(ﬁh 60499700

G corrORATION.

FORTRAN EXTENDED VERSION 4
USER’S GUIDE

CDC® OPERATING SYSTEMS:
NOS 1

NOS/BE 1

SCOPE 2

”%ﬁf%"%”’%”’?”’?-

REVISION RECORD

REVISION

DESCRIPTION

A

Original release.

12/30/77

Publication No.
60499700

REVISION LETTERS I, O, Q AND X ARE NOT USED

© 1977

Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

N

N T T

Y

JD

SIS IS T T TG R B B TS IS

I I

LIST OF EFFECTIVE PAGES

Y Y YD

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

Page Revision Page Revision Page Revision

Cover

Title page

i

jiifiv

v/vi

vii thru ix

1-1 thru 14
2-1 thru 2-13
3-1 thru 3-12
4-1 thru 4-17
5-1 thru 5-12
6-1 thru 6-18
7-1 thru 7-11
A-1 thru A-3
B-1, B-2
Index-1 thru -3
Cmt. Sheet
Reply envelope
Cover

-
-
-

[i i i i g S |

-

60499700 A iiifiv

ccecoccccccCcC T cccc b0

-
-
~

~

oo

ST T

PREFACE

This user's guide provides helpful information for the user of
CDC FORTRAN Extended. FORTRAN Extended is sup-
ported by the following operating systems:

NOS 1 for the CONTROL DATA® CYBER 170 Models
171, 172, 173, 174, 175; CYBER 70 Models 71, 72, 73,
74; and 6000 Series Computer Systems

NOS/BE 1 for the CDC® CYBER 170 Series; CYBER 70
Models 71, 72, 73, 74; and 6000 Series Computer
Systems

SCOPE 2 for the CONTROL DATA CYBER 170 Model
176, CYBER 70 Model 76, and 7600 Computer Systems

This user's guide is written primarily for the FORTRAN
programmer who is unfamiliar with CDC operating systems.
It is a supplement to the FORTRAN Extended Version 4
Reference Manual, with minimal duplication of information.
This guide concentrates on the interfaces between
FORTRAN Extended and other software products, as well as
on programming, debugging, and cptimization techniques of
particular interest to the FORTRAN Extended programmer.

Publication

NOS 1 Operating System Reference Manual, Volume 1

NOS/BE 1 Operating System Reference Manual

SCOPE 2 Reference Manual
NOS/BE 1 User's Guide
SCOPE 2 User's Guide

FORTRAN Extended Version 4 Reference Manual

CYBER Loader Version 1 Reference Manual
SCOPE 2 Loader Reference Manual
FORTRAN Extended DEBUG User's Guide

INTERCOM Interactive Guide for
Users of FORTRAN Extended

CYBER Record Manager Version 1 Guide for

Users of FORTRAN Extended Version 4

FORTRAN Common Library Mathematical Routines

UPDATE Reference Manual

CYBER Common Utilities Reference Manual

Some topics of interest to the FORTRAN Extended
programmer are discussed in other user's guides. These
include the following:

e Interactive program creation and execution. For
NOS/BE, this topic is covered in the INTERCOM Guide
for FORTRAN Extended Users. For NOS users, parallel
material is included in the NOS Time-Sharing User's
Guide and the NOS Text Editor Reference Manual:

o Input/output implementation. This topic, with partic-
ular emphasis on the advanced input/output capabilities
available through the CYBER Record Manager interface
routines, is covered in the CYBER Record Manager
Version 1 Guide for Users of FORTRAN Extended
Version 4. SCOPE 2 users can find parallel information
in the SCOPE 2 User's Guide.

@ Debugging facility. The C$ DEBUG capability included
with the FORTRAN Extended compiler is described in
the FORTRAN Extended DEBUG User's Guide.

In addition, user's guides exist for SCOPE 2 and NOS/BE;

these guides are recommended for programmers new to
these systems.

Publication Number

60435300
60493800
60342600
60494000
60372600
60497800
60429800
60454780
60498000

60495000

60495900
60498200
60449900

60495600

CDC manuals can be ordered from Control Data Literature and Distribution Services,
8001 East Bloomington Freeway, Minneapolis, MN 55420

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of

undescribed features or parameters.

60499700 A

vivi

cceocccecccocecCc o cec oo

'

CONTENTS

Y Y OO D

1, PROGRAMMING TECHNIQUES 1-1 Copy and Skip Operations 5-5
. COPY Control Statement 5-5

Top-Down Programming 1-1 COPYBF and COPYCF Control
Coding Style 1-3 Statements 5-6
COPYBR Control Statement 5-6

NOS/BE and SCOPE 2 Skip

Operations
2. SAMPLE PROGRAMS 2-1 NOS Skip Operaticns

Permanent File Usage

-

-
-
-
-

iy 21 NOS/BE and SCOPE 2 Permanent Files -
NEWTCON 2-1 REQUEST

GAUSS 2-1 Q Control Statement -
oToD 2.6 CATALOG Control Statement -
LINK 2.6 ATTACH Control Statement —
CORCO 2.8 ALTER and EXTEND Control

Statements
PURGE Control Statement
NOS Permanent Files
3. OPTIMIZATION 3-1 SAVE Control Statement
GET Control Statement
REPLACE Control Statement
DEFINE Control Statement
ATTACH Control Statement
PURGE Ceontrol Statement
Magnetic Tape Processing

Compiler Optimization
Machine-Independent Optimizations
Invariant Code Motion
. Common Subexpression Elimination
(m Dead Definition Elimination
' Constant Evaluation
Test Replacement
Machine-Dependent Optimization
Strength Reduction
Special Casing of Subscripts
Functional Unit Scheduling
Register Assignment
Optimization Example
Source Code Optimization

oo

\nm\nm\n\n\ﬁ\n\in\n ARG R RV RV, RV, RV]
HEEOVWVWWOUWOWVoOo o WM~

uuuuuuuuuu\'xuuwuuuuuu
== OVVONNNOANONAAVMVEDENN -

6. LIBRARY FILES 6-1

User Libraries 6-2
NOS/BE and SCOPE 2 User Libraries 6-2
Directives in General 6-3

NOS/BE and SCOPE 2 Sample User

T - - Library Creation 6-3
Fielping the Compiler Optimize 3 NOS/BE and SCOPE 2 Sample User
oop Restructuring - . s s
Miscellanecus Optimizations -10 Library Modification 6-4
@ p N P NOS/BE EDITLIB Control Statement
rogramming for Greater Accuracy -11 N -
Sum Small to Large -11 and Directives 6-4
Avoid Ill-Conditicning 11 SCOPE 2 LIBEDT Control Statement
and Directives 6-4
{’W‘\ NOS User Libraries 6-6
Sample User Library Creation 6-6
4, BDEBUGGING 4-1 Sample User Library Re-creation 6-6
LIBGEN Control Statement 6-8
ﬂ*\ Desk Checking 4-1 LIBEDIT Control Statement and
\ Compilation 4-1 Directives 6-8
Diagnostic Scan 4-1 GTR Control Statement 6-8
Cross-Reference Map 4-4 COPYL Contro!l Statement 6-10
(m Execution Time Debugging 4-4 UPDATE Source File Maintenance 6-12
N DMPX and Load Map 4-7 UPDATE Directives 6-12
Debugging Facility 4-7 UPDATE Control Statement 6-13
Creation Run 6-13
1@“\ Decks 6-13
{ Sample Creation Run 6-14
S. BATCH EXECUTION 5-1 Correction Run 6-15
Sample Correction Runs 6-15
. Sample Job Decks 5-1 e
f&' Job Processing Control Statements 5-1 UPDATE Listing 6-16
Job Statement 5-1
ACCOUNT Control Statement 5-1
. RESCURC Control Statement - 5-2 7. LOADING FORTRAN PROGRAMS 7-1
-fﬁn\ EXIT Control Statement 5-2
REWIND Control Statement 5-4 Basic Loading 7-1
RETURN Control Statement 5-4 Name Call Statement 7-2
(@ UNLOAD Control Statement 5-5 EXECUTE Control Statement 7-2
{@\ 60499700 A vii

SLOAD Control Statement 7-2 Basic Load Examples 7-5
LOAD Control Statement 7-3 Segment L.oading 7-6
NGGO Control Statement 7-3 Segmented Program Structure 7-6
LIBRARY Control Statement 7-4 Building a Segmented Program 7-7
LDSET Ceontrol Statement 7-4 Segment Directives 7-8
Library Search Order 7-4 Loading and Executing a Segmented
Field Length Control 7-5 Program 7-10
APPENDIXES
A Standard Character Set) A-1 B Glossary B-1
INDEX
FIGURES
1-1 Top-Down Programming Example 1-2 5-2 Execution with Data on Magnetic Tape 5-3
1-2 Coding Style Example 1-4 5-3 Execution of Binary Program with
2-1 Program ACCTAB 2-2 Two Sets of Data Cards 5-4
2-2 Second Degree Interpolation 2-3 5-4 Job Statement Format 5-4
2-3 Sample Input Deck 2-3 5-5 ACCOUNT Control Statement Format 5-4
2-4 ACCTAB Output 2-3 5-6 RESOURC Control Statement Format 5-4
2-5 Program NEWTON 2-4 5-7 EXIT Control Statement Format 5-4
2-6 Input to NEWTON 2-4 5-8 REWIND Control Statement Format 5-5
2-7 Output from NEWTON 2-4 5-9 RETURN Control Statement Format 5-5
2-8 Program GAUSS 2-5 5-10 UNLOAD Control Statement Format 5-5
2-9 Input to GAUSS 2-6 5-11 COPY Control Statement Format 5-5
2-10 Output from GAUSS 2-6 5-12 COPYBF and COPYCF Control Statement
2-11 Program OTOD 2-7 Formats 5-6
2-12 Arrays OCT and IA in Program OTOD 2-8 5-13 COPYBF Example 5-6
2-13 Program LINK 2-9 5-14 COPYBR Control Statement Format 5-6
2-14 Record Format for INFIL 2-10 5-15 SKIPF and SKIPB Control Statement
2-15 Record Format for NEWFIL 2-10 Formats (NOS/BE, SCOPE 2) 5-6
2-16 Program CORCO 2-11 5-16 SKIPB and SKIPF Examples (NOS/BE,
2-17 Input Records for CORCO 2-12 SCOPE 2) 5-7
2-18 Records on File PROBS 2-12 5-17 SKIPF, SKIPBF, SKIPR, and BKSP Control
2-19 Formula for Correlation Coefficient 2-13 Statement Formats (NOS) 5-7
2-20 Printed Cutput from CORCO 2-13 5-18 REQUEST Control Statement Format for
3-1 Intermediate Language Example 3-2 Permanent Files (NOS/BE, SCOPE 2) 5-8
3-2 Basic Block Example 3-2 5-19 CATALOG Control Statement Format
3-3 Invariant Code Motion Example 3-3 (NOS/BE, SCOPE 2) 5-8
3-4 Invariant Code (Example 1) 3-3 5-20 ATTACH Control Statement Format
3-5 Invariant Code (Example 2) 3-3 (NOS/BE, SCOPE 2) 5-8
3-6 Invariant Code (Example 3) 3-3 5-21 EXTEND and ALTER Control Statement
3-7 Variable Dead on Exit 3-5 Formats (NOS/BE, SCOPE 2) 5-8
3-8 Test Replacement Generated Code 3-6 5-22 PURGE Control Statement Format for
3-9 FORTRAN Subprogram and Generated Attached Files (NOS/BE, SCOPE 2) 5-8
Object Code 3-8 5-23 PURGE Control Statement Format for
4-1 Program ACCTAB Before Debugging 4-2 Unattached Files (NOS/BE, SCOPE 2) 5-8
4-2 Example after Desk Checking, 5-24 SAVE Control Statement Format (NOS) 5-9
with Diagnostics 4-3 5-25 GET Control Statement Farmat (NOS) 5-9
4-3 Cross-Reference Map 4-5 5-26 REPLACE Contro! Statement Format (NOS) 5-9
4-4 Example with Compilaticn Errors Corrected 4-6 5-27 DEFINE Control Statement Format (NOS) 5-9
4-5 Test Data for ACCTAB 4-7 5-28 ATTACH Control Statement Format (NOS) 5-10
4-6 Dayfile Showing Loader Errors and 5-29 PURGE Control Statement Format (NOS) 5-10
Mode 1 Errors 4-8 5-30 LABEL Control Statement Format (NOS) 5-11
4-7 Load Map 4-9 5-31 LABEL Control Statement Format (NOS/BE) 5-12
4-8 DMPX 4-11 5-32 REQUEST Control Statement Format for
4-9 Object Listing (Partial) 4-12 Tapes (SCOPE 2) 5-12
4-10 Dayfile Showing Mode 2 Error 4-12 6-1 NOS/BE and SCOPE 2 User Library Creation 6-2
4-11 Sequence of Debug Statements 4-12 6-2 Sample User Library Creation (NOS/BE,
4-12 Debug Output Showing Array Contents 4-12° SCOPE 2) 6-3
4-13 Example with Zero Value Test 4-13 6-3 Output from Sample User Library Creation 6-5
4-14 Dayfile Showing Mode 2 Error 4-14 6-4 NOS/BE and SCOPE 2 User Library
4-15 Debug Output and Printed Cutput 4-14 Moadification 6-6
4-16 Example with Duplicate Point Test 4-15 6-5 Sample User Library Modification
4-17 Output from Figure 4-16 4-16 (NOS/BE, SCOPE 2) 6-6
4-18 Final ACCTAB Source L.isting 4-16 6-6 Typical LISTLIB Output 6-7
4-19 Output from Figure 4-18 4-16 6-7 EDITLIB Control Statement Format 6-8
5-1 Compilation and Execution 5-2 6-8 LIBEDT Control Statement Format 6-8
viii 60499700 A

J I

D I

&

)

I D D I

D

J

)

J D D D D

\

)

D)

J I

¢

3

DD

RS

A3

6-9 NOS User Library Creation 6-8 7-1 Name Call Statement Format
6-10 Sample User Library Creation (NOS) 6-8 7-2 Alternate File Name Examples
6-11 Listing of NOS User Library 6-9 7-3 EXECUTE Control Statement Format
6-12 COPYL Use in Re-creating a 7-4 SLOAD Control Statement Format
User Library (NOS) 6-10 7-5 LOAD Control Statement Format
6-13 GTR and LIBEDIT Use in Re-creating a 7-6 NOGO Control Statement Format
User Library (NOS) 6-10 7-7 LIBRARY Control Statement Format
(@« 6-14 LIBGEN Control Statement Format 6-10 7-8 LDSET Control Statement Format
y 6-15 LIBEDIT Control Statement Format 6-11 7-9 REDUCE Control Statement Format
6-16 GTR Control Statement Format 6-11 7-10 RFL Control Statement Format
6-17 COPYL Control Statement Format 6-11 7-11 Basic Load
(W 6-18 UPDATE Program Library Creation Run 6-12 7-12 Sample Tree Structure
L 6-19 UPDATE Program Library Correction Run 6-12 7-13 Segmented Program with Three Levels
6-20 UPDATE Control Statement Format 6-14 7-14 SEGLOAD Control Statement Format
6-21 Input Stream Cards 6-14 7-15 TREE Directive Format
6-22 Sample Program Library Creation 6-14 7-16 TREE Directive Examples
6-23 Listing of Card Identifiers 6-15 7-17 INCLUDE Directive Format
6-24 Using a Routine on a Program Library 6-15 7-18 INCLUDE Directive Example
6-25 Sample Use of Program Library 6-16 7-19 LEVEL Directive Format
6-26 Sample Correction Run Creating a 7-20 GLOBAL Directive Format
New Program Library 6-16 7-21 END Directive Format
6-27 Listing from Corrected Deck 6-17 7-22 Segment Directives Example 1
6-28 Typical UPDATE Output Listing 6-18 7-23 Segment Directives Example 2
7-24 CALL-RETURN Canflict

TABLES
3-1 Array Subscript Formulas 3-1 6-2 EDITLIB Directives
5-1 EXIT Processing 5-5 6-3 LIBEDT Directives
6-1 Utility Support 6-1 6-4 LIBEDIT Directives
6-5 UPDATE Directives

-
-
~
~
-

S TS T B

60499700 A

DD

~N N~
O N A N)
FUHWWWWN

NN NN NN

R N N N
(=AY IRV B)

HFHEEFUOUVOUVYYOomo

-0 0

NSNS NSNS NN NN

@) @/ B @w/ ’ ﬂ/ %1/ @) ﬂ/\ @/ ﬂ/ @; ﬂ) ﬂ) %\/\ %) @_)\ ﬂv/\ ﬂ./,. %/\ @)

$

1

-
~
~

PROGRAMMING TECHNIQUES 1

This section outlines some procedures designed to simplify
and safeguard the production of FORTRAN Extended pro-
grams, as well as some techniques to improve their
accuracy. Although the process of pregramming is
essentially the same, regardless of the language in which the
program is written, FORTRAN presents specific difficulties
and specific opportunities.

TOP-DOWN PROGRAMMING

In recent years, the attempt to reduce the cost of computer
systems has focused increasingly on the cost of software

development and maintenance. The consensus is that these

processes should be better controlled and more standardized
than they have been in the past. The following criteria are
those generally agreed upon for software, regardless of its
function:

@ It should be reliable. This requires extensive (and well
planned) testing before the software is used for its
intended purpose.

@ It should be easy to read. This simplifies the process of
maintenance, which is frequently done by different
people than those who originally developed the soft-
ware. This goal is achieved by avoiding convoluted
algorithms and implementation-dependent tricks, and by
providing ample and useful documentation. Very large
programs usually require external documentation, in
addition to the comments in the code itself.

@ It should be modular. This is partly for the purpose of
increased readability, and partly so that useful modules
can be written once, to be used by many programs.

Several principal methods have been developed to achieve
these goals. The method that has attracted the most
interest, and that is advocated here, is top-down pro-
gramming. This is more than just the advice to design first
and code later, which has always been followed by good
programmers. The key component of top-down programming
is the formalization of the successive steps between the
original ‘requirements of an application and the final coded
version of the program. The idea is to hold in check the
tendency, when beginning to write a program, to write
FORTRAN statements immediately. In top-down pro-
gramming, FORTRAN is not used until the very last step —
earlier steps are written in English or in a more informal
pseudo-FORTRAN. (It is important to note that all steps
must actually be written, or the purpose of top-down
programming is defeated.)

Another important component of top-down programming is
modularity. Modularity means limiting the size of program
units, and ensuring that each performs a well-defined
function. A good rule of thumb is that each program unit
should be about one page long. This ensures that the purpose
and logic of each module are readily comprehensible. When
the purpose of each medule is well-defined, it is frequently
possible to use the same subprogram in more than one
program (as explained under User Libraries, in section 6).
The division of a program into modules should not be
arbitrary, but should follow as much as possible the
separation of functions between program units.

60499700 A

Nevertheless, the advantages of modularity must be weighed
against their effect on optimization (see section 2). Subpro-
gram calls are more expensive to execute than simple
branches. Therefore, they should be kept to a minimum in
frequently-executed loops. In any particular application, a
balance must be struck between the decreased programmer
time brought about by modularity, and the decreased
execution time brought about by limiting subprogram calls.

The number of steps between problem definition and final
coding depends on the size and complexity of the applica-
tion, but at least four steps are always necessary. These
steps can be summarized as follows:

1. The problem to be solved is defined as precisely as
possible (in English).

2. An algorithm covering only major steps of the program
is written, in English and, where appropriate, in
mathematical notation. The major modules of the
program are also defined.

3. For each module defined in step 2, the algorithm is
broken down into lower level steps, written in a higher-
level language than FORTRAN. This step is repeated
until the program is in a form of pseudo-FORTRAN.

4. The program is coded in FORTRAN. If step 3 was done
properly, this process can take place practically line-
by-line. :

To illustrate this procedure, we will follow the various steps
for a simple example. The example is not ideal; because it
is so small, it uses no subprograms, and therefore does not
illustrate the development of separate modules. The
example is program NEWTON, which is explained more fully,
with input and output, in section 2.

The origin of the program is an application that needs to
find the roots of a polynomial equation (presumably part of a
larger application). After considering various methods, the
programmer decides on Newton's method. The stages of
program development are then written down as shown in
figure 1-1.

Step 1 defines the problem as precisely as possible. In this
case, the reader of the description is assumed to be familiar
with Newton's method, so little description is necessary.

Step 2 presents the algorithm to be used. At this stage, the
order in which major steps are to be executed is determined.
In order to describe the algorithm, some of the data
structures to be used might be defined. In a program longer
than NEWTON, the algorithm would probably not be detailed
enough to include any mathematical formulas.

In step 3, the algorithm is made more detailed and, for the
first time, the program logic is defined. The language used
in this step is very casual; it is a mixture of ALGOL,
English, and FORTRAN. A more standardized language
could be developed; the main point is to defer actual
FORTRAN statements as long as possible. By the last
iteration of step 3, each module should be written in a sort
of pseudo-FORTRAN, with the statements appearing in their
final order. Non-executable statements are generally
omitted in step 3, as are most statement labels. Input/-
output statements are only sketched in.

Step 1.

Step 2.

Step 3.

Labelt

Problem definition. Find the roots of a given equation using Newton’s method.
Algorithm specification

Given:

Fix) The function

F'(x) Its derivative

Xo An initial approximation

e The convergence criterion

max Maximum number of iterations (in case of failure of convergence).

Algorithm:

Repeat the following until Ix; - x;491< e or until number of iterations= max:

oun =3 - %)
i+1] fl(xi)
*

Pseudo-FORTRAN
Given:

F The name of the function whose roots are to be found; the text of the function to be

provided in a manner to be determined in step 4.

DERIV The name of a function that is the derivative of F; to be provided in the same manner as F.
Input values:

X0 Initial approximation to f(x) = 0

EPS Convergence criterion

ITMAX Maximum number of iterations

Algorithm:

Read X0, EPS, ITMAX
Do for I = 1 to ITMAX:
X1 = X0 — F(X0)/DER!IV(X0}
If abs(X1 — X0} < EPS go to Labell
X0 = X1
End loop
Write “method has not converged in”’ I “iterations”
Stop
Write “method has converged in” I “iterations”
Write X0

Stop

1-2

Figure 1-1. Top-Down Pregramming Example (Sheet 1 of 2)

60499700 A

D D D D

[

w«

J D

D

D 2 D I

) D 0 D D

J D

J)

Step 4. Completed Program:
PROGRAM NEWTON (INPITs OUTPUTs TAPES=OUTPUT)
c
Gﬁa\ c PROGRAM #NEWTON? FINDS THE ROOTS OF THE EQUATION DEFTNED IN THE
c FUNCTION STATEMENT RY NEWTON#S METHOD. THE FOLLOWING VALUES ARE
c INPUT
c : .
c X0 INTTIAL APPROXIMATION
c EPS CONVERGFNCE CRITERION
c ITMAX MAXIMUM NUMBER OF ITERATIONS
c
- c EQUATION TO BE SOLVFD
“ ¢ . .
G‘ F(X) = SINIX) = (X¢1.0)/(X=1.0)
- c
c DERIVATIVE OF EQUATION
c
G§$\ DERTIV(X) = COS(X) ¢ 2.0/(X=1.0)%82
c
READ %, X0s EPS, ITMAX
IF (DERIV(X0) .FQ. 6+0) GO TO 300
DO 100 I=1+1TMAX °
s 1S = 1
L X1 = X0 - F(X0)/DFRIV(X0)
Y = F(X])
PRINT %, #Xe¥ #s v0o Y
= If (ARS(X1 = X0) .LE. EPS) GO TO 200
6 . X6 = x1
100 CONTINUE
WRITE (59200 ITMAX
. SToe)
P 200 WRITE (5+10) ITSs XA
{ . STop
) 300 WRITE (5+30) X0
. sTop
10 FORMAT (# METHOD HAS CONVERGED IN #+13+2 ITERATIONS#,//% X = #¢
1£12.4)
20 FORMAT (# METHOD HAS NOT CONVERGED IN #+13 o# ITERATIONS#//
14# EXECUTION TERMINATED#) .
30 FORMAT (1X+E12.4s # 1S INVALID VALUE FOR X0#)
END

Figure 1-1, Top-Down Programming Example (Sheet 2 of 2)

briefly state the purpose (and possibly the algorithm) of
the program. In a subprogram, each of the formal
parameters should be identified.

60499700 A

< Step 4 expands the version in step 3 into an actual 2. Additional comments should be interspersed throughout
‘ FORTRAN program. This step requires a number of minor the program. Comments are especially desirable before
decisions, such as the types of variables, the sizes of arrays, each major step of the program. If a label occurs a long
the formats to be used for input/output, and the exact text distance from the statements branching to it, a com-
i‘ of messages to be printed. The PROGRAM statement, non- ment just before the label should explain how it is
executable statements, and statement labels are all added at reached. Comments should also appear whenever the
this time, as well as extensive comments. In many cases, program does something devious, or non-cbvious. Each
TN the text of the comments can be taken verbatim from comment should be preceded and followed by a line
1 earlier stages of program preparation. containing only a C in columnl. Code should be
N written in the form of paragraphs, with a comment
preceding each paragraph.
fm CODINGSTYLE
. 3. Multiple statements per line (separated by the $ char-
Top-down programming deals with the overall process of acter) should not be used.
preparing a program. In addition, it has been found to be
@* helpful for an installation to prepare standards dealing with
X the physical appearance of programs. FORTRAN allows a 4. When continuation lines are necessary, the character in
R . column 6 should be one that cannot be mistaken for part
relatively free format of the text of a program. This f the stat t. The $ch 1 b d
feature allows a uniform appearance among all the programs or the statement. e % character can always be use
g
- . . i e e . for this purpose. For a very long statement, it may be
fW“ i prepared at an installation. This is time-saving and - .
. useful to put numbers in column 6 to keep the cards in
5 convenient for the programmers, and can also serve to sequence (rémember that O i ot permitted). Conti
reenforce the principles of top-down programming. The ua?:ion lines should be inderl'nst:d (t’:Jhey shoulr.:l stglr"l: ":r-)
following set of rules is one possibility for coding standards: column 8 or later).
1; 1. Begin each program unit with a comment block,
immediately after the header line. The block should 5. The body of a DO loop should be indented by at least

two spaces. If loops are nested, each inner locp should
be indented from its outer loop. DO loops should always
terminate with a CONTINUE statement.

1-3

6.

Blanks should be used copiously to set off the compo-
nents of a statement. Blanks should especially be used
in the following contexts:

Surrounding parentheses
Surrounding the + or - operator

Between the keyword of a statement and the rest
of the statement

Surrounding the = character in an assignment state-
ment

Between elements of -a list in a specification
statement

Blanks should be omitted in the following contexts:

On either side of the * / or ** gperator (this sets
off the components of an expression)

Inside parentheses in an array subscript or subpro-
gram reference

After the control variable and index parameters in
a DO statement (DO 100 I=1,50,2)

7. The labels in a program should be in numerical order.
The FORMAT statements should be grouped together
just before the END statement. The labels should be
consistent in size (such as 3-digit labels for executable
statements, and 1-digit labels for FORMAT state-
ments).

Figure 1-2 shows a program unit before and after these
standards are applied.

Before:

PRCGRAMNADA (INPUT,0UTPUTs TAPES=INPUT)

CIMENSIONB(10,1C)
COMMON/XYZ/C(10+10)

c CONTROLLING ROUTINE FOR THE PROGRAM

READ(542) 14 JsK
2 FCRMAT (2X314)
IF(EOF (5))100,20¢C
10¢C CO0300M=1,1
30¢ B(JeMI=C (Mo K)**24 %K
CALLWHATSIS (B4CyM)
sToP
20¢ STCP
END

After:

OO OHNHO

100

FROGRAM NADA (INPUT, OUTPUT, TAPES=INPUT)

PROGRAM NADA COMPUTES THE LOWESY VALUE CF N (GREATER THAN
2) FOR WHIGCH X**N ¢ Yy*eN = Z¥*N, MOST OF THE WORK IS DONE
IN THE SUBPROGRAM WHATSIS; THE MAIN PROGRAM PERFORMS HOUSE-
KEEPING CHORES.

AUTHOR? A. ALLIVER, CDC 1977

DIMENSION B(10,10)
COMMON /XYZ/ C(10,410).
READ €5.2) I, Jy K
IF (EOF(S)eNE.0.2) STOP
DO 10C M=1,1I
B(JgM) = CiMeKI®*2 ¢ %K
CONTINUE
CALL WHATSIS (8, C, M)
STOP
FCRMAT (2Xy 314)
END

Figure 1-2. Coding Style Example

60499700 A

DI I D

0

[

N RN R

3 D y D D

J D I

v

))

J) D

7D

)

SAMPLE PROGRAMS 2

The programs in this section are intended to illustrate the
programming practices discussed in section 1 through appli-
cation of some commonly used mathematical procedures and
basic algorithms. The programs are typical of smaller
special-purpose FORTRAN programs, rather than larger,
more complex applications.

ACCTAB

Program ACCTAB (figure 2-1) computes acceleration as a
function of mass and force. It reads two sets of data cards.
The first set is read in line 9 and contains three numbers per

card, representing time, force and mass. These values are"

used to generate a table of time versus acceleration.
Acceleration is calculated in line 15 by the statement:

ACC (N) = F/AMASS

where ACC(N) is acceleration, F is force, and AMASS is
mass. The variable AMASS is tested for a zero or negative
value. The counter N is incremented each time a card is
read. If N exceeds the maximum allowable table size, a
message is printed and execution terminates. The variable
NTIMES contains the total number of time values in the
table. When the first set of cards has been read, the table is
printed.

The program then reads the second set of cards, which
contains selected time values, one per card. A table search
is performed for the time values immediately above and
below the input value. In lines 30 and 31, each time value is
tested for validity. If a time is outside the table bounds, a
message is printed and the next card is read. In lines 46
through 55, a second degree interpolation is performed for
the acceleration value. This is accomplished by the formula:

- (T-T1XT-T2)A0
ACCX = (76-T1X(T0-T2

_ (T-TOXT-T2)A1
(TI-TOXT1-T2)

. (T-TOXT-T1)A2
(T2-TOXT2-T1)

where T is the input time, A0, Al, and A2 are tabular
acceleration values corresponding to the time points 70, T1,
and T2, and TO<T=Tl. A diagram of interpolation is shown
in figure 2-2.

Since, for a given input time, two tabular points beyond that
time are required for interpolation, special processing is
included in lines 31 through 33 for times falling between
TIME(N-1) and TIME(N), where TIME(N) is the last point in
the table. After the interpolation has been performed, time
and acceleration are printed, the next card is read, and so
on, until all input times have been processed. A sample
input deck is shown in figure 2-3; the output is shown in
figure 2-4.

Statements in the program test for table overflow (line 12),
for an invalid value for AMASS (line 13), and for a zero
divisor in the formula (line 49). The development of this
program is explained in section 4.

60499700 A

NEWTON

Program NEWTON (figure 2-5) finds the roots of a poly-
nomial equation by Newton's method. The iterative formula

X4l

= - !

= x; = f)/f(x,)

is applied to generate successive approximations to the
equation f(x) = 0, where x, is the current approximation, X1
is the new approximation, and f(x) represents the derivativé
of f(x). The test for convergence is:

|xi - xi-ll < eps
where eps is a constant indicating the desired degree of
accuracy,

In the example, the equation to be solved and its derivative
are

f(x) = sin(x) - (x+1)/(x-1)
'(x) = cos(x) + 2/(><-l)2

The equation and its derivative are provided in the form of
statement functions (lines 13 and 17); these can be easily
replaced to apply the procedure to other functions. A data
card is read containing the following information:

X0 Initial approximation to f(x) = 0 (real)
EPS Convergence criterion (real)

ITMAX Maximum number of iterations (integer);
ensures that the program terminates even
when the function fails to converge.

The DO-loop applies the iteration formula to calculate a
new approximation X1 (line 23) and tests for convergence
(line 26). If convergence has not occurred, the new
approximation X1 becomes the current approximation X0
and the iteration is continued until either the process
canverges or the maximum number of iterations is reached.
In either case, an appropriate message is printed and
processing terminates. Sample input for the program is
shown in figure 2-6, and the output generated from that
input is shown in figure 2-7.

Line 20 tests for a zero value for the derivative; otherwise
the division in line 23 produces an infinite value and the
program aborts.

GAUSS

Program GAUSS (figure 2-8) solves a linear system of N
equations in N unknowns by the Gauss-Seidel method. The
system is of the form:

=b

allxl + alzxz +aeot alnxn =b

891X] +BopXo + e st By X = b2

LR I N A A R A R I I A)

an1%) * agXg teeeta X = bn

15

2

25

33

35

6%

65

7C

(%]

L2 O

100

[§

QLO

[S XY RS

LV

(%]

<

PROGRAN ACCTABS (INPUT,O0UTPUT ,TAPE4SINPUT)
DIMENSION TIME(10), ACC(1C)
ceesRTAD TIVE, MASS, FORCE, AND COMPUTE ACCELERATION TABLE

Nz
IER =)
130 READ (6,*) T, AMASS, F
IF (EOT(L) .NE. 8) GO TO 15¢
Nz=NB®1 ‘
IF «N GV, 10) GO TO 600
IF (AMASS +LEe 8.) GO TO 70C
TIME(N). = T
ACC(N) = F/AMASS
GO T0 10¢C

eees PRINT ASCELERATION TABLE

150 NTIMES = N
PRINT 10
PRINT 15, (TIME(I}yACC(I),I=1,NTIMES)
IF (IER «NE. 0) GO TO 900

sessREAD A CARD CONTAINING A TIME VALUE

130 READ (%y*) T
IF (EOF(4) «NE, C) GO TO 9GO0
N =N©¢
IF (T »LT. TIME(1) JOR. T .GT. TIME(NTIMES)) GO TO 800
IF (T oLE. TIME(NTIMES=-1)) GO TO 195
IT = NTIMES - 1
G0 To 228

eesoSTARCH ACCELERATION TABLE

135 LIN = NTINES = 1
00 200 I = 2,LINM
IT =1
IF of JLE. TINECIT)) 60 TO 220
230 CONTINUE
60 TO 856

ool SECOND DEGREE INTERPOLATION

220 D1 = TIME(IT=-1) - TIME(IT)
D2 = TIMECIT=1) = TIME(IT+t)
03 = TIMECIT) = TIME(IT+1)
IF (D1 +EQ. O¢ <ORe D2 +EQe¢ Ce «OR. 03 +EQs 8.) GO TO 850
01 =T - TIME(IT-1)
22 = T = TIMELIT)
03 =T « TIME¢IT#1)

ACCX = Q2*Q3*ACC(IT~-1)/(D1*D2)
1 - 01%23*ACCCIT)/(01%D3)

2 ¢ N1%Q2%ACCLIT+1)/7(D2°03)
PRINT 25, T, ACCX

GO TO 190

530 PRINT *, 2 TOO MUCH DATA., MAX NO, 0OF TIMES IS 10%#
sToP

710 PRINT %, 2INVALID VALUE FOR AMASS 2, N
IR =z §
GO TC 160

930 PRINT *, 2z BAD TIME, VALUE IS2, T
50 10 190

853 PRINT *, 2 INTERPOLATION PROBLEMS, TABLE ERROR?Z
50 To 190

330 PRINT ¢, 2 END ACCTABZ2
SToeP

10 FORMAT (21#,2(2 TIME ACCEL%))

15 FORMAT (2(5XF74242XFB845))

25 FORMAT (2 TIME = #,F7.2,# ACCELERATION = 2,F8.5)
END

2-2

Figure 2-1. Program ACCTAB

60499700 A

0.0 0 0D

2D J D I

J

)

J

J 2 D I I

) 3)

J

v

Figure 2-3, Sample Input Deck

This can be rewritten as:
Xy = -(alzx2 tapgXgteet alnxn)/a11

X2 = .(821x1 M i aann)/aZZ

X0 = Hapyx) F At et an,n-lxn-l)/ann

Successive approximations are generated by applying the
iteration

x.(k"'l) = iil b..x.(k+1) + g b,:x ®)

i =1 i J Vi B

where:

bij = 'aij/aii (for i=1,n; j=1,n)

bij =0(fori=j)

¢ = bi/aii (for i=1,n)

60499700 A

A2
Al l
| A I
Acceleration AD ‘ I
I | l '
| | |
I I |
I l |
| i | |
| l |
TO T T1 T2
Figure 2-2. Second Degree Interpolation
(Time Mass Force) TIME asCsL TIMF ACCEL
0. 100. 1000. CefC 140G CCT 1.6¢ 1d.10uCC
1 100. 1010. o206 13420439 .00 104306300
2. 100. 1020. 4,28 LeebGlu S«G% 10.5030¢
3. 100. 1030. TIME = J¢CC ASCELIPATIOAN = 19,03006
4, 100. 1040. TIME = oS50 ACZZELEZRATION = 10,5500C
5 100. 1050. TIME = 2,60 ACSTLIFATINN = 15,3600¢
7/8/9 TIME = 4,90 8CCFLIRATION = 18.49030
0. BAD TIME, VALUF 36,
05 (Selected Times) END ACCTASB
36
49
6.0 Fi 2-4, ACCTAB Output
6/7/8/9 adre e

and the notation x.(k) indicates the (k+i)st iteration of the
solution vector for TRITERER
The algorithm begins with an initial guess at the
value of the soluticn vector X(0) (X(0)= (xl(l]),
x.(0)y . « +, x (0))) and substitutes that vector into the Tight
hénd side of the relation to generate a vector X(1), which
should be a better approximation to the solution. It then
substitutes X(1) into the equation to yield X(2). Continuing
in this manner, it generates successive approxirmations until
it achieves the desired degree of accuracy. The criterion
for convergence is

(k+l) (k)
max |xi - X l

1sisn | GeD] “F
i

for a prescribed E. In others words, when the difference
between successive values of x. is sufficiently small, the
process is considered to have converged. If this criterion is
not satisfied after a prescribed number of iterations, the
process is assumed not to converge and the iteration is
discontinued.

Input to the program is from data cards. Sample input is
shown in figure 2-9. The first card specifies the number of
equations and unknowns (N), the maximum number of iter-
ations (MAXIT), and the convergence criterion (EPS).

"Succeeding cards specify the elements of the coefficient

1 PROGRAR NEWTON (INPUT, OUTPUT, TAPE5s0UTPUT)
¢ N X .
S PROGRAN #NEWTONZ FINDS THE ROOTS OF THE EQUATION DEFINED IN THE
v FUNG[IONhSTATEKENT BY NEWTON2S METHOD. THE FOLLOWING VALUES ARE
5 (H INPUT ' :
3 .
e X0 INITIAL APPROXIMATION
c EPS CONVERGENCE CRITERION
c ITMAX MAXIMUM NUMBER OF ITERATIONS
10 S
3 EQUATION TO BE SOLVED
~
FIX) = SINIX) = (X¢1,0)/7(X=1,0)
Cl
15 S DERIVAIIVE OF EQUATION
v
DERIV(X) = COS(X) ¢ 2.07(X~1,0)%**2
o
READ *, X0, EPS, ITMAX
20 IF (DERIV(XQ0) .EQ. 3.0) GO YO 308
DO 100 I=1,ITHMAX
ITsS = !
X1 = X8 = F(XO)/DERIV(IXO0)
Y = F(xy)
25 PRINT %, 2X,¥ #, X0y Y
IF (A931(X1 « X8) JLE. EPS) GO TO 200
Xe = xi .
100 CONTINJE
HRITE (5,200 ITMAX
39 stTop
200 MRITE (5,10) ITS, X0
stor ’
300 WRITE (5,30) XQ
sToe
35 10 FORMAT (2 METHOD HAS CONVERGED IN 2,13,# ITERATIONSZ,//2 X = #,
- 1LE12.4) ’ .
20 FORMAT (2 METHOD HAS NOT CONVERGED IN %2,I3 ,2 ITERATIONS2//
14# EXESUTION TERMINATED#)
30 FORMAT (1X,€E12.4, # IS INVALID VALUE FOR X0#)
40 END
Figure 2-5. Program NEWTON
00 0001 10 Xs¥ 0o 1728053032038
Xg¥ «e3333333333333 +0)5764934517376
Xy¥ =o416815892431 ,00001133754253679
: 6. X9¥ =el4203564535842 3,1977975822'88E~-11
Figure 2-6. Input to NEWTON METHOD HAS CONVERGED IN & ITERATIONS
matrix: each card contains the value of the element and X = -e4204E+Q0
two integers indicating the position of the element within

the matrix. Zero elements need not be included.

The program begins by reading the input deck and scanning
for errors (lines 42-48). If an error is encountered, the card
number is printed along with an appropriate message and
processing terminates after the entire deck is scanned.

Once the matrix has been read and stored in array A, the
program applies the Gauss-Seidel scheme to generate the
solution values. The solution values are stored in array X.
An initial approximation for each value of X is required to
initiate the process. For the sake of simplicity, the values
of X are initially set to 0.

Three nested DO-loops control the iterative process
(lines 56-72). Each pass through the outer locp constitutes

2-4

Figure 2-7. Output from NEWTON

one iteration. The variable MAXIT is used as the upper
limit, allowing the process to terminate if convergence does
not occur within the specified number of iterations. Each
pass through the middle loop yields a new approximation
XNEW for a particular element of the solution vector. The
inner loop sums the rows of the matrix.

The variable CNV is initially set to 0. After an approxima-
tion to a particular x has been calculated, CNV is set to
the difference between the new approximation and the
previous approximation, if the difference is greater than the
current contents of CNV. Thus, CNV always contains the
maximum of the differences between the new and previous
values of the solution vector.

60499700 A

D 0.0 I

J D DD D) b D I D

3

2 b b D

éﬁ“

~
~
~
-

w?? '”q% ’?? ‘fﬁ?

10

15

2

35

43

45

S0

65

6L.

