Fundamentals of P'.ATOQPrograming
by

Celia R. Davis

Copyright © 198C Celia R. Davis

e

¥ 528l
o -

ACKNOWLEDGEMENTS

1 would like to thank Elaine Avner, Richard Blomme, William Golden, and
Steven Williams for reading early versions of this book. Their thoughtful
comments helped to clarify many ideas presented here. Those obfuscations
which remain do so in spite of the efforts of my colleagues. I am grateful
to Daniel Davis for advice on many sections of the book and for extensive
assistance with chapter 5. I thank Wayne Wilson for the art work. And I anm
obliged to those PLATO authors who used drafts of the book and offered many

useful suggestions.
Celia R. Davis

Urbana, Illinois
February, 1980

Chapter

3.

4e

Se

6.

7.

8.

Table of Contents

Resources for the PLATO Author

Main Units and Attached Units

Using the TUTOR Editor

Judging Student Input

Variables

Conditional Statements and Iterative Statements

llore Judging Capabilities

Special Branching

17

35

49

61

97

Chapter 1l: Resourcss for the PLATO Author

PLATO is a unique interactive computer systam developved at the
Computer=-based Education Research Laboratory. University of Illinois aand
made available world-wide by Comtrol Data Corporation. It can briag com=-
puter assisted inscruction to hundreds of students at omnce. At the same
time that students are working with the system, authors of computer-assisted
instruction (CAl) matarials can use the system to prevars and test new
matarialse.

PLATO is a large central corputer with many terminals connectad to it.
Each terminal consists of a kayset, a displavy nanel. and the elactronics
necassarv for communicating with the central commuter. The kevset, by which
the user communicates with the computar, is similar to a tvmewriter kev-
board. Figur=s l.l shows a diagram of the keyset. The computer communicateas
to the user through a display panel capable of displaying text and graphics.
This panel may be either a plasma panel (a black screen with orange display)
or a cathode ray tube (a black and white television screen).

PLATO systems are used by colleges and universities, elementary
schools, high schools, community colleges, medical collages, governnent and
business installations., and other institntinns. Terminals ara connectad to
the computar by talephone lines., and so may be located anywhera.

Zducational materials have been written in more than 258 subiects
ranging Srom accountancy to zoology. Examples include the diological,

physical, and social sciences, medicine, law, art, English, and manvy foreign

languages. The level of materials ranges from elementary mathematics to
college algebra and calculus, from beginning reading to college rhetoric.

The instructional advantages to using PLATO are immense. The rich
graphic capabilities of PLATO permit the use of drawings, diagrams, and
graphs as well as text to enhance prasentations of ideas. In analysing and
judging a student’s typed responses, PLATO is not limited to true/false or
multiple choice approaches; indeed. by following the author’s instructioms,
PLATO interprets student responses expressed in a variety of ways, recog-
nizing, for example, "car" and "vehicle" as synonomous in some contexts and
different in others. As anpropriate, "1/18", "one tenth” and "a tenth" can
be recognized as aquivalent to "@#.l". Perhaps more importantly, PLATO
instructicnal materials can be responsive to the particular needs of indi-
vidual students. The author can instruct PLATO to follow each student’s
progress through the materials, and to present to each student any
appropriate supplemental material.

The advantages of the PLATO system for the author of computer-based
lesson material are many. Portions of a lesson may be written and tested
immediataly without any waiting. Lessons may be quickly and frequently
revised as the needs of students indicate. PLATO has "utility packages”
which facilitate creating lesson displays and special characters or pic-
tures. A large on=-line reference manual is available at the press of a key.
In addition, PLATC provides unparalled communications facilities. Authors
can engage in typed conversations with other authors znywhere on the system,
and can communicatz2 with consultants whe can advise and assist with any
problams in usi-g :he zystem cor writing lesson-.materials. Through elec-
tronic mail, authors can communicate privately. There are also informal
discuss-n fcrums in which all authors and the PLATQ staff may participate.
Authors’ suggestions for improvements to the system can be made in notes and
are discussed by the entire 7LATO community. Through such discussions, the
PLATO 3ystem =volves in response to the needs of 1its users.

All this activity: students working, authors writing lesson materials,
people engaging in discussions, can occur at once bacause PLATO is a time-
sharing system. This means that the computer ranidly moves Irom one user to
the next, doing whatever that user requires. Each user’s turn or "time
slica” 1asts oniy 2 few chonsandths of a2 gecond, but in that time the com=-
puter, because of its graat speed, can receive the user’s input, determine

what action is required, and send output back to the user’s tarminal.

T°1T @an3gq

ﬁ

3OS
30vdS Novd

e 1 G G s O O O [R

d YN[4 J‘ 1
av | | Yove .:H._H cmﬁ “H
- - ﬁ) U s . °

a | e]| 2" fasvaa| | .
] (anoa d

Ngﬁbn::m X
Z) dd
Hw J ul J N e[[® -1 -]
A\ qo rl—.* . o f hﬁ Alc m 'v< E& [
I ! 91 |™ M) v b g] avL

uj L 3jmoJ 3w

[) L)) 2

(

|
s

I 0l gl b s

—)
osn) °sD)
Jomon) 10m0)
*oso)py
L 11%)

J3ddn "D)

G:o_: :..&Q

3aino

w

&

19sh8y OLV1d PIDpUDIS

How the PLATO Community is Structured

PLATO users are organized into groups of people with common interests.
A group might consist of all the authors at a PLATO site, or all the mathe-
matics authors, or all students in a particular PLATO course, for example.
One member of each group is the group director, who is responsible for
creating PLATO records for members of the group and generally overseeing
the activities of the group.

There are three types of PLATO users. Students can study the lessons
assigned by their teachers and communicate with their teachers through on=-
line notes. Instructors can assign lessons to students and examine data
showing the students’ progress, use the communications facilities, and study
lessons. Authors can create lesson material as well as assign lessons to
students and examine student data, use the communications facilities, and
study lessons. A fourth type of user record, called a multiple, is used for
demonstrations of the PLATO system.

Three pleces of information unigquely identify each PLATO user: a PLATO
name chosen by the user (usually the last name or first and last name), the
nane of the PLATO group to which the user belongs, and a password chosen by

the user and known only to him.

Signing In To PLATO

Figures 1.2 through l.4 show the signon displays where you type your
name, group, and password. The character§>, called an arrow, signifies that
PLATO is waiting for your typed input. When you finish typing, press the
key markad NEXT to show that your typing is completed.

After ycu sign in, vou reach the Author Mode page. This is the
author’'s home base, the disvlay from which one accesses most authorineg
artivitv. Figures 1.5 and 1.6 show in flow chart form the features
available from the Author Mode page. Pressing HELP from the Author Mode
page shows a list of the features available. SHIFT-DATA gives a list of
"Auchor Options'. Five of thase are of immediates interest: AIDS, the

bulletin board, the catalog of lessons, notes, and personal notes.

w

CsT

Thursday, January 25, 1979
Welcome to PLATO

Type your PLATO name, then press NEZXT.

>

Figure 1.2
Name Page

Type the name of your PLATO group. Then, while
holding down the SHIFT key, press the STOP key.

When vou are ready to leave, you should press
these same keys (SHIFT-STOP) to "sign off".

>

Figure 1.3
Group Page

Type your password, them press NEXT.

>

OR... Prass the LAB xey for additional optiomns.

Figure 1.4

Macnarem wd Dama

See function
key options
available.

See latter
key options
available.

See letter
option.

Stop running
on PLATO;
sign=-off.

-
-t—— BACK
HELP r-
T BACK
Author SHIFTHOATA
Mode
Page
; Type
ISHIFT STOP capital
letter.
Jom
Figure 1.5

Some Features Available from Author Mode

Author
Mode
Page

Edit lessomn,
if allowed.

NEXT |

Type
lesson
name.

Mo ra

™ - — -
Zeataras

l

LAB |

Stop editing.
Run lessoun.

Run lesson

as a
student.

Stop.

L—‘ SHIFT HSTOP —>=

to author page.

Inspect lasson,
if allowed.

i

3 SHIFTHSTOP

Stop.

Figure 1.6

b - 27 9 £ e
Avaaesdded 2I0@ -

to author page.

AIDS

The reference manual for the PLATO system and the TUTOR language, in
which PLATC lesson materials are written, is available on-line rather than
in book forme It is lesson AIDS. AIDS can be used for quick reference or
for extensive information. The first several displays of AIDS conmprise an
index to overviews of general areas of TUTOR. The overviews present fea=-
tures of TUTOR in context with related features and give complete details.
Figures 1.7, 1.8, and 1.9 show the title page and main index of AIDS. The
new author's first selection in AIDS should ba the section entitled "How to
Use AIDS". As you use this introductory book you will oftemn want to refer
to AIDS for an expanded discussion of a particular topic. After finishing
this book, you will use AIDS daily as you program, both for learning about
an area of TUTOR new to you and for quick reference about details of TUTOR.

AIDS contains a wealth of information not only about the TUTOR
language, but about all aspects of PLATO. The "Author Resources" section
gives details about how to get consulting help, explanation of some hardware
terms, names and phone numbers of PLATO personnel, names of helpful lessons,
and so forthe. AIDS has instructions about how to get a print of your lessonm,
how to collect data from students using your lessons, how to organize
lessons into coherent modules which follow each other in an instructional
olzn. and much more. Also included are libraries of special characters and

a library of general programming routines.

Bulletin B8o0ard

The Bulletin Board as announcements of general interest to the PLATO
community. These announcements are made by PLATO personnel and concern
recent improvements to the system, changes in the times of service, and so

forthe.

Catalog of Available PLATO Lessons

A catalog of PLATO lessons is available from the Author Mode display.
Descriptions of student=-tested lessons are given along with information
about preraquisites, educational level, time for completion, etc. Provision

is made for trying out the lesson.

AIDS

Elaine Avmer, Darlene Chirolas
Celia Davis, Jim Ghesquiere,
Tina Gunsalus, Jim Kraatz,
and Judy Sherwood

PSO Author Group == CZRL
Univ of Illinois, Urbana

Press HELP if this is your first time in lessoun AIDS

© Copyright, 1973, 1974, 1975, 1976, 1977 Board of Trustees
of the University of Illinois

NO portion of the AIDS lessouns may be reproduced
in any form without permission from the authors.

1879 features requestad per day for the last 1 days

19

page 1
Press = letter; or press NEXT for page 2 of 2

a Aids for new authors
b How to use AIDS

c Author Resources

d Alphabetical list of TUTOR commands

e Functional lists of TUTOR commands

f List of Indexes in AIDS

g Lists of System Defined Variables, Keynames,
Functions, Logical & 3it Operators, =-specs- Tags

h Making Displays

i Making Graphs & Charts

i Calculations and Variables

I3 Conditional Operations

Bit Sequenc ing

m Judging

Execution of TUTOR

(o}

SHIFT-BACK always returns you to an index display.
HELP, NDATA, BACK, SHIFT-NEXT are alwavs available.

Figure 1.8
Main AIDS Index, page 1

11

page 2
Press a letter; or press NEIT for page 1 of 2

o The PLATO Computer

P Special Characters: ACCESS Characters, Linesets,
FONT Characters (Character Sets), & MICRO Keys

q Student Data, Instructor Options, Ronters
r Reynames, Keycodes, and Internal Codes

e Programming Errors and Coudense, Lesson, &
Execution Errors

t Library of Author Routines

u Microfiche and Photographing the Plasma Panel
v Systematic Lesson Design

w The Programmable Terminal (PPTs & TSTs)

x Changes to "Summary of TUTOR Commands"

SHIFT-BACK always returns you to an index display.
BEL?, DATA, BACR, SHIFT-NEXT are alwavs available.

Figure 1.9
Main AIDS Index, page 2

12

Notes

Lesson "notes" is the main avenue of communication among PLATO users.
To use it, type "notes" or "N" on the Author Mode display. Figure 1.19
shows the index page of "notes". Lesson "notes" gives access to all notes
files, including two files maintained by PLATO staff, System Annocuncements
and Public Notes. ''System Announcements” contains announcements of changes
to TUTCR and changes in the way PLATO functions. New commands and new
options for old commands are announced here. You should check System
Announcements regularly, because changes might be made which affect vour
work. '"Public Notes" is a forum for users concerning mattars about PLATO of
general interest, requests for help with proeramming problems, revcorts of
possible malfunctioning of the system, etc. Authors should read Public
Notes daily to remain well informed.

The Other Notes option gives access to all other notes, which may be on
any topic and may be open to any users designated by the dirasctor of the
file. Of particular interest to new authors is the notes file "psonotes",
used for notes to members of the PLATO Services Orgzanization. You may use
this file to make comments about AIDS or amny other PSO service or to request
help. A member of PSO will respond to vour request. Trile "notesfiles”" con-

tains a list of the names of other notes files.

Parsonal YNotes

Personal Notes are private notes between individuals. You may write
personal notes to any author or instructor whose group 1is preparad to

receive personal notes. You may read personal notes addressed tc you.

Interqctive Communication

When the TERM key (notice that TERM is the shifted ANS key) is pressad,

the message '"What term?" and an arrow appear near the bottom of the screen.
3y typing the word '"talk" at this arrow, you may converse with another
author or instructor via the terminal.

To initiate a conversation, press the TERM key and type '"talk”. Then
specify the PLATO name and the group of the person you wish to talk to. To
accept a raquest for "talk", press TERM and tvome "talk". If vou do not want
"o

to accepi che caii, press T¥]M and zype “raisct". If you tz7 to "talk" o

13

--PLATO NOTES =

@L/25 14.490

Choose an option §>

a. System Announcements
b. Public Notes

¢c. Other Notes

d. Persomal Notes

e. Notes Files Sequencar

Press EEL? for informationm.

Figure 1.19

T ™ T - -
PLATC Jotas

14

someone and receive the message 'xxx is busy, but has been notified of your
call" it means he is talking to someone else. The message ''You cannot talk
to xxx" means that he has chosen not to receive "talk" calls. The message
"rejected" means he has pressed TERM and typed '"reject”". During the conver=-
sation, each person sees an arrow near the bottom of the screen where his
typed communication will appear. Both lines are shown to both people. A
"talk" is ended when either person presses SHIFT-BACK.

For help with programming or using PLATO, press TERM and type "consult”.
All consultants on the system will be notified of your request, and one will
respond to it as soon as possible. When the consultant answers your call,
you will see a message on vour screen saying that the consultant also sees
your display. To talk to the consultant, press TERM. You need not type a
special word at the TERM arrow. An arrow will appear at the bottom of the
screen, and you can type there. To write a new line, press LAB to clear the
line, then continue typing. During the consultation the consultant can see
your display. When the consultation is completed, the consultant will break
the connection.

