B @ CONTROL DATA
CORPORATION

60497100

COBOL
VERSION 5
_ REFERENCE MANUAL

CDC® OPERATING SYSTEMS
NOS 1
NOS/BE 1



REVISION RECORD

REVISION DESCRIPTION
A Original release.
(03-08-76)
B Miscellaneous errors have been corrected. No technical changes have been made.
(07-20-76) ‘
C This revision reflects COBOL 5.1 (feature CP176) at PSR level 439.
(12-06-76)
D This revision includes the full CALL/CANCEL facility (feature CP176) at PSR level 446.
(03-25-77)
E This revision reflects COBOL 5.2 (feature CP186) at PSR level 472. Changes include an interface
(04-15-78) to Basic Access Methods 1.5, Advanced Access Methods 2, and CYBER Database Control System 2.
F This revision reflects COBOL 5.3 (feature 1250). Changes include an interface to Advanced Access
(7-20-79) Methods 2.1, and CYBER Database Control System 2.1.
G This revision includes the COBOL Communication Facility (CCF) for the Message Control System 1.0
(12-07-79) plus miscellaneous technical corrections.
H Released at PSR level 528. This revision includes the ANSI=AUDIT parameter option, an interface to
(10-31-80) the Common Memory Manager (CMM), and miscellaneous technical corrections.

Publication No.

60497100

Address comments concerning
this manual to:

REVISION LETTERS {, O, Q AND X ARE NOT USED

CONTROL DATA CORPORATION

Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

©COPYRIGHT CONTROL DATA CORPORATION 1976, 1977, 1978, 1979, 1980
All Rights Reserved or use Comment Sheet in the

Printed in the United States of America back of this manual



'

T

—

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected.
indicates pagination rather than content has changed.

LIST OF EFFECTIVE PAGES

A bar by the page number

Page

Revision

Page

Revision

Front Cover
Tjt]e Page
11

iii/iv

v/vi

vii

viii

ix thru xiv

XV
1-1 thru 1-5
1-6 thru 1-12

-13
-14
-15
-16 thru 1-18
-19

o
=
3
[ =3
w
]
o

Pod e ok b ek

thru 3-19

DD DWW W L W N b et b
1
=
BPWN=O 3

IO LSRR AES
. .
RN = o

MM T I LT ITON IO LA NMOIMOIMITIIMOIOMAMITIO M AITOAMIMGATIIMOMNMTITII I L4

~n

-23 thru 5-29
0 thru 5-34
-35 thry 5-37
8 thru 5-40

0N N

[ MO R RO RE RS R0,
w
ey

(]
O O LW N DWW

thru 6-11

]
(AN

= 2 et = WD 0O NN SN NN N O
1

OC'DOO

thru 11-5
thru 12-11
thru 13-4

14-3 thru 14-5
14-6 thru 14-8

15-4 thru 15-7

thru A-8
thru B-8
thru C-10

thru E-31
F-2

Index-1 thru -15
Comment Sheet

Mailer
Back Cover

[ II'ﬂ'"I(DIIC)IIW'HII‘HIIICDG)'“I“‘IC'J(D'HII'HG’I'H‘“I'“'“'HII'ﬂI'ﬂII'ﬂmImIm'ﬂ

60497100 H

jii/iv



ACKNOWLEDGEMENT

—

The following acknowledgement is reproduced in its entirety
at the request of the American National Standards Institute.

"Any organization interested in reproducing the COBOL
standard and specifications in whole or in part, using ideas
from this document as the basis for an instruction manual or
for any other purpose, is free to do so. However, all such
organizations are requested to reproduce the following
acknowledgment paragraphs in their entirety as part of the
preface to any such publication (any organization using a
short passage from this document, such as in a book review,
is requested to mention "COBOL" in acknowledgment of the
source, but need not quote the acknowledgment):

COBOL is an industry language and is not the property of
any company or group of companies, or of any organization
or group of organizations.

No warranty, expressed or implied, is made by any

contributor or. by the CODASYL Programming l.anguage
Committee as to the accuracy and functioning of the

60497100 A

programming system and language. Moreover, no responsi-
bility is assumed by any contributor, or by the committee, in
connection therewith.