VOVWLOWVLLLUDWLVOWWLOIWLLLWOO

2O O

LILra

IO

W

132
150

350

330

500

PROGRAN GAUSS (IN?UT,OUTPUT9TAPEb=INPUT,TAPES:OUTPUY)

PROGRAN *GAUSSe+ SOLVES A LINEAR SYSTEM OF N EQUATIONS IN N
UNKNOWNS BY THE GAUSS-SEIDEL METHOD. INPUT IS FROM CARDS.
THE FIIST CARD CONTAINS THE

VALUES

N "NUMBER OF EQUATIONS AND UNKNOHWNS
MAXIT MAXIMUM NUMBER OF ITERATIONS
EPS CONVERGENCE CRITERION

SUCCEEJING CARDS CONTAIN ELEMENTS OF THE COEFFICIENT
MATRIX., EACH CARD CONTAINS THE FOLLOWING VALUES

I ROW POSITION OF ELEMENT (INTEGER)
J COLUMN POSITION OF ELEMENVT (INTEGER)
ELEMNT VALUE OF COEFFICIENT (FLOATING POINT)

ZERO COEFFICIENTS NEED NOT BE INCLUDED. THE INPUT DECK IS
SCANNED FOR ERRORS.
AFTER & IS READ, THE NIXT N CARDS CONTAIN VALUES FOR 8.

DIMENSION A(50,51), X(50)
INITIALIZE WORKING ARRAYS

NCARD = 1
IFRR = 0
DO 150 I=1,50
X(I) = @.0
D0 100 J=1,50
A(I,J) = 0.0
CONTINUE
CONTINUVE

READ FIRST CARD CONTAINING PARAMETER VALUES FOLLOWED
BY CAPIS CONTAINING COEFFICIENTS

READ (+y*) Ny, MAXIT, EPS

IF (EOF(L4) NE. 0.0) GO TO 900

IF (N .GT. 50) G0 TO 910

REFAD (%y*) Iy Jy ELEMNT

IF (EO°(4)) 383, 350

NCARD = NCARD ¢+ 1

IF (I LTe 1L «O0Re I +GT. N) GO TO 360
IF (J oLT. 1 «ORe J o6GT. N#1) GO TO 3560
A(I,J) = ELEMNT

G0 TO 260

IERR = 1

ORINT *, ZERROR ON CARD #, NCARD

G0 To 200

IF (ISR oNE. §) GO TO 656

BEGIN ITERATION

DO 500 ITS=1,MAXIT
CNV = 0.0
DO 500 I=1,N
SUY = 0.0
JO 400 J=1,4N
IF (J «NEs I) SUM = SUM & A(I,J)*X(J)
SIONT INUE
XNEW = (A(I,N¢L) - SUM)/ZALI,LI)
TEMP = ABS(X(I) =~ XNEW)/XNEW
CNY = AMAXL (CNV,TEMP)
X4I) = XNEW
CONTINUE

TEST FOR CONVERGENCE

60499700 A

Figure 2-8. Program GAUSS (Sheet 1 of 2)

2-5

530 CONTINUE

75 stoP

3) FORMAT (1X48E12.4)

IF (ONV .LE. EPS) GO TO 700

PRINT *, #£PROCESS HAS NOT CONVERGED IN #yMAXITy# ITERATIONSZ
650 PRINT ¥, 2EXECUTION TERMINATED?

730 PRINT ¥, #PROCESS HAS CONVERGED IN 2,ITS,# ITERATIONS?
PRINT *, 2SOLUTION VALUES ARE?#
PRINT 30, (X(I),I=1,N)

8c sTopP ,
330 PRINT *, 2INSUFFICIENT INPUT DATA, CANNOT CONTINUE#
sTOP
310 PRINT *, 2N = 2,N,# IS 700 LARGES MUST BE .LE, 50%
SToP
8¢ END
Figure 2-8. Program GAUSS (Sheet 2 of 2)
containing 3742B in columns 10-14. Then the array OCT
50 .0001 would contain the values shown in figure 2-12. After the

NN ANAN NN e
FAWNE S W FWN -
-
.

Figure 2-9. Input to GAUSS

At the completion of each iteration, CNV is compared with
the convergence criterion EPS; if convergence has occurred,
the solution values are printed and processing terminates. If
convergence does not occur within the specified number of
iterations, an appropriate message is printed and processing
terminates. Figure 2-10 shows the output produced from
execution with the input shown in figure 2-9.

PROCESS HAS CONVERGED IN 5 ITERATIONS
SOLUTION VALUES ARE

«2000E+01 «2000E+01 «2000E+01

Figure 2-10. Output from GAUSS

oTOD

Program OTOD (figure 2-11) reads display coded octal
numbers and converts them to decimal numbers. Input is
from cards containing a single octal number, with up to 20
digits, appearing anywhere within the first 30 columns; the B
suffix is optional. Octal digits are positive integers written
in base B notation; therefore, they can only contain the
digits 1 to 7.

The octal numbers are read according to 3R10 format
specification. This produces a right-justified, zero-filled
string 30 characters long contained in array OCT. The
DECODE statement strips off each display coded octal digit
and stores it in array IA in reverse order. The format
specification produces an array of right-justified, zero-
padded characters. For example, suppose a card is read

number is decoded, the contents of array IA would be as
shown in the same figure.

For each character, the DO-locp does the following:

Lines 24, 25 Tests for blank or B; the B must be at the
end of the string.

Line 28 Tests for sign; + or - is the last character
processed

Line 29 Tests for non-octal digit

Line 30 Tests for too many digits

Line 31 Converts display coded octal digit to

internal format by subtracting 1R0 (33B)

Line 32 Sums place value of digit to form decimal
number

When all digits of an cctal number have been processed, the
decimal number is signed and printed. In the above example,
the procedure for converting to decimal is

3

3x8° + 7xB% + 4x8 + 2 = 2018

10
so that 2018 is printed.

A test for end of file is included after the READ statement;
when all input cards have been read, a message is printed
and processing terminates.

LINK

Program LINK (figure 2-13) assumes that a previously
executed scientific program has calculated temperatures for
regions of a grid at specified time intervals and that the
results have been written to a file called INFIL. For each
time point there is a record containing the time value, the
region numbers, and the region temperatures. Regions and
temperatures are packed into single words, with a region
number in the lower half of a word and the temperature in
the upper half. The record format and some sample records
are shown in figure 2-14.

60499700 A

D

DA D

J

2 2D 20 I

3

NN B I)

J 0

D

J I I

¢

€

-
~
-

£y

&

Program LINK reads the entire input file, reformats the
data, and writes a new file called NEWFIL. In NEWFIL,
there is one record for each region. Each record contains
the region number, the time points, and the temperature at
each time point, as shown in figure 2-15. Time values and
associated temperatures are packed into a single word, with
a temperature in the upper half of a word and the time in
the lower half.

An array in ECS (Extended Core Storage) or LCM (Large
Core Memory) is allocated for data read from the input file

allocated for the array. Since data assigned to level 3 cannot
be referenced in expressions, the MOVLEYV subroutine is used
to transfer the data to and from central memory.

The first record is buffered in and the length is obtained
from the LENGTH subroutine (lines 20-23). The loop
(lines 26-34) does the following: the time value, from the
first word of the record, is stored in a separate array and
the record is moved from the input buffer to ECS with the
MOVLEYV subroutine. The variable I, used as a pointer to the
next available location in the ECS array, is incremented by

(line 8). The LEVEL statement defines the type of memory

the record length.

If the value of I exceeds the array

25

45

55

[$] QIO

LI

aOw

(9]

130

15)

X,

PROGRAM OTOD (INPUT,TAPE4=INPUT,OUTPUT)

PRNGRAM +OTOD* READS OCTAL NUMSERS CONTAINING UP TO 22 DIGITS
AND CNNVERTS THEM TN DECIMAL. INPUT IS ON CARDSS THE NUMBER MAY BE
ANYWHERE WITHIN THE FIRST 3C COLUMNS, AND THE B SUFFIX IS OPTIONAL

INTEGER OCT(3), DEC
OIMENSION IA(3D)

PRINT 50
RFAD AND DECODE DISPLAY CODED OCTAL NUMBER

RFAD t4%,10) OCT

IF (EOFI(4) JNE. 0) GO TO 80C
4 =¢C

DFC =1

DECODE (3Cy15,0CT) (IA(30-I+1),I=1,30)
SONVERT DISPLAY TO INTERNAL, THEN TO DECIMAL

20 208 I=1,3¢

I0IG = IA(I)

IF(IJIG .EQ. IR} GO TO 2CG

IF (IDIG .NE. 1R8) GO TO 150

IF (J «EQ. G) GO TO 2GC

GO T) 850

IF (IDIG +EQes 1R+ OR. IDIG .EQ. 1R=) GO TO 250
IF (IDIG +LT, 1RO +OR. IDIG .5T. 1R7) GO TO 708
IF (J +6T. 19) 60 TO 750

IDIG = IDIG - 1RO

DEC = DEC ¢ IDIG¥BA**)

J=J+1

CONTINUE

IF (J .EQs 0) GO TO 7G0

IF (IDIG +EQe. 1R=~) DEC = <-DEC
PRINT 23, (OCT(I),I=1,3), DEC
350 To 100
PRINT 30,
GO TO 130
PRINT 5¢
30 T0 100
PRINT 48
sToP
PRINT TIC
60 TO 146
FORMAT (3R1G)

FORMAT (30R1)

FORMAT (3(1XA10), 1XI20)

FORMAT (3(1xA10),y # IS NOT AN OCTAL NUMBERE?)
FORMAT (% END OTOD#)

FORMAT (21 OCTALZ, 28X, zDECIMALZ)

FORMAT (2 INPUT NUMBER HAS MORE THAN 20 DISITS#®)
FORMAT (3(1XA10), z CONTAINS B OUT OF SEQUENCE?2)
END

(OCT(I)yI=1,3)

60499700 A

Figure 2-11. Program OTGOD

2-7

boundary, a warning message is printed; no more data is read
but processing continues on the incomplete array. The next
record is read and the record counter NTIMES is incre-
mented; if NTIMES exceeds its limit, a warning message is
printed and the incomplete array is processed. Records are
read and stored in this manner until either the end-of-file is
reached or the ECS array is full. :

When the entire file, or as much of it as possible, has been
read and stored in ECS, lines 38 through 48 construct the
output records and write the output file NEWFIL. Each pass
through the outer BO-loop constructs a single cutput record;
each pass through the inner DO-lacp stores a single word in
the output record. On the first pass through the inner loop,
the first input record is transferred to central memory via
MOVLEYV; its time value is packed with the temperature
value of the first region and stored in the output buffer OUT
to form the second word of the output record. On the
second pass, the second input record is moved to central

memory, and the time value is packed with the temperature.

value for the first region to form the third word of the first
output record. When all times and temperatures for the
region have been stored in the output buffer (inner loop
completed), the region number is stored in the first word of
the output buffer and the new record is written. Then,
under control of the outer loop, the subsequent records are
constructed and written in a like manner, until the entire
array has been processed.

CORCO

Program CORCO (figure 2-16) assumes that a series of
standardized tests has been given to two groups of students,
and that the results have been stored in two carresponding
files. For each test there is a record containing the test
number, the number of students who took the test, and the
number of students who correctly answered each question on
the test. The record format, along with some sample
records from beth files, is shown in figure 2-17,

OCT:
OCT(1) 55555555555555556536
OCT(2) 42373502555555555555
OCT(3) 5555655556555655565555

1A(1) blanks
1A(2) blanks

1A(17) 00000000000000000002
1A(18) 00000000000000000035
1A(19) 00000000000000000037
1A(20) 00000000000000000042
1A(21) 000000000000600000036
1A(22) blanks

Figure 2-12. Arrays OCT and IA in Program OTOD

2-8

The program reads the two files and, for each test,
calculates the probability that a student will answer each
question correctly, calculates a correlation coefficient,
calculates a new probability for each question, and writes a
new file. The output file record contains the test number,
number of students, and the probability that a student will
answer each question correctly. The output record format,
along with some sample records, is shown in figure 2-18.

The program begins by reading a record from each file.
Since data from the first file is needed immediately, the
input operation on unit 5 must be complete before proc-
essing can continue; unit 5 is tested immediately after the
BUFFER IN. However, data from the second file is not
needed until later in the program; therefore, processing can
continue while the input operation on unit 6 is in progress.
Since execution of the UNIT function loops until input is
complete, it should not be executed until just before the
data is needed.

When the first BUFFER IN has completed, the loop
(lines 22-24) calculates the probability that a student will
answer a question correctly.

p= No. of correct answers
- No. of students

After this calculation, data from the second file is needed.
Unit 6 is tested; when the input operation has completed,
the record from the second file is processed in the same
manner as the record from the first file.

Lines 37 through 46 calculate the correlation coefficient for
corresponding records of the two files. The formula is
shown in figure 2-19. In the figure, X and Y are the
probabilities for the first and second testings, respectively,
and N is the number of students who took the test. The
correlation coefficient has a value between -1 and1l. A
negative coefficient indicates unreliable data. The test
number and coefficient are printed. An example of the
printed output is shown in figure 2-20.

When every question on a test was correctly answered by the
same number of students, the divisor in the formula became
zero, and the correlation coefficient infinite. Therefore,
the LEGVAR function ‘is used to check this possibility
(line 47).

New probabilities are calculated by the relation:

NEWPR = (N;X + NpY)/(N; + N,)

where N, is the number of students in the first testing, N2 is
the number in the second testing, and X and Y are as before.
The output record is written in line 55.

Records are read and processed in this manner until an end-
of-file is encountered on either of the input files.

60499700 A

1

‘a

—) D D DD I I I DI

N

J

1

33 0

J I

3

€@R

LIICDLIO

¥

(¥)

¥

LICrL2

LI W

Gﬁﬁ

LWL

-
(3

“

w
'
>

PROGRAM LINK (OUTPUT,LNKFIL,TAPE4=LNKFIL yNEWFIL,TAPES=NEWFIL)

PROGRAM *LINK* READS A BINARY FILE CONTAINING TIME
HISTORY DATA, REFORMAYS THE DATA, AND WRITES THE REFORMATTED
DATA TO A NEW FILE '

COMMON /ECSCOM/ ECSBLK(S5000)

LEVFL 3, ECSBLK '

DIMENSION INBUF(5G), OUTRUF(50), TIME(50)

DATA MASKU/T777777777000000C0008/, MASKL/77777777773/

I =1

J =1
NCARD = 1
NTIMES = 1
SCHIND &

RFAD FIRST RECORD TN DETEPMINF RECORD LENGTH

RUFFEF IN (4,0) (INSUF(1), INSUF(50))
IF (UNIT(4)) 160y 8CC, BGC

LFMREC = LENGTH(4)

IF (LFNREC.GT.5C) 61 Tn 9l¢

EAN PZMAINDER OF FILE AND STNRE IN ECS/LCM

TIME(NTIMES) = SHIFT(INBUF(1),3C) .AND. MASKL
CALL MOVLEVY (INBUF(1), ECSALK(IV, LENREC)

I = T ¢ LENREC

RUFFFR IN (4yG) (INCUF(1), IMAUFC(LENREC))
NTIMES = NTIMES + 1§

IF (NTI™ES ,GT. S() GO TC 9CC

TS O(UMIT(G)) 119, 200, 3GC

LLL NATA IS IN ECS, MOVE Tn SCM, REFORMAT, AND WRITE NIW FILE

NTIMFS = NTIMES - 1
0n @3 I=2,LENREC
IT =1
D0 250 J=14NTIMES
CeLL MOVLEV (ECSBLK(II), INBUF(1), I)
YI = II ¢ LENREC
OUTRUF (J¢1) = (INRUF(TI) (ANC, MASKU) +ORe TIME(J)
CANTINUE
OUT3UF(1) = INBUF(I) .AND, MASKL
AFFIR OUT (5,0) 1OUTRUF(1), NUTBUF(NTIMIS¢1))
IF (JNIT(5)) 33C, 8C8. 8GC
CONTINUE

PRINT *, 2END LINK?

sTn>

PFINT *, # DISK I/O ERRORZ

sToe

PEINT %, 2INPUT FILE EXCESDS PROGRAM LIMITS,?

PPINT *, ZEXECUTINN CONTINUING UT SOME DATA MAY BE LOST2
30 TO 23C

=N

1

-
~
-
-~
-

¥

7D

Figure 2-13. Pragram LINK

A. Record Format

NN I R BN RN

word1 word2 word3 wordN
time temp/region1 temp/region2 temp/regionN
B. Sample Actual Records
1.0 ~17266206C0C0C000C0001 1726670000€08000C0G2 >5G6000000000605 1726500000060
g0000CE
2.0 17264340:0060600630001 1726440000000000030° 264540000000000005 1726460600060
000CaGF .
3.0 1723€003cC0C000g00CY 17245600C0000C0C000 725700C000000C00JG5 1726414000060
g00000¢€
4.0 172554663360L00020001 1725540000000000¢ 172554000000006000G5 1725540600000
00000C¢€
50 172662¢C00CC0YCI0001 172661000000G00G0 1726560000006G00300805 1726550C00000
000000¢€
6.0 1726666 .0206C30306CC001 1726520000030000¢ 17246060006060600005 1725660008000
00600GF . '
7.0 172661CL0C0CCCOCI0CC 172€40000600000C! 172452000000000008005 1725663608049
00000CE
8.0 17264043060C030300n1 1723640C06000600C 17255504860000086008305 1726400000063
80000G €
9.0 172040CGG0CC00CCa9CY 1724€200008CC00¢0" 172574603666600000G5 1724580600000
ggagace
10.0 1726€145C00CC0020001 17264640600000° 17265406000C00000005 6653037777000
000005¢€
Figure 2-14. Record Format for INFIL
A. Record Format
word1 word2 word3 wordM
region # temp/time1 temp/time2 temp/timeM
B. Sample Actual Records
1 172662008 C172¢400uct 1726434000172146C6000 c2000017225G6L¢60¢C 1726€04000172
2€CLoCC
2 1726670G20172C64C0CG0C 172644506017 214006287 2€610000172250GGG0 1726520000172
2eTC0rL
3 172674000 {172040CC(D 1726444605172148C 2 726 €000006172250600¢ 1726404000172
e6ctyct
4 17274 40001 72CaHlCull 172645390017c44Cs 1726570000172256060¢C 1724760000172
2€CLCCC
5 172655000 0172¢6CCCE 1726454060017214C(172€56000017225066004 1724€00000172
26CLCCC
6 17265706001 7204400CL 17264630C017214¢C 172€55000017225¢€0600 1725€60000172
2€C0CCC
Figure 2-15. Record Format for NEWFIL
2-10 60499700 A

J 2 I D

4

J

2D D

2 2 I

2 0 D D

1"

H

[y

63“
6@\

6@&

sIR

-

1

35

45

55

VOO

LI 2

119

(o XS R Y]

130

LIL2)

159

s XS N &1

PROGRAM CNRCO (OUTPUT,TESTA,TESTB,PROBS,
1 TAPE5=TESTA,TAPE6=TESTR,TAPE7=PR0OBS)

INTEGFR TESTN1, TESTNZ2, TOTST

DIMENSION IBUFA(150), IBUFB(150), OUTBUF(150), X(150), Y(150),
1 IouT(2)

EQUIVALENCE (IOUT(1),0UTBUF (1))

READ INPUT FILES CONTAINING TEST RESULTS

RFWIND &

REWIND &

N=10

BUFFER IN (5,0) (IBUFA(1),IBUFA(N+2))
BUFFEP IN (690) (IBUFB(1),IBUFR(N+2))
IF (UNIT(S5)) 110, 9020, 80G

CALCULATE PROBABILITIES FOR FIRST TESTING

TFSTNL = IBUFA(1)

NST1 = I3UFA(2)
0N 120 I=1,N
X(I) = FLOAT(IBUFA(I+2))/NST1
CONTINUS

CALCULATE PROBABILITIES FOR SECNHND TESTING

IF (UNIT(6)) 130,90C,800

TFSTN2 = ISUFB(1}

MST2 = IRUFB(2)
DO 140 I=g,N
¥(I) = FLOAT(IBUFB(I+2))/NST2
CONTINUE

CALCULATE CORRELATION COEFFICIENT

SUMX = SUMY = SUMXY = SUMXS0O = SUMYSQ = 0.0
nn 150 I=1,N :
SUMY = SUMX ¢+ X(I)
SUMY = SUMY + Y(I)
SUMXY = SUMXY + X(I)*v(I)
SUMXSN = SUMXSQ + X(I)**2
SUMYSND = SUMYSQ + Y(I)#*2
CANTINUE
R = (N®SUMXY = SUMX¥SUMY)/
1 (SORT(N*SUMXSQ = SUMX**#2)#*SQRT(N*SUMYSQ = SUMY®*¥2))
IF (LF3VAR(R) oNE, 0) GO TH 1807
PRINT 14, TESTN1, R
FNRMAT (# TEST NO. = 2,13,72 CORRELATION COEFFICIENY = %,F5,2)
TOTST = NST1 & NST2

CALCULATE NEW PROBABILITIES AND WRITE OUTPUT FILE

D0 152 I=14N
OQUTRIF(I+2) = (X(I)*NSTL + Y(I)*NST2)/TOTST
CONTINUE

INUT(1Y = TESTN1L

IoUT(2) = TOTST

BUFFER OUT (7,0) (OUTBUF (1) ,0UTRUF (N+2))

IF (UNIT(7)) 106G, 80G, BOC

PRINT ¢, £FATAL I/D ERRNR?Z

SToP

PRINT *, £END CORCOZ

stop

PRINT %, ¢z INVALID COEFFICIENTZ
G0 To 100

£ND

60499700 A

Figure 2-16. Program CORCO

2-11

A. Record Format

word1 word2 word3 wérd4

test no. no. of students #Q1 #Q2

B. Sample Actual Records

TEST A
1t 13C 99 38 97 35 95 9% 93 92 91 93
2 10C /5 76 95 95 &8 31 97 35 98 47
3 180C 93 Ff4 97 54 A5 71 93 17 92 89
% 4CC % &% 29 39 94 o5 35 g8 68 73
5 1¢C 99 ¢7 9% 933 A5 65 A7 BT E4 84
h 13 74 75 7+ 784 79 AL 93 S6 65 93
7 1¢C 99 @98 95 33 39 B4 78 71 63 Sb4
3 10C 71 72 73 7% 7?5 76 77 783 79 8¢
3 1¢¢ 21 23 25 27 29 31 33 35 37 39
10 1CC 94 6% =3 79 &1. 25 98 B3 12 5%

TEST 8

1 ¢ 63 89 78 43 %A 93 H3 98 99 83

2 13 8% %1 79 77 75 73 71 69 €7 65
3 10 99 1 83 1 79 21 6% 31 593 4t
4 13C 99 1 89 11 490 22 72 34 65 47
5 16C 93 €1 73 31 47 85 98 66 79 58
f 1TC G4 3 83 78 LB 99 65 24 47 98
7 1CC 44 77 83 356 96 9% 95 96 91 25
4 13¢ 75 75 75 7?5 75 ‘75 ‘75 75 75 75
9 166 7S¢ 42 75 3L 75 22 75 12 75 16
10 10C 99 34 &5 32 214 G4 .65 87 65 32

Figure 2-17. Input Records for CORCO

A. Record Format

word1 word2 word3 word4

test no. no. of students P{Q1) P(Q2)

B. Sample Actual Records

1 2¢¢ -1 « 94 « 98 72 « 77 + 95 81 « 95 35 «89
2 208 o 74 «79 «87 1] 72 52 +84 «52 «833 +56
3 20¢ « 99 «33 «93 +38 «B82 o 106 81 264 76 + 65
4 20¢C «32 «35 39 «55 «87 «59 «79 51 «b67 «63
5 ZDG .95 -7q 05') 195 056 075 093 -77 l67 '71
6 20¢C « 84 « 85 «81 «78 1) «90 79 «40 56 «96
7 20¢C 72 «88 «32 7l « 93 «B89 «87 « 84 77 o4l
, 9 20¢ w48 «33 «50C «29 «52 «27 54 «2b 56 28
10 200 «96 81 62 55 «36 40 82 75 +«39 o 45
Figure 2-18. Records on File PROBS
2-12 60499700 A

D20 D D I

BIS I I I) DD 3 I

A

J D I I

N N N
NZXY; - ZXZY;
i=1 i=1 =1
R =
\/ N N \/ N N
NZX2 — (ZX)? NZY2 — (ZY;)?
i=1 i=1 i=1 i=1
Figure 2-19. Formula for Correlation Coefficient
60499700 A

TEST NO« = 1 JORRELATION COEFFICIENT = =,45
TESY NO. = 2 CORRELATINN COEFFICIENT = ,24
TEST KO, = 3 CORRELATION CNEFFICIENT = ,64
TEST NOe = & SNRRELATION COEFFICIENT = -.42
TEST NO, = 5 CORRILATIOM COEFFICIENT = ,27
TEST a0, = 6& CORRELATION COEFFICIENT = ,59
TEST NO. = 7 ZORRILATION CAEFFICIENT = ,12
INVALID COEFFICIENT

TEST ND. = 9 CORRSLATION CNEFFICIENT = =,35
TEST NNe =1C SORRILATION CNEFFICIENT = ,26
END CCRCOC

Figure 2-20. Printed Output from CORCO
2-13

ol el ol ol ol ol ol o

.

v

7N

OPTIMIZATION 3

The purpose of optimizing a pregram is to reduce the cost of
executing it. This cost is literally a cost in money, whether
the cost is charged to the individual user or shared among all
the users. Because the cost of a job results from the use of
several kinds of system resources, the cost can be reduced
by reducing the use of one or more of these resources.
These resources include central processor time, central
memory field length, and the various resources used in
input/output operations.

Frequently, however, a reduced expenditure of one resource
requires an increased expenditure of another. For instance,

the amount of memory required by a program can be .

reduced by using segmentation or overlays (section 7), but
more- central processor time is then required. Conversely,
some optimization techniques, such as loop unrolling
(described in this section), decrease central processor time
at the expense of field length. Only the requirements of a
particular application can determine whether specific
optimizations are worthwhile.

A resource cost that is frequently overlooked when optimi-
zation is considered is programmer time. As discussed in
section 1, program development, debugging, and mainten-
ance frequently contribute more to the overall cost of a
program than the computer resources required to execute it.
Therefore, a programmer should be very cautious about
optimizing a program in such a way as to make it less
comprehensible or maintainable. Unless a program is to be
executed repeatedly, or to use a lot of resources, not much
time should be spent on user optimization.

This section describes both the optimizations that the
compiler performs for the user as well as those the user can
embody in the source code. Most of these optimizations
decrease central processor time (not always at the expense
of field length), but some decrease field length, input/output
time, or real time (throughput).

It should be kept in mind that the best way to optimize code
is to use efficient algorithms. The higher the level at which
a program is optimized, the better the results.

Array subscript computation is discussed frequently in this
secticn; therefore, the formulas for one-, two-, and three-
dimensional arrays are shown in table 3-1 for convenient
reference. These formulas do not apply to double precision
or complex arrays.

Because it is reasonable to assume that any programmer
interested in optimal program execution will compile the
program under OPT=2 or UO (unsafe optimization), the
optimizations performed by the compiler in those modes are
discussed first.

COMPILER OPTIMIZATION

When OPT=2 is specified on the FTN control statement, the
compiler optimizes the user code extensively in the process
of generating object code. When the UO option is also
specified, all the OPT=2 optimizations are performed, as
well as some additional ones that could cause incorrect
results. (The additional optimizations performed when UO is
specified are identified below.)

OPT=2 mode is a global optimizer; that is, it analyzes the
structure of an entire pregram unit during the optimizaticn
process. A brief description of the procedure followed by
this optimizer will help to clarify the specific optimizations
described here in more detail.

In optimizing mode, several passes are made over the source
code. In the first pass, the syntax of statements is analyzed,
a symbol table is constructed, and the statements are
translated into an intermediate language similar to assembly
language. Typically, several instructions in this inter-
mediate language are required for each executable
FORTRAN statement. At this stage, no register assignment
has taken place; rather, an indefinite number of registers
(RL,R2,...,Rn) are used as needed. An example of a
FORTRAN statement and its translation into intermediate
language is shown in figure 3-1. The intermediate language
used in this example is similar to that used by the compiler,
but is different in format.

Local optimizations are performed before global optimi-
zation begins. (Local optimizations are also performed when
OPT=0 or 1 is specified.) The local optimizations include
constant evaluation and elimination of redundant subex-
pressions.

Glgbal optimization begins by grouping sequences of inter-
mediate language instructions into units called basic blocks.
A basic block is a sequence of instructions with one entry
and one point of exit. It has the property that if one
instruetion in a block is executed, all the instructions are
executed. This grouping simplifies the process of analyzing
the flow of control in the program. In figure 3-2, each
section of code between comment lines censtitutes a basic
block.

TABLE 3-1. ARRAY SUBSCRIPT FORMULAS

Number of . Formula for Offset
Dimensions Declaration Reference from First Element
1 A(D AlL) = L-1
2 A(I,J) AlL,M)= L-1 + I¥(M-1)
3 . A(1,J,K) AL,M,N)= L-1 + I¥(M-1 + J%(N-1))
60499700 A 3-1

The next stage is to construct a directed graph in which the
basic blocks are nodes, and the lines connecting the nodes
indicate a conditional or unconditional transfer between
blocks. The optimizer constructs a table indicating which
variables are used and defined in each block.

The optimizer then identifies all the loops in the program
unit (IF loops as well as DO loops). The loops are
categorized according to how deeply they are nested. (An
unnested loop is in the same category as the innermost loop
of a nest.) Then, beginning with the innermost loops and
proceeding outward, optimizations are performed for each
loop. These optimizations include movement of invariant
code outside the loop, strength reduction, elimination of
dead variable definitions, and register assignment.

_After all loops have been optimized, object code is gener-
ated. As a result of optimization, the order in which
operations are performed can be different than the order in

which those operations were specified in the source code.

The result, however, is always identical.

FORTRAN Statement:
Q=X+Y/Z

Intermediate Language Equivalent:

LOAD Y —» R1

LOAD Z—+R2

DIVIDE R1/ R2—+R3

LOAD X—> R4

ADD R3 + R4—»R5

STORE R5 —Q

Figure 3-1. Intermediate Language Example

C
X=Y
DO 120 I=1,N
A(l) = B(l)

120 CONTINUE
GO TO (100,200,300) J

c

1602=0Q
GO TO 500

c

200 PRINT *, X
GO TO 500

c

300 N =:N + 1
A(1) =0
RETURN

c

Figure 3-2. Basic Block Example

Users with a knowledge of COMPASS are encouraged to
examine the cbject listing produced from an OPT=2 compila-
tion to get an idea of the types of source code manipulation
that take place. The listing can be compared with one
produced by an OPT=0 compilation.

The compiler-produced optimizations discussed in this
section are divided into machine-independent optimizations
and machine-dependent optimizations. Machine-independent
optimizations are those that would produce more efficient
code on any machine. Primarily, they consist of the
elimination of unnecessary operations. Optimizations in this
category include common subexpression squeezing, elimina-
tion of dead variable definitions, invariant code motion, and
compilation time evaluation of constants. Machine-
dependent optimizations are those that take into account
the specific features of the systems on which FORTRAN
Extended programs run. They include replacing expensive
operations with cheaper ones and taking advantage of the
functional units present on some models.

MACHINE-INDEPENDENT
OPTIMIZATIONS

As stated above, machine-independent optimizations are
those that result in the elimination of operatiocns. In some
cases, the operations are completely removed from the
source code; this saves space as well as time. In other
cases, operations are moved out of loops so that they are
executed less frequently; this does not necessafily save any
space.

Invariant Code Motion

If a sequence of instructions appears in a loop, and the result
of execution of the instructions does not depend on any
variable whose value changes within the loop, the instruc-
tions are called invariant. If the instructions remain in the
loop, they are redundantly executed as many times as the
loop is executed; therefore, the optimizer removes such
sequences from loops whenever possible.

For example, in the sequence:

DO 100 I=1,N
K(D) = J/L+I*%2
100 CONTINUE

neither J nor L can change in value during execution of the
loop and, therefore, J/L is invariant and can be safely
removed from the loop. J/L is then calculated only once,
rather than repeatedly. After optimization, the loop is
equivalent to the following: .

R1=J/L

DO 100 I=1,N

K(I) = R1+1%%2
100 CONTINUE

(In this example of code after optimization, and those that
follow, variables of the form Rn indicate machine registers
rather than memory locations; thus, the examples should not
strictly speaking be read as FORTRAN statements.)

Invariant code can extend for several statements, as shown
in figure 3-3. This example also shows that IF loops that are
essentially the same as DO loops are optimized in the same
way.

60499700 A

IS R I I

>

)

J I DI I I I) DD D D

I I I

™

P

Invariant code can also include code that is invisible in
FORTRAN. For example, in the sequence:

DIMENSION B(10,10,10)
DO 10 I=1,N
B(1,7,K) =I

10 CONTINUE

The relative location of the element of array B is calculated
by the formula (see table 3-1):

I-1 + 10 x (6 + 10 x (K-1))

Without optimization, this entire calculation would be
performed once for each execution of the loop. After
optimization, however, the invariant part of the calculation
is performed before entering the loop. This invariant part
consists of the following subexpression which, in fact, is
most of the calculation:

-1 +10 x (6 + 10 x (K-1))

The optimizer only moves code out of a loop when it is
certain that the code is actually invariant. There are
circumstances in which execution of a sequence of instruc-
tions proves it to be invariant but the determination cannot
be made at compilation time. These circumstances include
the following:

® When a call is made to a subprogram within the loop,
and the code that is being considered for invariancy
uses the value of a variable that is either in common or
is an actual parameter to the subprogram. For
example, in figure 3-4, neither X**2 nor Y/Z can be
moved out of the loop, because the subroutine MYSUB
might change the value of X or Z. However, if the call
to MYSUB were:

CALL MYSUB (Q,R,Z+2)
then Y/Z could be moved out of the loop, since the

compiler assumes that the call to MYSUB does not
change the value of Z.

® When a conditicnal branch within the loop introduces
the possibility that the code might never be executed.
For example, in figure 3-5, the expression K+M can be
moved out of the loop so that it is executed only once,
but the store into J must be left in the loop.

@ When the value of an expression ultimately depends on a
variable that is capable of changing value in successive
iterations of the loop. For example, in figure 3-6, the
division L/N1 cannot be moved out of the loop because
the value of L ultimately depends on that of I, which
changes each time the loop is executed.

Taking the limitations of the optimizer into account, the
user concerned with optimal performance can write loops so
as to maximize the amount of optimization that can take
place. Above all, loop structure should be kept simple and
straightforward. Common should not be used for storage of
strictly local variables. Finally, expressions should be
written in such a way as to make invariant subexpressions
easier to recognize. For example:

DO 100 I=1,N
A = (1. + X) + B
100 CONTINUE

COMMON X

DO 1001 = 1,N

All) = X**2

B(l) = Y/Z

CALL MYSUB (Q,R,2)
100 CONTINUE

Figure 3-4. Invariant Code (Example 1)

Before optimization:

100 A =P() +S/Q
Y =X/Z+D
I =1+1

tF(LLT.12) GO TO 100

After optimization:

Rt = S/Q

Y =X/Z+D
100 A =P{l) + R1

I =1+1

IF(L.LT.12) GO TO 100

LOGICAL L
DO 100 | = 1,N
IF {L} GO TO 110
J = K+tM
110 All) = B(I} + C(1)
100 CONTINUE

Figure 3-5. Invariant Code (Example 2)

DO 100 I=1,N

Jd=1+ ..

K=J"..

L =K+..

M = L/N1 + N2*N3
100 CONTINUE

Figure 3-3. Invariant Code Motion Example

60499700 A

Figure 3-6. Invariant Code (Example 3)

3-3

is preferable to

DO 100 I=1,N
A =1, +BD+ X
100 CONTINUE

because 1. + X is recognized as an invariant expression only
in the first case.

Common sense must be used to decide when rewriting loops
interferes with the readability of code.

Whenever it is not clear whether the compiler can move
invariant code, the user can move it. Moving code
sometimes requires the creation of temporary variables to
hold subexpressions; these variables should only be used
locally, so that the optimizer does not generate unnecessary
stores into them (as explained under Dead Definition
Elimination). An exception to the effectiveness of this
technique is that the program should not perform its own
subscript calculation for a multidimensional array. For
example, the sequence:

DIMENSION B(10,10,10)
DO 10 I=1,N
B(1,7,K) =1

10 CONTINUE

should not be rewritten as:

DIMENSION B(10,10,10)
ITEMP = -1 + 10%(6 + 10%(K-1))
DO 10 I =1,N
BU+ITEMP) = 1

10 CONTINUE

even though the results are the same, because the rewritten
version inhibits certain special-case optimizations the
optimizer performs on array subscripts. (The expression in
the rewritten version is not recognized as a subscript.)

Common Subexpression Elimination

A common subexpression is an expression that occurs more
than once in the source code. In completely unoptimized
code, the expression is evaluated each time it occurs.
Instead, the optimizer tries to save the result of the
expression in a register whenever possible and to use that
result instead of reevaluating the expression.

For example, in the following sequence of code:

X = A*B*C
S(A*B) = (A*B)/C

all three occurrences of A*B are matched; A*B is evaluated
only once, and the result is used three times. This procedure
can take place only when all of the following conditions are
true:

@ The expressions can be recognized as the same
expression. The compiler reorders each expression into
a canonical order, and then compares expressions term-
by-term. Only expressions that match exactly are used.
For example, A+B, A+B+C, C+D, and so forth, are
recognized as subexpressions of A+B+C+D, but A+C is
not recognized. B+A can be matched with A+B,
however, because they are rearranged into the same
order. When a subexpression contains more than one
operator of equal precedence, as in:

A*B/C

3-4

the expression is usually evaluated from left to right.
Since the operators are associative, however, the
compiler might reorder the operations. Parentheses can
be used to ensure the desired grouping of sub-
expressions:

(A*B)/C

@ The expressions must be in the same sequence of code,

otherwise it is not feasible to allocate a register to save
the result. The further apart two occurrences of the
same expression are, the less likely it is that they will
be matched. Furthermore, no code can occur between
occurrences of the same expression that might cause it
to change in value. For example, in the sequence:

X = A(2)/B(2) - Q
A(D = 4.5
Z = A(2)/8(2) + 13.4

A(2)/B(2) cannot be matched as a common subexpression
because of the possibility that I will be equal to 2 at
execution time, changing the value of the expression.
In this example, if the user is sure that I will not be
equal to 2, the assignment to A(I) should be placed after
the assignment to Z.

Keeping these restrictions in mind, the user can write
expressions so as to maximize the chance that identical
expressions are recognized by the optimizer. For example:

AA = X*AlY
BB = X*B/Y

is not likely to result in subexpression elimination, but

AA = AX(X/Y)
BB = B*(X/Y)

will do so.

Dead Definition Elimination

As explained above, the optimizer divides a program unit
into basic blocks as part of its analysis. In the process, it
keeps track of the uses and definitions of each variable
within the block. By investigating which combinations of
blocks can be branched to from a given block, the optimizer
determines whether the value of a variable is needed after
the block is executed. If the value is needed, the variable is
referred to as live on exit, otherwise it is referred to as
dead cn exit. If a variable is dead on exit from a black, the
last store into the variable can be eliminated, since the
value of the variable will not be needed again in the
program.

For example, in the program unit shown in figure 3-7, the
store into X in the line labeled 100 is eliminated, because
there is path through the program in which X could be
referenced subsequently. .

Locally (that is, within a basic block), other stores of a
variable can also be eliminated. For example, in the
sequence:

X=Y+2Z
A=X+B
X =X/R

60499700 A

J

J I I

4

D b I D

J o) D D

J

) I D I I

\

v

J I

J

all three of these statements must be executed whenever
the first one is executed. Therefore, it is not necessary to
store X after the first statement because it is almost
immediately redefined. A dead definition is eliminated only
if the optimizer can be certain that it is really dead. For
instance, the logic of the program might be such that it is
impossible to decide for certain where the last usage of the
variable is. In this case, no stores can be deleted (except
locally). Also, the ability of the optimizer to eliminate
stores even locally is limited by the availability of reqgisters.
For example, in the sequence:

X=Y +Z

A®I+d,d4K,K+]) =(BM,N) +
1C(N,L)) ** (D(L,M)/E**X)/F

X = Q/R/S/T

it is impossible to keep the value of X in a register
throughout the execution of the second statement, so X
must be stored and then subsequently loaded.

There is not much the user can do to help the optimizer
eliminate dead definitions. Of course, many dead definitions
result from incorrect or redundant code. For example, if
the last statement to be executed in a program unit is a
store into a local variable, the statement is superfilucus and
should be eliminated by the programmer. The best advice is
to keep program logic simple and avoid unnecessary use of
common blocks and equivalence classes.

Constant Evaluation

At all optimization levels, the compiler attempts to
evaluate as many constant subexpressions as possible. The
reason for this is that programs are usually executed many
more times than they are compiled. For example:

X =3.5+4.%%2

The compiler evaluates the expression and replaces it with
the constant 19.5. Some constant subexpressions serve no
useful purpose and should be evaluated by the programmer,
not the compiler. Others are justified, however, when they
make programs more readable. This is particularly true
when one of the components of the expression is a standard
constant, such as pi ore. Because the expression is
evaluated at compile time at minimal expense, it is better
to leave such expressions unevaluated.

SUBROUTINE A (M,V, 1)
DIMENSION V(M)
READ *, X
GO TO (100,200) |
100 X = X/2.
IF (M .GT. 20) GO TO 250
STOP
200 PRINT *, X
RETURN
250 V(M) = 26.6
RETURN
END

Figure 3-7. Variable Dead on Exit

60499700 A

The user can help the optimizer by grouping constant
subexpressions within an expression. For example, it is
better to write:

X =Y *(3.14159265358979 / 2.)
than:
X = 3.14159265358979 * Y [2.

because the constant subexpression is recognized in the first
case but not the second.