If you find the answer to your question before the consultant answers,
you can cancel the request: press TERM and type "consult” again. Then you

may either reaffirm or cancel the request.

Some Other Resources

Locations of all terminals connected to your PLATO system can be seen
in lesson '"metwork’". Lesson "authors" contains the names, addresses, and
PLATO names of all authors who have chosen to have their names listed. A
list of people currently using the system can be seen by pressing "U" from

the Author Mode page.

15

Exercises

l. Ask your group director to show you how to sign om and sign off.

Practice the sequence several times.

2. Familiarize yourself with the keyboard by doing one of the lessons
designed to introcduce the keyboard. Your group directer or a PSO consultant
can give you the names of several such lessons.

3. Look at several different lessons to become familiar with the range of
styles used in PLATO lessons. Choose lesscons suggestad by your group
director or make a selection from the catalog (see exercise 5).

4. Look at the Bulletin Board.

5 Examine the catalog of available lessons and learn how it is organized.
6. Read the section of AIDS entitled "How to Use AIDS".

7. Read today’s Public Notes.

8. Write a personal nota to yourself and another one to scmeone in your

group or someome in the PSO group. (Names and gréups of PSO members can be

found in the Author Resources section of AIDS.)

Chapter 2: Main Units and Attached Units

A computar program is a set of precise instructicns for carrying out a
specific task. A computer can do ouly those tasks which it is programmed to
do, neither mora nor less. The complexity of the task any computer can
perform depends to a large extent on the power of the programming language
used. The TUTOR programming language, used on the PLATO system, is a very
powerful language, having more than 30@ commands; yet it is relatively easy
to learn, and sophisticated instructional lessons can be written using only
a small number of commands. TUIOR statements have two parts, a command and
a tag. The cormmand indicates a general instruction and the tag gives speci-
fic informatiom £for carrying out the general instruction. Here are two

TUTOR statsments:

at 1629
write Let’s begin.

' on the screen at

They cause the computar to write the sentence "Let’s begin.'’
the point 16 lines from the top and 29 spaces from the left edge of the
screen.

The screen has 32 horizontal lines, each with 64 spaces. The upper
left corner of the screen is position 191, the upper right cormer is position
164, the lower left is position 2281, and the lower rignt is position 3264.
The center of the serzen is position 1632, Figure 2.1 shows these screen

locations. A screen location, wnile writtem as a single number, actually

18

contains two pieces of information, the line and the space. The last two
digits refer to the space. The first digit (in the case of lines 1-9) or
the first two digits (in the case of lines 1@=32) indicate the line. Thus
location 243 is 2 lines from the top and 43 spaces from the left, not 24
lines down and 3 spaces from the left. This latter position is location

2493 (see figure 2.2).

1g] ——1= = 164
1632
32— 3264
Figure 2.1 Locations on the Panel
243

2483

Figure 2.2 Some Screen Locations

19

PLATO lessons, or programs, are subdivided into units. Each unit
contains a small group of instructions desecribing what is to be showm on the
screen, whether the student is to respond, and if so what i3 to be done for
every possible student response. The unit may alsc contain instructions
indicating how the unit connects to other units in the programe.

The concept of a TUTOR unit may be defined in several different ways.
From a strict computer language point of view a unit is the set of instruc-
tions headed by.che unit identifier. Because the PLATO systam interacts
with a student by presenting information to the student and reacting to
his rasponses, we may think of a unit in educational terms: a sequence of
presentation of information and reaction to student responses. From a
practical standpoint it is sometimes helpful to think of a unit as a single
screen display, although often a screen display consists of many units.

Shown below is some reprasentative TUTOR code. (Code is the term

used for a collection of program instructioms.)

unit tizle

next topics

at 1623

write Film History
box 1621;1536

*

unit topics

next adirect

at 18@5s

write Topics coverad in this lesson:
draw 19@5;193s

at 1319

write American Directors of the Thirties

Influential Pilms of the Thirties

Significant Contributions of European Directors

Each TUTOR unit begins with a -unit- command. (In this book, names of TUTOR
commands ara set off hy hyphens. The hyphens ares not used in actual TUTOR
code.) The tag of the -unit- command is the name of the unit. Every unit in
a lesson cust have a unique name. It may be any name you liks but may not

be longer than 8 characters.

29

The =-next- command tells which unit will be executed when the student
completes the present unit and presses the NEXT kev. The tag of the -next=-
cormand is the name of the next unit to be executed. In the example code,
when the student completes unit "title" and presses NEXT, he proceeds to
unit "topics". After completing unit "topics", he presses NEXT to proceed
to unit "adirect". When a new main unit is entered, the screen display of
the previous unit is erased.

The =-at- command indicates a position on the screen for subsequent
display, a§ for instance with a -write—= command. The =write-= command dis-
plays text on the screen. The tag of the =write= is the text to be shown.
In unit "title" the words "Film History" are displayed at the location
given by the preceding -at- command, that is, 16 lines from the top and
23 spaces from the left. The -box- command draws a box with one cormer at
the first screen location given in the tagz and the other cormer at the
second location given in the tag. The =-box=- command in unit "title" draws a
box around the words "Film History".

The =draw- command draws a line between the points specified in the
tag. The -draw- in unit "topics” draws a line from location 1985 to loca-
tion 1435, underlining the -write= statement above it. The second -write-
statement in unit "topics” illustrates several features of the -write-
command: the tag may continue for several lines and blank lines may appear.
Each subsequent line of text appears om succeeding lines when the lesson is
used in student mode. The blank lines in the continued tag constitute
double spacing.

The asterisk between the two units is not an instruction to the computer;
it is a so=called comment symbol. Lines in TUTOR which begin with this
symbol are ignored by the computer; they are for the author’s convenience.
They serve to increase readability of the program by separating sections of
the lesson. Comments explaining the workings of the program may be written
after the asterisk. Another comment symbol is 3, the double dollar sign.
It may appear anywhere in the line. Any material on the same line after the
$$ is taken as a comment; that is, it is not executed. The example units

"title" and "topics" are shown below, revised to include programmer's

commentse.

unit title
next topics
at 1623 §$ 16 lines dowm, 23 spaces over
write Pilm History
box 1621;1536
*
unit topics
) next adirect $$ Amer. directors of 39’s
at 1995

write Topics covered in this lesson:
draw 1995;1835

at 1319

write American Directors of the Thirties

Influential Films of the Thirties

Significant Contributions of European Directors

** may add more topics after first semester
*

Good programmers use corments freely to document their lessons, thereby
increasing the ease with which colleagues can understand the programming and
eliminating delay when they themselves take up work on the program aftar an
intarval of several days or weeks.

When a student completes a unit and presses NEXT to proceed to the next
unit., the screen is erased. The -next- command is used to soecify which unit
i3 to be dome next; in the absences of a =-next- command, the unit physically
following the current one is the next unit. 0Mnits need not be nlaced in a
lesson in sequential order since the order of presentation can be controlled
by =-next- commands. It is a good programming practice to use explicit -next-
commands rather than to rely om the physical order of units, because you
will occasionally find that you nust move units from one physical location
to another. If you know that the program’s flow of control is explicitly
stated in the code, yvou need not svend time addingz -next- commands after
reorganizing the physical location of units.

The =-back- command can be used for review of previous units. The tag
of the -back- command is the name of the unit to proceed to when the BACX
key is pressed. The two units below illustrate the use of the BACX key and

the =-back=- command. If the student presses BACX while in uniz "irreg", he

22

unit regular

next irreg

at 1412

write The endings for regular -er French verbs are:
e ons
es ez
2 ent

%

unit irreg

next irreg2

back regular $$ review permitted

at 1219

write The verb "faire" is conjugated:
je fais nous faisons
tu fais vous faites
i1 fait ils font

at 2829

write Press BACK to review the regular verb endings.

Branches by the shifted NEXT and shifted BACK keys are controlled with
the -nextl=- and -backl= commands. The tag is the unit to proceed to when
SHIFT-NEXT or SHIFT-8ACK is pressed. NEXT is the only function key which is
always active. BACK, SHIFT-NEXT, and SHIFT-BACK are active only if there is.
a corresponding -back-, -nextl=-, or =-backl- command in the unit. When func=-
tion kevys other than NEXT are active, it is a good practice to let the student
know with a =write— statement what keys are available.

Units which the student reaches by pressing NEXT, BACK, SHIFT-NEXT or
SHIFT-BACK are defined as main units. A main unit may contain several kinds
of information: branching instructions, text and graphics, questions and
commands to judge the student’s response to the questions, instructions for
the student about how to progress in the lesson. The TUTOR code to per-
form any one of these tasks can be written in a separate unit and that unit
may be attached to the main unit with the -do- command. The tag of -do-
is the name of the unit to be attached. When a unit is attached by -do-,
its contents are treated as if they appeared in the main unit at the point
where the -do- is located. After the commands in the attached unit are
performed, the statements following the -do=- are executed. There is no

full screen erase when a unit is attached by -do=-.

23

The code below is a portion of a lesson in which -do= is used in
several main units to attach the message '"Press 3BACK to review." In each
unit in which the BACK key is active, unit '"pback" is attached, displaying
the text at locatiom 3918. 1If the author should decide to move that text to

a differeat screen location, he would need to make only one change in unit

"Pback" ¢
unic firse
next second
*
*
unit second
next third
back first
do pback
*
%
unit thizrd
next fourth
back third
do pback
*
unic pback
at 3913
write Press BACX to raview.
* s
*

Saveral advantages result from medularizing lessons by using =-do=. The most
obvious is the avoidance of repetition, saving the author’s time and com=
puter storage space. 3ut more importantly, a modular design makes for easy
readability of the program and Zfacilitates correction of programming
errors.

Below is a further illustraticn of the use of =-do= in modular lasscn

..
dasizn.

24

unit part3

next parté

back part2

do draw3

at 2816

write Here is a square and a rectangle.
#

unit parté

next part5

back part3

do . drawé

at 2312

write Three Boxes!
*

*

%

unit draw3

draw 1616;832;1648;2432;1616
draw 1216;1248;20948;2916;1216

%
unit drawé

box 1912;1219
box 1925;1932
box 1938;745

The branching structure of the lesson is readily apparent, so if an error in
branching has been made, it is easy to find and correct. If there is an
error in one of the drawings, it toco can be quickly found in its own unit.
Such r2adability is an important factor when the author returns to work omn a
lesson after several days away from it, or when two or more authors work
together.

The factor that determines whether a unit is a main unit or an attached
unit is how the student reached it. Units reached by pressing a function
key are main units. Units reached by a -do=- command are attached units. A
student is always in a main unit; that main unit may attach other units which

are treatad by the computer as part of the current main unit.

More About Creating Displavs

We have seen that the =-at-, -write-=, =-draw=-, and =-box- commands are
used to create displays. The tags of -draw=- and =-box=- use screen addresses
to determine the location of the drawings. The addresses may be in the
line-character grid (ccarse grid) or in the fine gvrid, which allowe mara

precise specification of points on the screen.

25

The fine grid is a matriz of 512 dots by 512 dots. The lower left
corner of the screen is location #,f. The upper left is @,511l; lower right
is S511,9; upper right is 511,5ll. When fine grid coordinates are used in
the tags of commands, the x (horizontal) coordinate is given first, then the
y (vertical) coordinate. The two are separated by a comma. _For example,
location 10@,78 is 19d dots from the left of the screen and 78 dots from the

bottom. Figure 2.3 shows several fine grid screem locatioms.

7,511 511,511
\
A
f'.l' “'."
? 4 /(\.“-
9,3 « 511,38

Figure 2.3 Tine Crid Screen Locations

The -draw- command can be used to create any figure composed of lines.

The tag of the =draw= lists the points between which lines are to be drawn:
draw 1919;1915;819;1919

This statement draws a triangle with corners at locations 1§13, 1915, and

81@. The arguments in the tag must be separatad by semi-colons.

26

Unconnected points within the figure are indicated by the argument
"skip":

draw 1913;1915;skip;1922;1928

A line will be drawn from location 1019 to location 1415, and another will
be drawn from location 1922 to location 1§28.

Both fine and coarse grid may be used in the tag of =-draw-:

draw 32,12;48,18

This command draws a line from the point 32 dots from the left and 12 dots
from the bottom of the screen to the point 4@ dots from the left and 18 dots
from the bottom of the screen. Note that the two locations are separated by
semi-colons while the x coordinate of each location is separated from the v
coordinate bv a conma.

Fine and coarse grid coordinates may be mixed in the tag:

draw 1617;292,377

The =-box- command draws rectangles. The tag contains the screen
locations of two opposite corners of the box, senarated by a semi-colon. If
the box is to be more than ome line thick, a third argument stating the

thickness can be added to the tag.

box 1418;1922
box 8@3:1115;3 $$ wall of box are 3 dots thick
box 264,333;1645

£ the third argument is a positive number, the edge of the box is built up
in an outward direction from the corners. If the thickness 1is a negative

nunber the buildup is inward.

27

For drawing circles, the =circle= command is usaed. Its tag is the

nunber of dots in the radius:

at 1298
circle 12

This command draws a cirele with a 12 dot radius whose center is at location

1208. To draw an arc, use the 3-argument form of the =circle= command:

at 144,79
eircle 97,42,138

This form of the =-circle- command draws an arc. The second and third
arguments svecify the beginning and ending angles for the arc. They are
given in degrees, but without a degree sign.

Three other commands, =-nause=, =—-erase-=, and =-mode=, are also used in

displays. The =pause-= command may have several kinds of tags. The form
pause keys=keyset

causes execution to stop until the student presses any key on the kayset.

The form
pause kaysamext

halts execution until the NEXT kay is pressed. More than one key can be

listed in the tag:
pause keys-nex:,back,backl

If keys other than those listed are pressed, they are ignored. Pressing
NEXT causes execution of the unit %o continue with the commands below the
-pause=-, but pressing any other listed key results in tzking the branch

specifiad for that command. For example:

28

unit pr3
next pré
back pr2

backl printro
pause keys=next,back,backl

1f the student presses NEXT he continues in unit "pr3". If he presses BACK
he is taken to unit "pr2" and if he presses SHIFT-BACK he is taken to unit
“printro”.