The authors and copyright holders of the copyrighted
material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation),
Programming for the UNIVAC® I and 1, Data
Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM Commercial Translator Form
No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-
Honeywell

have specifically authorized the use of this material in
whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL
specifications in  programming manuals or similar
publications."

v/vi



PREFACE

H

This manual describes the COBOL Version 5.3 language

The users of COBOL can find additional pertinent

e which operates under control of the following operating information in the Control Data Corporation publications.
- systems: The NOS manual abstracts and the NOS/BE manual
abstracts are instant-sized manuals containing brief

NOS 1 for the CONTROL DATA® CYBER 170 Series; descriptions of the contents and intended audience of all

— CYBER 70 Models 71, 72, 73, 74; and 6000 Series NOS and NOS product set manuals, and NOS/BE and

Computer Systems

NOS/BE product set manuals, respectively. The abstracts

manuals can be useful in determining which manuals are of
NOS/BE 1 for the cDC® CYBER 170 Series, greatest interest to a particular user. The Software
— CYBER 70 Models 71, 72, 73, 74; and 6000 Series Publications Release History serves as a guide in
Computer Systems determining  which  revision  level of software
documentation corresponds to the Programming Systems
COBOL 5 is designed to be a superset of the language Repart (PSR) level of installed site software.
e specified in American National Standard X 3.23- 1974,
COBOL. Extensions to the standard language are indicated
in this manual by shading.
The publications are listed below in alphabetic order in
groupings that indicate relative importance to readers of
this manual.

— The manual is written for a programmer familiar with a
COBOL language and the operating system under which the
COBOL 5 compiler is operating.

The following publications are of primary interest:
Publication

— Publication Number
COBOL Version 5 Diagnostic Handbook 60482500
COBOL Version 5 Instant Manual 60497300
COBOL Version 5 User's Guide 60497200

— NOS Version 1 Reference Manual, Valume 1 of 2 60435400
NOS/BE Version 1 Reference Manual 60493800

The following publications are of secondary interest:
Publication

Publication Number
COBOL Version 4 to COBOL Version 5 19265021
Conversion Aid Reference Manual
COBOL Version 5 Report Writer User's Guide 60496900
Common Memory Manager Version 1 Reference Manual 60499200
CYBER Database Control System Version 1 60498700
Reference Manual

— CYBER Database Control System Version 2 60481800

- Reference Manual
CYBER Loader Version 1 Reference Manual 60429800
CYBER Record Manager Advanced Access Methods 60480900
Version 2 Multiple-Index Processor User's Guide

— CYBER Record Manager Advanced Access Methods 60499300
Version 2 Reference Manual

~—

60497100 H vii @



CYBER Record Manager Basic Access Methods 60495700
Version 1.5 Reference Manual

DDL Version 2 Reference Manual, 60498400
Volume 1: Schema Definition

DDL Version 2 Reference Manual, 60498500
Volume 2: COBOL Sub-Schema Definition

DMS-170
DDL Version 3 Reference Manual, 60481900
Volume 1: Schema Definition for Use With:

COoBOL

FORTRAN

Query Update

DMS-170 :
DDL Version 3 Reference Manual, 60482000
Volume 2: Sub-Schema Definition for
CYBER Database Control System Use With:
COBOL
Query Update

‘ Message Control System Version 1 Reference Manual 60480300
} Network Products Transaction F acility Version 1 60455340
‘ Reference Manual
NOS Version 1 Manual Abstracts 84000420
NOS/BE Version 1 Manual Abstracts 84000470
Software Publications Release History 60481000
Update Version 1 Reference Manual 60449900

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103,

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

® viii 60497100 H



| NOTATIONS USED IN THIS MANUAL

1. COBOL SOURCE PROGRAM

"~ Source Program Format
Source Lines
Continuation Lines
Comment Lines
— Blank Lines
Program Format
Language Structure
Separators
~ COBOL Words
User-Defined Words
System-Names
Reserved Words
o Literals
Boolean Literals
Numeric Literals
Nonnumeric Literals
— Figurative-Constant Values
PICTURE Clause Character-5Strings
Comment-Entries
Arithmetic Operations
~— Arithmetic Expressions
Evaluation of Expressions
Boolean Operations
Boolean Expressions
Evaluation of Expressions
Conditional Expressions
Simple Conditions
Class Condition
— Condition-Name Condition
Relation Condition
Switch-Status Condition
Sign Condition
— Complex Conditions
Negated Simple Conditions
Combined and Negated Combined
Conditions
- Item and Table References
Qualification of User-Defined Words
Table Item Identification
Subscripting
-~ Indexing
Identifier Definition
1 Reference Modification