Test Replacement

Test replacement consists of replacing, in a loop, all or some
occurrences of a variable with a function of a related
variable. The control variable is especially likely to be
eliminated. A variable can be eliminated if it satisfies the
following conditions:

e It is not in common or a formal parameter
@ Its value is not required outside the loop

® At least one of its appearances in the loop is in the
form of a linear function (expecially as an array
subscript); for example:

DO 1001 = 1,N
A2,]) = 33.2
100 CONTINUE

Test replacement of I can take place in this loop, but
not in the following case:

DO 110 I=1,N
X = SQRT(FLOAT()
100 CONTINUE

In test replacement, the increment and test portions of the
loop code are rewritten so that a linear function of the
control variable is incremented and tested, rather than the
control variable itself; for example:

DO 100 I=1,10
Al = 2.5
100 CONTINUE

In this loop, test replacement causes the address of the
successive elements of the array A to be used for testing
and incrementing, rather than the variable I. Because the
distinction is easier to see in COMPASS code, the object
code generated for this loop under OPT=0 and OPT=2 is
shown in figure 3-8. It should be noted that the variable I,
for all intents and purposes, does not exist in the second
version.

When the control variable has more than one use within a
loop, test replacement can still take place, but the control
variable is not necessarily eliminated. However, at least
one increment instruction per loop iteration is eliminated.

MACHINE-DEPENDENT
OPTIMIZATION

As stated above, machine-dependent optimizations are those
that take advantage of the peculiar features of the systems
on which FORTRAN Extended programs can be run. They
fall into three main categories:

e Those that replace slower operations by faster oper-
ations. In FORTRAN, the relative speeds of operations
can be ranked as follows (slowest first):

* Exponentiation

/ Division

* Multiplication

+ - - Addition and subtraction

@ Those that reorder instructions so as to use simulta-

neously as many functional units as possible. These’

optimizations are only carried out on systems with
functional units; that is, the 6600, 6700, CYBER 70
Models 74 and 76, and CYBER 170 Models 175 and 176
Computer Systems.

e Those that schedule register usage so as to minimize
stores and loads. These apply to all computer systems.

Strength Reduction

Strength reduction is one instance of the replacement of
expensive operations by cheaper operations. Specifically,
strength reduction replaces exponentiation by multiplica-
tion, and multiplication by addition.

Under OPT=0:

SX7 18
SA7 I

YRA BSS 08
SAS CON,
SA4 I
BX7 XS
SA7 X4+ pA=-18
SAS I
SX7 X5¢+18
SX0 X7-138
SA7 AS
MI X0,)AA

Under OPT=2:

SAl CON.
y: [} A¢118
saz 4

)AA BSS 08
BX7 X1
SA7 B7
1: X4 B7+18
GE 869B79) AA

Figure 3-8. Test Replacement Generated Code .

3-6

Some types of strength reduction are local optimizations.
For example, any exponentiation by a small integer constant
(less than about 12) is replaced by a series of multiplica-
tions. Exponentiation by larger integers results in a call to a
Common Library routine, which also uses multiplication for
exponentiation by any integer up to about 100.

Another example is multiplication by 2, which can be
replaced by addition of the variable to itself; thus:

J = 2%
becomes:
J=14]

When OPT=2 is specified, strength reduction also takes place
in other situations. For example, if a subscript expression is
of the form:

n*l +m

where n and m are unsigned integer constants, and I is a
variable that varies only linearly in the loop (such as the
control variable), then the multiplication can be replaced by
an addition. For example, in the loop:

DO 120 I=1, 100
B(4*I + 3) = 2.5
100 CONTINUE

the loop is rewritten as follows:

R1=3
DO 120 I=1, 100
RL=Rl+4
B(RL) = 2.5

120 CONTINUE

so that the multiplication is replaced by an addition.

Special Casing of Subscripts

In a multidimensional array, subscript computation requires
one or more multiply instructions. The formula for this
computation is shown in table 3-1. If any of the declared
dimensions (except the last dimension, which is not used in a
multiply) is a power of 2, the multiplication can be replaced
with a shift instruction, which executes more quickly. This
is possible bet:ausf7 subscript dimensions are positive
numbers less than 2" -1. (Shifts cannot replace multiplica-
tions of other integer variables because the results might
overflow 48 bits, leading to invalid results.)

In the following example:

DIMENSION A(2,4,7)

A(1,J,K) = 452.3
the subscript calculation is:
I-1+2%(J3-1+ 4%K-1))

After optimization, both multiplications are performed by
shifts instead of multiply instructions.

The replacement of multiplication by a shift also takes place
when the array dimension is a sum or difference of two
powers of 2. In this case, the number to be multiplied is
shifted twice, and the two results are added or subtracted.

60499700 A

5 I IS B B N B

I I

D J

I D

J D

JJ D I I I

()

"

B

[4

In the following examples

DIMENSION A(6,12,3)

ALIK) = 452.3

the formula for the subscript is:
I-1 + 6%(3-1 + 12%(K-1))

or
T+ 6%)+72*K - 79

Both multiplications are performed using shift and add
instructions.

Another type of special casing takes place when the first
subscript expression of a subscript is a constant. In this case,
the constant is added to the base address of array, saving

one addition each time the subscript is calculated. For

example, in the following case:

DIMENSION A (10,10,10)
DO 100 I=1,N
A, 3,0 =1

100 CONTINUE

the address of the array element in the assignment state-
ment is calculated as follows:

Address = Base address + (3 +10* (J-1+10*(I- 1))

where the base address is the address of the first element in
the array. Since the constant part of the calculation only
needs to be performed once, 3 is added to the base address
at compile time, effectively transforming the calculation to
the following form:

Address = Biased base address +
(10*(3-1+10*(1-1))

The same principle can be applied to the case where the two
leftmost subscript expressions, or all three, are constants.

Functional Unit Scheduling

The central processor in several of the computer systems on
which FORTRAN Extended programs run has multiple
functional units. The optimizer takes advantage of this
feature whenever possible by scheduling instructions so as to
use units simultaneously. This optimization is performed
only when the program is compiled on a system with
functional units; the compiler assumes that the program is
to be executed on the same system on which it was
compiled. However, performance is not degraded if the
program is executed on a different system.

An important special case of functional unit scheduling is
array element prefetching. Prefetching takes place when
the elements of an array are used successively in a loop.
With prefetching, loading of the next element to be used
overlaps usage of the current element. For example:

DO 100 I=1,N
A(D = B(D) + C(D)
100 CONTINUE

Without prefetching, both B(I) and C(I) would have to be

loaded before being added, so either the floating add unit or
the increment unit (which is responsible for loads and stores)

60499700 A

would be idle while the other unit was in use. With
prefetching, B(I+1) and C(I+1) are fetched at the same time
as B(I) and C(I) are added.

The potential danger with prefetching is that the last
iteration of a loop might attempt to load a nonexistent array
element. In the example, B(N+1) and C(N+1) are loaded (but
not used) even if the arrays only have N elements. If the
array is stored near the end of the user's field length, this
attempt might result in an address out-of-range (an arith-
metic mode 1 error). Thus, a program that executes
correctly without prefetching might abort with prefetching.
For this reason, prefetching is not performed for compila-
tions under OPT=2 unless there is no danger of exceeding
field length., However, when the UO (unsafe cptimization)
option is specified in addition to OPT=2, the compiler can
prefetch for any array, without regard for the possibility of
exceeding field length. Therefore, UO should not be used
unless the user is sure that field length is not exceeded.

In the example above, field length is not exceeded because
the increment between prefetched elements is only one
word, and at least one word is guaranteed at the end of the
field length.

Register Assignment

As one of the last stages of code generation, the optimizer
decides which register to use for each variable and
temporary quantity in every sequence of code. As part of
the process, an attempt is made to minimize the number of
loads and stores required. Whenever a program uses more
quantities than there are registers, some of the quantities
not immediately in use must be stored and subsequently
loaded. To avoid this, the cptimizer analyzes the register
usage of a sequence of code and decides whether to put each
quantity in an A, B, or X register.

For some quantities, no alternative is available. The value
of most variable or array elements must be in an X register
(which is 60 bits long), and the address of an operand to be
loaded or stored must be in an A register. However, any
quantity known to be less than or equal to 18 bits long can
be kept in either a B register (which is 18 bits long) or an X
register. These quantities include DO-loop control vari-
ables, limits, and increments, and any quantity used in array
subscript calculation.

In the following example:

DO 100 [=3,K,L
A(l) = B(M,N,D
100 CONTINUE

I, J, K, L, M, and N can all be legally placed in B registers,
because none of these quantities are allowed to exceed
18 bits.

Usually, register assignment consists of reallocating
quantities from X registers to B registers, since X registers
are usually scarcer than B registers, but occasionally the
reverse is true. A special case of register assignment is
retention of B registers across calls to basic external
functions (library routines), which takes place only when the
UO option is specified. Normally, all registers are saved
whenever an external reference occurs, because it is
impossible to determine at compile time what registers are
used by the referenced function. However, when the UO
option is specified, the compiler assumes that certain
B registers are not used by basic external functions, and
does not bother to save those registers when such functions
are referenced. When the UO option is specified, the user

3-7

should ensure that functions with the same names as basic
external functions are not loaded at execution time, unless
the functions are referred to in EXTERNAL statements or
type statements that override the default type.

OPTIMIZATION EXAMPLE

A somewhat more complex example can serve to illustrate
how various optimizations are combined. Figure 3-9 shows a

simple program unit and the code that would be generated
for it when compiled with each of the following two control
statements:

FTN,OPT=0,ER=0,0L.
FTN,0PT=2,U0,0OL.
Only the object code generated for the executable state-

ments is shown; a full listing of the object code would also
include code to allocate data blocks and common blocks, and

Source Code:
1 SUBROUTINE 0
INTFGER Ae Be C
COMMON A(10+10)s B(10910)s C(10410)
Do 100 1=2+10
5 A(l+1e1=1) = B(I+)9l+1) ¢+ C(I=1,1-1)
100 CONTINUE)
RETURN
FND
Under OPT=0:
‘ s LINE 4
000007 CODNE. 7170000002 SX7 2B
S170000012 DATA, SA7 1
00000~ CODE.)AA BSS 08
LINE 5
000003 CODE. 5150000012 DATA, SAS 1
7100000013 SX0 138
000004 CODE. 42705 DX7 X0#XS
5247000144 144 SA4 X7+8
000005 CODE. 5237000262 /77 SA3 X7+C-268B
36634 ixé6 X3+ X4
00000~ CODE. 5567777753 Va4 SA6 X7T+A=248B
hd LINE 6
5150000012 DATA, SAS I
000007 CODE. 7575000001 SX7 X5+18
7207777764 SX0 X7-138
000010 CODE. 54750 SA7 AS
0330000003 coDe., MI X04)AA
. # LINE 7
000011 CODE. 0400000001 START. EQ EXIT.
Under OPT=2:
@ LINE 4
000002 CODE. 5120000172 7/ SA2 B+268
5110000310 // SAl (ot
000003 CODE, 6150000013 SBS 138
6160000002 // SBé A+2B8
000004 COOE. 6170000132 Va4 sB7 A+1328
I LINE 4
000005 CODE.)AA BSS o8
000005 CODE. 345712 IX7 X1+X2
54225 SA2 A2+BS
54115 SAl Al+BS
56760 SA7 86
000006 CODE. 64665 sB6 B6+BS
0676000005 CODE. GE B7+B64)AA
LINE 7
000007 CODE. 0400000001 START. EQ EXIT.
Figure 3-9. FORTRAN Subprogram and Generated Object Code
3-8 60499700 A

J D I I

"

J

12

N B

DI D0) I D

3

J D D

> D I

)

to establish communication between program units. The
COMPASS instructions shown are not explained; they should
be self-evident to anyone familiar with COMPASS. The
code generated under OPT=2 shows the following features:

o Test replacement (the registers B6 and B7 hold linear
functions of the control variable, which does not exist
within the loop)

e Strength reduction (the multiplications that would
normally be used in the subscript calculation have all
been replaced by additions)

e Common subexpression elimination (not well shown in
this example, because the expressions I+1 and I-1 have
disappeared completely) ~

e Register assignment (use of B registers to hold array
subscripts)

@ Prefetching (of elements of B and C)

The object code under OPT=2 is two words shorter than the
object code under OPT=0. More significantly, the loop itself
is reduced from six words to two words.

SOURCE CODE OPTIMIZATION

A program compiled under OPT=2 almost always runs faster
than a program compiled under OPT=0, OPT=l, or time-
sharing (TS) mode. The amount of improvement depends
primarily on the number of loops in the program, because
that is where most of the optimization under OPT=2 takes
place.

In addition to the optimizations performed by the compiler,
the user can rewrite the source code in such a way as to
improve its performance, especially for cases that the
compiler is incapable of optimizing. Time should be devoted
only to optimizing loops, especially innermost loops; optimi-
zations in straight-line code are not likely to be fruitful.

Source code optimization should not be done at the expense
of other desirable features; some optimizations decrease
execution time while increasing field length. (This is rarely
true for compiler optimizatiens.) Also, many optimizations
decrease the comprehensibility or ease of maintenance of a
praogram. The added cost in programmer time often exceeds
the savings in execution time.

With these cautions in mind, the user can decide which of
the source code optimizations described here is worthwhile
in any given application.

HELPING THE COMPILER OPTIMIZE

Probably the most important source code optimizations are
those intended to maximize the optimizations the compiler
can perform. Many of these have already been discussed in
the context of the compiler optimizations, so only a
summary is necessary here.

A primary consideration is to avoid unnecessary use of
common blaocks and equivalence classes. With variables in
common, every subroutine call or function reference
requires the compiler to store the variable before the
reference, because it cannot be determined at compile time
whether the variable is used in the referenced subprogram.
In particular, the practice sometimes encountered of
allocating local scratch variables in unused portions of

60499700 A

common blocks to save space is very detrimental, and can
actually cause space to be wasted. For example, in the
following sequence:

COMMON 1,A(1000),8(1000)
DO 100 I = 1,1000
A(l) = 4*B(I)
CALL suB1 (C,D)
100 CONTINUE
CALL SUB2
END

I is in common, therefore its value must be stored before
each call to SUB1 or SUB2. These two stores, 30 bits each,
occupy the same amount of space as the variable. If I were
not in common, the stores could be eliminated, saving the
same amount of space and considerably speeding execution.

Equivalence classes inhibit optimization in somewhat less
obvious ways. The following example is typical:

DIMENSION X(100)
EQUIVALENCE (X(1),wW)

W=Y
PRINT *,X(I)
STOP

END

Without the EQUIVALENCE statement, the assignment
statement could be eliminated because the value of W is not
used again in the program. However, because W is
equivalenced to X(1), and the PRINT statement might
reference X(1), the assignment statement cannot be
eliminated.

These cautions are not meant to discourage legitimate uses
of common blocks and equivalence classes. In particular,
when variables are needed by more than one program unit, it
is faster to pass them through common than as parameters,
because the code for setting up and using the parameter list
is eliminated.

Another major way to help the compiler optimize is to keep
program logic straightforward and simple, and to keep
program units short. Of course, this also improves program
readability and modularity. But the advantage to the
optimizer is that it is more likely to correctly identify loops
and monitor the usage of variables in different portions of
the program.

It has already been mentioned that the optimizer recognizes
IF loops as well as DO loops. The user should keep in mind
that the more closely the IF loop resembles a DO loop, the
more different kinds of optimizations are performed. (The
implication of this is that a DO loop should be used
whenever possible.) For example, the IF loop in the
following sequence of code:

I=1
100 A(D) = B(D) + C(1)
I=1+1

IF {LLE.12) GO TO 100

generates code essentially identical to that generated by the
following DO loop:

DO 100 1=1,12
Al = B(D + C(1)
100 CONTINUE

and all the same optimizations are performed. However, if
the loop is changed to the following algebraically identical
form:

I=1
100 A(D = B(I) + C(D
I=l+1
IF(I+5.LE.17) GO TO 100

some of the optimizations the compiler performed in the
first case cannot be performed in the second (for example,
test replacement).

LOOP RESTRUCTURING

When the user is rewriting a program to aptimize the source
code, special attention should be paid to the loops, because
that is where most of the execution time is spent in a
typical FORTRAN program. Frequently, the users can take

advantage of their knowledge of the peculiarities of their.

own programs to rewrite loops in such a way as to reduce
the total number of operations performed at execution time.

One of the best known methods of restructuring is called
loop unrolling. The idea is to reduce the overhead resulting
from incrementing and testing the loop control variable by
reducing the number of times the loop is executed. For
example, the following loop: :

DO 100 1=1,10000
X(D = Z(1)**2
100 CONTINUE

can be replaced by this loop:

DO 100 1=1,9999,2

X(1) = Z(1y**2

X(I+1) = Z(I+1)**2
100 CONTINUE

In the second case, only half as many increment, test, and
branch instructions are executed.

One disadvantage of loop unrolling is that it makes programs
more difficult to understand. Carried toc its logical
conclusion, loops would be completely eliminated, and
replaced with long sequences of assignment statements.
Clearly the user who is this concerned with optimization
would be better off coding in COMPASS in the first place.

A more technical limitation of unrolling arises in the case
when it is not known at compile time just how often the loop
will be executed. For example, if the DO statement is:

DO 100 1=1,3

unrolling does not produce the correct results unless J is an
even number (assuming that each assignment statement is
unrolled into two statements).

Another way to reduce the overhead associated with loops is
to combine them. For example, in the sequence:

DO 100 I=1,K

A = B(M) + C(D)
100 CONTINUE

DO 110 J=1,K

E(J) = F(J) + G(J)
100 CONTINUE

3-10

the two loops can be combined into cne, thus reducing by
half the overhead associated with the loop:

DO 100 I=1,K

A = B(D + ()

EM =FM + GO
100 CONTINUE

Combining loops is usually worthwhile; however, its useful-
ness as an optimizing tool is limited by the requirement that
both original loops must be executed the same number of
times.

MISCELLANEOUS OPTIMIZATIONS

The following is a list of miscellaneous techniques for
optimization which might be found helpful under particular
circumstances. They are discussed very briefly.

1. Avoid mixing modes in an expression. Each conversion
from one mode to another requires extra instructions.
An exception is exponentiation; integers as exponents
are usually quicker than real numbers, whatever the
base. When a choice among modes is paossible for an
expression, the choice should be made according to the
following hierarchy (from most efficient to least
efficient):

Integer
Real
Double Precision

Double precision is especially inefficient, and should be
avoided whenever possible. A single precision floating
point number has 48 significant bits, which is more than
enough for most purposes.

2. If a program is only going to be relocated once (see
section 7), but executed many times, the DATA state-
ment is preferable to assignment statements for initial-
ization of variables, especially large arrays.

3. The forms of conditicnal branch, from slowest to
fastest, are as follows:

Computed GO TO
IF statement
Assigned GO TO

Unfortunately, the assigned GO TO makes following the
flow of control in a pregram more difficult, and also
impedes the detection of logic errors, during debugging;
it must be used with caution. When more than four or
five branches can be taken from a given point, the
computed GO TO is more efficient than the IF
statement.

4. More efficient coede is generated if one branch of an
arithmetic IF or two-branch legical IF immediately
follows the IF statement. In this case, the path for this
statement falls through instead of branching.

5. References to basic external functions should be consol-
idated whenever possible. For example:

A = ALOG(C) + ALOG(D)
is not as efficient as:

A = ALCG(C*D)

60499700 A

J I DD DI DI DI I I I

J

n

v

200)

I I

\

6. If the executable statements in a function subprogram
can be consolidated into a single assignment statement,
a statement function is more efficient. Because the
code for a statement function is expanded inline during
compilation, the overhead associated with passing
parameters, saving registers, and branching to and from
the function is saved for each function reference.

7. Expressions should be factored whenever possible to
reduce the number of operations required for evalu-
ation. For example:

X = A*C + B*C + A*D + B*D

should be replaced by:
X=(A+B)*(C+D)

The first version requires four multiplications and three

additions; the second requires only one multiplication.

and two additions.

PROGRAMMING FOR GREATER
ACCURACY

The remainder of this section presents some miscellaneous
ideas designed to improve the accuracy and efficiency of
mathematical programs coded in FORTRAN Extended.

SUM SMALL TO LARGE

It is better to sum from small to large than from large to
small. That is, when a group of numbers is to be added
together, if the numbers vary widely in magnitude, a mare
accurate result is achieved if the smallest numbers are
added first, and then the largest, rather than the other way
around.

This can best be explained by an illustration. For the sake
of simplicity, assume that the computer can only maintain
four decimal digits of accuracy. When two numbers are
added, only the four most significant digits of the result are
kept, and the remainder is truncated. If the following series
of numbers is to be added:

.00001234
.00005678
.00003121
.41610000
.21320000

the true result is .62940033. If the numbers are added in
pairs from largest to smallest, and all but four significant
digits of each result discarded, the result is .6293. If they
are added from smallest to largest, the result is .6294, which
is more accurate.

The explanation of this phenomenon is that, when adding
from smallest to largest, because of carrying, the cumula-
tive total of the small numbers often has one or more
significant digits within the range of the larger numbers.
Adding from largest to smallest, however, the total becomes
very large immediately, and smaller numbers are ignored
completely.

60499700 A

AVOID ILL-CONDITIONING

Because of the inherent properties of certain mathematical
functions, precision is increasingly lost as the function
approaches a certain value. In an effort to counteract this
effect, programmers often use the double precision versions
of the functions. However, this technique is drastically less
efficient and often produces results that are less accurate.
In many cases, better and faster results can be achieved by
rewriting the referencing expressions and avoiding the
double precision functions.

The problem arises for values of the argument for which the
derivative of the function is very large. More precisely,
when the following function:

g(x) = _(_Txfflfx)

is very large, which is usually true when the derivative is
very large.

For example, in the expression:
SQRT(1.-X*%2)

when the value of X is very close to 1., the result of the
expression tends not to be very accurate. Therefore, X is
frequently declared double precision, and the expression
rewritten as:

SNGL(DSQRT(1. - X**2))

However, noting that:
1-x2=0-%0+X

The expression can be rewritten with greater accuracy as:
SQART((1.+SNGL(X)) * SNGL(2.-X))

The amplification of relative error when the value of a
function nears a certain value is a particular problem with
trigonometric functions. With the tangent function, the
function g(x) defined above has the value:

X

9(x) = sin(x) cos(x}

g increases without limit as x approaches any multiple of
w/2 radians. When the value of x might be in this range,
programmers frequently declare x double precision and
compute the function as follows:

SNGL(DTAN(X))

However, greater accuracy and efficiency can be achieved
by declaring x double precision and using the addition
formula for tangents (since a double precision number is the
sum of its upper and lower parts). The formula is as follows
(where x is the upper word of the double precision number,
and x, is Yhe lower word):

tan(xu) + tan(xl)
T1- tan(xu) tan(xl)

tan (x‘_I + xl)

Furthermore, for any number x less than 107, tan (x,) is
approximately the same as X Therefore the formula can be
rewritten as:

tan(xu) + %)

tan(xu M xl) =1 -tan(x) X

u

3-11

or, in FORTRAN:
DOUBLE PRECISION X
XU = SNGL(X)
XL =X-XU
RESULT = (TAN(XU) + XL) / (1. - TAN(XU) * XL)
using no double precision arithmetic.
Similar substitutions can be made for sine and cosine, using

the addition formulas and the information that sin(xl) is
approximately x, while cos(xl) is approximately 1.0.

3-12

An even better example is the exponentiation function EXP.
In this case, the larger the value of x, the larger the
function g(x) defined above. The addition formula in this
case is as follows:

explx, + x)) = exp(x) + x| exp(x)
or, in FORTRAN:
DOUBLE PRECISION X

RESULT = EXP(SNGL(X)) + (X - SNGL(X)) *
LEXP(SNGLIX))

60499700 A

[B R Y S I

J 2D D D) DD

J I 2 I DI

1)

.

1]

\

-
-
~
-~
~
-
~

2.

7DD

DEBUGGING 4

ﬂ

Debugging can be difficult and time consuming, particularly
where lengthly programs and intricate logic are involved.
FORTRAN Extended and the operating systems that support
it offer the programmer several features that can aid in the
debugging process. By becoming familiar with these
features, the amount of time involved in debugging programs
can be substantially reduced.

The debugging process actually begins when the program is
initially coded; a program that is well documented and has
logic that is easy to follow is easier to debug than aone that
is not. (Refer to sectionl for a discussion of good
programming practices.)

Debugging a FORTRAN program involves three steps, which’

can be summarized as follows:
Desk checking The program is checked for obvious
keypunch and logic errors. A simple
test case can be followed through the
program by hand to test the logic.

Compilation The program is compiled using a fast
compilation mode. Errors detected
by the compiler are identified and
corrected.

Execution The program is executed using test

cases designed to thoroughly test all
aspects of the program. If possible,
output should be compared with a
known standard to ensure cor-
rectness.

In this section, these steps are illustrated by means of a
sample program which is debugged using some of the
features of FORTRAN Extended. Although the typical
FORTRAN program is much longer than the sample
program, portions of many longer programs often can be
coded and debugged separately and the intermediate results
checked. The program illustrated is program ACCTAB,
which is discussed in section 2 in its final version. It is
shown in figure 4-1, complete with bugs, as it might appear
after initial coding.

DESK CHECKING

The programmer should examine a pragram for the more
obvious errors before attempting to compile and execute it.
Regardless of how carefully a program is desk checked,
however, it might not run or even compile without errors on
the first attempt. Because of this the programmer should
not spend a lot of time desk checking; instead, the computer
should be allowed to do as much of the debugging as
possible. Even with a program as small as the sample
program (figure 4-1), it is unlikely that desk checking would
reveal all the bugs.

An examination of the sample program ACCTAB reveals
some obvicus blunders. The character . appearing in line
13 is a mispunch; the programmer intended to type a /[.
The compiler would have detected this particular error. On
the other hand, if the character * had been punched instead
of the character . , the statement would have been

60499700 A

syntactically correct and the error not quite as obvious. In
line 20, a left parenthesis should be a right parenthesis. The
error in line 41 is obvious; the statement was punched
starting in column 1 instead of in column 7. The compiler
would have detected both of these errors.

In addition to checking for syntax errors, the programmer
should examine the program for legic errors and ensure that
no steps have been left out. Informative comments are
helpful in verifying program logic. The comments included
in ACCTAB indicate that all the necessary steps are present
and in the correct logical sequence and that the flow of the
program is essentially correct. Or is it? After interpolating
and printing time and acceleration, the program is supposed
to branch back and read the next statement; but the branch
in line 48 goes back to the beginning of the program where
the data for the table is read. The correct branch is to the
statement labeled 190.

Although closer inspection of the program might reveal
additional bugs, this illustration continues with an attempt
to compile ACCTAB.

COMPILATION

The FORTRAN Extended compiler provides useful debugging
information, particularly the diagnostic messages and the
cross-reference map.

The following control statement is used for the first attempt
at compilation of ACCTAB:

FTN,Q,R=3.

On the FTN control statement, the Q parameter specifies
quick mode: the compiler performs a full syntactic scan of
the source code but does not produce object code. The
program cannot be executed in the absence of object code,
but compilation errors would undoubtedly prevent execution
anyway and Q mode compilation is substantially faster than
normal compilation. For debugging purposes, compilation
speed is more important than optimization of cbject code.
When the program has been completely debugged and
checked out, it will be recompiled to produce optimized
object code. The R=3 parameter produces a long cross-
reference map. By default, the compiler produces a list of
informative and fatal diagnostics.

DIAGNOSTIC SCAN

The source listing and diagnostic messages issued during
compilation of ACCTAB are shown in figure 4-2. Informa-
tion provided in the diagnostic messages includes the line
number where the error cccurred, the severity of the error,
and a brief description of the problem. In figure 4-2, two
different codes appear in the severity column.
Severity I indicates that the message is informative; the
compiler can produce executable object code, although the
results from executing the code might not be correct. As a
matter of good programming practice, the programmer
should try to eliminate the causes of informative diagnostics
from the program. Severity code FE indicates that the error
is fatal and the program cannot execute.

4-1

In figure 4-2, the first error in ACCTAB occurs in line 12,
where times are being stored in the array TIME. In line 12
the array subscript is missing. The corrected line reads:

TIMEN) =T

Because the severity code is I, this error produced only a
warning message. It would not have prevented the program
from executing; however, it would have had catastrophic
effects upon the results of the execution.

The next error is in line 18; it also has generated an
informative message. The executable statement just before
line 18 is an unconditional branch to statement label 100.
Because the statement at line 18 has no label, there is no
logical path to that statement. The correct branch is
specified in line 9, but the label has been omitted from
line 18. The corrected statement reads:

150 NTIMES = N

19

15

20

25

30

35

L0

45

S0

55

60

PROGRAM ACCTAS (INPUT,OUTPUT,TAPEL=INPUT)

DIMENSION TIME(10)s ACC(10)
c
CeeeeREAD TIME, MASS, FORCE; AND COMPUTE ACCELERATION TABLE
c
N=0
100 READ (4o*) T, AMASS, F
IF (EOF(4) .NE. 0) GO TO 150
N=N¢+1
IF (N .6T. 18) 60 TO 600
TINE = 7T
ACC(N) = F_,AMASS
GO To 100
C
CeeeePRINT ACCELERATION TABLE
C
NTIMES = N
PRINT 1
PRINT 15, (TIME(I)9ACC (I(9I=1+NTIMKES)
c
CeeeeREAD A CARD CONTAINING A TIME VALUE
c
190 READ (& *) T
IF (EOF(4) NE 3) GO TO 900
N=N¢+1
c
CeeseSEARCH ACCELERATION TABLE
c
DO 2008 I = 2, NTIMES
IT =1
IF (T .LE. TINE(IT)) GO TO 22¢
200 CONTINUE
60 TO 858
c
CeeeeD0 SECOND DEGREE INTERPOLATION

220 Dt TIME(IT=1) -~ TINE(IT)
D2 = TIME(IT-1) - TINME(IT+1)
D3 = TIME(IYT) - TIME(IT+1)
QL = T = TIME(IT=-1)
Q2 = T - TIME(IT)
Q3 = T = TIME(IT+1)
ACCX = Q2*Q3*ACC(IT-1)/(DI*D2)
1 - Q1*Q3*ACC(IT)/(D1*D3)
2 + Q1*Q2%ACC(IT+1)/(D2*D3)
PRINT 25 Ty ACCX
G0 To 190

600 PRINY *, =700 MUCH DATA. MAX NO. OF TIMES ISz
sToP

850 PRINT #, # INTERPOLATION PROBLEMS, TABLE ERROR#
60 70 190

900 PRINT *, # END ACCTAB:
sToP .

10 FORMAT (21#2(2 TIME

15 FORMAT (2(5XF7.242XF8.5))
25 FORMAT (2 TIME = #4F7.2+2# ACCELERATION = #,F8.5)
END

ACCEL#))

4-2

Figure 4-1. Program ACCTAB Before Debugging

60499700 A

J I I I D I D

J I

U N R I))

)

DD D I D

h

1

\

By

,/7@ vfjg

15

25

35

\n
<

[t
Vi

(8

12
18
24
25
25
33
5
el

15¢

CERD NP, SEVERITY

PROGRAM ACCTAB (INPUT,OUTPUT, TAPE4=INPUT)
c

DIMENSION TIME(1s),y ACC(L2)
c .
Cenes READ TIME, MASS, FORCE, AND COMPUTE ACCELERATION TABLE
c

N =
12: READ (4s*) T, AMASS, F
IF (EOF(4) <NE. u) 6O TO 150
N = N+
If (N «6Te 1() GO TU 683
TIME = T
ACC(N) = F/ZAMASS
GO0 TO &<
c
CeeeePRINT ACCELERATION TABLE
~
v

NTIMES = N
PRINT 1t
PRINT 1%, (TIME(I)9ACC(I) +I=1,NTIMES)

~

v
Cees.READ A CARD CONTAINING A TIME vALUE
12. READ (4 *) T
IF (ECF{4) «NE 4) 6C TO 3.¢
N =N¢+1

eese SEARCH ACCELLRATION TABLE

amOa

{ I = ZyNTIMES
IT = 1
IF (T «LE. TINE(LT)) GO TO 2z.
27e CONTINUE
GO TOo 353
c
Leeee DU SECOND OEGRLE INTERFOLATION
C
TIME(IT-1) = TIMECIT)
TIME(IT=2) = TIME(IT+1)
TIME(IT) - TIME(IT+1)
T = TIMECLIT=-1)
Y4 T - TIMECLT)
G3 T - TIME(LT+1)
ACLX = Q2*Q3*AKCL(IT-1)7(DI*D2)
1 - GLeu3*ACC(ITI/(D1%D3)
2 ¢ GL*Q2*ACCUITe1) /7 (L2*03)
PRINT 25, T, ACCX
GO TO 15¢

2zL 01
’T4
C3
Gi

6.(PRINT *, =TOO MULH DsTA. MAX NO. OF TIMES ISz
STOP

8CC PRINT *, # INTERPOLATI1ON PROBLENS, TABLE ERROR#
60 TO 13¢C

9y PRINT *, & END ACCTAB?
STOP

10 FORMAT (#1#,2(% TIME ECSEL#))

15 FORMAT (2(SAFT7e2¢24F3.5))

25 FORMAT (7 TLME = 74F7.2,% ACCELERATION = #,F8.5)
END

DETAILILS DIAGNOSIS OF PROJLEM

T IME ARRAY NAME OPERANU NOT SUBSCRIPTED, FIRST ELEMENT WILL BE uUStU.

THERE IS NO PaThn TO THIS STATEMENT,.

h SYNTAXL ERROR IN INPUT/OUTPUT STATEMENT.

NEC INVALID USE CF A CHARACTER STRING.

(UNMATCHED PARENTHESIS.
UNRECOGNIZED STATEMENT.

TOOMULHC SYMBOLIU NAME HAS TOO MANY CHARACTERS.
UNDEFINED STATEMENT LABEL(S)y SEE LIST BELOW.

UHJDEFINED LAPRELS

60499700 A

Figure 4-2. Example after Desk Checking, with Diagnostics

4-3

The error in line 24 is a fatal error: a comma is missing
from the READ statement. The corrected statement reads:

190 READ (4,%) T

The statement at line 25 has generated two fatal diag-
nostics. Neither states explicitly what the problem is. It
often happens that error messages appear to have little
relation to the errors that caused them. In such cases, it is
sometimes necessary for the programmer to use some
imagination in determining the cause of the diagnostic. In
the example, it is easily seen that a period is missing from
the .NE. operator. This is clear from reading the FORTRAN
statement but not from reading the error message.

In line 38, the character = was mispunched as the - char-
acter. The compiler could not recognize the statement and
generated a fatal error. The corrected line reads:

220 D1 = TIME(I-1) - TIME(D

If the statement had been mispunched with two equal signs’

instead of two minus signs as follows:

220 D1 = TIME(I-1) = TIME(D)

it would have been interpreted as a multiple replacement
statement, and no diagnostic would have been generated.

The message referring to line SO appears to have little
relation to the actual error. The opening ¢ of the character
string was mispunched as an =. Once again, the message
gives little clue as to what is wrong with the statement;
however, it does indicate that something is wrong. If the
programmer is unable to determine the specific error from
the text of the message, the statement should be checked
for syntax errors.

The last message refers to a list of undefined labels. A
statement appearing in this list has been referenced in a
GO TO or other branching statement, but does not appear as
a statement label anywhere in the program. In locating the
cause of this error, the programmer can make use of the
cross-reference map.

CROSS-REFERENCE MAP

The cross-reference map (figure 4-3) is a list of all symbols
used in the program, with the properties of each symbol and
the references to each symbol listed by source line number.
It can be used to detect errors that do not show up as
compilation errors. A typical listing is that for the
variable ACC; the map shows that it is located at address
128 relative to the starting address of the program; is of
type real; is an array; is referenced once in line 3, twice in
line 20, and three times in line 44; and appears to the left of
an = inline 13.

For debugging purposes, it is useful to look at the column
under the heading SN. A stray name flag appears under SN
if the symbol appears only once in the program. Such
symbols are likely to be keypunch errars, misspellings, and
the like. In figure 4-3, the variables D1 and DI both have
stray name flags. Also, they are both undefined; that is,
they do not appear to the left of an =, in a common block,
in an argument list, in an input statement, in an ASSIGN
statement or in a DATA statement. Both variables are
referenced in line 44. Apparently DI is a misspelling of D1.
The attempt to define Dl, in line 38, failed because that
statement contained an error.

4-4

The EXTERNALS section of the reference map lists names
of functions and subroutines called from the program. The
programmer should check this section to make sure all
function and subroutine references are correct. The
external names appearing in ACCTAB are EOF (the
FORTRAN function that tests for end-of-file) and TINE,
TINE is referenced in line 32 and appears to be a misspelling
of the array TIME. An error message has not been
generated, because the compiler has no way of knowing what
functions and subroutines will be loaded at execution time.
This error is left uncorrected to illustrate its effect on
further attempts to execute ACCTAB.

The last section of the cross-reference map lists each label
used in the program, the line numbers in which the label is
referenced, and the line where the label is defined.
Statement label 150 is referenced in line 9 of ACCTAB, but
does not appear as a statement label, This error, as
previously noted, is corrected by inserting the label in
line 18. This section of the map is also useful in locating
duplicate labels: a statement label defined in more than one
line generates a fatal error.

The corrected source listing is shown in figure 4-4.

EXECUTION TIME DEBUGGING

Errors detected during the execution of a program can cause
abnormal termination or produce incorrect results. The
standard dump (DMPX), load map, and the FORTRAN
Extended debugging facility can help the programmer
determine the causes of execution-time errors.

With all I and FE compilation errors presumably cor-
rected, ACCTAB is ready for another compilation attempt.
This time it is anticipated that the program will compile
without errors and produce executable object code. Because
the program is still in the testing phase, a compilation mode
resulting in quick compilation but unoptimized cbject code is
used; the input data is included in the deck.

The program is then compiled with the following control
statement:

FTN,R=3,0PT=0.

When OPT=0 is specified in the control statement, the ER
option is implied. When this option is specified and an
execution-time error is detected, the approximate line
number in the source program where the error occurred is
printed in the dayfile. When OPT=1 or OPT=2 is specified,
the default is ER=0. The T option is also implied when
OPT=0 is specified; this option produces a full error
traceback when an execution-time error is detected.

An important consideration in execution-time debugging is
the use of test data. The programmer should design one or
more test cases that completely test the program, including
all options and all possible paths through the logic. It is
frequently a good idea to include data that tests the limits
of acceptable values. The programmer should determine
what data causes execution errors or incorrect results, and
then either correct the program or include program state-
ments to check for invalid data.

Once satisfactory test data has been selected, the results
must still be verified. Verification can be performed by
comparing the results to a known standard, or, if none is
available, by comparing to hand calculations.

60499700 A

J I I I

)

J D D D D

|)

J DD I I I

D J I I

dep 9ouslsyey-s80d7) *¢-f ainbi 4

€h

LA X3S

L
2" Th The2
A} £h PAJ
8T
92 8T
eh 2% 4
¢ 3?2
£T 03NI 43N

25

bg «2

T4
gh
2%
Th
J3NI 430
32
£T

“held
J3NTI 330
8

L

6¢

nh
nhof

1 a°
"6
he 26
1T 2¢
2 fe
e £
€5 fh "2
6
"t 8
in 65
"z 85
67 l5
SIONIAIII¥ INIT 430
2¢ T
6 T
SIOINIAIITFN S9d
n2 2 SO 3
P Y4 6T S3ILTIYM
27 03INIZ30
22 £ S3 3y ATMYY
€ g3NI330
28 21 S43¥
03NI3430 %He2 $43¥
Q3INTJI3C 49ne2 sS4 3%
J3INI430 bhel S43¥
¢ 22 S43%
07 2 03INT43C
1T b 4 s343y
143 G3¥Ia30
6fel 28 €33y
143 32«2 S43%
Q3NTI330 £7 Sd3¥
O3NT430 %n,2 S33¥
JIANTI 330 hhel S43¥
UL $434 430NN«
wh S43¥ 330NN
I13V1430 £71 S43¥
13N1430 n S43y
52 £ S43¥ AN
NOILYCOT Y
S3ITNINIAIN

01sn |3 B1232%
HLIOoNIY WVd304d
SOILSILVYLS
3AT1DVUNI 3% 5
168 2
3718 3
22)
132 113534
t6T 3
430NN 05T 3
297 2
W3 92 9%
13 sT T4
IWd T nzZ
ST3dvY IN3W3ILVLS
Tv3Y INTL
Tv3y 303
v 3dAl STIYNYILIxXT
3344 h3idvlL 1
. O3XIW Lndino n3le
INdNI)
300W SIWYN 3713
v 3y INIL)
Iv3d 1 S35
v 3d £0 L3
Y34 2D 23
Y3y 12 33
339JINI SAIKIIN 33
¥IOJUINI N =n§
43T UINI 11 23
33931INT I 33
av3d 4 L3
Y3y £0 %3
Iv3y 20 £3
IV3IY « g 2¢
TY3E 1a 12
Tv3y SSYRY 9%
v 3y) ¢ake k- BN
Y3y 0v et
3dAl NS S3INNVIAVA
T yvidowy
3NIT 330 SINIOd A¥IN3

(£=d) d¥W IINI¥3ISI3n JITOCHAS

4-5

L L L L oL

¢ €

60499700 A

€W“

16

15

r3s

25

33

35

%)

45

54

60

PROGRAM ALCTAB (INPUT,OUTPUT,TAPE4=INPUT)
c
DIMENSION TIME(1()y AGC(1C)
c
CeeesREAD TIME, MASS, FORCE, AND COMPUTE ACCELERATION TASLE
c
N=2¢
10C READ (44*) Ty AMASS, F
IF (EOF(4) .NE. U) G0 TO 150

N=N=+1
IF (N «GT. 106) GO TO 6CC
TIME(N) = T
ACG (N) = F/AMASS
GO TO 1Co
C
CeeeePRINT ACCELERATION TABLE
¢
150 NTIMES = N
PRINT 1L
PRINT 15, (TIMEC(I)sACC(I) +I=1,NTIMES)
C
CeesaREAD A CARD CONTAINING A TIME VALUE
c

190 READ (44%) T
IF (EGF(4) .NE. L) GO TO 980
N=N¢®+1
C
Cewsse SEARCH ACCELERATICMN TABLE
DO 230 I = Z¢NTIMES
IT = I
IF (T +LE. TINE(IT)) GO TO 22¢
2rc CONTINUE
GO TO 85¢C
C
CeeeeaDO SECOND DEGREE INTERFOLATIGN

2eC 01 TIME(IT=1) = TIMECIT)
TIME(IT=1) = TIME(IT+1)
TIME(IT) - TIME(IT+1)
T - TIME(IT=-1)

T - TIME(IT)

T = TIME(IT+1)

ACCXx = Q2*Q3*ACC{IT-1)/(Di*D2)
1 - QL*Q3*ACL(IT)/Z(D1*03)
2 + 01*Q2*ACC(IT+1)/(D2+D3)
PRINT 25, T, ACCX

60 TO 193§

o
(]
wwHnna

602 PRINT *, ¢ TUOO MUCH DATA. MAX NO. OF TIMES IS 102
STOP

85 PRINT *, # INTERPCLATION PROBLEMS, TABLE ERROR®?
GO TO 190

908 PRINT *, z END ACCTAB?
STOP

1l FORMAT (#1#,21% TIME ACCEL#))

15 FORMAT (2(5XF7e242XF8.5))

25 FORMAT (# TIME = 29F7.24# ACCELERATION = 24F8.5)
END

4-6

Figure 4-4. Example with Compilation Errors Corrected

60499700 A

DD I D

b

J

v

S R B Y N T N B

D

J

J I I D

v

D)

The data shown in figure 4-5 is used to check out ACCTAB.
The first data card results in a zero acceleration value; the
second card introduces a zero into the acceleration calcula-
tion; the fifth card is a duplicate of the fourth. The second
set of data consists of selected times for which the table
search is performed. The first time corresponds to the
lower limit of the table; the second time corresponds to a
discrete point in the table; the third time causes the
duplicate point to be used in an interpolation; the fourth
time is below the lower limit of the table; the fifth and sixth
times require interpolation to be performed; the seventh
time corresponds to the last point in the table; and the last
time exceeds the upper limit of the table.

