecified parameters
are in effect, except that no leading blank is supplied for
the embedded form of the -showo-instruction.

The embedded -mode- instructions are rather. different
from the normal -mode- instructions. Rather than
switching the mode of the tel`minal unconditionally, the
embedded -mode- is in effect only until the end of the
character text string that follows. The end of the ~write~
instruction or another embedded instruction of any kind
returns the terminal to the mode the tel.minal was in prior
to the beginning of the -write- inst.ruction.

TIMING

To contl.ol the timing of displays, the authol` language
provides two instructions, -catchup- and ndelay-.

TABLE 9-1. EMBEDDED INSTRUCTIONS

Normal Form Embedded Form Comments

show al,a2 ,a3 <s,al,a2,a3> No trailing zero
showt al ,a2 ,a3 <t,al,a2,a3> Tabular - fixed field
showz al ,a2 <z,al,a2> No leading blanks
showo al ,a2 <O,al'a2> Octal number
showe al ,a2 <e,al.a2> Exponential format
sliowa al ,a2 <a,al'a2> Character strings
at al ,a2 tat,al'a2> Writing position
atnm al ,a2 <atnm,al,a2> Writing position
size al <size,al> Size of writing
ro tote al <rotate,al> Angle of writing
mode write , <m'W> Write mode
mode erase <m,e> Erase mode
mode rewrite <m,r> Rewrite mode

97405100 C

TABLE 9-2. REI.ATIVE TIMING EXAMPLE

Instruction txt ttt

unit drill .000 ***
ran u nl .001 ***

:fzneq
I u n2,5012

.002 ***

.003 ***
at 1510 .004 ***
write Add these numbers .005 .005

!i,:,lit !!:3:

.015 ***

.016 2.006

.018 ***

.019 2.087

.020 ***
show t n2,3 .021 2.017
draw ;1210 .024 2.127

::rt#up 1410
.025 ***

2.129 2.129
time'5I

2.130 ***

ttx is an abproximate time of execution of the instl.uction I.elat.ive to the time the unit was entered (in seconds).
t tt is the a proximate time the event indicated by the instruction would be obsel.ved to begin relative to the time the unit

was ente ed (in seconds).

;;:::iT:ti:::tH;efin:i#j::Toe:xfa:::c::n#a::.I:I:lneisesg:e:need:f
;i:t!e:d:processes in

can be displ
causes the

lions at a much faster rate than material
on the screen. The ueatchup- instl.uct,ion
to stop execution until all matel.ial sent

to the terminal for display has been displayed. An
example of
tx and t,
factor.S.)

usage is given in table 9-2. (The times,
depending on system load and other

The -delay- instruction can be used to give precise speci-
fication of o
equal t.0 1.
second maxi

utput delays. The tag is a number less than or

i.agTshE:C{Lfsftersu:T]eo±£[¥eesdpee[:]yainysuesce°#f!:
blinking or an

CONSTRufTINC ALTERNATE CHARACTERS

Besides tlie |126 char.actel.s that the author language
pl.ovides for
be programm

tion can be
possible and
character set

lessons, there are 126 char.actel`s that can
d by the author. For special chal.acters in a

lesson that uie f:w :Tch characters, the -char- instruc-
sed. If many chat.actel.s al.e used, it is
usually desirable to create an alter.mate
This is the case when teaching a language

that does not |use the Roman alphabet, such as Russian, or
when comple
used.

Each charact
16 dots Ilig
character is
char.acter.

97405100 C

but repetitious displays of small size are

possesses an area 8 finengrid dots wide and
The dots that are lighted when the

lotted determines the appearance of the

The nghal.- instruction specifies a slot in the alternate
character memol.y and the dots within the 8 by 16 patt.ern
that are to be lighted. The slot can be specified either by
the actual number or by a defined constant (I.efer to
section 7) as the first argument in the tag. The in-
struction clears the altel.mate-characterrset flag that
indicates which alter.nate chal'acter set is loaded in the
terminal, unless prevented by the -inhibit charcleal`-
instl.uction (refer to section 10).

The specification of the character is usually done in the
tag field of the two lines following the nghal.-command.
The tag is nine arguments which can be entered in a single
line if space permits. Howevel', the multiple line tag is
clearer and easier to edit in case of a change. Four of the
columns of the cliaracter space are specified in each of
these rows. The specification is done by identifying the
positions in the column that al.e to be lighted with a set
bit, that is, a value of 1 wherever the dot is to be lighted.
For this reason, it is usually best (but not necessary) to
give the specifications in octal, which has an easily
interpreted relationship to binary (I.efer to appendix C).
The specifications for each column are sepal.at.ed by
commas. An example of a chal.acter definition is given in
figure 9-1.

When t.he charactel. has been defined, the -plot- instruc-

:£f°:hj:£unsset:utc°tjsohn°Ts:#:::amp:C(toerrm°:mt::ys:foete:LmTbheer)t%¥
the char.acter to be plotted. The -plot- instruction
displays only one char.acter but othel.wise functions as a
-write- instruction functions. That is, the cursol. must be
placed pr'ior to plotting, with the default of plotting the
character in either location 101 (if no display instl.uctions
wel.e previously executed in the unit) or just after the last

9-7

'oooooooo-6-o-6-o-6-o-a-6.
o®oooooo
oo@ooooo-6-6-o-6b-6-o-6-
oooo©ooo
ooooo©oo
oooooo©o
00©©©®®©
ooo©oooo•O-C)-o-6©-O-C>-o-

oooo®ooo
oooooooo'6-6-©-©-®-®-©-6

oooooooo
oooooooo

t
oooooooo

:i::::y.

00

00006000
04444444

Fll`ST DIGIT IN (OCTAL) TAG

SECOND DIGIT llI TAG

I(lathe = 11
k'ath

#T22##8"£EL#;ffi
Figure 9-1. Sample of Character Definition

(that is, at the value of the aystem-I`eserved word
As an example, if character klatha has been

defined as in figul.e 9-1, the instructions

at 1010
write This is character klatha: Sswith a space
plot ltlatha Ssfollowing the:

would display

This is character klatha: i

on the screen.

The plot- instl`uction can also be used to display a char-
acter fl.om the nonprogrammable cliaracter set. In such a
case, the value of the tag is between 0 and 126, depending
on the character to be displayed.

CHARSETS

When a large number of alternate chal.actel`s are used in a
lesson, it is easier to specify a character set. This can be
done by creating a new block in the lesson, specifying it as
a -charset- blocl(, and then following instl`uctions. With
this metllod, you can associate each character. with a key
or shifted key by simply specifying which key is to be
used.

9-8

Once the char.acter set is defined, it is necessal.y to load
it into the altel.note char.acter memol.y of the terminal.
This is done in the regular lesson code by the use of the
-charset- instruction.

The -char.set- instruction has two arguments in its tag.
The first argument gives the lesson in which the character
set is contained, and the second al.gument gives the name
of the chal.acter set. As an example, the instruction

charset phill(,blach

would obtain set blach from lesson philk and load the
char.acters into the altel`nate character memory of the
terminal. Additiomlly, it sets a flag identifying the
chal.acter set to be used with the uehartst- instruction. If
the character set is in the same lesson that uses the
utharset- instruction, the fil'st argument is optional.

A blank tag clears the alternate character set flag.

New character sets do not blank out the altel.note chal`-
acter memory but merely I.eplace those chal.acters speci-
fied by the new character set. Hence, if an alter.mate
chal.acter is not I.eplaced by a new alternate character,
the character is still contained within the terminal
memol.y and can be used by the student or authol`.

After a -char.set- instruction, the aystem-reserved word
zl.eturn allows the author to check if the character set
was pl.operly loaded. The system-reserved wol.d zreturn
has the following values.

Value

-1

0

1

2

5

_M_ee_n_i_pg

Character set is successfully
loaded

Character set is not found

STOP I(ey is pressed

Character set is loaded impl.operly

No character set name is given

It I'equires about 17 seconds to load a complete character
set, so it is usually desil`able to write a message on the
screen informing tlie student of the reason fol' the delay.
If the required character set is already in the terminal
memory, the terminal remembers this and loading does
not occur.

Because different character. sets can be moved into the
terminal between sessions, the best location for the
nghal.set- instruction is in the IEU. For example, the IEU

at
write

charset
el'ase

1221
Now loading criapacter Set.
Please be patient, loading I`equil`es
about 17 seconds.
philk,blach

loads the desired character set and performs an erase
when done to pl`event cluttering (or blocking) the display
of the unit in which the student begins lesson execution.

97405100 C

The nghartst- (char.acter test) instruction determines if
the char.acter set named in the instruction tag is curl.ently
loaded into th
instruction tag
acter set, and
character set. I If the character set is in the same lesson
that uses the nghal.tst- instl.uction, the first argument is
optional.

Sometimes it is confusing to a student when a '1oading
chal`acters' message quickly flashes on and off the screen.
The system-reserved word zretum has the following
values.

_ngej£_n_in_g

Character set is loaded

Chal.acter set is not found

After a -chartsl- instruction, the author can use t.he value
of system-reserved wol.d zretum to determine whether or
not to place a message on the screen.

Alternate characters associated with a key are accessed
by use of the FONT key. Unlike the SHIFT or ACCESS
keys, the FONT key need not be pressed before each
charactel` to type t.he alternate character set. Instead,
the FONT key iswitches the terminal back and fol`th be-

;ree£:d:hethtew:|tcehranraatcete:h:::Sc.terw€:i;sheusFe3NUTnt¥]eyth£:
tel.minal is switched back to the standal`d character set by
again pl.essing the FONT key.

Alternate characters, whether of a full char.acter set ol.
const.ructed through use of the uehar- instruction, are not
affected by -size-or -rotate-instructions. In fact, using
alternate font characters following a -size- instruction
with a tag other than 0 (if no lineset is in use) results in
the keys associated with the alternate font char.acters
being written at tlie larger size rather than the alternate
charactei.s.

If all the text, both by the author and the student, is to be
in an alter.mate character set, the -altfont- instl.uction
can be used. This instl`uction switches the tel.minal into
the alternate font if the tag is on, 1, or all and switches
bacl(to the nobmal character set if the tag is off, 0, or
normal. Aft.er an -altfont- instruction. the normal

ishoafaTctkeery,Sebtutcaannbeewa£::SIS:dot_ewmr?t°er.ar£L]gtrbuycti::::uts::
the tel.minal to return to the alternate chat.acter set. The
effect of placing an -altfont on- instl`uction in the lesson

I is much the same as the author pl.essing the FONT key and
using a -force font~ instl.uction for the student I.esponses.
A difference is that the lesson code is in the standard
character set,
thel.e is a cle
acters and the tlrwt:rirecnl:::oa:n::Tpaackb`e::!:ei:Lngthde'fi'ocru:t:,ucn::::

A pseudo-conditional fol.in of the -altfont-instruction can
be constructed by using a variable or simple expression as
the tag. However, only integel` val.iables should be used.
Great care must be taken in the construction of the
expl.ession, since a value other than exactly 0 or 1 causes
an execution erl.ol.. (Hence. a floating-point variable
assigned the vquue 0 cannot be used, since the value is not
precisely 0).

97405100 C

LINESETS

A uneset is similar to a charset. Both are charactel.
blocks designed by the author; however., the line-dl`awn
characters in a lineset may be sized and I.otated using the
rsize- and -rotate- instl.uctions. In fact, the size must be
nonzero to display lineset char.actel.s; otherwise, charset
characters al.e displayed instead. This allows a lesson to
use a lineset and a charset at the same time. Since
lineset chal`acters al.e line drawings, they take as much
time to plot as sized writing does.

The -lineset- instruction loads a lineset in a lesson. The
first argument of the tag is the name of the lesson which
the lineset is in, and the second argument of the tag is the
name of the lineset. The lineset block does not need to be
in the same lesson in which it is used; howevel., if it is, the
first argument is optional. Since the -lineset- instl.uction
is executable, diffel.ent linesets may be used in one lesson.
A blank tag cancels a previous -lineset-.

Lineset charactel`s take only as much space as is neces-
sal.y because they are variable length chal'acters. A one-
block lineset can have 128 small lineset character.s or 30
intricate ones. A lineset may be from one to three blocks
long and automatically expands or contl`acts depending
upon the space it needs.

When an author is using the editol., pressing FONT and a
letter shows a charset char.acter rather than a lineset
character because the editor is size 0.

MICROS

Micros al.e used to save wol`k for the author or student.
They allow two keypresses to do the work of up to 40
keypl`esses. In the student response buffel., the codes look
exactly as if the student has performed each keypl.ess
manually instead of using the micro option. Thus, use of
the micro does not affect judging of student responses.
When a -long- is in effect at an -arrow-, the system does
not substitute a micro if it is longer than the -long~
specification. Where the authol. has used a ~long 1-
instruction, the micro substitution is made if it is less
than or equal to 8 characters.

Each micro is contained in a micro table. A micro table
has a maximum length of 256 words, with one word
capable of holding up to 10 characters. As a I.esult, the
maximum number of micro definitions possible is 256,
with a maximum of 10 charactel.s per micl.o. This is
because each micl.o requires at least one word. Micros
can be defined as longer, with a corl.esponding decrease in
the number of micros available. A micro table with 20-
character micros has a maximum of 128 micros available,
and a micro table with 40-character micros has a
maximum of 64 micros available.

A micl`o table is contained in a special block of a lesson.
Upon cl.eation of the new block, the author must specify
that it is t.o be a micl.o block and follow the dil.ections
given. When the table is first being edited, the authol.
must choose the length of each micro. All micros in the
same block have the same maximum length (although all
available space is not necessarily used for each micro).
Thus, if the author needs one micl`o that is 37 charactel.s

9-9

long, all of the micros must be 40 character.s long. The
available lengths for a micl'o definition are 10, 20, and 40
characters per micro.

A micl`o table is obtained for lesson use by the -micl.o-
instruction. This instruction is similar to the -hal.set-
instruction. The tag specifies the lesson in which the
micl.o table is located in the first argument and the name
of the micro table in the second al.gument. If the micro
table is in the same lesson that uses the -micro- instl`uc-
tion, the first argument is optional. A blank tag loads the
system micro table.

The micro table is used by pressing the MICRO key (refer
to section 1) and then the key associated with the micro.
Fol. example, if the key K is associated with the micl.o
Kinnison, typing MICRO K places the word Kinnison on
the screen, whethel. it is the student ol. the author who
accesses the micro. The system micro table is always
available with the ACCESS key, even if another micro
table is loaded.

The -force~ instruction can be used to fol.ce the student
to use the alternate chal`acter set or to fol'ce all student
keypresses to be sent through the micro table. The key-
wol.d tag of the instruction is font and micl.o for the
I.espective cases. Additionally, the -force- instruction

::i:neseu_S]::gtt°hi,P:i:::Spr::Scehej#i:gerwht:nstehcet{:;ud[eLn):
Options can be combined within a single -force- instruc-
tion by giving the desired tags, separated by commas, as
in:

force font ,micro

-CODEOUT- INSTRUCTION

It is sometimes desil.able t.o perform some special opera-
tions wlien writing on the scl.een. These can be done by
pressing the appropriate key in a -write- instruction, but
these can be difficult to spot when editing the lesson.
Thel.efore, the -codeout- instruction is provided.

The tag of the ueodeout- instruction is an octal number
that specifies the action that is to take place. The per-
missible values of the tag are given in table 9-3.

TABLE 9-3. PERMITTED ngodeout-TAG VAI.UES

Value Action

ol0 Backspace

oil Tab

ol2 Line feed, with no carl'iage return

ol3 Vertical tab (up one line)

ol4 Form feed (to upper left col.net.)

ol5 Carriage return (to left of screen)

ol6 Locking superscript

ol7 Locking subscript '

9-10

-TABSET- INSTRUCTION

The -tabset- instl`uction enables the author to give a set
of tabs that the student can use in his response. The tag
consists of exactly 10 two-digit fields, with a preceding o.
All values are in octal. For example, the instl.uction

tabset ol0203040500000000000

sets tabs for student use at columns 8, 16, 24, 32, and 40
(in decimal). The fields al.e not separated by commas.
They can be made contiguous, as in:

tabset ol0203040500000000000

NONSCREEN DISPLAY INSTRUCTIONS

These are instructions for controlling the nonscl`een
capabilities of the PLATO terminal. Not all of them
apply to every terminal or every installation.

The -slide- instruction selects a slide from the microfiche
and projects the slide on the terminal scl'een. The tag is
the number of the slide to be shown. There are 256 slides
on each micl`ofiche sheet, so snde numbers can range fl.om
0 to 255.

There are two additional options with the -slide-instruc-
tions. If shide n is the slide desil.ed, a tag of 512+n selects
the slide but leaves the bulb of the projector turned off .
If the tag is 256+n, the slide is selected, the bulb is tul'ned
on, but the shutter remains closed.

Tlie locations of slides on the micl.ofiche sheet can be

:3:ci,fyi,e:nbdycr.o|Tmannix?o:F:np(arret:::,:::'Lgduerearge-2h.:n:hi:
can be refel.enced by an instruction of the following form.

slide y+16*x

The use of defined constants (refer to section 7) can
simplify the manipulation of slides so that the action
taken is appal.ent from the code. For example, the in-
struction

define shut=256
off=512
I.owcol=16

enables the use of instructions such as

slide y+rowcol*x
slide shut+n 1
sfide off+n 1
slide shut+y+rowcol*x

where shut, off , and rowcol give mnemonics for closing
the shutter., tul.ming the projector bulb off, and locating a
slide by its I`ow and column position.

The -enable- and -disable- instructions apply to the touch
panel and to the extel.nal input devices of the terminal.
Caution should be used when constructing lessons using
external devices because not all terminals have these
capabilities. Therefol`e, an alter.nate method of student
response is usually desirable, such as using the erol`-
instruction (refer to section 11) when using the touch
panel option.

97405100 C

COLUMN COLUMN
150''

16 0
17 I

'8 2

'9 3

20 4

5

6

7

8

9

10

11

12

29 13

cO 14

5 3' 15

a

- ROW 0

Figure 9-2. Micl.of iche Layout

The -enable touch- instruction allows input from the
touch panel. It remains in effect until a ndisable touch-is
executed, an -endal.row- or another -al.row- is en-
countered, or a new main unit is enter.ed with a full screen
erase. (An exception is that -inhibit erase- allows
-enable touch- to remain in effect when starting a new
unit.) In a unit with an -arl`ow- instruction, the -enable
touch- instruction should follow the -arrow- instruction.
In a unit with no -arrow- instruction, the ~enable touch-
instruction allows the touch panel to function in the same
mannel` as the NEXT key.

The -enable ext- instruction allows input from all other
extel'nal devices. Its effect is cancelled only by ndisable
ext-.

The -play-, -record-, and -audio- insl.ructions al`e used
with the optional audio disk featul.e of the terminal. The
audio disk has 128 tracks, each of which is 32 sectors long,
with each sector lasting about 0.33 second. One track,
therefor.e, is about 10 to 12 seconds long.

Playing and recording (up to 32 sectol.s with one com-
mand) can star.t anywhere on a track. Howevel.. recording
separate wol`ds and then putting them together to form
messages should not be tried; phrasing and pitch will sound
unusual, and messages over track bl.eaks will not repro-
duce,

Both the -play- and -record- instructions have a tag
consisting of thl.ee arguments: track number, sector
stal.ting place, and number of sectors to be played or
recol`ded. For example:

play 2,0,23

activates the pl.erecorded message on tl.ack 2, sector 0,
which is 23 sectors long. All arguments may be mathe-
matical expl`essions.

97405100 C

The ~audic+ instl.uction has a single-argument tag (vari-
able or expression) that identifies the pl.erecol.ded mes-
sage to be activated.

The play- and -recol'd- instructions, in most cases,
should be used instead of the -audit+ instruction.

The one-argument form of the -ext-instruction sends the
rightmost 15 bits of the rounded integer value of the
expression ol. variable in the tag to any ext.ernal device
connected to the tel.minal. The two-argument form
checks if another station wishes to receive -ext- instruc-
tions. The ~extout- instruction sends the 16 rightmost
bits of a wol'd to any external device connected to the
tel.minal. It sends the rightmost bits of each wol.d for as
many words as specified in the second argument, starting
with the variable in the first argument. Because the
I.esult of sending I-ext- and -extout- values depends on the
device attached, it is necessary to be familiar with the
device and to know which device is connect.ed.

RELATIVE GRAPHICS INSTRUCTIONS

The ngorigin- instl.uction works in a parallel fashion to the
-rol`igin- instruction. The ngorigin- instruction affects
the graphing instl.uctions and the relative graphics in-
stl.uctions. The graphing instl.uctions al.e -axes-,
-bounds-, -scalex-, -scaley-, ~lscalex-, -lscaley-,
+labelx-, -labely-, -markx-, -marky-, -gI`aph-, -hbar-,
-vbal`-, -funct-, ndelta-, and -polar~. These are de-
scribed later in this section. The I.elative graphics
instructions are ngat-, ngatnm-, -gdot-, ngdl'aw-,
ngcircle-, ngbox-, and Egvectol.-. These instructions work
in the same manner as the corresponding instructions
obtained by deleting the beginning g's, with the following
exceptions.

The ngat- instruction tag specifies scaled units relative to
ngol`igin-. If no -scalex- or -scaley- instructions have
been previously executed, ngat- locates a position x dots
to the I.ight and y dots above the gorigin. In the absence
of a neat- instruction, continued lines of ngatnm- default
to ngorigin-.

The ngdraw- instruct.ion tag also specifies scaled units
I.elative to ngol`igin-. Ellipses may be drawn with the
ngc'ircle- instruction if the x and y scales al.e different.

The ngbox- and ngvector- instructions use scaled coordi-
nates as specified by pl`evious -scale- and -bounds- or
-axesF instl`uctions. If ngbox- has a blank tag, it draws a
box al.ound the current -bounds-. If a apolal.- instl.uction
precedes a ngvector- instruction, the vector is drawn
assuming the tag specifies radians.

The tags of the relative graphics instructions must specify
finengl.id coordinates.

CREATING GRAPHS

The graph-creating capabilities of the author language al.e
extensive and make the construction of gI.aphs extremely
simple.

9-11

The horizontal axis (abcissa) of the graph is usually re-
fel`I'ed to as the x axis, thus following the general

%g:ibnraati:,ofo,E:eg#.isus:iaT|;larr:F;r.:Ee,ovaesr:LcealyaaxTi:
In some of the graphing instructions, such as -mal.kx- and
-lscaley-, there is an instruction pair that performs in
identical fashion, except that they refer to different axes.
These instructions are differentiated by the final char-
acter in the command portion of the instruction. Instruc-
tions with an x as the final char.acter in the command
refer to the abcissa. Those with a y as the final character
refer to the ol.dinate. It is not necessary that the vari-
ables which the axes represent, if any, be named x and y.

SETTING BOUNDARIES 0F A GRAPH

The ngorigin- instruction specifies the location that
serves as the origin of the gI.aph. This is not necessarily
the 0,0 point of the graph, but it is the point where the
axes cross. The tag of the ngorigin- instruction is tlie
screen location of the ol.igin. A default ngorigin- in-
struction of 0,0 is executed at lesson initialization. A
ngorigin- instl.uction I.emains in effect past unit bound-
al.ies,

The axes of the gI.aph are dl.awn with the -axes- instruc-
tion. The tag of this instl.uction has two forms. If it is
desired to draw the axes only in the positive direction
starting at the origin, the tag is the length of the axes,
with the x axis specified fit.st, in finengrid dots. If it is
desired to have the axes extend in the negative dil'ection
as well, a tag with four arguments is used. The first two
arguments give the length of the negative portions of the
axes and are negative numbers. The second two argu-
ments give the length in the positive direction. The x axis
is the first argument in each pail.. Both forms of tag have
all al.guments separated by commas. A blank tag I.edraws
the axes otter erasure.

If it is desil.ed to draw a graph without showing the axes,
the -bounds- instl`uction sliould be used instead of the
-axes- instl.uction. Tlie format of the instr.uction tag is
the same as for the -axes- instl.uction, and it has the
same effect but does not draw the axes. In both
instructions, the x and y values refer to the number of
finengrid dots.

SCALING THE GRAPH AXES

The two instructions for scaling the gI.aE)h, -scalex- and
-scaley-, allow later I.eferences to specific points in
terms of the graph coordinates I.Other than the nor.mal
screen grids. Both instl.uctions have a similar tag, which
can have either one or two arguments.

A tag with one argument gives the maximum value of the
axes. For example, the instl.uction

scalex 300

specifies that the maximum value that the x (horizontal)
vat.iable can attain on the gI.aph is 300. Since the length
of the axes should have been specified previously, this
instl.uction indicates the scale of the graph (for the x
axis). After both -scaley- and -scalex- inst,ructions,

9-12

following refel.ences to points on the gI.aph, I'efer to tlie
cool.dinate values of the graph rather than to the finengrid
locations on the scl.een. This form of the tag assumes
that the value of the variable at the ol'igin is 0. If this is
not desired, the two-argument for.in of the tag is used.
The second al'gument, separated fl.om the fil'st by a
comma, specifies the value of the relevant axis at the
origin. Thus, the instructions

scalex 300,50
scaley 200

indicates that the maximum value of x is 300, the value of
x 8t the ol.igin is 50, and the maximum value of y is 200,
with a value of 0 at the origin.

There are also instructions to scale the axes logal.ith-
mically. These al.e the -1scalex- and -lscaley- instruc-
tions. They are equivalent to the -scalex- and -scaley-
instl`uctions but scale the axes accol.dingly to the common
logarithm of the val.iable value. If an offset value is not
specified, a value of 1 (100) at the origin is assumed.

LABELING THE AXES

It is usually desirable, if axes are drawn, to mark units on
the axes. There are two methods of marking axes in the
author.

The -labelx- and -labely- instructions mark the axes and
provide appropl.iate numeric labels. The tag can have
either of two general for.ms depending on whether the axis
has been scaled or log-scaled.

If the axis has been normally scaled, the tag specifies the
location of major. and minor mar.ks, together with the size
of these marks. The first al.gument gives the spacing of
major marks, and the second gives the spacing of the
minor marks. This argument can be omitted. An
execution err.or occurs if either of these arguments al`e
greater than 100. The thil.d argument specifies the length
of the mal.ks. If the third al.gument is 0 or omitted, the
mar.ks are of normal length. If the third argument is 1,
major marks are extended to the boundal`ies of the graph.
If the third argument is 2, all mar.ks, both major and
minor., al.e extended to the gI.aph boundal`ies. The fourth
al`gument is an integer or a floating-point number of the
fol'm I,r or I.r where I specifies the number of digits to the
left of the decimal point and r specifies the number of
digits to the I.ight of the decimal point. If r equals 0 or is
omitted, no decimals al.e shown. If r is less than or equal
to 9, either I,r or l.r is allowed. If r is gI.eater than 9 or if
I and 1' are val.iables rather than constants, then only I,r is
allowed.

As an example, the instruction (assuming that the x axis
has been scaled)

labelx 25,5,1

places a major mark every 25 scaled units and a minor
mark evel.y 5 units. The major marks extend to the top of
the graph, but the minor marks are of normal length.

The numeric labels are placed by the major mal.ks when-
ever possible.

97405100 C

If a major mark interval of 0 is specified, as in the in-
struction

labely 0

the author language executer attempts to make a reason-
able decision on where marks should be placed, but the
result is not always optimum.

If the axis has been log-scaled, a snghtly different tag is
used. In this case, the first argument specifies the format
and must be 0. The second argument specifies the
interval of minor mar.ks (major. marks are automatically
placed each decade). If the second argument is -, no
minor marks are made. If the second argument is 0, 3, or
omitted, minor marks are placed at 1. 2, and 5 within each
decade. If the second argument is 5, minor mal`ks are
placed at 1, 2, 3, 5, and 7 within each decade. The third
argument specifies the mark size, the fourth al.gument
specifies the format, and both function as in labeling of
normally scaled axes.

If it is not desirable to give the numeric labels on the
axes, the -mar.kx- and -marky- instructions are used.
These instl.uctions function exactly like the -labelx- and
-labely-instructions but omit the numeric labeling.

It is, of coul'se, possible t.o use a -label-instl.uction on one
axis and a -mark- instruction on the other.

WRITING ON THE GRAPH

There al.e two approaches to writing on the graph. The
first uses a standard -write- instruction. The location can
be specified by an -at- instl.uction, as in othel. lesson
cl`eations. Additionally, there is the ngat- instruction,
which functions in the same manner as the -at- instruc-
tion, but which is relative to ngorigin- and uses scaled
coordinat.es.

The other approach is the use of the ngl.aph- instl.uction.
The tag of this instl.uction can have up to four arguments.
If the tag contains two al.guments, they are assumed to be
an x,y location, and a dot is placed at that location. If the
graph has been scaled previously, the x and y are assumed
to be scaled quantities. Other.wise, the ngraph- instruc-
tion is the same as a finengrid ndot- instruction.

If the ngraph- instl'uction has thl'ee arguments, the third
argument can be a text string and is written on the
screen, with the fit.st character placed at the location
specified by the x and y arguments. The string can be up
to nine character codes long. A capital letter uses two
character codes rather than one. The instruction

graph x,y,string

is equivalent to the instl.uctions

gal x,y
write stl.in8

except that the starting location of the string in the
ngraph- instruction is moved somewhat down and to the
right of the location specified so that the fil`st character
is centered on the location.

97405100 C

If the t.hifd al.gument is a variable containing the string to
be written, the string can be up to 10 chal.actel. codes
long. This form can have an optional foul.th argument,
specifying the number of characters to be plotted.

DRAWING BARS ON THE GRAPH

Thel.e are special facilities for. dl.awing bars on a gI.aph,
the -hbar- and -vbar- instructions. The -hbal.- instl`uc-
tion dl.aws a horizontal bar (that is, parallel to the x axis
or abcissa), and the -vbal.- instl.uction draws a vel.tical
bar (that is, parallel to the y axis or ordinate). The two
instructions function identically except for the difference
in direction. The tag of these instructions can have two,

:h:::;t::nf°(i:y3ri:mwehnftcsritThheebtawr°Tsart8ouT:n:rtaawgn:Pefifsf£::
example, the instruction

vbar 35,20

dl.aws a vertical bal., centered on abcissa location 35, that
is 20 units in height. Similar.ly, the instruction

hbar 35,20

draws a bar fl.om the ordinate axis to the same location,
with the bar center.ed over ol.dinate position 20. (These
instructions display bars as in figure 9-3). The units are
finengrid dots, unless a -scalex- or -scaley± instruct,ion
has been executed. When an axis has been scaled, any
later references to that axis use the scaled units.

A tag with three arguments uses the third al.gument as a
stl.ing to be plotted and plots the bar using this string.
The string can be up to nine chal.acter codes long. For
example'

vbar x,y,***

i:fwtsh:s:erht:::]B::nt°p]r°ecv::fu°sTy(X;B)e!::]9eud|£?gattha{:Vtah]#::
characters wide. The leftmost chal`acter is centered
(horizontally) over the abcissa specified. The lower part
of the character is usually the actual value, so the bar is
somewhat higher than it should be.