2. IDENTIFICATION DIVISION

PROGRAM-ID Paragraph
-~ DATE-COMPILED Paragraph

3. ENVIRONMENT DIVISION

Configuration Section
SOURCE-COMPUTER Paragraph
Computer-Name Clause
— DEBUGGING MODE Clause
OBJECT-COMPUTER Paragraph
Computer-Name Clause
COLLATING SEQUENCE Clause
~ SEGMENT-LIMIT Clause

T 60497100 H

x
<

—
)
(>

[ e ol el el el el el ol
[ ] [N B | ] ] [] [ I ) LI ) 1 [} | S ] 1 1 1 | L [ I B ] [ |
VO VOV VDDODDARANRARNET L UWUWRNN =

bt et e et s e e b bt fed et e b

O e N e el el el el el e
VTN UV W W W W N = O

et b et et et et
o b e e et bt e bt
WM~~~ W

N
0
Y

NN
[ |

v
et [

[ R R WR TR
[ N LPRLE LY

CONTENTS

SPECIAL-NAMES Paragraph
Implementor-name Clause
ALPHABET Clause
CURRENCY SIGN Clause
DECIMAL -POINT Clause
QUOTE Clause
SIGN CONTROL Clause
SUB-SCHEMA Clause
SWITCH-n Clause

Input-Output Section

FILE-CONTROL Paragraph
Sequential File Organization
Relative File Organization
Indexed File Organization
Direct File Organization
Actual-Key File Organization
Word-Address File Organization
ACCESS MODE Clause
ALTERNATE RECORD KEY Clause
ASSIGN Clause
BLOCK COUNT Clause
FILE STATUS Clause
ORGANIZATION Clause
RECORD KEY Clause
RELATIVE KEY Clause
RESERVE Clause
SELECT Clause
USE Clause
WORD-ADDRESS KEY Clause

[-0-CONTROL Paragraph
APPLY Clause
MULTIPLE FILE TAPE Clause
RERUN Clause
SAME AREA Clause

4, DATA DIVISION

Data Division Sections

File Section

Common-Storage Section

Working-Storage Section

Secondary-Storage Section

Linkage Section

Communication Section

Report Section

Data Division Entries

File Description Entry
BLOCK CONTAINS Clause
CODE-SET Clause
DATA RECORDS Clause
EXTERNAL Clause
LLABEL RECORDS Clause
LINAGE Clause
RECORD Clause
RECORDING MODE Clause
REPORT Clause

Record Description Entry

Data Description Entry
Format 1 Data Description Entry
Format 2 Data Description Entry
Format 3 Data Description Entry
BLANK WHEN ZERQO Clause
JUSTIFIED Clause
OCCURS Clause
PICTURE Clause

UK
SUNN

IIIIIIIIE‘Ip

R R R D ARSI
[ I o N K B R R EV. RV RV RV V)

bt Pt et b e o et

\quuuuuuuu
VWON~NNIOO VN WWNOO

bbb EEFEE £
R R R TR T R U T T T T T T e |
SNV NS WWWMWWWRORNNN - Ll

el el T
PUWWRNRNNFOOOO

J Y Y N N P W



REVERSED Phrase
Multifile Set Tape OPEN
PERFORM Statement
Nested PERFORM Statements
All PERFORM Formats
Format 1 PERFORM
Format 2 PERFORM
Format 3 PERFORM
Format 4 PERFORM
PURGE Statement
READ Statement
Format 1 READ
Format 2 READ
RECEIVE Statement
RELEASE Statement

REDEFINES Clause

RENAMES Clause

SIGN Clause

SYNCHRONIZED Clause

USAGE Clause

VALUE Clause
Communication Description Entry

CD Input

CD Output

b-l-\-‘-\l—\-ll—\l-\i-\b-l-‘
NNNDNNNNRN -
OV EENFFHONY

"
o

5. PROCEDURE DIVISION

Division Structure
Division Header

Declaratives - RETURN Statement -
Procedures - REWRITE Statement -
Sections - FROM Phrase -
Paragraphs - INVALID KEY Phrase -