DMPX AND LOAD MAP

The dayfile from the first test with data is shown in
figure 4-6. This time, ACCTAB compiles without errors, is
loaded and executed, but terminates with errors. A nonfatal
loader error was detected. Because the error was nonfatal,

the program went into execution and subsequently termi-

nated with an arithmetic mode 1 error. Mode 1 errors are
generated when the computer detects an address outside the
field length reserved for the program. The computer tried
to reference address 404334,, which is outside the field
length of ACCTAB. The loag map (figure 4-7) shows that
ACCTAB was loaded at address 111, with a last word
address (LWA) of 20447. The error summary on the map
states that ACCTAB references a function or subroutine
called TINE, which could not be found by the loader. As
previously noted, the EXTERNALS section of the cross-
reference map indicates that TINE is referenced in line 32,
where TINE is a misspelling of the array TIME. A dayfile
message also specifies line 32 as the location of the
arithmetic mode error. This message results from the ER
option.

More information can be obtained from the object listing
and the DMPX listing (figure 4-8). A DMPX listing is
produced automatically when a program terminates abnor-
mally. The DMPX consists of the contents of the hardware
registers, the exchange package, the first 100, words of the
program field length, and 200, words of memory centered on
the instruction the central processor was executing when the
error was detected.

The machine instructions associated with line 32 of the
source listing are shown in figure 4-9. This listing was
generated through the OL (object listing) control statement
option. FORTRAN Extended generates an RJT (return jump)
instruction to branch to an external entry point. In this

0. 10C. 0.

1. G. 10CC.
2. 1020, 113,
3. 100. 132%.
3. 10G0. 13235,
be 133. 103C.
S. 100. 134,
0.

1.

-1,

2.6

3.5

4.5

Se

5.5

Figure 4-5. Test Data for ACCTAB

60499700 A

case, the jump is to entry point TINE. This instruction
occurs at relative address 4222. To locate this instruction in
the dump, the relative address of the instruction must be
added to the first word address (FWA) of the program:

4222
111
4333

The instruction appearing at this address in the DMPX
listing is:

0100404333

This is a return jump to address 404333, an illegal address
generated by the loader when it was unable to locate the
nonexistent entry point. Because the address is cutside the
program's field length, a mode 1 diagnostic was issued.

Program debugging continues with a correction of the
misspelling, and rerunning of ACCTAB. The dayfile (fig-
ure 4-10) reveals that a mode 2 error was detected during
execution. To determine the cause of this error, the
FORTRAN debugging facility is used.

DEBUGGING FACILITY

FORTRAN Extended provides a debugging facility to
monitor the execution of a program. (Refer to the
FORTRAN Extended Reference Manual for a detailed
description of the facility.) The debugging facility consists
of statements that are included in the source input file and
processed by the compiler. The statements can be inter-
spersed with the FORTRAN source statements, or they can
be included separately as an external deck. This allows
debugging of portions of a program, or of individual
subroutines, as well as the entire source file. In debug
mode, programs execute regardless of compilation errors (up
to a limit of 100 errors), but execution terminates when a
fatal error is detected. Hence, the debug facility is useful
in locating both compilation and execution-time errors.
Debug output is written by default to a file named DEBUG.
By equivalencing DEBUG to OUTPUT, the output can be
interspersed with program output.

Because ACCTAB is being run and debugged for the first
time, and no debugged program units are included in the
source file, an external debug deck is used; the debug
statements apply to the entire program. Debug statements
are included to provide information about the arrays ACC
and TIME. The job deck is shown in figure 4-11.

The D parameter on the FTN control statement implies
debug mode. The debug deck performs the following:

Checks bounds for arrays TIME and ACC; prints a
message if array bounds are exceeded

Prints a message each time the value of an element of
T or ACC changes

The NOGO statement suppresses partial execution if compi-
lation errors are detected.

The dayfile in figure 4-10 states that an infinite value is
used near line 44 of the source listing. This is an arithmetic
mode 2 error. Infinite operands are usually generated by
dividing a nonzero number by zero, or by an addition,
subtraction, multiplication whose result is greater than

4-7

10322. Line 38 is the first line of the interpolation scheme.
Cne of the variables used in the equation contains an infinite
value (a value of 37770...0,); however, it is not clear
which variable contains the infinite value.

The debug file (figure 4-12) reveals that the second value
stored into the array ACC was infinite, indicated by R. It is
likely that this value, when used in the interpolation
calculation, caused the program to terminate with a made 2
error. Referring to line 13 of figure 4-4, where values are
stored into array ACC, one might suspect that a division by
zero occurred here. This is verified by recalling that the
second data card contains a zero, which is subsequently
stored into the variable AMASS. Notice that the program
terminates only when the infinite value is used, not when it
is generated. If the program were executed on a CYBER 70
Model 76 or 7000 series computer, the mode error would
occur when the infinite value was generated. Figure 4-13
shows that coding has been inserted to test variable AMASS
for a zero or negative value and to print a message if zero is
detected.

For the next debugging step the data card containing the
zero value is removed from the deck and ACCTAB is run
again. The dayfile is shown in figure 4-14. An infinite value
has again been used, near line 47. To determine the source
of this infinite value, the following debug statement is used:

C$ STORES (D1,D02,03,01,82,Q3)

This statement produces a printout of the intermediate
values used in the interpolation scheme. These values can
be useful in tracing the progress of the program. The
resulting debug output, interspersed with program output, is
shown in figure 4-15.

The debug file reveals that the last value stored in variable
D3 was zero. D3 is calculated in line 43. If the two
consecutive times used in the calculation are equal, the
result is zero. Recall that a duplicate time point was
included in the data for the acceleration table. A debug
statement to print out values of the array TIME could be
used to verify that the duplicate point caused the error. The
coding to test for duplicate points is indicated in fig-
ure 4-16.

The output from the next run is shown in figure 4-17. Some
of the acceleration values are correct, but accelerations
corresponding to points outside the table limits are not
printed. Also, the input time corresponding to the upper
limit of the table does not appear.

An examination of the dayfile reveals that this run termi-
nated with a mode 2 error. Although the program processed
some input times correctly, it cannot process extreme
values. This illustrates the importance of test data that
includes such values. In figure 4-18, statements have been
inserted in ACCTAB to process times that fall outside the
table limits or coincide with the end points.

The output from the next run is shown in figure 4-19. The
table has been generated correctly and hand calculations
verify that the interpolations are correct. The two points
falling outside the limits of the table, whose values are -1.
and 5.5, have been detected. The program can now be
considered debugged. Of course, there are numercus
improvements that can be made to ACCTAB, and it is
possible that future use will reveal more bugs.

The program should now be recompiled with the following
control statement to produce optimized cbject code.

FTN,OPT=2.

1616415, FTST2UY
16.16.15.1IP
16.16015. FTST2,T54Ph,

FIOM

16416425,
16¢16425.LGO0,
16.16431,
16416432, MODE ERRDOR
16.16.32.J0B REPRIEVED

o416 32

16.16432.
16.16.32,
16.16.32,

1601 6433,0P

00606576 AODS - FILE INPUT

1616422, FTNyR=3,0PT=0,0L.
SECONDS SOMPILATION TIME

NON=-FATA_ LOADER ZIRRORS -« SEE MAP

1616432, UNSATISFIED IXT IN ACCTAB

«027 3P SECONDS IXECUTION TIME
(PREVIOUS ZR0OR CONDIT.ION RESET)
16.16¢32.ERROR MOJE =01,
00005696 WORDS - FILE OUTPUT , DC &0

16¢16.33.MS 7168 WORWDS (25088 MAX USED)
16.16.33.CPA 1.196 SEC. 1.185 ADJ.
16.16.33.CP8 «171 SEC. «+171 ADJ.
16.16433.1I0 1.190 SEC. 1.190 ADJ.
16.16433.CHM Qe UY KWS,. 2,443 ADJ.
16.,1€.,33.€S 4,991
16.16.33.PP 6+35% SEC. DATE 13724777
16.164.33.EJ END OF 303, C6

/C6
» DC 04

NEAR LINE 32

A0DRES'S =4D4334

Figure 4-6. Dayfile Showing Loader Errors and Mode 1 Errors

4-8

60499700 A

J I I I I I I

I

J I D I

)

2NN I R B N

r

4

\

(Z 30 T 393Y5) depy peoT]

*L-t 8Inb1 4

®3000 NOILVZIIVILINI ONY OIv=SAS N334138 NI
TOYINOZ (ndind 03173¥TT LSIN

*030033 Nv¥1¥04 3ILIV¥M O03ILIVHAOS
INILIYHYO0d indInd G3ILIYIT 1SIT

*IWYN 37T4 v N3IAI9Q 1I4 NV 31v201
*SITLITILIN A¥YNAIN LD3r80 NVILINOS

3009 LNdLNO INILVOT4 NOWWOD

*SINYISNOY 3ZIYILINI

3000 1NdINO NOWWOI

INTLIYHIOS LNdNI 03L233IC LSIT
SY3L3NJYIINT LYWHO04 LNdLINO

T0JLINOD INdNI 03133¥I0 1SI

3003 SNTILIYWY¥I3 LNANI NOWKHOD

®3IAITALIY NYHINOS

®S3TLITTLIN °*I3SIH 174

SYINVAN/UYI00N Y04 LYWHIL ANy ISITdY %IWN)
“¥ILVIANOD LIANI INILVOTd NOWAOD

°SALYLS 3I7I4 30 IN3 04 1S3L

*SINVLISNOD ONY S3INILNOY 0/1 03202 NOWKWIS
*3INILN0¥ NOILVZIAVILINI 194

3yl JI=1dO KY¥I0¥d

SINIWWOD

T 3I3%d *TE"IT3T 22/h2/77

ELAAHEL L]

I x999

Pay
094

£a%

13437

heg
et

3%

- el

SSVdWOQ
SSVYdHOID

SSvdhol

SSVdWO0J
SSVYdWO?
SSVdKOQ
SSVdWO
SSVdKHOD
SSvYdHOQ
SSvdkod
SSVdWOQ
SSVdKWOO
SSYdHO S
SSVdHOZT
SEVYdHOZC
SSVdKWCD
SSVJW0D
SSvdW03
SSYdHO)
SSydW0d
SSVYdHOC
SSVdWOZC
SSVYdHO?Z

N14d

¥SSJ0dd

39%=7°7 3y30V07T ¥IELD

JAY*ILIR/
/WE*SARl/
Wy *1JK

W *3A0W
JHY*2Jy/
Wy °+01)
/HE°NCD/
=0IVvSAS
=41N0
=100
=1000"1
=114139
=SASY0S
=1n0L3
=NSWI34
=d071Nn0
=NIQT
=¥300%

= 4dN]
=WOOINI
=Ad¥eNL S
=71N¥04
=dviikd
=NILT3
403
=0IK0D
=A¥INQD
/7*01°8n/
/7°3°7%37
/ON3*d1S/
gv1933v

0078

*SINIHNATISSY %3078 GNY kvy9Cad

£ 22521
1 11221
22732763 0ISAS-1S €£2 96327
120752782 0TSAS-1S °9 T2LTT
31 592171
L12/72/63% 0ISAS-TS % 224t
9 2121t
L1752/67 NVN1¥03-1S 1T TT21T
11722/6G NY¥L¥04-1S 66T %$£6TT
L1/02/76% NY¥1303-7S 967 9¢sT1
12772767 NYAL¥04-TS TH2 ¢TT1T
12/02/60 NVNLN04-1S 2% £60TT
L2/t2/67 NYH1¥03-1S 119 2n2¢el
21/52/65 NY¥1¥04-1S 1T€ Teu
42/22/65 NY¥LE04-1S T 5492
L1/02/60 NYYL304-1S HST ®152
L1/22/760 NY¥1¥03-1S 1292 wg22
22/T2/6C NVNL¥04-1S 294 ©559
12732763 NY¥L¥03-1S €32 1589
L121/02/65 NY¥1¥04-1S 29% %19
11/52/6% NYYL1¥04~1S %97 cgog
12/62/€) NYW4L¥04-TS 9% €196
L1/%2/6° NYW¥1¥O04-1S 9S€ 1825
L1/52/63 NY¥LN03-TS 967 1996
20/027€7 NY¥[¥04-1S 91 g0
L1782/€% NYHl¥04-TS w9 161%
1277276 Nw81¥d4-1S €)
Tnt £194
az cogh
T "9g+4
L2mzrit 091 £604 311
alve ERE] HI9N3T SS3INOOY
3NIL == 338 TyN¥ILXI 0FTSSTLVSNA

/77 231%3N

AUVYHANS U0UYE3 wwvavarte

av1idJdv

2hn32
117

~- SS3¥00v ¥3I3ISNV3L

G707 3H1 4C T+yi
G707 3KL 40 IM3

29123y

- d7d 0Gv01

C C L

C C C L ¢

4-9

60499700 A

.

CcCCCcCcCcCccccccT CCCocccc

(2 40 Z 199y5) de peoT) -£-f 3unbly

Al

¢ ¢

G3SN 39730IS HI RTOLLE

S3AOW 378WL 3¢

JOYIYILNT 3AITHLIY 79n H*g SSYAWOD

294 h°E SSYdWOZ

L9% %°E SSVYJHWOD

29% %°f SSVdHOI

894 %°¢ SSVJHOI

09% %°S SSYdWOD

294 4°¢ SSVdWOI

P94 n°g SSY4WO)

29% %°€ SSYJWO)

39% %°S SSVJWOD

fam «°¢ SSYgKOI

294 h°f SSYJHOD

C9% 4°¢ SSYdWOD

*1SINN3¥ 431SAS SS3IT0dd - . 09% %°E SSVdWOD
09% #°f SSVAWOZC

G9% %°f SSVdWOS

29% 4%°¢ SSVdWOJ

994 %°¢ SSVdWOI

194 n°S SSYaKOT

29+ 4°¢ SSYdWOI

DGn H*S SSYdNO?

2 39vd STE°9T 9T 22/92/71 AgHhagel ¥3IQVOT ¥3IVAT

12713/69
12/7°2/867
LL772/¢°
44772767

22/02/¢€3
Ll/72/862

LL/72/62
Lir22/¢€C

L2/C2/81
12722763
2L/02/€28
22/02/7¢€3
lLir/82/78°
22/1£/8%
L1/027€¢

ll/227/76¢
22732767

220722/6°
iL/22/767
L1l/52/6%

22/02/62

9I1SAS-118
0ISAS-TS
0ISAS-1S
0ISAS-1S

0ISAS-1S
0ISAS=1S

0ISAS=-1S
0ISAS-TS

CISAS-TS
QISAS-TS
0ISAS-1S
0TS4S-1S
0ISAS-TS
0ISAS-1S
0ISAS-1S

0ISAS-1S
0ISAS-S

OISAS-TS
0ISAS-1S
0ISAS-TS

NISAS-TS

991
1T
37T
1297
TT

2h

2€7

SONOD3S d3 s78°

13202
169122
02
¥4629°1
34487
22197
18497
99997
18991
024597
T13¢%
£5£97
21£971
21297
£9291
96467
69997
969571
76251
2257
28747
€161
94T
£H9HT
989471
ML A
629471
2280t
£392T
w1627
£2621
ceeet
92827
62¢271

aviddy

4ACH3Y
os*ns3
ns*z
0S8*139
/141397
/XX 87dy/
/03°139/
CS*M3Y
/03" M3y/
DS*AST)
/04°AST/
DS*4S19
w3 D37y
/1¥°1n0d/
9S*X3d0
DS *N3d0
Hy *8NSO
DS*Y¥MHI
HY"¥Y3
W¥°SAS
S * IS
/04°*74%S/
DS *¥03M
BS*lylis
/18°139/
Wy* 4872
/703°38717/
0S *dVM
Js*ind
/703%1nd/
/WY WAL/
Wy *N3d0
/70 4°N3d0/
/04°S3d0/

dvW Qw07

c

60499700 A

4-10

XdNGg *g-v 2anbi 4

0TS%0
00000
0009%
0009%
0009Y
0009h
osnh)d
THL0h
01540
goooo
0009y
0009%
0003%
(1] 1]
0Shh 0
THi0n
$2540
92590
HI540
21590
%2500
225%0
10000
549240
00094
0809
0005%
6009
09145
£I650
2enn0
£5270
0009%%
509.¢
0009%
0009y
£9350

28299

goooe
T20080
oo0o00

59720

00210
00000
0009%
00094
50094
009
0TS
02540
00070
00000
30094
00094
00094
90094
087TTS
02549
DOTTS
0s£2%
80S7S
00219
86828
95426
06222
BO%30
00094
20094
00094
00094
Tov4H0
00LTS
00118
000%0
0009%
202¢%
0009%
00094
000T0

28990

0000+
08000
98000

000n2

60000
00009
12207
23000
79000
55490
15000
005TS
00000
02090
72291
39000
%9000
5609
15000
00575
hI5%0
106490
26900
00L%2
22540
h15490
21590
EEEHD
£I540
Lasil
Bhhyd
H0gH0
00435
17909
£2909
37000
£254%9
27900
54240
h2nho
To2n0

000093

00000
£9300
06000

52029

0£0032
90000
00040
02073
020739
00TTS
02073
15009
ge900
20000
00040
02073
Lrd:1%)
00TTSs
02013
L2504
00215
00%TS
020%9
£N01E
0Gh24
005TS
sonTS
4+DDTB
poLts
poreo
007TTs
0020
w0L21
00272
0297
02073
0%22¢
:}: 1243
09Ted
09115
00TtTs

00004

58399
0000
00090

25217

2300 3900

£225 1268
7000 5290
0803 080D
9900 090D
3970 030¢p

205%0
21540
S0590
21890
oo0sh
8009
£2640
SESHD
20590
®15%0
50640
LTEN0
0009
0009%
£2640
GE5H0
21590
HT590
92540
#2540
#T5490
0009
£I640
22440
20000
SH2hD
3009
06245
bLLLE]
54240
0009y
9009%
3009y
205%0

TFLY)

Jong

£409
I0h¢
0%t
a0he
5000

0009y
S4290

9g2%0

T1100
T000C
2009%

TT100

£400

2949
£hdY
£Hin
ghiy
00090

900T0
00000
00T 1S
00040
0009y
0009%
0091S
022es
80030
08000
00TTS
00040
00094
00094
009715
02225

008 TS

00515
00215
pse2s
00sTs
00094
00515
00TIS
B0LTL
07c00
0089%
29948
30915
o%200
00094
GE590
6620t
D06 IS
01190
00094
92019

00000

00%22
90915
20099

230900

1000

GNh
T000
7200
T900
b

00000
00000
L9009
53000
2201
29000
20992
9gs5H 0
00000
00000
29009
39000
T220%
23000
19942
9L GH0
ITGH0
£5000
00292
£2540
Lhooo
39000
TH000
o000
38000
349050
0e000
10000
SESH0
£2£TT
21390
0£L2s
90640
cx000/
39050
97000
09h 2L

60000

00000
93009
05323

42520

0£000
00000
02073
020%9
000%)
020%3
2941¢
02528
0£000
00000
02019
020%9
oogne
02079
29418
02525
004ts
020T9
£4903 ¢
05%2s
82019
02073
02039
02019
02083
000F 0
02013
05222
05922
00070
002715
HSlhh
[11:1) £
02913
90070
02019
22012

0000%

0000%
0400
86549

2911T

=(28)9
=(98) 90 _
. =(58)0
=("8)0
=(£@)9
={2819
=(78)0

2000
929%
2000
1110
0000
0050
W16y

59240
00000
sh240
s%2919
60540
218%0
50204
05Ehn
55240
00000
sH240
s92%0
50640
LTE40
n0204
0SE 0%
STS%0
126%0
22640
21540
0069
0Tah0
00094
000694
08245
024"
00094
21540
209271
GEYN 0
000094
905410
20548
0520
0z 40
00094
24240
21940
68240

30000
145402
73002
55000
00000
00000

0000 000D
0069 2112
0000 2000
0000 0028
0000 0000
2030 0000
9000 9000

00000
00000
09900

04300.

00TIS
00040
£09%2
%2640
00000
00000
09900
04900
00735
000%0
£09%2
HeSH0
00s1S
00215
Bs£25
08s%s
00094
00040
0009%
41540
5029¢
00TTs
00094
00915
09902
0011s
§5.0T
00815
09515
5029¢
00TTS
20094
05529
00000
00000

00300
00000
00000
0TTED
90300
00000

0000
2000
3000
5002
5092
0000
0000

80000
00000
0SSTT
8SSTT
£9000
09000
9204
0252s
00000
00000
05571
05573
£9800
09000
9200
825625
%5000
002492
205%0
05000
515%0
249000
£HEHD
00235
12000
€000
2971
£I5%0
£2540
%2000
205%0
0T5%0
%3000
T0000
11000
90540
T0%2e
08922
09000

60000
00009
00532
10000
00000
00000

2000
p0D2 =(9¥)ID
8000 =(5Y19
Tovz = (h)3
Tom2 =(E¥) 9
0009 =(2¥)9
0000 =(T¥)D

00040
00000
000%0
090%0
02079
02019
52208
5£90%
00000
00000
00070
00010
02919
02019
Gl20¢
6£90%
02819
£401¢
004TS
02019
00LTS
02079
02280
6620T
000%L
02019
00010
80stTs
05222
02079
005TS
0060TS
020T9
088172
820T9
00LTS
0£ 070
00000
0000%

00300
00000
coooo
00TTS
00000
o0000

(2Y)90

11700
405640
00094
00094
Sh2400
649249
T0.0%
225490
TTT09
0540
0009%
00094
sh240
Gh24)
T0L0%
225%0
22548
£2540
4T5n0
975%0
80442
0£eH0
00242
£I5HY
90549
94241
[XLLL]
0009%
£0009
§9240
0009%
TISH]
09094
0549
Gh2n0
20094
1529¢
8h2HD
hESHo

70000
00000
090080
19900
0TLHS
TT109
00009

2000
7000
2000
TTI0
1000
9050
n16h
T000

900090

5922242

294920

838050

000000

300000

100090

008090

00000
00000
DD09%
00094
92900
02500
150
004TS
00000
00000
0009%
0009%
02900
02500
L1£50%
084Ts
00415
pSE2S
00515
00275
£40TE
00220
69078
90STS
90516
00£00
00TTS
0009%
8o0TL
7€200
00094
835Ts
9040
90516
00100
00284
92022
00000
00000

noote
0000
00000
20100
%5000
0890
00600

00000
00000
£94940
99440
065117
€8T
a9 0h
YwEL04
00000
00000
£949%0
aghH0
0S8STT
£25817
h5Hh 0h
%#£20%
00i%2
20590
15000
90242
£2640
05.45
20540
22000
22090
421290
©2000
29971
£75%0
[95921
22000
ST000
90££0
21900
42890
20000
22282
23000
opoooo

30009
032452
30002
2002%
0TTE0
28603
HEEHD

0000 0000

o000
0000
3000
03900
2020
2000
0000

8
94
s8
48
£8
28
I8
1]

0900
pooo
2028
0000
3000
90800
3000
wI5400
159400
£TI54%00
400000
(25331
44924690
224400
005020

00000
00000
00%3Ts
00715
80070
00070
T530%
5400%
00000
00000
00715
00T3S
000T0
030T0
TST04%
59004
£490TE
00%19
022319
£4H01E
26828
0028
005%¥S
02919
02079
00010
02919
000t0
00518
90070
02079
02319
9229¢
22019
00070
82919
2L2lL¢
00904

-0000%

o00Ys5e
TL04T:
12047
15957
3T195¢
21002
21000

3000
2000
3000
s002
9000
2030
3090
3028

Hh2on0
p2hno
L2L12]
0Th#w0
nn%0
00 %0
52840
02840
LELLT]
02940
2Th%0
0Thh0
H09%0
00940
niEn0
02840
49840
09e% 0
nSEND
0SEND
LLIA 1]
0heNd
HeEHD
0gEYD
2800
o2e40
HIEH0
0IgHo
#3£40
04g%0
0290
02240
#9240
092%0
45240
85240
74299
0hehno
HE£29d

09700
34030
49300
09300
45000
#3930
00000

0333 22X
0930 9X
0000 &x
T2 4x
0030 £X
0000 2x
9030 X
8332 9X

095190 WW
200900 34
050292 3¥
002003 K3
005020 14
00292 Vi
0000230

C@ER
-

4-11

60499700 A

G@@N

004221 CODta

G04222 CODL.

LINE 32
gz+4¢B
CAP3
TINE,4C3

610206C34G + 580

51100G4311 CODE. sAt
G10LOGULSL <EXT> ¢ RJT
CLuCECuLL 3y

Figure 4-9. Object Listing (Partial)

10e32.26.FTST3ISZ FOM /C6
10.32.27.IP 0C000512 #IRDS - FILE INPUT
10432427 FTST3,T5,P4,
10.32.31.FTNyD,R=3,

10.32435, «455 GO SISONDS SOMPILATION TIME
10.32.36.,L60.

10.32.41.M0DE ERROR

10.,32,41.J08 REPRIEVED

1043241, INFINITE VA_JE IN ACCTAB NEAR LINE 44
10.32.41. .

10.32.41. «051 3P SECONDS IXECUTION TIME
10+32.41, (PREVIOUS ZRI0R CONDITION RESET)
10.32.41,ERROR 40DE =02, ADORFSS =006470
16.32.42.0P 00062880 WORDS - FILE OUTPUT , DC 40
10.32,42. M5 3584 AODS 25688 MAX USED)
10.32.42.CPA 1,133 SEC, 1.433 ADJ.
10.32.42.0P8 «323 SEC. « 329 ADJ.
10.32.42.I0 1.278 SEC. 1.278 ADJ.
10.32.42.CM 504393 KHS, 3.106 ADJ.
1632.42.5SS 58456
10.3242.PP DATE 10/26/77
10.32.42.FJ

sy OC 04

7T« 84% SEC.
ENO OF JJ3, C6

Figure 4-10. Dayfile Showing Mode-2 Error

Job statement
FTN,D,R=3.
LGO.
7/8/9
cs DEBUG
CS ARRAYS
cs STORES (ACC,TIME)
cs NOGO
FORTRAN source statements
7/8/9
Data
6/7/8/9

Figure 4-11. Sequence of Debug Statements

/0EBUG/
/DEBUG/
/DEBUG/
/DE3UG/
/70EBUC/
/DEBUG/
/0EBUG/
/DEBYG/
/0EBUG/
/DESUC/
/0EBUG/
/DE3UC/
/0EBUG/
/DE3UC/

ACCTAB

-INZ 12- T'HE NEW VALUE OF THE VARIABLE TIME Is ©.

LINE 13- T'HE NEW VALUE OF THE VARIABLE ACC IS 4.

-INZ 12- THE NEW VALUE OF THE VARIABLE TIME Is 1.000000060
-INE 13- THE NEW VALUE OF THE VARIABLE ACC Is
LINE 12- THE NEW VALUE OF THE VARIABLE TIME IS
-INZ 13- THE NEW VALUE OF THE VARIABLE ACC I8
LINE 12- THE NEW VALUE OF THE VARIABLE TIME Is
-INZ 13- THE NEW VALUE OF THE VARIABLE ACC IS
LINZ 12- THE NEW VALUE OF THE VARIABLE TIME Is
LINE 13- THE NEW VALUE OF THE VARIABLE ACC Is
LINZ 12- THE NEW VALUE OF THE VARIABLE TIME IS
LINZ 13- THE NEW VALUE OF THE VARIABLE ACC IS
LINZ 12~ THE NEW VALUE OF THE VARIABLE TIME Is
LINE 13- T'HE NEW VALUE OF THE VARIABLE ACC Is

2.00C00600¢C
10.10000006
3.006000000
10.20000000
3.000000600
10.20000000
4.0G0030000
10. 30060000
5.0000006000
10.4C000000

4-12

Figure 4-12. Debug Output Showing Array Contents

60499700 A

I

SIS Y B B

J I D I I I

33 00

J I D)

LY

v

\

eﬁN
€W\
fﬁk

SIS

f%N
6@\

6@\
G@N

D)

35

54

€5

PROGRAY ACCTAS (INPUT,O0UTPUT,TAPE4=INPUT,0EBUG=0UTPUT)

’ JIMENSLON TIME(10), ACC(10)
3eeesREAD TINE, MASS, FORCE, AND COMPUTE ACSELERATION TABLE
— IrR = 3
Nz

130 WEAD (4y*) T, AMASS, F

IF (E0Z(4) +NE. 0) GO TO 150

N=N@®¢ 1§

IF (N .GT. 10) GO TO 600
I IF (AMASS .LE. GC.) GO TO 70C

TIME(N) = T

ACC(N) = F/AMASS

GO To 1C0

ese o 2RINT ACCELERATION TABLE

LI L)

153 NTIMES = N
PRINT 10
PRINT 15, (TIME(I),ACC(I),I=1,NTIMES)
IF (IER oNE. 0) 6O TO 936

eeeseEAD A CARD CONTAINING & TIME VALUE

WLO l

133 RFAD t4,*) T
IF (ED(4) NE. G) GO TO 90C
N = N ¢ 1

o SEARCH ACCELERATION TABLE

(S XS RY)
.

NN 240 I = 2,NTIMES
IT=1
IF (T «LE. TIME(IT)) GO TO 223
21} COMTINUS
50 To 350

eeesdN SECOND DEGREE INTERPOLATION

I ©

220 21 = TIME(IT-1) = TIMEC(IT)
02 = TIMECIT=1) = TIMEC(IT¢1)
03 = TIMECIT) =~ TIME(IT+1)
L = T - TIME(IT-1)
N2 = T « TINE(IT)
A3 = T = TIME(IT+1)

ACCX = Q2*Q3*ACC(IT-1)/(Di*C2)
1L - NL*2X3*ACC(IT)/(DL*D3)
2 ¢+ 01*Q22%ACC(IT+1)}/(D2*0D3)
PRINT 25, Ty ACCX

50 TO 19¢

§3) ORINT *, # YOO MUCH DATA., MAX NO, OF TIMES IS 102
STae
——= 73] PRINT ¢, £INVALID VALUE FOR AMASS #, N
I IcR = 1
— 50 To 100
85) °PRINT ¢, £ INTERPOLATION PROBLEMS, TABLE ERRORZ
50 TO 19C
330 PRINT *, ¥ END ACCTABZ2
STNP

(9]

10 FORAMAT (£12,2(¢ TIME ACCEL#))

15 FNRMAT (2(5XF7.292XF845))

25 FORIMAT (2 TIME = ¢'F7o2|t ACCELERATION = ¢’F805)
IND

60499700 A

Figure 4-13. £xample with Zero Value Test

4-13

15.59.17. FTST4PY FROM /C6
15.59.18.IP 00000576 WORDS - FILE INPUT
15¢59418. FTST4,4T5,P4,
lﬁoﬂ?o“ZaFTN,D’R=3-

16,0613, «415 CP SECONDS OMPILATION TIME
16,06413.LG0.

16.06.29, MODE ERROR
16.06.29,J08 REPRIEVED
1606429, INFINITEZ VA_JZ
16.06.29.

16406429, «364 0> SZCONOS IXECUTION TIME
16.06430, (PREVIOUS ZRD CONDITION RESET)
16.06+30.ERROR MODE =32, ADDRESS =004417
16,06.30.0P 00002944 AORDS - FILE OUTPUT

s DC 04

IN ACCTAB NEAR LINE 47

s DOC &g

16406.30. MS 3584 HWORDS (25088 MAX USED)
16.06+36.CPA 1.112 SEC. 1.112 ADJ.
16.06.3C.CP8 «302 SEC. «302 ADJ.
16.06430.I0 1.265 SEC. 1,265 ADJ.
16.05.3C.CH 49,567 KHWS, 3.025 ADJ.
16.06430.SS 5. 705

16.06.30.PP 9.352 SEC.
16.06.30.EJ END OF)03, C6

DATE 10/26/77

Figure 4-14. Dayfile Showing Mode 2 Error

/DE3UG/ ACCTAB AT LINZ 4i- THE NEW VALUE OF THE VARIABLE Dt IS -2.,0030000000
/DFBUG/ AT LINEZ 42- THE NEW VALUE OF THE VARIABLE D2 IS -3.00C000084600
/DE3UG/ AT _INE 43~ THE NEW VALUE OF THE VARIABLE D3 IS =-1.0060000000
/DEBUG/ AT _INZ 44- THE NEW VALUE OF THE VARIABLE Q1 IS 0.

/DEBUE/ AT LINZ 45- THE NEW VALUE OF THE VARIABLE Q2 Is -2,000000000
/0E3UG/ 8T LINZ 46- THE NEW VALUE OF THE VARIABLE Q3 IS -3.0000006000
TIME = G.00 ASTELZRATION = 0.00000

/DEBUG/ ACCTAR AT [INEZ 41~ THE NEW VALUE OF THE VARIABLE D1 IS =2.000000080
/DE3UC/ AT LINZ 42- THE NEW VALUE OF THE VARIABLE 02 IS =-3.000060000
/DEBUE/ AT _INZ 43- THE NEW VALUE OF THE VARIABLE D3 IS =1,000000000
/70EBUG/ AT _INZ Gu- THE NEW VALUE OF THE VARIABLE Qi IS 1.600000060
/DESVEG/ AT LINE 45- THE NEW VALUE OF THE VARIABLE Q2 IS -1.000000000
/0E3UG/ AT LINE 46- THE NEW VALUE OF THE VARIABLE G3 IS =-2,000000000
TIME = 1.0C ACCELZRATION = 5,.,70000

/DEBUG/ ACCTAB AT LINZ 41- THE NEW VALUE OF THE VARIABLE 01 IS -2,000000000
7DEBUG/ AT LINZ 42~ [HE NEW VALUE OF THE VARIABLE D2 IS -3.0600C0000
/DEBUG/ AT _INZ 43- THE NEW VALUE OF THE VARIABLE D3 IS -1,000008004Q
/DEBUG/ AT LINE 44- THE NEW VALUE OF THE VARIABLE Q1 IS =-1.000000000
/0EBUG/ AT _INE 45- IHE NEW VALUE OF THE VARIABLE Q2 IS =-3.00C000000
/DE3UE/ AT LINZ L6+ THE NEW VALUE OF THE VARIABLE Q3 IS =-4,000000000
TIME = =1.,00 ACCELIRATION = *¢xxxyay

/DEBUG/ ACCTAB AT LINZ 41- THE NEW VALUE OF THE VARIABLE Ot IS ~-1.000000000
/DEBUC/ AT LINE 42~ THE NEW VALUE OF THE VARIABLE D2 IS ~-1.00000G6000
/DEBUG/ AT _INZ 43- THE NEW VALUE OF THE VARIABLE D3 Is ¢.

/0EBUVE/ AT LINEZ 44- P'HE NEW VALUE OF THE VARIABLE Q1 Is «500600000¢C
/DEJUGC/ AT _INEZ #5=- THE NEW VALUE OF THE VARIABLE Q2 IS -.5000000000
/DEBUG/ AT LINE 46~ THE NEW VALUE OF THE VARIABLE Q3 IS =.5000000000

Figure 4-15. Debug Output and Printed Output
4-14 60499700 A

D I D I

.

NS I N R B RS I SN R BN

"

) D D

J

&

3

~
-
~
-
-

7YY D

35

65

(%]

[P AT R &]

PSSRV]

LIcr Q)

(SRS A%

(XS RW)

(9]

)

PROGRAM ACCTAB (INPUT,OUTPUT,TAPE4L=INPUT)
DIMENSION TIME(1G), ACC(1D)
seeeJZAD TIME, MASS, FORCE, AND COMPUTE ACCELERATION TABLE

N = ¢
IFR = ¥

130 READ (4%,%) T, AMASS, F
IF (E07(4) NE. 0) GO TO 150
N =N+ 1
IF (N «GT. 18) GO TO 630
IF (AMASS JLE. 0.) GO TO 70C

TIME(NY = T
ACC(NY = F/AMASS
GO TO 1G0

eee s PRINT ASCELERATION TABLE

15¢ NTIMES = N
PRINT 10
ORINT 15, (TIME(I),ACC{I} I=1,NTIMES)
IF (IFR +NEe. 0) GO TO 903

eeee A A ZARD CONTAINING & TIME VALUE

130 RFAD (4,%) T
IF (EO0OR(4L) <NE. 0) GO TO 9gC
N =N ¢ 1

sees SEARCH QACCELERATION TABLE

D0 200 T = 2,NTIMES
IT=1
IF I «LE. TIMECIT)) GO TO 229
238 CONTI NUE
GO Tn 859

eeeel SECOND NEGREEZ INTERPOLATION

220 0t TIME(IT-1) - TIME(IT)
J2 TIMECIT-1) - TIME(IT¢1)
J3 TIMECIT) - TIMEC(IT+1)
—_— IF (D1 +ENe Co «ORe D2 +EQs Gs +ORe D3 EQ. 04) GO TO.85GC

Wt~ NN

01 T - TIME(IT-1)
22 T - TIME(IT)
13 T « TIME(IT+1)

ACCX = Q2*Q3*ACC(IT-1)/(D1*D2)
1 = N1*33*ACC(IT)/(D1%D3)
2 ¢ Q1%12%ACC(IT+1)/(D2*D3)
ORINT 255 T, ACCX

60 TO 190

PRINT *, # TOO MUCH DATA. MAX NO, OF TIMES IS 10%#
SToP
750 PRINT *, 2INVALIO VALUF FOR AMASS #, N
IER = 4
G0 TO 100
35) PRINT ¢, £ INTERPOLATION PROBLEMS, TABLE ERRORZ
60 TO 190
333 PRINT *, # END ACCTAB:2
stop

[
L
<

1) FORMAT (2i12,2¢2 TIME ACCEL#))

L3 TORMAT (2(5XF7.2,2XF3.5))

25 FORMAT (2 TIME = #,F7.2,2 ACCELERATION = 2,F8,5)
END

60499700 A

Figure 4-16. Example with Duplicate Point Test

TINE ACSEL TIME ACCEL TINME ACSIL TIME ACCEL
0.0¢C 0.00000 2.00 10.10000 0,00 0.000060 2.00 10.10000
3.00 156.20000 3.00 10.20000 3.60 10.20000 3.00 10.20000
4,30 10.30000 5.00 10.40000 4,06 10430000 5.00 10.40000
TIME = 0.0C ACSCE.ZRATION = 0,00000 TIME = 0.00 ACJELERATION = D,.00008
TIME = 1.0C ACCELERATION = 5,70000 TIME = 1.00 AZSELSRATION = 5470000
TIME = =1.00 ACCELEZRATION = *essvusy BAD TIMZ, VALUE IS-1.
INTERPOLATION PROBLZMS, TABLE IRROR INTERPOLATION POBLEMS, TABLE ZRROR
TIME = 3.50 ACCELZRATION = 13.25000 TIME = 3.50 ACSELZRATION = 1).25000
TIME = 4,50 ACCELERATION = 10.35000
TIME = 5,00 ASCELERATION = 108.400090
TIME u 5.5
Figure 4-17. Output from Figure 4-16. Ezg Aég”'”!v“' E 1S
Figure 4-19. Qutput from Figure 4-18
1 PROGRAY ACCTAS (INPUT,0UTPUT ,TAPEG=INPUT)
DIMENSION TIME(10), ACC(Ll)
5 CeoesRZAD TIME,y MASS, FORCE, AND COMPUTE ACCELERATION TABLE
N = ¢
IER =)
130 REARD (4,*) T, AMASS, F
1 IF (EO0=(4) .NE, 8) GO TO 15¢
N=N©¢ 1
IF «N GT., 10) GO TO 608
IF (AMASS JLE. 8.) GO TO 706
TIME(N). = T
15 ACC (N} = F/AMASS
G0 To 10C
Ceeeo PRINT ASCELERATION TABLE
2t 150 NTIMES = N
PRINT 10
PRINT 15, (TIME(I)yACC(I)I=14NTIMES)
IF (IER JNE, 0) GO TO 900
c
25 SeeeoREAD A TARD CONTAINING A TIME VALUE
[0}
130 READ (%e*) T
IF (EOF(4) JNE, 0) GO TO 9GO
N =N+ 3
33 . IF (T +LT. TIME(1) JOR. T ,GT. TI?ﬂE(Nl’IHESH GO0 TO 800
—_— IF (T +LE«. TIME(NTIMES-1)) GO TO 195
— IT = NTIMES - 1
e 60 TO 220
35 CeveeSTARCH ACCELERATION TABLE
c
135 LIM = NTIMES - 1
DO 200 I = 2,LIM
IT=1
4% IF (T JLE. TIMEWIT)) GO TO 220
23 CONTI NUE
GO TO 85C
CesseD0 SECOND DEGREE INTERPOLATION
45 o]
220 Dt = TI'MEC(IT-1) -~ TIME(IT)
D2 = TIME(IT=1) - TIME(IT+1)
D3 = TIME(IT) - TIME(IT+1)
IF (D1 .EQ. O« «OR. D2 .EQs G« «OR. D3 +EQ. 3.) GO TO 850
Figure 4-18. Final ACCTAB Source Listing (Sheet 1 of 2)
4-16 60499700 A

J I D I I

I

J I I

)) D D

'

"

JId) I I oD

65

(9]

(%]

01 =T - TIME(IT-1)

22 = T - TIME(IT)

Q3 = T = TIME(IT+1)

ACCX = Q2*Q3*ACC(IT-1)/(D1*D2)

1 - Q1*X3I*ACC(IT)/(D1*D3)

2 ¢ Q1%32%ACC(IT+1)/(D2%D3)
PRINT 25, Ty ACCX

G0 TO 190

PRINT *, 2 TOO MUCH DATA, MAX NO., OF TINES IS 102

SToP

PRINT *, 2INVALID VALUE FOR AMASS #, N
IFR = 1

GO TO 10¢C

PRINT ¢, 2 BAD TIME, VALUE IS%, T

50 7o 19¢

PRINT *, # INTERPOLATION PROBLEMS, TABLE ERRORZ
30 70 19§

PIINT *, 2z END ACCTABZ
SToep
FARMAT (21%£,2(¢# TIME aCCeEL2))

FOIMAT (2(S5XF7.292XFB8.5))
FORMAT (2 TIME = £,Ff7.2,% ACCELERATION = %,F8.5)
END

60499700 A

Figure 4-18. Final ACCTAB Source Listing (Sheet 2 of 2)

4-17

e mm)\ &)\ @) m\) @/ %} %) ﬂ/ ﬁ/ %} @7 @) c @\J @\r\ ﬁ/ @) m/

BATCH EXECUTION 5

This section describes some of the most commonly used
procedures for batch execution of FORTRAN programs
under NOS/BE, NOS, and SCOPE 2.

