60460430

1n

'Reference Manual

B
, F
a
Q
T
. 9
@
,, (=
=
. ®
P
9
. ©

Panel Definition File

The first three lines define three variables called A, B, and C. These variables are
defined as type character, type integer, and type real, respectively. The next line
defines a fourth variable called PAGE, which is of type character. The declaration
statement for the fifth variable, NUMBER, begins on the fourth line and continues
onto the two following lines. NUMBER is an integer variable with an initial value
of 0.

2-4 NOS Version 2 Screen Formatting Revision D

Panel Definition File

Physical and Logical Attributes

The variable field statement allows you to specify physical or logical display attributes
that will be associated with the variable field. You can assign these attributes to
particular character strings in your panel to highlight important information or
distinguish between different types of data.

Physical attributes explicitly identify display characteristics you choose to use in
various situations. Examples of physical attributes include blinking, alternate intensity,
inverse video, and color.

When writing application programs using physical display attributes, remember that all
of these attributes are not available on all terminals. If an attribute is not available, it
may be mapped into another attribute or ignored. For this reason, use logical types to
describe input/output fields. Refer to appendix G for more information on which
attributes are available on the system-defined terminals.

Logical attributes specify display characteristics in terms of the logical function of a
character string. The logical attributes recognized are:

® Input text

¢ Output

- Text

- Italic (alternate font)
~ Title

- Informative message
- Error message

For a particular terminal, each of these logical attributes has a unique set of physical
attributes associated with it. When you assign a logical attribute to a character string,
you cause the user’s terminal to display the character string using the associated
physical display characteristics for that terminal.

There are a number of advantages to using logical, rather than physical, attribute
specifications: '

® Logical attributes allow you to specify that different types of data are to be
displayed differently without explicitly defining the physical display characteristics
for each type of data.

® Logical attributes provide flexibility with respect to differing terminal models and
capabilities. Since all terminal-dependent display characteristics are handled in the
terminal definition software, panels defined in terms of logical display attributes do
not require modification for new or different terminal models.

® Logical attributes promote uniformity in panel formats.

Revision D Panel Definition Utility 2-5

Panel Definition File

Declaration Statements
Table 2-1 briefly describes each of the declaration statements. The table is followed by

a detailed description of each statement and the maximum number of times you can
use the statement in one file.

Table 2-1. Declaration Statements

Statement Description

ATTR Defines physical or logical display characteristics used in the panel
(maximum of 32).

BOX Defines the character that indicates positions of lines and boxes in the
panel (maximum of 32 with up to 256 distinct edges, corners, or
intersections).

KEY Defines function keys recognized by the program (maximum of 30).

PANEL Defines an overlay panel.

TABLE Defines a variable table (maximum of 32).

TABLEND Indicates the end of the list of variables associated with a TABLE
statement (maximum of 32).

VAR Defines a variable field. The maximum number of variable fields is
255.

The statement descriptions use the following format conventions:

Convention Description

— (underline) Underlined characters indicate acceptable abbreviations for
parameter keywords and values. Keywords and the following equal
sign can be omitted if parameters are specified in the order shown
in the format specifications.

() (parentheses) Parentheses indicate that more than one value can be specified for
a parameter. Individual values in a list of values must be
separated by at least one space.

[1 (brackets) Brackets indicate optional parameters. Parameters listed vertically
within brackets indicate that only one of the listed parameters can
be specified.

For clarity of presentation, parameters shown in the statement formats are listed on
separate lines using ellipses. When writing declaration statements, however, you may
use any of the format options described under Format of Declaration Statements earlier
in this chapter.

2-6 NOS Version 2 Screen Formatting Revision D

Panel Definition File

ATTR Statement

The ATTR statement defines a set of delimiters and associates them with one or more
displayable attributes. Character strings bracketed by the delimiters in the image
section are displayed (in the panel) with the associated display attributes. An ATTR
statement can specify either a logical attribute or one or more physical attributes, but
logical and physical attributes cannot both be used in the same statement.

The format of the ATTR statement is:

ATTR DELIMITERS="xy’...
PHYSICAL=(attr1 attr2 ... attrn)
LOGICAL=attr

The ATTR statement parameters are:

Parameter Description

DELIMITERS="xy’ or D x specifies the beginning delimiter and y specifies the
ending delimiter that will surround the fields or strings
to have the attribute or attributes béing defined. x and y
can be the same or different characters. The delimiters
must be enclosed in apostrophes.

PHYSICAL=(attr; attry ... Specifies a physical display attribute or combination of

attry) or P attributes to be associated with the delimiters. The
PHYSICAL parameter cannot be specified if the
LOGICAL parameter is specified. If more than one attr,
is specified, the attribute list must be enclosed in
parentheses. The list can contain one or more of the
following physical attributes:

attry, Description

ALTERNATE Alternate intensity character display.
or ALT

BLINK Blinking character display.

INVERSE or Inverse video display.

INV

UNDERL INE Underlined character string.

or UND

Revision D Panel Definition Utility 2-7

Panel Definition File

Parameter Description

LOGICAL=attribute or L Specifies a logical display attribute to be associated with
’ the delimiter. The LOGICAL parameter cannot be
specified if the PHYSICAL parameter is specified.
attribute can be any of the following logical attributes:

attribute Description

INPUT Input text.

TEXT Output text.

ITALIC Alternate output text.
TITLE Titles.

MESSAGE Informative message text.
ERROR Error message text.

Example:

The following ATTR statement defines a combination of physical display attributes.
These attributes define the display characteristics for any character strings delimited
by brackets in the definition file image section.

ATTR “[1“ P=(BLINK INVERSE)

2-8 NOS Version 2 Screen Formatting Revision D

Panel Definition File

BOX Statement

The BOX statement defines a termination character for the panel. The termination
character is used to define endpoints or corners of lines, rectangular boxes, and other
line figures. More than one termination character can be defined for a single panel, but
each must be defined in a separate BOX statement.

Some terminals have special line drawing capabilities that allow you to display figures
constructed of horizontal and vertical lines. PDU allows you to use these capabilities to
add boxes or other line drawings to your panels. '

You draw figures in the panel image using three different characters. Vertical lines are
represented by the vertical bar, which may appear solid or broken, depending on the
terminal. Horizontal lines are drawn with the dash (-). The last character is the
termination character, which defines corners or endpoints of a line. You may use any
character as the termination character, but you must first define the character using a
BOX declaration statement in the declaration section. If you define the asterisk as the
termination character, a horizontal line looks like this:

& *

While a rectangular box looks like this:

* %
I I
I I
= *

Here are some important points to remember when creating line drawings in your
panels:

® You may define more than one termination character for a panel. Since you can
associate any of the physical or logical display attributes with a given termination
character, using more than one termination character allows you to specify different
display attributes for different figures.

@ Different terminal models vary in their ability to display line drawings. Terminals
capable of replacing your line drawing characters with neatly drawn lines will do
so, but other terminals may only be able to reproduce the characters you have used
in your panel image.

® When used in overlay panels (see the PANEL statement), lines containing only box
characters are not cleared when the overlay is written.

Revision D Panel Definition Utility 2-9

Panel Definition File

The format of the BOX statement is:

BOX TERMINATOR="*" ..
WEIGHT=weight
PHYSICAL=(attr1 attr2 ... attrn)
LOGICAL=attr

The BOX statement parameters are:

Parameter Description

TERMINATOR="%*’ or T Defines the line termination character. * can be any
printable graphic character and must be enclosed in
apostrophes. You cannot mix different termination
characters within the same connected line figure. For
example, you must use the same termination character
for all four corners of a rectangle. ‘

WEIGHT=weight or W Specifies the line weight for lines or figures defined by
the termination character. Values that can be specified
for weight are FINE, MEDIUM, and BOLD. FINE is the
default value.

PHYSICAL=(attr; attry ... Specifies a physical display attribute or combination of

attrn) or P attributes for lines drawn using this termination
character. The PHYSICAL parameter cannot be specified
if the LOGICAL parameter is specified. If more than one
attribute is specified, the attribute list must be enclosed
in parentheses. The physical attributes that can be
specified are listed in the ATTR statement description.

LOGICAL=attr or L Specifies a logical display attribute for lines drawn using
this termination character. The LOGICAL parameter
cannot be specified if the PHYSICAL parameter is
specified. The logical attributes that can be specified are
listed in the ATTR statement description.

KEY Statement

The KEY statement defines which function keys terminate user input to the panel,
allow match advancing, or provide help information. You may specify a normal or
abnormal return for keys defined in a KEY statement. A normal return means that
data the user entered is checked against the validation requirements specified in the
associated VAR statement(s). If any variable fails to meet validation requirements, the
calling subroutine prompts for a corrected entry before returning control to the
program. Thus, a normal return will not allow program execution to resume until all
user input meets validation requirements. On the other hand, pressing a function key
defined with an abnormal return causes input to be returned to the application
program immediately with no validation checking.

You may also define a key as a match advancing type key. If pressed within an input

field with match validation defined, the next value in the match list will be placed in

the field (starting at the first value in the list and wrapping back to it after all values
have been displayed).

2-10 NOS Version 2 Screen Formatting Revision D

Panel Definition File

Your program can detect which function key was pressed by calling the SFGETK object
routine. (SFGETK is described in chapter 3.) SFGETK returns a value to your program
indicating which key the user pressed. Your program can use that value to determine
what to do next.

If you define a KEY statement or statements for a panel, all function keys except the
HELP key and the keys you define in the KEY statements will act as tab keys.
Therefore, if you define any keys, make sure at least one is designated as a normal or
abnormal exit key (preferably one of each).

If you do not specify any KEY statements for a panel, all function keys except STOP
and HELP will cause a normal return. STOP causes an abnormal return.

The KEY statement may be used to define any key as a HELP key. The HELP key (or
any other key defined as help) functions as follows:

® If the cursor is positioned in a variable field for which a help string is defined (by
the VAR statement HELP parameter), pressing the HELP key displays the help
string in the message field (top line of the panel).

® If the cursor is positioned in a variable field for which no help string is defined
and if the HELP key has been defined in a KEY statement, pressing the HELP key
returns control to the application program (normally or abnormally as specified in
the KEY statement).

® If the cursor is positioned in a variable field for which no help string is defined
and if the HELP key was not defined in a KEY statement, pressing the HELP key
displays the message

Please enter
if the field has had no data input to it or the message
Please correct

if the user has entered an invalid response.

NOTE

When defining function keys, remember that only F1 through F6é and the NEXT key
may be defined on some user-defined terminals. If you define keys at all, you must
provide at least one key defined as normal or abnormal for the purpose of exiting any
application screen. (This must be done since, if any keys are defined, all the rest of the
undefined keys act as tabs.) For compatibility with Control Data software, all
application programs should recognize the NEXT key, or its equivalent, as a normal
return.

For more information on function keys available on the system-defined terminals, refer
to appendix G.

Revision D Panel Definition Utility 2-11

Panel Definition File

The format of the KEY statement is: -

KEY NORMAL=(key1 key2 ...
ABNORMAL=(key1 key?2 ...
MATCH=(key1 key?2 ...

HELP=(key1 key2 ...

keyn)
keyn)
keyn)

keyn)

The KEY statement parameters are:

Parameter

Description

NORMAL=(key; keys ...
keyn) or N

ABNORMAL =(key; key; ...
keyn) or A

MATCH=(key; key, ...
keyn) or M

HELP=(key,; keys ...
keyn) or H

Specifies the function key or keys that cause a normal
return to the application program. A normal return
means that data the user entered is checked against the
validation requirements specified in the associated VAR
statements. If more than one key name is specified, the
-list must be enclosed in parentheses. To specify a shifted
programmable function key, insert the word SHIF'T before
the key name (the NEXT key cannot be shifted). Key
names that can be specified include any of the
programmable function keys (F1 through F24) and any of
the following CDC standard function keys:

BACK
BKW
DATA
DOWN
EDIT
FWD
HELP
NEXT
STOP
UP

Refer to appendix G for more information on these keys.

Specifies the function key or keys that cause an
abnormal return to the application program. An abnormal
return causes input to be returned to the application
program immediately with no validation checking. Key
names that can be specified are the same as for the
NORMAL parameter.

Defines one or more function keys which can be pressed
to provide values for an input field. When positioned in
an input field that has match validation, pressing the
defined key fills the field with the first value contained
in the match list from the VAR statement. Pressing it
again fills the field with the next value consecutively. It
wraps to the first value when all other values have been
used.

Defines a key or keys to be used for obtaining HELP
information.

2-12 NOS Version 2 Screen Formatting Revision D

Panel Definition File

Example:

The following VAR and KEY statements define key F1 such‘ that when you are
positioned in the COLOR input field, pushing F1 will fill the field with the value red.
Each time F1 is pushed, the field is filled with the next value in the string.

VAR COLOR MATCH=(red,green,biue,yellow)
KEY NORMAL=(FWD NEXT) MATCH=F1

Example:

The following KEY statement defines three function keys that cause a normal return
and two keys with an abnormal return.

KEY N=(NEXT HELP F1) A=(F6 STOP)

PANEL Statement

The PANEL statement identifies a panel as being either a primary panel or an overlay
panel.

An SFSREA or SFSSHO subroutine call to a primary panel causes the screen to be
cleared before the panel is displayed. An overlay panel modifies the current screen
display without first clearing the entire screen.

When an overlay panel is displayed, lines in the overlay panel containing variable
fields or constant data overwrite the corresponding lines in the current screen display.
Blank lines (and those containing only boxes) in the overlay panel leave the
corresponding lines in the screen display unchanged.

Any number of overlay panels can be written to the screen simultaneously. Overlay
panels may overwrite portions of other overlay panels.

Overlay panels may contain input and output fields, but all input variables appearing
on the screen at any given time must belong to the same panel. In other words, if an
overlay panel contains input variable fields, the panel must overwrite all displayed
lines containing input variable fields.

The format of the PANEL statement is:

PANEL NAME=panelname ...
TYPE=type

The PANEL statement parameters are:

Parameter Description

NAME=paneiname or N Specifies the name of the panel to be modified. If
specified, it must be the same as the panel definition file
name. This parameter is optional.

TYPE=type or T Specifies the panel type as either PRIMARY or
OVERLAY. PRIMARY is the default value. Currently, if
PRIMARY is specified, the PANEL statement serves only
to document the panel type. If type is specified, the panel
is an overlay panel.

Revision D Panel Definition Utility 2-13

Panel Definition File

TABLE Statement

The TABLE statement, in conjunction with the VAR and TABLEND statements, defines
a table data structure (two-dimensional array) for panel variables. Tables provide an
easy way of manipulating repeated sets of variables. Each row of the table comprises
one set of variables, so any variable value in the table can be accessed by using its
variable name and row number. Rows are numbered consecutively, starting with row 1.

The format of the TABLE statement is:

TABLE NAME=tablename ...

ROWS=number

The TABLE statement parameters are:

Parameter

Description

NAME=tablename or N

ROWS=number or R

Specifies the name of the table. The name can be from

one to seven alphanumeric characters.

Specifies the number of table rows. Number must be an
integer. The maximum table length is determined by the
user’s terminal screen size. The results are unpredictable
if the length of a defined table exceeds the number of

text lines available on a terminal screen.

The actual table definition (as it appears in the declaration section) begins with a
TABLE statement and ends with a TABLEND statement. The TABLE statement
specifies the table name and the number of rows in the table. The TABLE statement is
followed by a series of VAR statements, one for each variable in a table row. The
TABLEND statement marks the end of the list of VAR statements associated with the

table.