If the third argument in a three-argument tag is a variable
name, the contents of that variable, interpreted as a
stl.ing of characters, is used to plot the bar and must be
separated by a semicolon. All 10 char.acter codes
contained in the variable are used.

Because of the use of double dollar signs (SS) for com-
ments (refer to section 10), a string of two or more dollar
signs cannot be used t,o plot a bar, as they al.e treated as a
comment.

A four-argument tag assumes that the foul.th argument,
whether a variable name or a numbel., specifies the num-
ber of characters to be written from the variable named
in the thil.d al'gument. Thus, if the variable groaci
contains the characters hisop, and variable bolo contains
the number five, the instruction

vbal` 100,150;groaci,bolo

draws the vertical bar using the charactel.s hisop.

9-13

The thl.ee- and four-argument fol.ms cannot be used to
draw bars in a negative dil.ection. Hence, instructions
such as

hbar -10,13,*

al.e not allowed.

Figure 9-3. Example of -hbal.-and -vbal`-
Instructions

GRAPHINC FUNCTIONS

If it is desired to plot a given function of one variable, the
-funct- instl.uction can be used. Associated with this
instruction is the ndelta- instl.uction. The ndelta-
instruction specifies an increment size in its tag. This is
the increment size that is to be used unless the extended
form of the -funct-instruction is used.

The simplest fol`m of the -funct- instruction has two
arguments in its tag. The fir.st argument is the function
to be plotted, and the second is the independent variable
that is to be used. If the independent variable does not
appear in the function, either explicitly or imphicitly
through ndefine- definitions, the function is plotted as a
constant quantity. In this form of the instruction, the
bounds of plotting are the bounds of the independent
(abcissa) variable.

An extended fol.in of the -funct- instl.uction allows
greater flexibility in controlling the plotting of the
function. The instruction takes the fol`m

funct f(x),x < xbeg,xend,dx

which is similar. to the iterative ado-instruction (I.efer to
section 10). The first argument is the function to be
plotted and can be any compilable expression. The x is
the independent val.iable. Thel`efore, if the variable

9-14

specified is not present, explicitly or implicitly in the
function to be plotted, the function is plotted as a con-
stant quantity. The third argument (immediately to the
right of the <) specifies the initial value of the
independent variable. The fourth argument gives the final
value, beyond which the function is not plotted. Finany,
the last argument gives the size of the increment to be
used in incl.ementing the independent val.fable. The sign
of the last argument contl.ols the direction of plotting.

Plotting of complicated functions, in either form of the
-funct- instruction, can cause time-slice el.rors in the
lesson if the increment specified is too small. As
genel`al guide, the incl.ement should be lal.ger than 0.02
(xmax-xmin). The independent variable should also
floating-point I`at.her than an integer variable.

When the graph to be plotted does not fit well into the
fol'm of a function or when evaluating it as a function
causes timei3lice erl.ol.s, the ngdl`aw- instruction can be
used.

The ngdraw- instruction is exactly like the ol.dinary
ndraw- instruction, but it opel.ates I.elative to the cul`I.ent
ngorigin-, can use scaled units, and only uses finengrid
form.

POLAR COO.DIN^TES

Up to this point, all of these instl.uctions have assumed
the use of Cartesian (that is, rectangular) cool.dinates. If
desired, polar coordinates can be used in all except the
-hbar- and -vbal.- instl.uctions. The use of polar
coordinates is enabled by the -polal.- instl.uction.

When a -polar- instl.uction with a nonnegative or blank
tag is executed, all coordinate refer.ences following are
assumed to be in polar coordinates. Polar convel.sion is
turned off, and Car.tesian coordinate usage resumed, upon
execution of a -polal.- instruction with a negative tag.
The magnitude of the negative tag is il`I.elevant.

If the tag of the -polar- instruction is blank, polar convel.-
sion is turned on, and any scaling that has been done is
unaffected and is used in the polar cool.dinates. A tag
consisting of a single argument scales both the x and y
axes to the value of the tag. (In tel`ms of polar
coordinates, this means that the actual length of a I.adius
is independent of the angle.) A tag with two arguments
scales the x and y axes separately, with the x axis being
scaled by the value of the fil.st argument.

Polar convel.sion remains turned on, even past unit bounds.
Hence, the author should always include a -polar-
instruction with a negative tag when he is finished using
polar coordinates, ol. unanticipated I`esults can occur.

When polal. coordinates are used, the fir.st argument is the
radius, and the second al.gument is the angle (in radians),
in an cases. Thus, if the radius is I.epresented by r and the
angle by 0 , I. and 0 replace x and y, respectively, in all
instructions. The I.elationship between the two cool.dinate
systems is:

x = I. X cos (0)
y = r X sin (0)

97405100 C

LESSON SEQUENCE AND CONTROL 10

The PLATO author language pl'ovides a number of
methods for branching within a lesson. The resulting
stl.uctul.e can be complex. The instructions fall into two
major categories, author-initiated branching and student-
initiated branching. In addition, several instructions for
lesson control other. than branching are available. Many
of these also have a conditional form (refer to section 12).

Neal'ly all lesson sequencing is done in terms of sections
of source code. These sections are called units. The
~unit- iustl.uction delimits the sections (units) of the
lesson. The tag of the instruction is the name of the unit,
and it must be no more than eight charactel.s in length.
Because of the use of characters x and q in branching
instructions, neither of these can be used as the name of a
unit. The block of source code following the -unit-
instruction until the next -unit- instruction or the end of
the lesson, whichever comes first, can generally be
thought of (in tel.ms of lesson structure) as a single box
that performs some specified actions. This is an over-
simpufication, since it is possible to enter a unit at a
point other than the beginning and to leave at a point
other than the end. However, the concept has utility as a
conceptual device, provided the limitations are kept in
mind.

Several methods of accessing a unit are available. The
execution of the unit depends, to an extent, on the method
of access. The system has several reserved words that
stol.e information about the unit currently being executed.
When a new unit is accessed, some or all of these resel.ved
wol'ds are changed. If all of them are changed, the new
unit is called a base unit. If only some of them are
changed, the new unit is usually a help unit. Another
type, the auxiliary unit, changes only one of the reserved
words. (The terms base unit, help unit, and auxiliary unit
are explained in detail latel. in this section.) Besides
changing the reserved words, accessing help units and base
units usually erases the entire terminal screen. A base
unit is said to have full initialization as the reset.ved
wol.ds are changed and the screen erased. Help units have
partial initialization as the screen is usually erased, but
only some of the reserved words are changed. An
auxiliary unit is said to have no initialization (although
this is not, strietly speaking, true), because only one
reserved word is changed and the screen is not erased.

AUTHOR-INITIATED BRANCHING

The author can use several sequencing methods to impose
a logical structure on a lesson. Each method of branching
within a lesson specifies a certain type of execution, as
wen as structul.e, on the lesson.

USE OF THE -NEXT- INSTRUCTION

The simplest structure of an author language lesson con-
taining more than one unit is a simple sequence of the
units.

97405100 8

This simple structure requires no effort at sequencing on
the part of the author, since the author language assumes,
unless otherwise specified, that the next unit in the
physical lesson is also the next unit in the logical lesson.

If it is desired to execute the units in a different
sequence, the -next- instruction is used. The tag of the
instruction is the name of the unit that is to be executed
after the current unit. If more than one -next-
instruction is used in a single unit, the last one encoun-
tel'ed is used.

The -next- instruction is most often used to skip over
units that are pal.t of a differ.ent sequence or auxiliary end
help sequences. As an example, the structure might be
similar to:

Her.e the logical lesson is quite different from the physical
lesson. since the physical order. of the units is not the
order in which they are executed.

The -next- instruction can be used to completely I.eorder
the sequence of execution. The physical lesson structure
for

One
two

10-1

but the logical lesson structure is:

For the remainder of this section. any sequence of units is
given in logical ol.der rather than physical ordel.. This
order is not necessal.ily the same as the physical order,
but it is the sequence in which the units are executed.

-JUMP- INSTRUCTION

It is sometimes desil`able to stol.I a new unit immediately,
although the current unit has not been completely exe-
cuted. The -jump- instruction causes the unit named in
the tag to be executed immediately. All nol.mal ini-
tializations are made, including erasing the screen, unless
the -inhibit el.ase~ instruction is in effect.

For example, if pal.t of the unit being executed is

wrong ham ilton
jump review

w rong bu I.r

the -jump-instruction causes unit review to be started if
the student answered hamilton.

The logical stl.uctul'e might be similar to

whet.e a is the unit containing the jump instruction and b
is the next unit to be executed if the -jump-instruct.ion is
not executed.

The -jump- instruction also has a conditional foz.in. As
with most conditional forms in the author language, a unit
is selected on the basis of the value of an expression.
Conditional forms of instl`uctions al`e covered in detail in
section 12.

AUXILIARY UNIT STRUCTURES

The -join- and ndo- instructions allow one unit to be
executed inside another. (All statements made in the
following paragraphs about the -join- instl.uction apply
equally to the ndo- instl.uction, unless othel.wise noted.)
No unit initialization takes place. Rather, the -join-
inst.ruction usually acts as if the -join-ed unit (minus the
-unit- instruction) I'eplaced the -join- instl`uction. This
text-insertion chal.acteristic of the -join- instruction
makes it useful for eliminating repetition of groups of
identical instructions in various places within the lesson.
Instead, a single copy of each group of code is wl.itten and
then -join-ed to other units when needed.

10-2

A unit that is -join-ed to another is an auxiliary unit.
PI.ogl.am control causes auxiliary sequences to be only one
unit deep. Howevel., an auxiliary unit can have auxiliary
units of its own, and these also can have auxiliaries. In
fact, the author language allows the author to go as many
as 10 levels deep in -join-s. Thus, while it is not possible
to have an auxiliary unit sequence, it is possible to have
an auxiliary unit stl`ucture attached to a unit.

Some cal`e must be taken concerning ~join-ed units,
however. Since no unit initialization is done, all instruc-
tions in the -join-ed unit are executed as if they were in
the main unit, except fol. the ngoto- instruction. For
example, a -next- instruction is valid and sends the
student to the unit named in the -next- instruction after.
the current main unit is executed. Since a unit may be
-join-ed fl.om a numbel' of other units, this is not
necessal'ily desil'able. In general, any instruction that
could affect unit and lesson execution in a main unit acts
similarly in an auxiliary unit.

Graphically, an auxiliary unit (with possible auxiliaries of
its own) might be represented by:EE±H±EEE

L___-
The effect of an auxiliary unit depends on the value of the
variables (if any) used in the unit. As an example, the unit

uni t assign
calcs n3,nl7 < 0,1,15,27,2,8

assigns different values to variable nl7, depending on the
value of variable n3 when the unit is ~join~ed. The
instructions

calc n3 < -1
joi n assign

assign variable nl7 a value of 0, while the instructions

c8lc n3€ 2
j oi n assign

assign variable nl7 a value of 27.

The -join- instruction is unique in that it is executed both
in the judging state and in the regular state. This makes
the -join- instruction mol.e useful and permits the use of
auxiliary units anywhere within a unit. The ndon
instruction is executed only in the regular state.

While the -join- instl.uction can usually be thought of as a
text insertion device, there is an exception. If the unit
that is -join-ed contains a ngoto- instruction, the ngoto-
does not stop execution of instructions following the
-join- instruction, as would be the case if the ngoton were
contained in the main unit. Instead, when the auxilial.y

97405100 C

units are completed, they are un-joirLed, and the instruc-
tions fouowing the -join- instruction are executed. This

=::¥s:oi::i¥taaTpencgtiangurigx=gutToi:s:Fr:::h:::nofL:Pt:
Further.more, the ngotor instruction does not affect the
level of -joints, so auxiliary units can be attached to a
depth greater than 10, providing that some of these are
accessed by a ngoto- instruction.

lTERATIVE -JOIN-AND -DO-INSTRUCTIONS

(All statements made in the following paragraphs about
the ndo- instruction apply equally to the -join- instruc-
tion.)

The format of the iterative ndo-instruction is

do nirme,`nar<beg.en4ine

whel.e name is the name of the unit the author wants to
execute repeatedly, ver is the name of the variable that is
used as an index for the repetitions, beg is the initial
value this variable is given, end is the final value of the
variable for which execution of the unit is desil.ed, and inc
is the amount the value of the variable is incremented at
each repetition. ire is optional, with a default of I, and
may be negative or a fraction. beg, end. and inc may be
mathematical expl.essions. The instruct.ion

do filk.index € 10.20.10

executes unit filk twice, with the variable named index
having values 10 and 20. whei.eas the instruction

do filk,index € 10.20

executes unit filk 11 limes. with the variable named index
having values 10, 11 ,..., 19. 20.

Just as a -joitred unit can contain a ndor instt.uction, a
unit accessed by a ndo- instl.uction can contain a -join-.

Units accessed with a ndo~ instruction are auxiliary units.

CONDITIONAL-lTERATIVE -DO-AND -JOIN-
iNst-R-UCTIONS

(All statements made in the following paragraphs about
the ndo- instl.uction apply equally to the -join- instruc-
tion.)

Tlie conditional-iterative for.in of the ndo- instl.uction
combines the featul.es of iterative execution of a unit
with the ability to conditionally specify which unit is
executed as the iteration proceeds. For example, the
instl.uction

do exp,ul,u2,u3,u4,index < 0,4,1

is executed the same as the itel.alive ndo- instruction,
except the value of the conditional expression (exp) is
evaluated ever.y time the variable index is incremented
and the proper unit (ul ,..., u4) is executed.

97405100 C

If exp is negative, unit ul is executed. If exp is zero, unit
u2 is executed, and so on. Since exp is evaluated each
time index is incl`ememted, a different unit may be
executed as the itel.ation continues.

Unit names x and q have special meanings: x means do
nothing, and q means stop execution of this instruction
and continue execut.ion with the instl`uction that follows.

•COTO-INSTRUCTION

The ngoto~ instruction is a hybl.id of the -jump-. and
-join- instructions. Instl.uction execution is done in the
same manner as with the -jump- instruction, but as with
the -join- instruction, a new unit is not initialized. For
example:

unit fil.St
goto t hi rd
at 1012
write This is never written
*

unit second

*

While the ngotor instruction generally does not return to
the unit in which it occur.red, there are two cases in which
it does I.eturn.

If the ngoto- instruction is part of the response to a
matched answer, the fact that marker.s al.e not changed
causes control to I.eturn to the calling unit and search for
anothel. -arrow- instruction. If there is another -arrow-,
it is processed and execution follows the same pattern as
would be executed in the absence of the ngoto-. If there
is no other -arl.ow-, no actual return to the unit for
execution is made.

If the ngoto- is contained in an auxilial.y unit, after the
ngoto- unit has been executed, control returns to the
auxiliary unit that contains the ngoto- instruction. The
remainder (if any) of the auxilial.y unit is not executed,
but the auxiliary unit is un-join-ed, and control I.eturns to
the unit that called the auxiliary unit.

The ngotcF instruction also can have a conditional fol`m.
If the action specified by the conditional expression is the
tag q. execution of the cur.I.ent unit stops and goes to the
end of that unit. For a full discussion of the conditional
form of instructions, refer to section 12.

10-3

The practice of sorting units into differ.ent types is some-
what artificial (refer to section 3). The -goto- instruction
fur.nishes an excellent example of the reason. Since no
unit initialization is done, a unit accessed by a -goto-
instruction could be considered an auxilial`y unit. How-
ever., the instructions following a ngoto-ar.e not executed,
and the unit fl.om which access was done is not returned
to. Because it is not a base unit (the base unit. marker is
not initialized), it is not in a sequence (the next unit
executed, unless modified by other instructions, is the unit
following that from which access was obtained). In
particular, it is not par.t of a help sequence, and it is
usually considered an auxiliary unit.

ARCuMENTED UNITS

The ndcr, -jump-, ngoton, and -join- instructions can pass
arguments to the unit branched to at execution. As an
example, the unit

unit assign(n3)
calcs n3,nl7< 0,1,15,27,2,8

assigns different values to variable nl7 depending on the
value of variable n3 when the unit is executed. The
instl.uction

join assign(-1)

assigns variable nl7 a value of 0, while the instl.uction

join assign(2)

assigns val'iable nl7 a value of 27. A unit may have up to
10 al.guments.

The branching instructions (ndo-, -I.ump-, ngoto-, and
-join-) may specify fewer al.guments than the unit has
defined, but they may not specify more arguments.

-EXIT- INSTRUCTION

The ndo+ and -join- stl.uctul.es can be complex and can
achieve their desil.ed end befol.e`normal termination. The
-exit~ instruction allows termination of these structures
before nor.mal completion.

Thel.e are two types of tags that can be used in the -exit-
instruction, blank and numeric. A blank tag or a tag of -1
causes the entil`e structure to terminate, with contl.ol
returning to the main unit. A numeric t,ag causes the
structul.e to back out from the structure the specified
number of levels. If the tag is 0, the instl.uction is
ignol.ed. As usual, a variable or expression can be used
instead of a constant in t.he numeric tag.

-NEXTNOW- INSTRUCTION

The -nextnow- instruction terminates processing of the
unit and disables all tel.minal keys except the NEXT key.
It is usually used to give the student feedback on the
col.rectness of his answer without allowing him to change
his answer if wrong.

10-4

There ai.e two tags that can be used with the -nextnow-
command. If the tag is a unit name, control is tl.ansfel.red
to that unit when the student pl'esses the NEXT key. The
tag can also be in conditional form, in which case it
follows normal conditional form conventions (refer to
section 12).

-lFERROR-INSTRUCTION

The -iferl.ol'- instl`uction specifies t.he unit to which a
ngoto- is made if an error is detected in a -calc- in-
stl.uction. The ngoton is performed by the -iferi.ol`-
instruction upon erl.or detection, not by the author.

The unit specification marker clears in the same manner
as the -next-mar.ker; that is, it cleal's when a main unit is
entered or by the following instruction.

if error q

-ENTRY-INSTRUCTION

The -entl`y- instruction specifies an altel`nate entry point
to the unit. The tag, as with the -unit- instl.uction, is a
unique name of eight or fewer characters. The name is
then used as a unit name is used.

When a unit is entered from an alternate entry point,
initialization is performed in the same manner as if the
entry point were a -unit-instruction; however, it does not
do a full screen erase, and it does not initiate a new main
unit. The actual init.ialization perfol`med, as usual,
depends on the manner of access. Thus, an entry point
accessed with a -jump- has full initialization, an entl'y
point accessed as a help sequence has partial initializa-
tion, and an entl`y point accessed with a -join- instruction
has no initialization.

Use of the -entry- instl.uction permits looping within a
unit. A faster looping method is to use the -branch-,
ndoto-, or -loop- instructions.

BRANCHING WITHIN A UNIT

A -branch- instruction bl.anches to differ.ent lines of code
within the same unit; the branching is to a line with a
statement label. A statement label is a name that star.ts
with a numbel., is seven or less chal.acters in length, and
begins in column 1 of the line. The following instl`uctions
draw a box
values of nl

branch
box
bl.anch
100
box
2out

in one of two locations, depending on the
and n2.

nl<n2,x,100
1244; 1550
2out

2240; 2550

Branching cannot be done between units or around -entl.y-
statements.

97405100 C

Two statement labels in the same unit cannot have the
same name, but the same statement label can be used in
more than one unit.

A conditional form of the I)I`anch-instl.uction is available
(refer to section 12).

-FINISH- lNSTRuCTloN

The -finish- instruction causes one mol.e unit to be exe-
cuted when the student exits a lesson by pressing the
SHIFT STOP keys. This allows the author. to process data
before the student leaves the lesson. No input ol. output
to the screen can be performed in this unit. The -finish-
instruction need only occur once in a lesson. Therefore,
the logical local.ion for it is the IEU, although this is not
mandatory. The tag of the instruction is the name of the
unit to be executed upon lesson exit. A conditional form
is available.

Some instructions are not legal in a -finish-unit (the unit
to be executed) and I.esult in an execution error display.
These instl.uctions include the pause-, -catchup-, and
-retul'n-instruc lions.

The execution of an -end lesson- instl`uction or a
-jumpoul- instruction does not cause the -finish- unit to
be executed.

A -finish- unit allows only 10 disk accesses ol. 10 time-
slices,

-IMAIN- INSTRUCTION

The -imain- instruction causes the unit named in the tag
to be executed at the start of evel.y main unit in a lesson.
For example, with this instruction an author can specify
the help-type keys he wishes to have active throughout a
lesson,

I The -imain- instruct.ion is in effect for all main units
executed after the unit containing ~imain-. Placing the
-imain-instruction in the lesson's initial entry unit causes
the imain unit to be effective for the entire lesson. A
later occurrence of an -imain- instruction overl.ides any
earliel` settings.

A conditional form is available. The -imain-instruction
with a blank tag clears previous setting. The imain unit
is not executed in auxiliary units.

TIMED BRANCHING

Two instructions allow an author. to bl.anch a student to
another unit or to the I.outer after a specified time, the
-timel-and the -timel`-instl'uctions.

The first argument in the tags of these instructions is an
expl.ession which specifies the length of time in seconds.
For the -timel- instruction, the second argument is the
name of a unit in the current instructional lesson. For the
-timer- instruction, the second argument is the name of a
unit in the router lesson.

97405100-C

The -timel- and -timel.- instl.uctions with blank tags clear
the existing -timel- and -timer- instl.uctions, I.e-
spectively. The -timel- instruction also clears when the
student exits fl.om the curl.ent lesson, and the -timel.-
instruction clears when the student signs off the aystem.

The -timel- instruction provides a -helpop- type branch
to the specified unit when the time limit is reached. It
allows timing to continue over several units in a lesson
and may be used in any unit of the lesson. The -timel-
instl`uction is not affected by any -time- instruction
which may be used in any of the units. The minimum time
limit which can be specified is 0.75 second.

The -timer- instruction causes a bl.anch to the specified
unit of the routel` lesson when the time limit is I.eached.
This instl.uction may only be used when an author is
writing his own router lesson. When the student is
bl.anched to the I.outer., the IEU of the I.outel. is not
executed. The minimum time limit which can be specified
is 300 seconds.

STUDENTJINITIATED BRANCHING

The PLATO author language allows the author to give tlie
student the ability to branch within the lesson. Student-
initiated branching permits the lesson to better fit the
needs of the individual student by providing additional
information or background (I`emedial) infol.motion.
Fur.ther, all of the branching capabilities of the author
language al.e available so that the student, if the author
desil.es, can be sent back to review material all.eady
covered or to an entirely different sequence of main units.
Student-initiated bl.anching can be achieved thl.ee dif-
ferent ways with function keys. The fil.st is a branch to a
new main unit sequence, the second is the help sequence,
and the third is the use of the TERM key.

BRANCHING TO A NEW MAIN UNIT SEQUENCE

Five instl.uctions branch to a new main unit sequence
when the appl`opriate key is pl`essed: -next-, -nextl-,
toack-, hoackl-, and -stop-. The corresponding keys are:
NEXT, SHIFT NEXT, BACK, SHIFT BACK, and STOP.

These instructions take a unit name as their tags. When

i::d:#tdt:n:I::i;FT::s::lnt:aog;;i::i:rik::¥:::ett::#t2iny ga::: :: I
If -nextl-, hoack-, and toackl- instructions have not
been included in a unit, pressing these I(eys has no effect.
If the -next- instruct.ion is not in a unit, pressing NEXT
bl.anches the student to the next unit in the physical
sequence. When STOP is pressed with no -stop- instl.uc-
tion in the unit, the screen display stops.

The instructions -nextop-, -nextlop-, -backop-, and
-backlop~ also pl.ovide branching to a new main unit.
These instructions work exactly like -next-, -nextl-,
-back-, and -backl- except that the screen is not el'ased
when the student is branched to the unit named in the tag
of the instruction. The values of system-reserved words
where, wherex, and whel.ey do not change when the new
unit is entered. These instructions also have conditional
forms.

10-5

The rystem evaluates expressions in the conditional forms
of these instructions when it executes the instruction, not
when the student presses the corresponding key.

HELP SEQUENCES

A help sequence is an author-supplied sequence of units
available to the student through use of the HELP, LAB,
DATA, or other specified help keys. The names help
sequence and help key al.e used because these units
provide the student with additional information or other
help. Since the help sequence is accessed from cel`tain
keys, these are called help keys.

There are a number of structural differences between help
sequences and auxilial.y unit structul`es. The most
significant is that a help sequence is just that: a sequence
of one or more units that al.e executed in order.. An
auxiliary unit stl`uctul.e, on the other hand, can have a
number of units, but they al.e executed by -join-, -do-,
and/or ngoto- commands. The help sequence is executed
as a sel.ies of main units, not auxiliary units. Thel'efore, a
help sequence can be arbitrarily long I'ather than having a
predetermined cutoff point.

-END- INSTRUCTION

A consequence of this arbitl.ary length is the necessity to
specify where the help sequence ends. This is done with
the rend-instruction. Where the instl.uction is

end lesson

it indicates the final unit in the logical lesson. After this
unit is executed, the student is returned to the system.
This form of the instruction is necessary because the end
of the logical lesson is often not the end of the physical
lesson. The keywol.d tag is lesson, as given, not the name
of the lesson. More than one -end lesson- instl.uction can
occur in a single lesson. The -end lesson- instruction sets
ldone to -1 (I.efer to -lesson- instruction). An
-end lesson- instruction in the IEU stops execution of the
IEU and begins execution of the first unit of the lesson.
The vend lesson- instl.uction does not execute the finish
unit of a lesson.

The form used to end a help sequence has a blank tag or
the keyword tag help. The insti.uction

end

halts pl.ocessing in the llelp sequence. The instl'uction is
executed regardless of the state of the system. No
instruction following the -end- instruction is executed.
The -nd~ instruction delimits the unit. Thus, if an -end-
instruction follows a response judging instruction, no
response judging instl.uctions (or I.egular instructions)
following al.e perceived by the system as belonging to the
same unit.

10-6

The -end- instruction with a blank tag affects only help
units, not base or auxiliary units. This allows a unit to be
in a help sequence, base sequence, and auxiliary unit
stl.uctui.e within the same lesson. An -end lesson-
instruction in a help sequence behaves like an -end-
instruction.

Both fol`ms should be the last instruction in the relevant
unit. Since it is simply a place marker, thel`e are no
difficulties caused by I.esponse judging in the unit.

SPECIFYING A HELP SEQUENCE

The unit from which a help sequence is accessed is re-
ferl`ed to as the base unit, since it is the base of the help
sequence and is the unit to which the help sequence
returns when completed (or when the student presses the
SHIFT BACK keys). Only main units can be the base unit
for a help sequence, since the base unit marker is not
reset for auxiliary units. However., the help sequence can
be specified in an auxiliary unit. Although a help
sequence can have another help sequence accessible fl`om
it, the base unit markel. is not I`eset, so the base unit
remains the same. Consequently, a help unit cannot be a
base unit, although it is considel`ed a main unit.

In a main unit sequence (other than a help unit sequence),
the base unit marlter is automatically set to zero. Be-
cause such units can act as base units (if a help sequence
is accessed), such main sequences are called base unit
sequences.

Six help sequences can be attached to any unit. The keys
that can be used are the HELP, DATA, and LAB keys.
The HELP, DATA, and LAB keys can also be used with a
shifted form, such as SHIFT HELP.

The commands all have the same form, exemplified by the
-help- instruction.

h elp unitnam e

helpl unitname

A conditional fol.in is also available (I.efer to section 12).
The -help- inst.ruction enables the HELP key, and the
-helpl-instruction enables the SHIFT HELP keys.

If an x is the instruction tag, the instruction has no effect;
if a q is the instruction tag, the relevant marker is
cleal`ed.

The SHIFT BACK keys cause a student in a help sequence
to return to the base unit. When the student is in a help
unit that does not have a -bacl(- instruction, the BACK
key operates in the same manner as the SHIFT BACK
keys; that is, the student is returned to the base unit.

For example, in the portion of the lesson

97405100 C

pheep

the logical structul.e is:

If the student presses the LAB key while in unit grog, he is
sent to unit helpa. If unit helpa does not contain a toack-
instruction, pressing eithel. the BACK or SHIFT BACK
keys causes the student to return to unit gI.og. The NEXT
key sends him to unit helpb. Again, the BACK or SHIFT
BACK keys returns him to unit grog, but since helpb is the
last unit in the help sequence, pressing the NEXT key also
returns the student to unit grog. This feature makes help
sequences flow back to their base unit.

Additionally, six author language instl.uctions provide help
on the same page: -helpop-, -1abop-, ndataop-,
-helplop-, -lablop-, and ndatalop-. (All references to
-helpop-apply eqitally to the other five instructions.)

All six instructions have the same formats as the -helpop-
• (help on page) instruction.

helpop unitTiame

I :elpop =::Silt::x,:Ei::?:el',lnitname2 ,...
A conditional form (second format above) is available
(I`efel. I.o section 12).

IThe -helpop- instruction enables the HELP key, and the-helplop- instl.uction enables the SHIFT HELP keys.

Once a -helpop- instruction is encountered, its function
remains in effect for the I`est of the curl.ent main unit. A
-helpop q- or -helpop- with no tag clears the pl.evious
setting. If another -helpop- or -helpr instruction is
encountered in the same main unit, the unit named in the

I::5c:ftetdhewhme:S:h:efieEnLtp-knee;¥f:e=heed].POP-instructionis

The unit named in the tag of one of these instructions is
executed when the corresponding key is pl`essed. After
t.he helpop unit is executed, control returns to the main
unit. Thel.e is no full screen erasure when any of these

97405100 C

instructions are executed. Any graphics or text in the
helpop unit is added to the curl'ent display. After the
helpop unit is executed, control I.etul.ns to the unit con-
taining the -helpop~ instl.uction. The graphics and text
remain on the panel when control is returned to the main
unit.

If successive I(eys are pl`essed (each activating a helpron-
the-same-page sequence), the last displayed text (via
-write- or -wl.itec-) from the helpop unit is automaticany
erased befol.e the new text is displayed from the next
helpop unit. If the helpop unit contains more than one
-wl.ite- ol' -wl.itec-, only the last displayed text is
automatically erased when successive helpop units are
accessed.

-BASE- INSTRUCTION

The base unit of a help sequence is not necessal.ily fixed.
It can be changed by use of the toase- instl.uction. The
instruct.ion has t.he form

base name

where name is the name of the unit which is the base unit.
If the tag is blank, the unit being executed i§ stipulated as
the base unit, and execution continues as a sequence of
base units. The following al.e graphic examples.

b indicates base units and h indicates help units. Dotted
al.I.ows represent the path of control if the SHIFT BACK
keys are pressed, hl is a help unit defining another main
unit as the base unit. and h* is a help unit defining itself
as the base unit.

h/b is a unit that is executed once as a help unit (with h*
as the base unit) and again as a base unit when the help
sequence is tel.minated by an vend-instruction (or student
pl.essing the SHIFT BACK keys).