Batch execution usually involves reading a deck of punched
cards, called the job deck, through the card reader at a
remote batch terminal or at the central site of an
installation. The equivalent of a job deck, in the form of
card images, can also be submitted as a unit from a terminal
under NOS (SUBMIT control statement), NOS/BE
(INTERCOM BATCH command), and SCOPE 2 (HELLO7
SUBMIT command).

Job decks contain the following components in the order
shown:

1. A group of control statements, beginning with the job
statement.

2. A 7/8/9 card (characters 7, 8, and 9 multipunched in
column 1).

3. Varicus combinations of the following groups of cards,
separated by 7/8/9 cards: .

FORTRAN source programs
Binary decks of previously compiled programs
Data

The order of programs or data cards depends on the
order indicated by the control statements.

4. A 6/7/8/9 card (characters 6, 7, 8, and 9 multipunched
in column 1).

SAMPLE JOB DECKS

The sample job decks shown in figures 5-1 through 5-3 are
typical decks that might be used for FORTRAN program
compilation and execution. Brief descriptions of some of
the control statements most commonly used by FORTRAN
users are found later in this section. Except as noted,
control statements are common to all three operating
systems.

A simple job for compilation and execution of a FORTRAN
program is shown in figure 5-1. The object code and data
output from the program are saved on permanent files.

The example shown in figure 5-2 executes the program
compiled in figure 5-1 with data taken from a magnetic tape
file. A new tape file is created.

The job shown in figure 5-3 executes the binary deck
punched in figure 5-2 with two different sets of data.

JOB PROCESSING
CONTROL STATEMENTS

Brief descriptions of some commonly used control state-
ments for batch processing follow. Permanent file control
statements and tape usage control statements are discussed
later in this section. Loader control statements are
discussed in section 7.

60499700 A

JOB STATEMENT

The job statement (figure 5-4) is the first control statement
in every job deck. It assigns a name to the job, and it
provides information used by the system in determining an
initial scheduling priority for the job.

The parameters on this statement are:

jobname One to seven letters or digits; the first
character must be a letter. More than
one job with the same name can be in the

system at the same time; the system
ensures unique job identification.

Tt t is a number, containing one to five octal
digits, that specifies the maximum
number of central processor seconds the
job can use. Exceeding this limit causes a
fatal error condition. The default for
NOS and NOS/BE is 100g; the default for
SCOPE 2 is 108.

ECfl (NOS/BE) fl is the maximum number of
words (in octal) of ECS (extended core
storage) the job can use. Although the EC
parameter is also applicable to SCOPE 2,
where it indicates the maximum number
of words of LCM (large core memory), its
use is not recommended because it
inhibits automatic LCM field length
management.

MTn (NOS/BE, SCOPE 2) n is the maximum

NTn number of 7-track (MT) or 9-track (NT)
tape units that the job will use concur-
rently. This is not the same as the
number of tapes; if several tapes are read
successively, only one tape unit is neces-
sary, The UNLOAD control statement
(described below) causes a tape to be
removed from a device.

Under NOS, the MT and NT parameters
are specified on the RESOURC control
statement.

As discussed in section 7, the CM parameter can also be
specified on the job statement, but it is not recommended.

ACCOUNT CONTROL STATEMENT

The ACCOUNT control statement (figure 5-5) enables user
validation by the system. If used, it should immediately
follow the job statement. Either an ACCOUNT control
statement or a USER control statement (which has the same
parameters and format) is required for each job under NOS.
The USER control statement is recommended because the
ACCOUNT control statement is included only for compat-
ibility with previous versions of the cperating system.

The parameters for NOS are:

un User number
pw Password

5-1

Whether or not an ACCOUNT control statement is required
under NOS/BE or SCOPE 2 depends on the installation. The
parameters under NOS/BE are installation-defined. The
parameters for SCOPE 2 are:

a Account number; seven letters or digits.

] Suffix to the account number; three letters or
digits. Only the first seven characters are
validated by the system.

p Project number; 10 letters or digits.

Various combinations of these parameters might be required
by an installation.

- RESOURC CONTROL STATEMENT: (NOS)

The RESCURC control statement (figure 5-6) is required
whenever a job uses more than one tape unit concurrently.
The n following the MT (7-track) or NT (9-track) parameter
indicates the maximum number of tape units that are used
concurrently.

EXITCONTROL STATEMENT

The EXIT control statement (figure 5-7) allows processing to
continue after a fatal error has occurred. When no EXIT
control statement is present, any fatal error causes job
termination. When an EXIT control statement is present,
processing might continue, depending on the type of error
and the parameter on the statement.

MYJOB,T100.
ACCOUNT,12334,USER1.

REQUEST,TAPE2,*PF.

REQUEST,LGO,*PF. } NOS/BE, SCOPE 2

FTN,A,ER.

LGO.

CATALOG,LGO,PROGRAM1,ID=MINE.
CATALOG,TAPE2,DATA1,ID=MINE.

SAVE (LGO=PROGRAM1)

SAVE (TAPE2=DATA1) } NOS

READ (1,2) X,Y,Z
IF (EOF(1) .NE. 0} . . .

IF (ERROR) PRINT *, "X OUT OF RANGE:", X

WRITE (2) TOTAL
END
7/8/9 card

data for program

} NOS/BE, SCOPE 2

7/8/9 card (characters 7, 8, and 9 multipunched in column 1)

PROGRAM FIRST (INPUT,OUTPUT, TAPE2,TAPE1=INPUT)

Required under NOS; might be required by
particular instailations under NOS/BE or SCOPE 2.

Specify that TAPE2 and LGO are to be assigned
to permanent file devices.

Compile program with debugging parameters
specified. The A parameter prevents saving a bad
binary as a permanent file by terminating the job
in the event of a fatal compilation error; the ER
parameter helps locate execution time fatal errors,

Execute compiled program.

Save program binary and resulting data as
permanent files.

INPUT is equivalenced so that the EOF function
can be used. :

File OUTPUT is used for display of monitoring
messages.

Binary data goes to TAPE2,

6/7/8/9 card {characters 6, 7, 8, and 9 multipunched in column 1)

Figure 5-1. Compilation and Execution

60499700 A

J

J I D

-

«

n

2)

)y D D D)

B0 N TS TS B T

J)

1

‘

When an error occurs, the system searches through the
control statements, skipping all control statements until an
EXIT control statement with the appropriate parameter is
found. If an appropriate statement is found, processing
resumes with the control statement immediately after the
EXIT control statement. If no approptiate control state-
ment is found, the job terminates.

Three types of fatal errors can occur. How each type is
handled depends on the operating system and the type of
EXIT control statement specified. For a complete list of
the errors in each category, refer to the operating system
reference manual or diagnostic handbook.

1. Unrecoverable errors. This category includes job
statement errors, accounting errors, and explicit oper-
ator action leading to job termination. Under all three
operating systems, exit processing is ignored; the job is
always terminated.

2. Special errors. This category includes FORTRAN fatal
compilation errors when the A option has been selected

on the FTN control statement. Under NOS, this
category is the same as category 3. Under NOS/BE and
SCOPE 2, control statements are skipped up to the next
EXIT(S) statement.

3. All other errors. This category includes arithmetic
mode errors, central processor time limit exceeded, and
fatal loader errors. These errors cause a branch to the
next EXIT control statement under NOS, and a branch
to the next EXIT, EXIT(S), or EXIT(U) control state-
ment under NOS/BE and SCOPE 2.

The fourth way an EXIT control statement can be reached is
through normal job step advancement. That is, no error has
occurred, but the EXIT control statement is the next control
statement to be processed. Table 5-1 summarizes the
processing that takes place when each of the four types of
EXIT control statement is encountered after an error has
occurred or through normal job step advancement.

JOB2,MT2. NOS/BE, SCOPE 2
JoB2. NOS

ACCOUNT,12334,USER1.

RESOURC,MT2. NOS
ATTACH,PROG,PROGRAM1,ID=MINE,
GET,PROG=PROGRAM1. NOS
REQUEST,DATA2,MT,E,VSN=123456.
REQUEST,DATA2,MT,F=S1,VSN=123456. NOS

REQUEST, TAPE2,MT,N,RING,VSN=987654.
REQUEST, TAPE2,MT,N,VSN=087654. RING IN

COPY,PROG,PUNCHB.

PROG,DATA2.

PURGE,DATA1,ID=MINE. NOS/BE, SCOPE 2
PURGE,DATAT1. NOS

6/7/8/9

NOS/BE, SCOPE 2

NOS/BE and SCOPE 2 I

NOS/BE
SCOPE 2
REQUEST, TAPE2,MT PO=W,F=SI,VSN=987654. NOS

} The MT parameter specifies that a maximum

of two tape units are needed by the job
(since tape writing and reading are to take
place concurrently). Under NOS, the MT
parameter is specified on the RESOURC
statement instead of the job statement.

Attaches the binary of the program compiled
in figure 5-1.

with existing ANSI standard format labels,
the installation-defined density, and a VSN
{volume serial number) of 1234566. This tape
is read by the program. .

‘ Requests an S| (System Internal) format tape

Requests an S| format tape on which ANSI
standard format labels are to be written. The
tape has the installation-defined density and a
VSN of 987654. A write-enabling ring is
mounted with the tape (this must be specified
as a comment under SCOPE 2). This tape is
written by the program.

Specifies that the program is to be punched
in binary format at job termination.

Rewinds, loads, and executes the program.
The tape file DATAZ2 is substituted for INPUT
(which occurs first in the PROGRAM state-
ment)} for all input/output references.

I Purges the data file saved as a permanent file
s in the previous job.

This is the only delimiter card used because
the job contains only control statements.

Figure 5-2. Execution with Data on Magnetic Tape

60499700 A

5-3

JOBBB.
ACCOUNT,12334,USER1.
COPYBR,INPUT,BIN,

REQUEST,TAPE2,*PF.

REQUEST,TAPES3,*PF. } NOS/BE, SCOPE 2

BIN.

CATALOG,TAPE2,0UT1,I1D=MINE.
BIN, , ,TAPE3.

CATALOG,TAPE3,0UT2,ID=MINE.
SAVE, TAPE3=0UT2.
7/8/9

NOS

binary program

7/8/9
7/8/9

} NOS/BE, SCOPE 2

6/7/9 (characters 6, 7, and 9 multipunched in column 1)
data set 1

7/8/8

data set 2

6/7/8/9

NOS/BE, SCOPE 2

Copies the binary program to the file BIN to
enable repeated execution.

Executes the program using the first group of
data cards.

Saves program output as a permanent file.
Executes the program with a second set of data

cards. The name TAPE2 is changed to TAPE3
so that output will be written to a different file.

NOS/BE, SCOPE 2

NOS

Figure 5-3. Execution of Binary Program with Two Sets of Data Cards

jobname, Tt,ECfl,MTn,NTn. NOS/BE
jobname, Tt. NOS
jobname, Tt,MTn,NTn. SCOPE 2

Figure 5-4. Job Statement Format

ACCOUNT ,parameter list. NOS/BE
ACCOUNT,un,pw. NOS
ACCOUNT,as,p. SCOPE 2

Figure 5-5. ACCOUNT Control Statement Format

RESOURC,MT=n,NT=n. NOS

5-4

Figure 5-6. RESOURC Control Statement Format

EXIT. NOS/BE, NOS, SCOPE 2

Cc
EXIT, {szf. NOS/BE, SCOPE 2

Figure 5-7. EXIT Control Statement Format

REWIND CONTROL STATEMENT

The REWIND control statement (figure 5-8) positions a file
at beginning-of-information. For a tape file, beginning-of-
information is defined as a point immediately after all
header labels. For a mass storage file, beginning-of-
information is the beginning of the first record in the file.

RETURN CONTROL STATEMENT

The RETURN control statement (figure 5-9) releases a file
from the job with which it is associated. The effect of
RETURN depends on the type of file:

Local (scratch) The contents of the file are
file destroyed.

Permanent file The file remains in existence, but is

no longer attached.

60499700 A

D D D))

I 0 I

J

NS S B B RS RS D B

.

"

)
L

*

"

-
-
~

'

'

S 300 1 T B

Trailer labels are written and the file
is rewound and unloaded. The number
of tape units the job is permitted, as
requested on the job statement
(NOS/BE, SCOPE 2) or RESCURC
statement (NOS) is decreased by one.
Under NOS this takes place only when
the maximum number is actually in
use.

Tape file

Print or punch The file is printed or punched.

file

UNLOAD CONTROL STATEMENT

The UNLOAD control statement (figure 5-10) is identical in
its effect to the RETURN control statement, with one
exception: for tape files, the number of tape units required
by the job is not decreased. Thus, the UNLOAD control
statement is used whenever more than one tape is to be used
successively in a job. If all the tapes are used concurrently,
it is irrelevant whether UNLOAD or RETURN is used, since
each tape requires its own tape unit.

COPY AND SKIP
OPERATIONS

It is frequently necessary to copy part or all of ane file to
another or to skip forward or backward in a file. The copy
and skip operations accomplish this.

Some control statements copy or skip sections and parti-
tions. Both terms refer to groupings of data within a file,
terminated by special delimiters. A section is a less
inclusive grouping than a partition, and a partition is less
inclusive than a file. The FORTRAN user is primarily
interested in end-of-partition boundaries, because these are
the applicable boundaries in the following contexts:

® A 7/8/9 card in the file INPUT is interpreted by Record
Manager as an end-of-partition.

o The FORTRAN ENDFILE statement writes an end-of-
partition.

@ When an output file (a file being written) is closed as
the result of program termination, or when REWIND or
BACKSPACE is executed, an end-of-partition is written
following the last record.

@ The EOF function detects end-of-partition.

. The only case in which the FORTRAN user needs to be

concerned with sections is that of files with unformatted
records under NOS/BE and NOS. The unformatted WRITE
statement writes Record Manager W type records. For this
record type, an end-of-partition boundary is detected as an
end-of-section boundary by the operating system and,
therefore, by the copy and skip operations. This requires
processing that differs in some ways from that for other
files, as discussed below.

Under SCOPE 2, a boundary written as end-of-partition is

always recognized as end-of-partition, regardless of the
record type.

COPY Control Statement

The COPY control statement (figure 5-11) copies all the
information on lfn1 to lfn2 up to the end-of-information of

REWIND,Ifnq, . . . Ifn,,

Ifn Logical file name of file to be rewound.

Figure 5-8. REWIND Control Statement Format

RETURN,ifnq, . . . Ifn

n

Ifn Logical file name of file to be returned.

Figure 5-9. RETURN Control Statement Format

UNLOAD, Ifny, . . . Jfn,.

Ifn Logical file name of file to be unloaded.

Figure 5-10. UNLOAD Control Statement Format

COPY Ifny,Ifn,.

Figure 5-11. COPY Control Statement Format

TABLE 5-1. EXIT PROCESSING

Action Taken When EXIT Encountered

Condition Resulting

in Search for EXIT EXIT (NOS) EXIT

EXIT (C) EXIT (S) EXIT(U)

(SCOPE 2, NOS/BE)

(SCOPE 2, NOS/BE)

(SCOPE 2, NOS/BE)

(SCOPE 2, NOS/BE)

Normal job step
advancement

Unrecoverable error

Special error

Other error

Terminate job

Terminate job

Continue with next
control statement

Continue with next
control statement

Terminate job

Terminate job

Continue skipping

Continue with next
control statement

Continue with next
control statement

Terminate job

Continue skipping

Terminate job

Terminate job

Terminate job

Continue with next
control statement

Continue with next
control statement

Continue with next
control statement

Terminate job
Continue skipping

Continue with next
control statement

60499700 A

lfnl (or double end-of-partition, if present). The copy starts
from the current position of both files; therefore, either file
might have information preceding the duplicated informa-
tion. After all information has been copied to 1fn,, an end-
of-partition is written to Ifn, under SCOPE 2 and’NOS, and
a double end-of-partition is written under NOS/BE.

Under NOS/BE and NOS, a double end-of-partition on 1fn,y
does not terminate COPY processing on files with W type
(FORTRAN unformatted) records. COPYBR can be used to
copy portions of these files.

COPYBF and COPYCF
Control Statements’

The COPYBF and COPYCF control statements (figure 5-12)
copy the specified number of partitions from Ifn, to lin,.
Copying takes place from the current position of %oth files
until the specified number of end-of-partition boundaries has
been read from Ifn,. COPYBF is intended for binary files,
and COPYCF is intended for coded files. Under SCOPE 2,
there is no difference between the two. Under NOS/BE,
there is no difference for mass storage files, but binary
tapes should be copied by COPYBF, and coded tapes should
be copied by COPYCF. Under NOS, COPYCF is intended
for print files, or any files generated by FORTRAN
formatted output statements; COPYBF should be used for
all other files.

Because COPYBF and COPYCF count end-of-partition
boundaries without regard for intervening data, the amount
of information is not always what would be expected. For
example, in the files shown in figure 5-13, the following
control statement:

COPYBF,FILEAFILEB,3.

would copy the information from A to B when FILEA is
positioned at point A in all three cases; the file is positioned
immediately after the third end-of-partition.

If an end-of-information is encountered on Ifn,, a single
end-of-partition is written to 1fn2 at the end of the copy.

Under NOS and NOS/BE, COPYBF and COPYCF should not
be used on files with W type (FORTRAN unformatted)
records; COPYBR should be used instead.

COPYBR Control Statement

The COPYBR control statement (figure 5-14) copies the
specified number of sections from Ifn, to lfn,. The
FORTRAN user uses this control statement primarily to
copy files whose records were written by FORTRAN
unformatted WRITE statements. The end-of-partition
boundaries on these files are recognized as end-of-section
boundaries under NOS/BE and NOS. Under SCOPE 2,
COPYBF should be used.

NOS/BE and SCOPE 2 Skip Operations

The SKIPF and SKIPB control statements (figure 5-15) skip
sections. SKIPF bypasses sections in a forward direction;
SKIPB bypasses sections in a reverse direction. End-of-
section boundaries are skipped until the specified number, n,
has been read. The file denoted by Ifn is then positicned
immediately after the nth boundary (for SKIPF) or immedi-
ately after the preceding boundary (for SKIPB). An end-of-
partition boundary is counted as an end-of-section. If a
level number is present, only sections of that level or higher
are counted. In particular, if the level number is 17, only

5-6

end-of-partition boundaries are counted (a level 17 section is
equivalent to a partition). Under NOS/BE, level 17 must be
used to skip partitions for all files except those with W type
(FORTRAN unformatted) records. For files with W type
records, level 0 should be used. Under SCOPE 2, level 17 is
used for partitions on all files.

Figure 5-16 shows how files are positioned by SKIPF and
SKIPB. In each case, the position of the file is moved from
A to B after execution of the control statement shown.

COPYBF,Ifn1,Ifn2,n.

COPYCF lfny,Ifny,n.
Ifny Logical file name of the file to copy from
Ifny Logical file name of the file to copy to

n Number of partitions to be copied

Figure 5-12. COPYBF and COPYCF
Control Statement Formats

E E E
FILEA 0 0 0 {
' P P P
A B

E E E

FILEA} 0 0 0 {

' P P P '

A B

E E E

FILEA 0 00 (

' P P P

A B

Figure 5-13. COPYBF Example

COPYBR,Ifnq,lfno,n.

Figure 5-14, COPYBR Control Statement Format

SKIPF Ifn,n,lev.

SKIPB,Ifn,n,lev.

Ifn File to be repositioned

n Number of sections to be skipped

lev Level of sections to be skipped

Figure 5-15. SKIRF and SKIPB Control Statement
Formats (NOS/BE, SCOPE 2)

60499700 A

J 2D D D D I

) J D D D

J D J D D

J

e

»

fe

YD) D) D

‘

NOS Skip Operations

The SKIPF, SKIPBF, SKIPR, and BKSP control statements
(figure 5-17) skip partitions and sections.

SKIPF bypasses partitions in a forward direction; SKIPBF
bypasses partitions in a reverse direction. End-of-partition
boundaries are skipped until the specified number, n, have
been read. The file denoted by Ifn is then positioned
immediately after the nth boundary (for SKIPF) or immedi-
ately after the preceding boundary (for SKIPBF). SKIPF and
SKIPBF skip partitions on all files except those with W type
(FORTRAN unformatted) records. For these files, SKIPR
and BKSP should be used.

SKIPR bypasses sections in a forward direction; BKSP
bypasses sections in a reverse direction. End-of-section
boundaries are skipped until the specified number, n, have
been read. The file denoted by Ifn is then positioned
immediately after the nth boundary (for SKIPR) or immedi-
ately after the preceding boundary (for BKSP). An end-of-
partition boundary is counted as an end-of-section.

PERMANENT FILE USAGE

If a mass storage file containing user data or programs is to
remain in existence between jobs, it must be made a
permanent file. Because permanent file concepts and
control statements differ substantially between NOS on the
one hand and NOS/BE and SCOPE 2 on the other, they are
described separately.

NOS/BE AND SCOPE 2
PERMANENT FILES

Creating a permanent file under NOS/BE or SCOPE 2
involves the following steps:

1. The file must be assigned to a permanent file device
before it is written. The required control statement is
REQUEST.

2. Before the end of the first job using the file, the file
must be identified to the system as a permanent file.
The required control statement is CATALOG.

Using an existing permanent file requires these steps:

1. Subsequent jobs must obtain access to the file from the
system before use. The required control statement is
ATTACH.

2, If changes to a file are to be made permanent, the
system must be notified. The required control state-
ment is EXTEND or ALTER.

3. When the file is no longer needed as a permanent file, it
should be removed from the system catalog. The
required control statement is PURGE.

The following control statements and parameters are those
most frequently used under NOS/BE and SCOPE 2.

SKIPF Ifn,np,m.

SKIPFB,Ifn,np,m.

SKIPR,Ifn,ns,Ivi,m.

BKSP,Ifn,ns,m.
Ifn Logical file name of the file to be repositioned
np Number of partitions to be skipped
ns Number of sections to be skipped

Ivi Level number of sections; 17 indicates partitions,
all other values indicate sections, the default is 0

m File mode: C for coded: B for binary (default)

Figure 5-17. SKIPF, SKIPBF, SKIPR, and BKSP
Control Statement Formats (NOS)

SKIPF,FILE,3.

E E E
0 o o0
f s P P t
A B
SKIPF,FILE,3,17.
E E E E E
0] (o)) 0 0
i s P s P P '
A B
SKIPB,FILE,4.
E E E E E
0 o} 0 o O
s ' s P P P f
8 A
Figure 5-16. SKIPB and SKIPF Examples (NOS/BE, SCOPE 2)
60499700 A 5-7

'REQUEST Control Statement

The REQUEST control statement for permanent files (fig-
ure 5-18) ensures that the file can be made permanent. This
control statement must appear before any other reference
to the file in the job in which it is created. It specifies that
the file is to be assigned automatically to a permanent file
device when it is first referenced. The REQUEST control
statement is not applicable to an existing permanent file.

CATALOG Control Statement

The CATALOG control statement (figure 5-19) declares a
file to be permanent. The file must exist on a permanent
file device. A file should be cataloged as soon as possible
after creation, so as to be more secure in event of system
failure.

ATTACH Control Statement

The ATTACH control statement (figure 5-20) makes a
previously cataloged permanent file available as a local file
to the current job. The logical file name can be different
from job to job. A file should not be attached until just
before it is needed, since each attached permanent file
represents increased overhead for the operating system.
Similarly, the file should be returned by the RETURN
control statement as soon as it is no longer needed within a
jab.

ALTER and EXTEND Control Statements

All files processed by FORTRAN Extended are sequential
files except those processed by the mass storage input/-
output routines (READMS, WRITMS) and some of those
processed by the CRM interface routines. (See the
FORTRAN Extended Reference Manual for descriptions of
both these kinds of files.) On a sequential file, information
can be added only at the end; existing records cannot be
maodified. If the file is permanent, it cannot be changed
unless either the EXTEND or ALTER control statement
(figure 5-21) is used.

EXTEND is used when information has been added at end-of-
information. It causes the current end-of-information to
become the permanent end-of-information, thus making the
added information part of the permanent file.

ALTER can be used to change the length of the file. It
specifies that the current file position is to become the
permanent end-of-information. Thus, the file can either be
shortened or (when information has been added) lengthened.

Although the functions of ALTER and EXTEND overlap,
each has its specialized uses. When all the information that
has been added to a file is to become part of the file, but
the current file position is not at end-of-information,
EXTEND must be used. If any of the information currently
in the file is not to be part of the permanent file, ALTER
must be used.

PURGE Control Statement

The PURGE control statement removes permanent file
status, so that the file referenced disappears at the end of a
job. A permanent file can be purged whether or not it is
attached. If the file is attached, the format shown in
figure 5-22 is used. If it is not attached, the format shown
in figure 5-23 is used and the file is attached after being
purged.

REQUEST,Ifn,*PF.

Figure 5-18. REQUEST Control Statement Format
for Permanent Files (NOS/BE, SCOPE 2)

CATALOG, Mn,pfn,| D=idname, RP=days.

ifn Logical file name
pfn Permanent file name; if omitted, the Ifn is used
as the pfn

idname Owner or creator of the file

days Number of calendar days the file is to be
retained in the system; the default is installa-
tion-defined

Figure 5-19. CATALOG Control Statement
Format (NOS/BE, SCOPE 2)

ATTACH,Ifn,pfn,ID=idname.

ifn Logical file name; if omitted, pfn is used as Ifn
pfn Permanent file name under which the file was
cataloged

idname Name of the owner or creator of the file used
when the file was cataloged

Figure 5-20. ATTACH Control Statement
Format (NOS/BE, SCOPE 2)

EXTEND,Ifn.
ALTER,Ifn.

1fn Logical file name of file to be extended
or altered,

Figure 5-21. EXTEND and ALTER Control
Statement Formats (NOS/BE, SCOPE 2)

PURGE,Ifn.

I1fn Logical file name

Figure 5-22. PURGE Control Statement Format
for Attached Files (NOS/BE, SCOPE 2)

PURGE,|fn,pfn,ID=idname.
Ifn Logical file name
pfn Permanent file name

idname Name of the owner or creator used when the
file was cataloged

Figure 5-23. PURGE Control Statement Format
for Unattached Files (NOS/BE, SCOPE 2)

60499700 A

DD D

ter

DD) DD

)
=

A

DD D DD

3D D

Because the file remains attached to the job, it can be
altered and then recataloged. If the file is not going to be
used anymore, a RETURN control statement should follow
PURGE to remove the file from the system.

NOS PERMANENT FILES

Two kinds of permanent files are used under NOS: direct
access files and indirect access files. With indirect access
files, the user attaches a local copy of the file; only the
local copy is read or written. If the local copy is altered, it
does not replace the permanent copy unless the system is so
instructed. With direct access files, all reads and writes are
performed directly on the only copy of the file. For most
applications, direct access files are not as convenient as
indirect access files, as they are less secure (because they
are written directly) and they might use more system
resources (because mass storage space is preallocated).
Direct access files are more efficient for very large files,
however.

Creating a permanent file in batch mode involves the
following steps:

1. The USER or ACCOUNT control statement identifies
the owner of the file to the system.

2. The file is created like any other file.

3. After the file is created, it is saved as a permanent file.
The required control statement is SAVE (for indirect
access) or DEFINE (for direct access).

Using an existing permanent file requires these steps:

1. A job using an indirect access file must obtain a copy of
the file for use as a local file. The required control
statement is GET. For a direct access file, the only
copy is made available to the job through the ATTACH
control statement.

2. For indirect access files, if changes are made to the
local copy, and these changes are to become part of the
permanent copy, the local copy replaces the permanent
copy. The required control statement is REPLACE.

3. When the file is no lenger needed as a permanent file, it
should be removed from the system. The required
control statement is PURGE for both types of files.

The following control statements and parameters are those
most frequently used for permanent files.

SAVE Control Statement

The SAVE control statement (figure 5-24) declares a local
file to be permanent. A permanent copy is made of the
current contents of the local file, and the local file is
rewound. Subsequent changes can be made to the local file,
but the changes are not permanent unless the REPLACE
control statement is used.

GET Control Statement

The GET control statement (figure 5-25) obtains a local
copy of a permanent file and assigns to it the logical file
name Ifn. If a file named Ifn is already assigned to the user,
it is returned even if errors occur in processing the GET
control statement. The local copy is always rewound.

60499700 A

REPLACE Control Statement

The REPLACE control statement (figure 5-26) destroys the
permanent copy of the file specified by pfn and replaces it
with the local file specified by lfn. If pfn does not exist, a
permanent copy of the local file is saved with the name pfn
(in -this case, REPLACE is identical to SAVE). It is not
necessary for 1fn to be a local copy of pfn; it could be a new
file, or a local copy of some other permanent file.

DEFINE Control Statement

The DEFINE control statement (figure 5-27) specifies that a
file is to be a direct access permanent file. It can occur
either before the first reference to the file (that is, the file
does not exist yet) or after the last reference. The latter
method is usually preferable, since it keeps system resources
free as long as possible. However, the first method is more
secure in the event of system failure. DEFINE is not
applicable to existing direct access files; ATTACH must be
used instead.

SAVE Ifn=pfn.

Ifn Logical file name of the local file to be made
permanent

pfn Permanent file name; if the equals sign and the
pfn are omitted, the Ifn is used as the pfn

Figure 5-24. SAVE Control Statement Format (NOS)

GET Ifn=pfn.

Ifn Logical file name to be assigned to the local
copy of a permanent file; if Ifn and the equals
sign are omitted, the pfn is used as the Ifn

pfn Permanent file name

Figure 5-25. GET Control Statement Format (NOS)

REPLACE,Ifn=pfn.

Ifn Logical file name of the local file to replace a
permanent file

pfn Permanent file name of the file to be replaced

Figure 5-26. REPLACE Control Statement Format (NOS)

DEFINE,Ifn=pfn.

Ifn Logical file name of file to be made a direct
access file.

pfn Permanent file name to be assigned. If the
equals sign and pfn are omitted, the Ifn is used
as the pfn.

Figure 5-27. DEFINE Control Statement Format (NOS)

ATTACH Control Statement

The ATTACH control statement (figure 5-28) makes an
existing direct access permanent file available to a jab.
Subsequent output cperations write directly to the only copy
of the file.

ATTACH, lfn=pfn.

Ifn Logical file name to be assigned to direct access
permanent file,

pfn Permanent file name. If Ifn and the equals sign
are omitted, the pfn is used as the Ifn.

Figure 5-28. ATTACH Control Statement Format (NOS)

PURGE Control Statement

The PURGE control statement (figure 5-29) removes a
permanent file from the system. It is applicable to both
direct and indirect access files. For indirect access files, no
local copy is made when PURGE is executed; if a local copy
exists, it is not destroyed by PURGE.

PURGE, pfn.

pfn Permanent file name of the file to be purged

Figure 5-29. PURGE Control Statement Format (NOS)

MAGNETIC TAPE PROCESSING

The user finds it necessary to know about magnetic tape
processing in two different situations:

® When it is necessary to read an already existing tape.
The tape could have been written at the installation in
question, or sent there from somewhere else. In either
case, it is necessary to know the exact attribute
parameters with which the tape was created. If the
tape was written on a computer system not manu-
factured by CDC, or was written by a different CDC
system such as one of the 3000 series, special proc-
essing is required. This manual does not describe how
to process such tapes; the user is referred to the
appropriate operating system reference manual.

@ After deciding that a tape is the most economical way
to store data between jobs for a given application.
Tapes are cheaper than the equivalent amount of disk
space; however, disks are quicker in terms of real time.
When planning an application using tapes, the user
determines the type of tape processing before running
the first job that writes to the tape. Because all
processing is specified by the original user, tape
attribute parameters can be chosen strictly on the basis
of efficiency or expediency. The discussion that follows
assumes that this is the case.

5-10

When designing a tape application, a number of decisions
must be made about the characteristics of the tape. Among
the attributes that must be chosen are the following:

® Tape drive used to read and write the tape (7-track or
9-track). Data is stored in 6-bit units on 7-track tapes,
and in 8-bit units on 9-track tapes (the remaining bit is
used for parity). On a 9-track tape, four 6-bit
characters in memory are converted to three 8-bit
characters on tape. For 9-track tapes, conversion mede
is according to either ASCII or EBCDIC codes.

@ Tape density. Tapes can be written at 200, 556, or 800
bits per inch on a 7-track tape, or 800 or 1600 bits per
inch on a 9-track tape. 9-track tapes can be written at
6250 bits per inch under NOS/BE only.

Tape format. For a new application, one of the formats
designed for use with CDC systems should be chosen,
because these formats are the most efficient on CDC
systems. Under NOS, I (the system default) and SI
formats are available. Under NOS/BE and SCOPE 2, SI
format (the system default) is available. To read
existing tapes, it might be necessary to specify one of
the S or L tape formats.

o Label type. A tape can be either labeled or unlabeled.
Labeled tapes are strongly recommended. They provide
greater security against accidental overwriting, and
they are simpler to process because they can be
assigned without operator intervention. Labels are
either ANSI standard or user-defined. ANSI labels are
the system default and are preferred for new
applications.

Tapes are processed by the following steps:

1. A volume serial number (VSN) for the tape must be
determined. At many installations, tapes are blank-
labeled before being made available to programmers. In
this case, a serial number is recorded on the tape that
agrees with the serial number on the visual sticker on
the tape. If the tape has not been blank-labeled, the
user selects an arbitrary volume serial number.

2, In the job that creates the tape, a LABEL contro!}
statement (NOS and NOS/BE) or REQUEST control
statement (SCOPE 2) must appear before the control
statement that writes the tape (such as COPY or LGO).
This control statement specifies the attributes that are
to be permanently associated with the tape. At the end
of the job, or when a specific request is made, the tape
is logically unloaded and physically dismounted. The
procedure used to specify how long the tape is to be
retained depends on the installation; however, if the
expiration date field of the label is set, the tape cannot
be overwritten before that date without explicit
operator command. Before the tape can be written, a
write-enabling ring must be mounted; this is explicitly
requested through the LABEL or REQUEST control
statement.

3. Any future job using the tape specifies the VSN on a
LABEL control statement (NOS and NOS/BE) or
REQUEST control statement (SCOPE 2).

The formats of the LABEL control statement under NOS and

NOS/BE, and the REQUEST control statement (for tapes)
under SCOPE 2, are shown in figures 5-30 through 5-32.

60499700 A

J)

J)

J.

"

._) DD b D D

#i

Do D D J D D I I

)

A

7YY D

LABEL,Ifn,D=den,CV=conv,PO=p,F=format,VSN=vsn,LB=lab,labwr. ‘

ifn Logical file name of the tape file.

den Tape density; the default is an installation parameter. Implies whether tape is 7-track or 9-track.
LO 200 bpi (7-track)
Hi 556 bpi (7-track)
HY 800 bpi (7-track)
HD 800 bpi (9-track)
PE 1600 bpi (9-track)

conv Conversion mode for 9-track tapes; the default is an installation parameter..

AS ASCII conversion
EB EBCDIC conversion

p Processing option. See the NOS Reference Manual for options other than the following:

R Enforce ring out. |f the tape is mounted with the write ring in, job processing is suspended until the
operator remounts the tape correctly. Recommended for tapes to be read.

w Enforce ring in. If the tape is mounted without the write ring in, job processing is suspended until
the operator remounts the tape correctly.

format Tape format:

| NOS Internal (default)
Sl NOS/BE internal

S Stranger

L Long stranger

vsn Volume serial number. See the discussion in text.
lab Indicates whether the tape is labeled.
KL NOS labeled (ANS! standard labels; default)
NS Nonstandard labels
KU Unlabeled

labwr Indicates whether labels are to be written or read (checked).

R Existing fabels are to be checked (default)
w Labels are to be written

Figure 5-30. LABEL Control Statement Format (NOS)

60499700 A

5-11

LABEL, Ifn,wr ring,D=d,F=f,N=n,VSN=vsn.
ifn Logical file name of the tape file.

wr Indicates whether the label is"to be written or
read (checked). No default.

w Label to be written
R Label to be checked

ring Indicates the presence or absence of a write-
enabling ring; the default is an installation
option.

RING Write-enabling ring required
NORING Write-enabling ring prohibited

d Tape density. Also indicates whether the tape
is 7-track or 9-track.

LO 200 bpi (7-track)
HI 556 bpi (7-track)
HY 800 bpi (7-track)
HD 800 bpi (9-track)
PE 1600 bpi (9-track}
GE 6250 bpi (9-track)

f Tape format; the default is Sl (system internal)
format.
) Stranger tape
L Long stranger tape

n Conversion mode for 9-track tapes; the default

is an installation option.

US ASCIHl code
EB EBCDIC code

vsn Volume serial number. See the discussion in
text.

REQUEST, Ifn,den,con,VSN=vsn,lab. RING IN
Ifn Logical file name of the tape file.

den Tape density'ri“the default is an installation
option. Also w.atermines whether the tape
is 7-track or 9-track.

LO 200 bpi (7-track)
HI 556 bpi (7-track)
HY 800 bpi (7-track)
HD 800:bpi (9-track)
PE 1600 bpi (9-track)

con Conversion mode for 9-track tapes; the
default is an installation option.

US ASCIl code
EB EBCDIC code

vsn Volume serial number. See the discussion in
text.

lab Indicates whether labels are to be written or
read {checked).

N New label to be written
E Existing label to be checked (default}

Figure 5-31. LABEL Control Statement Format (NOS/BE)

5-12

Figure 5-32. REQUEST Control Statement
Format for Tapes (SCOPE 2)

60499700 A

J

J D D)

J

J D D D D) D D D

v

t

"

2

J b D)

¢

s B R IR e

™

)

LIBRARY FILES é

This section describes some efficient techniques when a
group of routines are frequently used together or called
from many other routines. The section describes how a user
library can be created using EDITLIB (NOS/BE), LIBEDT
(SCOPE 2) or LIBGEN (NOS). Maintenance and use of a user
library is also described. In addition, this section describes
how a source language program can be created or main-
tained using the UPDATE utility. The COPYL and LIBEDIT
utilities that edit records on a file are also described.
Table 6-1 indicates the utilities that operate under
SCOPE 2, NOS/BE, and NOS. EDITLIB is discussed further
in the NOS/BE Reference Manual, LIBGEN, LIBEDIT, and
GTR are discussed in the NOS Reference Manual, LIBEDT is
discussed in the SCOPE 2 Reference Manual, and COPYL is
discussed in the CYBER Common Utilities Reference
Manual.

In this section, the word library implies one of several
different types of file, depending on the context. In a
general sense, the word library refers to a collection of
records. When the word library is qualified by the word user
or program, however, it implies a particular type of file:

A user library is a file in a format that can be used by
the loader to satisfy external references or name call
references. It must be created by a library-creating
utility, EDITLIB, LIBEDT, or LIBGEN far the NOS/BE,
SCOPE 2, and NOS operating systems, respectively. All
records on a user library must be binary modules.

A program library is a file in a format created or
maintained by the UPDATE utility. Information in a
program library consists of compressed images of punch
cards in Hollerith format.