SEARCH Statement
Format 1 SEARCH
Format 2 SEARCH

SEND Statement

SET Statement
Format 1 SET
Format 2 SET
Format 3 SET
Format 4 SET
Format 5 SET

SORT Statement

START Statement
KEY Phrase
INVALID KEY Phrase

STOP Statement
STOP RUN
STOP literal

STRING Statement
POINTER Phrase
ON OVERFLOW Phrase

SUBTRACT Statement
Format 1 SUBTRACT
Format 2 SUBTRACT
Format 3 SUBTRACT

SUPPRESS Statement

TERMINATE Statement

UNSTRING Statement
POINTER Phrase
TALLYING Phrase
ON OVERFLOW Phrase
DELIMITED BY Phrase
DELIMITER IN Phrase
COUNT IN Phrase

USE Statement
Format 1 USE
Format 4 USE

WRITE Statement
Format 1 WRITE
Format 2 WRITE

Statements and Sentences
Procedure Division Statements
ACCEPT Statement
Format 1 ACCEPT
Format 2 ACCEPT
I Format 3 ACCEPT

ADD Statement
Format 1 ADD
Format 2 ADD
Format 3 ADD
ALTER Statement
CALL Statement
CANCEL Statement
I CLOSE Statement
NO REWIND Phrase
L.OCK Phrase
REEL /UNIT Phrase
COMPUTE Statement
CONTINUE Statement
DELETE Statement
DISABLE Statement
DISPLAY Statement
UPON Phrase
WITH NO ADV ANCING Phrase
DIVIDE Statement
l Format 1 DIVIDE
Format 2 DIVIDE
Format 3 DIVIDE
Format 4 DIVIDE
Format 5 DIVIDE
ENABLE Statement
ENTER Statement
EXIT Statement
l GENERATE Statement
GO TO Statement
Format 1 GO TO
Format 2 GO TO
IF Statement
1 INITIALIZE Statement
INITIATE Statement
INSPECT Statement
Inspection Cycle
Format 1 INSPECT
Format 2 INSPECT
Format 3 INSPECT
I MERGE Statement

b
DDV ANNNANNONANNOA VNV EENNNNNEH -

\n\n\n\n\n\n\n\n\n\n\.n\n\n\n\n\ln\nm\n\n\n\n\n\nulmu\\ﬂ\n\n
WWMWMBMWUWRRNNIONRNDNNNNRNRNDNNNNONNNDNNRNRNDNNND

t
1 1
F o R R R Y N R W R R Y N R R R R R R A R R N e e e
CUVUDXD A A A A LN OOV VNS LELTLEPRPUWWUWUNNNRFEREOVOEONNSNOAOAOAUVUVEUWUWNNNNNNSOO

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\.ﬂ\.n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\.n\n

]
bt et bt e bt b et o et bt e e b e b e e \O O

\n\n\n\n\.ﬂ\n\nmm\n\nmm\'n\n\n\n\n\n\n\n\n\nm\n\n\n\n

T
—

6. REPORT WRITER FACLLITY

Report File
Report File Structure
REPORT Clause
Special Registers
1 PAGE-COUNTER
2 LINE-COUNTER
2 Report Section
Report Description Entry
CODE Clause
CONTROL Clause
PAGE Clause

MO VE Statement
Format 1 MOVE
Format 2 MOVE

i MOVE Examples

MULTIPLY Statement
Format 1 MULTIPLY
Format 2 MULTIPLY

OPEN Statement
NO REWIND Phrase

SRV BV RV RV RV, RV RV R RV RV RV R RV G R R RS R R R A AV Y A AV Y|
1
OWVVOVUODOODDN~-~NOOAPL,PLPEPLPWWWUWUNNNNNEFREEFOOO
.

)
Nl ol il el ol N e e e
O\O\O\O\O\?\O\O\O\O\U\
WUWWRNRNNRON N N -

x 60497100 H



S

Report Group Description Entry
Format 1 Entry
Format 2 Entry
Format 3 Entry
BLANK WHEN ZERO Clause
COLUMN NUMBER Clause
GROUP INDICATE Clause
JUSTIFIED Clause
LINE NUMBER Clause
NEXT GROUP Clause
PICTURE Clause
SOURCE Clause
SUM Clause
TYPE Clause
USAGE Clause
VALUE Clause
Report Writer Statements
GENERATE Statement
INITIATE Statement
SUPPRESS Statement
TERMINATE Statement

USE BEFORE REPORTING Declarative

7. SORT/MERGE FACILITY

Sort-Merge Description Entry
Sort/Merge Statements
SORT Statement
DUPLICATES Phrase