The following example shows a simple table definition as it mlght appear in the

declaration section of a panel definition file:

TABLE MAILIST 4
VAR NAME
VAR ADDR
VAR PHONE

TABLEND

This table definition defines a table called MAILIST, which consists of four rows of
three variables each. The MAILIST definition implies a 4 by 3 variable array, which

can be pictured like this:

Row 1

Row 2

Row 3

Row 4

NAME ADDR PHONE
name, 1l addr,l phone, 1
name ,2 addr,2 phone,2
name,3 addr,3 phone, 3
name,4 addr,4 phone,4

2-14 NOS Version 2 Screen Formatting

Revision D

Panel Definition File

For each table variable defined in the declaration section, you must define a
corresponding variable field in the image section. In other words, if you define a table
with m variables and n rows, you must define m times n variable fields. As an
example, the following lines could be used to define the variable fields for the
MAILIST table:

Neme Address Phone

(612)
(612)
(612)
(612)

You can place the variable fields for a given table row on two or more image lines
(that is, you do not have to put them all on the same line). The following is an
alternate way of displaying the MAILIST table:

Name:

Address: Phone: (612)
Name:

Address: Phone: (612)
Name:

Addresgs: Phane: (612)
Name:

Address: Phone: {(612)

-You can alse put more than one table row on the same image line. For example, here
is a third possibility for displaying the MAILIST table:

Hame Address Phone Kame Address Phone

(612) (612)
(612) (612)

When designing panels with tables, you can freely intermix constant data in the image
section (such as the area codes in the above examples) with the table fields. Lines and
boxes can be drawn between and around table variable fields.

TABLEND Statement

The TABLEND statement indicates the end of the list of VAR statements associated
with the preceding TABLE statement.

The format of the TABLEND statement is:

TABLEND

Revision D Panel Definition Utility 2-15

Panel Definition File

VAR Statement

The VAR statement defines the characteristics of a panel variable field. Each VAR
statement in the declaration section must have a corresponding variable field in the
image section. VAR statements are associated with their corresponding variable fields
by order of appearance: the first VAR statement defines the first variable field, the
second statement defines the second variable field, and so on.

The format of the VAR statement is:

VAR NAME=fieldname ...
TYPE=type ...
VALUE=string ...
FORMAT=cC ...

MATCH=(string1 string2 ... stringn) ...

RANGE=(1low high) ...
LOGICAL=attr

PHYSICAL=(attr1 attr2 ...

ENTRY=condition ...
IO=status ...
HELP=string

attrn) ...

The VAR statement parameters are:

Parameter

Description

NAME=fieldname or N

TYPE=type or T

VALUE=string or V

Specifies a variable field name, one to seven characters
long.

Specifies whether the variable format is integer,
character, or real. Values that can be specified for type
are INT, CHAR, and REAL. CHAR is the default value.

Specifies an initial value for the variable field. This
value is displayed only when a panel is initially
displayed by an SFSREA routine; that is, when a panel
is opened by an SFOPEN subroutine call and read by an
SFSREA call, with no intervening SFSWRI subroutine
call. SFOPEN, SFSREA, and SFSWRI are described in
section 3. The user can accept the displayed value or
write over it. The value specified for string must match
the variable type declared in the TYPE parameter, as
follows:

type Description

CHAR string must be a character string enclosed
in apostrophes.

INT string must be an integer in the N format
(refer to the FORMAT parameter
description).

REAL string must be a real number in the E
format (refer to the FORMAT parameter
description).

2-16 NOS Version 2 Screen Formatting Revision D

Panel- Definition File

Parameter Description

FORMAT=code or F Specifies the acceptable input format for the variable.
This parameter does not reformat or otherwise affect the
contents of the field. code can be any of the following
format codes. However, the code specified must be
compatible with the variable type as specified in the
TYPE parameter. All formats allow trailing spaces in the
variable field unless (MUST FILL) is specified for the
ENTRY parameter.

code Description

X Allow any characters. This is the default
value if TYPE=CHAR is specified.

A Allow only alphabetic characters.

9 Allow only numeric characters.

N Allow numeric characters with or without a

leading sign. This is the default value if
TYPE=INT is specified.

$ Allow currency characters. A leading $
character is ignored and up to two digits are
allowed after the decimal point. Commas are
ignored. (If your site has so chosen, the
meaning of the comma and decimal point
may be reversed. That is, the comma may
serve as the radix indicator and the period
as the digit separator symbol.)

YMD or Y Allow date entry in YY/MM/DD format.
MDY or M Allow date entry in MM/DD/YY format.
DMY or D Allow date entry in DD/MM/YY format.
E Allow real number entry in a format

corresponding to the FORTRAN E format;
that is, a leading sign, decimal point, and
signed exponent (scientific notation) are
allowed in addition to the digits that
comprise the base of the number. This is the
default value if TYPE=REAL is specified.

Revision D Panel Definition Utility 2-17

Panel Definition File

Parameter

Description

FORMAT=code or F
(Continued)

MATCH=(string, string; ...

stringn) or M

RANGE=(1ow high) or R

LOGICAL=attr or L

PHYSICAL=(attry attrp ...

attry) or P

2-18 NOS Version 2 Screen Formatting

The format codes compatible with each variable type are
as follows:

type Compatible Codes
CHAR Any

INT 9N, $ Y, M,or D
REAL 9,N,$, Y, M,D,or E

Specifies a list of acceptable values the user can enter for
the variable. This parameter is valid only for character
type variables. The user can enter truncated forms of a
string if enough characters are entered to uniquely
identify the string. If a string contains nonalphanumeric
characters, you must enclose it in apostrophes. Otherwise,
apostrophes are optional.

Specifies a range of acceptable values for type integer or
type real variables. low is the lower limit and high is
the upper limit. Both low and high must be of the type
specified for the variable.

For range validation purposes, integer variables with a
FORMAT =$§ specification are implicitly scaled (multiplied
by 100). For example, an integer value of $1.50 falls
within the range (125 200).

Specifies a logical display attribute to be associated with
values displayed in the variable field. The LOGICAL
parameter cannot be specified if the PHYSICAL
parameter is specified. The logical attributes that can be
specified are listed in the ATTR statement description.

Specifies a physical display attribute or combination of
attributes to be associated with values displayed in the
variable field. The PHYSICAL parameter cannot be
specified if the LOGICAL parameter is specified. If more
than one attribute is specified, the attribute list must be
enclosed in parentheses. The physical attributes that can
be specified are listed in the ATTR statement description.

Revision D

Parameter

Description

Panel Definition File

ENTRY=(condition) or E

Revision D

Specifies special conditions pertaining to entry of the
variable field. These conditions will be checked before
any further specified validation (such as a MATCH list or
RANGE validation). Values that can be specified for the
ENTRY condition are any one of, or combination of, the

following:

condition

Description

MUST ENTER

MUST FILL

MUST
CONTAIN

UNKNOWN

The user must enter something (even
blanks will suffice) into the field every time
the panel is read by calling SFSREA or as
a result of calling SFSSHO.

If the user enters anything into the field
(other than blanks) the field must be full of
non-blank characters with no leading,
embedded, or trailing blanks.

The field must contain some non-blank
character, either entered by the user or
from the OUTSTRING supplied by the
application itself. In combination with
MUST ENTER this means that the field
must have some non-blank character in it
and that the user must have typed
something into the field. Used with MUST
FILL will require that the field be filled
and cannot be filled with blanks. A
combination of MUST ENTER, MUST FILL,
and MUST CONTAIN means that the user
must- enter something, it can not be blanks,
and it must fill the field.

The user may enter an asterisk when
unsure of what to enter. Note that this will
skip all validation for the field, which
includes disregarding MUST FILL and
MUST CONTAIN as well as any further
validation such as MATCH or RANGE
validation.

Panel Definition Utility 2-19

Panel Definition File

Parameter

Description

I0=status or I0

HELP=string or H

Defines the input/output status of the variable field
associated with this VAR statement. Values that can be
specified for status are:

status Description

(IN OuT) The field is an input/output field. This is
the default value.

ouT The field is output-only. The program can
display data in the field, but the user
cannot enter data in the field.

IN The field is input-only. Data is never
displayed in the field, either when entered
by the user or during a program WRITE

. operation. '

Some terminals do not support input-only -
fields. On these terminals, pressing any
function key causes all input-only fields to
be overwritten with spaces.

Defines a line of help text for the variable. String is a
character string of up to 79 characters. The help string
defined by this parameter appears in the message field
(top line of screen, left-justified) under either of two
conditions:

® The user presses the HELP key while the cursor is
positioned in this variable field.

® Input to this field does not pass validation.

NOTE

A maximum of 255 variable fields may be defined in a
panel.

2-20 NOS Version 2 Screen Formatting Revision D

Panel Definition File

Validation of Variable Input Values

Calling either the SFSREA or SFSSHO object routine causes any user input to a panel
to be read and validated. (SFSREA and SFSSHO are described in section 3.) Validation
involves checking input values entered by the user against the validation requirements
specified in the TYPE, FORMAT, MATCH, RANGE, and ENTRY parameters of the
associated VAR statement. If all input values pass the validation checking, they are
returned to the calling program, and program execution continues.

If one or more values fails validation; a message appears in the message field (the first
line on the screen), and the screen cursor moves to the beginning of the variable field
in error. If you have defined any help text for the field in error (using the VAR
statement HELP parameter), the help text is displayed in the message field. If no help
text is defined for the field, the following default prompts appear in the message field;

Please correct
or, if there has been no data input:
Please enter

When the user enters a corrected value for the field and resubmits the panel input to
the program, the entire process is repeated for the next variable field in error, if any.

On a normal return, execution of the calling program is not resumed until all
erronecus input values are corrected. By defining a function key or keys that specify
an abnormal return, however, you provide a way for the user to bypass validation
checking. An abnormal return is a return in which the SFSREA or SFSSHO routine
reads the input data and passes it to the calling program without performing validation
checking. Both normal and abnormal returns are defined using the KEY declaration
statement.

Any input erroneously entered outside an input field is blanked out by screen
formatting. Normal input validation will then occur if the user has pressed a function
key defined as a normal termination key. If there are no other input errors, the
message

Please confirm

is displayed to give the user an opportunity to verify that the information on the
screen is correct. '

Revision D Panel Definition Utility 2-21

Panel Definition File

Image Section

The image section begins on the first line following the declaration section and
continues to the end of the definition file. As the name implies, the image section
contains an image of the panel showing how the panel is to appear on the screen. The
image consists of any combination of: parameter or menu prompts that appear in the
panel, other instructive or informative text, variable field markers, and characters
representing lines or boxes drawn in the panel. All blank lines and spaces in the
image section produce a like number of blank lines and spaces in the resulting panel.

Do not use the first line of a panel for input fields, since diagnostic messages
generated by the screen formatting subroutines are displayed left-justified on the first
line. You may use the first line of the panel for output variable or constant fields. If
input information is displayed on the first line, any diagnostic messages returned will
overwrite this information.

As noted in the variable section, a maximum of 255 variables are allowed per panel. In
addition, a panel may have up to 256 constant fields. A constant field is a string of
characters with no more than one consecutive embedded blank character. For example,
"A A CONSTANT" is only one field, "A AA CONSTANT" is two fields. (A ‘denotes one
blank space.)

When designing a panel, indicate the positions and lengths of variable fields by
underlining the fields where you want them to appear in the image section. Variable
fields on the same line should be delimited by spaces. You may position the fields
anywhere in the panel except the first line, which is used for messages. Variable fields
must appear in the image section in the same order as defined in the declaration
section. The first VAR statement is associated with the first variable field, the second
VAR statement is associated with the second variable field, and so on. The number of
underlined characters in a variable field in the panel image should be the same as the
length of the associated character variable declared in your application program.

NOTE

The first line of the image section cannot contain any input variable fields, as that line
is used for help messages by screen formatting.

The panel image you create in the panel definition file is the same as the resulting
panel, with the following exceptions:

® Displayable attribute delimiters (as defined in the ATTR statement) are replaced by
spaces, and the text between them is displayed with the attributes you declared.

® The underscore indicating variable fields in the definition file are not displayed in
the panel. Instead, the variable fields are displayed using the input text display
attributes defined for the terminal. For example, the Viking 721 displays input text
with a solid underline, so a five-character variable field that looks like this in the
definition file:

looks like this when displayed on a terminal with a video underline capability:

2-22 NOS Version 2 Screen Formatting Revision D

Panel Definition File

When using terminals that do not support the underline attribute, you can identify
the input fields by using delimiting characters that will appear on the panel. You
may want to identify the input fields by writing your program to fill the field with
a character such as an underscore. These characters appear in the variable fields
and are typed over by the user.

® Image section characters defining lines or boxes are replaced by solid line drawings.
(This action is subject to the capabilities of the user’s terminal. A high-quality
graphics terminal may be able to produce neat boxes and lines with all the
attributes specified in the declaration section, while other terminals may be able to
reproduce only the definition characters you used to define lines in the panel image.
In the latter case, the image and the resulting panel look very much alike.)

Revision D Panel Definition Utility 2-23

PDU Command

PDU Command

The PDU command calls an interactive procedure that compiles a panel definition and
stores the compiled panel in a user library. The compiled output is a load capsule that
the procedure stores in a user library.

The user library to receive the load capsule must be a local file. If the library file you
specify does not exist as a local file, PDU creates it. If you do not specify a library
file, PDU uses a local file with the default name PANELIB, if one exists. If it does not
exist, PDU creates a local file with the name PANELIB.

In the PDU command format, the parameter keywords and equal signs can be omitted
if the parameters are specified in the order listed. The format of the PDU command is:

PDU,I=panel,L=1isting,C=capsule,LIB=1ibrary

Parameter Description

I=panel Name of the panel definition file. The file must be a 6/12-bit
display code, and the file name must be the same as the panel
name. The I parameter has no default and must be specified.

L=listing Name of the listing file. The listing file is a copy of the input file
with error messages (if any) interspersed. The default listing file
name is OUTPUT. If L=0 is specified, no listing is generated and
the error message PANEL-CAN'T OPEN FILE 0 is issued.

C=capsule Name of the capsule file. The default capsule file name is
CAPSULE. If C=0 is specified, the panel definition file is compiled
and checked for compilation errors, but no capsule is generated.

LIB=1ibrary Name of the library file to receive the encapsulated panel. It must
be a local file. The default library file name is PANELIB. If LIB=0
is specified, no library file is changed.

Since the PDU command is an interactive procedure, you can receive help information
for the procedure and be prompted for parameter entries by entering:

POU?

2-24 NOS Version 2 Screen Formatting Revision D

ULIB Command

ULIB Command ;

The ULIB command calls an interactive procedure used to create user libraries and
add, modify, or delete individual records from a user library. Changes made to a user
library or library record affect only the local copy of the library file; a modified library
file can be made permanent by naming it in a REPLACE command. Because ULIB
does not allow you to specify the type of record in a library (for example, CAP or
PROC). All records in the library should have a unique name.

In the ULIB command format, the parameter keywords and equal signs can be omitted
if the parameters are specified in the order listed. The format of the ULIB command
is:

ULIB,OP=operation,REC=record,LIB=1ibrary

Parameter . Deseription

OP=operat ion Specifies the library operation to be performed. The OP
parameter must be specified. Values that can be specified
for operation are:

operation Description

A Add a record to a user library.

c Create a new user library.

D Delete a record from a user library.

F Fetch a record from a user library and

make it a local file. This operation does not
modify the local library file.