This section uses the program GETACC to illustrate user
library and program library construction and maintenance.
Subroutines GENTAB and INTERP are part of a physical
card deck that also contains the main program GETACC. If
GETACC is to be executed only once with one set of data,
its existence as a card deck Iis reasonably efficient.
Considering execution of GETACC with many sets of data
over a period of time, however, leads to the need for
keeping GETACC and its subroutines in some form other
than punch cards containing source language programs.

Several alternatives can be chosen to provide for use of
program GETACC over an extended period. These include
the following when the program and its subroutines are kept
together:

1. Keeping the main program and its two subroutines as a
source language card deck

2. Storing an image of the deck as a permanent file

3. Storing the compiled program and subroutines as a
permanent file

Alternative 1 requires the continued existence of a physical
card deck. In this particular example, the GETACC deck is
small, but it is susceptible to the problems of all card decks:
mistreatment that results in card bending or warping, bulky
size, and possible card shuffling.

60499700 A

Alternative 2 eliminates the inconvenience of a physical
deck. Resubmission of the program for processing is
accomplished by a deck containing only control statements
and data. And, if the data is also on a permanent file, the
program can be executed from a terminal that does not
include a card reader.

Both alternatives 1 and 2 are expensive in terms of machine
time, since a source language program must be compiled
each time it is executed. If the program is compiled before
it is stored, repetitive use of the program requires only
loading and execution time. As long as a program and its
subroutines will not be changed, use of a binary object
module (alternative 3) is efficient.

Alternative 3 is less useful if changes are to be introduced.
When a main program and the subprograms it calls are
stored as one file, a change in any routine requires a
recompilation of the entire source deck; that recompilation
requires the existence of those routines in source format. In
the absence of anticipated changes, alternative 3 stores the
program in less space than required by a source program.

TABLE 6-1. UTILITY SUPPORT

Applicable Operating

System

Utility Function

NOS | NOS/BE |SCOPE 2

UPDATE |Coded card file X X X
maintenance
COPYL |Copy of a file X X X
with replace-
ment of selected
records

LIBGEN |User library X — —
creation

LIBEDIT |Modification of X —_ —
sequential file
of binary
modules

GTR Extraction of X _ —_
records from
file

EDITLIB |User library — X —_
creation and
modification
LIBEDT |User library — - X
creation and
modification

6-1

When changes to a program are anticipated, other alterna-
tives should be considered:

4, Separating the main program from its subprograms, and
separating the subprograms from each other in their
source language and compiled forms

5. Storing all the source language routines in one program
library and storing all the compiled routines in one user
library file

Alternative 4 saves compilation time, because only the
changed routine needs to be recompiled as a result of a
change in that routine. This alternative adds to the
programmer burden, however. When many separate routines
are involved, the programmer must keep track of separate
files or card decks, or keep track of many partitions in one
file for both the source language and binary forms of
routines. The control statements needed to execute
GETACC would have to call for loading of three files by
name, such as:

LOAD, GETACCB.
LOAD, GENTABB.
LOAD, INTERPB.
EXECUTE.

(See section 7.}

Alternative 5, storing source language programs in UPDATE
format and compiled programs in user library format,
eliminates several problems of the other alternatives. The
card deck can be eliminated once the initial UPDATE
program library is created; for instance, a change to one
routine calls only far recompilation of the changed routine.
All routines on the user library can be referenced by a single
control statement identifying the file on which the library
resides. Assuming GETACC and its subroutines exist on a
user library (MYLIB), GETACC can be executed by:

LIBRARY,MYLIB.
LIBLOAD, MYLIB, GETACC.
EXECUTE,GETACC.

With subroutines on a declared library, the programmer
references only the name of the main program to be
executed. The loader examines that program to determine
what subroutines are required, then searches the library for
those routines without further programmer references.

This last alternative is described in detail in this section.
While the small routines GETACC, GENTAB, and INTERP
might be more easily handled in card deck format, the
principles they illustrate are essential for efficient handling
of source programs and frequently used routines.

USER LIBRARIES

A user library is a file of binary modules in a special format
constructed by a library-creating utility. In general, a
library file contains, in addition to the modules, a directory
and tables that can be used by the loader to quickly locate
any module. Some of the information in the tables includes
lists of entry points, lists of external references within a
module, and field length information. The specific format
of the library depends on the operating system it is
associated with and, in general, is not of concern to the
user.

A user library is similar to a system library that is
associated with the operating system. It differs from a
system library in that it is created and maintained by an
individual programmer and also must be explicitly refer-
enced and attached by any job that uses the library.

6-2

Because the procedures and control statements needed to
create and maintain a user library differ substantially
between NOS on the one hand and NOS/BE and SCOPE 2 on
the other, they are described separately here.

For FORTRAN programs, a user library can only contain one
main program, unless the main programs are compiled using
the SYSEDIT parameter on the F TN control statement (see
the FORTRAN Extended Reference Manual). This param-
eter is necessary because otherwise, multiple references to
the same file name in different main programs cause
duplicate entry points.

NOS/BE AND SCOPE2USER LIBRARIES

The utility called to create a library differs between
NOS/BE and SCOPE 2, but the general procedure is the
same, as shown in figure 6-1. Under the NOS/BE operating
system, the utility EDITLIB is called; under the SCOPE 2
operating system, LIBEDT is called. Creating a user library
involves the following steps:

1. The routines to be made a part of the library must exist
in compiled form. They can be on one or more files
stored on tape, cards, or mass storage. They can be
routines in any language and need not all be FORTRAN
routines. The contro!l statement that creates the proper
binary format for each routine is a compiler or
assembler call.

2. Detailed instructions, known as directives, must be
available to EDITLIB or LIBEDT at the time the utility
is called. The file containing the directives is identified
by the I parameter in the EDITLIB or LIBEDT control
statement.

3. The EDITLIB or LIBEDT utility is called to create a
user library.

4. The file on which the user library is created should be a
permanent file. The control statements that make a
file permanent are the REQUEST control statement
before the library is created, and the CATALOG control
statement after the file exists (described in section 5).
If the library is changed in a later run, the EXTEND
control statement (section 5) is then necessary, to make
the changes permanent.

Binary.
Modules

(NOS/BE)
EDITLIB User
or Library
LIBEDT
(SCOPE 2)

Directives

Figure 6-1. NOS/BE and SCOPE 2 Usger Library Creation

60499700 A

J

DTS R S R N I

S B R A e)

J D)

J

v

[

“

[

~
~
~

Directives in General

Directives are the supplementary control information for
EDITLIB or LIBEDT. They indicate the library to be
manipulated, the program on a sequential input file (or old
user library) to be made part of the library, and whether a
new library is to be created or an existing library is to be
modified. Directives must exist on a sequential file in the
form of punch cards or punch card images.

The format of a directive is similar to control statement
format. Directives can begin in any card column; they can
contain embedded blarks. Any parameters on the directive
must appear within a set of parentheses, however.

In both EDITLIB and LIBEDT directives, the proglist
parameter can reference a single program or a set of
programs; it can take any of the following formats:

name Reference a single program
by name.

name/name/. . ./name Reference several programs

by name in any order.

Reference an inclusive
interval of programs to be
included in the directive
processing by the names of
the first and last programs
in the interval.

+
namel namez

Reference an exclusive
interval of programs to be
omitted from the directive
processing by the names of
the first and last programs
in the interval.

me, -
naj el namez

name, + * Reference an inclusive
interval of programs to be
included in the directive
processing by the name of
the first program in the
interval through end-of-
partition or end-of-informa-
tion.

name, - * Reference an exclusive

interval of programs to be
excluded from the directive
processing by the name of
the first program in the
interval through end-of-
partition or end-of-informa-
tion.

Reference an interval of
programs to be included (+)
or excluded (-) from the
directive processing with
the interval beginning at the
current file position and
extending through the
named program.

* 4 name, or * - name,

* Reference an interval of
programs that consists of all
programs starting at the
present file position and
continuing through end-of-
partition or end-of-informa-
tion.

60499700 A

Any interval must be specified such that the beginning of
the interval occurs before the end of the interval when
LIBEDT or EDITLIB searches the file in a forward direction.
The search is end-around; that is, the search begins at the
current position of the specified file, continues until end-of-
information, then resumes at beginning-of-information if
necessary. A search stops when the entire file has been
examined once and the specified programs have not been
found, or when the end of the specified interval occurs. The
programs that indicate the interval range are included in
that interval. Once the beginning of the interval is found,
searching continues only until end-of-information; an
interval cannot wrap around the end of a file.

Directives for EDITLIB and LIBEDT are shown separately
below, because they differ in some respects.

NOS/BE and SCOPE 2 Sample
User Library Creation

The sample job deck shown in figure 6-2 illustrates the
general structure of a job that creates a user library. This
example uses a program with main program GETACC and
subroutines GENTAB and INTERP.

The EDITLIB and LIBEDT control statements shown in
figure 6-2 indicate that the directives are part of the job
deck (I=INPUT). Directives in the example have these
functions:

The LIBRARY directive identifies the library to be
manipulated (MYLIB).

The NEW parameter on the LIBRARY directive
indicates a new library is to be created as opposed to a
modification of an existing library.

All directives between the LIBRARY directive and the
FINISH directive refer to the library named.

The ADD directive specifies that all programs on file
LGO are to be incorporated in the library (because *
appears as the proglist parameter). File LGO was
created by the FTN control statement, which has a
default B=l_GO parameter for binary output.

The ENDRUN directive terminates directive execution.

job statement

ACCOUNT control statement (if required)
FTN.

REQUEST,MYLIB,*PF.
EDITLIB,USER,I=INPUT. NOS/BE
LIBEDT,|=INPUT,M=1. SCOPE 2
CATALOG,MYLIB,ID=MINE.

7/8/9

Routines GETACC, GENTAB, INTERP

7/8/9
LIBRARY(MYLIB,NEW)
REWIND(LGO}
ADD(*,LGO)

FINISH.

ENDRUN.

6/7/8/9

Figure 6-2. Sample User Library
Creation (NOS/BE, SCOPE 2)

6-3

The library name specified in the LIBRARY directive is the
same as the file name specified on the permanent file
control statements. In subsequent loader control statements
(described in section 7), the library is always identified by
the name of the file on which it resides.

Output from EDITLIB and LIBEDT includes the user library
and a listing that shows operations performed and the
contents of the library. By default, the listing is written to
file OUTPUT. Figure 6-3 shows output from the deck in
figure 6-2 when EDITLIB is called. Information listed
includes:

1. A list of the directives as read from the directive file
and as interpreted by EDITLIB. (An error in directive
format might cause a different interpretation.)

2. Status information resulting from execution; in partic-
ular, detailed information about each program added to
the library, such as:

a. Contents of the prefix table (a loader table).

b. Octal number of words in the routine excluding the
prefix table. Execution field length is zero for
relocatable programs, because the loader deter-
mines length at load time.

c. Access level and field length, which refer to status
bits explained in the NOS/BE Reference Manual.

d. A list of all entry points in the program. Entry
points include the program unit names specified on
the PROGRAM and SUBROUTINE statements.
File names referenced in the PROGRAM statement
are entry points for the main program and external
references in any subprogram (such as GENTAB)
performing input/output on these files.

e. A list of external references within the program.
In program GENTAB, for example, external refer-
ences shown refer to FORTRAN library routines
required to execute the READ and WRITE state-
ments, as well as to the EOF function called by the
program, and the file names referenced in the
program {unless the program was compiled with the
SYSEDIT parameter).

NOS/BE and SCOPE 2 Sample
User Library Modification

An existing user library can be changed under NOS/BE or
SCOPE 2 using the EDITLIB or LIBEDT utility that originally
created the library (figure 6-4). A program on the library
can be deleted or replaced by another version of the
program, and new programs can be added.

Figure 6-5 shows a sample job deck that deletes program
GENTAB, adds program NEWTAB, and replaces program
GETACC with a new version. In this example, the new
version of GETACC is within the deck and is compiled and
written by default to file LGO. The new routine NEWTAB
was compiled in a previous job and stored as a permanent
file with the name NEWONE.

The existing user library was stored in figure 6-2 as a file
with the permanent file name MYLIB. In the present job, it
is attached with the logical file name MQOD. Consequently,
the LIBRARY directive must identify the library as MOD,
not MYLIB.

The ADD and REPLACE directives identify the names of the
programs and the files on which they reside. The REWIND
directive is not required (since files are searched end-
around), but it makes searching more efficient when the
pragram in question is known to be before the current file
position.

After library operations are complete, the LISTLIB directive
lists the names of the programs on the library. LISTLIB
output is shown in figure 6-6.

NOS/BE EDITLIB Control Statement
and Directives

The EDITLIB control statement (figure 6-7) creates and
maintains a user library that the CYBER loader can use in
satisfying externals and name call references under NOS/BE.

In addition to the directives shown in table 6-2, other
directives exist for EDITLIB. They allow field length and
access status bits to be set in the directory of the library.
The ADD and REPLACE directives have additional param-
eters for these same items. See the NOS/BE Reference
Manual for information about these other directives. The
directives shown in table 6-2 are sufficient for creating and
modifying a user library using sequential files with type REL
relocatable programs.

The user library produced by EDITLIB execution is in random
format; consequently, the library cannot be copied by any of
the copy utilities without losing its integrity. If it is
necessary to copy the library to a tape for backup purposes,
the RANTOSEQ directive must be used. To restore the
library to mass storage in a format that can be used by the
loader, the SEQTORAN directive must be used.

SCOPE 2 LIBEDT Control Statement
and Directives

The LIBEDT control statement (figure 6-8) creates and
maintains a user library that the SCOPE 2 loader can use in

satisfying externals and name call references under
SCOPE 2.

Directives for LIBEDT are shown in table 6-3. Other
directives exist to allow a library to be copied to a
sequential file, rearrange a library, or otherwise update the
library and control other types of records in the file. See
the SCOPE 2 Reference Manual for information about these
other directives. Those directives shown in table 6-3 are
sufficient for creating and modifying a library using a
sequential file of type REL programs.

The column of table 6-3 entitled Required Position refers to
the location a directive must occupy in respect to a run. A
run is defined as a group of operations with a particular
library. (More than one library can be manipulated through
a single call to LIBEDT even though only one is shown in the
examples in this section.) A run begins with a LIBRARY
directive and ends with a FINISH directive. Thus, table 6-3
indicates that the ADD directive must appear between
LIBRARY and FINISH, but that the LISTLIB directive cannot
appear between LIBRARY and FINISH directives, and that it
does not matter whether ERROR appears between them or
not.

Under SCOPE 2, a library has a format recognizable by
SCOPE 2 Record Manager as FO=LB. A library file contains
a number of partitions, the first being a directory used by
the loader.

60499700 A

J J D

> I

2D D D D D y b D D b D D I

‘v

"

n

[N

v

70 0D

6@@\

EDITLIB VERSION 2.3 DATE 07/26/77 TIME 13436435,
wsvese . | T IRARY (MYLIB,NEW)
1 LIBRARY(MYLIA,NEW)
sssess REWIND (LGOI
2 REWIND(LGO)
ssssss ADD(%,LGO)
3 A0D(*,LGO)
S93898 F[“ISN.
& FINISH,
sssass ENDRUN,
S ENDRUN,
EDITLIS VERSION 2.3 DATE Q7/26/77 TIME 11436435
PROCESSING DIRECTIVE NUMBER 1
PROCESSING OIRESTIVE NUMBER 2
PROCESSING OIRECTIVE NUMBER 3
FOLLCNING PROGRAM ADDED @
PREFIX TASLE INFORMATION
PRCGREM NAME
SETACC
SYSTEM NAME NOS/8E 1.207/26777 11.,29.31 PROCESSNR NAME FTN 4.6 452
DEPENCENCIES HARDHWARE I INSTRUCTION 66 BX X
THIS IS A RELOCATABLE PROGRAM.
(©)-BINARY LENGTH = 210 4ND EXECUTION FIELD LENGTH = @ cocraL).
@© {ACCFSS LEVEL IS 0
FIELD LENGTH MAY NOT B3E INCPEASED.
@ {ENTRY POINTS
GETACC INPYTS ouTePUT: TAPESLS
EXTERNAL REFERENCES
EOF GENTAD INPFI, INTERP OUTCI.
OUTFI. OINTRY ., sToP,
FOLLCHWING PROGRAM A0DED
PREFIX TABLE INFORMATION
PRCGRAM NAME
GENTAB
SYSTEM NAME NOS/BE 1.207/26/77 11,29.31 PROCESSOR NAME FTN bheb 452
DEPENCENCIES WARDWARE I INSTRUCTION 66 6X X
THIS TS A RELOCETABLE PROGRAM,
BINARY LENGTH = 260 AND EXECUTION FIELD LENGTH = 0 (0cTaL).
ACCESS LEVEL IS 0
FIELD LENGTH MAY NOT BE INCPEASED.
ENTRY POINTS
GENTA&B
EXTERMAL REFERENCES
® EOF INPFT, ouTCI. OUTFI. ouTPUTE
TAPEL:
FOLLCHING PROGRAM ADDED
PREFIX TABLE INFORMATION
PRCGRIM NAME
INTERP
SYSTEM NAME NOS/BE 1,207/26/777 11.79,31 PROCE SSOR NAME FTN 4.6 452
DEPENDENCIES HARDWARE T INSTRUCTION A6 6X X
THIS IS A RELNCATABLE PROGRAM,
SINARY LENGTH = 176 ANO EXECUTION FIELC LENGTH = 0 (ocraL).

ACCESS LEVEL IS 0
FIFLD LENGTH “&Y NNT BE INCREASEOD.
ENTRY PDINTS

INTERP
EXTERMAL REFERFNCES
OUTFI. ouTeuT:
PROCESSING DIRECTIVI NUMBER 3
PROCESSING DIRECTIVE NUMBER s

Figure 6-3. Output from Sample User Library Creation

60499700 A

6-5

-NOS USER LIBRARIES

The utility called to create a user library under NOS is
LIBGEN. Creating a user library involves the following
steps:

1. The routines to be made part of the library must exist
in compiled form. They can be routines in any language
and need not all be FORTRAN routines. All routines
must be relocatable, however. The control statement
that creates the proper binary format for each routine
is a compiler or assembler call.

2. All routines must be on the same sequential format file.
The COPYBR control statement can be used to copy
separately compiled routines to one file, if necessary.

Binary
Modules

EDITLIB
{NOS/BE)
or
LIBEDT
(SCOPE 2]

Moqified
Library
Old

Directives

Figure 6-4. NOS/BE and SCOPE 2 User
Library Modification

job statement

ACCOUNT control statement

FTN.

ATTACH,MOD,MYLIB,ID=MINE.
ATTACH,NEWONE,ID=MINE.
EDITLIB or LIBEDT control statement
EXTEND,MOD.

7/8/9

new version of routine GETACC

7/8/9
LIBRARY(MOD,OLD)
DELETE(GENTAB)
REWIND(LGO)
REPLACE(GETACC,LGO)
ADD(NEWTAB,NEWONE)
FINISH.

LISTLIB(*,MOD)
ENDRUN.

6/7/8/9

Figure 6-5. Sample User Library Modification
(NOS/BE, SCOPE 2)

3. The LIBGEN utility is called to create a user library.

4. The file on which the user library was created should be
made a permanent file. Direct access is preferable for
library files. The control statement that makes a file
permanent is DEFINE (described in section 5). Libraries
can be kept on tape and copied to disk before use, but
they must be on disk while in use.

The general use of LIBGEN is shown in figure 6-9.

Sample User Library Creation

The sample job deck shown in figure 6-10 illustrates the
general structure of a job that creates a user library. This
example uses a program with main program GETACC and
subroutines GENTAB and INTERP. The CATALGG control
statement lists the contents of the file. In this example, the
U parameter indicates that the file is a user library, and the
R parameter specifies that the file is to be rewound before
and after execution of CATALOG.

The LIBGEN control statement in figure 6-10 indicates that
the routines to be made part of the library are found on file
LGO, the default binary file from a call to FTN. The new
library is to be created on permanent file LIBFILE. The
name of the library is to be MYLIBN; this name appears in a
listing of the file contents, as shown in figure 6-11.

Sample User Library Re-creation

An existing user library cannot be modified under NOS. If
any changes are to be made to an existing library, a new
library must be created from a sequential source file
containing all the binary modules to be on the library:

If the sequential source file originally used to create
the library exists, it can be edited through the COPYL
utility or the LIBEDIT utility (figure 6-12).

If the sequential source file does not exist, the GTR
utility can be used to extract records from the existing
library and the resulting file can be used as input to
COPYL or LIBEDIT (figure 6-13).

In either case, the new library is then created through
LIBGEN.

The choice of COPYL or LIBEDIT usually is governed by the
type of changes to be made. If the only change is a
replacement of records by records of the same name and
type, either utility can be used. In this instance, control
statement parameters identify the source file and the file
containing replacement records, and all matching records
are replaced.

If new programs are to be added, COPYL offers an
advantage in a simplified deck structure. A control
statement parameter can be used to indicate that records on
the replacement file are to be added to the output file. To
add programs using LIBEDIT, however, a directive record is
required. Furthermore, knowledge about the structure of
the file is required, because the location of the new records
must be specified. LIBEDIT directives allow records to be
added from more than one file, which can be an advantage.

If existing programs are to be deleted, the location of the
program in the library affects which utility is easier to use.
Records can be deleted from the end of a file through
COPYL by specifying the name of the last record to be
copied from the source file. Deletions elsewhere in the file
require SKIPR or COPYBR control statements referencing

60499700 A

SIS TS T T TS S NN B

J 3D DI

N

J I

J

LISTING OF LIBRARY MOD FOLLOWS

PREFIX TABLE INFORHATIUN
PROGRAM NAME
INTERP

SYSTFM NAMC NAS/PF 1,207/726/77 1142731 PROCESSOR NANE FTN 4eb 452
DEPENNENCIES HARDW ARF f ' INSTRUCTION 66 6X X
THIS IS & RFLOCATABLL PRDGRANM,
BINARY LENSGSTH = 135 AND EXECUTIOM FIELD LENGTH = 0 (ocTaL)y .,
ACCESS LEVEL IS
FIELD LENGTH MAY NOT BE INCREASED,
ENTRY PDINTS
: INTERP

6@“ EXTERNAL PEFERENCES

A nuret, nuTPUTS

-
-
(ﬁ@\ FOLLOWING PROGRAM LISTED
-
-

FOLLOWING PROGRAM LISTED
PREFIX TABLE INFORMATION
PROGRAM MAME

GETACT

Figure 6-6. Typical LISTLIB Cutput

TABLE 6-2. EDITLIB DIRECTIVES

. . Required .
Directive Format Positicn Function
*/ comment Anywhere Specify a comment to be listed in the print file.
LIBRARY (lfn, {NEW}) Beginning Specify the library to be manipulated and whether it is to be
oLD of run created or madified.
FINISH. End of run Indicate end-of-processing of the library specified by the pre-
ceding LIBRARY directive.
ADD (proglist, Ifn,) In run Add specified programs from the sequential file Ifn, or from
(@\ ADD (proglist, Ifnj, LIB) library file Ifn,.
REPLACE (proglist, Ifn,, LIB) In run Replace the specified programs on the existing library with pro-
REPLACE (proglist, lfnz, LIB) grams of the same name and type now residing on sequential file
lfnl or library file lfnz.
DELETE (proglist) In run Remove the specified programs from the existing library.
(ﬁ@ LISTLIB (proglist, 1fn) Outside run List information about the specified programs from library file lfn.
CONTENT (1fn) Anywhere List the contents of file 1fn whether it is a sequential file or
library file.
- REWIND (lfnll eo flfn n) Anywhere Rewind specified sequential files.
SKIPF ({prgg} s Ifn) Anywhere Skip forward n sections on sequential file 1fn; or n partitions on
{m\ n Ifn,, or skip forward until a program of name prog is found.
. SKIPF ({ prdg }) n,,)
SKIPB({prgg } , 1fn) Anywhere Skip backward n sections on sequential file Ifn, or n partitions on
i lfnz, or skip backward until a program of name prog is found.
{ SKIPB ({ prig }, Ifn)
ENDRUN. Outside run Stop directive execution, but continue syntax checking of any
rﬂh following directives.
RANTOSEQ (lfnl, lfnz) Outside run Copy the random library on file lfnl to a sequential file lfnz.
(@\ SEQTORAN (lfnl, lfnz) Outside run Copy sequential file 1fn, containing a dumped library to mass
3 storage file li’n2 in a format the loader can use.

60499700 A

the COPYL source file. Deleting records during LIBEDIT
operations can be accomplished through directives by
specifying the name of the record to be deleted.

LIBGEN Control Statement

The LIBGEN control statement (figure 6-14) generates a
user library that the CYBER loader can use in satisfying
external references.

The file referenced by the F parameter is the source file
which contains the program units that are to be incorporated
into the library. In many instances, this file would be one
created by the COPYL utility, although binary output from
compilation can be used; all of the records in the library
must be relocatable binary programs. If any other record
types are on the source file, they are ignored by LIBGEN.

LIBGEN rewinds the source file before and after creating
the user library. At the start of library creation, LIBGEN
scans the source file, stopping at the first partition boundary
or at end-of-information. Using the information on the
source file, LIBGEN builds a directory of all entry points,
program names, and external references on the file.
LIBGEN then copies the directory to the file specified by
the P parameter, copies all records from the source file to
the library file, and follows the records with an index that
gives the relative address of each record in the library.

The directory on the user library is listed as record type
ULIB. Its name is that specified by the N parameter. The
file index on the user library is listed as record type OPLD,
with a name corresponding to the library name.

LIBEDIT Control Statement and Directives

The LIBEDIT control statement (figure 6-15) creates and
maintains a file of binary records.

A file created by LIBEDIT cannot be used during loading to
selectively satisfy entry points from among its records. The
entire file can be loaded and executed, however, if the file
contains a main program. The file can also be used as input
to LIBGEN. ‘

Many different types of records, including overlays and text
records, can be processed by LIBEDIT. Only relocatable
programs (type REL) are described here, because only
relocatable programs can be written to a user library under
NOS.

Directives for LIBEDIT are shown in table 6-4. Other
directives exist to change the contents of the prefix tables
and otherwise control file contents. See the NOS Reference
Manual for information about other directives.

The format of the LIBEDIT directives requires the character
* to appear in column 1, with no embedded blanks. If a card
or card image in the directive file does not begin with *, it
is presumed to be a continuation of the previous card.

Directives are not needed if the only change to the source
file is to replace records.

GTR Control Statement

The GTR control statement (figure 6-16) extracts specified
records from the named file. GTR operates with either a
library file or a sequential file.

EDITLIB,USER,|=Ifnq ,L=Ifn2.
USER Indicates a user library (default).

Ifnq Logical file name of the file containing direc-
tives. The default file name is INPUT.

Ifn2 Logical file name of the file to which EDIT-
LIB is to write listable output. The default
file name is QUTPUT.

Figure 6-7. EDITLIB Control Statement Format

LIBEDT,i=Ifnq,L=lfny,M=m.

Ifnq Logical file name of the file containing direc-
tives. The default file name is INPUT.

Ifng Logical file name of the file to which print-
able output is to be written. The default file
name is OUTPUT.

m Indicator of listing completeness: 0 for short
listing (default); 1 for long listing.

Figure 6-8. LIBEDT Control Statement Format

Binary
Modules

New
User
Library

LIBGEN

Figure 6-9. NOS User Library Creation

job statement

USER control statement

FTN,OPT=2.
LIBGEN,F=LGO,P=LIBFILE,N=MYLIBN.
DEFINE,LIBFILE.
CATALOG,LIBFILE,U,R.

7/8/9

Routines GETACC, GENTAB, and INTERP
6/7/8/9

Figure 6-10, Sample User Library Creation (NOS)

60499700 A

v

I R T N B TS N

J o2 Db D D)y b I

)

J

J

~

»

»

s

CATALOG OF LIBFILE

REC NAME TYPE
1 MYLIBN ULIB
2 GETACC REL
GETACC
INPUTZ
TAPEGZ
oUTPUTS

3 GENTAB REL
GENTAB

4 INTERP REL
INTERP

S MYLIBN OPLD

6 * EOF SUM =

LENGTH

20
204

230
164

11
651

FILE |
CKSUM DATE

0693

4626

17711723,
77711723,

6324 T7/11/23,
17711723,

71711723,

6721
7305

T7/11723.
COMMENTS

15013.03. PAGE 1

15612.59 NOS 1.2 FTN 406460 666X 1 PROGRAM

15012459 NOS 142 FTN 446460 666X I SUBROUTINE

1501259 NOS 1.2 FTN 446460 666X 1 SUBROUTINE

Figure 6-11. Listing of NOS User Library

TABLE 6-3. LIBEDT DIRECTIVES

Required

Directive Format Position Function
*/ comment Anywhere Specify a comment to be listed on the print file.
LIBRARY (lfn, { gE‘g}) Beginning Specify the library to be manipulated and whether it is to be
of run created or modified.
FINISH. End of run Indicate end-of-processing of the library specified by the
preceding LIBRARY directive.
STOP
ERROR {() ABORT Anywhere Indicate whether LIBEDT is to abort its execution immedi-
SKIP ately (STOP), continue the run until the directory is listed
and then abort (ABORT), or list the directory at end-of-
run (SKIP) after a warning level message is written
to the listing file.
ADD (proglist, lfnl) In run Add the specified programs from the sequential file with
ADD (proglist, lfnz, LIB) logical file name 1fn, or from the library on lfnz.
REPLACE (proglist, Ifn) In run Replace the specified programs on the existing library with
REPLACE (proglist, Ifn, LIB) programs of the same name and type residing on file Ifn, or
library lfnz.
DELETE {proglist) In run Remove the specified programs from the existing library.

LISTLIB (proglist, 1fn)
LISTLIB (proglist, 1fn, N=1)

CONTENT (1fn)
REWIND (ifn,, . . . Ifn)

Qutside run

Anywhere

Anywhere

Anywhere

Anywhere

List information about the specified programs from library
file 1fn, showing information about the directory and each
program. N=1 specifies a more detailed list.

List the contents of sequential file 1fn.

Rewind the specified sequential files.

On sequential file Ifn, skip forward n sections; or skip for-
ward until a program of name prog is found. P indicates
partitions are to be skipped.

On sequential file 1fn, skip backward n sections; or skip
backward until program of name prog is found. P indicates
partitions are to be skipped.

60499700 A

GTR differs from other utilities that require directives in
that the GTR directives must appear on the control
statement. No blank characters can appear between the
terminator of the control statement and the directive.

A logical deletion can be achieved ‘using GTR because
records to be copied to the output file are specified by name
or interval of records in the source file. Records are
deleted when their names are omitted.

The autput file produced by GTR is in sequential format. To
re-create it in user library format, it must be used as a
source file for LIBGEN, even when the source of records is
an existing library file. The output file is rewound after
GTR processing.

COPYL Control Statement

The COPYL control statement (figure 6-17) maintains a file
of binary records.

The types of binary records COPYL can process include
relocatable records (type REL), level 0,0 overlays with
named entry points (type ABS), and overlays of other than
level 0,0 without named entry points (type OVL). COPYL
determines record types by examining the tables produced
by the compiler for loader use.

A binary file is one in which each record is presumed to
begin with a prefix table. A prefix table is constructed by
the compiler for each program unit compiled, in a format
required by the loader. The information in the prefix table
documents the status and characteristics of the program and

includes the system on which the program was compiled, the
program name, and the type of system for which the
program is optimized. The contents of the prefix table and
the tables following it are used by COPYL to determine the
record name and type.

Binary
Modules -
COPYL Output
File
Modules
\
LIBGEN
|
User
Library

User
Library

New and

Replace- LIBEDIT
ment
Modules Directives
]
Cutput
File
|
LIBGEN
User
Library

Figure 6-13. GTR and LIBEDIT Use in
Re-creating a User Library (NOS)

Figure 6-12. COPYL Use in Re-creating a
User Library (NOS)

6-10

LIBGEN,F=lfnq,P=lfny,N=libname.

1fnq Logical file name of the file containing
relocatable program units to be made into
a user library. The default file name is

LGO.

ifny Logical file name of the file to contain the
user library. The default file name is
ULIB.

libname Name of the user library being created.
The default library name is the logical file
name specified by the P parameter.

Figure 6-14. LIBGEN Control Statement Format

60499700 A

N) D D D D

J o2 Db D)

J 3))

J

SIS TS T N T

"w

o

R0 Je Nie Nie

¢

The format of the file produced by COPYL is sequential,
with each binary record being a section. This file is
identical in format to one created by compilations that
write to the same file, or by copy operations that copy
several records to a single file. No directory or index exists
for the file. :

Once a file of binary records exists, COPYL can maintain it
by adding new records and replacing an existing record with

LIBEDIT,I=lfn4 P=lfny,N=Ifng,B=lfn,.

Ifny Logical file name of directives. The default file
name is INPUT. If no directives exist, I=0 must
be specified.

Ifngy Logical file name of the existing file to be

edited. The default file name is OLD.

Ifng Logical file name of the file to be produced by
LIBEDIT. The default file name is NEW.

Ifng Logical file name of the file containing new or
replacement records. The default file name is
LGO. If a replacement file does not exist,
B=0 should be specified.

another record of the same name. Oeletion of records is
also possible when the records to be deleted are at the end
of the existing file, but when records are to be deleted
elsewhere in the existing file, one of the copy or skip
utilities must be used to produce a new output file.

When COPYL executes, it begins by rewinding the existing
old file if so indicated by the R parameter. It rewinds the
file of replacement records, then compares the contents of
the old file with the replacement file. Each record from the
old file is copied to the new output file as it is encountered,
unless a record with the same name exists on the replace-
ment file. If so, the record on the replacement file is copied

Figure 6-15. LIBEDIT Control Statement Format

TABLE 6-4. LIBEDIT DIRECTIVES

Directive Format Function

*TYPE,REL Indicate that all subse-
quent directives refer to
type REL, relocatable re-
cords.

*FILE,Ifn Specify the file containing

FILE, replacement directives by

name or by * to indicate
the file specified on the
LIBEDIT control state-
ment.

Specify that the replace-
ment record rep, or group
of records rep; rough
rep,, are to be placed be-
fore rec, the name of a
record on the source file.

*BEFORE,rec,repl-rep2

*AFTER,rec,repl-rep2 Specify that the replace-
ment record rep, or group
of records rep 1 rough
rep, are to be’placed after
ree, the name of a record

on the source file.

*DELETE,recl-recz Specify the name of the
record or the group of
records to be deleted.
*REPLACE,rec, -rec, Specify the name of the
record or group of records
to be replaced by records
of the same name on the
replacement file.

GTR,Ifn1,Ifn2. directives

ifnq Logical file name of the file to be
searched. The default file name is OLD.

Ifny Logical file name of the file to which
selected records are to be written. The
default file name is LGO.

directives Directives identifying the records to be
copied. More than one directive can
appear, separated by commas. Directive
format can be:

REL/name,—name, Name of the record
or interval of records
to be copied. Only
type REL is shown.

REL/* All records of type
REL are to be copied
to the file Ifn,.

Figure 6-16. GTR Control Statement Format

COPYL,Ifn,Ifng,Ifng, lastrec,opts.

Ifny Logical file name of the existing file to be
maintained. The default file name is OLD.

Ifny Logical file name of the file containing new
binary records to be added or new versions of
binary records that are to replace existing
records of the same name. The default file
name is LGO.

ling Logical file name of the updated version of
Ifn1. The default file name is NEW.

lastrec Name of the last record on Ifng that is to be
processed. If this parameter is omitted, all
records on Ifnqy are processed.

opts Characters R or A or both, which specify
processing options:
R Rewind Ifnq and Ifng before processing
A Add all records from Ifn, that do not
match the type and name of a record
on Ifny.

60499700 A

Figure 6-17. COPYL Control Statement Format

instead. It does not matter what order records exist on the
replacement file in relation to the records on the old file,
because COPYL manipulates the replacement file as neces-
sary to process all of its records. If a partition boundary is
encountered on the old file, copying stops. Copying might
stop soaner if the COPYL statement has a nonblank fourth
(lastrec) parameter. If the fourth parameter specifies the
name of a record on the old file, COPYL stops processing
after that record is copied to the new file.

If, after all records on the replacement file have been
substituted for records of the same name, unprocessed
records remain on the replacement file, COPYL checks the
A parameter to determine their disposition. If the A
parameter has been specified, uncopied records on the
replacement file are copied to the output file; but if the A
parameter has been omitted, uncopied records are ignored.
By this technique, new records always became the last
recards of the new file. The new file is rewound or left at
its current position, depending on the R parameter of the
COPYL control statement.

UPDATE SOURCE FILE
MAINTENANCE

UPDATE is a utility that allows card images to be stored on
mass storage without sacrificing the ability to change those
cards. In fact, UPDATE is specifically designed for
maintaining or updating card image files; it cannot be used
for binary files.

Two types of cperations can be performed by UPDATE. The
first is called a creation run; the second is called a
correction run. They are diagrammed in figures 6-18
and 6-19.

New
Program
Library

= UPDATE

Input
Stream [_

Figure 6-18. UPDATE Program Library Creation Run

— UPDATE
Input -
Stream
Old
Program Program
Library Library

Figure 6-19. UPDATE Program Library Correction Run

6-12

The format in which the source lines are maintained is
called a program library. The creation run creates the
program library from a file of card images. A program
library cannot be directly altered; however, during a
correction run, a madified version of the program library
can be written to another file. In this case, the original
version is known as an old program library, and the medified
version is known as the new program library. Both of these
files are in UPDATE format, which is not suitable as input
to a compiler or assembler. Therefore, a third file, known
as the compile file, can be produced during either a creation
or correction run. The compile file consists of specified
portions of the program library, restored to their original
format.

To ensure unique identification of the cards in an UPDATE
file, three units are used: deck, correction set, and card. A
deck is a group of cards identified by a DECK directive.
Since no group smaller than a deck can be written to the
compile file, the FORTRAN programmer should ensure that
only program units to be used together should be in the same
deck. Each card in a deck is identified uniquely as follows:

name.seqnum

where name is the name given to the deck, and seqnum is
the order of the card within the deck.

A correction set is a group of text cards and directives
introduced during a correction run by an IDENT directive. If
a card is added to a deck as part of a correction set, it is
identified by the correction set name rather than by the
deck name. The form of identification is as follows:

ident.segnum

where ident is the name of the correction set, and seqnum is
the order of the card within the set.

UPDATE requires an input stream during its execution. The
input stream consists of two types of cards:

Text cards of the source programs

Directives to provide detailed instructions for UPDATE.

These cards are interspersed in the input stream. Several
input streams can be used in a single run, but this section
assumes only one is used. A run is all operations on a
program library that result from a single call to UPDATE.

UPDATE DIRECTIVES

The directives for UPDATE specify detailed processing. A
directive must begin with a master control character in
column 1, with the name of the directive following immedi-
ately. Any number of blanks, or a comma, can separate the
directive name from the directive parameters. No other
blanks are allowed within the directive. No terminating
punctuation should appear.

The directives shown in table 6-5 are limited to those that
create a program library and perform insertions and
deletions by individual cards, decks, or correction sets.
More than two dozen other directives exist. See the
UPDATE Reference Manual for a full description of all
UPDATE processing.

60499700 A

2 D D

BTN T T NS N R N)

J

D3) D D)

«

e

¢

o

-
-
-
-
-
-

UPDATE CONTROL STATEMENT

The UPDATE control statement shown in figure 6-20 is
limited to the parameters required to create a program
library and use it as described in this section. More than
two dozen parameters exist, nevertheless, to control output
listing contents, change the file from random to sequential
format, merge file contents, and change the characteristics
of input or output files.

CREATION RUN

A creation run is the original conversion of a card file to a
mass storage file of card images called a program library.
During the creation run, UPDATE examines each card,
compresses blank columns to minimize space occupied by
the card image, and assigns a unique identifier to the card.
Each card receives an identifier that identifies the deck it
belongs to and its sequence number within that deck. The
card identifier is a permanent one: no other card throughout
the history of the file will receive the same identifier. The
format of the card identifier is:

deck.segnum
where deck is a one through nine character deck name, and

seqnum is a decimal number 1 through 131071 assigned by
UPDATE.

Decks

A deck, in UPDATE terminology, is a grouping of cards
made in response to programmer instructions specified by a
DECK directive. A DECK directive specifies a name to be
associated with all the cards that follow it in the input
stream until a deck-ending directive (DECK, COMDECK) or
the end of the input stream occurs. UPDATE decks can be
arbitrary designations, but for programmer convenience
each routine that can be separately compiled is usually given
a separate deck name. A group of routines often forms a
single deck when recompilation of one routine forces
recompilation of the others. Routines GETACC, INTERP,
and GENTAB, for example, could be created as a program
library with any number of decks, but three decks allow each
routine to be considered independent of the others.

A deck is the only unit that can be extracted from the
program library and written to a file (called the compile
file) in a form corresponding to the original card or card
image.

Decks written to the program library can be regular decks or
common decks. These differ in that common decks can be
called from within a regular deck. By using a common deck,
a programmer can ensure that a set of statements required
in several routines never deviates among routines. One
physical copy of the statements exists as a common deck,
but that common deck can be inserted into any number of
decks when these decks are extracted from the program

TABLE 6-5. UPDATE DIRECTIVES

Directive
Format

Use

*CALL deck

*COMDECK deck

*COMPILE deckl, .« . ydeck n
*COMPILE deckl.deck2

*DECK deck

*DELETE identl.seqnum,identz.seqnum
*DELETE ident.seqnum

*IDENT idname

*INSERT ident.seqnum
*PURDECK deck,, « - « , deck
*PURDECK deck;.deck,
*PURGE idnamel, avey idnamen
*PURGE idnamel.idname2

*Y ANK idnamel, ey idnamen
*Y ANK idna\lmel.idname2
*Y ANKDECK deckl, ooy deckn

*/ comment

Write a common deck to the compile file.