The =-pause- command can be used effectively when a large amount of text
is to be presented on the screen. One can display one paragraoh, pause
until the student signals that he is ready to go on, and then display a

gsecond paragraph. An example of this is shown in unit "hair".

unit hair

at 5@9

write Fashions in hairstvles seem to be a perennial
topic of interest. From an article in the Sept.
27, 1895 issue of the Daily Illini:

at 3229

write Press NEXT to continue.

pause keys=next

at 912

write Perhaps the greatest peculiarity of the American
college youth is his hair. The hair in itself is
not so peculiar, although nearly everv shade and
color in the prism is represented, but the style
in which it is worn. 1Its length varies from five
to ten inches and is usually in a much tousled

condition.
pause keys=next
at 1712

write The leading styles are the "duster” in which the
hair is worn perpendicular to the tangent plane
at the point of contact. Other stvles are the
"echrysanthemum,” from which that popular flower
derives its name, and the "moo" in which no two
hairs are the same lenethe.

The =pause=-
to be disolaved:
them, as in unit

unit
ar.
write
at

29

command is useful not onlv when larze amounts of text a

it can be used to emphasize several ideas bv senaratine

"tensges".

tenses

292

The imperfect tense i3 used:
595

writas A: To describe a habitual oast action:

at
write

715
Quand 1'4tais ieune. ie me levais 3 six heures.

When I was voung. I used to get un at 6 ame.

nanse
at
write

at
write

nanse
at
write

at
write

nause
at
write

at
write

kavs=kavsat

11435

B: To describe what was going on when another
action took olace:

1415

Il nleuvait aquand { ai quittd la maison.

It was raining when I laft the hanse.

kevs=kaysct

1845

C: To describe a situation which existed in
the past:

2115

L'&cole n'était pas loin de ma maisomn.

The school was not far from mv house.

keys=kevsat

2585

D: To describe how a person £felt, looked, atce.
in the past:

2817

J'aspérais vous vnir an bal samedi soir.

I was hoving to sme vou at the dance Saturdav

aveninge.

The =-erase- ccmmand erases the disnlay. The commands

at
arase

arase 29 charact

areument tae for

at

Arase

This erases 12 ¢

lines. erasing £
1133 co 11ll4.

1919
29

ar snaces beginning ar location 1913. There iz a twa=-

-arake= which arases a blark of charactars:

843
12.4

naractars srarting ar location 883 and continuing for 4

ron 393 to 814, from 993 tn 914, fram 14QG3 cn 1Al4. and

re

Erom

39

Another wav te arase is to use the -mode= command. The -mode-= command
has three possible tags: write, erase, and rewrite. The terminal is nor-
mally in -mode write-. Executing a -mode erase- causes subsequent display
commands to be erased rather than written; the dots of the screen which
would be lighted for the display are instead turned off. When displays are
put in attached units, the -mode- command can be used with =do- both to

write and erase the display. Units "shapes" and "triangle" show such a use.

unit shapes

box 191751141 $$ rectangle
do triangle

at 2412

write Press NEXT to make the triangle disappear.
pause keys=keyset

mode erase

do triangle

at 2412

write Press NEXT to make the triangle disappear.
%% erases the sentence

mode write

at 2415

write Now there’s only a rectangle.

unit triangle
draw 1917;1129;1941
*

The first =-do triangle= shows the display. After the =-pause=-= unit
"triangle" is done again, but this time it is erased. Note that you must
reset the terminal mode to write with a -mode write— statement.

Displays executed in -mode erase= erase only those dots which form part
of the display. In -mode rewrite= the entire screen area in question is

erased before the new display is written.

3l

Exercises
The first step in writing a lesson is to determine as completely as

possible what the student will see on the screen and what actions will be
taken by PLAIO when the student presses Keys on the kayboard. The next scep
is to detail the flow of control; i.e. the student’s order of prograssion
through the units upon pressing NEXT, B3ACK, or whatever branching keys you
designate. A convenient way to do this is to sketch on p#pe: the display
for each unit, and to draw a flow chart showing the flow of control.

On paper, write a TUTOR program with three main units: title page,
presentation 1, and presentatiom 2. (In the exercises for the next chapter,
you will learn how actually to store and execute the program omn the
computer.) The title page should contain text and some simple graphics such
as a box or underlining. The £first presentation unit should present a
drawing of any geometric figure (e.g. triangle, square, trapezoid) and a
sentence or twa about the drawing. The second presentation unit should
display the same or a different drawing, then erase it, and show a sentence
or two of text. The oranching (flow of control) should be as shown in the
flow chart in figure 2.4. Remember to tell the student what branching keys
are available. Because your geometric figure will be usea more than once,
it should be in an attached unit. The actual text presented ia your lessomn
need not be complex or extensive; concentrate on designing the structure of
the program. Figure 2.5 shows one way to code part of this exercise. You

may follow it exactly or use it as a general guide.

32

Title Page

BACK NEXT

Presentation
Unit Omne

SHIFT-BACK
BACK NEXT

Presentation

Unit Two

Figure 2.4 Flow Chart for Exercise 2

33

unit title

next recl

at 1325

write GEOMETRIC
FIGURES

draw 1325;1334;skip;1433;1424

unit recl
next rec2
backl title
back title

do rec

at 2421

write This is a rectangle.
*

unit rec

box 1819;1@43

* .

Figure 2.5 Sample code for Exercise 2

Chapter 3: Using the TUIOR Editor

At the Author Mode page, you may type the name of a lesson and then
prass DATA to run the lesson in student mode or NEXT to inspect or edit the
TUTOR code of the lesson. Lessons are stored in files, which are areas of
space cn a magnetic disk. A file is divided into blocks. The first block
contains identifying information about the file. The other blocks ares where
you type the TUTOR code of your lesson. Upon entering a newly creatad file,
you are taken dirsctly to the identifving information. If the file is not
newly created, oress DATA to see these information pages. Figures 3.1
through, 3.5 show some representative DATA pages.

The author information page (figure 3.2) gives the name and address of
the author and information about the lesson contents. The associated files
page (figure 3.3) lists other files which are associatad with your lesson.
You should leave the =-use= file and the processor lesson blank. The notes
file is the file where comments made by users of your lesson are stored.
This file is specified automatically when the £ile is created. It is the
notes file used by all the lessons in your account. The codewords page
(figure 3.4) allows vou to limit who can edit and insvect the TUTOR code of
the lesson. Every author has a slot in his records (in addition to the
name, group, and password) into which he can tyve a security code. If the
sacurity code in this slot matches the change code of a lesson, the author
may edit that lesson. If it matches the insvect code of a lesson, the

author can inspect that lesson but cannot edit it. No one should edit a

36

lesson other than his own, even 1if its author has neglected to protect it
with a change code. Codes 3 through 6 govern links between the lesson and
other lessons=--you may ignore them for the moment. The system personnel
access flag permits PLATO systems programmers and consultants to inspect
your file in case of malfunctioning of the system or when you request con-
sulting help. You should leave this flag set to ALLOWED in order to
receive prompt comsulting help. The editing specifications page (figure
3.5) allows you to modify some of the normal conditions of the TUTOR editor.
As a beginning author, you should leave these specifications as they are.

Pressing BACK one or two times while in the DATA section of the lesson
takes you to the Block Display. This is the page you see upon entering a
lesson every time except the first. The block named "*directory” comtains
the identifying information just discussed. To enter TUTOR code into the
lesson, you must make a new block. You can make new blocks as needed, up
to 7 blocks. Figure 3.6 shows the Block Display of a lesson. Within each
block is TUTOR code. Figure 3.7 shows a block containing TUTOR code.

Never does an author write a complete lesson at once. He writes a
small section, tests it by running it in student mode, corrects any errors,
tests it again, and repeats that process until the section is perfect. Then
he goes on to another section. To test TUTOR cocde that you have just
written press SHIFT=-STOP from either the Block Page or from within a block.
This causes the lesson to be condensed, that is, prepared for use in student
mode. Condensing i1s the process of translating a lesson from TUTOR into the
machine language actually used by the computer to execute the lesson.

Rarely does a lesson condense perfectly the first time; the author almost
always has made typographical errors or errors in the syntax of the TUTOR
commands. These must he corrected or the lesson will not execute properly.

Figure 3.8 shows the display seen when a lesson has condense errors.

< ¥

Lesson name ---- celia2) Disk pack -- florence
Starting cate -- 35/12/74 Pccount ---- apso

Last edited ---- 85/11/78 13.44.32
By ==-=- celia of psc
at ---- 6-21

Type the agprepriate |etter: D

a. fMuthor information
b. Fsscciated files
c. Cocewords

d. Editing specifications

FHELP available

Figure 3.l Lesson DATA Page

Les=on name ---- celja2

Press the asscciated rumber to charge an entry.

Author Information:
1. Name ----—cceccceea-- davis, celia
2. Dept. Affiliation -- cerl
3. Teleohone rumber --- 3-6211

Les=zon Information:

4. Subject Matter ----- ra

5. Intencdad Fudiences -- na

6. Crne line description =======---
workscace

Figure 3.2 Author Information Page

39

Lesson name ---- celial

Press the asscciated rnumber to change an entry.

Reference for -use- command:
1. Lesson name --====---

Lesson notes:
2. File name -====-==e-- psonotes

Processor:
3., Les=on name --------

HELP available

Figure 3.3 Associated Files Page

4g

Lesson name ---- cel 1a2

Press the asscciated rumber to change an entrvw.

SECLRITY CCLES:

1.
. To
. To

(o ULV | B S 0% B N J

Te

-

1o

. Jo
. To

change le=scon --- sxxx3x3T23
inspect lesson -- xzxxxxzxxx
access common --- blank--CFEN TO
~-use- |esson ---- blank--CFEN TO
-jumpout- to ---- blank--CFEN TO
-attach- file --- blank--CFEN TO

Access to file by system perscommrel:
System fccess ------ ALLCUWED

7.

Fipure 3.4 Codewords Page

FEFF

Lesson name ---- ceiia2

Press the asscciated letter to charge an entrvy.

Character =et to be lcaded:
a. Lesson Name -<-cccce=-=--
bo BIOCk m ——————————

c. Lesson Name ~~-ccvcve---
d- BIOCk m ------------

Display and typing control:
e. Lines shown initially-- 5
f. When SPACE pressed ---- 13

g. Tab settings -—==—===-- TUTCR
Mod Word Cptions:

h. Indicate changes ------ NO

i. Save charges --————=—-—==-- NO

Type of print desired:
j. Primt option ===—--=aaa NCRIAL

HELP availasble

Figure 3.5 T[Lditing Specifications Page

42

LESSON--crd HELP avajlable

PART 1 OF 2
BLOCK NAE

xdirectory
def/title
begin

stl

wr!

wr4

wr?/

| -0 Q0 Ow

Figure 3.5 3Block Display

43

BLOCK -2 = wrl

47

Ny W)

N = = e e e 4 e e = e
w0~V e WM~ n O e
1

[N]

[N
[N

[V}

WWNNNNRND
—~ RV NN

urnit
do
next
zdo
do

do

at
write
draw
at
write
do
write
at
write
draw
at

write.

cdo
write
at
write
draw
at
write
do
write
at
write
Sraw
at

wrl

hel pers

wr2
charl es (296, 336)
charl es (232,336)
think

2885

Charles habite a Fmiens.
2913;2919

2185

Charles

liner

a Amiens.

2385

Il est tres heureux
2398;2311

2485

Il

l iner

tres heureux
26485

parce qu'il va rencre visite a son ami Hubert

2617;2619

2735

parce cu'il

l iner

rendre visite a son ami Hubert
2985

Qui habite a Paris.

299932915

3985

Figura 3.7 Line Misnlay

44

Errors found when condensing lesson 'helping’

Errors: 1 Units: 2 Condensed Words: 7S
1 undefined variable or bad define format test 1-a2
cale names?2 '
A
More info on which error? » . HELP i1s available
SHIFT-MEXT to edit error CATA to try less=on

~

Fizure 3.2 Condense [Irrors Page

45

Exercises
l. Go inco your lesson in the editor and £ill in the identifying infor-

mation. If your lesson is a new one, you will go directly to the proper

page; Lf it is not new, press DATA to reach the page. To fill in an item,

r

prass the letcter or number beside it, type the information and thea press

NEXT. Use the suggestions in this chapter about what to fill in.

2. Retura to the Block Page of your lesson and press HELP. Figura 3.9
shows what this page looks like. Choose the section entitled "Introduction
to Editing". After choosing this section you see an index similar to the

one shown in figure 3.1@. Start in section "a" and read all sectionms.

3. CEntear some TITOR code into the lesson (you may have to make a new block
to do this). I!se the units you wrote in the exercises for Chapter 2. Use
the i directive to insert the TUTOR code. After entering the TUTOR code,
find a line containing a typing error, and replace it using the r directive.
Use the COPY or E2IT kays to correct the error. (If you made no typing
errors, choose a correct line to replace for practice.) Return to the block
page, then re-—entar the block. Pactice using the space bar to display more
lines. Use the £, b, u, and U directives until you ars familiar with their
operation. Find a line whih should be deleted, bring it to the top with the
f directive, and delete it. Then insert a new line to take its place.
(Again, if you have no line with nistakes, choose a zood line and practice
delecion using it.) Learning to use the TUTOR editor can be very
frustraciag, so if you have trouble, ask your group dirsctor for help or
call a consultant on TERM=-consult. Figure 3.1l lists some Zrequencly used

edizing directives.

4. Condense the lasson. If there are any condense arrors, return 2o the
lesson and correct them, then condense agaia. “hen all errors are
correctad, go through the lesson in student mode and verify that it works as
you expect. Lf it dcesa’z, nota carefully what is wrong. Retura to editing
and see if vou can detarmine the cause of the errors and correct them. Then
test che lagscn again. Rapeac the procass until 1z works perfectly. II vou
need help corrceciing either condense errors or mistakes in che running of

the lesson, call 3 consultant on TZIRM-consulc:.

-

46

Editing HELP

Introduction to Editing
What you need to know to get started)

Block Directory Options
(Options available on the page listing
the names of the blocks)

Line Display Options
OCptions available within the tlocks)

Mod Werd Cpticns

Figure 3.9 Editor PEL? Page

47

Introcuction to Editing

Press the letter of your choice

a. Blocks and Parts

b. The Line Dis=play

c. Format of Editing Directives

d. Moving Arocund in the Line Dizplay

e, Inserting, Replacing & Deleting Lines

f. Movirg Lines from Cme Location to fnother

g. Creating Displays Futomatically

SHIFT-8ACK for Main Help Index

Figure 3.10 More Editor HELP

48

To emter a block:

press the letter of the block

To create a block:
press the shifted letter of the block after which
you want to create a new one. To create block b,
press capital A.

To change the name of a block:
go into the block and press LfB.