As previously mentioned, a help unit possesses the full
bl.anching capabilities of the author language. This in-
cludes the capability of having help sequences of its own.
If such sequences al.e appended to a help sequence, the
base unit does not change. Hence, pl.essing the SHIFT
BACK keys retul.ns control to the same main unit.
Graphically, this is exemplified by:

10-7

A help sequence attached to another help sequence does
not I.eturn to the first help sequence but to the base unit.
If it is desired to I.eturn to the original sequence, the
sequencing must be made explicit by the author. This can
be done by the use of a ngoto-instruction or by a student-
initiated branch. Use of the -next- instruction is ignored,
as the rend- instruction has precedence.

use OF THE -TERM-INSTRUCTION

A unit containing en instruction of the fol`m

tet` in name

can be accessed by the student from anywhel.e in the
I lesson by pl.essing the TERM key and typing the name

specified in the tag. If the -term-instl`uction has a blank

.:£8itTh£RstMud::;a:::seteysp:::Tityc::t£:n£*gh]`:hbyjspr:Sting
previously defined term. Previously defined tel`ms include
these system terms: consult, talk, calc, cursor, grid,
operator, I.eject, step, comment(s), and time. Descrip-
tions of these terms are in the PLATO User's Guide.

If there is no -base- instl.uction in the unit thus accessed,
the unit functions as a help sequence. In this fol.in, it is
especially useful for defining terms used elsewhel.e in the
lesson with which the student may not be familial'. As a
help sequence, an -end- instl.uction is necessal`y.

The other form of the unit is most useful when a lesson
has several base sequences and the student is to be pl.o-
vided an index to these sequences. The use of the -term-
instl.uction allows the student to return to the index from
anywhere in the lesson.

Because of the dual nature of the -term-instruction, two
representations are possible when drawing the block
structure of a lesson. A -tel.in-sequence that is used as a
help sequence is I.epresented by:

A -term- unit that defines itself as a base unit is repre-
sented by: I-
t indicates that the unit is accessible by the TERM key.

Analogously to a help unit, a ~term- unit can define
another unit as tlie base unit. This can be represented by:

ha
OrEflin

10-8

The dashed arl.ows are necessary in this case to show the
unit to which control returns on completion of the -term-
sequence.

The -termop- instruction wol.ks like the -tel.in- instruc-
tion except that the screen is not erased when the student
bl.anches to the unit containing the -termop-. The exe-
cution of a tel`mop unit is identical to that of a helpop
unit.

OTHER CONTROL INSTRUCTIONS

Several instructions permit the author to contl.ol other
aspects of lesson execution.

COMMENTS

It is often useful to have comments in a lesson explaining

:g:c£¥rcrp{:Ss::uc°tffo:sa.rj°T¥e :::i`o°rn:an°gfuatghee c:en¥a::s °trhr:: I
methods for insel.ting comments. While the comments
have no effect on lesson execution, they make the source
code much more understandable to either another author
or the original author after. a period of time. As a result,
the extensive use of comments is encouraged.

Comments used to explain a large section of code or a
complex set of manipulations generally should use one or
mol.e full lines. An asterisk ol. the letter c (followed by at
least one space) placed in the first column of a line
indicates that the entil.e line is a comment and is ignored
by the condenser. Such comments can be inserted
anywhel'e in a lesson because they are ignol`ed and do not
affect lesson execution.

An example of the use of a comment line for purposes of
increasing I`eadability, rather than actual comments, is
separating units by a line (or pal`tial line) of asterisks.
This makes unit boundaries easiel` to locate, and because
of the astel.isk in the fil.st column, has no effect on unit
execution.

Fol. comments on a single instruction, it is not always
necessary to use an entire line. Two consecutive dollar
signs after the tag indicate that what follows is a com-
ment and should be ignored.

CONDENSING CONTROL

Three instructions indicate tlie parts of a lesson that are
to be condensed, if it is not desired to condense the entire
lesson. All three have a blank tag.

Since the instructions can be somewhat difficult to see in
the source code, it is preferable to use the pal.tial
condense option of the editor.

:A:niiteo¥:::ri:c:ioencuctaeuds,e:ncyoTf::sui:tgi.tnossft.oE6w?nhgus:
uestop- instruction are not available for execution.

The restart- instruction causes condensing to be done
after it has been halted by a uestop- instl'uction. All
instructions, until the next uestop- instl`uction, are con-
densed. Hence, the restart- and uestop- instructions can

97405100 C

indicate portions of source code in a lesson that are not to
be condensed for execution. Since condensing starts
automatically when the lesson is called for execution, a
-cstart- before t.he first ngstop- is not meaningful.

The uestop*- instruction halts all fur.ther condensing,
regardless of any following uestal.t-s. No instructions
whatsoever are condensed following a -cstop*- instl.uc-
tion,

REENTERINC LESSONS

The -restart- and -status- instructions allow an author. to
permit the student to I.eenter a lesson at a point other
than at the beginning.

The -I.estal`t- instl`uction allows the author to specify
where a student starts the lesson if he did not complete it
the first time. If not otherwise specified, the student
must reexecute the entire lesson. There are t.hree forms
of the instruction.

If the tag is blank, the student starts in the unit contain-
ing the instruction when he signs on again. If the tag has
one argument, that al.gument is the name of tlie unit
where the student starts. This unit must be in the same
lesson as the instruction. If the tag has two arguments,
the fil.st specifies the lesson name and the second the unit
name where the student starts. It is not necessary that
the lesson be the one containing the instruction. The two
at.guments are sepal'ated by a comma.

For example, if the student is in unit add of lesson mathl,
and the instruction

I'estapt

is encountered, the student can then quit, and when he
enters the lesson again, start at unit add. The student
stal.ts in this unit I.egardless of whether ful.ther units were
executed before the original signroff, as long as another
-restart- instruction was not encountered. As a I.esult,
the student can be forced t.o execute the same unit mot'e
than once.

If the instruction

rest art addhelp

is executed, the student, upon entering the lesson mathl
again, stal.ts in unit addhelp, I-egal.dless of whether he has
or has not previously executed this unit.

If the instruction is

restart algebra,add 1

the student is automatically sent to unit addl of lesson
algebl.a. The IEU of lesson algebra is executed prior to
unit addl.

Since the student is not automatically notified of the
execution of a -restart- instl.uction, the author must so
inform the student if it is desired that the student be
notified.

97405100 C

The -status- instruction allows the author to specify
where a student starts the lesson again after the student
has worked partially on the lesson and then executed other
lessons. The difference between -I.estart- and -status- is
that -restart- is used when a student quits a lesson and
then resumes working on that lesson without executing
any other lesson, and -status- is used when a student quits
a lesson, executes some other lesson(s), and then I.esumes
wol.king on the first lesson. When using -restart-, the
system saves all the student variables and the student
status if the student does not execute any other lesson. If
the student does execute another lesson, the system saves
only a limited amount of information; thel`efol.e, the
author should not use -status- unless there is a real need
for. the student to come back to a lesson.

The -status- instruction sets the system-resel.ved word
lstatus to the value of the variable in the tag. The
student's router lesson can save the lstatus value and can
I`eset lstatus to that saved value later when the student
reentel.s that lesson. The lesson must check lstatus upon
entl.y of the student and must do its own branching to
restart the student correctly.

The lesson author and the I.outer author should agree on
the initial value of lstatus. Zel.o is recommended. Then if
lstatus is equal to zero, the lesson does not do any special
I.estarting for the student. When the student completes
the lesson, the author can execute -status 0- so that
lstatus equals 0.

The system routel. ''mrouter" saves up to eight nonzero
lstatus values, allowing students to start again in eight
lessons.

-RETu-N- INSTRUCTION

This instruction affects the timersharing aspects of the
PLATO system. The tag is left blank. When a -return-
instl.uction is encountered, the lesson relinquishes the
central processol`. The system behaves as if the lesson has
exceeded its current timerslice. Thus, when execution
resumes, an entil'e timerslice is available,

-PIESS- lNST.UCTION

The press- instruction controls lesson execution by
simulating a student response keypress. The tag of the
instruction specifies the key. The tag can be either the
key code or the name of the key. Use of the key name is
prefel.able, as the meaning is cleal`er when the lesson code
is read.

As a sample usage of the instruction, an author might

rweafton:es{:daenqtuets:joennt£:rgfave#ors:i:emn;lee,i:I:es:ne:ttaj:
ANS key). Rather than using a -jump- instl.uction, with I
the necessity of detel`mining the pl`oper unit to return to
when the sequence is completed, the author can use the
instruction

press lab

10-9

(or whatever key name is appropriate). The help sequence
is executed as if the student had pressed the appropl.iate
key.

Most of the function keys have predefined names that can
be used. as in the previous example. However, most keys
do not liave such names. In such a case, the character
desil.ed is given, placed in double quotation marks. Fol`
example:

press 'Th "

This instruction is equivalent to

press ol 0

but is easier to interpret. The named keys do not need the
quotation marks, as they are interpl.eted in tlie same
manner as defined constants.

Each -pl.ess- instruction entel.s a single key code into the
student's input buffel.. Only one such press can be done
per second. As a I.esult, if it is desired to entel. two
consecutive keys with ~press- instl.uctions, the two
instructions should be separated by a i)ause 1- instl'uction
to ensul.e pl.opel. execution.

The apress- instruction has an optional two-al.gument
form. The optional second argument is the station number
at which the key is to be press-d. The two-al`gument
fol.in is executed only if both stations al.e in the same
lesson or if the station is routed by the lesson executing
the i)ress-.

System-I.eserved wol.d zretul.n is set to -1 if the press-
instruction is executed; it is set to 0 if -pl.ess- is not
executed.

•JUMPOUT- INSTRUCTION

The -jumpout- instruction is actually a dl`astic form of
author branching. Execution of a -jumpout- causes the
student to leave the curl.ent lesson and to enter the lesson
specified in the instruction tag.

For a number of reasons, care must be exercised in the
use of the -jumpout- instl`uction. If tlie lesson specified is
not cul.rently condensed, it will be condensed for exe-
cution. Howevel., this can cause a delay of up to sevel.al
seconds. A delay this long is apparent to tlie student.

If a unit name is specified, the -jumpout- codes of the
lesson must match. If the lesson to which the -jumpout-
is performed has no -jumpout- code, any lesson can
I)er form a successful -jumpout-.

Any character set used in the original lesson is still used,
unless the new lesson initializes a new set. The standard
micro table is loaded between -jumpout-s.

In contrast, any common or stol.age used is not saved.
This requires some care if infol.motion contained in
common is to be retained. Storage may be retained by
using the -inhibit dropstor- instl.uction.

If sufficient ECS for the new lesson is not available, the
-jumpout- is ignored. The author can then test, in the
instructions following the -jumpout- instruction. if the
-jumpout- has cocuITed.

10-10

The ECS check can be stopped by the instl.uction

inhibit I.urn pchk

but caution should be used, since the new lesson cannot be
used if insufficient ECS is available.

The -jumpout- instl`uction, particulal.1y when used in
conjunction with the -I.esl.art- instruction, allows much
more flexibility in lesson construction by allowing lessons
to be interconnected. Because of initialization factol`s,
caution should be exercised in the use of these instl.uc-
tions.

-lNHIBIT- lNSTRUCTION

Various standard processes of the author language can be
disabled by the use of the -inhibit- instl.uction. For
example, if it is desired to request a student response
without showing the al.I.ow at the position where the
response appears, the instl.uction

inhibit arrow

placed before the -arrow- instruction suppresses the
arl.ow on the screen.

The tag of the instruction determines which option or
options are to be inhibited. If the tag is blank, all pre-
vious inhibits al.e cancelled. When a new main unit is
entered, all -inhibits~ are cancelled.

An -inhibit el`ase- instruct.ion pl'events the usual full-
screen el.ase when a new main unit is entel.ed. Since all
pl.evious inhibits are cancelled in the new main unit,
el.asul.e occurs following the new unit, unless a new
-inhibit- instruction is given.

An -inhibit dropstor- instruction I.etains storage after a
-jum pout-inslpuction.

An -inhibit edit- instl'uction deactivates the EDIT key,
and an -inhibit tel.in-deactivates the TERM key.

The -inhibit jumpchk- instruction ignores ECS check
before a -jumpout- instruction.

If it is not desired to accept a blank answel. to a I'equest
for student response, the -inhibit blanks- instruction is
used.

The -inhibit from- instruction prevents setting the from-
I.esel`ved words (refel. to the -from- instl.uction).

The -inhibit ansel.ase- instl.uction prevents the erasing of
any answer-contingent wl.iting aftel. a no judgment when
the student presses the NEXT, ERASE, or SHIFT ERASE
keys.

The -inhibit charclear- instl.uction prevents the charset
flag fl.om being cleal.ed. This is used preceding a uehar-
instruction to prevent the necessity to I.eload an alternate
character set.

The -inhibit dropset- instruction I.etains the current
dataset connection and pl.events the I.elease of any
I.eserved records ovel` a -jumpout-.

97405100 C

-KEYLIST- INSTRUCTION

The |{eylist- instl.uction is useful when establishing a list
of keys to be used in the -pause- and -keytyper
instructions. Since -keylist- is a nonexecutable instl`uc-
tion, it should be placed in the IEU.

The instruction's tag consists of two or more al.guments:
the first is the actual name of the list, and the second
and/or successive arguments are the keys to be in that
list.

List names must be from two to seven characters in
length. and list.s can be combined.

Five system-defined lists are available.

numeric Digits (0 through 9)

Alphabet (a through z and A through Z)

Function keys (BACK. HEI.P, DATA,
and so on)

Touch panel input (256 i key i 511)

External inputs (512 S key € 767)

-PAUSE- lust.UCTION

The apause- instruction has four forms. If the lag is
blank, processing is suspended until the student presses
any key on the keyboard.]f the tag is a number, exe-
cution halts for the number of seconds specified. Thus,
the instruction

pause 3

causes lesson execution to be suspended for 3 seconds,
while the instruction

Pause

causes suspension of execution until the student presses
any key on the keyboard. The minimum time that can be
specified in'the tag of a pause-instruction is 0.75
second.

The t.Iiird for.in of the apause-instruction uses a key list.
For example:

pause keys=next,back

With this example, lesson execution is suspended until one
of the tested keys (NEXT or BACK) is pressed. If a
bl.anching key such as BACK or HELP is listed, and if that
branching instruction is in effect in the unit, pressing that
key branches the student to the unit specified in the
instl.uction tag. An exception is the NEXT key which
tel.minates the pause and does not branch.

The fourth form of the -pause- instruction is a combi-
nation of a numeric tag and a key list. For example, the
instruction

Pause

97405100 C

3,keys=touch

suspends lesson execution for 3 seconds or until one of the
keys in the gI.oup touch is pressed.

An entry in the key list can be a list name. Five system-
defined list names are available (refer to the -keylist-
instl.uction above). In addition, the keyword all specifies
that all keys terminate the pause.

|fhethsetuaduetnht°rprweisssheeds{:a:rcf{%remt£:tff:rstjtchua]tarus:o:E:ek%¥
action, I.he system-reserved wol.d key contains the key
code of t.he key pl.essed. The -keytype- instruction may
also be used.

-COLLECT-INSTRUCTION

The <ollect- instl.uction collects several I(eys at the
same time. It executes faster than an equivalent loop
using the apause- instruction. The key inputs are stored
one per variable, and as many as 20 may be stored. A
preceding tenable- instruction is required t.o I.eceive
touch or external inputs. The ueollect~ inst.ruction ter-
minates when the specified numbel. of keys have been
I`eceived or when the keyname timeup occurs as a resLllt
of a previous -time- instruction. In the later case, the
timeup key is also stored.

-KEYTYPE- INST.UCTION

The lteytype- instl.uction provdes an eary method for
determining which key from a specified list has been
pressed. For example:

group mine,a,b,c,d, w
keytype nl 0,in ine, funct.z,o

lf the pressed I(ey is in the tag of I(eytype-, the variable
named as the first argument is set a§ follows:

F_e_y_pTes5_ed

Z

d

NEXT

W

LAB

0

nl0 Comment

2 Listed key

o Defined with ngl.oup-

1 System-defined group

0 Defined with ngroup-

1 System-defined gl.oup

3 Listed key

The seal.ch for a listed key is made from left to right,
stopping when the key is found. If no key is found, the
variable is set to -1.

If a -keylist- name or system-defined list is used, a value
is assigned to the variable for any of the entries in the
-keylist-.

If extel.nal keys or vat.iables al.e to be checked, use an
instruction similal. to

keytype n7,ext(n3),(nl4)

10-11

This checks the 10 bits of reserved word key. If the fil.st
bit is 1, an extel.nal input is indicated and the remaining
bits al.e compared with the value in n3. The key may also
be compared with the value in nl4. The value in nl4 may
be any type of input: external, touch, function, numeric,
or alpha. Pal.entheses are required in this instruction, and
any of these values may be expl.essions.

If touch panel input is used, the instruction may look lil(e:

keytype n7,touch(1419;4,2)

The fine- or coarse€I.id tolerances al`e optional and are
separated fl.om the address by a semicolon. Either t or
touch may be used.

-FO.CE- lNSTRUCTION

The -force- instl.uction initiates actions in the author
language. The instruction can have six al.guments in its
tag.

A -force font- instruction causes any characters the
student enters to be in the alternate chal.actei. set, unless

I the student presses the FONT key. A -fol.ce micro-
instruction causes all keypresses to be sent thl.ough the
micro table. A -fol`ce long-instl.uction causes judging to
be initiated when the student I.esponse length-limit is
I.eached. The -force left- instl`uction causes any I.esponse
the student enters to appear right to left on the screen.

The -force firstel.ase- instl'uction allows the student to

I;¥es]:gn:hwerNeEPx°FSoer%fkeArsfkne°y.ju#em;£nrtstwcj*:°aucttefrtr:i
the new I.esponse el.ases the entire old response and any
wrong-response-contingent wl.iting. Additionally, the
-fol`ce fil'sterase- instruction executes an -el'aseu-unit if
requil.ed.

All -force- options are cancelled by a -force- instruction
with a blank tag, by -force clear-, or when a new main
unit is entered.

-CHANCE- INSTRUCTION

The uehange command- instruction allows the author to
redefine the names of normal author language instl.uctions
to names of his own devising. This can be especially
useful in the case of language lessons, whel.e use of the
nghange command- instruction at the beginning of the
lesson (in the IEU) can allow virtually the entire lesson to
be written in the language with which the lesson deals
(I.efel. to section 11 for the nghange aymbol-instruction).

The tag of the instl.uction consists of the word command,
followed by the old instl.uction command, followed by the
word to, and ending with the new name for the instruction
command, all set off by spaces. An example is:

change command at to wo
command write to schreib

These instructions could be used in a lesson teaching
Gel.man (or a lesson teaching English as a second language

10-12

with German as the basis) to replace the -at-and -wl.iter
instructions. The lesson is then mol.e I.eadable to persons
familiar with German and more closely I`esembles its
subject matter.

One of the disadvantages of using the uehange command-
instl.uction in this manner is that it makes the lesson
difficult to understand for persons not familiar with the
language to which the instructions are changed.

When instructions have been altered by use of the
uehange command- instruction, it is imperative that all
subsequent uses of the instructions use the new defini-
tions. Otherwise, the lesson does not execute properly
and may cause a fatal execution err.or. It is, of coul.se,
possible to use the nghange command- instruction to
I.etum the instructions to tlieir origiml definitions.

-USE- lNSTRuCTION

It is of ten desirable to use parts of other lessons I.athel.
than duplicate the source code. This can be done with the
-use- instl.uction.

The effect of the -use- instruction is to insel.I. the source
code fl.om the accessed lesson at the position of the -use-
instruction when the lesson is being condensed.

The tag of the -use- instruction specifies the name of the
block which is to be condensed as part of the curl.ent
lesson. The name of the lesson to be -use-d is specified
on the Author. Infol.motion page of the lesson which con-
tains the -use- instruction. Only one lesson may be
-usend pel` lesson.

Consecutive -use- instructions allow more than one block
to be accessed. If consecutive blocks share the same
name, a single -user instruction accesses all of them.

The -user instruction is particularly helpful when using
large vocabulal.ies. By means of the -user instruction, the
vocabularies need only be written once, thus saving the
author time while wl'iting the lessons and also saving
storage space.

The -use- security codes of the two lessons must match.
If the code of the lesson -usend is zero, the -use- instruc-
tion is permitted.

-STEP-INSTRUCTION AND TERM-STEP OPTION

Both the -step- instl.uction and the TERM-step option
enable an author to execute his lesson instruction by
instruction. Executing a lesson one instruction at a time
helps the author find pl.ogram el.rors. When stepping

:trx°tuFnhstaru`:t¥o°nn't:hfe]:¥::u]tj::,St°hnetchuerrsecnrteestnat:S?::gut£:
or judging), and the base, main, and .current unit. Student
variables may be examined at any time.

To enter the step mode while viewing a lesson in the
student mode, the author presses the TERM key and tlien
types the wol.d step. The bottom lines on the screen are
erased, and the step infol.motion is plotted.

97405100 C

The step mode is also entel.ed by the author placing a
-step- instl.uction in his lesson. The rstep- instruction
can have a keyword tag of on or off. or the tag can be an
expression with 0 equal to off and non-0 equal to on.

While in step mode, the instruction listed is executed
when the NEXT key is pl.essed. At each press of NEXT,
the instruction presently listed is executed, and the sue-
ceeding instruction is then displayed.

The waiting for. key message means the system is waiting
for a student's response or keypress. A I.esponse should be
entered and the NEXT key should be pressed to have the
I.eaponse judged and step mode continued.

The arl`ow chat.acter at the bottom of the screen enables
the author to see the current values of any of the student
variables. The author Should press the a, o, v, ot. n
chat.acter to indicate the format and then the number of
the specified variable.

By typing the character s and a number al I.he art.ow
character, the lesson is skipped forward by the number of
instructions apecified befol`e reentel.ing the step mode.

Step mode is exiled by pressing the BACK key.

Only authors can use step mode. The author's security
code must match the change code of the lesson. Step
mode cannot be entered nor is it operable when a student
enters TERMrstep or when a student encounters a -step
on- instruction.

Common variables and storage variables cannot be in-
spected in the step mode.

•lNITl^l- INSTRUCTION

The -initial- instruction specifies a unit for execution
when a lesson or common is entered by the first user. If
the lesson or common is already in ECS, the -initial- unit
is not executed.

The formats for the -initial-instruction are as follows:

initial lesson,unit
init ial co mmon,unit

The tag for the instl'uction consists of two arguments.
The first al.gument is a keyword indicating the type of
-initial-command (lesson or common) and is not the name
of the lesson or the name of the common. The second
argum.ent specifies the unit to be executed after the
-initial lesson-op -initial common- is executed.

The fil.st user to execute an -initial~ instruction causes
the initial unit (lesson unit or common unit) to be inserted
(like a ndo- instruction) at the location of the -initial-
insti.uction. Any subsequent encounters of -initial lesson-
or -initial common-, whichever applies, al`e ignored.

If the initial unit contains a -jump- or -jumpout-
instruction, the completion flag for the -initial- instl`uc-
tion is never set, thus preventing all other users from
continuing in the lesson.

97405100 C

-LESSON-INSTRUCTION

The -lesson- instruction assigns a value to the system-
reserved word ldone. Upon enter.ing a lesson, the system
router checks to see if the lesson is completed. If the
lesson is completed, ldone equals -1, and an asterisk is
placed next to the lesson on the student's index (se-
quence). However, if the lesson is not completed, the
value of ldone is set to 0.

The tag for the instruction consists of a single keyword
argument indicating completed, incomplete, or no end.
The tag no end is used for instructional lessons which have
no logical end, and it sets ldone to 1.

A conditional form of the -lesson-instruction is available
(refer to section 12).

-SCORE- INSTRUCTION

It is often necessal.y for an instructor to determine if a
student has worked on a particular lesson and what
relative progress the student has made on that lesson.
The -score- instruction can be used fol. that purpose.

The -score- instl`uction assigns a value to the system-
resel.ved word lscol`e. The value of lscore can then be

:::rt:E,i:n3n£::;afobra:£e°iustd:tn¥bank(Student,common.

The tag for the instruction can be either a constant ol. any
expression from -1 to loo indicating the value to be
placed in system-reserved wol.d lscore. Values are
rounded to the nearest integel..

Any negative score is interpreted as do not store any
score. Any scol`e that I.ounds to a value greatel. than 100
produces an execution erl.or.

A rscore- instruction with a blank tag assigns a value of
-1 to system-reserved word lscol.e. If lscol.e already has a
value and a -scol.e- instruction is then executed, the new
value overwl.ites the previous value; lscore contains the
new score. However, if a -score-instl.uction has not been
executed for a lesson, lscore has a value of 0.

If the students are I.outed by the aystem I`outer, scol`es are
stored as part of the student's pet'manent recol'd. These
scol.es may be displayed through an option of the student
roster.. If the score is negative, no scol.e is displayed. The
scores are kept only as part of the permanent I.ecol.d if
the system router is used. When the system I.outer is not
used, the scores may be stol.ed in some status bank
(common, router val.iables, and so on). Only the most
recent scol.e for each lesson is stored as part of the
pel`manent I`ecord.

When creating a routel. lesson, the -score- instl.uction can
be used to place a value in lscol.e, with the value
representing the status for the lesson. Branching could
then be done on that condition.

10-13

-BACKCND- AND -FOREGND- INSTRUCTIONS

The -backgnd- (background) instruction allows the user to
obtain more CPU time dul.ing each time-slice if extra
CPU time is available (PLATO system not busy). With a
-backgnd- instruction in effect, sections of lessons
receive mol.e CPU time if it is available.

If the system is busy and -backgnd-is in effect, the lesson
receives less than the avel.age pl.ocessing time. This
instruction should thel.efore not be used with lessons that
al.e to be used by students in an instructional setting.

The -for.egnd- (foreground) instruction cancels the effect
of a hoackgnd- instl.uction and indicates the end of a
section of a lesson that is to be I.un on the background
priority.

The fol.eground pl.iority is the normal state. Both
-foregnd- and -backgnd- are executable instructions, so
portions of lessons can be specified to run on either
pl.iority. It is possible to switch between background and
fol'egl.ound pl.iol.ities in the same lesson by executing a
backgnd-or -foregnd- instruction.

No tags are used with either the .backgnd- or the
-foregnd- instl.uction.

•CPuLIM: lNSTRuCTION

The ngpulim- instruction should be used if an author
wishes to place a limit on the CPU time for a given lesson
while that lesson is being used by students. The CPU time
in milliseconds/second is fisted in the student records and
at sign®ff time. If this instruction is not used, the CPU
limit is 10 TIPS.

A maximum limit on the CPU time allows the lesson
author to test a lesson at a low CPU time maximum and
decide if there is any effect on a lesson.

LESSON ROUTINO

A router allows the mamgement of student progt`ess in a
course by sequencing lessons accol.ding to student per-
fol`mance. An author should write a I.outer for a course
only otter thol`oughly studying the featul.es of the rystem
routel.s and after detel.mining that the course I.equil.es
additional capabilities.

Author-initiated routing and system I`outing are described
and their use explained in the PLATO User's Guide. The
following is a summary of router features.

• Automatic entry into the I.outer at sign-on time.

• Automatic retul.n to the I.outer when a lesson is
complete.

• All -I`oute-instructions are functional.

• All -allow- instl.uctions are functional (no
-transfr-s with router variables or common
w ithout ~allow-).

• Router variables can be used (maximum of 50 pel.
student)

10-14

Routers remain in ECS as long as a student from the
coul.se is signed-on. The system routel., maintained by
system-suppol.t personnel, requires a minimum of ECS.

A user-written I.outer should execute the following
instructions before doing a -jumpout- to a lesson for the
fil.St time.

restal.t (0), (0)
lesson incomplete
SCOI'e
status 0

These instructions initialize the values of the system-
reserved words I.start], I.startu, ldone, lscore, and lstatus.
If the I.outer does not initialize these system-reserved
wol.ds, the lesson receives values fl.om a previous lesson,
possibly causing errors. If the router saves the new values
of these system-I`eserved words upon I.eturn from a lesson,
the routel. can give the values back to the lesson the
second time the student entel.s it.

-ROUTE- INSTRUCTION

The -routes instl.uction is used in the router to specify
which units of the I.outer are to act as I.eentry units when
the student exits from one of the instructional lessons in
the I'outer.

The instruction tag for -routes consists of two al.guments:
the first argument is a keywol`d (end lesson, finish, error,
or resignon) which specifies the type of exit from an
instructional lesson, and the second al.gument specifies
the entl.y unit in the router when the carl.esponding exit
occul.s. The -I.oute- instruction has five forms.

I`oute end lesson,unit

rout e fi n ish ,unit

rout e error ,tinit

I.ou t e resignon ,unit

rout e r e signon

The unit specified in the second argument of the
instruction is executed as follows:

F£_y_y_O_I_a

end lesson

finish

When executed

When the student leaves the in-
structional lesson as a result of
vend lesson- ol. -jumpout q-, the
router unit, unit, is executed.

When the student leaves the in-
structional lesson as a I.esult of
SHIFT STOP, the finish unit in the
instructional lesson is executed
first and then the routel. unit, unit.

When an execution erl.or occurs in
the instructional lesson, the router
unit, unit, is executed. (Tlie
system-reserved wol.d el.rtype is
also set.)

97405100 C

_Fie_y_quor_d

resignon

When executed

Same sequence as for keywol.d
finish. If unit is not specified, the
IEU and the first unit of the I.outer
are executed. The student is also
given the option of retul.ming to the
router or of signing off the system.

The -I.oute- instruction must be executed each time the
student is in the router for t.he specified units to be
functional. Placing the -route- instl`uctions in the
router's index or decision units sets the corresponding
flags each time a lesson is selected by or for the student.

When an execution error occurs and a -route el.rol.- in-
struction is in effect, system-reserved wol.d errtype is set
to one of the following values.

Value

0

1

2

3

4

5

nI9_aJlipB

Unknown error

Execution erl.or

Fatal condense el.For

Memory allocation exceeded

Error in -finish- unit of instructional
lesson

SHIFT STOP from the condense queue

A -I.umpout- to another. router causes an execution error
(errtype set to 2).

If el`rtype is set to 4, the student is returned to the unit of
the router named in the second al.gument of the
-t`oute finish- instruction.

An errtype of 5 occurs only if the student exits from the
condense queue with a SHIFT STOP and the student has
been waiting in the queue for mol.e than 30 seconds.

ROUTER

97405100 C

When a student I`etums to the routel., the router's IEU is
not usually executed. The I`outer's IEU is only executed
when the session begins (signron time), when
-route resignon- without a specified unit is executed, and
when a lesson does a -jumpout-to the router.

For the -I`oute- instl.uctions to be in effect at all times,
the student must execute the -route- instructions each
time he is in the I.outer.

Some of the key locations for placing the -route.- instruc-
tions are illustrated in figul.e 10-1.

-ROUTVAR- lNSTftucTION

In addition to the 150 student variables available, thel.e
can be up to 50 additional variables called router student
variables. Like st.udent variables, each student in an
instructor's course has these router student variables.

The +outvar- insti`uction is used by the instructor Lo
specify the number of roLiter student val.iables to be made
part of the permanent student bank and I.etained between
sessions. Authors may not have router student vapiables.

The router student variables are referred to as np or vl`
locations and can be used in the router in any manner as
the n or v variables can be used. The +outvar- in-
struction should be executed before the ur or vr variables
are referenced.