R Replace a record in a user library.

REC=record _ Name of the record to be added, deleted, replaced,
fetched, or stored in a user library. The REC parameter
must be specified.

LIB=tibrary Local file name of the library to be created or accessed.
For any of the actions A, C, D, or R, ULIB returns the
original file and creates a new local file; therefore, ULIB
cannot modify a direct access permanent file. The LIB
parameter must be specified.

Since the ULIB command is an interactive procedure, you can receive help information
for the procedure and be prompted for parameter entries by entering:

uLIB?

Revision D Panel Definition Utility 2-25

Screen Forma1l:tin_g Object Routines 3

NOS System Considerations s 3-1
Linking to Screen Formatting Routines | 3-1
Displaying Your Panel 32
Panel Library Search Order Lo b L 3-2
Screen and Line Modes L .. 33

Programming Considerations 3-3
Call Formats 3-3
Variable Types 34
Input and Output Variables

- Object Routines.- . 3-6
SFATTR (fieldname,atrord,ordstat) 3-7
SFCLOS (panelname,mode) 3-9
SFCSET (codeset) oo 3-10
SFGETI (fieldname,value)o 3-11
SFGETK (type,value) 3-13
SEGETN (modelname) oo s 3-14
SFGETP (fieldname,index,row) e e 3-15
SFGETR (fieldname,value) o 3-16
SFOPEN (panelname,status) 2. 03-17
SFPOSR (tablename,row) 3-18
SFSETP (fieldname,index,row)o 3-19
SFSREA (panelname,instring) e 3-20
SFSSHO (panelname,outstring,instring) 3-21

SFSWRI (panelname,outstring) 3-22

Screen Formatting Object Routines 3

Panels used by application programs are defined using the PDU utility and are stored
in libraries. The screen formatting object routines described in this section allow your
FORTRAN 5, COBOL 5, or Pascal 1.1 program to retrieve panels from the libraries
they are stored in and use them to perform terminal input and output operations. Some
of the screen formatting object routines are directly involved in the entry or display of
input and output data at the terminal. Others deal with related tasks, such as
determining cursor positions.

NOS System Considerations

When writing application programs that use screen formatting, you should be aware of
some of the ways the screen formatting object routines interact with NOS. This section
describes these interactions in the areas of library usage and terminal status
determination.

Linking to Screen Formatting Routines

The screen formatting object routines are contained in a system library named SFLIB.
A FORTRAN 5, COBOL 5, or Pascal 1.1 program using these routines must link up to
them using the CYBER Loader.

The following NOS procedure contains commands to load, compile, and execute a
FORTRAN program using screen formatting object routines. The source program in this
example is called MYSOURC, and the absolute program is stored in a file called
MYPROG. ’

.PROC, TRIPROG*I,
MYSOURC"SOURCE FILE"=(*F),
LISTING"LIST FILE"=(=*F,*N=LISTING).
REWIND, *.

FTN5, I=MYSOURC,L=LISTING.
LDSET,LIB=SFLIB.

LOAD,LGO.

NOGO, MYPROG.

MYPROG.

REVERT,NOLIST.

EXIT.

REVERT, ABORT.TRIPROG

If the source program is written in COBOL, replace the line beginning with FTN5
with:

COBOL5, I=MYSOURC,L=LISTING.
If the source program is written in Pascal, replace the line beginning with FTN5 with:

PASCAL, I=MYSOURC,L=LISTING.

Revision D Screen Formatting Object Routines 3-1

NOS System Considerations

After the absolute program has been stored in file MYPROG, MYPROG can be saved
in an existing user library for later use. The following NOS commands save MYPROG
in a user library named MYLIB.

GET,MYLIB.
ULIB,R,MYPROG,MYLIB.
REPLACE ,MYLIB.

If MYLIB is a direct access permanent file, use:

ATTACH,LIB=MYLIB.
ULIB,R,MYPROG,LIB.
ATTACH,MYLIB/M=W.
REWIND,LIB.
COPY,LIB,MYLIB.

To make MYPROG callable as a command, insert the following commands in your
prologue if MYLIB is an indirect access file. If MYLIB is a direct access file, use
ATTACH instead of GET.

GET,MYLIB,PANELIB/UN=username.
LIBRARY,MYLIB,PANELIB.

The LIBRARY command in this example establishes MYLIB (which contains MYPROG)
and PANELIB as libraries within the global library set. Assuming that PANELIB
contains the panels for MYPROG, MYPROG can now be called simply by entering the
command:

MYPROG

You may store the program and its panels in the same library. Refer to the NOS
Version 2 Reference Set, Volumes 2 and 3, for further information on global libraries
and prologues.

Displaying Your Panel
After you have compiled and stored your panel, you can display the panel by entering:
SHOW, panelname.

This command calls an interactive procedure which displays the panel without your
having to write a program to display it. panelname is the name of the compiled stored
panel file in user library PANELIB or in a global library.

Panel Library Search Order

When a panel is referenced in a screen formatting object routine call, the object
routine searches panel libraries in the following order:

® A local file named PANELIB
® A global library file
® The system library called PANELIB

3-2 NOS Version 2 Screen Formatting Revision D

Programming Considerations

Screen and Line Modes

The screen formatting object routines must know what terminal model is in current
use. Before a program using screen mode displays can be run, either the application
user or the procedure that executes the application program must enter a SCREEN or
LINE command identifying the terminal.

The formats of these commands are:

LINE,model
and
SCREEN,model

model is a user-defined (or site-defined) mnemonic that identifies a terminal. The
mnemonic, which can be up to six characters in length, is the name of a compiled and
stored terminal definition file. Model names for the system-defined terminals are
described in section 5.

For example, either of the following commands informs the system that the user
terminal is a Viking 721:

LINE,721
SCREEN, 721

After the screen command is entered, the screen formatting object routines, when called
in an executing program, set the terminal to screen mode and have access to the
terminal-dependent information required to perform data input and output functions.

Programming Considerations

Panel-oriented input and output operations are easily integrated into application
programs using the screen formatting object routines described in this section. Some
considerations pertaining to panel usage in application programs follow.

Call Formats

A FORTRAN 5, COBOL 5, or Pascal 1.1 application program calls the screen
formatting object routines using the standard subroutine call format for the language
being used.

A FORTRAN call to an object routine is formatted as follows.
CALL objrtn(p1,p2,p3)

objrtn The six-character name of the object routine.

P1,R2,D3 The object routine parameters.

For COBOL, the object routine call is as follows (the variable values are the same as
for the FORTRAN call).

ENTER objrtn USING p1 p2 p3.

Revision D Screen Formatting Object Routines 3-3

Programming Considerations

For Pascal, the object routine call is as follows (the variable values are the same as
for the FORTRAN call).

objrtn (p1,p2,p3).

All screen formatting routines called from a Pascal program must be declared as
FORTRAN-compatible external procedures. Any parameters which return a value to the
calling Pascal application must be declared with the VAR keyword. Variables
containing panel names can be declared as PACKED ARRAYI[1..7]1 OF CHAR. Character
strings containing variable data can similarly be defined as packed character arrays.

Variable Types

The object routine descriptions in this section specify the variable type required for
each object routine parameter. Table 3-1 relates the variable type notation (shown
under Type) used in the object routine descriptions to the corresponding FORTRAN and
COBOL variable types.

Table 3-1. Variable Type Notation

Type FORTRAN COBOL Pascal
char CHARACTER 01-level display item CHAR
int INTEGER 01-level COMP-1 INTEGER
real REAL 01-level COMP-2 REAL

Input and Output Variables

Input and output data passed between the program and a panel are transferred as a
concatenated character string. In other words, all panel variable values handled by the
read and write object routines (SFSREA, SFSWRI, and SFSSHO) are considered to be
of type character (FORTRAN type CHARACTER, COBOL 01-level display item, or
Pascal type CHAR). The variable values are concatenated, in the order of their
appearance in the panel, into a single variable string.

For example, assume that a panel has three 5-character variable fields specifying types
character, integer, and real, in that order. Also assume that a user enters the following
values into these fields: CAT, 123, and 98.6. The resulting character string returned to
the program is:

CIAIT 11213 9(8(.16

Your program must convert the concatenated string into individual variable strings of
the appropriate type. This conversion can be accomplished using the character
manipulation and type conversion facilities of the programming language.

3-4 NOS Version 2 Screen Formatting Revision D

Programming Considerations

In FORTRAN for example, type conversion can be accomplished by reading and writing
internal files. The following sequence of FORTRAN statements converts the character
string from the preceding example into individual character, integer, and real variables
(the variable string is read from a panel called SAMPLE):

INTEGER I
REAL R
CHARACTER C*5, S=*15

CALL SFSREA ("SAMPLE’,S)
READ(S,1)C,I,R
1 FORMAT (A5, 15,F5.0)

NOS screen formatting also provides two object routines (SFGETI and SFGETR) that
extract individual values from the concatenated string and converts them to integer or
real variables, as required.

Revision D Screen Formatting Object Routines 3-5

Object Routines

Object Routines

This section describes the screen formatting object routines listed in table 3-2. For each
routine, the six-character object routine name is followed by a list of parameters
enclosed in parentheses. This format is for presentation purposes only. Refer to Call
Formats in this section for a description of the language-dependent subroutine call
formats.

Table 3-2. Screen Formatting Object Routines

Object

Routine Description

SFATTR Allows an application program to change the attributes associated with a
panel variable field.

SFCLOS Unloads a panel after use by the application program.

SFCSET Specifies the code set that the application program uses for input and
output data.

SFGETI Returns the integer value of a single variable field.

SFGETK Determines the last function key pressed.

SFGETN Returns the current terminal model name specified on the SCREEN
command.

SFGETP Determines the cursor position when a function key was pressed.

SFGETR Returns the real value of a single variable field.

SFOPEN Loads a panel and prepares it for use.

SFPOSR Establishes a current row in a named table (used only with SFGETI and
SFGETR).

SFSETP Sets the cursor to a selected screen position.

SFSREA Displays a panel and permits entry of variable values.

SFSSHO Displays a panel with current variable values and permits entry or
modification of variable values.

SFSWRI Displays a panel with current variable values.

3-6 NOS Version 2 Screen Formatting Revision D

Object Routines

SFATTR (fieldname,atrord,ordstat)

The STATTR objective routine allows a screen formatting application program to
change the attributes associated with a panel variable field at run time.

The SFATTR parameters are:

Parameter Type Desecription

fieldname char The name of the variable field as defined to the PDU.

atrord int The requested new field type ordinal for the desired attributes.
Possible values for atrord are:

(Suggested
physical
mapping for
Logical CDC 721 to
Protected Guarded Field be in the
Atrord Field Field Type TDUFILE)
0 Y - INPUT UNDERLINE
1 N Y
2 N N
3 Y - OUTPUT NONE
4 N Y
5 N N
6 Y - ITALICS BLINK
7 N Y
8 N N
9 Y - TITLE ALTERNATE
10 N Y
11 N N
12 Y - MESSAGE USER!
13 N Y
14 N N
15 Y - ERROR INVERSE
16 N Y
17 N N
18 Y - INPUT 2 USER?
19 N Y
20 N N

1. The MESSAGE is currently used by screen formatting on any error messages and has no physical
attributes defined in the released TDU definitions.

2. In keeping with the practice of input fields having an underline attribute, it is suggested that some
underline with blink or some other combination that includes underline be used here.

Revision D Screen Formatting Object Routines 3-7

Object Routines

Parameter Type Description

Atrord (Suggested
(continued) physical
mapping for
Logical CDC 721 to
Protected Guarded Field be in the
Atrord Field Field Type TDUFILE)
21 Y - OUTPUT2 USER
22 N Y
23 N N
24 Y - ITALICS2 USER
25 N Y
26 N N
27 Y - TITLE2 USER
28 N Y
29 N N
30 Y - MESSAGE2 USER
31 N Y
32 N N
33 Y - ' ERROR2 USER
34 N Y
35 N N
ordstat int The variable to which SFATTR will return a value indicating the

results of an attempt to change the attributes associated with a
variable field. Possible values for ordstat are the current field
types listed above for 0 - 35 or:

ordstat Description

-3 If the requested new ordinal was incorrect.

-2 If the field was not found in the panel.

-1 If the new attribute requested was not in the panel.

0 If unprotected with no logical type, for example,
INPUT.

3 If protected with no logical type, for example,
OUTPUT.

Examples:

CALL SFATTR(‘FIELD1”,NEWORD, IORDST)
ENTER SFATTR USING"FIELD1"NEW-ORD ORD-STAT.

SFATTR(“FIELD1A”, NEWORD ,ORDSTAT)

NOTE

A denotes a space. Pascal requires a reserved seven-character variable.

3-8 NOS Version 2 Screen Formatting Revision D

Object Routines

SFCLOS (panelname,mode)

The SFCLOS object routine closes (unloads) a panel. Once closed, a panel can no longer
be accessed unless it is reopened by another SFOPEN object routine call. Unloading a
dynamically loaded panel frees the central memory used by the panel. It is not
necessary to close a panel before another panel can be opened. By default, the
maximum number of panels that can be open at one time is 10. Refer to appendix E
for information on how to change the default limit.

The mode parameter specifies whether or not the screen is cleared and the terminal
reverts to line mode when the panel is closed. If the panel specified in an SFCLOS
subroutine call is the last panel displayed by the program, the subroutine call should
specify reversion to line mode.

While debugging a program, it may also be convenient to revert to line mode at other
points within the program. Reverting to line mode clears the screen and allows the
terminal to display messages describing compilation or execution errors that may have
occurred.

The SFCLOS parameters are:

Parameter Type Description
panelname char The name of a previously opened panel.
mode int An integer value indicating whether or not the terminal

reverts to line mode after the panel is closed. The mode
parameter must be specified. Values that can be
specified for mode are:

mode Description

0 Screen mode. Leaves the screen unchanged
and leaves the terminal in screen mode.

1 Line mode. Clears the screen and returns
the terminal to line mode.

2 Line mode. Leaves the screen unchanged
and returns the terminal to line mode.

Examples:

CALL SFCLOS (“MYPANEL‘,0)
ENTER SFCLOS USING "MYPANEL" SCREEN-MODE.

SFCLOS (“MYPANEL-,0);

Revision D » Screen Formatting Object Routines 3-9

Object Routines

SFCSET (codeset) .

The SFCSET object routine specifies the code set used by the application program in
processing subsequent data. If no SFCSET object routine call is made, 6-bit display
code is used.

The SFCSET parameter is:

Parameter Type Description

codeset char The code set required by the program. Values that can
be specified for codeset are:

codeset Description

DISPLAY Specifies 6-bit display code.

ASCII Specifies 6/12-bit display code.

ASCII8 Specifies 7-bit ASCII code, right-justified in

a 12-bit byte.

Appendix A provides a conversion chart showing the display code equivalents of ASCII
and ASCII8 characters.

Examples:

CALL SFCSET (’ASCIIB’)
ENTER SFCSET USING "ASCII8".

SFCSET (“ASCII8A");

NOTE

When using Pascal, the parameters must be exactly seven characters long (padded with
spaces as needed).

A denotes a space. Pascal requires a reserved seven-character variable.

3-10 NOS Version 2 Screen Formatting Revision D

Object Routines

SFGETI (fieldname,value)

The SFGETI object routine returns the current value of the named variable field as an
integer value.