COLLATING SEQUENCE Phrase

INPUT PROCEDURE Phrase

USING Phrase

GIV ING Phrase

OUTPUT PROCEDURE. Phrase
MERGE Statement

COLLATING SEQUENCE Phrase

tUUSING Phrase
OUTPUT PROCEDURE Phrase
GIVING Phrase

RELEASE Statement

RETURN Statement

8. SEGMENTATION FACILITY

SEGMENT-LIMIT Clause
Procedure Division Coding
Section Header
ALTER Statements
PERFORM Statements
SORT and MERGE Statements

9. LIBRARY FACLITY

COPY Statement

OF Phrase

REPLACING Phrase

Comparison Operation
Update Random Program Library Usage
REPLACE Statement

Format 1 REPLACE

Format 2 REPLACE

Comparison Operation

10. DEBUGGING AIDS

Paragraph Trace F acility
Trace File
Trace Directives
Termination Dump F acility
Debugging Facility

60497100 H

1§ 11
[ W RV RN Sy

NANANANNNTONONONON
0 bt

+ 1

[
= b b et el o et e \D D DD O N S ON

1 1
NS N bt bt ot o b=

O\O\O\O\O\O\?\O\O\O\O\O\

3
o

U N N
WNN -

]
[« WG RV IRV, RV, RV Iy R R AL A |

\I\I\I\I\I\I\I\ITI\I\I\I\I\I\I\I

\O\D\O\O\.O\O\O\O\O
WAWNRNN -

10-1

10-1
10-1
10-2
10-2
10-3

Debugging Lines
Debugging Sections
Debugging Section Execution
USE FOR DEBUGGING Declarative
Statement
DEBUG-ITEM Register

11. PRODUCT INTERFACES

CMM Interface
CRM Interface
FIT Fields from Source Code
FIT Fields from USE Clause
FIT Fields from FILE Control Statement
Sort/Merge Interface
FORTRAN Interface
Numeric Data Format
CALL/ENTER Statement Code
COBOL. Communication Facility
Transaction Facility

12. COMPILER CALL AND EXECUTION

Compiler Call
Parameters
Parameter Options
ANSI Extensions Control
APO Apostrophe Character
B Binary Output
BL Burstable Listing
CC1 COMP Equivalence to COMP-1
D Data Base Sub-schema Fiile
Identification
DB Debugging Selected
£ Error File Name
EL Error Level to be Reported
ET Error Termination
FDL Fast Dynamic Loader Processing
FIPS Level Diagnosis
I Input File Name
L Listing File Name
LBZ Leading Blank Zero
LO Listing Options
MSB Main Subroutine Indicator
PD Print Density
PS Page Size
PSQ Program Sequence
PW Page Width
SB Subcompile Indicator
SY Syntax Check
TAF Program
TDF Termination Dump Indicator
U Update File Name
UC1 Unpack COMP-1 Items
X Copy Text File Name
Compilation Listings
Source Program Listing
Selective List/Nolist Options
Map
Cross-Reference Map
Object Code
Diagnostics
Execution
Execution Call Control Statements
Execution Parameters
APPL
CORE
MSGS
NOTRIP
TIME
File Equivalence
Deck Structure

11-1

11-1
11-1
11-2
11-2
11-2
11-2
11-2
11-3
11-5
11-5

12-1

12-1
12-1
12-1
12-1
12-2
12-2
12-2
12-2

12-2
12-3
12-3
12-3
12-4
12-4
12-4
12-4
12-4
12-5
12-5
12-5
12-5
12-5
12-5
12-5
12-6
12-6
12-6
12-6
12-6
12-6
12-6
12-7
12-7
12-7
12-8
12-9
12-9
12-9
12-10
12-10
12-10
12-10
12-10
12-10
12-10
12-10
12-10
12-11

xi



13. EXAMPLES

14. SUB-SCHEMA FACILITY

COBOL Sub-Schema - CDCS 1
Program Coding
Environment Division
Data Division
Procedure Division
COBOL Subprograms
Compilation and Execution
Relation Error Processing
COBOL Sub-Schema - CDCS 2
Program Coding
Environment Division
Data Division
Procedure Division
COBOL Subprograms
Compilation and Execution
Data Base File Error Processing
DB$DBST Routine
C.DMRST Routine
Program Debugging