:pheec{:;gngf°:h:h:uirg:Itv::-I;nut:rue:i:Eeistavnar:£]reessi:8
maximum). These variables al.e added to the amount of
ECS used at an instructor.'s logical site; thel`efol`e, 20
students with a -routvar 40 - instruction in effect require
800 additional wol`ds of ECS.

Router student variables can be altered only in the routel..
With an -allow read I.vars- instruction in effect, the
values can be read by an instructional lesson.

Description

Set -route- units for the initial
routing of the session.

Set -route- units when choices from
the router's index are made.
Set -route- units when branching
decisions are made on student's performance
and place in specified curriculum.
Set -route- units, then retur.n to
last -I.estart-location (-jumpout I.esume-)
I`outer's index, or router's logic table.

Figul.e 10-1. Key Locations for Placing -route-Instructions

10-15

-ALLOW- INSTRUCTION

Instructional lessons can reference common variables that
the router uses. To allow this, an -allow- instruction
must be previously executed in the routel`.

The instruction tag for -allow- consists of a single key-
word argument (read, write, or read rvars). The -allow-
instruction with a blank tag clears -allow- settings. An
asterisk merges successive -allow-s.

An -allow read- instruction permits read-only access to
the I.outer common. An -allow wl.ite- instl`uction,
however, permits read and write access to the router
common. The -transfr- instruction is then used to wl.ite
the I.outer common.

The -allow read rval.s- instruction permits read-only
access for the router student variables, as established by a
-I`outvar-instruction. The router student variables can be
read by using the -transfl.- instl.uction.

The -allow- instruction is meaningful only when execilted
by students in a course using that I`outel. and in the router
itself (not instructional lessons).

If an -allow- instruction is not present in the router
lesson, an attempted -tl.ansfr- with I.outer common or
I.outel. variables yields an execution erl.or.

In the I.outer, nr, vl. (student), nc, vc, and c,1 (common)
locations should be I.efel.enced dil.ectly with a -transfr-
instl.uction.

LESSON LISTS

A lesson list (leslist) is a special block used to maintain a
list of lesson names. This list can be referenced by
variables used with the -jumpout-, -fl'om-, -restal`t-, and
-lessin- instructions.

The leslist is two blocks long and stores 320 lesson names.
The lessons are number.ed 0 to 319.

Lesfists al.e cl`eated so authors do not have to be con-
cerned with system lesson-naming conventions, which al.e
subject to change. Since lessons al.e accessed by position
in the list I.ather than by name, the actual format of the
lesfist is unimpol.tant for users.

A lesson list for a user's file (one of the type-of-block
options) is created by the author language editor. The
contents of the block is displayed as a list of lesson
names. For example:

spanish202
gel'manl3
german7

get.man3

Directions for editing the list are in the leslist block.
Lessons al.e added at the first empty slot. Deleting a
lesson leaves a blank entry. In the example above, lesson
3 is empty. The next lesson to be added is placed in the
fil.st empty slot, 3.

Leslists can also be altered (edited) by using the -addlst-
and -removl- instructions from the student mode.

The lesfist editor does not do a lesson-name check; it
assumes the lesson names entel.ed actually exist.

-LESLIST- INSTRUCTION

The -leslist- instl.uction allows user access to the speci-
fied leslist. Only one leslist at a time may be used. The
-lesnst- instruction must be executed befoi.e any ref-
er.ences are made to the lesson list. The -leslist-
instl.uction is an executable instl.uction.

The tag for -leslist- consists of two arguments: the fil`st
specifies the lesson name or a variable containing the
lesson name, which contains the leslist. If the I.eferenced
leslist is in the lesson that uses it, this argument is
optional. The second argument specifies the actual block
name or variable containing the block name.

For example:

lesfist in ylesson, in ylist
*common codes must. match

The common access code words for the current lesson and
the lesson containing the lesfist blocks must match.

-ADDLIST- INSTRUCTION

The -addlst- insll.uction has a one- and two-argument
form,

The one-argument fol`m adds a lesson name to the next
open slot on the leslist. With either for.in, the fil.§t argu-
ment must be the first of a set of three consecutive
variables (n or v type) specifying a valid lesson name.

For example, the following code adds a lesson to the
leslist and finds the position in which it was added.

lesfist
* mol`e code
arrow
storea
*

ok
addlst
*

findl
write

myless,myllist

1430
n4,30 Ssreserves three

S Sconsecutiv e variables

n4 Ssn4, n5, and n6 are
SSused

n4,nl30
lesson <a,n4,30> added as number
<s,nl30>

97405100 C

The two-al.gument form adds a lesson name to the speci-
fied slot (position) on the leslist. The second argument
(position) may be a variable or expression. Blank slots
may be left, but the lesson named in the fir.st argument is
not added to the list if that slot (specified in the second
argument) is occupied.

An -addlst- instruction with the actual lesson named in
the tag (not a variable) pl.oduces an erl`or. Tags such as
"lesson", 'lesson', <lesson>, <'lesson'>, or <''Iesson''> are
illegal.

Additions to a lesnst should be done by storing the infor-
mation with a ngtopea-instruction using a character count
of 30. The rsLot.ea- insti.uction must precede the
unddlst-.

-REA^OVL- lNST.UCTION

The +emovl- instruction is used to delete lessons from a
leslist; a blank entry is left in that list position.

The tag for the +emovl- instl.uction specifies the lesson
to be removed from the list; the tag can be a number, an
expression, or a vat`iable. Tags such as ''1esson" op 'lesson'
do not remove the lesson from the list. The tag is
intel.preted as a number, and the lesson corresponding to
that number is removed.

For example. the instruction

pemovl 8

I.emoves lesson nLimber 8 fl.om the leslist.

97405100 C

•LNAME- INSTRUCTION

The -lname- instruction pel.mits the user to place entries
from his leshist into vat.iables.

The first al.gument of the tag specifies the first of tlil.ee
consecutive val.iables required to place the leslist infor-
motion. The second argument specifies the lesson number
in the leslist and can be a constant, a variable, or an
expl.ession. The lesson number can be fl.om 0 to 319 for a
twotolocl(lesson list.

The leslist information is displayed with a nghowa- in-
struction using a chat.acter count of 30.

For example, the following instructions

Inane nl0. I
sliowa nl0.30

place the information from position number 1 of the
leslist in variables nlo, nll, and nl2.

-FINDL- lNST.UCTION

The -findl- instruction determines for a Liser whether a
specified lesson name is included in his leslist.

:ehteoi!rtshtreaergo:=nctu:ifvethvearti¥bi!essa(:;:!tvfat]y::;i::::i:;:n:
the lesson name.

The second argument is the I.etul.n variable containing the
position of the named lesson in the leslist..

If the specified lesson is not in the usel.'s leslist or a lesust
is not in use, a value of -1 is I.eturned.

All lesson names used with the -findl- instruction should
be specified by storing the lesson name with a ngtorea-
instruction using a character count of 30.

10-17

RESPONSE HANDLING 11

The hear.t of a computer assisted instruction (CAI) system
is judging student responses. This is what differentiates a
CAI system from a textbook, because a textbook cannot
give immediat.e feedback to student I.esponses.

The fil.st necessity is 1.o inform the student and the system
that student. input is desired. This is done with the
-arl.ow- instl.uction. The tag of the instruction is the
location at which the student's answer is to appear; it can
be in either fine or coarse grid. The author language exe-
cuter automatically plots an arrow indicating the location.
unless the author specifies otherwise with an -inhibit-
instruction (refer to section 10).

Besides indicating the desire fol` a student I.esponse, the
-al`I.ow- instl.uction also sets a default length for the
student response of 150 chal.actel`s, disables the copy
option, and specifies the NEXT key as the only key that
starts the system judging the student response. All three
features can be over.ridden by the author thl`ough the use
of t.he appropriate instructions (-long-, -copy-, and
-jkey-, respectively). Finally, the -arrow- instl.uction is
used by the author language executer as a marker for the
beginning of the response judging pol.lion of the unit.
Since this portion can be executed several times, it is
important to have a mal`ker that prevents the entire unit
fl.om being I.eexecuted.

At times it is desirable to have more than one student
response in a single unit (accomplished with more than one
-arl.ow- instruction in the unit) or to perform some
regular instl.uctions at the end of the unit, regardless of
how the -arrow- instruction was satisfied. For this
pul`pose, the rendal.row- instruction is provided. The tag
of the instl.uction is blanl(. The uendarl.ow- instruction
itself sel.ves as an indicator that the author language
executer should not go past this instruction in trying to
satisfy the -arrow-; it also serves as a location point for
beginning execution when the -arrow- has been satisfied.
If no uendarrow- instruction is present., the PLATO
system, if necessal.y, seal.ches to the end of the unit in
trying to satisfy the -arrow- instruction. Because of the
text-insertion character.istic of the -join- and ndo-
instructions, an -endal.I.ow- should always be used if arrow
processing is contained in an auxiliary unit.

EXECUTION OF RESPONSE HANDLING

In the most common fol'm, a st.udent must give an answer
that the lesson recognizes as col.rect before the student
leaves the pal.t of the lesson containing the instructions
following the -al.I.ow- instl.uction and pl.eceding the
-endarrow- instl.uction, or the end of the unit if no
-endarrow- instl.uction is present. Since there ar.e many
more wl`ong answers than right, it is often necessary for
the instl`uctions t,o be I.eexecuted.

When the -arl.ow-instruction is encounter.ed, the limits
and actions previously described are done. All I.egular

97405100 C

instructions immediately following the -al.row- instruc-
tion are then executed. When the first of the judging
instructions is encountered (refer to table 11-1), the
system is changed from the regular to the judging state.
Hencefol`th, with one exception described later, no regular
instl.uctions are executed. The system waits, upon
changing states, for the student to type in his response.
When this has been done, the system searches the judging
instructions, in ol`der of their occurl`ence, to try and
match the I`esponse. If no match is found, the I.esponse is
judged no, and the student must enter a different
I.esponse. If a match is found, any regular instructions
immediately following the matched instruction al.e exe-
cuted. This, combined with the ability to recognize
specific wrong responses, enables the author to comment
on the student response. Display instructions such as
-write- are automatically positioned following a matched
response, unless overl.idden by an -at- instruction. The
position is three lines below the student I.esponse, begin-
ning in the same column position.

TABLE 11-1. JUDGING INSTRUCTIONS

Instruction Effect t Instruction Effect t

ans S ok a
ansu S Open n
ansv S Or n
answer S put n
answerc S putd n
bump n putv n
close n Specs n
concept S store S

exact S storea n
exactc S storen S

exactv S storeu S

ignore a touch S

join n touchw S
loada n Wrong S

match a WI`Ongc S

in iscon S Wrongu S

no a WI`Ongv S

ta Always endsjudging
n Never endsjudging
s Sometimesendsjudg ing

The exception mentioned previously occurs with the
-specs- instl.uction. The -specs- instruction is a judging
instruction that can be used to disable standard judging
options or to enable othel`s. In addition, it serves as a
locator. After a student I.esponse has been judged,
whether it is judged col.rect or incorl.eat, all I'egular
instructions immediately following the -specs-instl.uction
are executed. This is done after the regular instl`uctions,
if any, following the matched answer are executed. Since
this execution is done for all matched answers, it is done

11-1

for I.esponses that have been judged ok as well as for those
judged no. If t.he response has been judged ok, the arrow

ish:atis:ttecdhewdhe:n:hwee:egau:%rftnhsetru_Cstj:::iff£:gtyr'u:%]j]o°nwfrt¥
present) have been executed.

Unless pl.evented by the tag .of the -specs- instruction,
when all instructions following a matched judging instruc-
lion and all regular instructions, if any, following the
-specs- instruction have been executed, an ok or no is
placed on the screen following the student I'esponse. This
is done last so that any modification of the original
judgment (made possible by 1.he -judge- instruction) is
I.eflected in the message displayed. Thus, a response can
be judged ok, pl.ocessing done on the response, and the
I.esponse judged again, yielding a judgement of no, and
only the no message appeal.s on the student's screen.

The slandard ok and no messages can be changed with the
cokwol.d- and -noword- instl.uctions, I.espectively. The
tag for these instructions specifies the new message
desired by the authol.. The tag with the new message,
howevel`, must be less than nine charactel.s. Shift and
font chal.acters are allowed and are counted as pal.t of the
nine char.actel's.

When the -al.row- has been satisfied (that is, the student
I.esponse judged ok) and if theI.e is no -endarrow- instruc-
tion, the next unit is entel.ed. If an -endarrow-
instruction is present, any regular instructions imme-
diately following the -endarrow- instruction are executed.
If another -arrow- instruction is then encountered, proc-
essing occul.s as pl.eviously. If there is no other -arrow-
instruction, the unit has been completed.

When the unit completes execution, whether through
satisfaction of an -art`ow- with no corresponding
-ndarrow- or through the execution of the I.egular
instl.uctions following the last ~arrow- and -endarrow-

| 3::rs!nthteheNUEnfti !t;.Sy#:emn ttE:sn {¥ad£::ef,°:htehenestx¥duennftt tf
initialized.

This execution can be complicated by the presence of a
-join- instruct.ion. The -join- instruction is unique, since
it is both a regular and a judging instruction. In fact, it is
also executed in the search state when the system is
looking to see if another -arl`ow- instruction should be
executed before leaving the unit. As a result, a unit
containing judging instructions that is -join-ed to another
can cause the execution of the originating unit to be
somewhat different than intended by tlie author.

As an example, a -join- following a -specs-instruction is
executed when fil.st encountered, since the -join- instruc-
tion is a judging instl.uction. The contents of the unit that
has been -join-ed is then examined, and any judging
instructions are executed as if they wel`e contained in the
original unit. This includes any -join- instructions in the
-jointed unit. If a response-judging instl`uction matching
the student response is found in the -join-ed unit, the
appropriate action is taken, as if the answer were in the
original unit. Then, if there is a -specs~ instruction, all
regular instructions immediately following the -specs-
instl.uction are executed, including any -join- instructions.
This can include the -join- that contains the answer that
was matched to the student response. Any regular
instructions in a -jointed unit following a -specs-instruc-
tion are executed, down to the first judging instl.uction, if

|1-a

any. If the -join-ed unit contains no judging instl.uctions,
the entire unit is executed, and any I.egular instructions
following the -join- instruction al.e then executed. If the
+jointed unit contains any judging instructions, execution
of regular instl.uctions halts when the first is encounter.ed.
Regular instructions following the -join- instl`uction are
not executed.

In general, the execution of the response judging area of a
unit that contains a -joir+ instl.uction can be understood
by thinking of the ~join~ instl.uction as a text-inset.tion
device that executes in all states of the system (I.efer to
section 10).

Additionally, the -iarrow- instruction inserts the unit
named in the tag after the -arl.ow- instruction and just
before the first judging instruction for that -arrow-. For
example,

unit t est
ial.I'ow iarrow
arrow 1115

>
specs bumpshift
*mol.e judging instl.uctions

inserts unit iarrow (with -join-) after the -arrow- instruc-
tion and before the first judging instl'uction (ipecs-) for
tlie -arrow-.

The iarrow unit is in effect for all -arrow- instl.uctions
encountel`ed after the -iarl`ow- instl`uction and while still
executing in the some main unit. However, the -ial`I.ow-
instruction clears when a new main unit is started. A
later occurrence of an -iarrow- instruction in the same
main unit ovel.rides any earlier set.ting.

An -iarrow- instl.uction with a blank tag (or q) turns off
the insertion feature.

Placing the -iarrow- instruction in the imain unit causes
an iarl`ow unit to be effective for an entire lesson.

A conditional form of the -iarrow-instruction is available
(refel` to section 12).

An alternate al.I.ow character may be set up so that a
lesson can use two different al`rows. The -arheada-
instl.uction specifies the alternate character. This is
usually placed in the IEU. The -al.rowa- instruction
displays the alter.note character at the specified location
and continues executing like an -arl.ow- instruction. The
-ial.rowa- instl.uction inserts the specified unit after the
-arrows- instruction and operates analogously to the
-iarrow- instruction.

INITIATING JUDCINC

When a student types in a response, the PLATO syst.em
makes two copies. One copy is stored for later reference
and for possible use in conjunction with instructions such
as -edit- and -copy-, while the other copy, called the
judging copy, is used for determining how well the
I.esponse fits the answer (or answers) specified by the
authol.. It is extl`emely important to remember that this
form of answer].udging is not the same as determining if
the student response is correct. If the student responds

97405100 C

with a word or phl.ase that, while correct, was unantici-
pated by the authol., the response is still judged no
(incorrect).

Judging usually star.ts when the student presses the NEXT
key, indicating that he has completed typing his response.
The maximum length of the student I.esponse permitted is
150 character.s, unless otherwise specified by the author
through use of the -long- instruction. If this inst.I.uction is
used, the tag gives the number of char.acters that the
student response is allowed to contain as a maximum. The
default limit of 150 characters can be either decl.eased or
increased to as many as 300 characters. Since the
-arl.ow- instruction resets the default length limit, the
-long- instruction, if used, must follow and not precede
the ~arrow- instruction to be effective.

Specification of a single character as the maximum stu-
dent response length causes special action to be taken by
the system. First, despite the limit, a capital letter can
be used as a response. A capital letter is stored as two
character.s (refer to section 9), so that a limit of one
character would. except for this special handling, not
allow the use of capital letters. If the limit is greater
than one, a capital that would cause the response to
exceed the limit is ignored, so it does not appear on the
screen. Second, judging is started automatically when a

I ::S%:rs:h:ensgttuhde]iTftm::t°nperecs:a:::tefi£Sx¥£Vkeen; t[: °stt:::
judging, but this is done automatically by the system if
the limit has been set to one by a -long-instl.uction.

The number of chal.actel.s in the student I.esponse is kept
in the system-resel.ved word jcount. As with all system-
reserved wol.ds, jcount can be used in expl`essions, so it is
possible for the author to test the student response for
length.

Although I`esponse judging normally is not automatically
initiated when the response length limit is reached (except
in the case where the limit is one), judging can be forced
to start when the limit is I.eached by use of the -force-
instl.uction (refer to section 10 for a full description of
the -force-instruction). The instruction is:

force long

The -jkey- instruction allows t,he author to specify keys
other than the NEXT key for initiating judging. The
NEXT key remains active. The tag of the instruction
gives the keys that initiate judging. The keys are speci-
fied by name. For example:

jkey back ,helpl

helpl repl.esents a shifted HELP key. Only function keys,
such as ERASE, BACK, and so on, can be used as the
named keys in a -jkey- instruction. The function keys are
those with key codes greater than o200. If more than one
-jkey- instruction is used with a single -arrow- instruc-
tion, the -jkey- instructions are mel.ged, so any key
specified by any one of the -jkey- instructions initiates
judging. The -jkey- instruction is a regular instruction.
The -al.row- instruction resets the -jkey- options, so the
instruction should follow the -al'row- instl.uction and must
be included following each -arrow- instruction for which
the options specified are desired. (Refer to -ial.I.ow- for
another method.)

97405100 C

MANIPULATING THE STUDENT RESPONSE

The response made by the student is not necessarily in the
form that the author desil.es it to be for judging. As a
result, instructions are included for modifying the student
response pl.ior to actual I.udging of the response. How-
ever, these instl.uctions, since they wol'k with the student
response, al.e judging and not I.egular instructions. The
author should exercise some caution in their use, since it
is possible to alter the student response beyond recog-
nition.

These instructions never end judging. Therefore, if the
author desires to perform more complex operations on the
student response, it is necessary to use one of the judging
insti.uctions described later in the section to end judging
befol'e the manipulation can be done. The -judge-
instruction (cover.ed in det.ail later in this section) allows
judging to be restal.ted when the manipulations are
finished.

The manipulation judging instructions fall into three
classes: storing a student response, making a judging copy
of stored characters, and directly altering the judging
Copy.

STORING A |STUDENT RESPONSE

Thel.e are two ways of storing a student I.esponse. The
most often used is the -storea- instruction, which st.ol.es
the student I.esponse in the val.iable specified with any
excess stol.ed in the following variables. The copen-
instruction puts one character into each variable.

The -stol`ea- instl.uction specifies the val.iable in which
the response is stored as its first al'gument. Since the
student response is often mol.e than 10 characters in
length (the maximum number of characters that can be
stored in a single variable), the val.iables immediately
following the one specified hold the remainder of the
I.esponse, if necessary. The -storea- instl.uction pl`oduces
left-I.ustified, zero-filled storage.

For example, if the student I.esponse is 23 character.s long,
the instruction

storea nil,30

stores the response in variables nil, nl2, and nl3. The
second argument, 30 in this case, gives the number of
characters to be stored. The last seven character codes,
in this case, al.e zel.o. If the second argument is omitted,
up to 10 characters are stored. An altel.native allows the
author to stol'e only the exact number of characters in the
I.esponse.

storea res,nl < jcount

This instruction stores the number of character.s in
student response and also stol.es the value of jcount
variable nl. Either integer (n type) or floating-point
type) variables can be specified as the start.ing storage
location in the -stol.ea- instruction. The action taken is
the same in either case.

11-3

The copen- instruction puts one cliaract.el. of the student
I.esponse into each variable. The starting location is the
only argument in the tag. Each character is right-
justified within the val`iable. The I`emainder of each
variable is filled with zeros. Only integer variables should
be specified as the stol.ting location of an copem in-
stl.uction.

M^KINC A JUDGING COPY

The -loada- and nglose- instruct.ions al.e used to place
characters already stored in the bank of variables in the
judging copy. The judging copy is blanked befol.e the new
chal.acters are put in, so the chal`acters constitute the
judging copy in its entirety. The -loada- and -1ose-
instructions are the complementary instl'uctions to the
-stores-and ropen- instructions, z'espectively.

The -loada- instruction places the character starting in
the location given in the first argument in the judging
copy. The number of ch8ractel.s is given as the second
argument and can be a val`iable I.eference. An execution
el.I.ol. results if a character code of OOO is encountered
(neithel` a blank nor a zero have OOO as a character code).
It assumes that the characters are packed 10 pel. variable.
left-justified (as fl`om a -storea-or i)ack-instruction).

The -close- instruction takes the I.ightmost character
code of the number. of variables specified in the second
argument of the tag, beginning with the variable specified
as the fil.st argument of the tag. These characters then
become the judging copy.

ALTERINC THE JUDCINC COPY

Two operations can be performed on `the judging copy
without I.equil.ing that it be stol.ed, manipulated, and then
I.eplaced. These opel.ations are performed by the -bump-,
-put-, -putd-, and -putv- instl`uctions.

The thump- instruction I.emoves any of the charactel.s in

i5utmagp_(i:s::u:its::)cfhra.I:c:::si:3:i::c#fiffa':nesacs::g::
included but should be between two other characters for
clarity.

An occurrences of any of the char.actel`s specified al.e
I`emoved from the judging copy. Thus, the judging in-
stt`uctions following a -bump- instruction should not
contain any of the -bumpued characters as a part of the
specified answer.

As an example, the instructions

bump etr cond
onsw er 5 fps

allow the student to respond with 5 feet per second and
still judge the response as col.rect.

The aput-instruction substitutes stl.ings. Any occurrence
of the string on the left of the fil'st equal sign in the tag is
replaced by the string to the right of the same equal sign.
As with the thump- instl`uction, all occul.I.ences of the

11-4

string to be replaced are replaced with the execution Of
the single instruction. As an altel.native example to that
given for the -bump- instruction, the instl.uctions

put fps = feet pel. second
answer 5 feet per second

allow the student to answel. with 5fps and still match the
tag of the unnswel`- instruction.

Problems arise if the character string to be I.eplaced
contains one ol. more equal signs. In this case, the -putd-
instl.uction should be used.

The tag of the putd- instruction gives the two chal'acter
strings along wit.h delimitel.s. As with the -put-instruc-
tion, occul.rences of the first character string in the
student response al.e I.eplaced by the second stl`ing. The
major diffel.ence is the use of delimiters for the charactel.
stl`ings. The first char.acter in the tag is the delimiter
used. The next occurrence of the same character
indicates the end of the first string and the beginning of
the second. The thil.d occul`I`ence gives tlle end of the
second stl.ing.

An example of the ~putd-instruction is:

putd , irregardless, I`egardless,

Because the delimiter is defined as the first character. in
the tag field, this instruction could also be

putd "irregardless"I`egardless"

and have precisely the same effect. The I.estriction on
the delimiters allowed is the obvious one: the delimiter
used must not appear in either of the character strings.

The -putv-instl.uction is similar to the -put-instruction
except that the original and replacement character stl'ings
al.e in variables.

The tag field for the -putv- instl.uction consists of four
al`guments specifying the following.

Alg_u± Definition

1 Original character string (left-jus-
tified)

2 Length of original string

3 Replacement character stl.ing
(left-justified)

4 Length of I.eplacement string

An example of tlie i)utv- instruction is:

putv nl,4,n5,n8

A maximum of 50 chal`acters can be replaced with each
aputv- instruction. If the I.eplacement of chal.actel.s
causes the judging copy to exceed 300 chal.actors, an
automatic no judgment is made. The limit of the judging
copy is 300 characters.

97405100 C

If successive i)utv- instructions are used, they are exe-
cuted in the ol.der of occurl'ence and may possibly modify
the previous aputv- instructions.

INFORMATION FROM A STUDENT
RESPONSE

Sometimes an author needs infol`mation about the wol.ds in
a student response. The ngetwol.d-, ngetmark-, and
ngetloc- instructions supply information about a specified
word in the student response by specifying the ordinal
number of the word in the fil.st argument of the tag. The
instl.uctions are I.egular rather than judging instructions
and are executed only in the answer-contingency state
which is the regular state following judging and pl.eceding
an -endal.row-, an -arrow-, or end-of -unit.

The system-I`esel`ved wol.d wcount cont.aims the number of
wol`ds in the student response. A word is defined as a
string of chal.acters separated fl.om other strings by
spaces, punctuation, or letter/number boundaries.

The ngetword- instruction finds the word in the student
response which is specified by number in the first argu-
ment of the tag. The wol.d is stored in the location given
in the second argument of the tag, and the number of
characters in the wol.d is stol.ed in the location given in
the thil.d al.gument of the tag. The optional fourth
argument specifies the maximum character length
allowed. When this value is not given, the default
character length is 10. If the value in the first argument
is greater than wcount, the thil'd argument containing the
number of character.s is zel.o, and the second argument is
unaffected. The third argument always contains the
number of character.s in the I.equested word regardless of
limits set by the foul.th argument.

The ngetmark- instl`uction retul.ns markup information
about the wol.d specified by number in the first argument
of the tag. The markup information is stol.ed as a number
in the location specified in the second argument of the
tag.

The ngetloc- instruction returns the screen coordinates of
the wol.d specified by number in the first argument of the
tag. The second and third arguments are the starting x
and y cool.dinates, respectively, and the optional fourth
and fifth arguments are the ending x and y coordinates,
respectively.

The following instructions store the second wol`d of the
student's response in storage locations nl0 and nll and the
length of the word in n9. Location n8 contains markup
information about that wol.d. The starting screen position
is in nl2 and nl3, and the ending screen position is in nl4
and nl5.

getwol.d 2,nl0,n9,20
getmark 2,n8
getloc 2,nl2,nl3,nl4,nl5

RESPONSE JUDCINC

The most important part of response handling is judging
whether the I.esponse was anticipated by the authol. and is

97405100 C

the one that the author will accept as a corl.ect answer.

(?#8orrrees8t°)Tse not Specified by the author is judged no

NONNUMERIC RESPONSE JUDGING

Two instructions that al.e usually used for judging student
responses when the I.esponse is most apt to be a word,
phl.ase, ol. short sentence are the -answel.- and -wl`ong-
instl`uctions. They operate in the same manner, except
that the -answer- instl.uction judges the response ok if it
adequately matches the tag of the instruction, and the
-wrong- instl`uction, if matched, judges the I.esponse no.
The -wrong- instruction allows the author to give the
student a message following the wl.ong answer, and if
desired, to do other processing. The -answer~ op -wl`ong-
instl.uction with a blank tag is matched by a NEXT
keypress, a space bar pl.ess, or a punctuation mark.

The tag of the -answer- or -wl.ong- instruction is the
answer to be matched. Three options al.e available for
words within the tag.

Words that are simply written in the tag, as in a -write-
instl.uction, must be present in the student response and in
the order in which they appear (unless -specs noorder- is
used).

Wol.ds within a set of parentheses are considered syn-
onyms, and while it is necessary for one of the words to be
present in the pl.oper position, any one of the words within
parentheses is judged correct. Each set of parentheses
should have a list of two or mol.e wol`ds, separated by
commas.

Optional words al.e enclosed in angular bracl(ets (<,>).
This list can occur anywhere in the tag, and the tag may
contain mol.e than one optional word list. Any wol.ds in
the student response that al.e included among the optional
wol.ds are ignored, whatevel` their position in the student
response.

A phl.ase is indicated in the tag by using an asterisk be-
tween the words of the phrase. Phrases must be com-
pletely on one line. The system-resel.ved word phl.ase is
set to -1 if no el`rol.s are in the phrase, and it is set to 0 if
a phrase is incomplete.

The answer tag cannot contain punctuation except for the
commas within a bracket or parentheses set. Punctuation
is allowed in the student's response, but it is ignol.ed. The
wol.ds in the tag are sepal.ated by spaces only and al.e in
the order in which the student's I.esponse must occur for a
match. Thus, the instruction

answer < the,is> (square, rhomboid) blue

accepts the square is blue or rhomboid blue as a correct
I`esponse, but it does not accept blue I.homboid as col.rect.
It is possible to accept keywords in any order as a correct
response to an -answer- or -wrong- instl.uction through
the use of the -specs- instruction with the tag noorder.
The -specs- instruction is discussed in detail later in this
section,

11-5

The -answer- and -wrong- instructions also check for
extra words, spelling, and numeric tolel.Once, as well as
the word order. These options, like the word-order check,
can be cancelled by the author thorugh the -specs-
instruction.

The student response is marked for wol.ds not contained in
the -answer- tag, for corl.ect words out of place, for
misspelled words, and for numeric answers that al.e close
to that I.equil.ed but not quite accurate. Extra words are
underlined with x's, misspelled wol.ds and improper
numeric values al.e indicated with equal signs, and
misol.dered words are indicated with al`I.ows. Because of
tlie complexities of spelling and spelling el.Tors, a mis-
spelled wol.d is not always recognized as misspelled but
might instead be indicated as ori extra word. The response
is not marked unless the response is close to a match or if
a -nc+ instruction (descl'ibed later in this section) is used.
Thus, the instl.uction

answel. Johann Kepler

does not accept Leonal.do da Vinci as a col.rect I.esponse
nor. is the I.esponse mal.ked to indicate an el.For. The
tolel.Once fol. numeric answers or numeric portions of
answers i§ 10 percent for marking the answer (that is, the
response is labeled as misspelled if the answer is within 10
percent of being col'rect). Numel.ic answers that al.e more
than 10 percent fl`om the correct value are not underlined
with x's but are left unmarked. All of the options for
marking a student response can be modified or disabled by
the author with the rspecs- instruction (descl`ibed later in
this section).