Frequently used editing directives:

f move forward

b move backward

u move to next unit

U move to previcus unit

1 insert lines

7 replace lires

d Celete lines

s save | ines

1s insert the saved |l ines

1d insert a display

ad show the display, then change to id
space show more lines

cut leave block, ignoring changes

Figure 3.11 Sone fditing Directives

Chapter 4: Judging Student Input

Computar-based education is most effactive when there is a high degree
of interaction between the student and the lesson material. PLATO lessons
can be highly interactive because the TUTOR language allows for sophis=-
ticated interpretation of student input and for branching based on student
input. The =-arrow= command allows student input. It does two things:
plots an arrowhead at the location given in its tag, and signals the
computar that a response is expected. Execution of the program then stops
until the student presses NEXT. When NEXT is pressed, judging of the
student’s response begins. The =-answer=- command is one command used to
judge the correctness of the student’s response. Its tag is the correct

answer. The unit below shows a simple question and answer.

unit 3tates
next hawaii
at 1218

write Which state was the forty-aninth to be admitted to the Union?
arrow 1429

answer Alaska

write Mt. McRinley is there.

When this unit is executed, the question is displayed on the twelfth line,
18 snaces from the left. The =-arrow- command does two things: it plots an
arrowhead at the location given in the tag (14 lines down, 29 spaces over)

and it signals the computer that a response is expected. When the student

59

types his response, it will appear on the panel next to the arrowhead. When
the computer encounters the -arrow- command, execution of the unit stops
until the student enters his response and presses NEXT. After the student
presses NEXT, his response 1s compared to the tag of the -answer- command.
If the student has entered "Alaska", the -write- statement below the
-answer- command is executed, that is, the phrase "Mt. McKinley is there"
is displayed, and the word "ok" is displayed beside the student’s response.
If the student’s response does not match the tag "Alaska", the word "no" is
displayed beside his response. He must erase his incorrect response and
enter another one. He cannot proceed to unit "hawaii" until he has satis-
factorily completed the questione.

When a student answers incorrectly, it is desirable to display a
message that will guide him toward the right response. This can Le done

with the =-no- and =write- commands.

unit states
next hawai;
at 1218

write Which state was the forty-ninth to be admitted to the Union?
arrow 1429
- answer Alaska
write Mt. McKinley 1is there.
no
write It was known as Seward’s Folly.

With these additions to unit "states", the student will receive more help

" "

than simply the "no" judgment beside his incorrect answer. For any answer
octher than "Alaska", the sentence "It was known as Seward’s Folly" will be
displayed. When the student erases his incorrect answer, the tag of the
-write= command is also erased. If the student answers correctly, the
-write- below the =-no- is not displayed.

Cormmands which depend for their execution on matching the preceding
-answer- or -no- command are called answer-contingent or no-contingent
commands. They are executed only when the =-answer=- or =-no- with which they
are associated is matched. Answer-contingent and no-contingent =-write-
statements need not be preceded by an -at- command; they are automatically
placed three lines below the arrow. If a different location is desired, an
-at- statement can be inserted above the -write- statement.

Unit "states" accepts as correct only the response "Alaska". To allow

for responses like "The state of Alaska' or "Alaska was the 49th state

51

adnittad", some modifications to the -answer=- tag can be made. Synonyms,
any one of which is correct, can be specified in an -answer- tag by
enclosing them in parentheses; and "ignorable" words, i.e. words whose

presence or absence is immaterial, may be enclosed in < > brackets.

unit states
next hawaii
at - 1218

write Which state was the forty-ninth to be admitted to the Union?
arrow 1428

answer <it,is,was,it’'s,the,to,be,admitted,state,forty-ninch,49th> Alaska
write Mt. McKinley is there.

no

write It was known as Seward’s Folly.

With these additions to the -answer- tag, the student has more leeway in his
answer. Any word which appears within the angle brackets is ignoraed if it
occurs in the student’s answer. Responses such as "It’s Alaska." or "Alaska
was the forty=-ninth state admitted” are all judged "ok" and cause the
answer-contingent -write—= statement to be domne.

If capitalization is unimportant in the student’s response, it may be
so indicated by use of the =-specs bumpshift- statament. The =-specs=- command
sets certain specifications for interpreting the response. The tag
"bumpshift" means that all shifted keys (capital lettars are shifted keys)

will be treated as if they were not shifted, making "A" and "a", for
instance, equivalent. When =-specs bumpshift- is used, no shifted keys may

appear in the tag of the -answer-, even though they can be used by the

student.
unit states
next hawaii
at 1218

write Which state was the forty-ninth to be admittad to the Union?
arTow 1429

specs bumpshift

answer <it,is,was,it7s,the,to,be,admitted,state,forty=-ninth,49th> alaska
write Mt. McKinley is there.

no

write It was known as Seward’s Folly.

In this example, the word "Alaska" in the -answer- tag was changed to
"alaska". Note that "it’s" in the list of ignorable words must e changed

to "it7s" because the apostrophe is the shifted "7" key.

52

Spaces and punctuation marks in the student’s response are all treated
as word separators. Punctuation cannot appear in the tag of the -answer-
comnand, but the student may use any punctuation and may use two or more
spaces between words. TUTOR has commands to handle cases in which exact
punctuation by the student is required.

Incorrect responses which are reasonably close to the tag of the
-answer- are automatically marked for the student. Misspelled words are
underlined (amm=)e Words out of order are marked with an arrow =). Words
in the response which do not occur at all in the -answer=- tag are under-
scored with x (gyxxx)+ Missing words are indicated by the symbol A .

The —wrong=- command is used for matching specific incorrect responses.
A wrong-countingent -write- statement can give the student a comment

appropriate to his particular incorrect answer.

unit states
next hawaii
at 1218

write Which state was the forty-ninth to be admitted to the Union?
arrow 1429

specs bumpshift

answer <it,is,was,it7s,the,to,be,admitted,state,forty-ninth,49th> alaska
write Mt. McKinley is there.

wrong <it,is,was,it7s,the,to,be,admitted,state,forty-ninth,49th> hawaii
write Hawaii was the fiftieth state to be admitted.
no

write It was known as Seward’s Folly.

Like -answer-, -wrong- statements may specify synonyms and ignorable words.
If the student enters "Hawaii" or any acceptable match to the tag of the
-wrong- command, the sentence "Hawaii was the fiftieth state admitted.” is
displayed; and the "no" judgment appears on the panel next to his response.
All -answer- and -wrong- commands must come before the -no- command because
the -no- command causes any response not previously matched to be judged
"no" and the no-contingent -write- statement to be done. The -no- command
thus provides a way to display a comment when the student’s answer matches
none of the expected correct or incorrect responses.

If groups of words in a student’s answer are to be treated as a phrase,

this is done by separating the words by asterisks in the tag:

answer He (looked*up#*to,revered) <the> (teacher,philosopher,Aristotle)

53

The phrase "looked up to" is synomomous with the word "revered'". 1If the
student makes errors in the phrase, they are marked by a line of asterisks
(xn%%%%) Delow the phrase.

An -arrow- may have mors than one =-answer= Or =wrong=- command associ-
ated with it. Sometimes it is possible to allow for different responses
by the use of synonyms. When this is not possible or when different
comments should be displayed for different responses, two or more =-answer-
or =wrong=— statements should he used.

at 8495
write Which Hawthorme novel that we have studied explores the theme
of conflict between social tradition and self-expression?

arrow 1397

answer <The,the> Marble Faun

writa The Scarlet Letter is another example.
answer <The,the> Scarlet Latter

write The Marble Faun is another example.

Because a different comment is to be written for each right answer, two
-answer- commands ares used.

Student branching may be tied to -answer- commands. Iz an index unit,
for example, one might present several topics and allow the student to
choose which he wishes to study. Such branching can be done with the =jump=
command. The =jump= command causes an immediate branch to the unit named in
its tag. Any commands placed below the -jump=- are not done; the student
proceeds iamediately to the unit named in the tag of the -jump=-. The unit

below illustrates an index using answer-contingent =junp= commands.

unit index
at 1914
writa Choose a topic:
at 1322

write a. Gerunds
be. Nouns in Apposition
c. Relative Clauses
arrow 1939

answer a
jump gerunds
answer b

jump appos
answer ¢

jump rclause
no

write Choose a, b, or c.

54
If the student answers "a" he is sent immediately to unit "gerunds". If he

answers '"b" he is branched to unit "appos", and to unit "rclause" if he

nore
L]

answers ''c Any response other tham "a", "b", or "c¢" is judged "no" and
the comment "Please choose a, b, or c¢" is displayed. A unit reached by a
=jump- command, like those reached by pressing a function key, is a

main unit.

TUTOR commands are divided into two categories, judging commands and
regular commands. Commands which are used when evaluating a student
response are called judging commands; all others are regular commands.
Regular commands include -unit-, -next=- and the other key branching
commands, -at-, =write-, and =-arrow-. Judging commands include -gpecs=-,
-answer-, -wrong-, and -no-. Correspoandingly, the PLATO computer has two
states, regular state and judge state. When the computer is in regular
state, only regular commands are executed; when in judging state, only
judging commands are executede.

PLATO begins a unit in regular state. All regular commands are done
until an -arrow= command is encountered. The location of the -arrow=- is
noted, and any regular commands below the =arrow- and above the first
judging command are done. When a judging command is encountered, PLATO
stops and waits for the student to enter a response. When the student
presses NEXT, judging state begins. The student’s response is compared to
the tag of the first judging command. If they match, judging state ends,
and any regular commands after the matched judging command and before the
next judging command are done. An "ok" or "mo" is displayed on the panel,
and the student continues in the unit if the judgment was "ok or returns
to the arrow if the judgment was '"no". If the student’s response does
not match the tag of the first judging command, judging state continues.
Any regular commands below an unmatched judging command are skipped. If,
by the end of the unit, no judging commands have been matched, regular
state is returned to and a "no" judgment is made. The student goes back
to the =-arrow=- and enters another response. Judging state begins again.
This process continues until an "ok" judgment has been received.

The =-endarrow- command delimits the portion of a unit relevant to the
response judging for the preceding -arrow=-. It is useful when some regular
commands are to be executed no nmatter which -answer- command was matched or

when the unit contains more than one =arrow-.

55

at 895
write which Hawthorne novel that we have studied explores the thenme

of conflict between social tradition and self-expression?
arrow 13@7
answer <The,the> Marble Faun
write The Scarlet Letter is another example.
answer <The,the> Scarlet Latter
write The Marble Faun is another example.

no
write Press BACX for a list of Hawthornme's novels.
endarrow

at 2919

write This theme is central £o cee

The -endarrow= marks the end of the judging commands for the preceding
arrow. The regular commands below the =endarrow=- are not dome until the
-arrow= is satisfied with an "ok" judgment. After the judgment the last
-yrite= statement is displayed, regardless of which =answer- command was
matched. The =-endarrow= is a regular command. Figure 4.1 illustrates in
a flow diagram the execution of TUTOR judging.

If the student’s rssponse is to be completely numerical, the judging
commands =-ansv= and =-wrongv- can be used. The tag is a number or an

expressione.

unit distancea

at
writa What is the distance, in miles, between
New York aad Los Angeles?

arrow
ansv 39949

write Too far to walk!

wrongv 1594

write That’s about half the distance.
no

write It’s roughly 399d.

If you want to allow some leeway with =-ansv=- and =wrongv-, you may include a
second argument in the tag. This argument is a tolerance. It may be a

percent or an expressicn. The statement

ansv 3999, 192

56

Start at -arrow= &

execute any regular

commands below =-arrow= & above first

judging command

Y

Encounter judging command

Y

Wait for student response

Y

4

Student enters response & presses NEXT

4

Start at =-arrow=- (skipping all regular

commands) & execute
mands until student
tag of some judging
-aendarrow= or -unit

only judging com=-
’s response matches
command or until

= i3 reached

N

Was a match for student’s response

found?

no

y Ye€s

Judge '"ok" if -answer-, etc was matched,
"no" if -wrong-, =-no-, etc was matched

Judge "no", wait
for student to
press NEXT, EDIT,
ERASE, or SHIFT=-
ERASE and enter
another response

4

Execute all regular

commands below

matched judging command until another

judging command or
or =-uanit- is encoun

-arrow-, =—-endarrow-,
tered

7

Was judgment "ok"?

1 NO

A

y yes

Ready to

proceed

Figure 4.

1 Operation of a TUTOR Unit

¥4

will be matched by any student response between 279@ and

339¢. The statement
wrongv 1584¢,1@9

will be matched by any number from 1409 to 164d.

When a student enters a numerical response, PLATO evaluates the
response and then compares the value of the exprassion to the value of
the -ansv= or =-wrougv=- tag, 3o they are matched by an response that is
mathematically equivalent to the tag. Student responses of "15@@x2",
"28@¢+280", "3x1@3" will all match the tag of the =-ansv- above.

58
Exercises

Add to your existing program a new section of two question units. This
section should have its own title page. In addition, add an index unit at
the heginning of the lesson from which the student can choose either the
geometry section or the new section. For subject matter we will use infor-
mation about TUTOR. After you complete this exercise, your lesson will have
the flow of control shown in figure 4.2.

The index unit should present two choices, geometry or TUTOR. Have the
student press a letter to indicate his choice. Use the =-jump= command to
jump to the appropriate unit. The code on page 53 can be adapted for your
index unit.

The title unit for the question section should simply state the topic.
Use any graphics that you like. NEXT from this unit should go to question
unit one, and BACK to the index unit. '

The first question unit should ask the student to name the command used
for attaching units to main units. In designing the tag of your -answer-
command, allow enough leeway so that responses like "do" and "the do command”
are judged ok. If the student doesn’t get the right answer, display a hint
(use the -no=- command followed by a =write-= for this). NEXT from this unit
should go to the second question unit, and BACK to the title unit for the
questions section.

The second question unit will ask the student to define the term "main
unit". Write your -answer- tag to allow a range of responses such as "any
uni£ reached by pressing a function key'" or "the definition of main unit is
a2 unit reached by jump or a function key" and so forth. Use angle brackets
to indicate ignorable words. Provide a comment for wrong responses. NEXT
from this unit should return to the index, BACK to the previous question.

Modiify the last unit of the geometry section so that NEXT goes to the

index.

59

o index et
a b
Y
title title
A A
NEXT BACK NEXT BACK
Y Y
Pl Ql
A
NEZXT BACXK NEXD BACK
Y Y
P2 Q2
NEXT NEXT

Figure 4.2

Tlow Chart of Zxercise

Chapter S5: Variables

Within the space of a very few chapters we have seen the first steps
toward utilizing a vast computer system to provide educational macerials
quite unlike any heretofore possible. With only a few commands we have a
means of creating high quality displays. We have seen how to pass sonme
control of the learning environment to the student by means of student-
initiated branchiag. We have begun to form a basis for individualized
instruction through the immediate feedback available when judging student
responses. But much more is possible whem we explictly avail ocurselves of
one of the most obvious powers of the computer: the ability to computa.