The SFGETI parameters are:

Parameter Type Description

fieldname char The field name of the variable as specified in the panel VAR
statement.

value int The variable to which SFGETI returns the integer value of

the field specified in fieldname (FORTRAN type INTEGER,
COBOL COMP-1, or Pascal type INTEGER). A value of 0 is
returned if the specified field is all blanks or if an invalid
character was entered in the field.

The value returned is influenced by the VAR statement
FORMAT parameter as follows:

FORMAT .
Parameter Value Returned
9 or N An integer value.
X An integer value, if any.
$ The value of the field multiplied by 100. For
example, 2 is returned as 200, 2.50 is returned
as 250, and so on.
YMD, or The integer value of the data in YMD format.
MDY, or DMY For example, the following format and entry
combinations all return the value 830131:
YMD
83/1/31
MDY
1/31/83
DMY
31/1/83
E The truncated integer value. For example, a

value of 2.5 is returned as 2, and .25 is
returned as 0.

Revision D Screen Formatting Object Routines 3-11

Object Routines

Examples:

CALL SFGETI (‘FIELD1”,I)
ENTER SFGETI USING "FIELD1" FIELD1.

SFGETI (’FIELD1A,I);

NOTE

A denotes a space. Pascal requires a reserved seven-character literal.

3-12 NOS Version 2 Screen Formatting Revision D

SFGETK (type,value)

Object Routines

The SFGETK object routine returns values that define the last function key pressed.

The SFGETK parameters are:

Parameter Type Description

type int The variable to which SFGETK returns an integer
indicating whether the last function key pressed is a
CDC standard function key or a programmable function
key. The options for type are:
type Description
0 Programmable function key.
1 CDC standard function key.

value int The variable to which SFGETK returns an integer
indicating the last function key pressed. For
programmable function keys, the value corresponds to
the key ordinals (that is, the value for F1 is 1, for F2
is 2, and so on). A negative value indicates a shifted
function key. For CDC standard functions, the values
are:
value Key
1 NEXT
2 BACK
3 HELP
4 STOP
5 DOWN
6 UP
7 FWD
8 BKW
9 EDIT
10 DATA

Examples:

CALL SFGETK (TRMTYPE, PROGKEY)

ENTER SFGETK USING TRMTYPE. PROGKEY.

SFGETK (TRMTYPE, PROGKEY)

Revision D

Screen Formatting Object Routines 3-13

Object Routines

SFGETN (modelname)

The SFGETN object routine returns the current model name as specified on the NOS
SCREEN or LINE command (as defined with the TDU model name parameter in the
TDU definition being used for the given terminal).

The SFGETN parameters are :

Parameter Type Description

mode 1 name char One- to six-character model name as specified on the
NOS SCREEN or LINE command. If no terminal has
been successfully defined to NOS via the SCREEN or
LINE command, then a string of blanks is returned to
the calling program.

Examples :

CALL SFGETN(MODEL)
ENTER SFGETN USING MODEL

SFGETN(MODEL) ;

3-14 NOS Version 2 Screen Formatting Revision D

Object Routines

SFGETP (fieldname,index,row)

The SFGETP object routine returns values that define the last position of the screen

cursor.

The SFGETP parameters are:

Parameter Type

Description

fieldname char

index int

row int

Examples:

The variable to which SFGETP returns a value
indicating the field name of the variable field in which
the cursor was last positioned.

The variable to which SFGETP returns a value
indicating the character position within the variable
field where the cursor was last positioned. An index of
1 indicates the first position, an index of 2 indicates the
second position, and so on.

The variable to which SFGETP returns a value
indicating the row number of the variable field if the
variable is an element of a table. If the variable is not
part of a table, row is returned as 0.

CALL SFGETP (CNAME, INDEX, IROW)

ENTER SFGETP USING DISPLAY-NAME COMP-1-INDEX COMP-1-ROW.

SFGETP (CNAME, INDEX, ROW);

Revision D

Screen Formatting Object Routines 3-15

Object Routines

SFGETR (fieldname,value)

The SFGETR object routine returns the current value of the named variable field as a
real variable.

The SFGETR parameters are:

Parameter Type Description

fieldname char The field name of the variable as specified in the panel
VAR statement.

value real The variable to which SFGETR returns the real value
of the field specified in fieldname (FORTRAN type
REAL, COBOL COMP-2, or Pascal type REAL). A value
of 0 is returned if the field is all blanks or if an
invalid character was entered in the field.

Examples:
CALL SFGETR (’FIELD2,R)
ENTER SFGETR USING "FIELD2" FIELD2.
SFGETR (“FIELD2A’,R);

NOTE

A denotes a space. Pascal requires a reserved seven character literal.

3-16 NOS Version 2 Screen Formatting Revision D

Object Routines

SFOPEN (panelname,status)

The SFOPEN object routine loads a panel and prepares it for use. It also sets the
terminal to screen mode if it is not already in screen mode. To locate the specified
panel, the system searches first a library contained in a local file named PANELIB (if
one exists) then the user’s global library set, and finally, the system libraries. SFOPEN
does not display the panel on the screen.

A panel must be opened using SFOPEN before it can be used by any other object
routine. If another object routine attempts to use a panel before the panel is opened,
the program is terminated abnormally.

The SFOPEN parameters are:

Parameter Type Description
paneiname char The name of the panel to be opened.
status int The variable to which SFOPEN returns a value

indicating the results of the attempt to open a panel. A
value other than 0 indicates the panel could not be
opened. Possible values for status are:

Status Significance

0 The panel was successfully opened.

1 The panel was not found.

2 The panel capsule was incorrectly formatted,

probably due to panel definition errors.

3 Too many panels are open. By default, up to
10 panels can be opened at once. Refer to
appendix E for more information.

4 The specified panel is already open.

5 Internal errors occurred. The dayfile
contains an informative message. This
return is provided so the application can
attempt a recovery and exit.

6 No SCREEN or LINE command identifying
the terminal was entered.

7 The terminal in use is not supported by
NOS screen formatting.

Examples:

CALL SFOPEN (“MYPANEL’,ISTAT)
ENTER SFOPEN USING "MYPANEL" COMP-1-STATUS.

SFOPEN (“MYPANEL’,STATUS);

Revision D Screen Formatting Object Routines 3-17

Object Routines

SFPOSR (tablename,row)

The SFPOSR object routine establishes a current row in the named table and is used
in conjunction with the SFGETI and SFGETR object routines. Before calling an
SFGETI or SFGETR object routine that references a table variable, your program must
call an SFPOSR object routine to specify the row number of the desired variable value.
The row number established by an SFPOSR subroutine call remains in effect for all
subsequent SFGETI and SFGETR obj?ct routines until it is changed by another call to
SFPOSR.

The SFPOSR parameters are:

Parameter Type Description

tablename char The one- to seven-character name of a table defined by
a TABLE statement in a currently active panel.

row int The row number of a row in the named table. The
value specified is an integer in the range of 1 to the
maximum number of rows defined for the table.
Examples:
CALL SFPOSR (“TABVAR1-,2)

ENTER SFPOSR USING “TABVAR1" COMP-1-ROW.

SFPOSR (“TABVAR1",2);

3-18 NOS Version 2 Screen Formatting Revision D

Object Routines

SFSETP (fieldname,index,row)

The SFSETP object routine sets the screen cursor to a selected input variable field in
the displayed panel. SFSETP can be called prior to an SFSREA or SFSSHO subroutine
call to modify the default variable entry sequence. The default sequence proceeds
sequentially from the first variable field in the panel to the last.

The SFSETP parameters are:

Parameter Type Description

fieldname char The name of the variable field in which the cursor is to
be positioned.

index int The character position within the variable field where
the cursor is to be positioned. An index of 1 indicates
the first position, an index of 2 indicates the second
position, and so on.

row int The row number of the variable if the variable is an
element of a table. A value of 1 indicates the first row,
a value of 2 indicates the second row, and so on. If the
variable is not part of a table, specify 0 for row.

Examples:
CALL SFSETP (“PLAINV‘,1,2)
ENTER SFSETP USING "PLAINV" ONE TWO.
SFSETP (“PLAINVA,1,2);

NOTE

A denotes a space. Pascal requires a reserved seven-character literal.

Revision D Screen Formatting Object Routines 3-19

Object Routines

SFSREA (panelname,instring)

The SFSREA object routine permits the user to enter input data at the terminal. Data
entered is returned to the application program in instring. If the panel was not
previously displayed on the screen, SFSREA clears the screen and displays the panel
using initial variable values specified for the panel (specified by the VAR statement
VALUE parameter). If the panel is an overlay, only those lines that the overlay writes
are cleared from the screen by SFSREA.

The SFSREA parameters are:

Parameter Type Description
panelname char The name of the panel used for input.
instring char The variable to which SFSREA returns the input data

entered at the terminal for the panel specified in
panelname. The value returned is a single character
string (FORTRAN type CHARACTER, COBOL 01-level
display item, or Pascal type CHAR) formed by
concatenating the contents of all variable fields in the
panel. (For more information, refer to Input and Output
Variables in this chapter.)

Examples:

CALL SFSREA (“MYPANEL‘,INSTR)
ENTER SFSREA USING "MYPANEL" IN-STRING.

SFSREA (“MYPANEL”,INSTR);

3-20 NOS Version 2 Screen Formatting Revision D

Object Routines

SFSSHO (panelname,outstring,instring)

The SFSSHO object routine displays a selected panel with current variable values, and
allows the user to enter additions or modifications to the variable values that are
returned in instring. If the panel is not already displayed on the screen, SFSSHO
clears the screen and displays it using outstring for the variable field values. If the
panel is an overlay, SFSSHO clears only those lines that the overlay writes. SFSSHO
is equivalent to an SFSWRI object routine followed by SFSREA.

The SFSSHO parameters are:

Parameter

Type

Description

panelname

outstring

instring

char

char

char

The name of a panel to be used for data input and
output.

The variable containing the character data to be
displayed at the terminal. outstring is a single
character string (FORTRAN type CHARACTER, COBOL
01-level display item, or Pascal type CHAR) formed by
concatenating the contents of all variable fields in the
panel. (For more information, refer to Input and Output
Variables in this chapter.)

The variable to which SFSSHO returns the contents of
all panel variable fields after modification by the user.
Modifications made by the user are displayed in the
panel as they are entered. instring is a single character
string (FORTRAN type CHARACTER, COBOL 01-level
display item, or Pascal type CHAR) formed by
concatenating the contents of all variable fields in the
panel. (For more information, refer to Input and Output
Variables in this chapter.)

The same character variable or item can be used for both instring and outstring.

Examples:

CALL SFSSHO (“MYPANEL‘,OUTSTR,INSTR)

ENTER SFSSHO USING “MYPANEL" QUT-STRING IN-STRING.

SFSSHO (“MYPANEL‘,QUTSTR,INSTR);

Revision D

Screen Formatting Object Routines 3-21

Object Routines

SFSWRI (panelname,outstring)

The SFSWRI object routine displays the current variable field values. If the specified
panel is not already displayed on the screen, SFSWRI clears the screen and displays
the panel using outstring for the variable field values. If the specified panel is already
displayed as a result of a previous SFSREA, SFSWRI, or SFSSHO object routine, only
the variable field values are rewritten. All other screen data remains unchanged. If the
panel is an overlay, only those lines that the overlay writes are cleared by SFSWRIL

The SFSWRI parameters are:

Parameter Type Description
paneiname char The name of a panel to be written.
outstring char The variable containing the character data to be

displayed at the terminal. outstring is a single
character string' (FORTRAN type CHARACTER, COBOL
01-level display item, or Pascal type CHAR) formed by
concatenating the contents of all variable fields in the
panel. (For more information, refer to Input and Output
Variables in this chapter.)

Examples:

CALL SFSWRI (“MYPANEL’,OUTSTR)
ENTER SFSWRI USING "MYPANEL" OUT-STRING.

SFSWRI (“MYPANEL’,OUTSTR);

3-22 NOS Version 2 Screen Formatting Revision D

NOS Procedures in Screen Mode 4

—
\ Procedure Execution e . 41
Screen Mode Procedure Format 4-5
Message s . 45
Title 0.0 ... 46
Page Number 4-6
Parameter/Menu Selection Lines L . s 4-7
Interactive Parameter Prompts 4T
Menu Selection Prompts - . 4-8
Procedure/Menu Prompt. e e s .. 48
Help Title oo 4-9
Help 4-9
Function Key Labels 4-9
{

NOS Procedures in Screen Mode 4

NOS screen formatting allows you to enter NOS procedure parameters or menu
selections in screen mode. The screen formats are predefined by the system and do not
require special procedures. Any of your existing interactive procedures can be used in
screen mode without modification. Screen mode procedure entry does provide some
additional features that can increase the usability of your procedures. Becoming
familiar with the screen mode display features will help you write procedures that
most effectively use full-screen display terminals.

NOS procedures allow you to place a sequence of operating system commands into a
file and execute the file as you would a program. In effect, you create your own
operating system commands to perform repetitive tasks, such as printing a file or
loading and executing a program. NOS procedures can include parameters that affect
how the procedure file is executed. Typical parameters specify file names, processing
options, and file dispositions. When executed interactively, NOS procedures can prompt
the user for required parameter values and can display help information for the
procedure and for individual parameters.

This chapter describes how procedures are executed in screen mode and tells you how
to write procedures for screen mode display.

Procedure Execution

Screen mode display of NOS procedure parameters requires no special call format.
When you request prompting for interactive procedure parameters, the parameters are
displayed either in line mode or in screen mode, depending on the terminal status. If
you entered a SCREEN command prior to the procedure call, the procedure parameters
are displayed in screen mode. Otherwise, the parameters are displayed in line mode.

When you call a procedure in screen mode, the terminal presents a screen display
similar to that shown in figure 4-1 or figure 4-2. Figure 4-1 shows an interactive (*I
format) procedure display, while figure 4-2 shows a menu (*M format) display.

%

The parameter displays for a single procedure occupy up to nine screens of display
text. You can page forward and backward through the screen displays by pressing
designated function keys. While paging through the parameter displays, you can enter
or modify parameter values in any order. To move from one parameter field to the
next, press the TAB key (the default entry sequence proceeds from the first field on
the screen to the last). To enter parameters in nonsequential order or to modify values
entered previously, move the cursor to any parameter field on the screen using the
cursor control keys.

When using any terminal that does not have protected fields, the TAB key must be
followed by pressing the key corresponding to NEXT. On these terminals, you may
press the TAB key more than once before pressing the NEXT key to position the
cursor ahead more than one parameter field. Any programmable function key not
defined in the panel definition file also functions as a logical tab.

Revision D NOS Procedures in Screen Mode 4-1

Procedure Execution

FTNPROC
INPUT FILE: H©
QUTPUT FILE:
COMPILED PROGRAM FILE:

Specify values and press NEXT when ready

5 [EER] ke [EED]

Figure 4-1. Interactive Procedure Display

4-2 NOS Version 2 Screen Formatting Revision D

Procedure Execution

FILE ROUTING OPTIONS

1. Print a file.
2. Punch a file.
3. Plot a file.

Select from the list above and press NExT: O

i [EE F(,/

Revision D

Figure 4-2. Menu Procedure Display

NOS Procedures in Screen Mode 4-3

Procedure Execution

While paging through the displays, you can also obtain help for the procedure or its
parameters. A portion of the screen display is allocated for the help display. The
function keys allow you to page forward and backward through multiple pages of help
text, if the help text does not fit on one screen. Figure 4-3 shows an example of a
parameter display with help information.