The -wrong- instl.uction performs the same sort of
marking of the answer, which can be a disadvantage, since
it leads the student to answer incorrectly by following the
mal`kings. However, messages and actions tal(en following
a matched -wrong~ answel. can be helpful to the student,
and these are only executed when the tag of the -wl.ong-
insll.uction has been adequately matched.

The -answel`c- and -wrongc- instructions are conditional
forms of the -answer- and -wrong- instl.uctions, respec-
tively. The val.iable in the first argument of the tag
indicates which response is anticipated. The responses
may be anything which is legal in an -answer- op -wrong-
instruction. A I.esponse for a condition may extend onto
the next line since end-of-line is not a delimiter fol. these
instructions.

At times, the authol. wishes to allow a number of igno-
I.able words or wants to specify a number of synonyms for
vyol.ds. This can mal(e the -answer- and -wrong-
instl.uctions unwieldy because of the number of wol.ds that
must be specified in the tag. One alternative is the use of
the -list- instruct.ion.

The -list- instl.uction sets up a list of synonyms that can
be used intel.changeably. The synonymous wol.ds al.e given
in the tag of the instruction, separated by commas. The
first argument in the tag, however, is not one of the
synonyms but the name to be associated with the list.
This is necessary because mol.e than one -list- can be
used, even within a single -answel.- or -wl.ong- instruc-
lion. Each list name must be unique with respect to other
nst names in the same lesson, and it must be no more than
seven char.acter codes long.

11-6

The synonyms in the list can be used as either eynonymous
important words or as a list of ignorable words. The list is

::f::e?fc£:gtf:r:::::f)%fftthhee-I?snt:Wef=efnn:Luect::ntfgifhs:
must be enclosed in either parentheses or angular
bl.ackets, whichever is appropriate to the usage, contained
within another matching set of parentheses or brackets.
These outer bl.acl(ets allow further synonyms to be defined
for use dul`ing a single -answel`- or -wrong- instl`uction.
As an example of the use of the -list~ instruction,
consider the following instructions.

list
list

at
write
arrow
answer

extra,a,the
saurian, brontosaurus, stego-
saul.us, diplidocus
510
Name a dinosaur
1010
<<extra>> ((sourian), tyrannosaurus,
tl.achodon)

If the lesson concerns dinosaurs, a -list- instruction
specifying synonymous names is much more I`eadable and
easier to wl.ite than spelling out all the alternatives in
each I.elevent judging instruction.

If the vocabulal.y to be used in judging st.udent responses is
quite large, or if something approaching a dialog is to be
allowed between the student and the lesson, the -answer-
and -wrong- instl.uctions might not be appropriate.
Instructions that mal(e the judging of complex responses
fast.er and easiel' are the -concept-, -miscon-, -vocabs-,
-vocab-, and -endings- instructions. These instructions
allow student responses to match any of a number of
anticipated I.esponses.

The tag of the -concept- instl`uction specifies the concept
to be matched, judging the student I.esponse ok if the tag
is matched. The -vocabs- or ~vocab- instructions must be
used with the ueoncept- instruction. Au of the words in a
-concept- instruction must be in a pl.eceding -vocabs-
instruction to prevent condense el`rors. Using a number of
ngoncept- instl.uctions is fast and efficient because the
-concept- instruction convel.ts the student I`esponse to a
sequence of numbers. If mol`e than one line i§ used in the
tag of the -concept- instruction, each line is taken to
I.epl`esent an equivalent concept. This allows the author
to enable the student to use grammatically differ.ent but
semantically identical responses and to allow those I'e-
sponses to match the same judging instruction. It also
requires the author to keep each concept less than one
line long. Evel`y word in a -concept- instruction must be
part of an active vocabulary established by a pl.evious
-vocabs- or -vocab- instruction. A ueoncept- instruction
with a blanl(tag is matched when the student's response
consists only of ignorable words.

The analog of the -wl.ong- instruction for judging con-
cepts is the -miscon- instl.uction. It judges the student
response no if the tag is matched. All the featul.es of
-oncept- can be used with -miscon-.

The -vocabs- instl.uction specifies the vocabulary to be
used by a ngoncept- instruction. Just as a ndefine- set
has a name so that the set can be I.efel`enced by name at
other points in the program. the first line of the tag of the
-vocabs- instl.uction gives a name to be associated with
the vocabulary that the instl'uction specifies. Succeeding

97405100 C

lines may be comprised of ignorable words, keywol'ds,
synonymous words, and phrases. Ignol`able wol.ds are
separated by commas and enclosed in angular bl.ackets.
Keywords are separated by commas. Synonymous words
al.e separated by commas and enclosed in parentheses.
Synonymous words with suffixes may be used (refer to
mendings- instruction in this section). Phl`ases al.e desig-
nated with an asterisk between the words of the phrase.
A phrase may not be split between lines and cannot use
plurals and -endings-. If a word begins with a numbel' and
contains letter.s also, treat it as a phrase (for example, 3rd
does not work, but 3*I'd does work). The -vocabs-
instruction also has spelling and capitalization checks.

The -vocab- instruction is almost identical to the
±vocabs- instruction except that it does not allow phrases,
has no spelling checks, and has no capitalization checks;
therefore, it uses less space than a -vocabs- instruction.

fnhea-veonc:£bnug[Sa-ryfn(S_t;:::!£inoard:;oScu:££sxjsa;%¥ursdtspdreef;:::
the -vocab- or -vocabs- instruction. The tag of the

::gfin8:Tfrsstraucifu°£b%ns{3tst:iotuwg°hargguTdeennttsf:fyt£::fftrhs:
suffixes list, and the second argument is the actual list of
up to eight suffixes. For example, the instl.uctions

endings 0 ,ed,ing,s
endings 1, ed, ing

define two suffix lists as shown below.

vocab wol.k/0
fin / / 1
hire/s/d

The fil`st line of the -vocab- instl.uction defines as
synonymous the words work, wol.ked, working, and wol.ks.
The second line defines as eynonymous t.he words fired and
firing but not fir. The third line defines as synonymous
the words hil.e, hires, and hired.

The ueoncept- instl.uction iises the vocabulal`y specified
by the last vocab type instl'uction encounter.ed prior to the
-concept- instruction. If more than one -vocab- type
instl.uction has been encountered and the author wishes to
use one of the earlier ones in judging a response, the
I.elevant vocabulary is called into activity by a -vocab-
type instruct.ion with only the name of the desired vo-
cabulary in the tag of the instruction. Because of this
ability to recall vocabularies to activity, the name asso-
ciated with each -vocab- vocabulary must be unique
within the lesson.

The ueoncept- instruction functions by reducing the
synonyms given in the -vocab- instl`uction to a positional
reference within the list, associating the important words
in the tag of the instl.uction with the same number.s, and
checking the student response to see if a similar reduction
yields the same I.esult. Thus, if the important wol`ds
specified in the tag of the ctoncept- instruction al.e in the
order taken from the fil`st, sixth, and second sets of
synonyms in the -vocab- instl.uction, the ngoncept-
instruction I`educes the answer to be matched to the
numbers 162. The student response is subjected to a
similar reduction and judged ok if the I.eduction of the
student response also yields 162. Words specified in the
-vocab- instruction as ignorable do not Off ect judging of
the student I.esponse, regardless of the position of
occul`rence or number of appearances in the student
response.

97405100 C

The rok- instruction judges the student response ok and
ends judging. It can be used for acceptance of arbitrary
critel.ia or any other purpose in which the exact fol.in of
the response is immaterial, such as stol'ing a name by
which to address the student. In such an instance, the
-storea- instl.uction is probably the best instruction to
use, but the -storea- inst.I.uction does not end judging so
that fur.ther processing can be done. The cok- instruction
can be used for this purpose.

The -no- instruction functions in the same manner as the
cok- instruction, except that the student response is
judged no I.ather than ok. As with the -ok- instruction,
the tag of the -no- instruction is blank.

The -ignore- instl.uction, which also possesses a blank tag,
has a somewhat different effect. The student response,
I.ather than being judged ok or no, is ignol.ed. The
response is erased, processing stops, and the system waits
for a new student response. Regular instructions follow-
ing the -ignore- instl.uction are not executed, nor al.e the
regular instl.uctions, if any, following a -specs- instruc-
tion.

At times it is necessary to judge the student response
corl'ect only if it exactly matches the specification given
by the author. The -answer- instruction is too general for
this purpose. Three instructions are supplied for requiring
exact matches: -exact-, -exactc-, and -exactv-.

The -exact- instruction judges the student response ok
only if it precisely matches the tag of the instruction.
This includes punctuation, spaces between letters, and all
other character.istics of the tag. The eexactc- instruction
is equivalent, but it is a conditional fol`m. The first
argument in the tag is the variable or expression whose
value deter.mines which argument is to be used as the tag.
The remaining arguments are the possible responses the
student can be I.equil.ed to match. Since the arguments
are separated by commas, the responses may not contain
commas. This can be altered by a nghange symbol-
instruction (described later in this section), or else an
-exactv- instruction can be used.

The ecexactv- instruction has two al'guments in its t.ag.
The first argument specifies a variable name, and t.he
second argument specifies the number of characters to be
matched. The instruction compal.es the student response
against the specified number of characters in the variable
bank, starting with the specified variable. The I.esponse is
judged ok if an exact match is achieved. This allows a
form of conditional judging with punctuation, since the
char.acters to be matched can change either by change of
characters or by change of variable reference. If the
character count in the second argument is omitted, the
comparison ends after 10 characters or after a zel.o string
of six bits. If the second argument is zel.o, the student
response is judged col'rect if no keys al.e enter.ed.

NUMERIC JUDGINC

When a pul.ely numeric response is required, which may be
an algebraic expression, several instructions are available
for. processing the response.

The -answel.- instruction is limited, since only simple
numeric I.esponses, such as 200+32, are per.mitted. The
-wrong-instl.uction has the same limitation. The -ansv-
and -wrongv- instructions are specifically designed for

11-7

judging numel'ic and algebl.aic I`esponses. The tags of
these instructions have either one or two al`guments. The
one-al.gument form requires that the value of the student
response be precisely equal to the value specified by the
authol.. The optional second argument specifies a range
within which the response is judged ok. The first
argument can be an expression, if desired. The second
argument can either specify an actual value I.ange or a
percentage range.

For example, the instl.uction

ansv 23+y2,5%

judges the student response correct if it is within 5 per-
cent of the value given by tile expression 23+y2. An
example of the use of a specific numeric range is the
instl.uction

wl`ongv 23 7 ,4

which judges the response no if it is between 233 and 241,
inclusive.

The -store- instruction also judges algebraic I.esponses.
The manner of evaluation is somewhat different from that
of the -ansv- and -wl.ongv- instructions. The response is
evaluated, and the value is stored in the variable which is
the tag of the instruction. No value is specified as
correct. The I.esponse is judged no if the response cannot
be evaluated. If the response can be evaluated, the
I.esponse is not judged ok, and the judging is not stopped.
Thus, an instl.uction such as the rok- instruction is
necessal.y to end judging with an ok I.udgment.

The system-I.eserved word formok is set by the -stol.e-,
-ansv-, and -wl.ongv-instructions. The value of formok is
-1 if the response can be evaluated. If the response
cannot be evaluated, the value of formok is set to any of
various values, depending on the type of el.roll. A list of
these values, together with the type of error they
I`epl.esent, is given in appendix 8.

The ustol`en- instruction searches the student response for
a numeric element, and if found, evaluates the element
and stores the value in the variable specified in the tag.
Judging, in this case, is not ended. If no numel.ic element
is found, the response is judged no, and the val`iable is
given the value 0. Only simple numel.ics are permitted in
the student response, such as -2/3 ol. 4.75. Variable
names cannot be used in the I.esponse. The numeric
element can be embedded in text but must, in this case,
be set off by spaces or punctuation. Only the first
numeric element is seal.ched for, but that element is
removed fl.om the judging copy so that I'esponses with
more than one element can be broken down by multiple
-storen- instructions.

The -ansu-, -wl.ongu-, and -storeu- instructions al.e
useful when judging student responses that involve both
numbel.s and scientific units, such as 3 .7 kg-in/sec2.

These instl`uctions are similar to the -ansv-, -wrongv-,
and -stol.e- instl`uctions except that the dimensiomlity
(units) of the student I.esponse is handled, not just the
numerical element.

11-8

Tlie dimensions used in the -ansu-and -wrongu-tags must
be pl.eviously defined in a ndefine student- instruction.
Fol` example:

*

ansu
*

WI`Ongu

student
units,kg,in,see

cm=m/100,
min=60xsec

3.7 in/see

10.9 kg-in/sec2

Ssprimary units:
Ssthe keyword units
Ssis I.equired
Ssequivalent units

The -ansu- instruction judges numeric student responses
(with scientific units) ok if the answer is equal to the
specified answer within a specified tolerance. The
-wrongii- instruction judges numeric student responses
(with scientific units) no if the answer is equal to the
specified answer within a specified tolel.ance.

When a tolel.ance is specified as a deviation, it is taken to
be a primary unit fl.om the student define set, no matter
what units were specified in the -ansu- instruction. To
make sul'e the deviation is what is intended, the deviation
units must be specified explicitly. When the tolerance is a
percentage, the units used when none are specified are the
units specified in the first argument of -ansu-.

To store the numeric and dimensional elements of the
-ansu- ol` -wrongu- response, the -stol.eu- instl`uction is
used. The -storeu- instl`uction must precede the -ansu-
or -wl`ongu- instruction.

The numeric element of the student response is stored in
the variable specified in the first argument of the
-storeu- instruction tag, and the dimensional element of
the response is stored in the 10 consecutive val.iables
specified in the second argument of the instruction tag.

The response is judged.no, and judging ends if the student
response cannot be evaluated. Judging does not end,
howevel., if the student I.esponse can be evaluated.

Again, the -stol`eu- tags must be previously defined in a
-define student- instl`uction. The -ansu-, -ansv-,
-wl`ongu-, and -wl.ongv- instructions must follow the
rstoreu-,

TOUCH PANEL JUDGING

The -ntouch~ and -touch instl.uctions are used to judge
student responses when the optional touch panel is used.
Since not all terminals have the touch panel capability,
these instl.uctions should usually be accompanied by a
keyboard-input-I`esponse-judging instruction. The instl`uc-
tions can be linked with the cop- instruction discussed
later., if necessal.y.

The touch panel is composed of 256 squares. Each squal.e
is two coal.sengl.id I`ows in height and four coar§eirid
columns in width. Thus, the screen has 16 rows and 16
columns of touch squares, each 32 dots by 32 dots.

97405100 C

The finengl.id coordinates of the center of the last squal.e
touched al.e returned in system-reserved wol`ds ztouchx
and ztouchy. This information is also I.eturned in the
system-reserved wol'd key in the bit formal lxxxxyyyy,
whel.e xxxx is the horizontal location and yyyy is the
vertical location of the touch squal`e, both expl.essed in
bimry. Since the key code for the t.ouch panel is greater
than 255 (o377). it is simple to test if touch panel input
has occurred by simply testing the magnitude of key. The
keyboal.d input codes al.e all less than 255 (o377).

The touch panel, if enabled (refer to section 9), ter-
minates a ~pause- instl.uction and can also function as a
NEXT key if a touch instruction is not included in the
judging instl`uctions of the curl`ent -arrow- instruction or
in units that do not contain an -arrow- instruction.

The -ntouch-instl.uction judges a touch ok if it lies within
one of the al.eas specified in the tag. The al`guments in
the tag specify rectangles either in coarsengrid cool.-
dinates or in fine¥rid coordinates. Touch squares which
are partially or completely covered by these rectangles
are t.he areas used to match touches on the touch panel.

Areas specified in coarsengrid coordinates can have one or
three al`guments. The first argument is the coarsengrid
location of the lower left corner of the area. The optional
second and third arguments al.e the number of characters
wide and the numbel. of lines high, I.espectively. Areas
specified in finengrid coordinates can have two ol. four
arguments. The first two arguments are the finengl.id
location of the lower left corner of the area. The optional
third and fourth arguments al.e the number of dots wide
and the number of dots high, respectively. Default values
for widths and heights are I and I . Commas separate the
arguments.

When the -ntouch- instl`uction specifies mol.e than one
al.ea in the tag, semicolons sepal`ate the al`eas. The
inequality

(3 X number of coarsengrid areas) + (4 X number of
fineipid areas) < 62

gives the maximum numbel` of areas which can be
specified in an -ntouch-instruction. Omitting the width
and height of an al.ea does not incl.ease the maximum
number of areas possible in an -ntouch-instruction.

Touch panel input in a location other than that specified
by an -nt.ouch- instl'uction is judged no.

The -ntouchw- instl`uction judges anticipated no re-
sponses. It functions exactly like the -ntouch- instl.uction
except that a matched response is judged no instead of ok.
If the response is an anticipated no, system-I.eserved word
judged is set to 0. If a square defined by -ntouch-
ovel.laps a square defined by -ntouchw-, the square
defined last is ignored.

The -touch-and -t.ouchw-instl.uctions are early forms of
the -ntouch- and -ntouchw- instructions and are being
phased out.

The -touch- instl.uction specifies the location to be
touched as the first argument of the tag. This location is

97405100 C

a single coarsengrid scl.een coordinate. There can be
either one or two more arguments. If there is one more
argument, it specifies the tolel.ance in terms of touch
squares and in all directions from the touch squal'e
containing the coordinate reference.

The three-argument for.in is used when the area that is to
give a judgment an ok is not square. The first argument
again specifies a coal.sengrid coordinate position. This
position is the lower-left col`ner of the area to be
delimited. The second argument specifies the width of
the al.ea in touch squares. The third argument specifies
the height of the area, also in touch squares. Thus, the
instruction

touch 2021,1

judges ok any touch panel response occurring in the squal.e
delimited by coarsengrid coordinates 1717, 1728, 2228, and
2217. The instl.uction

touch 1013,6,1

judges a touch panel response ok if it lies within the
I.ectangle bounded by coarsegrid cool.dinates 913, 1013,
1036, and 936. Since the first argument specifies the
lower-left col.ner of the sensitive area, t.he location
requil.es an even line number and a column number ob-
tained by the formula: (4 X integer) + 1. Any coarsengrid
location can be used in the tag, but the system activates
the square corresponding to a proper touch location as
defined previously.

An important difference between the two- and three-
argument forms of the -touch- instl.uction is that the
two-al.gument form specifies the center touch square of
the desil.ed touch al.ea, whereas the thl.ee-argument form
specifies the lowel.-left comer of the desired touch al.ea.
These are the areas specified by the above -touch-
instl.uctions.

The -touch- instruction may also have a list in the tag of
up to 20 al.eas as correct I.esponses. These areas may be
either two-or three-argument forms and are sepal`ated by
semicolons. Judging is ended with an anticipated ok if any
one of the specified areas is touched.

Touch panel input in a location other than that specified
by a -touch- instruction is judged no.

The -touchw-instl.uction judges anticipated no I.esponses.
It functions exactly like the -touch- instruction except
that a matched response is].udged no instead of ok. If the
response is an anticipated no, system-I.eserved word
judged is set to 0.

11-9 ,

OTHER JUDGING INSTRuCTloNS

When one of several possible actions expressed in one or
mol.e conditional instructions is to be executed, depending
on the student response, the -match-instruction is usually
the best way to determine which action to take.

The first argument of the -match- instruction is a val.i-
able name that gives the variable that will contain the
number of the answer matched. Succeeding arguments
give the possible I.esponses, separated by commas. The
value of the variable specified is -I if no match is found,
0 if the student response matches the first item in the list
of responses, 1 if it matches the second, and so for.th.
Cont.inued lines (that is, lines immediately following, with
the command field blank) are crjnsidered part of the same
-match- instl.uction. Judging is ended in any case, with a
judgment of ok if a match is found and no if otherwise.

The nor- instruction is used to define consecutive judging
instructions as equivalent. The I.egulal. instructions, if
any, following the last such judging instl`uction are
executed if any one of the instructions in that set of
equivalent instructions has been matched. Similarly, the
system-resel.ved wol.d anscnt, which counts the number of
judging instructions that have been scanned in searching
for a match, has the same value regal`dless of which of the
instl.uctions is matched. The tag of the col.- instruction is
blank.

As an example of the use of the ror- instruction, the
instructions

answer 1
0r
touch 515

allow the student to specify either a number or a location
on the touch panel as the I`esponse. Either is judged as
equivalent. The value of anscnt is the same, and any
regular instl`uctions immediately following the -touch-
instruction al.e executed if either the -touch- instl.uction
ol' the -answel.- instruction is matched.

However., the actual judging ok or no is done separately
for each instruct.ion. Thus, it is possible to mix -answel.-
and -wrong- instl.uctions in a single equivalent set of
instructions. Actual judging ok or no is done as it would
be done if the instructions wel.e not connected.

It is sometimes desirable to furnish the student with the
correct answer; this can be done with the -ans- in-
struction.

The effect of the -ans- instruction is to enable the ANS
key on the student's keyboard. If the student then pl.esses
the ANS key, judging is terminated, the response is judged
ok, and any regular instructions immediately following the
-ans- instruction are executed. These would ordinarily be
the display instructions for infol.ming the student of the
correct answer.

The only restl`ietion on the -ans- instruction is that it
must be the fir.st judging instruction to occur following
the relevant -al.I`ow- instruction. This means that the
-ans- instruction must precede the -specs- instruction if
both are used.

11-10

If a unit does not contain an -ans- instl.uction, the ANS I
key has no effect. Similal.ly, if thel.e is an -ans-

;::tdreuncttfd°onesf::]t°;r`:g tahne A-£rsr::;, tfhnestjrnustc:L°cntEoannfast:: I
effect. The value of anscnt is not inci.emented by the
-ans- instruction.

The ueompare- instl.uction allows an author to compare
the spelling of two words. These words may be either
alphabetic or numeric. The ngompal.e- instruction func-
tions according to the system].udging symbols.

The tag consists of three arguments. The first two argu-
ments are the storage locations of the two wol.ds to be
compal`ed. The thil.d argument is the location of the
result of the compal.ison. This I`esult is:

-1 If the words are diffel`ent

0 lf the words are the same

+n lf the words are misspellings of each other,
where a smaller n indicates less of a misspelling

If the I.esult of the comparison is +n, the system-resel.ved
words capital and spell are set. (Refer to appendix 8.)

-SPECS- INSTRUCTION

The rspecs- instruction has all.eady been mentioned
earliel` in this section because of its effect on instruction
execution during response judging. This instruction
modifies the normal judging processes for the oul`rent
-al.pow-. It also acts as a market. which is returned to
aftel. each ok ol. rlo judgment.

The tag of the instruction consists of specifications of
standal.d author language options tliat al.e to be tuned off
during response judging or nonstandard options that al.e to
be tuned on during judging. Each specification is
represented by an appl`opriate word. When mol.e than one
specification is to be given, the specifications al.e
separated by commas. If the ngpecs- instruction is to be
used only as a mal`ker, a blank tag may be used.

A list of the options, with a short description of the effect
of each, is given in table 11-2. Options affect only the
student I.esponse.

The -markup- instruction mar.ks the student's answer with
the markup saved by the -specs holdmark- instruction. If
-specs holdmal`k- is not specified, the system auto-
matically mal.ks the student's answer during judging,
unless the mal.I(ups are canceled by the -specs nomark-
instl.uction. Student answel. mal.kups consist of the
following.

Mark Meaning

€ Word out of correct ordel., move left

= == Misspellings

xxx Unknown words

*** Broken or incomplete phrases

+ Capitalization erl`ors

A Missing items

97405100 C

TABLE 11-2. -specs-OPTIONS

Option

allwords

alphxnum

bumpshift

exorder

holdmark

nodiff

nomark

nool(no

noops

noorder

nospell

novars

okassign

Okcap

Numbers are interpret.ed as words,
not numeric quantities.

Word-number. boundary is treated
as punctuation.

All shift codes in the response are
ignored.

The order of ignorable words is
important.

Withholds an answer markup until
-markup- instruction is executed.

The numeric approximation I.udger
is turned off .

The nol.mal marking-up of an
answer is not done.

The ok or no is not displayed fol-
lowing the response when judging is
complete.

No al.ithmetic operations are per-
mitted.

The order of occurrence of key
words is unimpol.tant.

Spelling judger is tul.ned off (no
in isspellings recognized).

No variable refer.ences are pel.-
mitted.

The student can assign values to
val.iables which are defined in set
studer't.

Capitalization of a word is ignol.ed
in a response if , and only if , the
wol.d is not capitalized in its
~vocabs- entl.y.

Extra words in the response al.e
permitted.

Recognizable misspellings are per-
mitted as a match.

Numeric answers within 1 per.cent
of value given are judged ok.

REGULAR INSTRUCTIONS AFFECTING
RESPONSE HANDLING

Some regular inst.ructions also affect either the judging
copy of the student response or the judging process. Since
these are not judging instl'uctions, judging must have been
terminated or not yet begun for these instructions to be
executed.

97405100 C

The -judge- instruction can be used to alter the judging
process or the final judgment. The uedit- and -copy-
instructions can be used to increase the ease with which
the student can modify a response. The -time- instruc-
tion sets a time limit within which the system waits for
the student response. The uehange- inst.I.uction changes
the judging values of charactel's.

-JUDCE- INSTRUCTION

The -judger instruction can be used to restart judging
with or without changes made in the judging copy, to
cancel a previous judgment, or to specify the judgment to
be made. The instruction has both a conditional and an
unconditional form except that an al.gument of q is not
pel`mitted. The -judge-instruction is only executed in t.he
regular state.

There are 11 possible specifications.

judge ok

j udge no

judge w Pong

judge exit

judge continue

judge rejudge

judge x

judge ignor e

judge quit

judge okquit

judge noquit

Ssset judgment to ok, continue
processing regular. instructions

Ssset judgment to no, continue
pl.ocessing I.egular instruc-
tions, answer is considel`ed
unanticipated

Ssset judgment to no, continue
pl.ocessing regular instruc-
tions, answer is considel'ed
anticipated

Ssart:Scffonrdf£Ftehv::uEei:d%Ternet:
Sponse

Ssrestal.I judging. using judg-
ing copy as modified by
hoump-, -put-, and so forth

SSreplace modified judging
copy with original response
and I.estart judging

Ssno action taken

SSstudent response el'ased,
system waits for another
response

Ssstops the pl'ocessing of
regular instl.uctions without
changing judgment

SS§et judgment to ok, stops
processing of I.egular instl.uc-
tions

Sssets judgment to no, stops
processing of regular instl.uc-
tions

The judge rejudge option uses the other copy of the stu-
dent response, which is not modified by any author
language instructions. This is why two copies are made,
so the second copy can be used for reference or rejudging.

11-11

The continue and rejudge options stal't judging, so the
system is switched into the judging state following exe-
cution of either of these options. The rok- and -no-
instructions are the equivalent instructions used to switch
fl.om the judging state to the regular state.

An example of t.he conditional form is:

judge exp,no,x,ok,ignore, no

-EDIT-AND -COPY-lNSTRuCTIONS

The student can be allowed to place words into his input
buffel. by means of the -edit- and -copy- options. They
function in a similar but not identical manner.

The -edit- instruction sets up a buffer starting at the
variable location specified in the tag of the instruction,
and it continues until the length limit of the st.udent
I.esponse is reached. Unless modified with a -long- in-
struction, this is 150 chat.acters or 15 variables.

A default uedit- buffer is always active unless a -long-
instruction with a tag greater than 150 is used. If a
-long-instruction with a tag greater than 150 is used and
the uedit- featul.e is desil.ed, the uedit- instruction must
be used.

The EDIT key causes operation of the vedit~ option. When

::i:tvue€etnhtehraesspt8:seedffrno:rtehs8°d|S;iapyr:asnfdngrtohmeFhDe]Tn5:I
buffel.). Each pl'ess of the EDIT key after this brings in
one word of the student response, both on the sol.een and
into the input buffer, until the entil.e response is again on
the screen. A pl.ess of the EDIT key following full display
of the response causes the entire cycle 1.o repeat.
Pressing SHIFT EDIT copies the remaining portion, at any
point in the cycle, into the input buffer and onto the
Sol.een,

The square key (C]), when pressed, brings in one char-
actor of the student I.esponse, both on the screen and into
the input buffer.

A wol.d, in the case of the -dit- and ngopy- instl.uct.ions,
is not a computer word, which would consist of 10 chal`-
acters. Rather, it is a string of alphanumel'ic char.acters
bounded by punctuation. In this case, punctuation also
includes spaces, as well as per.iods, commas, parentheses,
and so on.

Modifications that the student makes to the displayed
I.esponse are reflected in the uedit- option. That is, if a
word is added or deleted partway through the ol'iginal
response, use of the EDIT key includes the new change in
the -edit- copy.

The starting location, which is the only argument of the
tag, must be a variable name (or be reducible to a variable
name by the aystem). The variable must be in the student
variables and not in common or storage variables. In
addition, the author must be sul.e that a sufficient number
of val.iables are available to contain an entire response to
ensure pl.oper operation of the edit option. Thus, an
instruction such as

edit nl40

11-12

::;u::sEe(g::db;Ty.i;ntgh_e;Ees{rmu{:i:odn)]efggnt::fo::eths::df#
characters.

The ueopy-option functions similal`ly to the -edit-option,
but it uses a character string given by the author rather
than the student response. The -copy- instl.uction has a
two-argument tag. The first argument gives the starting
location of the character stl.ing, and the second gives the
total length of the character stl.ing in number of char-
acters. As with the uedit- instl`uction, the stal`ting
location must be in the student bank of 150 variables.

The COPY key activates the copy option. Wllen the I(ey is
first pressed, the fil`st word fl.om the copy buffer is placed
in the input buffer and displayed on the scl`een. As with
the cedit- instl.uction, a word, in this context, is not a
computer word but an alphanumeric string bounded by
5LritrtL-a-L-ioh'.---Re-p-e`at-;a 6ir:=:;. '6f. 't-he--6.6E¥~Yk-:;--c-au=: I
the entire character string in the copy buffer to be copied

;nrte°ssti::]tnhpeutsE¥£fTer6oAp8¥ajE'e;ism:]oapriet: {#: i:a:tain°dpetr£°:i I
the string into the input buffer. and displays it on the
screen. The square key operates the same as the uedit-
Option.

Howevel., unlike the -edit~ option, the string can only be
used by the student once. The string is not destroyed, so
1.he author can specify the same string as the object of the
-copy- option for a different ~al`row- instl`uction. How-
evel., the student can only access the copy stl.ing once in
each ~arl.ow-.

For both the ~copy- and the -edit- instl.uctions, a blanl(
tag clears the associated buffer, if placed after an
-arrow-, arid disables the option. Thus, if the author
wishes to prevent the student from using the edit option,
even though the student I.esponse length limit is less than
151 characters, an uedit- instl.uction with a blank tag
should be used. The edit option may also be cancelled
with an -inhibit edit- instruction.

The copy option is tuned off when the aystem encounter.s
an -al.row- instruction, so the ueopy- instruction should
follow, not precede, the appropriate -arl.ow-instruction.