PLATO i3 certainly capable of carrying out vast and complex compu=
tations; yet for a great many teaching strategies the only computations
necessary are simple counting and occasiomal arithmetic. For example, after
a student’s second attempt at answering a question you may wish to supply a
hint; after a third failed attempt you may want to branch the student to
remedial matarial. Or instsad of specifying all screen locations for dis=-
plays at the time of writing a lessom, you might wish to calculate the loca=-
tions for certain displays at the time the student is running the lesson.
lesson.

Por whatever computation is to be performed, the results must be stored
somewhere so they will be available for latar use. To this end, PLATO
provides a means of storing results generated as a usar execut2s any lasscn.

PLATO devotes a separate section of memory to each user to keep track of

62

that user’s name and group, user type, the name of the lesson currently
being run, the main unit being executed, and a variety of other data.
Within that section of memory are 150 "memory slots" which can be used by
the lesson being run to store numerical values. These spaces are called
"student variables”, a term which requires some explanation.

The designation "student" has two applications, one referring to a type
of user and another referring to a mode of interactiom with a given lesson.
Our user type might be "author" but when we run, or execute, a lesson, we
are said to be running it in student mode; the memory slots alloted to us
can be used by the lesson to store values. Thus all types of PLATO users,
author and instructors as well as students, have 15§ student variables.

In the PLATO context, a variable is nothing more than a memory loca-
tion, a portion of computer hardware that can store a number. A PLATO
variable may be likened to the display unit of a hand calculator. The
display unit can contain a number, positive or negative, up to a specific
size. If the hand calculator has a memory, with a keypress one can store
the displayed number in an internal memory location, a piece of calculator
hardware. On PLATO, when appropriate commands are executad, numbers can be
stored internally in pieces of computer hardware. PLATO authors commonly
refer to these electronmic devices as memory locations, "words" of memory, or
simply variables.

The concept of the student variable is an important component of the
great potential PLATO has for providing individualized instruction. A large
number of 3students may all be running a single lesson, but the lesson can
behave in as many different ways as there are students. The lesson orche=-
strates the storing and use of the contants of each student’s student
variables in a general way. The exact contents of student variables
belonging to any one student will determine how we choose to use that
individual student’s response to the lesson at any given point in the
lesson’s execution. The structure of TUTOR allows us to write a lesson as
though it were in communication with only a single set of student variables
belonging to some single generalized student, without having to worry about
the fact that many students might be running the lesson at once.

in writing lessons we can diresctly refer to a specific student variable

by its "address". TFor example, we might choose to store a quiz score i(n

63

student variable 2. Later in the lesson we can have a command which
instructs PLATO to display the contents of student variable 28 on the
screen. There are no rules or restrictions concerning which of the 15@
variables we may use. It is not necessary to start with studentc variable !
or to use them sequentially. There is, however, one step required in
addition to designating the address of the student variable: we must
indicate what notation system to use. PLATO, like most other computers, has
two different methods of storing numbers in memory locations. One form, or
format, is used explicitly to store integers, the numbers 9, 1, 2, 3, «c..
The other format is a variation of scientific notation which permits the
storing of numbers with fractional parts such as 14.5 or §.99125 or extremely
large or small numbers such as 3.0x1819 or 6.62x19727, To specify intager
format, add the prefix "n" to the student variable address. Thus a refer-
ence to variable n75 specifies at once the student variable number 75 and
integer formatting. The other format is indicated by using the prefix "v".
A reference to variable v75 refers to the same student variable, number
75, but specifies this alternats form of storage.

The prefixes n and v are not abbreviations for any words and are best
considered as arbitrarily chosen letters. N variables are also called
"integer variables"”. There is no corresponding tarm for v variables, but
numbers storad in v variables are sometimes tsrmed "floating point numbers".

Once we are accustomed to thinking in tarms of n variables and v
variables, it is easy to fall into the error of thinking that there exist two
distinct sets of variables: this is not so. There are only 158 student
variables. The arrangement of digits in any variable may be interpreted two
ways, either as an integer or as a floating point number. The n or v

designation specifies which of the interprectations is to be used.

Assizning Values to the Student Variables

One of the most powerful commands in the TUTOR language is the -calce

command. It is used to store a number in a variable:
cale nle 32

The statement is read '"nl is assigned 32." The integer 32 is stored in

64

student variable number 1 in integer, or "n", format. The symbol "« " is
called the assignment arrow. It designates the operation of taking the
numerical value of the right hand side of the symbol and storing that value
in the variable on the left hand side in the indicated format. The previous
contents of the variable specified on the left side of the assignment arrow
are lost. In effect, the previous contents are erased and a new value is
written into the memory location.

Any number, variable, or expression may be used on the right hand side

of the assignment arrow:
cale 23« aldg

Here the numerical value of the right hand side of the "« " is the contents
of student variable l§§ interpreted as an integer. That value is stored in
variable 29, also as an integer. The contents of nl@@ are not changed. The
process of copying a value out of a variable does not disturb the original
contents of that variable.

As nmight be suspected, the =-calc- command allows us to perform

calculations.
cale v37« v1@l4vl @2

The contents of student variables 1@l and 182, interpreted as floating point
numbers, are added together and the sum is stored in v37. The original
contents of vifAl and vi@#2 are undisturbed. The original content of w37 is

overwritten with the new wvalue, the sum.
calce n5@e n5¢+1

In this example, n5@ is being used as a counter. The value in n5@ just
before the execution of the =calc- is incremented by one as the command is
executed. The result is stored in the same student variable, n3@.

Besides addition, the operations of subtraction, multiplication,
division, and exponentiation (as in 1¢3) may be performed. To indicate

multiplication one may use the symbol x (not the letter x). The key used to

65

type the multiply sign is located near the lower left of the keyboard.
Alcernatively, the =calc= command will also interpret the symbol * as
denoting multiplication; this is an old convention still used by scme other
computar systems that do not have keysets containing a multiply symbol. For
division, the symbols + and / may both be used. To type a superscript to
indicate exponentiation, press the SUPER key before typing the digit of the
exponent. Lf the exponent has more than one digit you may either press
SUPER before each digit, or you may press SHIFT-SUPER, type all the digits,
_ and then press SHIFT-SUB to return to the normal line. The old coavention
of typing two asterisks to indicate exponentiation may also be used, as in
3%*%2, aquivalent to 32.

Expressions are evaluated following order of operations rules. For an
axpression without parentheses, any exponentiation is done firset, thea all
nultiplcation, then division, and addition and subtraction last. For
addition and subtraction, neither has precedence over the other. These
operations are done in left-to-right fashion yielding the same result that
would be obtained if ome decided arbitrarily to give one operatiom

precedence over the other. Lat us examine an example:
calce nl2 e« 5+ 3 xnlg

I1f ald contains the value 2, the expression to the right of the assign=
ment arrow will be evaluated as 1ll. Notice that this is quite differant
from evaluating the expression straightforwardly from left to right.

If the lattar were done, one would start with 5, add 3 to it to get 8, and
then mulciply by 2, giving l6. If pareantheses are present, the expression
within the parentheses is completely evaluated following the same operatiom

rules, before continuing.
cale nl2« (5+3)xnlg@

Here the expression (5+3) is evaluatad first; the resulting equivalent
expression, 8 x nl@, is evaluated next. Sets of extra parentheses can be
incorporated in any TUIOR expression to ensures rhat what jig wrirten is
evaluatad the way the author intended. Figure 5.1 summarizes the order of

operations in TUTOR.

66

Order of Example Value of
Operations Expression Expression
First exponentiation 42 16
¢ multiplication 16x2 32
division 198 25 29
Last addition, subraction 14=7+2 9
(from left to right) 12+8=3 17

Figure 5.1 Order of Operatioms in TUTOR

According to strict mathematics, multiplication and division are of
equal precedence and should be dome in left to right fashion. Some computer
languages follow this rule. According to standard American printing
conventions, expressions written on a single line are expected to be
interpreted as if multiplication had precedence over division. TUTOR

follows this latter convention. Thus, the TUTOR statement

calce v2@ « 3/ 4 x v3@

is evaluated as 3 divided by the product of 4 and the contents of v3@, and
not 3/4 times the value of v3d.

Should we have several calculations in a row to perform, we may avail
ourselves of a convenience huilt into TUTOR. After the first -calec-
statement, we need not repeat the command for any immediately succeeding

-calc= statement.

cale n2< nl+l
n3<« n3+l $$ a new calculation without "calc" typed
né<« né+l $$ another new calculation

at 512

write Finished incrementing counters.

calce n47 « 10@ + 5 x n4 S$S "calc" must be typed here

The arithmetic expression on the righthand side of an assignment arrow
may contain both n variables and v variables. The fact that numbers might
have been stored in different formats presents no problem for PLATO because

for calculation purposes retrieved n variable values are converted to v

67

variable format before use in the calculation. If we try to store the
results of our calculation in an n variable, that is we designate integer
format for storing, the value of the expression will be rounded to the

nearest integer:

calce n2% « 49
v3g « 100
n4éd « 1.99 + n2f / v3@ $S expression = 1.49; né4@ contains !
n4l « 1.91 + n2@ / v3@ $$ expression = 1.58; n4l comntains 2

Maming Student Variables
When a lesson takas on any complexity, refering to the student

variables by their "primitive" names, nl, n37, vl2,... can become a source
of confusion and mistakes. The values kapt in student variables repre-
sent certain quantities having meaning to the lesson author, so it is
desirable to give them names suggestive of their function. The =-define-

command associates a name with each variable used.

define score=ml@,wrongs=mll,total=n2@,percent=v3g,

quizl=né@,quiz2=nél
cale score< total-wrongs
cale percent<« (190.fxscore) /tocal

You may name the ‘variables in any way that is sensihle to you. Defined
names must begin with a letter and must not be more than 7 characters long.
The name may contain digits in addition to letters. A single -define-
command can be used to define a long list of variables, extending to many
lines if necessary. Notice that for continuation lines of a -define=-
statement the command portion of the line is left blank and the continuation
appears in the tag position. Note also that several definiticons may cccur
on a single line provided that they are separated by commas. The synbol =

should be interpretad as '"is equivalent to". The defined name may be used

68

only after the point in the lesson where the -define=- appears. In the above

example, when PLATO reaches the line

cale scoree total-wrongs

it refers to the previously occuring -define- to determine which student
variables are intended by the names '"score", "total", and "wrongs". The

calculation performed is the same as if one had written 2

cale nlfe n2@-nll

Clearly, by carefully selecting names for the student variables used, an
author makes his lesson much easier to read and removes for himself a source
of mistakes in writing the lesson.

A highly recommended practice is to place the =-define-= command at the
very beginning of a lesson. As you continue developing a lesson and find
that you need to use more variables, go back to the beginning and add the
new variable definitions to the original list. As a general rule of good
programming, all definitions should be kept together under a single -define-

cormand at the beginning of the lesson.

Displaving N Variables

Because the value in a student variable can change during the
execution of a lesson, a dynamic means of showing the current wvalue

i3 needed. The =-show= and =showt- commands serve this function:

define score=ml@,...

at 1919
show score

These statements disply the contents of the variable '"score" in integer

format starting at location 191g.

69

Quite frequently, it is desirable to display the value of a variable in
the middle of some text. This could be dome with two =write- stataments and
an intervening =-show= or -showt=-, but a more comvenient way is to "embed"

the =show= or =-showt- withia the tag of the -write- statement:

at 2795
write You have answered {show,corrects) items
correctly on the first attempt.

If "corrects" contained the value 12, this TUTOR statement would appear on
the screen as "You have answered l2 items correctly on the first attempt.”
The embedded =show= can be abbreviated: <« s,corrects)®. Embeddiag =show-
cormands within =writa= commands has two advantages: the lesson code
resembles more closely the actual display seen by the student, and the
statement is treated as one statement for erasing purposes. Recall that
when a student presses NEXT or ERASE after an incorrect answer, the tag of
the last (and only the last) =write- statement is erased. A -write- with an
embedded =show= is completaly erased in such a case.

A glance at the keyset shows that the embed symbols are not part of the
standard character set. These are two of 2 set of special symbols. To gain
access to them, press the shiffed O key and then the kay corresponding to
the special character. The QO key is located to the right of the HELP key.
SHIFT=-C1is called the ACCESS key. To type the embed symbols press ACCESS,
then @ for «, and ACCESS, then 1l for ».

For displaying integers within a line of text the -show~ command
accomplishes the task perfactly. The leftmost digit of the integer appears
at the explicity or implicitly specified screen location so that it is not
necessary to account for the possiblility that the integer might be only omne
digit long in some cases, two digits long in others, and se forth. Thera
are other applications, however, in which the position of the rightmest
digit, rather than the leftmost, needs to be specified. The creation of a
table of numbers is such a case. TFor a pleasing display one might want all
integers in a column to have their last digits aligned. An alternative to
the -show- command exists for this purpose. The =-showt- command, or
"tabulated show', positions the intagers at the righthand side of a field of

character positions. If the length of the character field is not expiicicly

79

stated, PLATO assumes a length of 8 characters. If desired, an alternate

field length can be specified in a second argument of the tag.

define count=n37,item=n38, ...

.

at 519
showt count $$ rightmost digit at position 517

at 6l4
showt item,4 $$ rightmost digit at position 617

For the first =-showt-, the first character position is at screen
location 51%, cthe second at 511, and so on with last, the eighth, position
at 517. Should the number of digits in the value to be displayed be less
than the number of character positions in the field, PLATO displays spaces
before the number. If the number is too large to fit in the number of
spaces you have provided, the field will be filled with asterisks to
indicate this.

The =-showt- command also has an embedded form which can he used to

display labeled table entries.

define popl=nl2P,pop2=n2l,pop3=n22,...

at 419
write Current Population Distribution for Model City
at 618

write Sector ! 4showt,popl,8)
Sector 2 {showt,pop2,8»

Sector 3 4 showt,pop3,3»

The rightmost digits of the three population figures will be aligned. Like

form: < t,popl,8» is interpreted to mean <showt,popl,&>.