After you enter all required parameters, execute the procedure by pressing the NEXT
key (carriage return). Parameter validation checks are performed in the same manner,
regardless of whether the procedure is submitted in screen mode or line mode. If you
omit a required parameter or enter an incorrect value, the system prompts for a
correct value before initiating execution of the procedure.

/ FTNPROC \
INPUT FILE: ‘

QUTPUT FILE:
COMPILED PROGRAM FILE:

Specify values and press NEXT when ready
COMPILED PROGRAM FILE
This parameter specifies the program source file.
Allowable value(s): must be a file name.

This parameter must be specified.

\ rsre/

Figure 4-3. Interactive Procedure Display with HELP Text

4-4 NOS Version 2 Screen Formatting Revision D

Screen Mode Procedure Format

Screen Mode Procedure Format

Figure 4-4 illustrates the screen mode format used to display procedure parameters.
The format contains six fixed-content lines. These lines are labeled Message, Title,
Page Number, Procedure/Menu Prompt, Help Title, and Function Key Labels. The
number of parameter/menu selection lines and help lines vary, depending on the
terminal screen size and the number of lines required by the procedure. The minimum
supported screen size is 16 lines of 80 columns.

Message
Title
Page Number
Parameter/Menu Selection Lines

Procedure/Menu Prompt
Help Title
Help

Function Key Labels

Figure 4-4. NOS Procedure Screen Format

The following paragraphs describe the components of the NOS procedure screen format
as shown in figure 4-4. For a complete discussion of directives and options available for
interactive procedures, refer to chapter 4 of the NOS Version 2 Reference Set, Volume
3, System Commands.

Message

The message line informs the user when a parameter has been entered that does not
meet the validation requirements specified in the procedure. The message consists of an
output-only field of up to 79 characters, left-justified on the first line of the screen.
When a message is displayed in the message line, the screen cursor is automatically
placed at the beginning of the data field associated with the message.

The following message is displayed if the user fails to enter a value for a required
parameter that does not have a defined help string.

Please enter

You can replace the phrase Please enter using the .ENTER directive. This directive is
useful when writing procedures for non-English speaking users. The .ENTER directive
format is:

.ENTER, string
string Specifies a string of one to 40 characters.
The following message is displayed when an invalid value is entered:

PLEASE CORRECT value

Revision D NOS Procedures in Screen Mode 4-5

Screen Mode Procedure Format

value . Identifies the incorrect value entered. If value is longer than 64
characters, it is truncated to 61 characters, followed by an ellipsis,
as shown in the following example:

PLEASE CORRECT this message is longer...

You can replace the phrase PLEASE CORRECT with another message using the
.CORRECT directive. The .CORRECT directive format is:

.CORRECT, string
string A string of one to 40 characters.

The system returns only one error message at a time, even if the screen contains more
than one error. When the user corrects an indicated error and resubmits the procedure
(by pressing the NEXT key), the next error message, if any, appears. This process
continues until all errors are corrected. The user may correct any number of errors
before resubmitting a procedure.

Title

The title specified in the procedure header is displayed, centered, on the second line of
the screen. If no title is specified in the procedure header, the procedure name is used
as a default title.

Page Number

The page number line displays the number of the current page of parameters or menu
selections. If all parameters or selections fit on one page, the page number field is
blank. The format of the page number field is:

Page n
n The page number.

You can replace the word Page with another word or phrase using the PAGE directive.
The .PAGE directive format is:

.PAGE,string

string A string of one to 40 characters.

4-6 NOS Version 2 Screen Formatting Revision D

Screen Mode Procedure Format

Parameter/Menu Selection Lines

The page number line is followed by a variable number of lines that prompt the user
for parameter entries or menu selections. The number of parameter/menu selection
lines available on each page depends on the terminal type but typically ranges from 6
to 17 lines. If all parameters do not fit on one page and leave space for help text on
the same page, the parameter descriptions are continued on one or more additional
pages. Following are the prompt formats for interactive parameters and menu
selections.

Interactive Parameter Prompts

A procedure parameter specification uses one of the following three prompt formats.
The second column shows the corresponding screen prompt generated by each
specification format.

Parameter Prompt Format Full-Screen Prompt

Parameter= Parameter:
Parameter"Description" = Parameter Description:
Par#meter’Description’ = Description:
Parameter[Description] = Description:

Regardless of which format is used, each parameter prompt is followed by a one- to
40-character input field. The system indicates the length and position of the input field
by underlining the field. Input characters are displayed in the field as the user enters
them at the terminal.

Interactive parameter prompts are centered on the screen according to the length of the
longest parameter description and input field length to be displayed.

The length of the input field for each parameter is that of the largest variable value
that can be entered for the parameter. This length, in turn, is implied by the checklist
pattern used in defining the parameter. The maximum variable lengths for each
checklist pattern are as follows:

Checklist Pattern Maximum Length
*Fm .. n A value equal to the maximum length as specified by n.
*Pm .. n n may be up to 7.
*Am .. n A value equal to the maximum length as specified by n.

n may be up to 40.
*K A value equal to the length of the parameter name.

*Sm .. n A value equal to the maximum length of the set as specified
by n. n may be up to 40.

literal string A value equal to the number of characters in the literal
string.

Revision D NOS Procedures in Screen Mode 4-7

Screen Mode Procedure Format

The following examples illustrate the formats that result from various interactive
parameter specifications.

Parameter and Checklist Prompt Generated

CSET=(A, D, A8) CSET: _ _

I"- Input file"=(*F) Input file: _ _ _ _ - . .
T'File to copy' =(*F) File to copy: — _ - o - - —

R'Rewind (Y or N)'=(Y, N) Rewind (Y or N): _
R[Rewind (Y or N)]=(Y, N) Rewind (Y or N): _

Menu Selection Prompis

Menu selection prompts in both screen and line mode are preceded by a number,
period, and space. The menu is centered on the screen according to the longest
selection prompt in the menu. Prompts that are too long to fit on the screen are
truncated on the right.

Procedure/Menu Prompt

The procedure/menu prompt line tells the terminal user what to do when he or she has
finished entering parameters or menu selections. The prompt format for interactive
procedures is:

Specify values and press NEXT when ready
Menu procedures prompt for a numeric value. The prompt format is:
Select from the 1ist above and press NEXT: __

This prompt directs the user to select a menu item, enter the number of that item in
the input field, and press the NEXT key.

You can replace either of the preceding prompts using the .PROMPT directive. The
format of the .PROMPT directive is:

.PROMPT, string

string A string of one to 40 characters.

4-8 NOS Version 2 Screen Formatting Revision D

Screen Mode Procedure Format

Help Title

The help title line appears on the screen only when help text is displayed. The help
title is centered in the line. It consists of the parameter or procedure name for which
help is being displayed. To clearly separate help information from the parameter/menu
selection information, a medium intensity horizontal line is drawn through the portions
of the help title line not occupied by the title itself.

Help

Help text appears in a variable number of lines that appear between the help title line
and the function key labels. Six or more lines (depending on the terminal model) are
available for help text displays. Help text can occupy more than the minimum number
of help lines if the parameter prompts or menu selections do not require all lines that
are available to them. The system displays as much of the help text as it can fit on
the screen without overwriting parameter descriptions or menu selections.

There is no restriction on the length of help text you can write into a procedure. The
terminal user can page forward or backward through the help text by pressing a
function key. This feature is described in detail under Function Key Labels.

Two types of information are available to the terminal user through help texts:
information on the procedure and its functions and descriptions of procedure
parameters. You supply the help text for procedure and parameter information using
the .HELP directive.

The terminal user obtains help by pressing the HELP key or by entering a question
mark in a parameter field. To obtain help for a menu selection, the user enters the
number of the selection followed by a question mark. For example, the entry 27
requests help information for menu selection 2. To remove help text from the screen,
the user presses the BACK key.

Function Key Labels

The bottom line of the screen displays a series of descriptive labels, one for each active
programmable function key. (The programmable function keys are labeled F1, F2, and
so on.) Each label consists of a word or phrase describing the action of the associated
key. For example, the key that requests help text (F5) is appropriately labeled HELP.
The function key labels are displayed in inverse video (if possible on the terminal
being used), so they appear as a series of rectangular boxes across the bottom of the
screen. Each box is preceded by the name of the key associated with the label.

Revision D NOS Procedures in Screen Mode 4-9

Screen Mode Procedure Format

Table 4-1 describes the function keys that are active for NOS procedure parameter
displays.

Table 4-1. Programmable Function Keys

Key label " Description

F1 FWD Displays the next page of procedure parameters or
menu selections. If there is no next page, the F1 label
does not appear.

F2 BKW Displays the previous page of procedure parameters or
menu selections. If there is no previous page, the F2
label does not appear.

F3 HELP FWD Displays the next page of help text. If there is no next
page, the F3 label does not appear.

F4 HELP BKW Displays the previous page of help text. If there is no
previous page, the F4 label does not appear.

F5 HELP Displays help text as follows:

® Pressing the help key once displays parameter help
for the parameter field at which the cursor is
currently positioned.

® Pressing the help key a second time, without moving
the cursor, displays help text for the procedure.

Fé6 QUIT Terminates the procedure normally without executing
the procedure.

F7 EXECUTE Displayed and active only if a .F7 directive is included
in the procedure. Causes the current procedure to begin
execution. The NEXT or RETURN key, ordinarily used
for procedure execution, now advances the cursor to the
next field if .F7 is displayed.

You can replace the default function key labels or activate F7 key (procedure
execution) by using the .Fx directive. The .Fx directive format is:

.Fx,string
X Specifies an integer value from 1 to 7, corresponding to a function
key from F1 to F17.
string Specifies a character string, from one to six characters. If omitted,

no label appears in the inverse box, as shown for the key in
question, F1-F6. However, for F7, the default label is EXECUTE if
string is omitted.

With the exception of .F7, the .Fx directive does not change the operation of the
function keys. For example, F5 provides help, regardless of how it is labeled in the
screen display.

4-10 NOS Version 2 Screen Formatting Revision D

Screen Mode Procedure Format

On the Viking 721, some of the preceding operations can also be performed using the
CDC standard function keys available on the Viking 721. The keys and their functions
are as follows:

Key - Function
FWD F1 (FWD)
BKW F2 (BKW)

HELP F5 (HELP)
STOP Fé6 (QUIT)

Also, the BACK key can erase help text from the screen. This function may not be
available on some terminals.

The .NOCLR directive inhibits the system from automatically clearing the terminal’s
screen at the end of the procedure call (that is, once all required parameters are
supplied). You can also specify a message to appear on the top line of the screen.
Unless you specify a .NOCLR directive, the system clears the screen at the end of the
call and sets the terminal to line mode, allowing any generated dayfile message to be
displayed.

The .NOCLR directive is useful in procedures which call a program or a series of
nested procedures. Using the .NOCLR directive in these situations prevents the screen
from remaining blank for an undesirable length of time. The .NOCLR directive should
not be used in unnested procedures or in the last (innermost) procedure in a series of
nested procedures.

Format:
.NOCLR,message.

message Specifies a one- to 40-character text string that appears on the
screen. message can consist of both uppercase and lowercase
characters.

Revision D NOS Procedures in Screen Mode 4-11

Terminal Definition Utility . 5

Terminal Capabilities 5-3
Terminal Definition File 5-4
Statement Format 5-5
Statement Types - . 5-7
Required Capabilities 5-9
Terminal Attribute Statements 5-10
Cursor Positioning Statements e 5-13
Set Size Statement 5-14
Initialization Output Statements Lo 5-15
Screen/Line Mode Transition Statements 5-15
Input/Output Statements 5-15
Input Statements L 5-17
CDC Standard Function Keys 5-18
Programmable Function Keys b-18
Output Statements 5-20
Logical Attribute Statements 5-22
Line Drawing Statements 5-23
Default Key Definitions for the Full Screen Editor 5-24

Terminal Definition Utility 5

Terminals using full-screen applications on NOS must be defined using the Terminal
Definition Utility (TDU). After compilation by TDU, the definitions are stored in
libraries for use by the terminal support routines common to all full-screen products.

The NOS system has terminal definitions for many terminals. These definitions are
records on the direct access file TDUFILE under user name LIBRARY. You may access
this file and copy any of the records containing terminal definitions. You may then use
this copy to modify the definition to meet your particular needs.

The first record on the file TDUFILE is TDUIN. This record is a template of a
terminal definition file with the statement values left blank. If you plan to use the
information in this chapter to create your own terminal definition file, you may want
to use a copy of TDUIN. Embedded in the statements are explanations to help you fill
out the file with the values for your terminal. Refer to Terminal Definition File later
in this section for more information on TDUIN.

In the following list, the name of records containing the terminal definitions on
TDUFILE are listed on the left. The model name used in the SCREEN or LINE
command is shown in the middle column. The names of the corresponding terminals
are listed across from each record name.

Revision D Terminal Definition Utility 5-1

Terminal Definition Utility

Record Name Model Name Terminal Name

TDUIN Template file to be used to create your own file.

TDU721 721 Viking 721

TDU722 722 CDC 722

TDU7223 72230 CDC 722-30

TDU3270 3270 IBM 3270

TDUPCCN PCCONN IBM PC/CONNECT

TDUVT10 VT100 DEC VT100

TDUT415 T4115 TEKTRONIX T4115

TDUZ19 Z19 ZENITH Z19/Z29 or Heathkit H19

TDUADM3 ADM3A LEAR SIEGLER ADM3A

TDUADMS5 ADMS5 LEAR SIEGLER ADM5

TDUVKX3 721V3 Viking 721 with Version 3.0 firmware.

TDU721T 721T Viking 721 with type ahead, touch panel, and
automatic tabbing (for screen formatting)

TDU722T 722T CDC 722 with type ahead

TDUVTIT VT100T DEC VT100 with type ahead

TDUT41T T4115T TEKTRONIX T4115 with type ahead

TDUZ19T Z19T ZENITH Z19/Z29 with type ahead

TDUAD3T ADM3AT LEAR SIEGLER ADMS3A with type ahead

TDUADST ADMST LEAR SIEGLER ADMS5 with type ahead

TDUVK3T 721V3T Viking 721 with Version 3.0 firmware and type
ahead

TDU723T 72230T CDC 722-30 using type ahead

TDUPC11 PCON11 IBM PC/CONNECT 1.1

TDUPCi12 PCON12 IBM PC/CONNECT 1.2

TDUPC13 PCON13 IBM PC/CONNECT 1.3

TDUMACC MACCON Macintosh/CONNECT

TDUMC11 MCON11 Macintosh/CONNECT 1.1

TDU924 TV924 Televideo 924

TDU950 TV9I50 Televideo 950

TDU955 TV9I55 Televideo 955

TDU924T TV924T Televideo 924 using type ahead

TDU950T TV950T Televideo 950 using type ahead

TDU955T TV955T Televideo 955 using type ahead

TDUSUN SUN160 SUN 160 Workstation

TDUSUNT SUN16T SUN 160 Workstation using type ahead

TDU9101 CDC910 CDC 910 Workstation (IRIS)

TDU910T CD910T CDC 910 Workstation (IRIS) using type ahead

TDU910C CD910C CDC 910 Workstation (CLOVER)

TDU91CT CDo1CT CDC 910 Workstation (CLOVER) using type ahead

5-2 NOS Version 2 Screen Formatting

Revision D

Terminal Capabilities

Terminal Capabilities

Any display terminal with certain minimal capabilities, which can be defined using the
TDU utility, will work with any full-screen product. Refer to your terminal hardware
reference manual to verify that your terminal has the required capabilities.