-TIME- INSTRUCTION

The -time- instruction is used to limit the time the stu-
dent has to give a response. The tag of the instruction is
the time allowed in seconds. If the time is exceeded, the
system-reserved wol.d key is assigned the value timeup
and processing is done as if the NEXT key had been
pressed. The system-I.eserved word key can be tested to
find if the student was timed out or entered a response.
An example is:

time 10
ok
wpitec key=timeup, Time limit exceeded„

Other conditional instructions, such as the -judge..- in-
stl.uction, can also be used to test system-reserved word
key, and if desired, start or modify judging on that basis.

97405100 C

-CHANCE-lNSTRUCTloN

The -change symbol- inst.ruction is used in the IEU to
change the values of char.acters when they are used in the
judging state. The change is lesson-wide.

The tag of the instl.uction consists of the word symbol,
followed by a char.acter, which is followed by the word to,
and ending in a new character to be substituted or the
word letter. An example is:

change symbol [to (
symbol] to)
symbol (to letter
symbol) to lett.er

97405100 C

The order is `important in a -change symbol- instruction.
In the example above, [and] are read by the system as (

fenfoi'. r££%es;£#oyi; (£nan%u) J;urdegftnhgenf I:teraut%tdf°:§ I::tetrhs:
This permits students to have symbols (and) in their
answer.s. For example,

answer [aluminum sulfate,A12(S04)3.17H20]

accepts aluminum sulfate as a student answel`, and it also
accepts A12(S04)3.17H20.

11-13 I

CONDITIONAL FORM '2

Several of the PLATO author language instructions have a
conditional form. In this for.in, the action taken depends
on some condition. The condition is the value of an
expression. The general form is

command expr,al,a2 ,...

where expr is the expl.ession whose value is the deter-
minant of the action, and al,a2 ,... are the different op-
tions to be taken. The first option is selected if the value
of the expression is negative, t.he second if the value is 0,
the thil.d if the value is 1, and so forth through the list of
options, in increments of one. If the expression is lal`ger
than t.he number associated with the last option specified,
the last option is selected. The option is usually, but not
always, a name to be associated with the instruction.
Thus, the instruction

jump funge/2-3,first,blot,zilch,threlp

jumps to unit first if the value of the expression funge /2-
3 is negative, to unit blat if the value is 0, to unit zilch if
the value is 1, and to unit threlp if the value is greater
than 1. The value of the expression is rounded, if
necessary. The effect is as if the option selected wel`e
the entil.e tag of the instruction.

Two special charactel.s can be used to take no action or to
clear marker.s. Usually, if an x is encountered as one of
the actions, no action is taken, and the instruction has no
effect. When the instruction is one that sets markers
(such as the -base-and -next- instructions), the character
q cleal`s the marker, and the effect is that of having the
instl'uction with a blank tag. As an example, the
instruction

base 2x-2,unl,x,q,grilk

has no effect if the value of the expression 2x-2 is 0, and
it specifies the current unit as the base unit if the value
of the expression is 1.

A q as the action to be perfol.med in a conditional ngoto-
ol. -join- instruction does not execute any other unit, but
execution of the cul.rent unit is halted and not resumed.
If the curl'ent unit is a main unit, the student must press
the NEXT key to continue, and the next unit is then
initialized. If the cul`rent unit is an auxiliary unit,
execution goes back to the main unit immediately.
Similarly, an x does not cause a unit to be executed, but
the cur.rent unit is continued so that the instructions
following the -join-or ngoto- instructions are executed.

Since the expression can be any legal expl.ession, a logical
expl.ession can be used. In this case, only two possible
actions should be specified, since there al.e only two
values that the expression can take; -1 (true) and 0 (false).
It is because the first action specified must correspond to
a negative value of the expression that the values of a
logical expression are not 0 and 1 as in the semistandard
notation of Boolean algebra.

97405100 C

Thel`e are some special cases of the conditional for.in.

The -writec- instruction is the conditional form of the
-write- instl`uction. Because the actions to be taken are
separated by commas in nol.mal conditional form, the
messages to be written by the -writec- instruction
ordinarily cannot contain commas or other punctuation.
However, there is a universal terminator available with
the -wl`itec-instruction which, when used, allows punctu-
ation in the messages. This tel.minator is obtained by
pie.esing the ACCESS key and then a comma; it looks like

lf it is desil.ed to write nothing in some cases, the appro-
priate position should be indicated by successive delimi-
ters, either commas or the univel`sal delimitel.. This is
necessal.y since an x, used to indicate no action to be
taken in other for.ms, would be tl.eated as text to be
displayed. If the last condition is not to display a
message, successive delimiter.s should be used rather. than
simply omitting use of the position. For example:

writec y< 3,Toosmall„

If the final comma wer.e not present, the message

Too small

would be displayed I'egardless of the value of y.

The -calcc- instruction is the conditional -calc- instruc-
lion and performs the appl.opriate uealc-type action. The
possible actions consist of different assignments of value,
wit,h the variable to which the value is assigned having the
potential of being different in each action. For example:

calcc expr, v2€ 31,gun<sin(blet)+2,V7€ tr /4

When one of sever.al possible values is to be assigned to a
single variable, it is more efficient to use the -calcs-
instruction. The -calcs- instruction assigns one of sevel`al
possible values to a single, specified variable. For
example:

calcs expr,fout€ en(grun),36,2y+7

Neither the ctalcc- nor the -calcs- instl.uction can use an
x to indicate no opel.ation. The uealcc- can use a 0, and
both the -calcc- and -calcs-can use successive commas.
as in:

calcs expr,glitch< 1,5„23

The instructions that can have a conditional form are
listed in table 12-1.

12-1

TABLE 12-1. INSTRUCTIONS WITH A
CONDITIONAL FORM

answel.c t datalop iferrol' matcht
back do imain mode
backop eraseu join next
backl exactc t judge nextop
backlop finish jump nextl
base from jumpout nextlop
bl,anch goto keytype t nextnow
calcc t help lab packet
calcst helpop labop stop
data helpl labl writect
dataop helplop lablop wrongct
datal iarrow lesson

tThese instl.uctions al'e only used in the conditional form .

12-2 97405100 C

STUDENT DATA 13

The author or iustructol. can collect data on t.he execution
of a lesson or lessons in his course by using a data file, a
file that is used exclusively for the collection of student
data. All data stol.ed is course-, lesson-. and student-
specific. That is, the author or instructor can collect data
only for students in his course, only for lessons that
specify data collection, and only for students that have
the data collection option turned on through their course
I.ecords. Further, the lesson and student al.e indicated on
the data collected as overhead information.

Various types of information can be collected. This

:: ::uednets vsfuamtT:I;e£Rof aar::Sh:{pt R:y[se :;::i: eoqru ::tts fboyu ntE,:
execution el.rol. information, and student answers, wllether
judged ok, no, or u-no (umecognized no I.udgment).
Unl.ecognized words associated with a ueoncept- instruc-
tion can also be stored in the data file.

Any or all of these options are specified in t.he I.ecords for
each student in the course records. It is not recommended
that all data be collected for all students, as this causes
the data file to fill quickly. The data file can be cleared
when full, but this loses any earlier information, and data
can be lost between the time the data file fills and the
time the author empties the data file. In particular., it is
not recommended that all of the student I.esponses be
stored, as this can use a great deal of space in a short
time. While it may be useful t.o store all responses when
the lesson is still being intensively developed, it later is
probably sufficient to collect the u-no judged responses.
These ai.e the I.esponses that are not anticipated by the
author, so they are judged no by default.

SPECIFYING DATA COLLECTION

As previously mentioned, the data options in the coul.se
records must be turned on fol. each student who is to
collect data during lesson execution. Additionally, the
course must have an associated data file. This is done by
going to the course records, specifying the proper student,
and once tlie student's records have been obtained,
choosing the proper option to find the data option specifi-
cations. These can then be modified by the author or
instructor. Pressing the letter or number associated wit.h
any of t,he options switches the st,ate of that option. That
is, if the option is off , it is switched on, and vice versa.
The data collection option number 1 must be on for data
collection to occur.

Every lesson for which data is to be collected must
contain a ndataon- instl.uction. The options of the
ndataon- instl.uction can overl`ide student data options for
the remainder of the lesson, but they cannot turn on
course-wide data opt.ions that al.e turned off. The
available options for data collection, wit.h the tag associ-
ated with each, are given in table 13-1. More than one
option can be specified in a single ndataon- instruction,
separating the arguments repl.esenting the different
options with commas. Thus, the instruction

97405100 C

dataon no, unl`ec no

places all student I.esponses that were judged no into the
data file, whether the answer was anticipated by the
author or not.

TABLE 13-1. LEGAL TAGS FOR
ndataon-AND ndataoff-

errors

vocab

area

Output

help

help no

term

tel.in no

signin

Responses judged ok

Responses judged no that match an
author-specified wrong answer

Responses judged no that were un-
anticipated by the author

Execution err.or

Unrecognized words in response to
-concept-

Area summal.y information

coutput- and ~outputl- instructions

Requests for help keys (HELP, LAB, and
so on) that were satisfied

Requests for help keys that were not
satisfied

TERM requests found

TERM requests not found

Time and data student entered lesson

The ndataoff- instl`uction stops data collection for that
lesson. It can be restarted latel. in the lesson by another
ndataon~ instruction. If the tag of -dataoff- is blank, no
more data is collected. If the tag has al.guments (the
same as the arguments permissible for the edataon-
instruction), only those options specified in the tag al.e no
longer collected, provided that the options were originally
specified in a ndataon-instruction.

SPECIFYING DATA TO BE COLLECTED

The author must, in some manner, indicate the data that
is to be collected. For most types of data, such as storing
the student responses or the number of TERM requests
that were not satisfied, this is done thl.ough t.he course
records or with the ndataon- instruction, as described
previously. In fact, it is necessary to use these areas in

13-1

all cases. However, some types of data, specifically area
summal.y information and the coutput- and coutputl-
instructions, requil`e more work on the part of the author.

Area summary information refers to specific portions of
the lesson. The al.eas al.e indicated by the author with the
-area- instruction. If the tag is blank, the data for the
area just completed is put in the data file, and no more
al.ea data is collected until an -area- instruction with a
nonblank tag is encountel`ed. The tag of the instruct.ion
gives the name .to be associated with the area of the
lesson following. An area is delimited by the -al`ea-
instruction as encountered during lesson execution.
Hence, if two students take diffel`ent paths thl.ough an
area of the lesson (for example, one executes more or
different help sequences), the al.ea summary data appeal.s
to refer to differ.ent areas, as the number of -al.row-
instl.uctions encountered can quite easily be different.
Similarly, if a student is bl'anched to a new al.ea but at a
later unit than that containing the -area- instruction, the
new area is not recognized, and the summary data for the
al.ea is included as pal.t of the previous area.

If an -al.ea- instl.uction with a nonblank tag is encoun-
tered while data is still being collected for an area
summary, one of two things happens. If the names of the
two al.eas al`e different, the summal.y data for the
pl.evious area is wl.itten int.o the data file, and collection
of data in the new al.ea begins. If the names of the two
al.eas are the same, the second -al.ea- instruction is
ignored. No data is wl.itten to the datafile until an -area-
instruction with either a blank tag or a different tag is
encountel.ed dul'ing execution.

The name of an al.ea, that is, the tag of the -area-
instruction, must be no longer than 10 characters and
cannot start with a numeral. The tag can be a variable, in
which case the alphanumeric contents of the variable is
taken as the name. This also means that a (limited)
expression can be used as the tag of the -area- instruc-
lion, as in

al.ea n3Sunionso7 3
01.

al.ea mme sunions var9

where val.9 is a variable name, and name is an alpha-
numeric string.

The tag for the -area- instruction can also be one of two
keywords available, incomplete and cancelled. The
keyword incomplete ends data collection for cul`rent area
and marks the area as incomplete, and cancelled ends data
collection for the current area but does not enter any data
in the datafile.

The -setdat.- instruction allows an author to alter the
value of system-reserved words pertaining to areas.
Sometimes the numbers returned in al.ea summal.ies are
not meaningful because of the way a particular lesson
operates. The -setdat- instruction makes it possible to
collect more meaningful data. The system-reserved words
which may be altered by -setdat-are:

aal.ea auno
atime ahelp
aarrows ahelpn
aok ater in
aokist ater inn
asno

13-2

These resel.ved words may contain only integers and may
not have values greater than 511. An exception is atime.
It cannot be set to a value gI.eater than the time signed on
for the cur.rent session. It is accurate only to 1/10 second.

When the data the author desil.es is not contained in any
of the standard data options, the routput- and routputl-
instructions ai.e used. This is the case particularly where
the author wishes to store the contents of one of the
variables or wishes to inset.t a comment in the data, or
both.

The routput- instruction functions in much the same
manner as a -wl.ite- instruction except the text is placed
in the data file. That is, whatever charactel` string is
contained in the tag of the instl.uct.ion is placed into the
data file.

The contents of variables can be placed in the data file by
using the embedding feat.ure. This is much mol`e re-
stl`icted in the case of the -oiitput- instl.uction than in the
-wl.ite- or -writec- instructions but functions in an
analogous mannel.. The embedded pol`tion is set off by the
same symbols (< , >), but the contents between these
symbols is different.

Only two arguments al.e used when embedding in an
-output- instl.uction. The first argument specifies the
fol'mat in wliich the val'iable is to be stored in the datafile
and can be one of four possible arguments: a (alpha-
numeric), n (integer), o (octal), or v (floating-point). The
second argument names the variable to be written in the
data file. The name can be either tlie primitive name (v23)
or an assigned riame (luft).

Information wl.itten into the data file also has overhead
information associated witli it. This information consist.s
of the student, lesson, and area names, plus the time
elapsed since the student entered the lesson. The tag of
the instruction can be longel` than one line, but each line
has all of this information written into the data file with
it. so a thl'ee-line tag would have three copies of the
sl.udent, lesson, al.ea, and time information.

The routputl- instruction is used to place consecutive
variable values in the data file, with a label to identify the
part of the lesson containing the routputl- instruction.

The label is the first argument of t.he tag. This label is
placed, together with the other overhead information, into
tlle data file each time the instruction is executed. Also
placed into the data file al.e the variables specified in the
second and third arguments. The second argument gives
the stal`ting variable, and the thil`d gives the number of
variables. No more than 20 variables can be stored by an
routputl- instruction, and the variables stored must be
contiguous. If the coutputl- instruction is used without a
label, no overhead information is stored.

When the author is in the data file editor looking at the
data file, the routputl- instruction shows the variable
contents in integer, floating-point, octal, and alpha-
numeric formats.

READING DATA INTO A LESSON

If the author desires to manipulate data in a manner other
than what is available fl`om the data editor, some

97405100 C

information can be read into a lesson from the data file.
The information that can be accessed in this manner is
that from area summal.ies, from coutputl- instructions,
and fl.om signoff data.

However, before information can be read into the lesson,
a -readset- instruction must be executed. The tag of the
-readset- instruction consists of one to three arguments.
The first argument is the name of the data file or the
name of the coul.se file. The optional second al.gument is
the code word of the data file or course. The code word is
enclosed in single quotes or it may be a val.iable, and it
must be included in the tag when the inspect or change
code words of the receiving lesson do not match the code
words of the data file or coul.se. The optional third
argument I.eturns the number of student.s in the course
when the first argument is a coul.se name.

If the first al'gument is a data file name, the thil.d
argument retul`ns the number. of unused records remaining
in the dataf ile. This is set to -1 when the data file is full,
to 0 when storage into the last record begins, to 1 when
storage into the next-to-last record begins, and so on.

The system-resel.ved word zretum can be used to check if
there is information on the data file. If an attempt is
made to read data from an empty file, an execution error
results.

The system-I`eserved wol.d zreturn is also used to check
for. the existence of I`eadable data. The -I`eadd- instl`uc-
lion reads data from a data file into an existing lesson and
causes an execution error if thel`e is no appl.opl.iate data
to be read. The value of zreturn is -1 if there is more
data, and it is 0 if the end of the data file is reached. The
author must include a checl(of reserved-word zretul.n in
the lesson.

If the author desires the most complete infol.mation
possible, he should wait until all students have stopped
executing the lesson. The data is not complete if students
are still executing one or more lessons that send infor-
mation to the data file. However., data files are automati-
cally checkpointed about every 8 minutes in the same
manner as common and student recol.ds.

The -readd- instruction I.eads one of thl.ee types of data
from the data file: -al'ea- summaries, routputl- infor-
motion, and signoff infol.motion. The fir.st argument of
the tag specifies which type of data to read by one of the
keywol.ds: area, outputl, or signoff. A -readset-
instl.uction must be successfully execut,ed before a
-readd- is attempted. An end of file check must be done
using zl.eturn. The -I.eadd- reads the data file
sequentially.

The -readd area- instruction reads area summary data
from the data file to student or common variables. The
second al'gument of the tag is the beginning of the val.i-
ables in which the data is to be stored, and t.he third
argument is the number of variables. If the entil.e area
summary data is to be stored, 15 variables al'e needed in
the block of variables. This instl.uction, when executed,
reads the next al.ea summary block of data from the
data file. If thel`e is no such block of data, an execution
error results. The contents of the 15 words fl.om I.he al.ea
summary is given in table 13-2.

97405100 C

TABLE 13-2. AREA SUMMARY
DATA STORAGE

Locationt Contents

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

First part of student name

Second part of student name

Lesson name

Area name

Elapsed time in the area (in millisec-
onds)

Number of -al'pow- instructions in the
al'ea

Number of ok judgments in the al.ea

Number of ok judgments on the first
attempt

Number of anticipated no judgments
(matched by -wrong-op -wrongv-)

Number of unanticipated no judgments

Number of help requests satisfied

Number of help I.equests not satisfied

Numbel. of term I.equests satisfied

Number of term requests not satisfied

Completion/noncompletion of area (-1
if completed, 0 if not completed)

t Locations are relative to the starting variable in
the block of variables containing the area
summal.y. Thus, if nc300 is the first (starting)
variable, the lesson name is in nc302, the al.ea
name is in nc303, and so on.

The -readd outputl- instruction reads data placed in the
data file by an coutputl- instl.uction, from the data file to
the lesson. The number of words (val.iables) necessary to
store this infol.mation can vary between 7 and 27. The
variability occurs because the author specifies the number
of variables whose contents is to be stored in the
coutputl- instl.uction. . Seven variables are required as a
minimum for the overhead information from the col.re-
sponding coutputl- instruction. The storage of the
information is given in table 13-3.

The second and third al`guments of the -I'eadd outputl-
instruction are precisely like those of the -readd al.ea-
instruction. The only diffel.ence is that the number of
variables I.equired can be as many as 27 or as low as 7. If
an attempt is made to store the information from an
coutputl~ instruction in fewer words than are necessary
for storage of all the information, part of the tag of the

13-3

TABLE 13-3. coutputl- DATA STORAGE

Locationt Contents

0 Number of variables saved

1 Fit.st word of student's name

2 Second word of student's name

3 •Lesson name

4 Area name

56 Execution time (from ndataort-) of
routputl- (in milliseconds)

routputl- label

7-16 Tag of -outputl-

t Locations are relative to the starting variable in
the block of variables containing the data from
the routputl- instruction. Thus, if nc300 is the
first (starting) variable. the lesson name is in
nc303, the area name is in nc304, and so on.

routputl- instl.uction is lost. Conversely, if more space is
allocated for stol.age than is required, the I.emainder is
filled with zeros. If the information in the data file is the
result of an coutputl- instruction without a label so that
there is no overhead information, the fir.st seven val.iables
of the block specified by -readd outputl- instruction are
set to zero.

The -readd signoff- instl.uction functions in much the
same manner as the two previous fol.ms of the -l`eadd-
instruction; however., data is entered as a I.esult of ex-
ecuting a ndataoff- instruction or as a result of exiting
from the lesson. Seven wol.ds are necessary to store all
the data read by this instruction. The information
tl.ansferred is given in table 13-4.

Student variables are read fl.om the course recoi`ds by
using the -readr- instruction. The -readl.- instl.uction can
either be set to read only one record, or the -readr- can
continue to execute and read the next record in sequence.
A -I.eadset- instl.uction (naming the course) must be
executed successfully befol.e executing a -readr- instruc-
tion.

The -readr- instruction has three basic for.ms, with the
keywol.d in the tag indicating the type of -readl.-instl'uc-
tion to be executed: name, sequential, or I.oster. The
name end sequential forms have the same continuation tag
lines available for specifying student data options:
student statistics, student val`iables, router variables,
ldone infol.motion, and lscol.e information. At least one
and as many as five tag lines may accompany each
-I.eadr- instl`uction. The I.oster form of the instl.uction
does not have continuation lines.

The author must do an end-of-file check with the system-
resel.ved word zretum. The values of zretul.n are:

13-4

TABLE 13-4. SIGNOFF DATA STORAGE

Locationt Contents

0 First word of student name

1 Second word of student name

2 Lesson name

345 Elapsed time for this session (in min-
utes)

Total time to complete the lesson (in
minutes) if the lesson was completed
this session; if the lesson was not com-
pleted this session, this word contains-1

Date

6 Time

t Locations are relative to the star.ting variable in
the block of variables containing the signoff
infol.motion. Thus, if nc300 is the first (starting)
variable, the dot.e is in nc305, I.he time is in
nc306, and so on.

Value

-1

0

1

2

Meaning

Moi.e information is in the file

When last I.ecol`d of course is read

Name is not in the coul`se

Attempted to read ldone ol' lscore
information when ''ml.outel.'' not in use

Continuing to read the course file after all I.ecords are
I.Cad (that is, zl.eturn equal to 0) causes an execution
erroI.,

The -readr name- instruction reads the specified student
information (student statistics, student variables, router
variables, ldone infol.nation, and lscore infol.motion) into
a work space (student variable area or common area) for
inspection by the author or instructor. As many named
records as desired can be read, but a -I'eadr- instruction
must be provided for each recol.d. Additionally, the
-readr name- instruction sets a pointer to that name so
that a subsequent -I.eadr sequential- instl.uction starts
with the next name in the I`oster.

The fir.st -readr sequential- instl.uction reads the record
of the first student in the course file (desil.ed student data
is specified in the tag lines) from the I.oster into a
specified work space for inspection by the instructor.
Each -readr sequential- instl.uction reads the next stu-
dent's record; this process continues until the roster is
exhausted.

97405100 C

The -readr name-and -readr sequential-instl.uctions read
student statist.ics from the coul.se recol.ds, using eleven
variables to store all the student statistics. These
variables are v-type val.iables. The contents of the eleven
words of student statistics is given in table 13-5. To
display these vat.iables, use the -showa- instruction for
the first six and the -show- instl.uction for the last five.

TABLE 13-5. . STUDENT STATISTICS STORAGE

Location t Contents

0 First word of student name

1 Second word of student name

2 User type

3 Date created

4 Last day on

5 Last time on

6 Total hours on system

7 CPU usage in TIPS

8 Total days on system

9 Number of sessions on

10 Cumulative DAPM

t Locations are relative to the starting val.iable in
the block of variables containing the student
statistics. Thus, if nc300 is the first (starting)
variable, the first word of the student's name is
in nc300 the second word of the student's name
is in nc301, and so on.

The -I.eadr name-and -readr sequential-instructions can
provide information fl.om the system-I.eserved wol.ds ldone
and lscol.e only when "mroutel." is in use. This information
is stored in student variables or common. The ldone
information is in 3-bit signed segments and the lscore
infol.nation is in 8-bit signed segments. Thel.efol.e, one
computer word stores ldone information for 20 lessons, or
one computer word stol.es lscore infol.mation for seven
lessons. Refer to appendix 8 for values of ldone and
lscore. If the -readr name- ol. -reader sequential-
instruction attempts to read ldone or lscore information
when ''mrouter" is not in use, system-I.esel.ved word
zreturn is set to 2.

The -I.eadr I.ostel.- instruction provides a list of student
names. Each student name takes 1.wo words; therefore, 30
wol.ds are needed for a list of 15 names. The total number
of students in a course is I.eturned in the optional thil.d
argument of the -readset-instruction.

Once the student record data is in the lesson, it can be
sorted to eliminate unwanted information, it can be
packed, or it can be manipulated in any manner.

97405100 C

NOTES

The author can collect student comments during a lesson
with the -notes- instl.uction. The system sends these
notes to the student note file named on the course infor-
motion page. If this is NONE or left blank, the notes go
to the lesson note file named on the lesson informal.ion
page. If the author specifies this as NONE or leaves it
blank, the note is not sent anywhere.

The iiotes- instl.uction has thl.ee for.ms. Upon execution
of the +totes- instruction with a blank tag, the system
initiates a TERM-comments (erases nnes 30 and 3] and
gives help on line 32). The student can enter a comment
of up to 20 lines or I 20 words and after completing it, can
give it an identifying title. The system stores this note
with the usual heading consisting of date, time, and sign-
on and adds a subheading consisting of lesson, unit, and
site infol.motion. (The student can also initiate a TERM-
comments from anywhere in the lesson by pressing the
TERM key and entering the wol.d comments.)

The second form of the +totes- instruction has two
arguments. The first argument is an n-or v-type variable
containing authol.supplied heading information. This
information must be in a form suitable for display by the
-text- instl.uction. The second argument is the word
length of the heading infol.mation. Upon execution, the
system allows the student to enter a comment and an
identifying title. The system stores this note with the
usual heading and adds a subheading consisting of the
name of the lesson and the authorrsupplied infoi.motion.
The instl.uctious

pack nl2,nll, < s,ntl.ies > attempts at arrow in
unit a a,zunit > .

calc nl0 €int(nil/10)+1
notes nl2,nl0

provide student feedback to the author if the student
enters a comment. The student can choose to continue
with the lesson without entering a comment by pressing
the SHIFT BACK keys.

The third form of the -notes- instruction has three
al.guments. The first two arguments are the same as in
the pl`evious for.in of the +totes- instruction. The third
argument is the keywol.d send. Upon execution, the
system stores this note with the usual heading and a
subheading consisting of the name of the lesson. The body
of the note is the author-supplied infol.mation. The
system titles the note with the name of the lesson. The
student cannot enter a comment or the title with this type
of note and is not aware that a note has been sent.

After execution of the -notes- instruction, execution
resumes on the same display with the next author
language instruction, and the system-reserved word
zl.etul.n is set to the following values.

Value Meaning

-1

0

1

2

3

Note sent

Student did not send note (pressed
SHIFT BACK)

TERM-comments not allowed

Error in format of heading information

Error in connecting note file

13-5 .

RESOURCE MANACEMENT 14

Site director.s can manage terminal and ECS resources at
a logical site with a site lesson. A logical site is a group
of terminals which. share ECS. A site lesson is a lesson
specified by the site director who uses it to control
terminal use and ECS use. A lesson must be specified as a
site lesson to enable execution of the -site-and -st.ation-
instl.uctions.

-SITE- INSTRUCTION

The rsite-instl`uction peturus information about terminals
and ECS at a logical site. The instruction has four for.ms,
each with its own keywol`d in the first argument of the tag
and each returning a value in system-reserved word
zretul.n,

The -site set- instl.uction enables the other -site- instl.uc-
tions for the logical site named in the second ai`gument of
the tag. The fil.st argument of the tag is the keywol.d set.
The system-reserved wol.d sitenam can be used to detel'-
mine the name of the user's logical site. Succeeding -site
set- instructions cancel pl.evious ones. The system-
reserved word zl.etum is set to -1 if the -site set- instl.uc-
tion executes corl.ectly and to 0 if the lesson containing
this instl.uction is not a site lesson fol. the site named.

The rsite info- instruction gets the cur.I.ent site ECS
infol.nation for the site named in the rsite set- instrucr
tion and stores the information in four wol.ds, starting at
the variable named in the second argument. The contents
of these words follows.

Wol,d Contents

I ECs base allotment

2 ECS cur.rent allotment

3 Amount of ECs in use

4 Number of active tel.minals

The eystem-reserved wol.d zretum is set to -1 if the -site
info- instruction executes carl.ectly and to 0 if no site is
set.

The -site active- instruction finds the station numbel.s of
the active tel.minals for the site named in the rsite set-
instruction. The first argument in the tag is the keyword
act.ive. The second argument in the tag is the number of
the station at which checking begins. The numbers of the
active stations are stol.ed in val`iables beginning with the
variable in the third argument. The fourth argument
detel.mines the number of variables needed to stol`e the
numbers of the active stations. This argument specifies
the number of active stations to be found. If this number
is greater than the actual number of active stations, the
final variable is set to -1. The system-reserved word
zreturn is set t.o -1 if the instl.uction executes correctly,
to 0 if no site is set, and to 1 if the starting station
number is incol`I`ect.

974P5100 C

The -site stations- instruction finds the station numbers
permanently on the site named in the -site set-instruc-
tion. The first al.gument in the tag is the keyword
stations. The second, thil.d, and fourth arguments al.e the
same as the corl`esponding arguments in the -site active-
instruction except t,hat they look for permanent stations
instead of active stations. The system-I'eserved word
zreturn i§ set to the same values as with the -site active-
instl'uction,

-STATION- INSTRUCTION

The rstation- instruction petul.ns information about in-
dividual stations (tel.minals) in the site named in the ngite
set- instl.uction and controls the use of those stations.
The instruction has seven forms, each with its own
keyword in the first al.gument of the tag and each
retul.ming a value in system-reserved word zl.eturn. The
system-reserved word station can be used to determine
the number of the user's station. The system stores the
station number as a single number, obtained by multiply-
ing the site number by 32 and adding the station number
witliin that site. For example, if the usel.'s site and
Station number is 4 -]3, the system stores the station
number as (4 X 32)+13=141.

The -station info- instl.uction obtains information for
station specified in the second argument of the tag
stol.es the information in 10 words, stal.ting at
val.iable named in the third al.gument. The contents
these wol.ds follows.

Word

1

2

3

4

5

6

Contents

First word of user name

Second word of user name

User's coul`se

Type of usel. recol.a

User's account

Session statistics in thl`ee 20toit fields
(number of disk accesses, number of
CPU seconds used, and elapsed time)

Name of lesson or system lesson

ECS usage in four 15-bit fields (first
field empty, ECS storage, ECS common,
and lesson ECS)

Name of I.outel.

Router ECS usage in four 15i)it fields
(same as wol.d 8)

After execution of the -station info- instl.uction, the
system-reserved word zl.etum is set to the following
values.

14-I .

Value

-I

0

1

2

3

Meaning

Execution successful

No site set

Station number el'ror

Station not in site

•Station inactive

The ngtation status- instruction gets the cul`rent status of
the station specified in the second argument of the tag
and I.eturns the status in system-I`eserved word zl.etul.n.
Values of zretum are as follows.

Value

-2

-1

0

1

2

3

4

5

Meaning

Station is signing on

Station active

No site set

Station number error

Station not in site

Station inactive

Station is signing off

Station locked out

The -station send- instruction sends a message to another
terminal. The first argument in the tag is the keywol`d
send, the second argument is the numbel. of the station to
which the message goes, tlie third al.gument is the coal.se-
gI.id coordinates of the screen location, the fourth
argument is the message, and the fifth argument is tlie
length of the message in chal.acters. The instruction
sends the message in mode rewrite and resets tlie mode
and screen position of the receiving terminal to its
previous state. After execution of -station send-, zl`eturn
is set to the following values.