71

Displaying V Variables
Displaying v variables containing "everyday" values -- not too large,

not too small == is quite similar to displaying n variables. Both the
~show= and the =showt- commands may be used. The three-argument form of the
-showt= cormand is the most straightforward v variable displaying tool:. As
in the case of n variables, the first argument tells what value is to be
shown, the second argument tells how many character positions to supply

before the decimal point, and the third, how many after the decimal point.

define num=nld,total=v2f,nean=v2l],

loc=n4d
cale aums 42
totale 29G7.9
loce 2519
cale meanw total/num $$ "mean" now equals 69.23571...
at loc
showt mean,3,2 $$ displays 69.24 (one leading blank)
at loc+19@+3
showt mean, 3 $$ displays 69 (defaul:z, no third argument)
at loc+28G+2
showt mean, 1,2 $$ displays *%%%* (ervor default, field tono small
at loc+30@=6

write Mean: qt,mean,3,2» $$ Mean: 69.24 (embedded form available too)

The great versatility of the -showt=- command ncw becomes evident. With the
three=-argument form, a properly rounded value may be displayed with any
format we choose. 1If the third argument is zesro, or if only two arguments
are given, a v variable will be displayed without a decimal point and thus
appear to be an integer. This parallels the facility of making an n vari-
able appear as though it were a floatiang poiat number by displaying it with
a thrae—argument =-showt-.

As a3 mere counvenience, a one-argument defaulc form exists. Like the
case for n variables, a field of eight charactar positions is assumed. For

v variables this field is partitioned to provide four positions befores the

decimal, onme position for the decimal point itself, and three positions for

digits following the decimal point.

at 39@3
showt mean $S displays 69.234
at 3198

showt mean, 4,3 $S identical to preceeding =-showt-

Svstam Nefined Variables

Certain kinds of wvariable information are used so frequently in su nany
different applications that the PLATO systen keeps the information for each
user and makes it available to the lesson author. These variables are
called system defined variables or system reserved words. Their names and
functions are already determined by the system, and thus you may not define
then in vour =-define- command. But you may use them in vour lesson just as
you would use any student variable. There are more than 1{9 sys:cﬁ reserved
words, but you nend be concerned only with the most commonly usced ones, such
as '"ntries' which contains the number of attempts the student has made to
answer the current questions; '"where' which contains the current coarse grid
screen location ("wherex" and "wherev" contain the current fine 2rid x and y
locations); "jecount”, the nunber of characters in the student’s answer.

Shown below are two versions of the same unit. One uses a student
variable to count the number of attemﬁts made by the student; the other uses

tae reserved word ntries" for the same purposc.
P

define attempt=n35

arrow 1219

answer water

cale attenpt< attenpt+l

write You got it in <s,attempt)» tries!
wrong (earth,air,fire)

calc attempt< attenpt+l

write Try one of the other four clements of the ancients.
no

calce attempt< attenpt+l

write t’s My,

73

arroc 1219

answver watar

vrite You got it in 4s,ntries» tries!

rone (earth,air,fire)

write Try one of the othker four elements of the anciants.

naQ
write It’s Hy0.

Alchough the two units do the same thing, the one using "ntries" is simpler
because the incronenting is taken carc of automatically. Svsten defined
variablas are like student rariadbles in that each user has his own, and they
may he used in any place (-calc=- coumand, =-show=- comnand, or expression)

that student ~variables can be used.

Tariables wich MNumerical Responscs

The introduction to the use of -ansve- and =wrongv=- commands
demonstrated applications in which explicit responses were anticipated, that
is, a speciic number appeared in the tas. "e know now that a student

variahle or cxpression nmay he substituted in the tag.

define tecrml=nld,cernl=nll,loc=n2?

nunit satup
calc tormle 12 S$$ give values to two terms to
termnle 5 33 be nmultiplied
locs 12153 S$ screcn location for problems
junp muletprob $S prescant multinlication problems to student
.
unit muleprob SS displays a wmultiplication problem in
next nextprob 535S schoolbook fashion
at loc
urite qec,termnl,2 €S note that 2 spaces precede =-showt=-
z qt,carm2, 2> $S rmult. sisn appears at left
at Lloc=1 77
write ____ SS provide underscora
arrow loec+2%@-1 $S arrow apnears to left of underscore
specs ao0ps $§$ "noops" means "no aritimetic aperators allowed in raspons
ansv tarml x tarm2 4

wrice Corzect!

wronew terml + term2 SS check for comron mistakes
urita Mulciply, don’t add!

endarrow

74

In unit "mulzprob', the correct answer depends on the current values of
variables "terml" and "term2". This general utility unit, and others like it
for addition, subtraction, and division problems, could be used to provide
an elementary math student with an arithmetic practice drill. Such units
are general in that the correct response and specific wrong responses are
generatad at the time the student is running the lesson. Only the general
formula for the responses need be explicitly statad at the time the lesson
is created by the author.

) The -ansv= and -wrongv=- commands permit the student to type an express=-
ion (such as 12x5). The expression is evaluated and the result is compared
to the value of the tag to determine whether a match occurred. This
attribute makas these commands too powerful to be used as they stand in a

lesson testing arithmetic skills. The added judging specification

specs noops

causes a "no" judgement to be rendered if the student’s response contains an
arithmetic operator (+, =, x, *, =, or /). In most applications one is
testing the student’'s ability to solve a problem by piecing together an
appropriate arithmetic expression. Having —-ansv= and -wrongv- evaluate
expression is the more general, default action. In the special aoplication
of testing arithmetic skills, this more general action should be disabled

with the ''moops" tag for -specs-.

75

Exercises

Write a multiplication drill which allows the student to do as many
problems as he likes. The problems will be Nxl, Nx2, Nx3, etc, where N is
any number you choose. You will need at least two defined variables, one
for the multiplicand and onme for the multiplier. The program will have two
units, an initialization unit which sets one variable to the multiplicand
you choose and sets the other to §, then jumps to the second unit. This
second unit is the actual drill unit. In the drill mnitc, set NEXT to go to
the drill unit again, and BACK to go to yvour index. Add one to the value of
the second variable. Display the two variables as a multiplication problem
(for example: write <s,numl)» x <s.,num2)). Display the arrow. If the
answer is correct, write "Press NEXT for another problem or BACK to return
to the index". Check for the specific error of adding the two numbers. If
that mistake is made, write an appropriate comment such as '"Remember to
multiply, not add!". TFor other errors, display some general comment such as
"Try again”". Remember that the =-ansve= and -wrongv- commands can have

defined variables and operators in their tags.

Chapter 6: Conditional Statemeats and Iterative Statements

One of the most useful ideas in computer programming is that of per=-
forming an operation only if a certain condition is met, or performing
one of several different operations depending om a condition. Using infor-
mation in student variables as the condition, most TUTOR commands can be

written in a conditional format:

command exprassion.case for negative.case for J.case for 1,
‘ecase for 2.case for 3,...

When a conditional command is encountered, the expression in the tag is
evaluatad and rounded to the nearest intager. If the expression is nega-
tive, the argument in the negative position is used; if the expression is
g, the argument in the zero position is used; if the exprassion equals I,
the argument in the one position is used, and so on. The last listad case
is used not only for the value corresponding to its position, but also for
all greater values. If no operation is to be done for a particular value,
an %X is used in that position in the tag. Below is a conditional =-jump-

command .

jump nl,trig,geon,algebra,x

If nl is negative, there will be a =jump= to unit "trig"; if nl equals 4,

Chapter 6: Conditional Statements and Iterative Statements

One of the most useful ideas in computer programming is that of per-
forming an operation only 1f a certain condition is met, or performing
one of several different operations depending on a condition. Using infor=-
mation in student variables as the condition, most TUTOR commands can be

written in a conditional formact:

command expression,case for negative.case for @.case for 1,
case for 2.case for 3,...

When a conditional command is encounterad, the expression in the tag is
evaluated and rounded to the nearest integer. If the expression is nega=-
tive, the argument in the negative position is used; if the expression is
@, the argument in the zaro position is used; if the expression equals 1,
the argument in the one position is used, and so on. The last listed case
is used not only for the value corresvonding to it3 position. but alsc for
all greater values. £ no operation is to be done for a particular value,
an x is used in that position in the tag. Below is a conditional -jump=-

command .«

Jump nl,trig,geon,alzebra,x

If al is aegativa, there will be a -jump- to unii "trig"; {if al equals 4,

8l

The two statements do the same thing, but the first requires counting the
x’s to determine for what value of "prob" unit “pictures” is done. The
second sctatement shows at a glance that the unit is attached when "prob"
equals 4.

Two or more logical expressioms can be tested with the use of Sand$

and or, e.g.

do (prob=4) Sand$ (review=-l),extra,x
jump (tzies>2) Sor (score<7@),morep,x

The =do=- statement causes unit "extra" to be dome only if both conditions
are true. The =-jump= is done if either comndition is true. With Sand$, both
conditions must be true in order for the entire expression to be true. With
Sor$ the true branch is taken if either condition is true.

Another conditional structure in TUTOR is the -if- command and its
associates. The =if-, =elseif-, =else=, and =endif- commands allow the
testing of logical conditicns and the execution of specified commands based

on the condition.

if score>9g
. write Zxcellent!
elseif score>8d

. write Cood work!

elseif score>79

. write You completed the problems with a score of «s,score).
else

. writa Your score on the problems is <s,scored. Lat’s review.
endif

The expressions used in the =if- structure must be logical expressions. The
expression in the tag of the =-if- is evaluated, and if it is true, the
indented commands below the =if= are executed. If the expression is false,
the indented commands are skipped and control passes to the -elseif-. That
expression is evaluated, and if true, the indented commands are executad.

£ the expression is false, each =elseif- in turn is treated, and if all are
false, control passes to the =else-=. The commands below the -clse- ara
executed if none of the previous conditions holds true. The =-endii- serves
as a marker for the end of the structure.

Statements below =if-, =-elseirf-, and -else-= must be indentad: =the line

must bSegin with a period followed by 7 spaces. To type the period and 7

spaces, prass MICRO-period or press period and then TA3.

82

Iterative Statements

We have seen how to attach units with =do=. If the unit is to be
executed several times consecutively, the iterative form of the =do= command
is used. The iterative form of =do- is

do unitname,index variablee starting value,ending value,increment

A typical iterative =-do- statement might be

do counter,nls 1,14,2
This means "do unit counter while nl goes from 1 to 1 in steps of 2." The
increment is optional, and if left out, a ! 1s assumed. The statements

below execute unit "box" three times.

unit drawit

calce corners 814

do box,counte 1,3,1

at 495

write See the boxes!

*

unit box

box corner; (corner=-2@G¢+29)
calc corner< corner+44¢

The =calc=- command sets '"corner” to.SIG. The variable "count" 1is set to
1, and unit "box" is executed. After "box" is executed, "count" is incre-
mented by l. 1If the resulting value is not greater than the ending value
(3 in this case), uniz "hox" is executed again. The value of the express-
ion (count-increment) and the ending value are again compared. This
continues until (count+increment) is greater than the ending value.
Unit "box" is executed three times, drawing a box at three different
locations on the panel. The action of units "drawit" and "box" are shown
in the flow chart in figure 6.1.

It is often convenient to choose starting and ending values which can
be used within the loop. We could rewrite units "drawit” and "box" in this

manner:

83

unit drawit

do box,corner< 313,16143,400
at 4@5

write See the boxes!

»*

unit hox

box corner; (corner-29@+29)

The valua of "corner” is set to 819 and unit "box" is executed. OCn the next
iteration the value in "corner” is incremented by 4@¢, giving 1213. Tnit
"hox" is executed with the new value. Variable "cormer” is again incre=-

mented by 489 and unit "box" is executed with the value 1619 in "corner”.

set draw a add 434 is end of
corner box to count locp
to 818 with corner greater con-
set 1l cwer add ¢ than yef tirue
ceunt ™ left at to 3? with
to 1 loca- count unit
tion cdrawit
corner
ipo

igure 6.! TFlow chart of itesrative =-do=-

Sometimes it is advantageous to put repeataed code within the current
unit rather than in an attached unit. For example, lengthy =calce- state=
ments will execute much faster if written on consecutive lines than if
intarspersaead among other code or dispersed among attached units. The
-doto= command, which repeatedly executes statements within the current
unit. A statement label marks the end of the code to be repeatzadly
executad. These units present exactly the same diplay 3s those above, but
the variabla "corner” serves as both the index variable and the locatiom of
the lower left corner of the drawing. Tigure 6.2 shows a flowchart of the

modified units.

unit draw3

doto Jbox,corner< 313,1619,409
box corner: (corner=-290+23)
3box

at 4@5

write See the boxes!

84

The statements between the =-doto- and the statement label =3box- are
executad repeatedly until the index variable plus the increment is greater
than the final value. After the last iteration., the commands below the
statement label are done. A statement label must hegin with a number and
must be 7 or fewer characters long. Although the examples of -doto=- in this
chapter have all used constants for the starting and ending values of the

loop, variables may be used.

set draw a add 488 1s end of
corner box to corner loop;
to 819 with value greater — contin-
| ower of than Y ue with
left at cerner 1619 unit
corner drawit
/e
Figure A.2 TFlow chart of modified unit "drawitc"

The =-branch= command 1is also used to pass control of execution within a
unit. Like =-doto=-, it refers to a statement label within the unit. It
causas execution to skip to the command below the statement label referred

to in the tag. The =-branch- command may be used counditionally:

uniz endprob

if score>70@

. jump alldone

else

o calc revue -1

. junmp probs

endif

*

unit probs

branch revu,x,lskip S skip =write- if not reviewing
at 385

write Review

lskip

at 1215

write eeiane $$ first problem

.

85

The variable "revu" is set to -1 only if the studeat is reviewing the
problems. If so, the word "Review" appears in the upper left cormer of the
screen. For students who are not reviewing, the commands between the

=branch= and the statement label "lskip" are not done.

Indirect Refarencing of Variables
So far in our use of variables, we have referred to them directly, by

name, and in =-define= by number. The primitive names may have their number
enclosed in parentheses: n(42) is exactly equivalent to n42. The feature
is convenient when using iterative operations because it allows executing

the same operation on several comnsecutive variables. The TUTOR code below

uses indirect referencing to display the contents of nl through nld.

doto lshow,counte 1,19
at 295+ (count*1dg@)
show n(count)

lshow

on the first iteration, the defined variable "count" has the value 1, so the
statement =-show n(count)= is equivalent to =-show n(l)= or =show nl=. On the
second iteration, "count” is equal to 2, so the tag n(count) is equivalent
to n2; etc. 3y using 2 name instead of a number, we have referred to the
variable indirectly.

Indirect references may be set up in the =define-= statement:
define choice(xx)=n(xx)
The "xx" is a so=-called dummy argument. It is not defined. When the
variable "choice" is used in the program, the value given in parasntheses is
substituted for the "xx". TFor example, the statement =-calc choice(4)e l7-
stores the value 17 in n4. With a =-define-= such as

define choice(xx)=n(lZrxx)

"choice(l)" refars to variable 11, "choice(2)" refers to variable 12, and so

forthe.