A Standard Character Sets
B Diagnostics
C Glossary

Source Program Line Format

Source Program Overview

Language Structure

Relation Condition Format

Qualification Format

Subscripting Format

Indexing Format

Identifier and Condition-name Unique

Reference Format

Reference Modification Format

Reference Modification Example

Identification Division Format

PROGRAM-ID Paragraph Format

DATE-COMPILED Paragraph Format

Environment Division Skeleton

SOURCE-COMPUTER Paragraph Skeleton

OB JECT-COMPUTER Paragraph Skeleton

COLLATING SEQUENCE Clause Format

SPECIAL-NAMES Paragraph Skeleton

Implementor-name Clause Format

ALPHABET Clause Format

CURRENCY SIGN Clause Format

DECIMAL -POINT Clause Format

QUOTE Clause Format

SIGN CONTROL Clause Format

SWITCH-n Clause Format

Sequential Organization File-Control Entry

Skeleton

3-14 Relative Organization File-Control Entry
Skeleton

3-15 Indexed Organization File-Control Entry
Skeleton

3-16 Direct Organization File-Control Entry
Skeleton

3-17 Actual-Key Organization File-Control Entry

Skeleton

B bt e et bt b b
DNV & W

1 [} 1
o

] | . ] 1 [ ] ) I
o e O O NNV B WNFWRN = O
WO

\N\N\H\M\A\A\N\A\N\(A\MUWNNND—‘D—'

xii

13-1 15. INTER-PROGRAM COMMUNICATION

FACILITY
14-1 Data Division Coding
Common-Storage Section
14-1 Linkage Section
14-1 Shared Files
14-1 External Files
14-1 Data Base Files
14-1 Fast Dynamic L.oader Processing
14-2 Program Equivalence Section
14-2 Database Usage Section (CDCS 1 only)
14-2 Procedure Division Statements
14-2 Procedure Division Header
14-3 CALL Statement
14-3 USING Phrase
14-3 ON OVERFLOW Phrase
14-3 CANCEL Statement
14-6 ENTER Statement
14-6 USING Phrase
14-6 Utility Routines
14-6 EXIT PROGRAM Statement
14-8
14-8
APPENDIXES
A-1 D Reserved Words
B-1 E Language Summary
C-1 F Future System Migration Guidelines
INDEX
FIGURES

3-18 Word-Address Organization File-Control
Entry Skeleton
3.19 ACCESS MODE Clause Format
4 3-20 ALTERNATE RECORD KEY Clause Format
7 3-21 ASSIGN Clause Format
7 3-22 BLOCK COUNT Clause Format
8 3.23 FILE STATUS Clause Format
3.24 ORGANIZATION Clause Format

1-19 3.25 RECORD KEY Clause Format
1-19 3.26 RELATIVE KEY Clause Format
1-20 3-27 RESERVE Clause Format
2-1 3-28 SELECT Clause Format
2-1 3-29 USE Clause Format
2-1 3-30 WORD-ADDRESS KEY Clause Format
3-1 3-31 1-O-CONTROL Paragraph Skeleton
3-1 3-32 MULTIPLE FILE TAPE Clause Format
3-1 3-33 RERUN Clause Format
3-2 3-34 SAME AREA Clause Format
3-2 4-1 Data Division Skeleton
3-2 4-2 Data Division Terminology Summary
3-3 4-3 FD Entry Skeleton
3-4 4-4 BLOCK CONTAINS Clause Format
3-4 4-5 CODE-SET Clause Format
3-4 4-6 DATA RECORDS Clause Format
3-5 4-7 LABEL RECORDS Clause Format
3-5 4-8 LINAGE Clause Format
4-9 RECORD Clause Format
3-7 4-10 RECORDING MODE Clause Format
4-11 General Record Description Entry Format
3-7 4-12 Data Description Entry Format Skeletons
4-13 BLANK WHEN ZERO Clause Format
3-8 4-14 JUSTIFIED Clause Format
4-15 OCCURS Clause Format
3-8 4-16 Example of OCCURS Clause
4-17 PICTURE Clause Format
3-9 4-18 REDEFINES Clause Format

15-1

15-1
15-1
15-1
15-2
15-2
15-2
15-2
15-2
15-3
15-4
15-4
15-4
15-5
15-5
15-5
15-5
15-5
15-6
15-7