Value

-I

0

1

2

3

Meaning

Message sent

No site set

Station number el.ror

Station not in site

Station inactive or tried to send to own
station

The ngtation stopl- instruction presses the SHIFT STOP
keys at the station specified in the second al.gument of
the tag. The aystem-I`eserved word backout is set to 1 at
that station until the station entel.s a non-I'outer lesson,
allowing finish units and I.outel.s to distinguish between a
SHIFT STOP pressed by the system and one pressed by the
user. After execution of -station stopl-, zreturn is set to
the following values.

• 14-2

Value

-I

0

I

2

3

Meaning

SHIFT STOP pressed

No site set

Station numbel. error

Station not in site

Cannot press SHIFT STOP on this
station

The -station logout- instruction signs of f the user at the
station specified in the second argument of the tag. The
system-I.eserved word backout is set to -2 at tliat station
until it is completely signed off. It then displays the
message, PI.ess NEXT to begin. After execution of
Tstation logout-, zpetum is set to the following values.

Value

-1

0

1

2

3

Meaning

Station signed off

No site set

Station number erl`or

Station not in site

Cannot sign off this station

The rstation off- instruction tul.ns off the station
specified in the second al.gument of the Lag, locking out
use of the terminal. The system-resel.ved word backout is
set to -2 at that station and the terminal displays the
message - -terminal not available- -. After execution of
-stal.ion off-, zretum is set to the following values.

Value

-1

0

I

2

3

Meaning

Station turned off

No site set

Station number el`ror

Station not in site

Cannot tul.n off this station

The -station oi+ instruction tul.ns on the station specified
in the second argument of the tag, clearing the off status
for a locked out station. The terminal displays the
message, Pi.ess NEXT to begin. After execution of
rstation on-, zreturn is set to the following values.

Value

-1

0

1

2

3

Meaning

Station turned on

No site set

Station number errol`

Station not in site

Station already active

97405100 C

PRINTING LISTINOS

When an author wants a hardcopy printout of a lesson, he
can specify to the printer exactly what he wants printed
using the -*list- instl.uction. This instruction, along with
its val.ious tags, is insel.ted in a lesson and is noticed by
the printel` when it makes its pass through the lesson but
is ignored when a lesson is condensed in the system
(because of 1.he *). Usually, the safest place to put -*list-
options in a lesson is at the beginning of block a.

An el.For directory is pl.inted toward the end of the listing
of the lesson. It lists the line numbers on which erl.ol's
occul.red. The errors flagged are -*list-option errors and
duplicate unit names. The printel. does not flag regular
condense-type el.I.ors.

-.LIST- INSTRUCTION

The -*list label,string- instl`uction labels small sections of
the lesson. Because this instruction puts blank lines above
and below the label with no line numbers, it stands out
better than a comment. The position in the pl.intout of
the label given in string is the same as where it is placed
in t.he instl.uction in the lesson. To center the label, string
must be centered in the instruct.ion. The -*hist. label- is
blanked out. The -*list title,string- instruction ejects a
page and prints the title given in string.

To e].ect a page from anywhel.e in the source of a lesson,
use -*list eject-. This instruction ejects a page and

I ifgjinnsstprru£:ttfj::. a€::nstwa[::a:£eh:::£#E epdr]j:i:lay. following

The -*list text- instruction tells the printer to list only
the tags in -write- and -wl`itec- instructions. The con-
ditional expression of the -writec- instruction is blanl(ed
out., and anything embedded in these instructions is also
blanked out.

The -*1ist ignore- instruction specifies to the printer that
I all -*list- instructions after this one be ignol`ed. This can

be helpful when an author wants to put all the -*list-
options at the beginning of a lesson where they can be
found. If the options are ended with -*list ignol.er, the
author. is assured that no other -*1ist- instructions hidden
later. in the lesson will be executed.

Lesson information from the lesson directory display is
listed toward the end of the printout when the -*list info-
option is used.

The -*list symbols~ instruction causes a cl.oss-I.eference
table of symbols to be printed at the end of the listing.
The symbols included are variables, defined names, and
system-I.eserved words. The dummy arguments in func-
tion definitions are also listed. The I.efel.ence table
includes only those symbols used in the printed pol`tions of
the lesson.

97405100 C

'5`

To produce a table listing all the places where certain
instructions are used in a lesson, the -*lisL commands,nst-
option is used. Up to 10 instl.uctions can be specified in
Hst. This instruction does not continue; to specify more
than one line of instl.uctions in list, the -*list commands-
must be I.epeated.

The -*list off- instruction stops the soul.ce listing and
proceeds to print any tables pl.eviously selected. To
prevent printing cel`tain blocl(s, use -*list off,blocksL. An
example is:

*list off,tr iangle-square.circle,rectangle-

This pl.events printing blocks triangle through squal.e,
block circle, and all blocks from I.ectangle on. These
blocks can be common, micro, charset, or nol.mal blocks.

The -*list parts- instruction allows only condensed blocks
to be printed. Blocks marked by the parts option in a
lesson are not printed since they are mal`ked to not be
condensed.

The -*list charset(db)- option causes any char.set in the
lesson to be printed. The on dots al.e marked with the

£!or:: :rhear::tr:redfnwi?: ?a:e::: ::i: !dh)ir::€etrh fb?.acAgr£:::
readable charset nsting may be obtained using
-*list chal'set(*)-, which marks each dot with * and leaves
the backgl`ound blank. The default case, -*list charset-,
marks on dots with 0 and background dots with -. This
option must pl.ecede any -*list off- instruction in order
for the chal`set to be printed.

A nol.mal print of a lesson does not list leslist, micl.o, or
vocab blocks. To print a blocl(of this kind, the ap-
propl.iate -*list leslist-, -*list micrc+, or *list vocabs-
instruction must precede the block to be printed.

When the mod words option for the lesson editor is turned
on, the -*1ist mods- instruction prints the mod word and
the col.I.esponding line of code that was changed. Mod
words al.e an option in the editor to record line-by-nne
changes in a lesson. They show the fir.st 5 characters of
the user.'s name and the date of the change. The -*list
deleted- instl`uction prints deleted lines with an asterisk
at the beginning of each deleted line.

PRINTING COMMONS AND DATASETS

Print commons using instruction -*list common,comname,
words,format-. When E)rinting a common, if a preceding
soul'ce block has the same name as the common blocks,
the printer does not see the common, and it is not printed.
Datasets do not. use a -*list- instl'uction in the lesson.
They are printed accol.ding to the print dil.ectives given on
the data page of the dataset. The formats that commons
and datasets use are similal.. These fol'mats may be one
of the following.

15-1

Integer or i (nc val.iables)

Exponential or e (vc variables)

Octal or o

Alpha or a

Hexadecimal or h

x (all of the above)

(Youl. own format)

Special or s

Alpha (a), integer (i), and exponential (e) pl.int 10 words
per line, octal (o) prints 5 wol.ds per line, and x prints 2
words pel. line. An example of the instl.uctions used to
print a common is:

*list common,septvar,3 20 ,o

This prints the first 320 wol.ds of the common named
septvar in octal format.

To print a dataset, insel.t tlle appl'opl`iate directives on the
data page of the dataset. These directives include page
eject information if desired, starting I.ecol`d number,
number of records to print, and format. An example is:

2,7,a;2,7,e

This instl.uction pl.ints I.ecords 2 through 8 in the dataset,
first in alpha fol.mat and then in exponential format.

If the directive is omitted on the data page, the entire
dalaset is printed in special format.

To print a nameset (8 type of dataset), insert the
appropl.iate directives on the data page of the nameset.
These directives include name, page eject information if
desired, starting record number, number of I.ecords to
pl.int, and format. Some examples al.e:

namel;1,3,o
namel-namel0;2,4,h

The first instruction prints records 1 through 3 of namel
in octal. The second instruction prints recol.ds 2 tlirough 4
for names namel through namel0 in hexadecimal.

If the dil.ective is omitted on the data page, the entil.e
nameset is pl`inted in special format. The directive can
specify mol.e records than a name has, but only existing
I`ecol.ds are printed. A name with no records is not
printed.

An automatic page eject occurs after each name in a
nameset for all formats. The following comments on
datasets refer also to namesets.

An author may design his own format for a line of pl.int.
The format information is enclosed in parentheses.

*list common,comname,words,(your format)

(your format) may consist of characters, numbel.s, and
spaces or commas or both.

15-2

Charactel.s:

a Alpha (10 characters)

e Exponential (vc variables,10 cliaracters)

i Integer (nc variables,10 characters)

o Octal (20 characters)

h Hexadecimal (15 char8ctel.s)

x Number of spaces between words (the nun-

=:;apur]:Cj:d]£7g the X is the number of spaces;

p Numbel. of words to go fol.wal`d befol.e
pl.inting (the number preceding the p is the
number of wol.ds to go forwal.d; default is 1)

I Common ol. dataset location (four charac-
tel.S)

Numbers:

0 through 9

An example of three equivalently designed formats is:

(a 4x i 4x o 4x e)
(a,4x,i,4x,o,4x,e)
(a4xi4xo4xe)

These fol.mal.s print each word in foul. formats with foul.
spaces between words, taking 62 characters. Each line
can have up to 135 charactel.s. The letter p may be used
to pl.int more than one word per. line.

(o 5x p o 5x p o 5x p o 5x p o)

This format uses 120 characters per line.

Special format ignol.es words, but the field must be thel.e.
An example of the acceptable form is:

*list com mom,janvar„s

When printing a dataset in special format, the format is
specified on the data page. Tlie number of records is
ignored, but the field must be there. To print the entil.e
dataset in special format, one of the equivalent instruc-
tions, -l„s- or -special-, may be used.

Special or s format prints the common or dataset in alpha
fol.mat. Therefore, all numerical information must be
converted to alpha strings befol.e storing in the common
or dataset. To put spaces between infol.motion on the
pl.int, use the apacl(-instruction to pack the common or
dataset words with blanks (code is 055) and then use the
-move- instl.uction to insert the infol.motion to be
printed.

In special format, lines are limited to 120 characters, and
words in which all bits are 0 are ignol`ed unless they al.e
preceded by at least one nonzel.o wol.d on the same line.
The last wol.d on a line must end with 12 bits set to 0. If
you cannot alter the last word so that the final 12 bits are
0, add a word after it with at least the last 12 bits set to

97405100 C

0. Do this by adding a word with all 0 bits or a wol.d with
eight blank character.s and the final 12 bits set to 0:
o55555555555555550000. A space code (055) may be
inserted between charactel.s within a word for pl`inted
blanks. For blanks between wol.ds, insert a space code for
each space.

The special or s fol.mat is the only format which uses page
e].ect information. (Page ejects are automatic with the
other for.mats, pl.inting about 56 lines of the specified
fol'mat per page.) `

Page ejects al.e specified with -*fol.mat eject-, -*fol.mat
blocks-, -*format records-, or -*format pages-. These
dil.ectives must be contained in the words of the common.
Each takes two wol.ds. These directives may also be in
the words of a dataset, or they may be included in the
specifications on the data page of a dataset.

For a page eject after. each block or record, insert
-*fol.mat blocl(s-or -*fol.mat I.ecords-at the location in
the common or dataset where it is to take effect, often at
the beginning. The last word of each block or recol.d must
end with 12 bits set to 0. These directives,may be

97405100 C

specified on the data page of the dataset by -blocks-,
-recol.ds-, or -blocks;I.ecords-. Another acceptable form
is holocks;3„s-.

For automatic page ejects, insert -*format pages-in the
common or dataset at the location where it is to take
effect, often at the beginning. This dil.ective provides
uniform margins at the top and bottom of each printed
page. On the data page of the dataset, it is indicated by-pages-or by -pages;2„s-.

The -*fol.mat eject- at the beginning of a dataset ol.
common starts the print on a new page. If -*format
eject-is embedded in a common or dataset, the new page
begins after the instruction. The word preceding
-*fol.mat eject- must end with 12 bits of O's. To insert
-*format eject-in the two wol.ds it needs, use the -pack-
instl.uction.

To end the print before the end of the file, insert
-*format end- with the -pack- instruction into the next
word following the last one to be printed, which must end
in 12 bits of O's. The special print ends a,t -*fol.mat end-,
end of file, or the first noncommon block.

15-3 I

CHARACTER AND KEY CODES A

Character codes and key codes are not the same on the
PLATO system. Character codes are the 6-bit codes
stored in val.iables and used for display. Key codes are
numbel`s associated with each key. The character codes
of a I.esponse al.e put in the I.udging copy of the student
response. In contl.ast, the system-I'eserved word key

::#ea£Ar:1;.he key Code of the last key pressed (refer to

Some keys have names associated with them, as well as
key codes. Many of the function keys have a name and a
key code but no character code, as they do not display a
character. An example of this is the NEXT key.

97405100 8

Because thel.e are 126 characters available (alternate
characters use the same char.acter codes, with a preceding
FONT character code), and the 6-bit character codes can
only specify 63 codes, some keys have two or three
char.actel` codes rather than one character code associated
with them,

ACCESS CHARACTERS

These characters (table A-2) are obtained by pressing the
ACCESS (shifted a key) key and then an associated key.
Refer to appendix D for a description of this process.

A-1

TABLE A-1. CHARACTER AND KEY CODES

Character

Char.actel. Key

Character

Character Key
Code Code Code Code

(octal) t (octal) t t (octal) t (octal) t t

a 01 001 < 65 065
b 02 002 (SUB) 66 066
C 03 003 (SUP) 67 067
d 04 004 (SHIFT <) 70 070
e 05 005 (CR) 71 071
f 06 006 < 72 072
8 07 007 > 73 073
h 10 010 (bkap) 74 074
i 11 011 (FONT) 75 075
j 12 012 (ACCESS),A 76 076
1{ 13 013 777001 077101
I 14 014
in 15 015
n 16 016 a 7002 102
0 17 017 C 7003 103
P 20 020 D 7004 104
q 21 021 E 7005 105
I 22 022 F 7006 106
S 23 023 a 7007 107
t 24 024 H 7010 110
u 25 025 I 7011 111
V 26 026 J 7012 112
W 27 027 K 7013 113
X 30 030 L 7014 114
y 31 031 M 7015 115
Z 32 032 N 7016 116
0 33 033 0 7017 117
1 34 034 P 7020 120
2 35 035 Q 7021 121
3 36 036 R 7022 122
4 37 037 S 7023 123
5 40 040 T 7024 124
6 41 041 U 7025 125
7 42 042 V 7026 126
8 43 043 W 7027 127
9 44 044 X 7030 130
+ 45 045 Y 7031 131- 46 046 Z 7032 132
* 47 047
/ 50 050 - 7041 141
(51 051 7042 142
) 52 052 I: (SHIFT+) 7045 145
S 53 053 A (SHIFT-) 7046 146

54 054 9 7050 150
(space),T 55 055 I, 7056 156

56 056 I 7057 157
57 057 n (SHIFT +) 7060 160
60 060 u (SHIFT X) 7064 164

[61 061 (locksub) 7066 166
] 62 062 (locksup) 7067 167
% 63 063 7077 177
X 64 064

tThe character code is the actual internal code used in processing information
(Value of codes in literal strings.)

t tThe key code identifies tel. minal key(s) pl'essed for use I.elative to checking.

A-2 97405100 8

TABLE A-2. ACCESS CHARACTERS

Lowercase Uppercase

Char.acter

Char.acter Actual

Character

Character Actual
Code Key Code Key
(octal) (with ACCESS) (octal) (with ACCESS)

(erase mode) t 767035 SHIFT € then 2 = (identity) 7652)

(write mode) t 767036 SHIFT < then 3 # 7653 S

(rewl.ite mode) t 767037 SHIFT < then 4 (7661 I
a 7601 a 7662]

P 7602 b (for.in feed) 7671 CR
(cedilla) 7603 C < 7672 <

8 7604 d > 7673 >
' (acute accent) 7605 e - 767001 A
A 7614 I © 767003 C
4 7615 in - 767004 D-(tilde)

7616 n I 767011 I
a (degree) 7617 0 t 767027 W
7r 7620 P I 767030 X
` (grave accent) 7621 q X 767060 SHIFT X

7622 I` (lock down one line) 767066 SUBl t t
a 7623 S (lock up one line) 767067 Supl t t
0 7624 t'' (umlaut)

7625 u
v (hacek) 7626 V
a, 7627 W
^ (cil.cumflex) 7630 X

(half space) 7631 y
(half backspace) 7632 Z

< 7633 0
> 7634 .1

@ 7640 5

a 7641 6
a 7645 +

\ 7650 /
± 7654

(ha,lf space) 76557656 (space),

a 7664 X

(line feed) 7665 €
(down one line) 7666 SUB
(up one line) 7667 SUP
(half backspace) 7674 (bksp),

~ (equivalence) 7677

t Used in animation displays.

t tThe number 1 after the key name indicates that the SHIFT key must also be pressed.

97405100 C A-3

FUNCTION KEYS

These keys do not have an associated chal`acter code, as they al.e never displayed. For clarity. the key name should be used
(as when testing a val'iable key) rather than the key code (refer to table A-3).

TABLE A-3. FUNCTION KEYS

Key/System-
Key

Key/System-
KeyDefined Defined

Key Name Code Key Name Code
(if different) (octal) (if different) (octal)

FUNKEYt 200 TERM 216

NEXT 202 ANS 217

NEXTl t t 203 COPY 220

ERASE 204 COPYl t t 221

ERASEl t t 205 EDIT 222

HELP 206 EDITl t t 223

HELpl t t 207 MICRO 224

BACK 210 (square) 225

BACKl t t 211 STOP 226

LAB 212 TAB 230

LABl t t 213 TIMEUP functiont t t 233

DATA 214 CATCHUP functiont t t t 235

DATAl t t 215

tspecialpurpose key which is not associated with any key on the I(eyboard.

t tThe number 1 after the key name indicates that the SHIFT key must also be pressed.

t t tThe key retul'ned at the end of a time period specified in a -time-or a timed pause- instruction.

t t t tThe key returned wham all output is displayed following a -catchup-instruction.

A-4 97405100 8

SYSTEM FUNCTIONS AND RESERVED WORDS 8

The PLATO author language predefines several functions
for the author. These can be used in mathematical ex-
pl.essions or in the definition of other functions. Addi-
tionally, there are several reserved words, which are also
useable in mathematical expl.essions and definitions. The
resel.ved words furnish the author with information other-
wise unobtainable or obtainable only after extensive
manipulation by the author. Additionally, some key codes
al.e named. These are given in appendix A.

System functions, together with a brief description of

each, are given in table 8-1. Reserved words are given in
table 8-2.

All of these names can be redefined by the author using a
ndefine- instruction. In such a case, the author's speci-
fication has pl.iority, and the reserved words become
unavailable to the author. Hence, the names of reserved
words should be redefined only if the author is certain
that the information contained in those words is not
necessary.

TABLE a-1. SYSTEM FUNCTIONS

Functiont Description

cos(x)

arctan(x)

bitcnt(x)

camp(x)

cos(x)

exp(x)

fl.ac(X)

int(x)

log(x)

lmask(x)

ln(x)

not(x)

rmask(x)

round(x)

sign(x)

sin(x)

sqrt(x)

varloc(x)

97405100 a

Absolute value

Arctangent (value in radians)

Retut.us the number of bits set to 1 in the argument

Bit complement of x

Cosine (x in radiaus)

Returns value of e (2.713+) raised to the power of the argument

Fractional part of the argument (x-int(x))

Integer part (largest integer with a value < x)

Common logaritrlm (base 10)

Left-justified mask of x bits

Natural logarithm (base e)

Boolean (logical) negation

Right-justified mask of x bits

Value of the argument rounded to the nearest integer

Returns ±1 corresponding to sign of x, or 0 for x equal to 0

Sine (x in radinus)

Square rcot

lm
Attempting to find sqrt(x) if x is negative results in
an execution error, and execution of the lesson is
stopped.

Returns the number of user variable x

8-1

TABLE a-1. SYSTEM FUNCTIONS (Contd)

Function t Description

And(A) -1 if evel.y element of afl.ay A is true

Max(A) Maximum value in array A

Min(A) Minimum value in array A

Or(A) -1 if any elemerit of array A is tl.ue

PI.od(A) Product of elements in aray A

Rev(A) Reverse of art.ay A

Sum(A) Sum of elements in al.ray A

Tpanap(A) TI.ansposition of array A

tln these definitions, x is a dummy argument that can be replaced by any pel.missible mathematical ex-
pl`ession, end A is a dummy argument that can be I.eplaced by any system-defined arl.ay.

TABLE a-2. SYSTEM-RESERVED WORDS

Descl.iption

Words for General Use

baseu

clock

erroI.

key

mainu

mallot

muse

nhelpop

proctim

ptime

sitenam

station

•8-2

Last number of al'guments transferl.ed to an argumented unit

Distinguishes between student signcoff (SHIFT STOP) and system backout:

0 Not systembackout
not 0 Systembackout

Name of current base unit, 0 if no base unit

Value of system clock in seconds (nearest millisecond)

Returns values for specific instl.uctions; being phased out by zreturn

Contains 10-bit key code of last key pressed

Name of curl.ent main unit

ECS allotment for the logical site in which the usel. is registel.ed

Total ECS usage by users I.egistel.ed at same logical site

Number of successful I.equests for help on the same page (-helpop-type branch) cleared
on entry to a new main unit and every time an -al'row-instruction is found while not in a
-helpop- state

CPU usage in seconds (floating-point number); updated only at the beginning of a timeslice

-1 if current time is prime time, and 0 if not

Name of user's logical site

Number assigned to tel.minal by system

97405100 C

TABLE 8-2. SYSTEM-RESERVED WORDS (Contd)

Description

zaccnam

zcondok

zcusers

zdsname

zdusers

zfroml

zfromu

Zgroup

zinfo

zlesson

zpnfile

zpnotes

zretrnu

zretul.n

zsessda

zsesset

zsesspt

zsnfile

Total number of active terminals culTently on the aystem

Type of user: student, author, multiple, instl.uctor, sabort (student records are abort.ed), or
snockpt (autocheck is aborted)

Number of usel`s cuITently in lesson (I.outed students are counted as being in the I.outer and in the
routed lesson)

Name of account containing user's course, left justified

0 if condense err.ors ol. warning messages, and -I if none

Number of users signed into cuITent common

Name of current dataset or nameset

Numbel. of users cLlrpently connected to dataset

0 No dataset connection
1 Usel. I.equesting value is the only user currently connected

Name of -from-lesson

Name of -fl.om-unit

Name of usep's gi`oup

Contains 24 bits of additional associated information for the current name in a rrameset

Name of current lesson

-1 if course is pi.epered for personal notes, and 0 if user has no personal notes file

-1 if user has pet.sonal notes not yet I.ead. and 0 if user has read all pel`sonal notes

Name of the unit user i`etiil.ns to otter a -jumpout return.return-

Status returned from specific instructions

Disk accesses this session

Elapsed time this session

Processing time this session

Used with student notes:

-1 Student note file is attached to course
0 No student note file specified
1 Lesson and student notes disabled

-I if student has student notes not yet read, and 0 if student has read all student notes

Last term requested

Name of current unit

Words for Displays

Cument text display mode:

-1 Erase
0 Rewrite
I Write

97405100 C 8-3.

TABLE 8-2. SYSTEM-RESERVED WORDS (Contd)

Description

SIze

sizex

sizey

where

wherex

wherey

ztouchx

ztouchy

CulTent -Size-

Current hol`izontal rsi ze-

Cuprent vertical rsize-

Coal.se-.grid coordinates for next sol.een output

Fineirid horizontal coordinates for next screen output

FineTgrid vet.tical coordinates for next screen output

Finegrid liorizontal cool.dinates of center of last touched square, -I if last input was not a touch

Finengl.id vertical coordinates of centel. of last touched square, -1 if last input was not a touch

Words fol. Lengths

lcommon

l]esson

lstorag

zbpc

zbpw

Zapw

zdsr'ecs

zdswpr

Znscpn

znsmaxn

znsmaxr

znsnams

znsrees

Zrecs

zwpb

ZWPI`

Length in words of common oulTently in use

Length in words of current lesson

Length in words of storage ourrent]y in use

Bits per clial`actel`

Bits per wol.d

Charactel.s per word

Same as zrecs; being phased out by zl.ees

Same as zwpr; being phased out by zwpr

Number of chat.acters per nameset name

Maximum numbel' Of names per rmmeset

Maximum number of records per nameset

Cument number of names in use in the namesct

Culfent number of records in entire nameset

Number of records in dataset if connected to a dataset, or number of records in cul`I.ent name if
connected to a nameset, 0 if no dataset or nameset is connected

Number of wol'ds pel' b]ocl{

Number of words per. I.ecord in dataset or nameset, 0 if no dataset or nameset is connected

Words for Answer Judging (0 is condition not true)

Number of answer-judging instl.uctions encountered before match is made:

0 -store-failul.e
-1 Nothingmatches
-2 Responseisover40 words

-1 if all specifications ok

-1 if no capitalizat.ion errol`s

08-4 97405100 C

TABLE 8-2. SYSTEM-RESERVED WORDS (Contd)

Descl.iption

entil.e

extra

jcount

judged

ntries

ordel.

phrase

spell

vocab

wcount

-I if all I'equired words are pl.esent

-1 if no extra (unspecified) words ape in response

Number of internal 6-bit charactel. codes in student response

-1 for any ok judgment, 0 for any anticipated no judgment, and I fop any unanticipated no
judgment

Number of attempts at arrow

-1 if word order ok

-1 if no errors in phrases

-1 if spelling of response ok

-I if all words in student response are in vocabulary

Number of words in student I.esponse (set often -match-, -answer-op -oncept-)

Words for Formula Judging

Error diagnostic infol.motion from expression compilation:

-I Fol'mula ok
0 Bad function argument or variable index [for example, sqrt(-3) or n (i+70) where i is 90]
1 Illegal character
2 Unbalanced parentheses
3 Too many decimal points (for example, 34...243)
4 Undefined variable name
5 #[g;I operator does not have two s signs (for example, Sand or andS instead of

6 Expression has bad form (for example. 3//4 or (/-55)
7 Value assigned to nonvapjable (fol. example, 5< 3)
8 0ctal constant contains 8 or 9
9 Err in alphanumeric string, such as (3+"ab)

10 A numbel. has too many digits
11 Arl.ay index is out of bounds
12 Variables are used with ngpecs novars-
13 Operations ape used with -specs hoops-
14 There al`e assignments without tspecs okassign-
15 Improper use of units, such as5kg+3sec
16 Expression takes too long to compile
17 Too many nested functions
18 WI.ong number of al.guments in a function
60 Too many temporary variables needed
62 Expanded version too lo,rlg
63 Too manyliterals
66 Too many indexed assigns

Number of arithmetic operations in response; counts arithmetic operators (+, -, + , X), logical
operatol.s (Sands), bit opel.ators (Sclss), and full functions (system- or userndefined)

Number of vat.iables or functions (useprdefined only) in I`esponse

97405100 C a-5.

TABLE 8-2. SYSTEM-RESERVED WORDS (Contd)

Description

Words for Routel.s and Leslists

errtype

fpomnum

ldone

lesenum

lleslst

lsc"e

lstatus

rcallow

pstartl

rstaptu

router

rvallow

a-6

Used with router lessons:

0 Unknown erl.ol. type
I Execution error
2 Fatal condense error
3 Specific fatal condense error:

No ECS available
Lesson deleted
No room in ECS fo,- common
Lesson tables full
ECS allocation exceeded

4 Error in finish unit of routed)esson
5 SHIFT STOp exit from condense queue

Leslist number of lesson the ourpent lesson was entered fl.om; -1 if lesson is not in tlle leslist or if
no leslist is in use

Set by last -)essor+ instl'uction

-1 -nd lesson-or -lesson completed-
0 Student has Trot entel.ed lesson or -lesson incompleter
I -lesson no end-
2 Student has entered lesson but not camp)eted it

Leslist numbel` of curt.ent lesson; -1 if lesson is not in the leslist or if no lesfist is in use

Length of the lesfist

Scope fof. current lesson; set by last rscore+ iustmuction

Status of current lesson; set by last tstatus- instruction

Router common variable access, set by)act unl]ow- instl.uction:

0 No access (d])ow-)
1 Readconly (-allow read-)
2 Read and write (dl)ow write-)

Name of current -restart-lesson

NQme of current +estart-unit

Name of poutel. lesson assigned to course

Router sludent variable access, set by last -allow- instruction:

0 No access (dllow-)
1 Readi)nly (-allow I.ead rvars-)

Words for Data Keeping (refel` 1.o cuITent area only; can use even if data off, if drea-has been executed)

Name of current area

Elapsed time in area (milliseconds)

97405100 C

TABLE 8-2. SYSTEM-RESERVED WORDS (Contd)

Descl.iption

aal.rows

aol(

aokist

asno

auno

ahelp

ahelpn

atel,in

atel. inn

dataon

Number of -arl.ow-instructions encountered

Number of answers judged ok

Number of answers judged ok on first try

Number of anticipated no judgments

Number of unanticipated no judgments

Number of successful help I`equests

Numbel` of unsuccessful help requests

Number of TERM I.equests found

Number of TERM I.equests not found

-1 if data is being collected; 0 if otherwise

97405100 C 8-7.

BINARY, OCTAL, AND DECIMAL NUMBER SYSTEMS C

NUMBER SYSTEMS

Any number system may be defined by two character-
istics, the radix or base and the modulus. The I.adix or
base is the number of unique symbols used in the system.
The decimal system has 10 symbols, 0 through 9. Modulus
is the number of unique quantities or magnitudes a given

fj£::h:[T8_cf:i:{jdfisett:;g:::i:.;{s;sot,:h:g:[g:p:w:;u£§d§::s:nb%ecE;i:{[::
infinite numbel. of digits can be written, but the adding
machine has a modulus because the highest number which
can be expressed is 9,999,999,999.

Most number eystems are positional; that is, the relative
position of a symbol determines its magnitude. In the
decimal system, a 5 in the units column I.epresents a
diffel.ent quantity than a 5 in the tens column. Quantities
equal to or gI'eater than 1 may be I.epresented by using the
10 symbols as coefficients of ascending powers of the base
10. The number 984io is I.epresented as:

9 x 102 = 9 x 100 = 900

+8x|0L=8x 10= 80

+4xl0°=4x 4= 4

98410

Quantities less than 1 may be represented by using the 10
symbols as coefficients of ascending negative powers of
the base 10. The number 0.593io is I.epresented as:

5x|0-L=5x.1 =.5

+9 x 10-2 = 9 x .01 = .09

+3 x 10-3 = 3 x .001 = .003

0.59310

BINARY NUMBER SYSTEM

Computers operate faster
the binary number system.
and 1; the base equals 2.
tional value.

...%h TA T3 T2. TI fro

and more efficiently by using
There are only two symbols, 0
The following sliows the posi-

3216 8 4 2 1 Bimrypoint

Thebinarynumbero 11010represents:

ox25=Ox32= 0

+1 x 24 = 1 x 16 = 16

97405100 a

+|x23=1x 8= 8

+ox22=ox 4= o

+|x2L=1x 2= 2

+ox20=ox 1= 0

2610

Fractional binary numbers may be repl.esented by using
the symbols as coefficients of ascending negative powel.s
of the base.

2-1 2-2 2-3 2-4 2-5...