To be used with full-screen products, a terminal must have the following attributes:
® Uses asynchronous communications (as opposed to synchronous).
® Operates in character mode (as opposed to block mode).

® Has keys that move the cursor on the screen and transmit characters to the host
computer so it can tell the cursor moved.

@ Supports direct cursor positioning.

@ Provides a clear screen operation.

The terminal should also have the following attributes:
® A clear-to-end-of-line.

® A way to define at least six function keys.

The following terminal attributes are also desirable:

® FEight to 32 function keys.

@ Function keys that transmit a unique, identifying character sequence followed by (or
including) a carriage return (CR) character.

® Host-definable tab stops (for use with the Full Screen Editor).

© Protected fields on the screen and tabbing between unprotected fields (for use with
screen formatting). The tab key, like the cursor keys, must transmit characters to
the host so it can tell the tab key was pressed.

@ Line drawing graphic characters.

Other terminal features are supported by full-screen products, but those listed are
heavily used. (The CR included in the function key sequences provides added usability
and is a feature of the Viking 721 terminal.)

Revision D Terminal Definition Utility 5-3

Terminal Definition File

Terminal Definition File

Terminal keys are defined by typing definition statements into a text file and
compiling the file using TDU. The text file must be in 6/12-bit display code.

Terminal definition statements are highly readable but can be tedious to type. A text
file with all the statements already typed and formatted can be obtained by entering
the commands:

ATTACH, TDUFILE/UN=LIBRARY
COPYBR, TDUFILE, TDUIN

This copies the first record of TDUFILE (TDUIN) to a new file name TDUIN. Edit this
file and fill in the parameters to describe your terminal.

You will need your terminal hardware reference manual for filling in the file. TDUIN
lists statements for all possible attributes and keys that can be supported by full-screen
products. In the hardware reference manuat there should be one or more tables listing
the keys and attributes available on your terminal. After each key or attribute listed
in these tables, the character sequence your terminal accepts or generates is listed.
Use these character sequences to fill in the statement parameters in your copy of
TDUIN. TDUIN contains directions (enclosed in quotation marks before each statement)
which give more instructions on filling in the file’s directive parameters. Read these
carefully. Not all attribute and key statements will apply to your terminal. Leave those
which do not apply blank.

An example of a terminal definition file for the Viking 721 is shown at the end of this
section. C o

Your TDUIN file includes some statements for defining Full Screen Editor (FSE) keys.
'For more information on these statements consult the FSE User’s Guide.

NOTE

If you use TDU to define any of your terminal keys, you must define your FSE keys
either in your terminal definition file or your FSEPROC. For more information, refer
to the NOS Full Screen Editor manual.

Compile your terminal definition file using the TDU utility and store it on TERMLIB.
This load capsule is used to define your terminal anytime you enter the
SCREEN,model command, with model being the MODEL NAME you specified in your
terminal definition file. To verify the creation or replacement of the capsule on your
library file, get a catalog of the library and check for the terminal model name
prefixed with a Z.

Before you start, check whether someone at your installation has already defined your
terminal. Your installation probably makes a number of compiled definitions publicly
available in the TERMLIB file on user name LIBRARY. To get a list of all the
terminal models in the TERMLIB file, enter the commands:

GET, TERMLIB/UN=LIBRARY
CATALOG, TERMLIB,R,U,N

5-4 NOS Version 2 Screen Formatting Revision D

- Statement Format

Statement Format
The general format of a terminal definition statement is:

Statement_name keywordl=valuel keyword2=value2...
keywordn=valuen

The statement_name and any of the keywords may be entered in either uppercase or
lowercase. Keywords and equal signs may be omitted if values are entered in the order
they are defined for the statement. The ellipsis (...) is used to continue statements onto
another line. More than one statement may be typed on the same line if the
statements are separated by a semicolon.

Statement names may be entirely spelled out or may be abbreviated by using the first
three characters of the first word and the first character of each following word. For
example, the following are equivalent statement names:

function_key_leaves_mark
funkm

Keywords are usually abbreviated by the first character (but INOUT is abbreviated IO;
IN is abbreviated I).

Comments may be used anywhere in a statement where blank spaces can appear
(except within quotes). Comments are enclosed in quotes (") characters. Character
strings are enclosed in apostrophes (). For example,

"This is a comment."
‘This is a character string”

The most frequently occurring parameter value in terminal definition statements is a
list of characters. Lists must be enclosed in parentheses. These lists are obtained from
the terminal hardware reference manual. Often the tables containing these character
strings list more than one representation. Character values that you enter in the
terminal definition file may be indicated in any one of the ways shown in the following
example:

Value Meaning

A’ The character A.

101(8) The character A as an octal number.

41(16) The character A as a hexadecimal number.

65 The character A as a decimal number.

32(8) The ESC character as an octal number.

ESC The ESC character indicated by its standard designation. Standard

designations of ASCII characters are shown in table A-1 in Appendix A.
For example, the following are valid terminal definition statements:

MODEL_NAME VALUE="721‘
BLINK_BEGIN OUT=(ESC 12(16) -a’)

Revision D Terminal Definition Utility 5-5

Statement Format

These examples show values as character strings (’721’a’), a character (ESC), and a
hexadecimal number (12(16)).

If you are going to use a character string more than once, you may want to define a
variable name to have that value. This can be done by listing the variable name and
its value at the beginning of the file before any of the TDU statements. The format is:

variablie_name = (character string)

variable_name can be any string of alphanumeric characters and the underscore. It
can be up to 256 characters in length. character string is the sequence listed in your
terminal hardware reference manual for a particular attribute.

5-6 NOS Version 2 Screen Formatting Revision D

Statement Types

Statement Types

Following is a list of the different types of statements. Details on the specific
statements and their parameters are explained later in this section. TDUIN, the record
on file TDUFILE used for creating your terminal definition file, also lists the
parameters and information for using them.

Statements

Description

Attribute

Cursor positioning

Screen size

Initialization
Output

Revision D

Describe general characteristics of the terminal. For example:
HOME _AT_TOP VALUE=TRUE
HAS_PROTECT VALUE=TRUE

Attribute statements have parameters appropriate for the

characteristic being described. The VALUE parameter will

usually be either TRUE or FALSE, or it may be some other
alphanumeric value, depending on the terminal.

Describe the behavior of the cursor on the screen. The TYPE
parameters describe the cursor positioning movement. For
example:

‘MOVE_PAST_SIDE TYPE = WRAP_ADJACENT_NEXT

The selectable values for TYPE are predefined for you in the
TDUIN file.

Describe the size of the screen. For example:

SET_SIZE ROWS=24 COLUMNS=80...
OUT=(re dc2 ’H’ rs dc2 “!’)

This statement has the following parameters:

Parameter Desecription

ROWS The number of rows on the terminal. May not
exceed 64.

COLUMNS The number of columns on the terminal. May not
exceed 25.

ouT The sequence to be sent to the terminal. This

sequence must be obtained from the terminal
hardware reference manual.

Describes terminal attributes set and cleared when the LINE or
SCREEN command is executed. These statements may be
repeated to allow entrance of long character strings for
initializing the terminal.

Terminal Definition Utility 5-7

Statement Types

Statements Description

Screen/1ine mode Describes terminal attributes set and cleared when a full screen
transition application is entered or exited.
Input/output Describe character sequences which can either be sent by the

terminal or by the host computer. For example:
CURSOR_UP INOUT=(VT)

Input/output statements have the following parameters:

Parameter Description

INOUT=seguence The character sequence transmitted to or from
the host.

LABEL=string A character string which identifies the

corresponding keyboard key. For example:
CURSOR_UP LABEL="CTRL-H"
LABEL is optional.

Input Describe character sequences generated by the terminal keyboard
and transmitted to the host computer. For example:

F1 LABEL = ’"F1” INPUT = (RS DC1 “h”)

Input statements have the following parameters:

Parameter Description

INPUT=sequence The character sequence, not to exceed 256
characters, transmitted to the host. INPUT is
required.

LABEL=string A character string which labels the

corresponding keyboard key. For example:
HELP LABEL = “HELP’ IN = (RS 5C (18))
LABEL is optional.

Output Describe character sequences sent from the host computer to the
terminal. For example:

BLINK_BEGIN ouT=(12(16))
BELL_NAK OUT=(BEL)

Output statements have the following parameter:

Parameter Description

OUT=seguence The character sequence, not to exceed 256
characters, transmitted to the terminal. QUT
is required.

5-8 NOS Version 2 Screen Formatting Revision D

Statement Types

The categorization of statements as input, output, or input/output is based on what the
full-screen products can actually do with a terminal. It might be, for example, that a
terminal could generate a BLINK_BEGIN sequence from the keyboard, but programs,
such as FSE, will not recognize such an input sequence, so BLINK_BEGIN is an
output statement. Conversely, the terminal might not be able to recognize a sequence
such as CURSOR_RIGHT if sent from the host, so it is acceptable to specify this as
an IN parameter, even though CURSOR_RIGHT is an input/output statement. This
tells the full-screen products to recognize CURSOR_RIGHT but not to try to send it.

An IN/OUT statement may be split into two statements; an IN statement and an QUT
statement. This is needed if your terminal sends a different sequence to the host to
perform a certain function than is sent by the host to the terminal when that function
is performed. For example, the IN/OUT statement

TAB_FORWARD IN=()
outT = ()
may need to be split as follows:

TAB_FORWARD IN = ()

TAB_FORWARD OuT = ()

The statements may be split, if desired, even when the values are not different. Do
not, however, combine any other IN and OUT statements.

Required Capabilities
Some capabilities are required for the full-screen products to work correctly. These are:

CLEAR_PAGE_STAY or CLEAR_PAGE_HOME

CURSOR_HOME

CURSOR_DOWN

CURSOR_LEFT

CURSOR_POS_BEGIN (and possibly CURSOR_POS_SECOND AND_
CURSOR_POS_THIRD, if these are used for
your terminal)

CURSOR_POS_ENCODING

CURSOR_RIGHT

CURSOR_UP

ERASE_PAGE_STAY or ERASE_PAGE_HOME

MODEL _NAME

ERASE-END-QF-LINE (not required but highly desirable)

There must also be a subset of the application function keys available and defined (a
minimum of six), and a stop-function key (such as CTRL/T). All statements that are
required will be identified as such in their descriptions in the TDUIN file.

Revision D Terminal Definition Utility 5-9

Statement Types

Terminal Attribute Statements
The following statements may be used to describe terminal characteristics:

Statement Parameter Description

MODEL _NAME The model name identifies the type of
terminal being defined. The mode! name is
used as the name of the definition in the
TERMLIB file, and is the name used as the
model name parameter on the SCREEN or
LINE command. Required statement.

VALUE=name The model name may be a one to six
alphanumeric character string. Lowercase
letters are translated to uppercase.

COMMUNICATIONS Identifies the type of communication the
terminal uses. Required statement.
TYPE=type type refers to the terminal protocol.
type Protocol
ASYNCH Asynchronous
SYNCH Synchronous
CURSOR_POS_ENCODING Tells how the cursor position output

sequence is encoded. Most terminals fall in
one of the categories below. Required
statement.

TYPE=encoding Let a be the cursor_pos_begin, b the
cursor__pos_second, ¢ the cursor_pos_third,
x the horizontal position, and y the vertical
position. The values for ab,c,x,and y must
be obtained from your terminal hardware
reference manual. The general encoding
format is:

axbyc

All terminals will have an a, X, and y
at least. The value of encoding is
interpreted as follows:

encoding Description

BINARY_CURSOR The cursor positioning
sequence is of the
format:

a (x+bias) (ytbias)
a (y+bias) (x+bias)

5-10 NOS Version 2 Screen Formatting Revision D

or

Statement

Parameter

Description

Statement Types

CURSOR_PQOS_ENCODING
(Continued)

NOTE

BIAS=number

Required statement.

encoding Description
ANST_ x and y are generated as
CURSOR decimal graphic characters; for
' example, 12’ rather than
0C(16), with format:.
a (x decimal)
b (y decimal) or
a (y decimal)
b (x decimal) c
CDC721_ Whenever the x value exceeds
CURSOR 80 it is generated as two
bytes.
If x is less than 81:
a (x+bias) (y+bias)
If x is greater than 80:
a b (xtbias-80) (y+bias)
IBM3270_ The cursor positioning
CURSOR sequence is of the format ba

where ba is the 3270 buffer
address.

Specifies an integer to be added to the x
and y values. The usual number is 32,
which is the value of the space character.
The purpose of a bias is to prevent the x
and y values from falling in the range of 0
through 31, which have special meanings in
communications. This parameter must be
used, though it may be zero.

For more information about the values of a, b, and ¢ see the QUTPUT subsection for
the CURSOR__POS_BEGIN, CURSOR_POS_SECOND, and CURSOR_POS_THIRD

statements.

Revision D

Terminal Definition Utility 5-11

Statement Types

Statement

Parameter Description

CURSOR _PQOS_COLUMN_
FIRST

CURSOR_POS_COLUMN_
LENGTH

CURSOR_POS_ROW_LENGTH

VALUE is TRUE if your terminal has a
cursor positioning sequence that outputs the
column sequence before the row sequence
when positioning the cursor. VALUE is
FALSE if your terminal outputs the row
before the column (this applies to the
BINARY and ANSI type only).

This is set for ANSI-type terminals and
only if the terminal sends a set number of
bytes to the terminal for column values. If
your terminal is not an ANSI type or if it
outputs a variable number of decimal bytes,
then set VALUE to zero.

This is set for ANSI-type terminals and
only if the terminal sends a set number of
bytes to the terminal for row values. If
your terminal is not an ANSI type or if it
outputs a variable number of decimal bytes,
then set VALUE to zero.

The following statements have either VALUE=TRUE or VALUE=FALSE parameters.
These are required parameters.

Statement

Description

AUTOMATIC_TABBING

CLEARS_WHEN_CHANGE _
SIZE

FUNCTION_KEY_
LEAVES_MARK

HAS_HIDDEN

HAS_PROTECT

" The terminal supports tabbing from one completed, filled,

unprotected input field to the next without requiring that a tab
key be pressed. FALSE if your terminal does not support
protected areas.

Changing the screen size causes the screen to be cleared. FALSE
if your terminal supports only one screen size.

This is needed for full-screen products to repaint the valid
character over the marked area. When a function key is pressed,
it causes a character (or characters) to be displayed on the
screen, or the use of function keys on the terminal is to be
supported by escape or control sequences that require a
character to complete the sequence. VALUE is the number of
characters that must be erased from the screen after a function
key has been pressed. If your terminal leaves no marks when a
function key is pressed, VALUE is equal to zero. This statement
is required.

The HIDDEN_BEGIN and HIDDEN_END sequences can be
used to define areas on the screen in which nothing will be
displayed, even if something is typed there.

The PROTECT_BEGIN and PROTECT_END sequences can be
used to define protected areas on the screen.

5-12 NOS Version 2 Screen Formatting Revision D

Statement

Statement Types

Description

HOME_AT_TOP

MULTIPLE_SIZES

TABS_TO_HOME

TABS_TO_TAB_STOPS

TABS_TO_UNPROTECTED

TYPE_AHEAD

The CURSOR_HOME sequence sends the cursor to the top left
of the screen rather than to the bottom.

There is more than one SET_SIZE statement.

When the TAB key is pressed and the cursor is on the last
unprotected field, the cursor goes to the CURSOR_HOME
position rather than wrapping around to the first unprotected
field. (The same happens if tabbing backward.) FALSE otherwise
or if the terminal does not have protected areas.