86
The code below shows a =doto=- loop using a defined function.

define rate(xx)=n(xx+59)
index=nl159

doto l@show,indexe 1,190

at 205+(index*12@)
show rate(index)
1@show

On the first iteration the contents of n51l are shown, on the second, the
contents of n52 are shown, and so on through néd.

These features can be used to show on an index page which sections the
student has completed. A variable can be set in the last unit of each
section. In the index unit, the variables can be examined, and for each
variable which is set (indicating that the student passed through the final
unit) an asterisk can be written on the screen. The units below show
how this might be dome.

define done(zz)=u(3@+zz) $$ n3l, 32, 33 used as flags

lindex=n34 $S n34 is index for loops
cale done(l)« done(2)« done(3)« @ 3 set 3 vars to @
*
unit index
at 919
write Choose a topic:
at 1415

write a Pulse Rate

b Blood Pressure

c¢ EXKGC
at 2019
write Topics you have completed are marked with *
" doto Jparts,lindex« 1,3
at 192@3+(29@x1lindex) $$ move down 2 lines
writec done(lindex),,,* $$ write * if value = 1

3parts
*

* more TUTOR code

*

unit endpr $$ last unit of part a

cale done(l)e« 1

* more TUTOR code

unit endbp $$ last unit of part b

cale done(2)« 1

* more TUTOR code

unit endekg $S last unit of part c
cale done(3)= 1

* mAava TITTNR ~AAda

The values of
of the topic.,
zero, nothing

is written on

87

"done(1)", "done(2)", and "done(3)" are set in the last unit
In the index unit, those variables are examined. If they are
is written. If the value of any one of them is l, an asterisk

the screen beside the correspounding topic.

88

Exercises

Modify the multiplication drill from Exercise 5 so that the user
returns to the index after 8 problems rather than at his discretion. This
can be done by using a variable to count the number of times the problems
unit is executed and including a conditional -jump= which returns to the
index when the variable reaches a value greater than 8. Also add condi-
tional statements to show the student the correct answer after 3 incorrect
attemptse.

Both these modifications can be made using =if- structures instead of

commands in the conditional form. You may wish to try both approaches.

Optional Exercise
Add the necessary commands so that the index page of your lesson

indicates which sections (geometry, TUTOR, multiplication) the user has
completed. You may indicate completion by an asterisk or some other

symbol, or by writing the word "completed" next to the topic.

Chaptar 7: WMore Judging Capabilities

Ve have seen how to use —-answer-, =-wrong-, =-ansv-, =wrong/-, and -no=-
to judge student responses. In this chapter we will comsider judging and
setting a variable in one step with the -match=- connand; storing the respounse
in variables with =-store- and =-storea-, accepting responses unconditionally
with the =-ok- command, and forcing immediate judgment with the -long=- and
-force=- ccmmands. We will also examine features of the =-specs- command.

The maxzirun number of characters normally permitted in 3 student
response is 15F. This default can be altarad by the =long=- command. The
tag is the number of characters (from 1l to 30@) to be allowed. The -long=-
command should follow the -arrow- and precede the first judging command.
Then the student’s response reaches the maximum number of characters, no
nore characters can be typed. The student must press NEIT to initiate
judging or else erase some characters. If desired, judging can be initiatad
as soon as the length limit is reached, without the student’s pressing NEXT.
This is accomplished with =-force long=. then =long l- is used, irmmediate
judgment is automatic; no =-force long=- is necessary.

The -match- command searches the student’s responsa for one of a
number of listed words and sets a variable indicating which one was found.

A judgment is always made by the =-match- command; judging state ends and the

s "

regular commands which follow are executed. The syatax of -match- is:

match variable,itemd, (iteml,synonyml), (item2,synonym2),iten3, ... itamm

9¢

ror exanple:

match nl,a,b,c,d,e

If the student responds "a" nl is set to @, if he responds "b" nl is set to

l, and so forth. If the response matches none of the listed items, nl is

set to -1 and a "no" judgment is given. The code below shows the use of

-long l=- and =-match= in an index unit.

unit index

at 745

write Press the letter of the topic
you want to studye.

at 914

write a. Verbs

be MNouns
c. Pronouns
de Adjectives & Adverbs

inhibit arrow SS so arrow won’t show on screen
arrow 145

long 1 $S student needn’t press lEXT
match part,a,b,c,d
jump part,x,verb,noun,pron,ad,k

write Choose a listed letter, please.

As soon as the student presses a letter, judging begins hecause of the ~long
l= statement. If his choice matches an item in the tag of the =-match- a
-jump= to the appropriate unit occurs. If not, the -write- below the =jump=-
is done.

A student’s input may be stored in variables. The =-store- command
evaluates a numerical response and stores the resulc in the variable named

in the tag.

store vi6 8S stores result of numerical response in variable 16

The -store= command is a judging command. Other judging commands which we
have studied cause judging state to end when they are matched; =-store-,
howerar, ands judge states only if the response cannot be evaluated. Things

which =store= cannot evaluate are non-nunerical input and invalid

9l

expressions (ea.g. "2x12+"). This is a convenient feature hecause it allows
stnring the student’s response, continuing judging, and comparing the
response to the tag of another judging command. The stored response can he

displayed. In the TUTOR code below, the student's reponse is stored in vif.

arrow 12138
store V1@
write Eater a number or expression.

ansv 712
write Good work.
no

write The correct answer is <s,v12». You said
qs,vi@dp». Try again.
The =—7rite= bdelow the =-store=-, since it is a regular command, is done only
if the student’s expression is invalid. TFor valid expressions, judging
state continues. The -write- is skipped and the response is comparad to the
tag of the -ansv=-. The =write= below the -no= shows the student his own
responsa as staored by the =-stora= command.

When a =-store—= command is usad with no other judging commands, it is
necessary to end judge state. The =-ok- command cnds judge state
unconditionallv. Iz is just like the =-no=- command except that it gives an
"ok'" iudsment rather than a "no”. When in regular state after judging
state has ended, it is possible to switch back to judging state with the
-judge= command. Some tags of =-judge= are "continue", which switches back
to judge state, and "ok" and "no" which return a judgment of "ok" or "ao"
respectively and rerain in regular statz. Since =-judge= is used after a
judgment has been rade, it is of course a regular, not a judging, command.
A conditional use of -judee= after a =-store- command allows for checking
that the student’s number is within an allowed range. Illustrated below :is

the use of =-store-, =-judse=, and the system reserved word "judged" which has
the value -1 if the judgment was "ok", @ if a -wrong=- command was matched,
and 1 if a -no- was matched or a =-judge no=- was matched.

The student’s response is stored in the defined variable "topic". The -ck=-
ends judsing state so that =-judge=, a regular command, can oe used to alter
the judgment if the number is ocutside the permitted range. If the nunber is
cuz of range, the judgment is switched to "no"; if not, no change is made in
the judgment. The =writcc- based con the value of the systoem raserved word

judged'" displavs a message if the judpment was "no'.

unit index

at 735

write Press the nurber of the topic
you want to study.

at 919

write le Verbs

2. XNouns

3. DPronouns

4o Adjectives & Adverbs
inhibit arrow S$$ so arrow won’t show on screen
arrow 105
long 1 $S student needn’t press NEXT
store topic
write Choose a listed topice.

ok
judge (topic < 1) Sor$ (topic > 4),no,x
Jump toric,x,x,verb,noun,pron,ad,x

writec judged,..Choose a listed topic.

Up to now we have used variables only for storing numbers, bhut
alphabetic characters can be stored as well. Alphabetic information can be
stored in variables with -storea-, a judging command. The =-showa=- command

displays the contonts of a wvariable in alphanumeric forme.

define stunane=nl

unic name
at 1408
write WVhat do you want PLATQ to call you?

arrowv 1510

storea stuname §8S store answer as characters
ok SS end judge state

write Fine,

showa stuname §$ display contents of variable

The -storea- cormmand does not end judge state, so it must be Zollowed by the
-ok= command. The =-ghowa= can be embedded, just like =-show= and =-showt=-.

The unit above conuld be rewritten like this:

unit nane

at 1408

write What do you want PLATO to call you?
arrow 1614 ,

storea stunane $$ store answer as characters
ok $S end judge state

write Fine, < a,stuname)

83

1 wvariables, rather than v variables, should be used for storing
alphanumeric information. Up to ten characters can he stored in each TUINR
wariable. We can think of each TUTOR wvariable as having 1@ "places" for

characters, like this: OIITITIT]. The -atoctea~ comcand places the

characters in the variable starting at the left. Thus the unit helow

unit nane

at 1498

write tWhat do you want FLATO to call you?
arrow lAL3

storea stunane $$ store answer as characters
ok $$ end judge state

write Fine, < a,stuname)

places the student’s name in "stumame" like this:

Ib[1]1]L

A -chowa=- of the variable produces "bill". A capital letter takes up two
characters, one for the shiift code and one for the letter itself. So if the

student uses a capital, the ‘variable looks like this:

lefefefaf [|] 1]

A =-showa= of the wvariable shows "Bill".

Both =-storea=- and -showa= have a default length of 14. Thac is, unless
vou specifv otherwise, =-storea- 3tores up to lP charactars and -showa=-
displays up to !@#. If you specify a longer length, the next consecutis

variable is used for the characters Sevond the tenth.

define stuname=nl
* n2 laft open to allow for a name up to 2@ chars long

index=n3
.
unit nane
ac 1498
write hat do you want PLATO to call you?
arrow 1617
storea stunane,2@ §$ allow up to 29 chars

ok
write Fine, < a,stuname,2P» $S display contents
* of "stuname" & of Zgllowing variable

94

A student rasponse like '"Mariannette" will be stored like this:

(n]afzi]a]nfa]e]t]

Lelel TITT 1T

The first 1@ characters are stored in nl and the remaining characters in n2.
le have seen that the =-specs=- command sets specifications for
interpreting the student’s reponse. The tag of "bumpshift" causes an "ok
judgnent for responses which match the =-answer- tag in all respects except
capitalization. Other tags set other speccifications. A single =-specs-

cormand may have several tags:

specs okspell,bunpshift,noorder
indicating that spelling, capitalization, and order of words are not
important. A response which matches a subsequent author answer in all

respects but these three is judged "ok". For example, the commands

specs okspell,burmpshift,noorder
answer <george,general> washington was <the> {irst president

cause an '"ok" judgment for responses such as '"The first president was
Vlashington'" or 'Ceorge Weshington was first President'.

The tags of =-specs=- can he divided into five functional categories:
those which affect spelling and punctuation, those affecting extra words and
word order, those dealing with numerical responses or parts of responses,
those which affect markup of the response and automatic feedback, and those
affecting letter-number interpretation. Complete details of all these tags
can be found in AIDS.

The =-specs=- command serves another function besides setting judging
specifications. It is an important marker in the execution of TUTOR. After
any judgment is made, if there is a -specs- command, control returns to the
-specs= and any regular commands between the =-specs= and the next judging
command are executed. This .s done whether the judpment was ''ok" or "no",

so it is a convenient place to put commands which should be done no matter

95

which judring command was matched. The TUTOR code helow shows the use of

-spacs= as a narker.

arrow 1397 .
specs
at 1519

writee spell,.Underlining indicates a misspelled word.
answer (epidemiolany,cpidemiological,epidemic) <concerns,matters,intarests>

do epidenic

answer (patholorr,pathological) <concerns,matters.,interasts>
do path

no '

wurice Press DATA for some review nmaterial.

The =uritec= based on the system raserved word "speall" is dome if the
student missnells a word in either of the =-answer- tars. The marker
function is fulfilled by =-specs=- whetier or not it has a tag. If there is

nore than one =-specs= associated with an -arrow-, the last one serves as the

narker.

96

~xercises

l. Add a unit at the beginning of your program to ask the student what he
wants to be called. Store the name, and display it at that point, and if

you wish, at any other appropriate points in the lesson.

2. Add a -long l=- and to your index unit. Change the index unit so thac,

rather than =-answer- commands followed by =-jump= coumands, you use either

-match= and a conditional -junmp= or =store-= and a conditional =-jump-.

3. Add a -writec=- to the multiplication drill to display "Cive a value, not
an expression” if the student uses mathematical operators in his response.
The =writac= will be based on the system reserved word "opent”. To avoid
repeating the =writec- aftar every judging command, place it below the

-specs= cormand.

Chaptar 3: Special Rranching

e have used the NEXT, DACK, SHIFT-IEXT, and SHIFT-BACK kevs
extensivaely to move to a different main unit. The HELP, LAB, DATA, SHIVI-
HELP, SHIFT-LAB, and SHIFT-DATA lieys, referred to collectively as help=tvpe
keys, ars used to provide help to the student. They may Se usad in two
diffmrent wavs: to provide help in the current main unit 3r to provide help
in a new main unit or series of main units. To provide help withia the
current main unit, use the -helpop-, =-labop=-, =dataop=-, =helplop=-, =lablop=-,
and =-dataleop- commands. The -helpop=- command activates the HELP lkey, and
the =helplop= command activates the SEIFT-HELP key. The same is true Zor

the other "op" commands: the 1l indicates the shifted key. The "o" and "p"
in the name stand for "help on the same page."” The tag of the -helpop=- (etc.)
cormmand is the name of the unit to be actached if HELP (etc.) is pressed.

The statasment
labop hints

will cause unit "hints" to be executed if LAB is pressed. Aftar unit
"hints" is executed, the student continues in the main unit at the point at
which he pressed the key. Thesc commands work just like -do=- axcept that
the unit is attached under control of a student keypress.

The use of help on the same page is illuscrated below.

98

unit verbs
helpop endings
at 382

write Fill in the blank with the correct form of the wverb "finir":
Press HELP for help with the endings.

doto 9verbs,person<« 1,9

at 638+(20@*person)

writee person,,,’n,Tu,Elles,Nous,Vous,Il,Je,Elle,Ils

draw 6@8+(20F*person)+6; 6@8+(2@F*person)+19

at where+2

write les lecons 3 trois heures.

arrov 6@8+(2@@*person)+5

answerc person;;:finit;finis;i;finissent:finissons;finissez;
finit;finis;finic;finissent

endarrow

Sverbs

*

unit endings

at 2892

write Endings for ir verbs:
is issons
is issez
b iy issent

The student nay press HELP at any time, and be shown the -write- statement
in unit "endings'. After the display is shown, the student continues at his
current place in unit "verbs'.