Define a common deck.

Write the specified decks to the compile file and new program library.
Write the inclusive range of decks to these files.

Define a deck to be included in the program library.

Deactivate the inclusive range of cards.

Deactivate the specified card.

Define a correction set.

Write subsequent text cards after the card identified.

Permanently remove the specified decks from the program library.
Permanently remove the inclusive range of decks

Permanently remove the specified correction sets from the program library.
Permanently remove the inclusive range of correction sets.

Temporarily remove the specified correction sets from the proegram library.
Temporarily remove the inclusive range of correction sets.

Temporarily deactivate the decks specified.

Copy text to the listable ocutput file.

60499700 A

6-13

library. A typical use of a common deck involves a set of
DATA statements, COMMON statements, and a DIMENSION
statement applicable to several routines, or a set of useful
arithmetic statement functions. Assume the following
statements:

COMMON /BLOCKA/ ARYAA (50), ARYBB (26)
DATA ARYAA/ 1,2...50/, ARYBB/1HA, 1HB, . . . ,1HZ/

These statements could be made into a common deck
callable from subroutines SUBL and SUB2 in decks SUBL and
SUB2 by using the cards shown in figure 6-21.

UPDATE, I=Ifnq,P=Ifn,,N=lfn,C=lfng,mode.

ifnq Logical file name of the file containing the input
stream. The default file name is INPUT.

ifny Logical file name of the file containing an exist-
ing program library to be used or corrected.
The default file name is OLDPL.

ifng Logical file name of the file to which a new
program library is to be written. The default file
name is NEWPL. N=0 suppresses new program
library generation.

ifng Logical file name of the file to which decks are
to be written in the original format. The default
file name is COMPILE. C=0 suppresses compile
file generation.

mode UPDATE mode, which affects the decks written

to the compile file and to the new program

library:

Q Only decks specified by COMPILE
directives are written

F All decks in the old program library
are written whether they are modified
or not

omitted All decks are written to new program
library; corrected decks and decks
specified by COMPILE directives are
written to compile file

Figure 6-20. UPDATE Control Statement Format

*COMDECK ARYDEF
COMMON/BLOCKA/ . ..
DATA ARYAA/...

*DECK suB1
SUBROUTINE SUB1

*CALL ARYDEF
READ...

END

*DECK SUB2
SUBROUTINE SUB2

*CALL ARYDEF

END

In response to the cards shown in figure 6-21, one physical
copy of the COMMON statement and the DATA statement
exist in the program library. The copy of deck SUBL in the
program library includes a directive *CALL ARYDEF. As a
result of the CALL directive, any copy of the deck SUBl
written to the compile file includes the COMMON and
DATA statements between the statement SUBROUTINE
SUB1 and the READ statement shown above; that is,
subroutine SUB1 would expand to:

SUBROUTINE suB1
COMMON /BLOCKA/. . .
DATA ARYAA/. ..
READ. ..

. Sample Creation Run

The sample job deck shown in figure 6-22 illustrates the
general structure of a job that creates a program library
from a file of source language programs. This example uses
the program of figure 4-7, with main program GETACC and
subroutines GENTAB and INTERP.

The UPDATE control statement shown in figure 6-22 indi-
cates that the directives supplying detailed instructions for
UPDATE are part of the job deck, with the default I=INPUT.
Directives in the figure have these functions:

The DECK directive specifies a deck name for the cards
that follow. UPDATE assigns a sequence number within
the deck for each card.

The cards of source language programs become text in
the program library.

Output from UPDATE includes the program library with
three decks and a listing that shows the results of execution.
The program library is saved as a permanent file with the
name PL.2.

The call to the FORTRAN compiler is made in figure 6-22 in
order to provide a listing of the card identifiers assigned by
UPDATE. These identifiers must be known to the program-
mer before cards can be added to or deleted from a program
library through a correction run. The listing can be made in
the same job that creates the library or in any subsequent
job. Part of the listing from the compiler call is shown in
figure 6-23. The text cards added to the program library
are also listed as part of the UPDATE output.

job statement
ACCOUNT control statement
REQUEST,NEWPL,*PF. NOS/BE, SCOPE 2
UPDATE,I=INPUT,N=NEWPL,C=COMPILE.
CATALOG,NEWPL PL2,1D=MINE. NOS/BE, SCOPE 2
SAVE,NEWPL=PL2, NOS
FTN,I=COMPILE,R=0,TS, PW=72.
7/8/9
*DECK DGETACC

GETACC source program
*DECK DGENTAB

GENTAB source program
*DECK DINTERP

INTERP source program
6/7/8/9

Figure 6-21. Input Stream Cards

6-14

Figure 6-22. Sample Program Library Creation

60499700 A

J D

URNUTS T R B T N S T TG T B

J DD DD

a

L]

3

‘

CORRECTION RUN

A correction run is a run that uses an existing program
library rather than one that creates a program library.
During a correction run, new cards can be added and existing o
cards can be deleted. Changes can be made on the basis of Program - UPDATE
individual cards, a range of cards, or all the cards of a Library
particular correction set identifier. These changes become
part of a new program library. Any run that simply extracts
a deck from the existing program library and copies it to the \
compile file, such as shown in figure 6-24, is also a
correction run.

Old

Any correction run that makes a change to a program library ¢ il
must begin with an IDENT directive that gives a name to all ompfie
the following changes. For the rest of the life of the File
program library, any card that is added to the library is
identified by a card identifier that has the format:

ident.seqnum Y

where ident is the correction set identifier, and seqnum is a
number assigned by UPDATE.

FTN
Sample Correction Runs
The sample job decks in figures 6-25 and 6-26 illustrate Y
correction runs. The examples differ in that the first deck
uses an existing program library, but does not update the
entire program library as the second example does. Both
examples presume the existence of the program library Binary
< created in figure 6-22 and cataloged as a permanent file File

with the name PL2,

The example in figure 6-25 illustrates a procedure useful
when changes are to be made to an existing routine. The
input stream contains directives that add a new card to the
deck DGETACC. In this particular example, the card added Figure 6-24. Using a Routine on a Program Library
is merely a comment for illustration purposes, but could
have easily been many cards that substantially change the

Cﬁ Card ldentifier
- A
PRAGRAM GETACC (INPUT, TAPE4=INPUT, OQUTPUT) JGETACC 2
NIAENSTION TIME(10D)y ATAR(1CL) IGFTACC 3
c N5SCTACC 4
N = O NGETACC 5
NMAY = 10C DGFTACC 6
G@N (A NGETACC 7
Caoe o GENTAR GENERPATES THE ACCELEFRATINN TARLE NDGETACC 8
(o DGETACC 9
- CALL HFNTAR (NMAXs TIME, ATASQs NTIMESe [FR) NGETACC 1¢C
(ﬁa\ I (ISR JNF, Q) GO TO 900 N5GETACC 11
. NGFETACC 12
Ceoeoe®FAN A CARL CONTAINING A TTIMF VALUE DGETACC 13
« e DGETACC 14
g@h 10N PRAN (4e#%) T NGETACC 15
: TF (50F(4Y JNE. 9) 60 TN aCi, NGFTACC 16
n : NGFTACC 17
. Toae e INTERDP TNTFRPOLATES FOR ACCELFPATICM NGETACC 183
(ﬁh c NGETACC 19
) CALL INTFRP (NTIMESs T[ME, ATARy, T, aCC» [ER) NDGETACC 20
{F (TER ,NE, 0) GO TO 100 : NDGFTACCE 21
N haad
(«m\ Correction Sequence
Set Number
Identifier
(@\ Figure 6-23. Listing of Card Identifiers
Cm 60499700 A 6-15

3

program GETACC. In order to be sure that the new cards
did not introduce an error into a successfully running
routine, the entire routine is then extracted from the
program library and compiled. Once the program has
executed successfully, UPDATE should be run once more,
this time writing a new program library and making it a
permanent file.

A new program library can be written and preserved as a
permanent file each time UPDATE executes. If errors are
subsequently found, another correcticn run is needed to
change the newly inserted cards or to delete erroneous
cards. Each subsequent correction run must specify a unique
correction set identifier, and as a result, one fix might
ultimately appear in the program library with several
different correction sets as card identifiers. Consequently,
the technique of trial runs is often useful.

The UPDATE control statement of figure 6-25 contains only
a Q parameter, which instructs UPDATE to write only decks
identified on EOMPILE directives to the compile file, in the
original format. When this parameter is used, no new
program library is generated when the N parameter is
omitted.

Directives in figure 6-25 have the following functions:

1. The IDENT directive provides a correction set identifier
name. All subsequent cards in the input stream, until a
PURGE directive or an IDENT directive appears, are
part of the set and are sequenced by UPDATE within
that set.

job statement

ACCOUNT control statement
ATTACH,OLDPL,PL2,ID=MINE.
GET,OLDPL=PL2. NOS
UPDATE,Q.
FTN,B=0,I=COMPILE,TS.

7/8/9

*IDENT TRYIT

*INSERT DGETACC.18

C.C.C. THIS IS NEW, INSERTED BY TRYIT .C.C.C
*DELETE DGETACC.7,DGETACC.9

*COMPILE DGETACC

6/7/8/9

NOS/BE, SCOPE 2

Figure 6-25. Sample Use of Program Library

job statement

ACCOUNT control statement
ATTACH,OLDPL,PL2,ID=MINE.
GET,OLDPL=PL2. NOS
REQUEST,PL3,*PF. NOS/BE, SCOPE 2
UPDATE,F,N=PL3,C=0.
CATALOG,PL3,ID=MINE.
SAVE,PL3. NOS
PURGE,OLDPL.

7/8/9

*IDENT TRYIT

*INSERT DGETACC.18
C.C.C THIS IS NEW. ..
*DELETE DGETACC.7,DGETACC.9
6/7/8/9

NOS/BE, SCOPE 2

NOS/BE, SCOPE 2

Figure 6-26. Sample Correction Run Creating
a New Program Library

6-16

2. The INSERT directive identifies the location at which
following text cards are to be inserted; namely, after
the card identified as DGETACC.18.

3. The card that begins with C is not recognized by
UPDATE as cne of its directives. Any card that is not
recognized as an UPDATE directive is treated as a text
card to be inserted.

°

4. The DELETE directive causes three comment cards to
be removed from the deck. When two card identifiers
are separated by a comma as shown in the figure, a
range of cards is indicated. Both cards specified, and
all those between, are deleted.

5. The COMPILE directive ensures that deck DGETACC is
written to the compile file and the new program library.

The FORTRAN compiler call tests whether the corrected
routine compiles correctly. Because execution is not
planned, B=0 is specified to suppress executable binary code.
The TS parameter calls for quick compilatien with little
optimization. The source for compilation is the file
COMPILE, the default file name when a C parameter is not
specified on the UPDATE call. The compile file contains
only deck DGETACC (the main program GETACC), because
Q@ mode is specified on the UPDATE contral statement. No
decks appear on the compile file in the absence of COMPILE
directives under Q mode.

The source listing produced by the FORTRAN compiler is
shown, in part, in figure 6-27. Notice that the deleted cards
do not appear on the compile file, although they still exist
on the program library and can be reactivated by a YANK
directive that references the correction set identifier. The
new card added appears with a card identifier corresponding
to the correction set identifier and sequence number in that
set.

In the second correction run example (figure 6-26), the
changes made to the existing program library are incorpo-
rated into a new program library.

The UPDATE control statement, in the absence of a P
parameter, assumes the existing program library is on the
file OLDPL. The new program library is to be written to the
file PLL3. Because the changes to the program library were
checked out in the previcus example, there is no need for
the compile file and it is suppressed by the C=0 parameter.
The new program library, PL3, is made a permanent file
before the old program library is purged. If the CATALOG
or SAVE control statement fails for any reason, the old
program library is preserved.

The UPDATE mode is specified as F. As a result, all decks
on the old program library are written to the new program
library. If the Q@ mode was specified, only the deck
DGETACC would have been written to the new library.

The PURGE control statement eliminates the previous
version of the program library.

UPDATE Listing

Figure 6-28 shows the output listing from figure 6-25.
Information printed includes the following:

1. Identification of the run as a creation run (CREATION
RUN) or correction run (OLDPL).

2. A copy of the input stream.

60499700 A

J

¥

URNUTES T U B N T N T B

J

D0 T T N I

N

»

~
-
-
-
-
~

*

3OO D

o

3. The full text of cards modified, with the card identi- 5.
fiers (3a) and an indication whether the card was
inserted (D), deleted (D), or added as a result of a YANK
directive (A).

4. A list of correction set identifiers. Notice that all deck
-names are also considered to be correction set names.
The order of identifiers is significant when the YANK 7.
or PURGE directives specify a range of identifiers,
because the range specified must be in the same
chronological order in which the identifiers were
inserted into the program library.

A list of decks already on the old program library, plus
any decks added in the current run. All program
libraries contain a deck YANK$$$ that is used inter-
nally by UPDATE to track YANK cperations.

A list of decks written to the new program library. The
UPDATE mode and COMPILE directives control the
decks written to the new program library.

A list of decks written to the compile file. The
UPDATE mode and COMPILE directives control the
decks written to the new program library. The decks on
the compile file can be compiled by FORTRAN
Extended.

PROGRAM GETACC (INPUT, TAPEL=INPUT, OUTPUT)
DIMENSIIN TIME(100), ATAB(100)

1 %)

N=0

NMAX = 100

SaLL GENTAB (NMAX, TIME,
IF (IER «NE. 0) GO TO 900

ATaAB, NTIMES, IER)

eeesREAD A CARD CONTAINING & TIME VALUE

L2V

100 READ (G4y*) T
IF (FOFt4) JNE. 0) GO TO 900
c

CesesINTERP INTERPOLATES FOR ACCELERATION

DGETACC 2
DGETAGC 3
OGETACC L
OGETACC 5
0GETACC 6

CARDS DELETED. {DGETAGC 10

DGETACC 11
DGETACC 12
DGETACC 13
DGETACC 14
DGETACC 15
DGETACC 16
OGETACC 17
DGETACC 18

CeCeCs THIS IS NEW, INSERTED 8Y TRYIT +C.CeC CARD ADDED — TRYIT 1
C DGETACC 19
CALL INTERP (NTIMES, TIME, ATABy T, ACCy IER) DGETACC 20
IF (ISR oNE. 0) GO TO 100 JGETACC 21
WRITE 15, T, ACC DGETACC 22
Figure 6-27. Listing from Corrected Deck
60499700 A 6-17

CcCCCCCCCCCcC e ccccc

Burasi] IndINO ILYAJN [831dAL °8Z-9 8anbiy

*3%00 40 SOTOM G0O0.EE GIXINDIY 31vddN SIHL

60499700 A

@ 929v1390
3714 31I6WOS OL N3LII¥M SX030

€«

®

34v0adN SIHL A8 03LV3AYD SI 3NO I AYVYBIT WVS0¥d M3N U NO 3JINIAWNJO0 ¥I3HL 40 ¥30¥0 3HL NI 031SI7 34v SXJ330

Cvi390 SEIANTA

(® <d¥3IINIG 8VINI90 CIVIZSC SSEINVA

SX930 M3N 0300V SNTd O wW0dd Qvzd Sv 1SIT 2230

(® LIs¥l o¥3INIC BVINISO D0V13UG

NOILY3SNI 40 ¥30d0 TVOIG0TONOYHO NI G31SIT 33V SINIAI NOILT3HY0D

1 T 1IA84 9°0°9° 1IA¥L A8 O3LVISNI “M3N SI SIHL *3°0°0 0J0Vi3a0
a 6 00v41390 J 0Jviaod
a ' 9 Jovi3aa 378vl NOILV¥31300v 3¢l S3ILVI3NIS 8VINI9®**°3 J9VLI39C
a P o0vi390 3 J0vi390
e P
(® SO¥VI T0WLNOC / SNOILVOIJIOOA
COvi390 37IdRODw Y
6°0CV139042°03v1390 313730« rEaRR
ﬁu 0°03°90° LIAY¥L A8 O31¥3SNI “M3N SI SIHL *3°3°S
6T°00Vv43€0 L¥3ISNI= *RERN
1IA¥1 IN3C0Is ARREN
*1£°62°60 L./T2/10 *264-2°T 34V0aN (@ A14¥1 1N3OI 16070 03138YINN 2
V)

[

v

LOADING FORTRAN PROGRAMS 7

“

After a FORTRAN program has been compiled, it must be
put in the proper format and placed in memory before
execution can take place. These functions are performed by
an operating system utility called the loader. For NOS and
NOS/BE, the loader is called the CYBER Loader; for
SCOPE 2, the loader is called the SCOPE 2 Loader. These
two loaders have many common features, and some incom-
patibilities, which are pointed out where necessary.

In the simplest type of loading, the binary cbject code for an
executable program, consisting of a main program and its
assaciated subprograms, is written to a file. The program is
then loaded and executed by a control statement containing
the name of the file (LGO is the default file name from a
call to the FORTRAN Extended compiler). Use of more
advanced features of the loader can provide the following
advantages for the user:

® Reduction of field length requirements by dividing large
programs into smaller portions that need not all be in
memory at the same time. This can be accomplished
with overlays or segments.

@ Increased code modularity by grouping frequently used
routines into libraries that can be referenced by more
than one program. Creation of user libraries is
described in section 6.

e Faster execution time for repeatedly executed pro-
grams by eliminating the necessity for relocation each
time the program is executed.

e More information for program debugging by requesting
a detailed load map.

Which loader features to use is a decision that can only be
made based on the requirements of a given application. In
particular, segments and overlays, while reducing field
length requirements, can increase execution time because of
the time required to move programs into and out of memory.
Three types of loading are of particular interest to the
FORTRAN user:

e Basic loading. This is accomplished through control
statements, and consists of loading all the necessary
object code into memory at the same time. This is the
commonest type of loading, because most programs are
small compared to the amount of central memory
available.

e Segment loading. This is accomplished by the
SEGLOAD control statement in conjunction with seg-
mentation directives. Programs are divided into units
called segments; the segments are linked into any
number of tree structures. At execution time, when a
segment not already in memory is required, it is loaded
automatically.

o Overlay loading. This is accomplished by OVERLAY
directives in the source program. Programs are divided
into smaller units called overlays. At execution time,
the overlays are loaded as specified by the user through
the OVERLAY subroutine. Because overlays are fully
described in the FORTRAN Extended Reference
Manual, they are not described further here.

60499700 A

Overlays and segments have comparative advantages and
disadvantages. Segments provide more flexibility in the
type of structure that can be constructed; overlay structure
is restricted to a single tree. Furthermore, segments are
loaded automatically, while overlays must be loaded
explicitly. On the other hand, segmentation poses certain
problems related to interprogram communication, especially
for the FORTRAN user. (These problems are described
below.) Also, overlays are generally faster to load than
segments, and segments cannot be put into libraries.

Several processes take place for any kind of loading; one of
these processes is relocation. When a program unit is
compiled, the object code is produced in relocatable format.
The addresses of variables and instructions are only tempo-
rary, and are defined relative to the beginning of the
program unit, or of a common block. Before the program
can be executed, the addresses must be made absolute; that
is, defined relative to the beginning of the user's field
length. Relocation is the function of the loader, and takes
place in different ways depending on the type of load. One
of the advantages of overlays and segmentation is that
relocation is performed only once, reducing the time
required for subsequent loads of the same program.

Ancther process that takes place during loading is the
satisfaction of external references. An external reference
is a reference by cone program unit to an entry point in
another program unit. In a FORTRAN program, external
references include names of referenced subpregrams,
whether user-defined subpregrams or library subprograms.
In addition, input/output statements generate references to
FORTRAN Common Library and Record Manager routines,
as well as to the file information tables for all files used.
Although the user is not concerned with these external
references when specifying the simplest types of loads, some
situations that can arise in more advanced types of loading
require the user to be aware of the existence of these
external references.

When a file is loaded, external references are satisfied by
matching them with entry points on the file whenever
possible. If unsatisfied externals remain after this process,
they are satisfied by searching library files until a matching
entry point is found. The library files associated with a job
are called the library set. When the same entry point occurs
on more than one file, or more than once on the same file,
the loader must use the search order that has been
established to determine which entry point to use to satisfy
the external reference. The order in which libraries are
searched is defined below, under Library Search Order.

BASIC LOADING

A basic load is a load that does not involve dividing the
object code into smaller units. All the object code for an
execution is present in memory at the same time. A basic
load is accomplished entirely through control statements,
without the need for special loader directives or subroutine
calls.

The control statements that define the processing for one
complete load operation are referred to as a load sequence.
The control statements in a load sequence are recognized by
the system as loader control statements, and cannot be
interrupted by any other control statements (except for

7-1

MAP and REDUCE). A load sequence ends with a
completion statement (EXECUTE, NOGO, or a name call
statement). The'simplest example of a load sequence is a
single name call statement (such as LGO).

When the first loader control statement is encountered, the
loading process begins. This process involves the following
sequence of events:

All control statements in the load sequence are read.
The control statements are processed in order.
Libraries are searched to satisfy externals.
Execution field length is determined.

The load map is written.

Program execution is initiated (unless the sequence is
terminated by NOGO).

For execution of a FORTRAN program to begin, one and
only one main program must be loaded. Additionally,
labeled and blank common blocks and any number of
subprograms can be loaded. The main program need not be
loaded first. Normally, the only subprograms loaded are
those referred to by the main program or by other loaded
subprograms; however, other subprograms can be explicitly
loaded by the SLOAD control statement.

Because the actual arrangement of code in memory is
determined by the operating system capability called the
Common Memory Manager (CMM), the order in which
subprograms and common blocks occur in memory cannot be
determined in advance. Even when the user knows the order
in which code is loaded, it is not good practice to make a
program dependent on this ordering. In particular, the
practice of over-indexing blank common on the assumption
that blank common is loaded last is not necessarily valid
when CMM manages memory, and it might lead to incorrect
results when the optimizing facility is used.

NAME CALL STATEMENT

The name call statement (figure 7-1) always terminates a
load sequence and causes execution to begin. The other
actions taken depend on whether the name is the name of a
file or of an entry point.

If the name is a file name, the file is rewound and its
contents loaded into memory. If the file contains end-
of-partition boundaries, only the first partition is
loaded.

If the name is not a file name, the loader assumes that
it is an entry point name. (This feature is not supported
under NOS.) The loader searches the library set until a
matching entry point is found, and loads the program

name{py.p2; - - -, Pp)

name Logical file name of the file to be loaded
and executed, or name of the main program
to be loaded and executed.

p Alternate file names for execution time file
name substitution.

Figure 7-1. Name Call Statement Format

7-2

containing the entry point. In either case, the loader
then satisfies all external references and begins
execution.

The FORTRAN programmer must ensure that one and only
one main program is loaded before execution begins.

The file name call is the commonest call and is usually used
for the simple case in which the object code is written by
default to the file LGO. The entry point name call is useful
when a frequently executed program is kept on a library. In
this case, the entry point used in the call is the name of the
main program.

Parameters can be included on the name call statement.
The parameters applicable to FORTRAN Extended are the
print limit specification (described in the FORTRAN
Extended Reference Manual) and the alternate file name
specification.

File name parameters on the name call statement are used
to override the file names specified on the PROGRAM
statement when the program was compiled; thus, an already
compiled program can perform input/output on any file. The
file name parameters are positional; the first parameter
corresponds to the first file name in the PROGRAM
statement, and so on. If a file name is to be substituted, but
another file name to the left is to be unchanged, the
parameter for the earlier file name is omitted (with the
omission indicated by two adjacent commas). File equiva-
lencing specifications in the PROGRAM statement are not
counted in marking position, nor is the PL parameter in the
name call statement (as defined in the FORTRAN Extended
Reference Manual).

Examples of alternate file name specification are shown in
figure 7-2.

EXECUTE CONTROL STATEMENT

The EXECUTE control statement (figure 7-3) completes the
loading process and begins execution. EXECUTE can only be
used when the main program has already been loaded in the
same load sequence. Before beginning execution, EXECUTE
satisfies any external references not already satisfied,
writes the load map, and sets the execution field length.
EXECUTE is used to complete a load sequence and begin
execution whenever loading is more complicated than that
performed by a simple name call statement. In particular,
EXECUTE is used whenever individual program units have
been loaded from a file by means of SLOAD.

SLOAD CONTROL STATEMENT

The SLOAD control statement (figure 7-4) explicitly loads
only the named program units from the named file. It does
not load programs to satisfy external references; this can be
accomplished by an EXECUTE control statement in the
same load sequence. (EXECUTE only satisfies references to
programs in the library set.)

Although SLOAD can be used to load program units from a
single file, a more likely use is to load program units from
several files. SLOAD is the simplest way to load routines
from more than one non-library file, because a name call
statement can only load routines from one file. When
SLOAD is used, the user must be sure to explicitly load all
needed routines that are not on library files, since there is
no other way to satisfy external references.

60499700 A

U ERURED RS T N B

J D

SIS T T TS NS B B B

3

.

9

~
~
~
~
~
-
~
~

The following load sequence explicitly loads a main program
(MAIN) and four subprograms (SUB1 through SUB4) from two
different files, and initiates execution:

SLOAD(FILE1,MAIN,SUB1,5UB2)
SLOAD(FILE2,5UB3,5UB4)
EXECUTE.

LOAD CONTROL STATEMENT

The LOAD control statement (figure 7-5) loads the entire
contents of a file. lLoading stops when an end-of-partition
or end-of-information is encountered. External references
are not satisfied.

Example 1
PROGRAM statement:
PROGRAM FOIST (INPUT, OUTPUT, TAPE3)
Name call statement:
LGO(FIRST, SECOND)
File names actually used:

FIRST
SECOND
TAPE3

Example 2
PROGRAM statement:
PROGRAM NEXT (TAPE],TAPEZ,INPUT,()UTPUT)
Name call statement:
BIN(, , ,FILEX)
File names actually used:

TAPE1
TAPE2
INPUT
FILEX

Example 3
PROGRAM statement:

PROGRAM LAST (INPUT,OUTPUT TAPE1=
*INPUT, TAPE2=OUTPUT)

Name call statement:
PROG(,AAA,BBB)

File names actually used: i
INPUT (also used for references to TAPE1)
AAA (also used for references to TAPE2)

Parameter BBB is ignored because it does not
correspond to any file specification.

LOAD is more convenient than SLOAD when the entire
contents of more than ane file are to be loaded. As usual,
one and only cne main program must be loaded.

NOGO CONTROL STATEMENT

The NOGO control statement (figure 7-6) is similar to the
EXECUTE statement, except that execution is not initiated.
The loader satisfies external references, generates absolute
addresses and writes the load map, and then writes the
absolute binary code to the named file. This file can
subsequently be loaded and executed.

EXECUTE(pq,p,)

p Optional file name specification, identical in
format and effect to the same specification
in the name call statement.

A comma must occur between the left
parenthesis and the first file name unless
the entry point parameter (discussed in
the loader reference manual) is used.

Figure 7-3. EXECUTE Control Statement Format

SLOAD(Ifn,namey, . . . ,name}

Ifn Logica! file name of the file from which to
load. The file is or is not rewound, depending
on the absence or presence of the no rewind
indicator:

Ifn The file is rewound before loading

Ifn/NR The file is not rewound before
loading

name Name of the program unit to be loaded.

Figure 7-4. SLOAD Control Statement Format

LOAD(Ifnq, ... Ifny)

Ifn Logical file name of the file to be loaded. The
file is or is not rewound, depending on the
absence or presence of the no rewind indicator:
ifn The file is rewound before loading

n/NR The file is not rewound before
loading

Figure 7-5. LOAD Control Statement Format

NOGO(ifn)

n Name of the file on which absolute binary is
to be written.

Figure 7-2. Alternate File Name Examples

60499700 A

Figure 7-6. NOGO Control Statement Format

7-3

The primary use of NOGO is for a program that is to be
executed several times. By saving the absolute binary on a
permanent file, ‘the time required to load the program in
subsequent jobs is reduced.

The following control statements compile a program and
write the relocatable binary code to LGO; LGO is then
loaded and written as an absolute program to the file BINS,
which is subsequently executed and also saved as a perma-
nent file for future execution.

REQUEST,BINS,*PF, (NOS/BE,SCOPE 2)
FTN.

LOAD(LGO)

NOGO(BINS)

BINS.

CATALOG,BINS, . . . (NOS/BE, SCOPE 2)

or
SAVE(BINS) (NOS)

LIBRARY CONTROL STATEMENT

The LIBRARY control statement (figure 7-7) establishes a
global library set to be used for satisfying external refer-
ences. It cannot be used within a load sequence. The library
set established remains in effect (regardless of any loading
procedures that take place) until another LIBRARY control
statement is encountered. The second LIBRARY control
statement either establishes a new global library set or (if it
is specified with no parameters) deletes the global library
set altogether; LIBRARY control statements are not
cumulative under NOS/BE and NOS. Under SCOPE 2,
LIBRARY control statements can be cumulative; see the
SCOPE 2 Loader Reference Manual.

Libraries can be created through the EDITLIB utility under
NOS/BE, the LIBEDT utility under SCOPE 2, or the LIBGEN
utility under NOS. These utilities are discussed in section 6.

LDSET CONTROL STATEMENT

The LDSET control statement (figure 7-8) performs several
different types of operations. Presetting unused memory,
selectively loading or omitting routines, setting the default
rewind indicator, and controlling the load map are all
possible through LDSET. The loader reference manuals
describe these capabilities; only two parameters are
described here.

The LIB option of the LDSET statement establishes a local
library set, which remains in effect only during the load
sequence of which the LDSET statement is a part. Estab-
lishing a local library set has no effect on the global library
set. LDSET can be specified with the LIB option more than
once in a load sequence; if LIB is specified with no file
names, the local library set is cleared.

LIBRARY(lfng, . . . M)

Ifn Logical file name of a library-format file to
become part of the global library set. Maxi-
mum number is 2 user and 2 system libraries,
1 user and 13 system libraries, or O user and
24 system libraries, If LIBRARY is specified
with no parameters, the global library set is
cleared. ‘

The ERR option is used to change the default conditions
under which a job is aborted if loader errors occur. The
most likely parameter to be used is ALL; this provides that
nonfatal errors, as well as catastrophic and fatal errors,
abort the job. In the absence of this cption, a program
might begin execution and then abort because of a condition
diagnosed by the loader as nonfatal. This is particularly
undesirable for a program that takes a long time to execute,
or that changes the contents of files in a manner difficult to
reconstruct. In situations like this, the ALL option catches
the error condition before the job starts executing. The
option can also be used to simplify debugging by aborting the
job at the earliest possible point.

Although most nonfatal loader errors are not likely to affect
program execution, some can have adverse effects. For
example, the existence of an unsatisfied external is a
nonfatal error. Whether this would cause the program to
abort depends on whether the external is actually referenced
during execution.

LIBRARY SEARCH ORDER

In the process of satisfying externals or locating an entry
point for the name call statement, ambiguity can arise when
the same entry point or program name occurs twice within
the libraries available to the job step. For this reason, a
rigorous search order has been established so that it is
always passible to determine how each external is satisfied.
The search order for external references is as follows:

Global library set

Local library set

SYSLIB (the default system library); NOS, NOS/BE only
The search order for the name call statement is as follows:

Local files
Global library set
Local library set

NUCLEUS (system library; NOS/BE, SCOPE 2 only)

LDSET,LIB=Ifn/. . ./Ifn,,ERR=p.

I1fn Logical file name of the file to become part
of the local library set.

p Specifies the type of loader error for which a
job is to be aborted. The default is an installa-
tion option. Must be one of the following:

ALL Job is aborted for catastrophic, fatal,
and nonfatal errors

FATAL Job is aborted for catastrophic and
fatal errors

NONE Job is aborted only for catastrophic
errors

Figure 7-7. LIBRARY Control Statement Format

Figure 7-8. LDSET Control Statement Format

60499700 A

J)

2 J

HED IS T B TS T S

3
»

NN N B B B

)

2 D

~
~
~

Within each library set, libraries are searched in the order
that they were defined.

If the loading of programs from libraries produces new
external references that must be satisfied from the library
set, these references are satisfied the next time the
appropriate entry point is encountered. If the end of all the
library sets is encountered, and unsatisfied references
remain, the search is begun again from the beginning. This
circular search continues until either all references have
been satisfied, or until the entire library set has been
searched once with no new satisfaction of references.

FIELD LENGTH CONTROL

The amount of memory needed to execute a job step is
normally calculated and requested by the loader. However,
the user can control this procedure by using the CM
parameter on the job statement, as well as the REDUCE and
RFL control statements.

The format of the REDUCE control statement is shown in
figure 7-9; the format of the RFL control statement is
shown in figure 7-10. The effect of the CM parameter
depends on the operating systems:

@ Under NOS/BE, the CM parameter establishes a maxi-
mum field length available to the job, and assigns that
field length to the job initially. This parameter should
not in general be used, since it inhibits dynamic
adjustment of field length.

e Under SCOPE 2, the CM parameter can only be
overridden by a request from within a program; this can
occur during a FORTRAN compilation. Otherwise, its
action is the same as under NOS/BE.

@ Under NOS, the CM parameter can be overridden by the
MFL control statement (see the Loader Reference
Manual). Otherwise, it establishes a maximum value for
field length.

To inhibit reduce mode:
REDUCE(-) NOS
REDUCE(OFF) NOS/BE INTERCOM

{CM parameter or RFL under NOS/BE batch,
SCOPE 2)

To restore reduce mode:

REDUCE. NOS/BE batch, NOS, and
SCOPE 2
REDUCE(ON]) NOS/BE INTERCOM

Figure 7-9. REDUCE Control Statement Format

RFL(n)

n Number of words of central memory field
length, in octal.

Under NOS/BE and SCOPE 2, all jobs begin in reduce mode
in the absence of the CM parameter. Under NOS, all jobs
begin in reduce mode regardless of the CM parameter. In
reduce mode, the loader sets the field length for every job
step before execution begins; therefore, only the amount of
memory actually needed is allocated. If a REDUCE(OFF)
control statement (NOS/BE INTERCOM), a REDUCE(-)
control statement (NOS), or an RFL control statement
(NOS/BE batch and SCOPE 2) is encountered, reduce mode is
turned off. In the case of an RFL control statement, the
field length specified becomes the execution field length
until another RFL control statement is encountered or
reduce mode is reestablished by a REDUCE control state-
ment (NOS/BE batch, NOS, and SCOPE 2) or a REDUCE(ON)
control statement (NOS/BE INTERCOM). Under NOS,
REDUCE(-) must be preceded aor followed by an RFL control
statement because otherwise the field length is reduced to
Zero.

FORTRAN users are not usually required to manage their
own field length because the compiler tries to assure that
adequate field length is always available; however, under
some circumstances, compilation speed can be improved by
providing an RFL control statement prior to compilatien.
This is particularly true when compiling with the TS option
or the OPT=2 option. Although both these compilation
modes control their own field length by requesting more
central memory when necessary, providing an initial value
greater than the default can reduce compilation time.

An RFL control statement does not improve execution time
of a compiled program, because execution field length is
calculated by the loader. Reduce mode should be reestab-
lished before execution begins.

BASIC LOAD EXAMPLES

The control statements shown in figure 7-11 illustrate the
use of global and local library sets. The example applies to
NOS and NOS/BE; under SCOPE 2, there is no default
system library.

When the file LGOl is loaded, the library set is empty
except for the default system library, SYSLIB; therefore,
SYSLIB is the only library searched to satisfy externals for
LGO1.

LGO1.
LIBRARY(ALGOL)
LDSET(LIB=USER/AX)
LGO2.

LGOS.

LIBRARY.

LGOA4.

Figure 7-10. RFL Control Statement Format

60499700 A

Figure 7-11. Basic Load

7-5

The LIBRARY(ALGOL) control statement specifies that the
global library set is to consist of ALGOL. The
LDSET(LIB=USER/AX) loader control statement specifies
that the current load sequence is to use local libraries
named USER and AX; thus, when the file LGO2 is loaded,
the libraries ALGOL, USER,- AX, and SYSLIB are searched
(in that order) to satisfy externals.

When LGO3 is loaded, only ALGOL and SYSLIB are searched
to satisfy externals, because USER and AX were local to the
load sequence completed by LGO2. The next LIBRARY
statement clears the global library set, so that the only
library searched to satisfy externals for LLGO4 is SYSLIB.

As another example, consider compilation of a program with
an OPT=2 parameter on the compiler call. Assume the
following message was listed in the output listing:

63000B CM USED

After the user made some minor modifications, the program
was recompiled and executed with the following control
statements:

RFL,63000.
FTN,OPT=2.
REDUCE.
LGO.

The RFL control statement eliminates the necessity for the
compiler to request additicnal field length. The REDUCE
control statement restores reduce mode so that no more
field length than necessary is used for execution of the
program.

"SEGMENT LOADING

Segmentation allows the user to decrease the execution time
field length requirements of a program by dividing it into
smaller portions called segments, which are loaded and
unloaded as needed, rather than all being in memory at the
same time, as for a basic load. Segments (each of which
contains one or more program units) are grouped into
structures called trees, and the trees are grouped into one or
more levels. One particular segment, called the root
segment, stays in memory at all times.

Segments are built whenever a SEGLOAD control statement
is encountered. The building takes place according to the
segment directives provided by the user. The segmented
program is saved on a file and can be executed in the same
load sequence, or at a later time.

Execution of a segmented program always begins with the
root segment. A segmented FORTRAN program contains
one and only one main program, which must be in the root
segment. Whenever a subprogram is referenced, the
segment containing the subprogram is automatically loaded.
This segment might overwrite a previously loaded segment.

Compared to overlays, which is the other method of dividing
large programs into smaller units, segmentation provides
several advantages. The structures that can be created are
more varied; whereas overlays allow only one tree with at
most three levels of branching, segments can be grouped
into any number of independent levels, each containing any
number of trees. Furthermore, segments can be built from
previcusly compiled programs; with overlays, the structure
must be specified at the time the program is compiled.
Finally, loading of segments is automatic and takes place
whenever a program unit in a segment is referenced;
overlays must be loaded explicitly.

7-6

Segments have some disadvantages, however, especially for
the FORTRAN user. For one thing, segmented programs
cannot be put into libraries. Also, the treatment of labeled
common blocks requires the FORTRAN user to explicitly
specify the blocks used by the FORTRAN Common Library
(as explained below). However, neither of these disadvan-
tages should be considered as a conclusive objection to the
use of segmentation.

Cne additional disadvantage applies both to segments and
overlays: the increase in execution time resulting from
moving programs into and out of memory during execution.
Whether this outweighs the savings in field length provided
by these two methods can only be decided based on a
specific application.

SEGMENTED PROGRAM STRUCTURE

A segmented program consists of one or more levels, each of
which contains one or more trees.

A tree consists of a root segment and zero or more branch
segments, each of which in turn can have zero or more
branches of its own. An example of a tree is shown in
figure 7-12; A is the root segment and B and C are its
branches. C in turn has one branch, D.

Trees can be grouped into levels. The lowest level can only
contain one tree; the root segment of this tree is the root
segment of the whole program. An example of a segmented
program containing three levels is shown in figure 7-13. The
first level contains one tree, the second level contains two
trees {one of these trees contains only one segment), and the
third level contains one tree. Segment A is the root
segment of the whole structure.

If segment y is in the same tree as segment x and can be
reached from x by branching upward, x is called the ancestor
of y. For example, in figure 7-13, segments A and C are
ancestors of segment D. Neither B nor C is an ancestor of
the other.

The structure of a segmented program determines which
segments can be in memory at the same time. Such
segments are called compatible, and fall into two
categories:

e Segments in different levels, which are always com-
patible

® Segments in the same level, which are compatible only
if they are in the same tree, and only if one of the
segments is an ancestor of the other segment. In
figure 7-13, C is compatible with D but not with B; E
and F are not compatible.

Any two segments have a nearest common ancestor,
determined as follows:

@ If the segments are in different trees, the root segment
of the whole structure is their nearest common
ancestor.

D

. "
\/

Figure 7-12. Sample Tree Structure

60499700 A

b D D I

v

v

J

JD 2D D D D) IJ D D I

J b I)

i

'

F

v

-
~
-
~
~

e If one of the segments is the ancestor of the other
segment in the same tree, it is the nearest common
ancestor of the two segments.

o If the segments are in the same tree, but neither is the
ancestor of the other, then the nearest commaon
ancestor is the highest segment from which both
segments can be reached by branching. Another way to
put this is that the nearest common ancestor is the root
of the smallest subtree containing both segments.

This process is repeated for more than two segments. For
example, in figure 7-13, segment A is the nearest common
ancestor of segments H and G, segment C is the nearest
common ancestor of segments C and D (note that a segment
can be its own ancestor), and segment H is the nearest
common ancestor of segments I and J.

BUILDING ASEGMENTED PROGRAM

When a SEGLOAD control statement is encountered, the
loader creates a segmented program. All the control
statements in the same load sequence as the SEGLOAD
control statement are used in the segmentation process.
However, these statements take on a different meaning than
in a basic load.

Instead of causing loading, LOAD, SLOAD, and the name
call statement specify files (or programs on files, in the case
of SLOAD) from which relocatable program units and
common blocks are to be read during the creation of
segments. EXECUTE and the name call statement signal
the end of the load sequence and the execution of the
segmented program, but execution always begins at the main
entry point in the root segment. This entry point can come
from any file, not just the file specified in the name call
statement. NOGO terminates the load sequence and causes
the segmented program to be written to the file specified in
the SEGLOAD control statement; the program is not
executed. No file name can be specified in the NOGO
control statement in a segmented load.

Level 2
I\ /J
H
Level 1
G
E F
Level O
\ / C/D
A

Figure 7-13. Segmented Program with Three Levels

60499700 A

For example, a load sequence consists of the following
control statements:

LOAD(ABC)

SLOAD(DEF ,GHI,JKL,MNO)
SEGLOAD, B=PQR.
LDSET(LIB=MYLIB)

LGO.