The terminal supports tabbing to settable or predefined tab stops
(like typewriter tabs).

The terminal supports tabbing forward and backward to the
start of each unprotected field. FALSE if the terminal does not
have protected areas.

Allows the Full Screen Editor to run in type ahead mode. This
allows you to enter additional input without waiting for the
system response to the previous one. Care should be exercised in
that type ahead allows you to make changes you cannot see on
the screen unless you clear the page.

Cursor Positioning Statements

These statements are required. Each has a required TYPE parameter with one of the

following values:

Parameter

Description

HOME _NEXT

SCROLL_NEXT

STOP_NEXT

WRAP_ADJACENT_NEXT

WRAP_SAME _NEXT

Revision D

The cursor moves to the home position.

The terminal scrolls all characters on the screen (up, down, or
sideways). '

The cursor refuses to move beyond the edge.

The cursor wraps around to the adjacent line or column at the
opposite edge of the screen. For example, if the cursor moves
beyond the right edge of the screen, it reappears at the left side
on the next line down.

The cursor wraps around to the opposite edge of the screen, but
in the same line or column. This commonly occurs when the
cursor moves beyond the top or bottom. It stays in the same
column but at the opposite edge of the screen.

Terminal Definition Utility 5-13

Statement Types

The following statements specify how the terminal behaves when the cursor is urged to
go beyond the edge of the screen. Each statement must be included with one of the
TYPE parameters listed above.

Statement Description
CHAR_PAST_LAST_ Describes the action when the cursor is moved past the last
POSITION position on the screen because you typed characters other than

the cursor movement keys.

If the TYPE value for this statement is SCROLL_NEXT, then
the last character on the bottom right corner of the panel is not
sent to the terminal screen even though it is on the text file.

CHAR_PAST_LEFT Describes the action when the cursor moves past the left or

CHAR_PAST_RIGHT right side of the screen because you have typed characters other
than the cursor movement keys.

MOVE_PAST_BOTTOM Describes what happens when the cursor is moved past the
bottom of the screen using the cursor movement keys.

MOVE_PAST_LEFT Describes what happens when the cursor is moved past the

MOVE _PAST_RIGHT left or right edge of the screen by use of the cursor movement
keys.

MOVE_PAST_TOP Describes what happens when the cursor is moved past the top

of the screen using the cursor movement keys.

Set Size Statement

This statement describes the size or sizes of the terminal screen. It is required for at
least one size. If more than one size is specified, you may use the statement up to four
times, specifying them in increasing order, giving columns preference over lines.

Statement Description

SET_SIZE The sequence specified causes the number of rows and columns
to be changed to the values indicated.

Parameters Description

COLUMNS=number The number (an integer) of columns
(characters) to which the terminal will be
set.

OUT=seguence The sequence to be sent to the terminal.

This sequence must be obtained from the
terminal hardware reference manual. This
may be empty if only one size is available.

ROWS=number The number (an integer) of rows (lines) to
which the terminal will be set.

5-14 NOS Version 2 Screen Formatting Revision D

Statement Types

Initialization Output Statements

Statement

Description

LINE_INIT

SCREEN_INIT

This sequence is sent whenever the LINE command is executed.

This sequence is sent whenever the SCREEN command is
executed.

Screen/Line Mode Transition Statements

Statement

Description

SET_LINE_MODE

SET_SCREEN_MODE

This sequence is sent whenever the terminal switches from
screen mode to line mode. This should reverse the SET_
SCREEN_MODE configuration.

This sequence is sent whenever the terminal switches from line
mode to screen mode. This is where the configuration is set for
running screen formatting applications.

Input/Output Statements

The following statements define sequences which may be either sent or received by the
terminal. All of these statements have a LABEL and an INOUT parameter. Only the
INOUT parameter is required.

Statement Desecription

BACK_SPACE Moves the cursor left one position. (This is provided for
terminals with a back space key that is unique from the
CURSOR_LEFT key.)
Moves the cursor down one line. Required statement.

CURSOR_DOWN

CURSOR_HOME

CURSOR_LEFT

CURSOR_RIGHT

Revision D

Moves the cursor to the home position. No full-screen application
will function acceptably without this. This is a required
statement.

Moves the cursor left one position. Required statement.

Moves the cursor right one position. Required statement.

Terminal Definition Utility 5-15

Statement Types

Statement

Description

CURSOR_UP

DELETE_CHAR

DELETE_LINE_BOL

DELETE_LINE_STAY

ERASE_CHAR
ERASE_END_OF_FIELD

ERASE_END_OF_LINE

ERASE_END_OF _PAGE
ERASE_FIELD_BOF
ERASE_FIELD_STAY

ERASE_LINE_BOL
ERASE_LINE_STAY

ERASE _PAGE_HOME

5-16 NOS Version 2 Screen Formatting

Moves the cursor up one line. Required statement.

Deletes a single character at the current position, shifting the
present text to the left.

Deletes the line at the current position, shifting the remaining
text up. Moves the cursor to the start of the line. Only one of
the DELETE_LINE_STAY and DELETE_LINE_BOL
statements may be used.

Deletes the line at the current position, shifting the remaining
text up. Leaves the cursor where it is. Only one of the

DELETE_LINE__STAY and DELETE_LINE_BOL statements
may be used.

Erases the character at the current position, moving the cursor
left one position.

Erases from the current position to the end of the unprotected
field. Leaves the cursor where it is.

Erases from the current position to the end of the line. Leaves
the cursor where it is. Full-screen products function better with
this capability.

Erases the screen from the current cursor position to the bottom
of the screen.

Erases the current unprotected field. Moves the cursor to the
start of that unprotected field.

Erases the current unprotected field. Leaves the cursor where it
is.

Erases the current line. Moves the cursor to the start of the
line. Only one of the ERASE__LINE_STAY and ERASE__LINE_
BOL statements may be used.

Erases the current line. Leaves the cursor where it is. Only one
of the ERASE_LINE_STAY and ERASE_LINE_BOL statements
may be used.

Clears the screen, moving the cursor to the home position. One
of the ERASE_PAGE_STAY and ERASE_PAGE_HOME
statements is required and only one may be used.

Revision D

Statement

Statement Types

Description

ERASE_PAGE_STAY
ERASE_UNPROTECTED
INSERT_CHAR

INSERT_LINE_BOL

INSERT_LINE_STAY

INSERT_MODE_BEGIN
INSERT_MODE_END

INSERT_MODE_TOGGLE

RESET

TAB_BACKWARD
TAB_CLEAR
TAB_CLEAR_ALL
TAB_FORWARD

TAB_SET

Input Statements

Clears the screen, leaving the cursor where it is. One of the
ERASE_PAGE_STAY or ERASE_PAGE_HOME is required and
only one may be used.

Erases all the unprotected character positions on the screen.

Inserts a single blank character at the current position, shifting
present text to the right.

Inserts a blank line at the current position, shifting the current
line down. Moves the cursor to the start of the line. Only one of
the INSERT_LINE__STAY and INSERT_LINE_BOL statements

may be used.

Inserts a blank line at the current position, the current line
shifting down. Leaves the cursor where it is. Only one of the
INSERT_LINE_STAY and INSERT_LINE_BOL statements may
be used.

Enters insert mode. Any graphic characters are inserted, shifting
other characters right, rather than overstriking.

Exits insert mode. Any graphic characters overstrike rather than
insert.

Switches between insert and overstrike mode.

Resets the terminal hardware. The terminal must be
reinitialized.

Tabs to the previous tab stop or unprotected field.
Clears the tab stop at the current position.
Clears all tab stops.

Tabs to the next tab stop or unprotected field.

Sets a tab stop at the current position.

The following statements define character sequences sent by the terminal. They all
have an INPUT parameter with values obtained from the terminal hardware reference

manual. The first two

statements are used to allow direct cursor positioning by the

touch panel with the Viking 721 only.

Statement

Desecription

CURSOR_POS_BEGIN

END_OF_INFORMATION

Revision D

The first character string of the cursor position sequence. This is
a required statement. The value is a in the format.

Signifies end of input. This is a system-dependent, not
terminal-dependent statement and the value is normally zero.

Terminal Definition Utility 5-17

Statement Types

CDC Standard Function Keys

All full-screen products use CDC standard function keys. These keys have the same
meaning to a particular full-screen product regardless of the terminal in use. The
Viking 721 terminal has these CDC standard function keys as actual key caps.

You define what input sequences the terminal you use will send upline to be
recognized as a CDC standard function key. This capability will make all full-screen
products more usable to the end user but is not required when using the NOS
procedures in screen mode.

If local screen formatting applications have been written that use CDC standard
function keys (rather than programmable function keys described in the next
subsection) to drive menus or to terminate input, then these function keys must be
defined in the terminal definition file.

Escape or control sequences such as ESC-H for HELP can be a good way to define
CDC standard functions, but take care not to use sequences that conflict with terminal
hardware sequences.

Unshifted CDC Shifted CDC
Standard Function Keys Standard Function Keys
BACK BACK_S
BKW BKW_S
DATA DATA_S
DOWN DOWN_S
EDIT EDIT_S
FWD FWD_S
HELP HELP_S
NEXT ‘ STOP_S
STOP UP_S

UP

Programmable Function Keys

All system-defined full-screen products use programmable function keys to tell the full-
screen product what you want to do next. Programmable function keys in the Full
Screen Editor allow a frequently used command to execute by pressing one function
key or the required sequence of keys for the terminal in use.

You define what input sequences the terminal you use will send upline to be
recognized as programmable function keys. These are required parameters for at least
the first six keys (F1 through F6) and, if possible, should be defined for all of the keys
for your terminal.

If local screen formatting applications have been written that use programmable
function keys to drive menus or to terminate input, then programmable function keys
must be defined in the terminal definition file for your terminal.

5-18 NOS Version 2 Screen Formatting Revision D

Statement Types

Escape or control sequences such as ESC-1 for F1 can be a good way to define
programmable functions but take care not to use any sequences that conflict with
terminal hardware sequences.

Unshifted Programmable Shifted Programlﬁable

Function Keys Function Keys
F1) - F1_S
2 f2_s
f3 f3_s
f4 f4_s
5 f5_s
6 f6_s
7 fi_s
f8 f8_s
9 f9_s
f10 fl0_s
f11 fll_s
fi2 fl2_s
f13 fl3_s
f14 fld_s
f15 f15_s
F16 F16_S

Revision D Terminal Definition Utility 5-19

Statement Types

Output Statements

The following statements define sequences sent to the terminal. Each directive has an
OUT parameter that specifies a character string obtained from the terminal hardware

reference manual.

Statement Description
BELL_ACK Ring the alternate bell.
BELL_NAK Ring the bell on an error. Default is ASCII BEL (7).

DISPLAY_BEGIN
DISPLAY_END

OUTPUT_BEGIN

OUTPUT_END

PRINT_BEGIN
PRINT_END
PROTECT _ALL

RETURN

Enable the display so characters received show on the screen.
Disable the display.

Send this sequence before starting output (after receiving input).
This sequence should include the sequence to disable protected
areas if the terminal supports it and also the sequence to exit
insert mode if the terminal supports an insert mode.

Send this sequence after ending output (before receiving input).
This sequence should include the sequence to enable protected
areas if the terminal supports protected areas.

Enable the printer so characters received print.
Disable the printer.
Protect every character position on the screen.

Move the cursor to the beginning of the current line.

The following statements define character sequences sent by the terminal. They all
have an OUTPUT parameter with values obtained from the terminal hardware
reference manual. The first three statements are used in conjunction with a CURSOR_
POS_ENCODING statement having the axbyc format.

Statement

Description

CURSOR_POS_BEGIN

CURSOR_POS_SECOND

CURSOR_POS_THIRD

The first character string of the cursor position sequence. This is
a required statement. The value is a in the format.

The second character string of the cursor position sequence. This
is a required statement if present. The value is b in the format.

The third character string of the cursor position sequence. This
is a required statement if present. The value is ¢ in the format.

Some terminals actually use a character position on the screen to enable/disable the
following attributes. If this is the case with your terminal, do not use the following

attributes.

5-20 NOS Version 2 Screen Formatting Revision D

Statement Types

Statement Description

ALT_BEGIN Displays characters received after this statement in alternate
intensity (may be bright or dim).

ALT_END Does not display characters received after this statement in

BLINK_BEGIN

BLINK_END

HIDDEN_BEGIN

HIDDEN_END

INVERSE_BEGIN

INVERSE_END

PROTECT_BEGIN

PROTECT_END

UNDERLINE_BEGIN

UNDERLINE_END

Revision D

alternate intensity.
Blinks characters received after this statement.
Does not blink characters received after this statement.

Does not display characters received after this statement (sets
up "hidden fields", as for passwords).

Displays characters received after this statement.

Displays characters received after this statement in inverse
video.

Does not display characters received after this statement in
inverse video.

Makes character positions written to after this statement
protected. ’

Makes character positions written to after this statement
unprotected.

Underlines characters received after this statement.

Does not underline characters received after this statement.

Terminal Definition Utility 5-21

Statement Types

Logical Attribute Statements

Logical attributes are used mainly for procedures executed in screen mode and screen
formatting applications to define various types of fields on the screen. Procedures used
in screen mode, for example, define all input parameters for a procedure as logical type
INPUT_TEXT. This assures that they are underlined for those terminals that have
that capability or that any blanks in the variabies are replaced with hyphen characters
on the screen to make them easily recognizable.

You may define the logical attributes below as any combination of physical attributes
by using the sequences (obtained from the terminal hardware reference manual) to turn
them on and off, or as any other displayable type function that your terminal can
support, such as RED_ON for ERROR_BEGIN and RED_END for ERROR_END.

ERROR_BEGIN
ERROR_END
INPUT_TEXT_BEGIN
INPUT_TEXT_END
ITALIC_BEGIN
ITALIC_END
MESSAGE _BEGIN
MESSAGE _END
OUTPUT_TEXT_BEGIN
OUTPUT_TEXT_END
TITLE_BEGIN
TITLE_END

5-22 NOS Version 2 Screen Formatting Revision D

Statement Types

Line Drawing Statements

Screen formatting applications allow specification of three weights of line drawing (fine,
medium, and bold), along with the output sequences for each weight (on and off) and
the characters for horizontal lines, vertical lines, box corners, and box intersections.

If your terminal has the capability of actual line drawing, then place the sequences to
turn the line drawing on and off in the LD_FINE_BEGIN and LD_FINE_END and
so on for up to three types of line drawing sets (you may specify the same sequences
for all three or for any two if your terminal has only one or two line drawing sets). If
your terminal does not have line drawing then the use of a hyphen character for a
horizontal character, a colon or like character for a vertical line, and asterisks for all
corners and intersections is recommended. In this case the LD_FINE_BEGIN and
LD_FINE_END sequences would be blank though you could use a terminal attribute
such as BLINK_ON and BLINK_OFF respectively.

Also, for a bold line drawing character set you can define all characters as blanks (' *)
and use INVERSE_ON and INVERSE_OFF as the LD_BOLD_BEGIN and LD_
BOLD_END sequences.

The following statements can be used to specify line drawings for the three line
weights. Different statements specify begin and end, horizontal and vertical lines, the
four box corners, and intersection characters. All directives have a required OUT
parameter.)