"'ll'i"IU
o

UL
\D ©© @™

bbbb#f&buuu

R ] U
O~ O WAWN 2

e
EPWUWNFOO

EEEpRREEE S
e bt ot ot ot

4-19

60497500 H



RENAMES Clause Format

SIGN Clause Format
SYNCHRONIZED Clause Format
USAGE Clause Format

VALUE Clause Format

CD Input Area

CD Output Area

Procedure Division Skeleton
ACCEPT Statement Format

ADD Statement Format

ALTER Statement Format

CLOSE Statement Format 1
COMPUTE Statement Format
CONTINUE Statement Format
DELETE Statement Format
DISABLE Statement Format
DISPLLAY Statement Format
DIVIDE Statement Format
ENABLE Statement Format

EXIT Statement Format

GO TO Statement Format

IF Statement Format

INITIALIZE Statement Format
INSPECT Statement Format

MO VE Statement Format
MULTIPLY Statement Format
OPEN Statement Format 1
PERFORM Statement Format
Format 4 PERFORM Flowchart
PURGE Statement Format

READ Statement Format 1 and Format 2
RECEIVE Statement Format
REWRITE Statement Format
SEARCH Statement Format
Flowchart of SEARCH Operations
SEND Statement Format

SET Statement Format

START Statement Format 1

STOP Statement Format

STRING Statement Format
SUBTRACT Statement Format
UNSTRING Statement Format
USE Statement Format 1 and Format 4
WRITE Statement Format
REPORT Clause Format

Report Description Entry Skeleton
CODE Clause Format

CONTROL Clause Format

PAGE Clause Format

Report Group Description Entry Skeletons
COLUMN NUMBER Clause Format
GROUP INDICATE Clause Format
LINE NUMBER Clause Format
NEXT GROUP Clause Format

L S I AU P A O U U A P R T R I N ]
- = - B WN = 0N

1 1 [} ) 1 ) 1 1 ) 1 J UL + ]
OWVBLIRARVEUWUWUNHOOWWVO IOV EUWN O
- -

'
= OO NOVNEWRNEHEWUBWNNNNNNRNRNNNNR P b b bt et ot o pd et el pod DD DNV EWNHFENNDNNRNRN -

'
o

G\O\O\O\O\O\O\O\O\O\\.ﬂ\ﬂmm\ﬂ\n\n\n\nmmm\n\n\n\nm\'n\n\n\n\n\.n\n\n\n\nm\n\n\n\n\n\n\n\ﬂmbb&bb&\b

1-1 COBOL Language Characters
1-2 Figurative Constants
1-3 Arithmetic Used for Operand Pairs
1-4 Combination of Symbols in
Boolean Expressions