All program units from the files ABC and LGO are included
in the segmented program, and the program units GHI, JKL,
and MNO from the file DEF are also included. External
references are satisifed from these files, from the global
library set, and from the local library MYLIB. After the
segmented program is built, the binaries are written to the
file PQR, the root segment is loaded, and execution begins
at the main entry point in the root segment.

To build a segmented program, the loader collects all the
information in the control statements in the load sequence
and in the segment directives, and then builds the program
based on that information. When building segments, the
loader reads program units from the load files and divides
them into fixed programs and movable programs. Fixed
programs are those explicitly assigned to segments by the
user through TREE and INCLUDE directives. Movable
programs are those encountered by the loader while either
loading other programs or satisfying external references.
External references are satisfied from load files and from
the global and local library sets. The loader then assigns
each movable program to the nearest commaon ancestor of
all the segments that reference the program.

When a program unit is present on a load file (unless the file
was specified by SLOAD), but is not referenced by any
segment, the loader includes it in the root segment.
Because such a program is not referenced in any standard
way by the FORTRAN program units (or else it would be
loaded to satisfy an external reference), its inclusion in the
segmented program is of no value, and is wasteful of field
length; therefore, the user should ensure that the load files
contain only program units that are actually used in the
segmented program.

The treatment of common blocks differs from that of
program units. Blank common is always loaded after the
highest address in the highest level of segmentation. The
location of a labeled common block depends on whether or
not the block is specified in a GLOBAL directive. If the
block is declared global, a single copy of the block is kept in
the specified segment. If the block is not declared global, a
separate copy is made for each segment that references the
block. In this case, data placed in the block by a program
unit in one segment cannot be accessed by a program unit in
a different segment. Therefore, any block used for
communication between program units in different segments
should be declared global by the user. A global block can
only be preset from the segment containing it.

After all program units and common blocks have been
assigned to segments, the loader converts addresses into
absolute addresses. The space allocated for a non-global
common block is the same for each copy, and is the greatest
length declared for it by any program unit. The space
allocated for a level is the length of the longest tree in that
level. Blank common is allocated after all segments.

As the segmented program is built, it is written to a file
(either the file specified on the SEGLOAD control state-
ment, or the file ABS if none was specified). If the
completion statement of the load sequence js EXECUTE or a
name call statement, the program is then executed,
beginning at the main entry point in the root segment. If
the completion statement is NOGO, execution does not take

7-7

place. In either case, the file is normally saved by the user
and executed sgain at a later time (since segmentation is
unlikely to be used for a program executed only once).

SEGMENT DIRECTIVES .

The segment directives are found on the file indicated by
the 1 parameter on the SEGLOAD control statement
(figure 7-14). SEGLOAD directives have three fields: label,
verb, and specification. The label field begins in column 1
and ends with one or more blanks. The verb field begins
after the label field, and ends with one or more blanks. The
specification field begins after the verb field. The contents
of each of these fields depend on the directive.

The directives can be in any order except for LEVEL, TREE,
and END. END must be the last directive. If the
segmentation structure is to contain more than one level,
LEVEL directives are used to separate the levels. Between
each pair of LEVEL directives, TREE directives define the
trees that constitute the level. Within a particular level,
TREE directives can be in any order.

The format of the TREE directive is shown in figure 7-15.
The label field contains the tree name, which is not needed
if it is not referenced elsewhere in the directives. The
specification field contains an expression that defines the
root of the tree and its branching structure. This expression
consists of tree segment names, separated by the characters
-, (and). The character - indicates that the segment
or tree name to the left of the minus sign is the parent of
the expression to the right of the minus sign. This
expression is either another segment or tree name or a
subexpression enclosed in parentheses. The character ,
indicates that the segments, tree names, or subexpressions
separated by the comma are on the same level, branching
from a common parent. Examples of tree expressions are
shown in figure 7-16.

When writing a tree expression, it is always necessary to
ensure that the tree specified is a valid tree. For example,
the following pair of TREE directives does not generate a
valid tree:

A TREE B-(C,D)
TREE A-(E,F)

SEGLOAD(I=lfnq,B=lfn,)

ifny Logical file name of file containing segment
directives. The default is INPUT.

lfng Logical file name of the file to which a seg-
mented program is to be written. The default
is ABS.

Figure 7-14. SEGLOAD Control Statement Format

Label | Verb | Specification

thame I TREE] exp

tname Optional tree name.

exp Tree expression. The format is described in
the text.

The INCLUDE directive (figure 7-17) forces inclusion of
object programs into a specific segment, thus aoverriding the
rules that place an object program into the nearest common
ancestor of all referencing segments. Using INCLUDE,
duplicate copies of a program unit can be placed in more
than one segment.

The INCLUDE directive can sometimes be used to decrease
the maximum field length required by a segmented program.
For example, in figure 7-13, suppose that both segments B
and E reference the subroutine SUB1. This subroutine would
normally be included in the root segment A. Because A is
always present in memory, this subroutine is always loaded,
even when neither B nor E is loaded. If the length of
segments C and D is greater than the length of B, the total
space allocated for level 0 is greater than the space actually

1. The expression A-(B,C) can be diagrammed as
follows:

B\A /C

2. The expression A-({B-(C,D}),E) can be dia-
grammed as follows:

C /D
\\ Y

A

3. When one of the names in an expression is a
tree name, the entire tree is substituted in the
generated structure. For example, if the
following two TREE directives appear:

F TREE B-{C,D)
TREE A-(F,E)

the resulting tree would appear as follows:

Figure 7-16. TREE Directive Examples

Label | Verb | Specification

segname INCLUDE programq, ...,

programp,

seghame Name of the segment in which program units
are to be included. [f omitted, all program
units named in the directive are included in
the root segment.

program Name of the program unit to be included
in the segment.

Figure 7-15. TREE Directive Format

7-8

Figure 7-17. INCLUDE Directive Format

60499700 A

30 0D

IS N T N TS T I

J0 D D

-

J 0 D D

4

)
3

B

needed at any time. By forcing copies of SUBL into B and E,
the length of level 0 can be reduced. The directives to do
this are shown in figure 7-18.

The fixed programs contained in a segment are defined by
the TREE and INCLUDE directives. When a segment name
appears in a TREE directive, the loader searches for a
program unit with that name and includes it in the segment
with the same name. However, the INCLUDE directive
overrides the TREE directive. If a segment name appears in
an INCLUDE directive, the programs specified in the
INCLUDE directive are forced into the segment; so is the
program with the same name as the segment.

The primary value of INCLUDE for the FORTRAN user is to
help avoid CALL-RETURN conflicts, such as those
described below. Care must be taken in using INCLUDE
that extra copies of common blocks are not created, unless
each such block is referenced only by program units in the
segment it is forced into; otherwise, each segment will use
the copy of the block contained in that segment, and
information stored in one segment will not be available to
other segments.

The LEVEL directive (figure 7-19) delimits levels within the
directive sequence. As each LEVEL directive is
encountered, a new level is begun. Thus, the trees included
in any given level are those defined by TREE directives
occurring between the LEVEL directives.

The GLOBAL directive (figure 7-20) ensures that only one
copy of a labeled common block is created. If a segment

Label Verb Specification
B INCLUDE SuB1
E INCLUDE suB1

Figure 7-18. INCLUDE Directive Example

Label I Verb Specification

| LEVEL

Figure 7-19. LEVEL Directive Format

Label | Verb | Specification

bnameq , ...

segname GLOBAL .
bname,-SAVE

segname Name of the segment in which labeled
common blocks are to be included. If
omitted, all blocks named are included
in the root segment.

bname Name of the labeled common block to
be included in the segment.

-SAVE Optional parameter indicating that the
contents of common blocks are to be
saved whenever the block is not loaded.

Figure 7-20. GLOBAL Directive Format

60499700 A

name is present in the label field, the block is kept in that
segment; otherwise, the block is kept in the root segment of
the whole structure. When a block is kept in a segment
other than the root, it is overwritten whenever an incom-
patible segment is loaded unless the -SAVE parameter is
used. -SAVE specifies that the contents of the block are to
be written to a file whenever the segment is overwritten,
and restored when the segment is reloaded. -SAVE is
unnecessary for a block kept in the root segment. ECS
common blocks can be specified by the GLOBAL directive,
but because these blocks are never overwritten, -SAVE is
also unnecessary for them.

Glebal common blocks can be freely referenced or defined
by the owning segment, or by any segment that is known to
be in memory at the same time as the owning segment. In
particular, this includes all descendants of the owning
segment, because if a descendant is loaded, the ancestor is
automatically loaded. Other compatible segments can
reference the block whenever the user is sure that the
owning segment is already loaded, but such references do
not force loading of the owning segment, and no check is
made by the loader. If the owning segment is not loaded,
the results of a reference to the block are not valid.

The common blocks used by Record Manager and the
FORTRAN Common Library are treated the same by the
segment loader as user-declared common blocks; that is,
local copies are made for each segment declaring them
unless they are declared global. When multiple copies exist,
it is almost certain that input/output will not function
properly. To avoid this problem, the FORTRAN Common
Library common blocks (as a minimum) should be declared
global by the user. The names of these blocks are:

Q8.10.
FCL.C.
STP.END

(The periods are a part of the names.)

Declaration of these blocks as global is usually sufficient to
ensure correct operation of input/output. Under unusual
circumstances, however, it might be also necessary to
declare some Record Manager common blocks as glabal.

The END directive (figure 7-21) is required as the last
segment directive. Examples of sequences of segment
directives are shown in figures 7-22 and 7-23. The
segmented program shown in figure 7-13 can be defined with
the segment directives shown in figure 7-22. In the segment
directives shown in figure 7-23, the user has placed all the
FORTRAN Commgan Library labeled common blocks in the
root segment to ensure correct communication between
segments. In addition, the function RANF has been included
in each segment in which it is called; this was done so that
the sequence of values produced by successive calls is the
same, regardless of the order in which the segments are
loaded.

Label l Verb Specification

| END

Figure 7-21. END Directive Format

LOADING AND EXECUTING A
SEGMENTED PROGRAM

A segmented program is brought into execution in one of
two ways. If an EXECUTE or name call statement
terminates the load sequence that creates the segmented
program, the program is loaded and executed after it is
created. The name call statement must not specify the file
containing the segmented program. At any other time, the
program is loaded and executed by a name call statement
specifying the name of the file containing the program. In
either case, any file name parameters on the name call or
EXECUTE control statement are passed to the program just
as for a basic load.

When execution begins, the resident segment control
program, which occupies approximately 1000, words, is
loaded first, and then the root segment is loaded. Execution
begins with the main program, which must be unique and
must be in the root segment. When a segmented program is
built, all intersegment external references are replaced with
calls to the resident segment routines. During execution of
a call to an entry point, the segment resident routines regain
control and load the required segment unless it is already
loaded. Any ancestors of the segment (in the same tree) are
also loaded. Cantrol is then returned to the specified entry
point.

Because of the way in which external references are
trapped, several restrictions are imposed on segmented
programs that do not spply to basic loads. One of these is
that subprogram names cannot be passed as actual
parameters.

A. more complicated restriction results from the fact that
the CALL statement is implemented through the return
jump (RJ) instruction, as described in the COMPASS
Reference Manual. As part of its operation, the return jump
instruction stores, in the entry point of the routine being
called, a branch back to the calling routine. When the
RETURN control statement in the called routine is
executed, a branch takes place to the entry point of the
routine, which in turn causes a branch back to the calling
routine. In a segmented program, the branch that is stored
in the entry point is not trapped by the loader (since it does
not exist at load time) and, therefore, cannot result in
segment loading. This can lead to invalid results in cases
like the one illustrated in figure 7-24.

In this example, root segment A branches to two incom-
patible segments, B and C. Bl, cne of the subprograms in
segment B, calls Al, a subprogram in segment A. When the

Label Verb Specification
BRANCH TREE c-D

TREE A-(B,BRANCH)

LEVEL

TREE E

TREE F-G

LEVEL

TREE H-(1 J)

END

call is executed, the return jump stores into the entry point
of Al a branch back to Bl. However, Al calls C1, a routine
in segment C, before returning; therefore, C is loaded,
overwriting B. When the RETURN contral statement in Al
is executed, the branch that is stored in the entry point
attempts to return to Bl. Because the segment resident
routines are upaware of the existence of this branch,
segment B is not loaded, and a branch to some meaningless
address in segment C is executed instead.

To summarize, if a routine in one segment calls a routine in
another segment, the calling segment must be loaded at the
time control is returned from the called segment. This
problem does not arise when the calling segment is either
the root segment or an ancestor of the called segment,
because the calling segment is then always loaded at the
same time as the called segment.

There is no automatic way to avoid conflicts of this type.
Frequently, they can be avoided by careful planning when
the program is designed. In addition, the C$ CALLS and C$
FUNCS statements of the FORTRAN debugging facility can
be used to trace program flow while the program is being
debugged.

Label Verb Specification

GLOBAL Q8.10.,FCL.C.,STP.END

FRUIT TREE APPLE-(PLUM,LEMON)
TREE ALDER-(FRUIT,CONIFER)

CONIFER | TREE FIR-(PINE,SPRUCE)

LEVEL

TREE MAPLE-OAK-(BIRCH,ASPEN)
PINE INCLUDE RANF
FIR INCLUDE RANF
OAK INCLUDE RANF

END

This tree can be diagrammed as follows:

BIRCH ASPEN
Level 1
AK‘-nﬁ
° —=~RANF
MAPLE] \\
I
1
PLUM LEMON PINE \ SPRUCE
FRUIT \ CONIFER
APPLE\ /EIR
\ Q8.10.
FCL.C.
STP.END

Figure 7-22. Segment Directives Example 1

7-10

Figure 7-23. Segment Directives Example 2

60499700 A

D D D D

J

J D) D I I I

B I R T N T B

D

Segment directives:
Label , Verb | Specification
| TREE | A-(B.C)

Tree structure:
B\ /C
A
Code in B1 (in B):
SUBROUTINE B1
CALL A1

Code in A1 (in A):
SUBROUTINE A1

cALLCY

RETURN

Figure 7-24, CALL-RETURN Conflict

60499700 A 7-11

— e e e mf ﬂr e e e

cocoCco00cCC0

B,

STANDARD CHARACTER SET A

m

Control Data operating systems offer the following vari-
ations of a basic character set:

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCII 63-character set

The set in use at a particular installation was specified when
the operating system was installed.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use). Under
NOS/BE, the alternate mode can be specified by a 26 or 29
punched in columns 79 and 80 of the job statement or any

60499700 A

7/8/9 card. The specified mode remains in effect through
the end of the job unless it is reset by specification of the
alternate mode on a subsequent 7/8/9 card.

Under NOS, the alternate mode can be specified by a 26 or
29 punched in columns 79 and 80 of any 6/7/9 card, as
described above for a 7/8/9 card. In addition, 026 mode can
be specified by a card with 5/7/9 multipunched in column 1,
and 029 mode can be specified by a card with 5/7/9
multipunched in column 1 and a 9 punched in column 2.

Graphic character representation appearing at a terminal or
printer depends on the installation character set and the
terminal type. Characters shown in the CDC Graphic
column of the standard character set table are applicable to
BCD terminals; ASCII graphics characters are applicable to
ASCII-CRT and ASCII-TTY terminals.

C CCCCCCCCCCT 66 cccc

*Ajuo 1ndul 10y pardaoade aie sayound (6Z0) |1DSVY Pue (920) Ullia||OH dleussije ay| 144
.Ammmv jueiq e plalA 9% 91Q093/11DSVY WOJ) suoljejsues) pue 1s1xa 10U Op $8pOd pied palejas pue olydelb 9 ay|
*{yound g-g) u0j0d 3yl sI £9 3po3 Ae|dsip ‘apo2 pJeo 4o diydesb paleldosse ou sey Q@ 9pod Aejdsip ‘13s owydesb-gg e Huisn suonejeisul ujl4
*2€91 409 |eutalxXa 01 PalIaAUO0D SI ylew
3UJ|-J0-puU3 SUO|0D OM] UBY] 13Yl1es SIBLU 3Ul|-40-pud se pajasdialul sie piom 11G-090 © 4O pua 3yl 1e Sl 049Z 3.I0W IO dA|dM] |
€L0 98-LL L L8zl LL (uojodwas) (uojoaiwas) . | g0 S S0 S ov S S
9gl L8l 9L 9-8-ClL 9L {X31wnd0)~ T v80 v v0 v LE 17 v
veL z-80 SL G8zZlL St \ < £90 € €0 € o€ € €
ool v-8 +11 58 vL ® > 290 z z0 z =1 z I4
9.0 9-8-0 LS L8l €L < < 180 L 10 L ve 1 l
ii10ZL 1412821 030 0 4} 0 €g 0 0
vL0 10 -8-Z1 L 00zt 42 > > zeL 60 (£ 60 4> z z
LLO £-80 95 981l 1L é t 1€l 80 o€ 80 Le A A
Lv0 S8 [=1¢] S8 Ll oL (sudosisode) | l ol L0 Lz L0 0g X X
90 4} LE L-80 L9 B v Lz 90 9z 90 Lz) M
1410°LL HH4g-8-11 9zl S0 ST S0 9z A A
L0 0 £-8-CL zs J00-LL 99 i A szl -0 124 v-0 sz n n
LEL 580 =1 5-8-0 S9 (autsapun) — « velL €0 €z €0 vz 1 1
vo L8 4! v-8 v9 (a10nb) , # €zl 0 44 z0 €C S S
Sb0 v-80 9l 98 11€9 % % 44\ 6Ll 1S 61l A4 d d
Sel 8Ll ze 80 29 [[Lzl 8l 0S 8ll 1z 0 o]
eet 8t Ly L8 19] | ozL L1l A4 Lt 0z d d
£v0 €8 9g 980 09 # = LitL 9Ll 9y 9t Ll o o]
950 €8zl €L egct LS (potsad) - (potsad) - 9Ll Sl Sy Sl gl N N
S0 €80 €e €80 95 {ewwoo) ’ (ewwo2) ’ St il 144 vt Sl W w
ovo yound ou (174 yound ou 1+ jueq rqueq vil €1l 19 €1l 14! 1 1
SLO 98 €L €8 125 = = Ll rAI Y A4 it £l 3 b
rv0 €81l €5 €8t €5 $ $ AN} (S} 184 -t 41 r r
150 S8 Ll 178 v-8-ClL FA} { (tit 6ClL 1L 6ClL 1l |]
0S0 S8zl ve v-8-0 LS)) oLt 8zt oL 8zl ol H H
LS0 1-0 1z 1-0 0S: / / 0L LTt L9 Lzt L0 9 9
zso 8L vS P8l 34 * * 90t 9-ct 99 9z 20 E| 4
S50 Ll oy L 1 - - S0l G-zt s9 sl =0} 3 3
€50 9-8-Z1 09 zl 514 + + volL vz v9 vzL $0 a a
LL0 6 L 6 124 6 6 €0l €zt €9 iz Al €0 2 0]
0o 8 ol 8 ey 8 8 oL Zcl Z9 zcl z0 8 9
£90 L L0 L A7 L L Lot 1-zZ1 19 -zl 10 v v
990 9 90 9 (84 9 9 Z2L0 <8 00 -8 4400 I
3po) (620) apo) {9z0) 3po) 18sqng siydesny apod | (620) 3pad (920} 8pod 195qng dydes
1108V young aos young Aeidsig aydes 0ao 1108V | ysung Qo8 Young Aeidsig | oiydesg ol o)
HOSY leusaix3 | yiajoH 110SY DSV | leusaix3 | yiusjjoH 1108V

S$13S HILIVHVHI AYVANVYLS

60499700 A

A-2

'

OCTAL-DECIMAL INTEGER CONVERSION TABLE

{"oeta] 10000 [20000 | 30050 [40000 | 52600 | 66000 | 70059 |
[oectmat[4035 | s182 [12288 [15384 [20480 24576 [28872

[Toeta [0030 to 0317 [_octal [1000 ta 1377
[Oecima] 600 s 0285 [Sacimat | 0512 to 0767
o 1 2 3 a4 6 6 7 ¢ 1 2 3 4 85 & 17
- 0000 0000 00OY 0002 0003 0004 0005 0008 0007 1000 | @512 0513 0514 0515 0516 0517 0518 0519
= 0010| 0008 0009 0010 0011 0012 0013 OOl 0015 1010 { 0520 0521 0522 0523 0524 0525 0526 0527
0020| 0016 0017 0018 0019 0020 0021 0022 0023 1020 | 6528 0529 0530 0531 0532 0533 0534 0535
0030| 0024 0025 0026 0027 0028 0029 0030 0031 1030 | 0536 0537 0538 0539 0S40 0541 0542 0543
0040 0032 0033 0034 0035 0038 0037 0038 0039 1040 | 0544 0545 0546 0547 0548 0549 0550 0551
0050| 0040 0041 0042 0043 0044 0045 0048 0047 1050 | 0S52 0553 0554 0555 0556 0557 0558 0553
0050 | 0048 0049 0050 00S) 0052 0053 0054 0055 1060 | 0560 0561 0562 0583 0564 0565 0568 0567
~ 0070| 0056 0057 0058 0059 OGS0 0CS) 0062 0083 1070 | 0568 0569 0520 0571 0572 0573 (0S74 0575
{ 0100 | 0084 0065 0085 0067 0088 0083 0070 0071 1100 (0576 0577 0578 0579 0580 0581 0582 0583
. 0110} 0072 0073 0074 0075 €076 0077 0078 0079 1110 | 0584 0585 0585 0587 0589 0589 0590 0591
0120| 0030 0031 0082 0083 0084 0085 0085 0087 1120 | 0592 0593 0534 0595 0596 0597 0538 0599
0130| 0088 0SS 0030 0081 0092 0093 0094 0085 1130 [0600 0801 0502 0603 0604 0805 0806 0607
0140 0035 0097 00S8 0099 0100 010 0102 0103 1140 | 0608 0610 0611 0812 0613 0614 0615
(‘m 0150 0104 0105 0106 0107 Ot03 0109 0110 QM 1150 | 0616 (0617 0518 0619 0§20 0621 0622 0623
0180| 0112 0113 0114 OIS 0118 0117 0118 0119 1180 | 0824 0625 0626 0527 0628 0629 0830 083¢
0170| 0120 0127 0122 0123 0124 0125 0126 0127 1170 | 0832 0833 0834 0835 G838 0837 0838 0839
0200) 0128 0129 0130 0131 0132 0133 0134 0135 1200 | 0540 0841 0642 0643 0644 0645 0S4 0547
o 0210| 0136 0137 0133 0139 0140 0141 0142 0143 1210 } 0648 0849 0650 0S51 0652 0653 0654 0655
‘.:*“ ' 0220 0144 0145 0148 0147 0148 0149 0150 0151 1220 | 0656 0657 0658 0659 0660 0651 0682 0863
9 0230] 0152 0153 0154 0155 0156 0157 0158 0158 1230 | 0564 0665 0566 0667 0568 0669 0670 0671
0240] 0160 0151 0162 0163 0154 0185 0166 0167 1240 | 0672 0373 0574 0675 0876 0677 0818 0879
0250{ 0168 0169 0170 0171 0172 0123 0174 0175 1250 | 0680 081 0832 0683 0534 0685 0688 0647
0260| 0176 0177 0178 0173 0180 0181 0182 0183 1260 | 0888 0669 0690 0691 0692 0693 0654 0695
W’\ 0270| 0184 0185 0186 0187 0168 0189 0130 0191 1270 | 0698 0697 0638 0693 0700 070 0702 0703
A 0300| 0192 0153 0154 0135 019 0197 0188 0198 1300 | 0764 0705 0708 0707 0208 0768 0710 OIN
0310] 0200 0201 0202 0203 (O204 0205 0208 0207 1310 | 0712 0713 On4 ONS ONS 0717 0718 0719
0320 0208 0209 0210 0211 0212 Q213 Q214 Q215 1320 (0720 0721 0722 0723 0724 Q125 0728 027
0330 0218 0217 0218 0219 0220 Q221 0222 0223 1330 | 0728 0728 0730 073t 0732 0733 0734 0735
0340 (0224 0225 0226 0227 0228 0229 0230 0231 1340 | 0736 0737 0138 0739 0740 0741 0742 043
y 0350 0232 0233 0234 0235 0236 0237 0238 0239 1350 | 0244 0745 0745 0747 0248 0243 0750 0751
8 0360 | 0240 0241 0242 0243 0264 0245 0248 0247 1360 | 0752 0753 0754 0755 0756 0757 07158 0759
0370 0243 0243 0250 0251 0252 0253 0254 0255 1370 | 0760 0761 0752 0763 0764 0765 0768 0767
) [[octal Joaza ts 0701] Setal [1600 to 1777 |
[Sesimal | 0258 s 0511 [Secima| oT08 t 1023 |
o 1 2 3 4 s 6 7 e 1 2 3 4 5 6 1
0400| 0256 0257 0258 0259 0280 0261 (262 0263 1400| 0768 0769 0770 0771 Q772 0713 014 0715
0410] 0264 0265 0266 0267 0288 0269 0270 0271 1410 0776 0777 0778 0779 0780 0781 0782 0783
0420 0272 0213 0274 0215 0276 @277 0218 0279 1420 0784 0785 0785 0787 0788 0789 0750 0791
(W‘\ 0430 0280 0281 0282 0283 0284 0285 0285 0287 1430| 0792 0793 0734 0795 0786 0797 0798 0799
4 0440| 0288 0289 0290 0291 0292 0293 0294 0295 1440| 0800 0801 0802 0803 0804 0805 0808 0807
: 0450| 029 0297 0298 0299 0300 0303 0302 0303 1450| 0808 0809 0810 0811 0812 0813 0314 0315
0480| 0308 0305 0306 0307 0308 0309 0310 0311 1460 | 0815 0317 0818 GB1S 0820 0821 0822 0823
0A70| 0312 0313 0314 0315 0316 0317 0318 0313 1470| 0824 0825 0826 0827 0828 0829 0830 0831
0500) 0320 0321 0322 0323 0324 0325 0326 0327 1500 0832 0833 0834 0835 36 0837
0510| 0328 0329 0330 0331 0332 0333 0334 0335 1510| 0840 0841 0842 0843 ?&4 0845 m %
G520 0338 0337 0338 0339 0340 0341 (0342 0343 1520 0848 0843 0850 0851 0852 0853 0854 0855
0530/ 0344 0345 0348 0347 0348 0349 0350 0351 1530 0856 (0857 0858 0859 0860 0861 0852 0863
0540 0352 0353 0354 0355 0356 0357 0358 0358 1540 0864 0355 0866 0857 0858 0869 0870 0871
™ 0550/ 0350 0351 0362 0363 0364 0365 0368 0357 1550} 0372 0873 (0824 0875 6876 0877 0878 0879
(0560| 0368 0389 0370 0371 0372 0373 0374 03715 1560 | 0880 0831 0882 08383 0384 0885 0885 0887
. 0570| 0376 0377 0378 0379 0380 0381 0382 0383 1570| €883 0889 0890 €891 0892 0893 0894 (895
0600] 0384 0385 0335 0387 0388 0389 0330 0391 i
0810] 0392 0333 0334 0335 0336 0397 0388 0399 .3?2 333 m % &? 822 83?,; g?: m
P 0620| 0400 0401 0402 (403 0404 (0405 0406 0407 1620| 0912 0913 0S4 0915 0916 0917 0918 0918
0630 0403 0403 0410 0411 0412 0413 0414 GAIS 1630] 0920 0921 0922 0S23 0924 0925 0928 0927
" 0640] 0416 0417 0418 0419 0420 0421 0422 0423 1640| 0928 0929 ©930 0331 0932 0933 0934 0935
0S50| 0424 0425 0426 0427 0423 0429 0430 0431 1650) 0936 0937 0938 0933 0340 0941 0942 0943
0560(0432 0433 0434 0435 0438 0437 0438 0433 1650 0344 0345 0346 0947 0943 0949 0350 0951
0570 0440 0441 0442 0443 (0444 OMS 045 0447 1670| 0952 0353 0954 0955 0856 0957 0358 0859
0706] 0448 0449 0450 0451 0452 0453 0454 0455
OVN| 0456 OAS7 0458 G459 0430 OASI OAS2 OAS3 1110] 0o6e 0985 Usre oonr Gars oans vave gave
0720 0464 0455 0486 O04G7 (468 0459 0470 0471 1720| 0976 0977 0978 0979 0880 0SG1 0332 0883
0730| 0472 0473 0474 0475 0476 0477 0478 0479 1730| 0S84 0885 0885 0387 0988 0839 0990 0991
0740| 0460 0481 0432 0433 0434 0485 0435 0487 1740| 0932 0993 0934 03935 099 0397 0938 0399
07501 0468 0489 0430 (491 0492 0493 04S4 (435 1750 1000 1001 1002 1003 1004 1005 1008 1007
gm 0‘53"5 0497 0438 0489 (0500 0501 0502 0503 1760| 1008 1009 1010 1011 1012 1013 1014 1015
0! 0505 0506 0507 0508 0509 0510 0511 1770 1018 1017 1018 1019 1020 1021 1022 1023

60499700 A

e

n

70 DD

.

-

3 Y S

GLOSSARY B

X S

BASIC LOAD - Loading and executing a program by means
of control statements, with all the absolute code in
central memory at the same time.

BEGINNING-OF -INFORMATICON — The first record in a
file. Occurs after header labels on a tape.

BINARY MODULE — A compiled program suitable for use
by the loader.

COMPILATION TIME — The time during which a source
language program is changed into a binary module by
the FORTRAN Extended compiler. Contrast with
EXECUTION TIME and LOAD TIME.

CYBER LOADER - The loader associated with the NOS
and NOS/BE operating systems.

DAYFILE — A job history log maintained by the system
during execution of the job and printed upon termi-
nation of the job.

DEBUGGING — The identification and correction of errors
in an applications program.

DEBUGGING FACILITY — A special set of statements,
inserted by the user into a source program and
processed by the compiler, which provides useful
debugging informatiocn.

DESK CHECKING - Visual inspection of applications pro-
gram for errors.

DMPX — A system-produced printout of the exchange
package, hardware register contents, and 200 words of
memory centered on the p-counter, produced when a
user's program terminates abnormally due to an execu-
tion time error.

DIRECT ACCESS — Under NOS, a type of permanent file
for which all changes are made directly to the enly copy
of the file.

EDITLIB - A utility routine that creates and maintains a
user library of binary modules. EDITLIB operates under
the NOS/BE operating system.

END-OF-INFORMATION — The end of the last record of a
file. On a tape, trailer labels are past the end-of-
information.

EXECUTION TIME -~ The time during which a loaded binary
program is executed. Contrast with COMPILATION
TIME and LOAD TIME.

EXTERNAL REFERENCE - A reference in one program
unit to an entry point in another program unit.

FIELD LENGTH — The number of memory words assigned
to a program.

FILE — A collection of information that begins at

beginning-of-information and ends at end-of-infor-
mation. A file is referenced by its logical file name.

60499700 A

FUNCTIONAL UNIT - One of the compocnents of the
central processor of a 6600, 6700, CYBER 70 Models 74
and 76, and CYBER 170 Models 175 and 176 Computer
Systems. A specialized unit that can process operands
in parallel with other units.

INDIRECT ACCESS — Under NOS, a type of permanent file
for which a local copy, separate from the permanent
copy, is supplied on each access. Changes are made to
the local copy.

INTERMEDIATE LANGUAGE — A temporary form of the
generated code for a FORTRAN compilation, similar to
assembly language but without specific addresses or
register names.

ITEMIZE — A utility routine that produces a listing of the
contents of a file or library. ITEMIZE operates under
the NOS, NOS/BE, and SCOPE 2 operating systems.

LIBGEN - A utility routine that creates a user library of
binary modules. LIBGEN operates under the NOS
operating system.

LOAD MAP — A listing that shows how memory was
allocated by the loader during a load operation.

LOAD TIME — The time during which a binary module is
loaded into memory and linked with other routines
needed before execution can begin.

LOADER — The system capability that loads a compiled
program into memory and prepares it for execution,
See CYBER LOADER and SCOPE 2 LOADER.

MODE ERROR — An execution time error which causes the
executing program to sbort. Possible mode errors are:

MODE 0 - Zero value in p-counter
MODE 1 - Address out of range
MODE 2 - Infinite cperand

MODE 4 - Indefinite operand.

OBJECT CODE - Binary code produced by the compiler
and input to the loader.

OBJECT LISTING -~ A compiler-generated listing of the
ocbject code produced for a program, represented as
COMPASS code.

OPTIMIZATION -~ The process of rearranging or rewriting
code to produce the same results in a more efficient
way.

OPTIMIZING MODE - One of the compilation modes of the
FORTRAN Extended compiler as indicated by the
control statement options OPT=0, 1, 2, or by omission
of the TS optien.

OVERLAY - One or more relocatable programs that were

relocated and linked together into a single absolute
program.

B-1

PARTITION — A division of a file that ends with a tape
mark on a magnetic tape file or with a zero-length
level 17 marker on a mass storage file.

On a listing from ITEMIZE, a partition boundary is
listed as *EOF. -

PERMANENT FILE — A mass storage file, saved by the
system between jobs.

PROGRAM LIBRARY - A file in a format produced by the
UPDATE utility.

REDUCE MODE — A job execution mode in which the
loader automatically sets the field length for executing
a program.

REFERENCE MAP - List of all symbols appearing in a
program, with the properties of each symbol and
references to each symbol listed by source line number;
produced by the FORTRAN Extended compiler.

SCOPE 2 LOADER — The loader associated with the
SCOPE 2 operating system.

SECTION - A logical division of a file; a section contains
one or more records and a partition contains one or
maore sections.

SEGMENT — An absolute subdivision of a segment program

that is automatically called into memory as needed
(except for the root segment).

B-2

SOURCE LISTING — A listing of a source program, pro-
duced by the compiler.

TOP-DOWN PROGRAMMING - A technique of program
development in which the program is developed in
successively more detailed stages.

UPDATE — A utility routine that allows source language
programs to be maintained in compressed format on a
mass storage file. UPDATE operates under the NOS,
NOS/BE, and SCOPE 2 operating systems.

USER LIBRARY — A file of binary modules that can be
used by the loader to load routines and satisfy exter-
nals. The utilities that create user libraries are:
FDITI)..IB (NOS/BE), LIBEDT (SCOPE 2), and LIBGEN
NOS).

W TYPE RECORD — A Record Manager record type in
which each record is prefixed by a control word.

6/7/8/9 card — A card with the characters 6, 7, 8, and 9
multipunched in column 1; acts as end-of-information in
a card deck.

7/8/9 CARD — A card with the characters7, 8, and 9

multipunched in column 1; acts as end-of-partition for a
card deck.

60499700 A

\

J D D I D

2 S B

D

2 0 D D) D __)

;

3D 3)

3

Aborting 5-2
ACCOUNT 5-1
ACCTAB 2-1
Address out of range 4-7
ALTER 5-8
Alternate file names 7-2
Ancestor 7-7
Arithmetic maode errors 4-7, 4-8
Array subscripts

formula 3-1

special casing 3-6
ATTACH

NOS 5-10

NOS/BE, SCOPE 2 5-8

Basic block 3-1

Basic external function 3-10
Basic load 7-1

Batch execution 5-1

BKSP 5-7

Branches, conditional 3-10

Card decks 6-1
CATALOG
NOS 6-6
NOS/BE, SCOPE 2 5-8
CM parameter 7-5
Coding style 1-3
Comments 1-3
Common blocks
effect on optimization 3-9
in segments 7-7
Common decks 6-13
Common library
common blocks 7-9
mathematical functions 3-11
Common subexpression elimination 3-4
Compilation errors 4-1
Compile file 6-12
Compile time evaluation 3-5
Conditional branches 3-10
Constant evaluation 3-5
Control statement 5-1
COPY 5-5
COPYBF 5-6
COPYBR 5-6
COPYCF 5-6
COPYL 6-8
Copy operations 5-5
CORCO 2-8
Correction run (UPDATE) 6-15
Correction set 6-12
Creation
program library 6-13
user library (NOS) 6-6
user library (NOS/BE, SCOPE 2) 6-3
Cross-reference map 4-4
C$ DEBUG 4-7

Data, testing 4-4

DATA statement 3-10
Dayfile 4-6

Dead definition elimination 3-4
DEBUG file 4-7

60499700 A

INDEX

Debugging 4-1
Debugging facility 4-7
Decks

card 6-1

sample 5-1

UPDATE 6-13
DEFINE 5-9
Density, tape 5-10
Desk checking 4-1
Diagnostics 4-1
Direct access files 5-9
Directives

EDITLIB 6-3

LIBEDIT 6-8

LIBEDT 6-3

segment 7-8

UPDATE 6-12
DMPX 4-7
Documentation 1-3
Double precision 3-11
D parameter (FTN) 4-7
Dump 4-7

EDITLIB
control statement 6-4
directives 6-4
End-of-partition 5-5
End-of-section 5-5
Equivalence classes, optimization 3-9
Errors
categories 4-2
compile time 4-1
execution time 4-4
EXECUTE 7-2
Execution errors 4-4
Execution of program 5-1
EXIT 5-2
Expression elimination 3-4
EXTEND 5-8
External references 7-1

Factoring 3-11

Fatal errors 5-3

Field length 7-5

File name call 7-2

Files
direct access 5-9
indirect access 5-9.
permanent 5-7

Functional unit scheduling 3-7

GAUSS 2-1

GET 5-9

Glaobal
common blocks 7-9
library set 7-4
optimization 3-1

GTR 6-8

lll-conditioning 3-11
Indirect access files 5-9
Infinite value 4-8
Invariant code motion 3-2

Job decks, sample 5-1

LABEL 5-10
Labels 5-10
LDSET 7-4
Levels 7-6
LGO 7-2
LIBEDIT 6-8
LIBEDT
control statement 6-4
directives 6-4
LIBGEN
control statement 6-8
Libraries
program 6-12
search order 7-4
user 6-2
LIBRARY 7-4
Library set
global 7-4
local 7-4
LINK 2-6
LOAD 7-3
Loader errors 4-7
Loading 7-1
Load map 4-7
Local library set 7-4
Local optimization 3-1
Loop restructuring 3-10
L tapes 5-10

Machine-dependent optimization 3-6
Machine-independent optimization 3-2
Magnetic tapes 5-10
Map
load 4-7
reference 4-4
Mathematical programming 3-11
Memory 7-5
. Messages, diagnostic 4-1
Mixed mode 3-10
Mode, mixed 3-10
Mode errors 4-7, 4-8
Modularity 1-1

Name call statement 7-2
New program library 6-12
NEWTON 2-1
NOGO 7-3
NOS
permanent files 5-9
skip operations 5-7
user libraries 6-6
NOS/BE
permanent files 5-7
skip operations 5-6
user libraries 6-2
NUCLEUS 7-4

Object code
listing 4-7
optimization example 3-8
Old program library 6-12
Optimizations
example 3-8
global 3-1
local 3-1
machine-dependent 3-6
machine-independent 3-2
source code 3-9

Index-2

OPT=2 3-1
OTOD 2-6
Overlays 7-1

Partition 5-5
Permanent files

NOS 5-9

NOS/BE, SCOPE 2 5-7
Prefetching 3-7
Program, segmented, see Segments
Program library 6-2
Programming techniques 1-1
PURGE

NOS 5-10

NOS/BE, SCOPE 2 5-8

Record manager
common blocks 7-9
W type records 5-5
REDUCE 7-5
Reduce mode 7-5
Reference map 4-4
References, external 7-1
Register assignment 3-7
Relocation 7-1
REPLACE 5-9
REQUEST
permanent files 5-8
tapes 5-10
RESCURC 5-2
RETURN 5-4
REWIND 5-4
RFL 7-5

Satisfaction of references 7-1
SAVE 5-9
SCOPE 2
permanent files 5-7
skip opeations 5-6
user libraries 6-2
Search, library 7-4
Section 5-5
SEGLOAD 7-8
Segments
building 7-7
directives 7-8
executing 7-10
loading 7-10
structure 7-6
Sl tapes 5-10
SKIPB 5-6
SKIPBF 5-7
SKIPF .
NOS 5-7
NOS/BE, SCOPE 2 5-6
Skip operations
NOS 5-7
NOS/BE, SCOPE 2 5-6
SKIPR 5-7
SLOAD 7-2
Source code optimization 3-9
S tapes 5-10
Strength reduction 3-6
Subscripts, see Array Subscripts
Symbolic dump 4-7
Symbolic reference map 4-4
SYSLIB 7-4

60499700 A

D0 DD

)

J b D

) D D

)0 DI D)

) D)

J

Tapes 5-10

Testing 4-4 .

Test replacement 3-5
Top-down programming 1-1
Trees 7-6

Unformatted records 5-5
UNLOAD 5-5
Unsatisfied externals 7-1
UO option
prefetching 3-7
register assignment 3-7
UPDATE
control statement 6-13
directives 6-12
listing 6-16
USER 5-1

60499700 A

User libraries

NOS 6-6

NOS/BE, SCOPE 2 6-2
User optimization 3-9
Utilities 6-1

Volume serial number 5-10
VSN 5-10

W type records 5-5

6/1/8/9 card 5-1
7-track 5-10
7/8/9 card 5-1
9-track 5-10

Index-3

—ccccctdecc

ccecoceccccoccoc

COMMENT SHEET

@ S CONTROL DATA
CORPORATION
TITLE: FORTRAN Extended Version 4 User’s Guide

PUBLICATION NO. 60499700 REVISION A

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

€. What improvements to this manual do you recommend to better serve your purpose?

———

)

“oman

Note specific errors discovered (please include page number reference).

——— aemtnon ow——t

CLIT ON THIS LINE

R N

————

General comments:

5 e Ts e 1ie IS

ROV -

L FROM NAME: POSITION:
' COMPANY"
NAME:
e l ADDRESS:
o l NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
; FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY |F MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division

215 Moffett Park Drive

%unnyvale, California 94086

STAPLE

CUT ON THIS LINE

PINS TN T TN S R) DD D D D

T

20 3 I I

v

J J Jd