The =helpop=-, etc., commands provide help on the current display, and
thus are used when the information to be shown is short and immediately
relevant to the details of the current main unit. Sometimes it is useful to
cive longer and more general help. The commands =-help-, =-lab-, -data-,
<helpl-, -labl-, and =-datal- provide help in a new main unit. If one of
these commands is present, when the student presses the corresponding liey a

help sequence is initiated. A help sequence has several automatic faatures.

The student is branched to the unit named in the tag. The help sequence may
be one or more units long. When the help sequence is ended, the student is
returned to the beginning of the main unit from which he pressed the help-
type key. The main unit from which the help-type key was pressed iIs called
the base unit. The system automatically remembers the base unit, so it is
possible to use the same help sequence in several different places and yet
return to the correct base unit at the end of the help sequence. The end of
the help sequence is marked by an -end help- statement or simply an -end=-
with no tag. DPressing !'EXT in a unit containing an -end- statement or

pressing BACY. or SHIFT-BACK in any unit iIn a help sequence returns the

99

student to the base unit. The tag of the =help=- (or -data-, etc.) comnand
is the name of the unit to proceed to if HELP (or DATA, etc.) Is pressed.

The units below illustrate a help seqence.

unit textl
next text2
back intro
help hl
unit text2
next text3
back textl
help hi
unit text3
next texté
back text2
help hl
unic hl
next h2
unit h2
hack
. end help

"

The HELP? key is active in units "textl", "text2", and "texz3". Pressing
HELP takas the student to unit ™1". NEXT from unit "h1" goes to unit "h2".
Thile in unit "h2" che student may rewview unit "hl'" by pressing BACK.
Pressing BACK from unit "hl" returns the student to the unit from which he
pressed the HELP kev. Pressing SHIFT=-RACK from either of the help units
returns the student to his base uniz. And hecause unit "h2" contains the
-end help= statement, pressing NEXT from uniz "h2" also returns the student
to the base unit. A flow chart of these units (Zigure 8.1l) shows wvhat unit

the student sces when he presses various kevs.

199

r;éturn to—j

base unit:
textl, text2
L_pr text3_J

Vd

Figure 8.1

textl
HELP 7T TL
4 hi
BACK NEXT BACK
SHIFT-
. BRCK
text?2 g
HELP : BRCK NEXT
\/
h2
2ACK] NEXT BECK
SHIFT- 7
\ BACK
taxt3
HELP ~ MNEXT

Flow Chart of a HELP Sequence

141

If the student presses BACF. or SIIIFT-BACK while in a help sequence, he
is returned to the base unit. However, if there is a -back=- or =-backl=-
command in the help sequence and the student pressas the corresponding key,
he is branched to the unit unamed in the tag of the =~back=- or =backl-
cormand. In other words, the execution of a =back~- or =backl- command takes
pracedence over the default fuanction of BACK and SHIFT-EACK in help
sequencas.

A student always has a current main unit. That main unit may have a
unit attached to it by -do=. 3ut there is a hase unit only when
the student is in a help sequence. When the help sequence is anded and the
student returns to the unit f{rom which he entered the help sequence, he no
longer has a base unit. When the student is in a help sequence, the systen
reserved vord "baseu" is set to the name of the base unit. When the help
sequence is completed "baseu" is set to #. MNote that only the -help=-, =-lab=-,
-data-, -helpl-, -labl=-, and -datal- commands set '"baseu”. The =helpop=-,
etc., commands do not.

The TERM key is a help-type key, but its use and behavior are somewhat
different Zrom the other help-type keys. The other help=type keys prowide
student-initiated branching {rom a specific unit to a specific unit. The
-tern= command provides student-initiated branching Irom any unit in the
lesson to a specific unit. Its tag is not a unit name; it is a word that
the student will type. The =-term= command is placed in the unit the student

is to he sent to.

unic one
next two
at ¢G5
write TFor a list of definitinns, press TLRM and type 'words".
unit two
.
*
unit defs
tarm ords
.
write Press BACY. to return.

end help

142

In any unit in the lesson, when the student presses TFR!, the phrase
"hat tarm?" and an arrow appear at the bottom of the panel. If the student
types "words" and presses NEXT, he is taken to unit "defs". TFrom unit
"defs'", pressing BACK or SRIFT-EACK returns hin to the main unit from which
he pressed the TERM key. Pressing VNLIXT has the same effect, since unit
"defs" contains an -end- command. The TERM key is active anyvhere ia a
lesson. If the word typed by the student exactly matches the tag of a
-term= command, he is taken to the unit containing that -term= statenment.

If his word does not match the tag of any -term=, his input and the "What
tern?" message are erased, and the TERM keypress is ignored.

The -termop- cormmand works like the =term= command, except that it does
not initiate a help sequence. As with the other "op" commands, the current
nain unit is not changed and at the end of the termon unit execution of the

current main unit continues.

Altering the Base Unit

The base unit may be altered by the lesson, if desired, with a =base=-
command. The =-base- command with no tag clears the base pointer so the
student is no longer in a help sequence. That is, a =-base= command with a
blank tag changes a help saquence into a regular lesson sequence. This is
desirable when TERM is used to go to an index of topics, for example. In
such a case the base pointer should be cleared so that the f£low of comntrnl

is unhampered.

unit topics
term index
base

at 8¢3

write Press the number of the topic you want to study.

Failing to clear the base pointer in a case like this could cause the
student to leave unit "topics'" with the base pointer set, proceed through a
section of the lesson, enter another HELP sequence, and at its end be

returned to some unit relevant to the section he was in before he entered

v

he current help saguence.

193

It is sometirmes useful to raturn a student to a unit preceding the one
from which he entnred a help sequence. In the code helow, the LAR ey is
active in two units. HRowever, the student returns to unit "meteorl"” after

the help sequence, no matter which unit he was in when he pressed La3.

unit metoorl
lab mhelp
next meteorl
unit meteorl
lab mhelp

next meteorl
. :

unit mhelp
base meteorl

end help

Pressing LAR from either '"meteorl' or "meteor2" takes the student to unit’
"nhelq". The =-base- command in unit "mhelp" sets the base pointer to
"meteorl" so that at the end of unit '"wmhelp" the student returns to unit
"metesorl”.

In our discussions of TUTCR sequencing so far, we have assumed
implicitly that the student begins and finishes a lesson in one sassiom.
Very often this is not the case. To emnsure that the student does not repeat
sections of a lesson unnecessarily, the =-restart- command is usced. The form

of the command is:

restart unitnane

restart $§$ blank tag means current main unit

When a -restart- is encounterad, a pointer is set to the current main unit
if blanlt tag) or to the unit named. If the student signs off and later
signs on again, ne begins work in the main unit indicaced by the restart

pointer. His 157 student variables will have been saved when he signed off

194

and restored when he returns, so everything we know about his performance in

the lesson is just as it would have been had he worked without interrupction.

Several -restart- cormmands should be placed at logical points in the lesson.
Any commands placed before the first -unit- command in a lesson

constitute an initial entrv unit, or ieu. The -define- command and

commands that load special characters into the terminal should be placed in
the ieu. Commands in the ieu are executed every time the user anters the
lesson, even if he doecs not start at the beginning.

A lesson is cended when the student completes the last physical unit in
a lesson, but a much better way to mark the lesson’s ead is with the -cnd
lesson= or =-lecsson complete- statement. Either of these can be placed in
the last logical unit of the lesson. Fxplicit ending with -end lesson= or
-lnsson complete= is preferable to default ending, for the same reasons that
explicit flow of control with -next- is preferable to default flow of
control.

A lesson may need to set certain variables or perform other operations
when the student leaves the lesson without completing it. These can bhe done
in a "finish uniz", which is a unit done when the student leaves by pressing
SHIFT-STOP. (It is not done when the student leaves hy encountering an
-end lesson- or =-lesson complete=.) A finish unit is declared in a =-finish-
command. Its tag is the name of the unit to be executed when SFIFT=- STOP is
pressed. A finish unit cannot have any commands which send output to the
screen, such as =write- or -draw=-. It should be used mainly for
calculationse.

IZ 3 unit needs to be attached to every main unit, or at every arrow,
the unit can be declared with an -imain- or -iarrow- command. The unit
naned in the tag is then done in every main unit (if =-imain=- command) or at
every arrow (if =-iarrow= command). An imain unit is frequently used to
activate some branching and write on the screen which keys are available.

An iarrow unit is a convenisnt place to put commands like =-long=- or -force-
which should be active at every arrow. The feature can be turned off by
executing an =-imain- or -iarrow- with a blank tag, so they can be used only
in particular sections of the lesson. The code below shows a portiom of a

lesson using =-imain-.

195

* {cu containing defines

unit axpol SS several units of expository
next axpol $$ material

nnit axpo5 $$ last unit of expository material
next checkl

unit checkl $$ several units checking student’s

* $S understanding of expository material

imain keys $$ unit "keys" will be done in every main unic
next check2

unit check5 §$ last checking unit

imain $$ turn off imaia, disahle unit "keys"
next summary

units keys

data aux $$ enable DATA key

help tenses SS enable ¥ELP key .
lab stl $§$ emable LAB key

at 3241

write HELP LAB DATA available

The =-imain- unit, unit "keys'", enables the HELP, LAB, and DATA kevs, and
writes on the screen. This unit is attached £for every main unit hetween
unit "check!l" and "check3S", thus being available throughout that section of
the lasscn. The =imaine- with no tag in unitc "check3" disables the imain

action for subsequent unitse.

196
Exercises

l. Make sure all definitions of variables are located under a single

-define- command in the ieu.

2. Provide a way for the student to return to the index at any time. This
could he done with a =term= command in the index unit or a =-backl- command
in an imain unit. If you use =-term=-, be sure to clear the base unit upon

return to the index.

3. Add a "helpop" unit (or dataop, labop, etc.) to the first question unit
on TUTOR commands. This unit should display a short list of poessible

answers to the question.

4e Add a help sequence (-help-, =lab-, =-data-, atc. command) available fron
the second question unit on TUTOR cormands. In the help sequence, give a
definition of the term ’main unit’ which the student can use to answer the

question.

197

Index

ACCESS key 71

AIDS 4, 8, 12, 13, 94

-ansv- 55, 56, 75, 77, 78, 89, 91

-answer- 49-56, 58, 74, 75, 8¢, 81, 89, 94-96

"authors" 14

-answerc- 381, 98

arguments 25-27, 29, 55, 72, 73, 79, 89, 87

-arrow=- 49, 54, 51, 53-55, 74, 75, 89, 81, 99=93, 95, 98, 192

assignment arrow 66-68

-at- 17, 19=24, 27-39, 33, 49- 55, 67, 7@-75, 81, 34-88, 94, 92, 93, 95, 98,
191, 192, 195 '

attached units 22-24, 3¢9, 31, 78, 81, 83, 97, 141

=hack=- 21=-24, 27, 33, 79, 99, 141

-backl- 27, 28, 33, 79, 99, 191, 196

-base- 192, 143

"baseu" 141

base uniz 98, 99, 191, 142, 196

branch 84, 85

-box~- 19=21, 24, 26, 39, 31, 33, 82-84

bulletin board 8, 15

bumpshift 51, 52, 94

-cale- 63-68, 71, 73, 78, 79, 82-86, 194

=circle~ 27

coarse grid 24, 26

catalog 4, 8, 15

comment symbols 28, 21

condense errors 44, 45

contingent commands 5@-=53

consultants 2, 8, 14, 15, 36, 45

-data- 98, 99, 141, 195, 196

-datal- 98, 99, 141, 196

-dataop- 97, 191, 146

-datalop=- 7, 191, 1@é

-define- 67, 68, 7¢-73, 75, 78, 79, 85, 86, 91-93, 1@4, 196

-do= 22-24, 39, 33, 78-33, 95, 141

-doto=- 83-86, 98

-draw= 19-21, 24=26, 39, 33, S8

198

-else- 81, 84

-elseif- 81

embedded show=-type commands 69-71, 92
-end- 98, 99, 141-144
-endarrow- 54-56, 73, 98
-endif- 81, 84

-erase=- 275 29

fine grid 24=26

-finish=- 104

finish unit 104

floating point numbers 63, 64, 71
-force long- 89, 144

groups 4, 12

group director 4, 15

-help- 98, 99, 141

-helpl=- 98

-helpop- 97, 98

-helplop=- 97

-iarrow- 194

ieu 104, 106

-if- 26, 29, 33

ignorable words 51, 52, 58
-imain- 1@4-106

initial entry unit 194, 196
indenting 81

indirect referencing of variables 85=-87
integer variables 63-65, 68
"jeount" 72

-judge continue=- 91

-judge no=- 91, 92

-judge ok=- 91

"judged" 91, 92

judging state 54

-jump- 53, 54, 58, 73, 77-79, 81, 84, 88,

- Ek"' ao 1741

PR -

-labl=- 98, 191
-labop- 97
=lablop=- 97

99,

92,

96

199

-lesson complete= 104

logical expressioms 8g, 81
-long=- - 99, 92, 96

main units 28, 22-24, 31, 58, 62, 97, 98, 191-124
-match=- 89, 94, 96
mathematical operators 64, 66
-mode= 27, 38

"network" 14

-next- 19=24, 28, 33, 49, 58-52, 54, 73, 79, 8¢, 99, 191, 123-145
-nextl- 22, 79

-no- 54, 51, 54-56, 358, 89, 91
"acops” 73=74 .

noorder 94

notas 2, 4, 12, 15

"atries" 72-73

-ck=- 89, 91-93

order of operations 65-66
-pause- 27=30

personal notes 4, 12, 15
parases 52-33

ragular state 54

response markup 52

-restart- 1§3-194

screen locatioms 17, 29, 25
separators 78, 79

-ahow= 68=-71, 73, 85, 86
-showa- 92, 93

-showt=- 6§8=73

signing on 4

skip 26, 33

-gpecs~- 51, 52, 54, 73, 74, 94=96
"spell" 95

statement label 83=85

-store= 89-32, 96

-3torea= 89, 92, 93

synonyms 51=53

systam defined variables 7124 73

119

-term=- 101, 182

-termop- 1@2

TERM=-consult 14

TERM-talk - 12

—unit- 19

user :&éés 4

"where" 57

"wherex" 57

"wherey" 57

-write=- 17, 19-24, 28-30Q, 33, 49-55, 58, 66, 69=73, 75, 79-84, 86, 98-93,
9s, 98, 191, 192, 194, 195

-yritec= 79, 89, 95, 96, 98

-wrong- 52-36, 72, 73, 91

-yronge= 79

-wrongve 55, 57, 73«75

"t 77, 18

and’ 81

§ors 81

$s 29, 21

* 29, 21