FINE LINE DRAWING SEQUENCES:
LLD_FINE_BEGIN

LD_FINE_END)
HORIZONTAL AND VERTICAL CHARACTERS:
LD_FINE_HORIZONTAL
LD_FINE_VERTICAL

BOX CORNER CHARACTERS:
LD_FINE_UPPER_LEFT
LD_FINE_UPPER_RIGHT
LD_FINE_LOWER_LEFT
LD_FINE_LOWER_RIGHT
INTERSECTION CHARACTERS:
LD_FINE_UP_T

LD_FINE_DOWN_T
LD_FINE_LEFT_T
LD_FINE_RIGHT_T
LD_FINE_CROSS

MEDIUM LINE DRAWING SEQUENCES:
LD_MEDIUM_BEGIN
LD_MEDIUM_END

HORIZONTAL AND VERTICAL CHARACTERS:
LD_MEDIUM_HORIZONTAL
LD_MEDIUM_VERTICAL

BOX CORNER CHARACTERS:
LD_MEDIUM_UPPER_LEFT
LD_MEDIUM_UPPER_RIGHT
LD_MEDIUM_LOWER_LEFT
LD_MEDIUM_LOWER_RIGHT
INTERSECTION CHARACTERS:
LD_MEDIUM_UP_T
LD_MEDIUM_DOWN_T

Revision D Terminal Definition Utility 5-23

Statement Types

LD_MEDIUM_LEFT_T
LD_MEDIUM_RIGHT_T
LD_MEDIUM_CROSS

BOLD LINE DRAWING SEQUENCES:
LD_BOLD_BEGIN

LD_BOLD_END

HORIZONTAL AND VERTICAL CHARACTERS:
LD_BOLD_HORIZONTAL
LD_BOLD_VERTICAL

BOX CORNER CHARACTERS:
LD_BOLD_UPPER_LEFT
LD_BOLD_UPPER_RIGHT
LD_BOLD_LOWER_LEFT
LD_BOLD_LOWER_RIGHT
INTERSECTION CHARACTERS:
LD_BOLD_UP_T

LD_BOLD_DOWN_T
LD_BOLD_LEFT_T
LD_BOLD_RIGHT_T
L.D_BOLD_CRQOSS

Default Key Definitions for the Full Screen Editor

You may use the statement described in this section for defining the default function
key sequences used by FSE. These keys may also be defined within your FSEPROC.
For more information on FSEPROC, refer to the FSE User’s Guide. They must be
defined in one of these two places. '

This statement can only be 250 characters long, including all parameters and their
values. Use the ellipsis (. . .) for continuation within the statement. If 250 characters
is insufficient when defining all the function keys and labels desired, additional
statements with the same parameter name may be used.

Statement Description
APPLICATION_STRING Sets the default function key sequences used by the full screen
editor.
Parameter Description
NAME The value is FSEKEYS, which is recognized
by FSE as defining the function key
commands.
out The value will be a series of SET KEY FSE

commands that FSE should perform when the
associated function key is pressed. These SET
KEY commands are separated by semi-colons.
You may want to use previously defined
variable strings, but remember that the 250
maximum length includes the entire sequence

length.

5-24 NOS Version 2 Screen Formatting Revision D

TDU Command

TDU Command

The TDU command calls an interactive procedure to compile a terminal definition and
store the compiled definition in a user library. The compiled output is a load capsule
which the procedure stores in a user library.

The user library to receive the load capsule must be a local file. If the library file you
specify does not exist as a local file, TDU creates it. If you do not specify a library
file, TDU uses a local file with the default name TERMLIB, if one exists. If it does not
exist, TDU creates a local file with the name TERMLIB.

In the TDU command format, the parameter keywords and equal signs can be omitted
if the parameters are specified in the order listed. The format of the TDU command is:

TDU,I=definition,L=1isting,LIB=1ibrary

Parameter "~ Description

I=definition Name of the terminal definition file. The file must be in
6/12-bit display code. The I parameter must be specified.

L=tisting Name of the listing file. The listing file is a copy of the
input file with error messages (if any) interspersed. The
default listing file name is OUTPUT.

LIB=1library Name of the library file to receive the load capsule; must
be a local file. The default library name is TERMLIB. To
be used by the SCREEN and LINE commands, the
library name must be TERMLIB.

Since the TDU command is an interactive procedure, you can receive help information
for the procedure and be prompted for parameter entries by entering:

TDU?

When the SCREEN or LINE command is entered specifying a terminal model name,
the command will attempt to locate in file TERMLIB a terminal definition for that
model.

Certain terminal definitions have been preloaded into the full-screen products by your
installation. If the model you specify is one of these, then SCREEN and LINE look no
further.

If the terminal definition is not preloaded by your installation then SCREEN and LINE
first look for a local file named TERMLIB, then an indirect access permanent file
named TERMLIB under your user name. If such a file exists and contains a definition
for the terminal model requested, that definition is used.

If not, SCREEN and LINE look for an indirect file named TERMLIB under user name
LIBRARY. Your installation may provide such a file with common terminal definitions
in it. If such a file exists and contains a definition for the model requested, that
definition is used. :

In either of these two cases (a definition is either in your TERMLIB or under user
name LIBRARY) SCREEN and LINE -<copy the definition into a local file named
Z7ZZZTRM for later use by the NOS full-screen products. If you see the file, that is
what it is for. Do not delete it, or you will not be able to run in screen mode until
you issue another SCREEN command.

Revision D Terminal Definition Utility 5-25

TDU Command

The following example is a

" TERMINAL DEFINITION

" VARIABLES
clear_all_tabs
disable_blink
disable_auto_cr
disable_protect
enable_auto_cr
enable_clear
enabie_cr_delim
enable_blink
enable_protect
enable_typeamatic

terminal definition file for a Viking 721 terminal.

FILE FOR CDC VIKING 721 TERMINAL

= (rs de2 ‘Y")
= (eot)

= (PS ::;,)

= (rs dc2 ‘L")
= (rs ‘&")

= (rs “$")

= (rs enq)

= (etx)

= (rs dc2 ‘K’)
= (rs dc2 “i°)

end_print = (rs 7f(16))
large_cyber_mode = (rs dc2 “B’)
page_mode = (syn)
pop_fn_keys = (rs dc2 71(16) cr)
push_fn_keys = (rs dc2 70(16) cr)
scroll_mode = (dc2)
shift_numeric_pad = (rs dc2 6B(16))
start_inverse = (rs "D")
start_underline = (ack)
stop_inverse = (rs ‘E’)

= (nak)

stop_underiine

VARIABLES FOR FULL SCREEN EDITOR FUNCTION KEY DEFINITIONS

k1 = (“SK1/SM/L/ MARK/;SKS1/SMW/L/MRKCHR/”)
k2 = (“SK2/MMTP/L/ MOVE/;SKS2/CMTP/L/ COPY/’)
k3 = (’SK3/IBP/L/ INSB/;SKS3/DB/L/ DELB/’)
k4 = (’SK4/PF/L/ FIRST/;SKS4/VL/L/ LAST/")

k5 = ("SK5/U/L/ UNDO/")
k6 = (7SK6/Q/L/ QUIT/")

kK7 = (’SK7"L/&?/"L"LOCATE";SK7S/LN/L/LOCNXT/")
k8 = (”SK8/S5VC132/L/132COL/;SK8S/SVC80/L/ 80COL/’)
k9 = (“SK9/V/L/MIDDLE/")

k10 = (’SK10/.E/L/ENDLIN/")
k11 = (’SK11/.S/L/ SPLIT/")
k12 = (“SK12/.J/L/ JOIN/")
k13 = (’SK13/.F/L/ PARA/")
k14 = (’SK14/CMTP/L/ COPY/’)
k15 = (“SK15/.C/L/CENTER/")

MODEL NAME AND COMMUNICATION TYPE
model_name value = 721/
communications type = asynch

END OF INFORMATION SPECIFICATION
end_of_information in = (0)

5-26 NOS Version 2 Screen Formatting

Revision D

" CURSOR POSITIONING INFORMATION

cursor_pos_encoding
cursor_pos_column_first
cursor_pos_column_length
cursor_pos_row_length
cursor_pos_begin
cursor_pos_begin
cursor_pos_second

bias
value
value
value
in
out
out

" CURSOR MOVEMENT INFORMATION

cursor_home
cursor_up
cursor_down
cursor_left
cursor_right

inout
inout
inout
inout
inout

TDU Command

= (32) type = cdc721_cursor

= TRUE

= (0)

= (0)

= (1e(16) a4d(16) 1f(16))
= (stx)

= (7E(16) soh)

= (em)
= (etb)
= (sub)
= (bs)
= (can)

" CURSOR BEHAVIOR (for cursor movement keys)

move_past_right
move_past_left
move_past_top
move_past_bottom

type
type
type
type

" CURSOR BEHAVIOR (for character

char_past_right
char_past_left
char_past_last_position

" TERMINAL ATTRIBUTES
ciears_when_change_size
funct ion_key_leaves_mark
has_hidden
has_protect
home_at_top
multiple_sizes
tabs_to_home
tabs_to_tab_stops
tabs_to_unprotected

Revision D

type
type
type

value
value
value
value
value
value
value
value
value

= wrap_adjacent_next
= wrap_adjacent_next
= wrap_same_next
= wrap_same_next

keys)

wrap_adjacent _next
wrap_adjacent_next
= wrap_adjacent_next

= TRUE
= FALSE
= TRUE
= TRUE
= TRUE
= TRUE
= FALSE
= TRUE
= TRUE

Terminal Definition Utility 5-27

TDU Command

" SCREEN SIZES "
set_size rows 30 columns 80 out (rs dc2 'H’ rs dc2 *°’)
set_size rows = 30 columns 132 out (rs dc2 ’G” rs dc2 ")

" SCREEN AND LINE MODE TRANSITION "

set_screen_mode out = (push_fn_keys shift_numeric_pad enable_clear...

large_cyber_mode disable_auto_cr enable_cr_delim clear_all_tabs ...
enable_blink end_print page_mode)

set_1ine_mode out = (scroll_mode enable_auto_cr clear_all_tabs
pop_fn_keys)

" TERMINAL CAPABILITIES "

delete_char inout = (rs 4e(16))
delete_line_stay inout = (rs 51(16))
erase_char inout = (1f(16))

erase_end_of_line inout = (vt)
erase_field_stay inout = (rs 59(16))

erase_line_bol inout = (rs 5D(16))
erase_page_home ingut = (ff)

insert_char inout = (rs 4f(16))
insert_line_stay inout = (rs 52(16))
tab_backward inout = (rs 0b(16))
tab_clear inout = (rs dc2 ‘X’)
tab_clear_all inout = (clear_all_tabs)
tab_forward inout = (ht)

tab_set inout = (rs dc2 ‘W)

" MISCELLANEOUS TERMINAL SEQUENCES “

bell_nak out = (bel)
output_begin out = (disable_protect)
output_end out = (enable_protect)
protect_all out = (rs "G’}

5-28 NOS Version 2 Screen Formatting Revision D

" PROGRAMMABLE
f1 in
f2 in
f3 in
f4 in
f5 in
6 in
f7 in
f8 in
f9 in

f10 in
fi1 in
f12 in
13 in
f14 in
fi15 in
fi6 in
fi_s in
f2_s in
f3_s in
f4_s in
f5_s in
fé_s in
f7_s in
f8_s in
fO_s in
f10_s in
f1l_s in
fi12_s in
f13_s in
fl4_s in
fi5_s in
fi6_s in

" CDC STANDARD

back
back_s
help
help_s
stop
stop_s
down
down_s
up
up_s
fwd
fwd_s
bkw
bkw_s
edit
edit_s
data
data_s

Revision D

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

FUNCTION KEY INPUT INFORMATION

= (rs 71(18))
72(16))
73(16))
74(16))
75(16))
76(16))
77(16))
78(18))
79(16))
7A(16))
78(16))
7C(16))
70(16))
7E(16))
70(16))

= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs

FUNCTION KEY INPUT INFORMATION

= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs
= (rs

dc2

31(18))

61(16))
62(16))
63(16))
64(16))
65(16))
66(16))
67(16))
68(16))
69(16))
6A(16))
6B(16))
6C(16))
6D(16))
6E(16))
60(16))

dc2

32(16))

5F(16))
5B(16))
5C(16))
58(16))
49(16))
4A(16))

dc2
dc2
dc2
dc2
dc2
dc2
dc2
dc2

20(16))
21(16))
24(16))
25(16))
28(16))
29(186))
2C(186))
2d(16))

5E(16))
5A(16))

dc2
dc2

35(16))
36(18))

TDU Command

Terminal Definition Utility 5-29

TDU Command

" TERMINAL VIDEO ATTRIBUTES

alt_begin out = (fs)

alt_end out = (gs)

blink_begin out = (so etx)
blink_end out = (si)
hidden_begin out = (rs dc2 “[")
hidden_end out = (rs dc2 5C(16))
inverse_begin out = (start_inverse)
inverse_end out = (stop_inverse)
protect _begin out = (rs de2 ‘1)
protect_end out = (rs dc2 “J”)
underline_begin out = (start_underline)
under1ine_end out = (stop_underiine)

" LOGICAL ATTRIBUTE SPECIFICATIONS

error_begin out = (start_inverse)
error_end out = (stop_inverse)
input_text_begin out = (start_underline)
input_text_end out = (stop_underline)
italic_begin out = ()

italic_end out = ()

message_begin out = ()

message_end out = ()
output_text_begin out = ()
output_text_end out = ()

title_begin out = ()

title_end out = ()

5-30 NOS Version 2 Screen Formatting

Revision D

LINE DRAWING CHARACTER SPECIFICATION -

1d_fine_begin
1d_fine_end
1d_fine_horizontal
1d_fine_vertical
1d_fine_upper_left
1d_fine_upper_right
ld_fine_lower_left
ld_fine_lower_right
ld_fine_up_t
1d_fine_down_t
1d_fine_lefi_t
Id_fine_right_t
1d_fine_cross
1d_medium_begin
1d_medium_end
1d_medium_horizontal
td_medium_vertical
1d_medium_upper_left
1d_medium_upper_right
ld_medium_lower_left
ld_medium_lower_right
id_medium_up_t
1d_medium_down_t
1d_medium_left_t
ld_medium_right__t

" 1d_medium_cross

1d_bold_begin
1d_bold_end
1d_bold_horizontal
ld_bold_vertical
1d_bold_upper_left
1d_bold_upper_right
ld_bold_lower_left
ld_bold_lower_right
1d_boid_up_t
1d_bold_down_t
ld_bold_jeft_t
ld_bold_right_t
ld_bold_cross

DEFAULT KEY DEFINITIONS FOR THE FULL SCREEN EDITOR

application_string...
name = (“FSEKEYS’)...

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out

- out

out
out
out
out
out
out
out
out

(rs fs)
(rs gs)
20(16)
21(16)
22(16)
23(18)
24(186)
25(16)
26(16)
27(16)
28(16)
29(16)
2A(16)
(rs fs)
(rs gs)
28(16)
2C(16)
20(16)
2E(16)
2F(16)
30(16)
31(16)
32(16)
33(16)
34(16)
35(16)
start_inverse
stop_inverse
(")
(")
(")
(")
("
(")
")
)
"
("
("

TDU Command

out = (k1 “;” k2 “;” k3 “;” k4 “;° k5 “;” kB “;” k7 “;’ k8)

application_string...
name = (“FSEKEYS’)...

out = (k9 “;” k10 “;” k11 7;” k12 ;7 k13 7;’ k14 *;’ k15)

END OF TERMINAL DEFINITION FILE FOR CDC VIKING 721 TERMINAL

Revision D

Terminal Definition Utility 5-31