Binarypoint 1/21/41/81/161/32

The binary number 0.10110 is represented as:

1x2-t=1xl/2 =1/2 =8/16

+ox2-2=Oxl/4 =0 =0

+1 x 2-3 = 1 x 1/8 = 1/8 = 2/16

+1 x 2-4 = 1 x 1/16 = 1/16 = I/16

+ox2-5=Oxl/32=0` =0

11/161o

OCTAL NUMBER SYSTEM

The octQl number system uses eight discrete symbols, 0
through 7. With base 8, the positional value is:

ph;A gr4 gr3J r32;\ rJ gr"

32,768 4,096 512 64 8 1

The octal number 5138 I.epresents:

5 x 82 = 5 x 64 = 320

+|x8L=1x8 = 8

+3x8°=3xl = 3

33|1o

Fractional octal numbers may be represented by using the
symbols as coefficients of ascending negative powers of
the base.

8-1 8-2 8-3 8-4
1/8 1/64 1/512 1/4096...

C-1

The cetal number 0.4520 represents:

4x8-L=4xl/8 =4/8 =256/512

+5x8-2=5xl/64 =5/64 = 40/512

+2x8-3=2xl/512 =2/512 = 2/512

+ox8-4=Ox|/4096=0/4096= 0/512

298/512

i49/256io

ARITHMETIC

ADDITION AND SuBTRACTION

Binary numbers are added according to the following
rules.

with a cony of 1

The addition of two bimry numbers proceeds as follows
(the decimal equivalents verify the result):

Augend
Addend
Partial Sum
Carry
Sum

0111 (7)

qu +(4)
0011
1

Subtraction may be performed as an addition.

8 (minuend) 8 (minuend)
-6 (subtrahend) or +4 (tens complement of

subtl'ahend)

2 (difference) 2 (difference; omit carry)

The second method shows subtraction performed by the
adding the complement method. The omission of the
cal.ry in the illustl.ation has the effect of reducing the
result by 10.

ONE'S COMPLEMENT

The computer per.forms all arithmetic and counting op-
erations in the binary one's complement mode. In this
system, positive numbers are I.epresented by the binary
equivalent and negative numbers in one's complement
notation.

The one's complement I.epresentation of a number is found
by subtracting each bit of the number from 1. For
example:

1111
-1001 9

0110 (one's complement of 9)

This representation of a negative binal.y quantity may also
be obtained by substituting 1's for O's and O's for Its.

C-2

The value zero can be represented in one's complement
notation in two ways.

i:#= ::i Eo=i:iT;e`t2,zze:loo

The I.ules regarding the use of these two forms for com-
putation are:

• Both positive and negative zero are acceptable
as arithmetic operands.

• If the I.esult of an arithmetic operation is zero, it
is expressed as positive zero.

One's complement notation applies not only to arithmetic
operations pel.formed in A but also to the modification of
execution addresses in the F register. During address
modification, the modified address equals 777778 only if

:i:a±noT#£(f# a::Cisut7]?F77a8d.dress equais 777778 and b

MULTIPLIC^TION

Bimry multiplication proceeds according to the following
rules.

OxO=O
Oxl=0
1xO=0
1xl=1

Multiplication is always performed on a bit-byl>it basis.
Carries do not result from multiplication, since the pro-
duct of any two bits is always a single bit.

Decimal example:

multiplicand
multiplier

pertial
products

product 10

(shifted one place
left)

The shift of the second partial product is a shorthand
method of wl'iting the true value 140.

Bimry example:

multiplicand (14) 1110
multiplier (12) 1100

partial products

0000
0000

1110
1110

shift to
place digits
in proper
columns

product (168[o) 101010002

The computer determines the I.unning subtotal of the
partial products. Rather than shifting the partial product
to the left to position it correctly, the computer right-
shifts the summation of the partial products one place
befol.e the next addition is made. When the multiplier bit
is 1, the multiplicand is added to the running total, and
the I.esults are shifted to the right one place. When the
multiplier bit is 0, the partial pl.oduct subtotal is shifted
to the right (in effect, the quantity has been multiplied by
102).

97405100 a

DIVISION

The following examples show the familiar method of dec-
imal division.

14 quotient

divisor 13 |F dividend

55 partial dividend
52

3 remainder

gfhnear?gqpuuj:etiepnet:;?rmsdivisioninasimilarmarmer(using

1110 quotient (14)

divisor 1101 I 10111001 dividend
1101

10100
1101

1110 partial dividends
1101

11 remainder (3)

However, instead of shifting the divisor right to position it
for subtraction from the partial dividend (shown above),
the computer shifts the partial dividend left, accom-
plishing the same pul.pose and pel.mitting the arithmetic
to be performed in the A register. The computer counts
the number of shifts, which is the number of quotient
digits to be obtained; after the col.rect number of counts,
the routine is terminated.

CONVERSION

The procedures that may be used when convel.ting from
one number aystem to another are powel' addition, radix
arithmetic, and substitution.

POWER ADDITION

I:m3::Virtft:::pmabnedredfrr°{mpor[{ynt:mr££](rf{o:mrfkdw:itmepiti¥;
using rf arithmetic.

Example 1: Bimry to Decimal (Integer)

0101112 = 1 (24)+0(23)+1(22)+1(21)+1(20)

= 1 (16)+0(8) +1(4) +1(2) +1(1)

= 16 +0 +4 +2 +1

= 2310

Example 2: Binary to Decimal (FI.actional)

•01012 = 0(2-1)+1(2-2)+o(2-3)+1(2-4)

=0 +1/4 +0 +1/16

= 5/161o

97405100 a

TABLE a-1. RECOMMENDED
CONVERSION PROCEDURES

(INTEGER AND FRACTIONAL)

Conversion Recom mended Method

Bimry to decimal Power addition

Octal to decimal Power addition

Decimal to binary Radix arithmetic

Decimal to octal Radix arithmetic

Binary to octal Substitution

Octal to binary Substitution

General Rules

rj > rf: use padix arithmetic, substitution

r£< rf: use power addition, substitution

r] Radix of initial system

rf Radix of final system

Example 3: Octal to Decimal (Integer)

3248 = 3(82)+2(81)+4(80)

= 3(64)+2(8) +4(1)

=192 +16 +4

= 2121o

Example 4: Octal to Decimal (FI.actional)

•448 =4(8-1)+4(8-2)

=4/8 +4/64

= 36/64

= 9/161o

RADIX ARITHMETIC

To convert a whole number from ri to rf (ri > rf):

1. Divide r{ by rf using rf arithmetic

2. The remainder is the lowest ol.der bit in the new
expl.ession

3. Divide the integl.al part fl'om the previous op-
eration by rf

4. The remainder is the next higher order bit in the
new expl.ession

5. The process continues until the division produces
only a I.emaindel. which will be the highest ordel.
bit in the rf expression.

C-3

To convert a fractional number from r± to rf:

1. Multiply r± by rf using r; arithmetic

2. The integl.al part is the highest order bit in the
new expression

3. Multiply the fractional part from the previous
operation by rf

4. The integral pel't is the next lower order bit in
the new expression

5. The process continues until sufficient precision is
achieved or the process terminates

Example 1: Decimal to Binary (Integer)

45 + 2 = 22 remainder 1; record

22 + 2 = 11 I.emainder 0; record

11 + 2 = 5 remainder 1; record

5 + 2 = 2 remaindel' 1; record

2 + 2 = 1 remainder 0; record

1 + 2 = 0 I.emainder 1; record

Thus: 45io = 1011012

Example 2: Decimal to Bimry (Fractional)

.25x2=O.5;record 0

.5 x2 =1.0;record 1

.0 x 2 = 0.0; record

Thus: .25io = .0102

Example 3: Decimal to Octol (Integer)

273 + 8 = 34 remainder 1: record

34 + 8 = 4 remainder 2; record

4 + 8 = 0 remainder 4; record

Thus: 273]o = 4218

C-4

1

0

1

1

0

1

101101

1

2

4

421

Example 4: Decimal to Octal (Fractional)

.55x8=4.4;record 4

.4 x8=3.2;recol.d 3

.2 x8 = 1.6;recol'd 1

Thus: .55]o = .431...8

I.431...

SuBSTITUTION

This method permits easy conversion between octal and
binary I.epresentations of a number. If a number in bimry
notation is partitioned into triplets to the right end left of
the binary point, each tl.iplet may be converted into an
octal digit. Similarly, each octal digit may be converted
into a triplet of binary digits.

Example 1: Binary to Octal

Binary = Ilo COO . 001 010

0ctal = 6 0 . 1 2

Example 2: Octol to Bimry

Octal = 6 5 0 . 2 2 7

Binary = 110 101 000 . 010 010 111

97405100 8

TERMINAL KEYBOARDS D

The PLATO terminal consists of 64 keys similar to a
standal`d keyboard, with some additions. The additions are
fol. the function keys and some special characters as in A.

The lower.case keyboard (a) contains the lowercase alpha-
betic keys, some of the function keys, numel.als, and
special char.actel.s.

The upper.case keyboard (C) is accessed by holding down

97405100 a

the SHIFT key while pressing the desil.ed key. The uppel.-
case keyboard contains the capital letters, the I.emaining
function keys, and special characters.

In addition, there are hidden characters. These al.e ac-
cessed by pl.essing and I.eleasing the ACCESS key and then
pressing the desired key. There are both lowercase and
uppercase access char.actel.s, shown in D and E, I.e-
spectively.

D-1

I I I I LTJ E E] H I 1_-I I E E E a
EEL_IEEiEEEEE]EEEEEE
a E E I LI I I I D I E I] E E E E

E I E E E E I I I I E] I E E E E

A

ACTUAL
KEYBOARD

8
LOWERCASE
KEYBOARD

EEEEEEEEEEEEEEE
E I E] I I E] I E] E] I E] I E E E E
E E] I I E] E] E] H H I H I E E E E

E] I E I H I E] H E] E I I I E E E

I I E E I E E] I I E D E a E E
EEEEEEEEEEEEEEEE
I E I E E E E E E E E I E E] E E

EEEEEEEEEEDEEEEE

C

UPPERCASE
KEYBOARD

D

LOWERCASE
ACCESS KEYB0ARI)

I E] I . I E I I I I E E E I I
EEEEHEEEEEEEEHEE
E.DEHEEE..HEHEEE

•DEEE]HE]EE]EHEHEE.

I I H H E I I I I I E] E E I I
EEEHEEEEEHEEEEEE
•EEEEEEEEEEEEEEE

EE]-EHEEE.EEE.EE.

E

UPPERCASE
ACCESS KEYBOARD

D-2 97405100 C

INDEX

aarea 13-2; 8-6
aarrows 13-2; 8-7
-abort-5-23; 8-15
abs 8-1
ACCESs Characters A-1,3
ACCESs keys D-1,2
Addition 7-2
-addlst-5-62; 10-16
-addname-5-20; 8-19
-addrecs-5-21; 8-19
-addl-5-5; 7-4
ahelp 13-2; 8-7
ahelpn 13-2; 8-7
-allow-5-61; 10-16
Alphanumeric infol.nation 8-3
Alternate chal.acters 9-7
-altfont-5-37; 9-9
And a-2
Angled writing 9-4
rams-5-73; 11-10
anscnt 11-10; 8-4
ansok 8-4
-ansu-5-70; 11-8
-ansv-5-70; 11-7
-answer- 5-66; 11-5
-answerc- 5-66; 11-6; 12-2
aok 13-2; a-7
aokist 13~2; 8-7
apctan 8-1
-area-5-76; 13-2
args a-2
Argument 5-1
argumenLed units 10-4
-arheada-5-63; 11-2
Arithmetic operations 7-2
Arl.ay operations 7-3
Arrays (Refer to authorndefined arrays and system-

defined arrays)
-al.row- 5-63; 11-1
-art.owa-5-64; 11-2
asno 13-2; 8-7
Assignment 7-3
-at-5-24; 9-2
aterm 13-2; 8-7
atermn 13-2; 8-7
atime 13-2; 8-6
-atnm-5-24; 9-2
-audio-5-38; 9-11
Audio disl(feature 9-11
auno 13-2; B-7
Author-defined arrays 8-2

Full-wol.d arl.ays 8-2
Horizontal segments 8-2
Vertical segments 8-3

Authol.-initiated branching 2-1; 10-1
Authol. language condenser 1-1
Auxiliary unit 3-1; 10-1,2
-axes-5-39; 9-12

97405100 C Index-1 .

back- 5-49; 10-5; 12-2
-backgnd- 5-60; 10-14
-backop- 5-50; 10-5; 12-2
backout 14-2; 8-2
backl- 5-50; 10-5; 12-2
-backlop- 5-50; 10-5; 12-2
base- 5-53; 10-7; 12-2
Base sequence 3-1; 10-6
Base unit 3-1; 10-1,6
baseu 8-2
Bit operat.ions 7-2
bitcnt 7-3; 8-1
Bits 6-1
-block-5-23; 8-20
-bounds-5-39; 9-12
-box-5-32: 9-5
-branch- 5-15; 8-10; 10-4; 12-2
BI`ancliing 2-1; 8-10; 10-1,5

Author-initiated 2-1; 10-1
Student-initiated 2-1; 10-5

-bump-5-65: 11-4

-calc-5-5; 7-3; 8-3,10
¢alcc-5-5; 12-1,2
-calcs- 5-6; 8-13; 12-1,2
Calculation instructions 5-3
capital 11-10; 8-4
ngatchup-5-35; 9-6
Centl.&l computer 1-1
Centl.8l processing unit 10-14
-change- 5-58; 10-12; 11-13
ihap-5-35; 9-7
Char.acter codes A-1,2,3
Character strings 8-7
ngharsel.-5-36; 9-8
Charsets 9-8
nghartst-5-36; 9-9
ngircle-5-31; 9-5
-circleb- 5-31; 9-5
clock 8-8; 8-2
nglock-5-12; 8-8
nglose-5-65; 11~4
Coarse grid 9-1
ngodeout-5-37; 9-10
ngollect- 5-57; 10-11
ngolor-5-35; 9-6
-comload-5-18; 8-14
Command 1-2; 5-1
Comments 10.-8 (Refer. also t.o notes)
ngommon-5-18; 8-13
Common variables 8-13
ngommonx-5-18; 8-14
comp 8-1
-compal.e- 5-73; 11-10
ngompute-5-12; 8-7
Computer wol.d 6-1

-coml`et-5-19; 8-15
-concept-5-67; 11-6
Condenser, authol. language 1-1
Condensing control 10-8
Conditional instructions 12-1
Conditional-iterative instruct.ions 10-3
Constants 7-1
Convel.sion C-3
-copy- 5-75; 11-12
cos 8-1
CPU 10-14
-pulim-5-60; 10-14
-start- 5-54; 10-8
ngstop-5-54; 10-8
-cstop*- 5-55; 10-9

-data- 5-51; 10-6; 12-2
Data collection 13-1
Data file 13-I
-datain-5-19; 8-17,18
-dataoff- 5-76; 13-I
dataon 8-7
-dataon- 5-76; 13-1
ndataop- 5-52; 10-7; 12-2
-dataout-5-20; 8-17,18
Dataset 8-16
-dQtaset-5-19; 8-16,18
ndatal-5-52; 10-6; 12-2
-datalop- 5-52; 10-7; 12-2
ndate-5-12; 8-8
-day-5-12; 8-8
rdefine-5-3,4; 6-2; 7-1,4; 8-1
Define set 6-2
ndelay-5-35; 9-6
-de)etes~ 5-11; 8-6
ndelname-5-21; 8-19
-delrees-5-21; 8-19
ndelta-5-43; 9-14
ndisab]e-5-38; 9-10
Display instl.uctions 5-24
Displays 9-I
Disk memol.y 1-I
Division 7-2
ndo- 5-47; io-2; i2-2
-dot-5-29; 9-4
rdoto-5-16; 8-ii
ndraw-5-30; 9-4

ECS I-1
-edit-5-75; 11-12
-else-5-16; 8-10
-elseif-5-16; 8-10
embed 5-35; 9-6
Embedding 9-6
-enable-5-38; 9-10
-end- 5-49; 10-6
-end8rrow- 5-63; 11-1
-endif-5-16; 8-10
-endings-5-68; 11-7
-endloop-5-17; 8-12
entire 8-5
-entl'y- 5-48; 10-4
-el`ase-5-28; 9-3
Erase mode 9-6
-epaseu- 5-29; 9-4; 12-2
error 8-2

• Index-2 97405100 C

Error directory 15-1
erl.type 10-14; 8-6
-exact-5-69; 11-7
-exactc- 5-69; 11-7; 12-2
-exactv-5-70; 11-7
Execution 2-1
-exit-5-47; 10-4
exp 8-1
Exponentiation 7-2
Expressions 7-1
-ext-5-39; 9-11
Extended core stol.age 1-1
External devices 9-10
ngxtout-5-39; 9-11
extra 8-5

-find-5-7; 8-4
-findall-5-8; 8-5 .
-findl- 5-62; 10-17
-finds-5-9; 8-5
-findsa-5-9; 8-5
Finegrid 9-1
-finish- 5-48; 10-5; 12-2
Floating|}oint variables 6-1
-force- 5-58; 9-10; 10-12
-foregnd-5-60; 10-14
Fol.mat 5-1
formck 8-8; 11-8; 8-5
fpac a-I
Framing (Refer to -window-and -box-)
-fl`om-5-13; 8-8; 12-2
fromnum 8-6
-funct-5-43; 9-14
Function keys A-1,4
Functions 7-4; 8-1,2

i&t-5-25; 9-11
iatnm-5-26; 9-11
ibox-5-33; 9-11
icircle-5-32; 9-11
idol-5-30; 9~11
idraw-5-31; 9-11
€et]oc- 5-75; 11-5
ietmarl(-5-74; 11-5
€etn8me-5-20; 8-19
ietword-5-74; 11-5
iorigin-5-25; 9-11.12
toto-5-47; 10-3; 12-2
graph-5-42; 9-13
Grapliies iustl`uctions 9-4
Graphs 9-11

Drawing on 9-13
Functions 9-14
Labeling axes 9-12
Polar cool.dinates 9-14
Scaling ares 9-12
Setting boundaries 9-12
Writing on 9-13

Tgpoup-5-13; 8-8
Tgvector-5-34; 9-11

Hardcopy printout 15-1
-hbar-5-42; 9-13
-help- 5-50; 10-6; 12-2

Help keys 10-6
Help sequence 3-I; 10-6
Help unit 3-I; 10-1
-helpop- 5-51; 10-7; 12-2
-helpl- 5-51; 10-6; 12-2
-helplop~ 5-51; 10-7; 12-2
-hidden-5-28; 9-3
-hloa-5-7: 8-4

-iarrow- 5-63; 11-2; 12-2
-ial.rows- 5-64; 11-2
IEU 3-1
-if-5-15; 8-10
-iferror- 5-48; 10-4; 12-2
~ignore- 5-69; 11-7
-imain- 5-44; 10-5; 12-2
-in-5-59; 8-8
Indenting 8-10
-inhibit-5-56; 10-10
-initial-5-59; 10-13
Initial entl.y unit 3-1
Initialization 4-1
-inserts-5-11; 8-6
Instruction fol.mats 5-1
Instructions

Calculation 5-3
Conditional 12-1
Conditional-iterative 10-3
Display 5-24
GI.aphics 9-4
Iterative 10-3
Judging 4-1; 11-1,5
Lesson control 5-44
PI.intino 5-81
Regular 4-1; 11-11
Relative graphics 9-11
Relocatable 9-5
Resout`ce management 5-80
Response handling 5-63
Student data 5-76

int a-1
Integer variables 6-1
Iterative instl'uctions 10-3
Iterative loop 8-11
-itoa-5-7; 8-4

jcount 5-64; 11-3; 8-5
-jkey-5-64; 11-3
-join- 5-46; 10-2; 11-2; 12-2
-judge- 5-74; 11-11; 12-2

judged 11-9; 8-5
Judging 11-2,5
Judging instructions 4-1; 11-1,5
-jump- 5-46; 10-2; 12-2
-jumpout- 5-56; 10-10; 12-2

key 8-3; 10-11,12; 11-9,12; A-1; 8-2
Key codes A-1.2,3
Keyboards D-2
-keylist-5-56; 10-11
-keytype- 5-57; 10-11; 12-2

97405100 C Index-3

-lab- 5-52; 10-6; 12-2
-labelx-5-41; 9-12
-labely-5-41; 9-12
-labop- 5-53; 10-7; 12-2
-labl- 5-53; 10-6; 12-2
-lablop- 5-53; 10-7; 12-2
Large writing 9-4
lcommon 8-4
ldone 10-13,14; 13-5; 8-6
Leslist 10-16
-leslist- 5-61; 10-16
-lessin-5-13; 8-8
1essnum 8-6
Lesson 2-1
-lesson- 5-59; 10-13; 12-2
Lesson control instructions 5-44
Lesson list 10-16
Lesson routing 10-14
Lesson stl.uctul.e 2-1
-lineset-5-36; 9-9
Linesets 9-9
-list-5-67; 11-6
Literals 8-3
lleslst 8-6
llesson 8-4
lmask 7-3; 8-1
ln 8-1
-lname- 5-62; 10-17
-loada-5-65; 11-4
log 8-I
Logical lesson structure 2-1
Logical operations 7-2

Boolean 7-2
Relational 7-2

-long-5-64; 11-3
-loop-5-17; 8-12
Looping (Refer to branching)
-lscalex-5-40; 9-11
-lscaley-5-40; 9-11
lscol.e 10-13,14; 13-5; 8-6
1status 10-9,14; 8-6
lstorag a-4

Main unit 3-1; 10-5
mainu 8-2
mallot a-2
-mar.kup-5-74; 11-10
-mal.kx-5-42; 9-12
-mal`ky-5-42; 9-12
Mass storage I-1
-match- 5-73; 11-10; 12-2
Matrix multiplication 7-3
Max a-2
-miero-5-37; 9-10
Micl`o table 9-9
Microfiche 9-10
Min 8-2
-miscon- 5-67; 11-6
mode 8-3
-mode- 5-35; 9-6; 12-2
-modpel.in-5-15; 8-9
-move-5-12; 8-7
Moving data 8-20
Multiplication 7-2
muse 8-2

-name-5-13; 8-8
-names-5-21; 8-19
Nameset 8-17
nc and vc variables 6-2
Nesled loops 8-11,12,13
-next- 5-45; 10-1,5; 12-2
-nextnow- 5-48; 10-4; 12~2
-nextop- 5-45; 10-5; 12-2
-nextl- 5-45; 10-5; 12-2
-nextlop- 5-45; 10-5; 12~2
nhelpop a-2
-no-5-69; 11-7
no judgment 11-2,5
not 7-2;8-1
Notation 1-1
Notes 13-5
-notes- 5-79; 13-5
-nowol.d-5-69; 11-2
-ntouch-5-71; 11-9
-ntouchw-5-72; 11-9
ntries 8-5
Number systems C-I

Octal number 7-2
-ok-5-68; 11-7
ok judgment 11-2,5
i)kwol.d- 5-69; 11-2
opcnt 8-8; 8-5
apen-5-64; 11-4
Operations 7-2

Arithmetic 7-2
Array 7-3
Bit 7-2
Logical 7-2

0perQtop precedence 7-1
Operators 7-1

AI.ithmetic 7-1
AITay 7-1
Bit 7-I
Logical 7-1

0r I+2
ror-5-73; 11-10
order 8-5
rotoa-5-7; 8-4
routlcop-5-17; 8-12
routput- 5-77: 13-2
routputl- 5-77; 13-2

pack-5-6; 8-3
packc- 5-6; 8-4; 12-2
-pause-5-57; 10-11
Permanent common 8-13
phrase 11-5; 8-5
Physical lesson structure 2-I
-play-5-38; 9-11

plot-5-36; 9-7
-polal.-5-44; 9-14
Polar coordinates 9-14
-press- 5-55; 10-9
Printing instl-uction 5-81
PI`inting lessons, commons, and datasets 15-1
proctim 8-2
Prod 8-2
ptime a-2-put- 5-65; 11-4
-puld- 5-65; 11-4
-putv- 5-66; 11-4

® Index-4 97405100 C

qasatag 12-1

Random numbers 8-8
-randp-5-14; 8-9
-randu-5-14; 8-9
-rat-5-25; 9~5
-I.atnm-5-26; 9-5
-I`box-5-33; 9-5
rcallow 8-6
-rcircle-5-32; 9-5
-I.dot-5-30; 9-5
-I`draw-5-30; 9-5
-readd- 5-78; 13-3
-readr-5-79; 13-4
-I.eadset- 5-78; 13-3
-record-5-38; 9-11
Regulali instructions 4-1; 11-11
Relative graphics instructions 9-11
-I.elease-5-22; 8-15,20
Relocatable instmctions 9-5
-reloop-5-17; 8-12
-remove-5-15; 8-9
-removl-5-62; 10-17
-rename-5-21; 8-19
-I.eserve-5-22; 8-15,20
Reserved words 8-2,3,4,5,6,7
Resource management instl.uctions 5-80
Response handling 11-1
Response handling instructions 5-63
-I.estai.t-5-55; 10-9
-retul.n-5-55; 10-9
Rev I+2
Rewrite mode 9-6
I.masl{ 7-3; 8-I
-pot.igin-5-25; 9-5
-rotate-5-29; 9-4
I`ound a-1
-route-5-60; 10-14
poutel` 8-6
Router variables 10-15
Routing 10-14
-routvar-5-61; 10-15
rstartl 10-14; 8-6
I`stQrtu 10-14; I+6
rvallow 8-6
-I.vectol.-5-34; 9-5

Sampling 8-8
With replacement 8-9
Without replacement 8-9

rscalex-5-40; 9-12
-scaley-5-40; 9-12
rscol`e-5-59; 10-13
rsearch-5-8; 8-5
Searching 8-4
rseed-5-14; 8-9
Segment (Refer to authorndefined arrays)
rset-5-6; 8-2
Tsetdat-5-77; 13-2
ietname-5-20; 8-18
-setperm-5-14; 8-9
rshow-5-26; 9-2
rshowa-5-28; 9-3
-showe-5-27; 9-2
rshowo-5-27; 9-2
showt-5-27; 9-2
rshowz-5-27: 9-2

sign 8-1
sin 7-4; 8-I
rsite- 5-80; 14-1
sitenam 14-1; 8-2
size 9-4; 8-4
-size-5-29: 9-4
sizex 9-4; 8-4
sizey 9-4; 8-4
rslide-5-37; 9-10
sort-5-10; 8-6
rsorta-5-10; 8-6
Sorting routines 8-6
rspecs-5-73; 11-I,10
spell 11-10; 8-5
sqrt 8-1
station 8-8; 14-1; 8-2
-station- 5-80; 14-I
rslaLus- 5-55; 10-9
-step-5-58; 10-12
rstoload-5-23; 8-16
-stop- 5-50; 10-5; 12-2
i5torage-5-23; 8-15
Storage vat.iables 8-15
-stol.e-5-71; 8-7; 11-8
-storea-5-64; 11-3
rstoren- 5-71; 11-8
-storeu-5-71; 11-8
Strings 8-3
Student data 13-1
Student data in§Lpuctions 5-76
Student define set 6-2
Student-initiated branching 2-I; 10-5

Authol.i)rovided branching 2-1
Function I(ey branching 2-1

Student val.iables 6-1
Subtraction 7-2
-subl-5-5; 7-4
Sum 8-2
System components 1-1
Systemndefined arrays 8-1

Full-wot`d arrays 8-1
Vet.tically segmented arl'ay§ 8-1

System functions 7-4; 8-1,2
System operation 1-1
System-I'eserved words 8-2,3,4.5,6,7

Tabs 9-10
-tabset-5-37; 9-10
tactive 8-3
Tag 1-2; 5-I
Temporal.y common 8-13
-term- 5-54; 10-8
Terminal I-1
-tepmop- 5-54; 10-8
-text-5-28; 9-3
Text display 9-1
-time- 5-75; 11-12
Time-shal`ing 1-1
Timersnce 1-1
-timel-5-49; 10-5
-timer- 5-49; 10-5
-touch-5-72; 11-9
Touch penel 9-10; 11-8
-touchw-5-72; 11-9
-transfl.-5-24; 8-20
TI.ansp 8-2

97405100 C Index-5

Unit 3-1: 10-1
unit-5-44; 10-1
-use- 5-58; 10-12
user 8-3
Usel. bank val.iables 6-I
usersin 8-8; 8-3

varcnt 8-8; 8-5
Variable display 9-2
Variables 6-1: 8-13,15
varloc 8-I
-vbar~ 5-43; 9-13
vc and nc variables 6-2
-vectol'- 5-33; 9-5
Vectol. cross product 7-3
Vector dot product 7-3
vocab 8-5
-vocab- 5-68; 11-7
vocabs- 5-68; 11-6

wcount. 5-63; 11-5; 8-5
where 9-1,3,5; 8-4
wherex 9-1,5; 8-4
wherey 9-1,5; 8-4
-window-5-34; 9-5
-write-5-26; 9-1
Write mode 9-6
-writec- 5-26; 9-1; 12-1,2
-wt.ong- 5-66; 11-5
-wrongc- 5-67; 11-6; 12-2
-wrongii- 5-70; 11-8
-wrongv-5-70; 11-7

xasatag 12-1

zaccnam 8-3
zbpc 8-4
zbpw 8-4
zcondok 8-3
zcpw 8-4
zcusers a-3
zdsname 8-3
zdsrecs 8-4
zdswpp 8-4
zdusel`s 8-3
-zero-5-5; 7-4
zfroml 8-8; 8-3
zfromu 8-8; 8-3
zgroup 8-3
zinfo 8-3
zlesson 8-3
znscpn 8-18; 8-4
znsmaxn a-4
znsmaxr 8-4
znsnams 8-4
znsrecs 8-4
zpnfile 8-3
zpnotes 8-3
zpecs 8-4
zretrnu 8-3

zretum a-3
zsessda 8-3
zsesset 8-3
zsesspt 8-3
zsnfile a-3
zsnotes 8-3
ztel.in 8-3
ztouchx 11-9; 8-4
ztouchy 11-9; a-4
zunit 8-3
zwpb 8-4
zwpr a-4

• Index-6 97405100 C

-*list-5-81; 15-I
*,c,S$ 5-54; 10-8

Sand$ 7-2
Sars$ 7-2
Scls$ 7-2
Sdiff $ 7-3
Smask$ 7-3
Sor$ 7-2
Sunion$ 7-3

COMMENT SHEET

MANUALTITLE: CDC PLATO Author Language Reference Manual

PuBLICATION No.: 97405100

NAME:

REVISION: C

COMPANY:

STREET ADDRESS:

This form is not inlended lo b® used os on order blank. can.rol Dala Corporation welcomes your evolua.ion of
this monual. Please indicate any errors, suggesled addilions or delelions, or general commenls below (please
include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN u.S.A.

roiD ON DOTTED iiNEs AND STAPLE

STAPLE

BuSINESS REPLY JV`AIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Publications and Craphics Division

ARH2'9
4201 North loxinglon Avenue
Saint Paul, Minnesota 55112

FOLD

No rosTAc[
NECESSARY

'F MAILED

IN THE

UNITED STATES

FOLD

+