5 Results of Boolean Operations
-6 Relation Condition Comparison

1 File Organization Summary

2 Input-Output Statements Allowed by Access

Mode and Open Mode

3 FILE STATUS Values
-4 COBOL-Detected Error Codes

1 Standard Label Items for Tape Files
2 Record Size and Type

60497100 H

L)
0
0 [ S R B R |

RN bt b bt ot et et ot ot ot
OVBNOAVE WNH

o
D
NHFEFWRNHFEWVE&WN -

VOO N~~~ NN

2
w

NNOAVE WAWWRNWWMWWBWWMBWMBWBWMNNNNNNNNNE R e e e = = w00 000NNV NN
o
]
Fl

—

o
1

—

LI | 3 ¥ [ [ 0 B ) ) ) [ ] I 1 1 L) 1 | U U Ll L] ) L) 1 ] ]
VOO NP UWNOUNOAVNES WWHOYOY NP WWNN -

e

ee

WN

[« e W W o W« W e N e W MV RV RE RV RV RV, RURV, RV RC R, R R R R RV R RV R RV Y R A A ARG RV, R RN R R R R AV Y A

o1
ARV

[]
bt bt et b = \D OO S ON

SUWUN-=O

5 1 1 11

S e s s e e

SOURCE Clause Format

SUM Clause Format

TYPE Clause Format

USAGE Clause Format

VALUE Clause Format

GENERATE Statement Format

INITIATE Statement Format

SUPPRESS Statement Format

TERMINATE Statement Format

USE BEFORE REPORTING Declarative
Format

.SD Entry Format

SORT Statement Format

MERGE Statement Format

RELEASE Statement Format

RETURN Statement Format

Segmented Program Skeleton Example

SEGMENT-LIMIT Clause Format

Section Header Format

COPY Statement Format

Example of Update Creation Run for
COBOL Source Library

COPY Statement Example

REPL.ACE Statement Format

Paragraph Trace Output Example

Termination Dump Example

DEBUGGING MODE Clause Format

USE FOR DEBUGGING Statement Format

DEBUG-ITEM Description

Numeric Data Format

Pointer Word Format for CALL and
ENTER Statements

Source Listing Example

Map Listing Example

Cross-Reference Listing Example

Diagnostic Listing Example

Execution Parameter Example

Compilation and Execution Deck
Structure Example

Program TBINT

SUB-SCHEMA Clause Format

READ Statement Format 3 and Format 4

CLOSE Statement Format 2

OPEN Statement Format 2

START Statement Format 2

USE FOR ACCESS CONTROL Statement
Format

USE FOR DEADL.OCK Statement Format

Data Base Status Block Description

Example of Fast Dynamic Loader Usage

CALL Staterment Format

CANCEL Statement Format

ENTER Statement Format

Data Description Entry Clause Use

Classes and Categories of Data Items

PICTURE Clause Symbols Allowed by Item
Category

PICTURE Clause Editing Symbol Functions
and Limits

PICTURE Clause Symbol Precedence Rules

Sign Overpunch Representation

Storage Requirements for COMP-4 Items

Input CD Area STATUS KEY Codes

Usage CD Input Area

Output CD Area STATUS KEY Codes

Output CD Area ERROR KEY Codes

Usage CD Output Area

6-8
6-8
6-9
6-11
6-11

N

HRNNEHEOAWVESENN-
-

[}
1

—
'DD\.O\O\O
VIENPEPWN

—
[=]

b

o
+
(G

10-6
11-4

11-5
12-7
12-8
12-9
12-9
12-10

12-11
13-2
14-1
14-2
14-3
14-4
14-4

14-5
14-5
14-7 |}
15-3
15-4
15-5
15-5 |

AL ol

4-1
4-15

4-17
4-20
4-21
4-23
4-27
4-28
4-30
4-31
4-31

xiii



5-1 Statement Classification 5-3 6-2 Page Regions Summary 6-5
5-2 Type of MOVE Operations 5-18 6-3 Format 3 Clause Combinations 6-6
5.2  Vertical Positioning (SEND Statement) 5-31 6-4 Line Number Presentation Rules 6-8
5-3 Allowed Format 1 and Format 2 10-1 Data Types in Termination Dump 10-3
1 SET Statement Operations 5-31 10-2 Contents of DEBUG-ITEM 10-7
6-1 Report Group Type Summary 6-1 14-1 File Position Codes 14-7

xiv

S



NOTATIONS USED IN THIS MANUAL

o

NOTATION USED IN FORMATS

UPPERCASE

UNDERLINED

Lowercase

Brackets

Braces

{1

Ellipses

60497100 F

Words are COBOL. reserved words.
They must be spelled correctly
including any hyphens; they cannot
be used in a source program except
as specified.

Words are required when the
format in which they appear is used.

Generic terms which represent the
words or symbols supplied by the
programmer. When generic terms
are repeated in a format, a number
or letter is appended to the term
for identification in the subsequent
discussion.

Optional portion of a format. All
of the format within the brackets
can be omitted or included at
programmer option. If items are
stacked vertically within brackets,
only one of the stacked items can
be used.

Portion of a format in which only
one of the vertically stacked items
can be used. If one of the options
contains only reserved words that
are not keywords, that option is the
default option. Braces are also
used to enclose the portion of a
required entry that can be repeated.

Repetition indicator. Portion of
format enclosed in the immediately
preceding braces or brackets can
be repeated at programmer option.

Punctuation symbols shown within the formats are
required unless enclosed in brackets or specifically noted
as optional. In general, commas and semicolons are
optional; periods are required to terminate paragraphs,
sentences, and Data Division entries. At least one space
must follow all punctuation symbols.

NOTATION USED IN EXAMPLES

t indicates the position of an assumed decimal point in an
item.

A plus or minus sign above a numeric character indicates
an operational sign is stored in combination with the
numeric character.

Character positions in storage are shown by boxes.
AIB| CID| An empty box means an unpredictable
result.

A indicates a space (blank).

SHADING USED IN MANUAL

Control Data extensions to the language described in
American National Standard X3.23-1974, COBOL, are
indicated by shading. Shading is also used to indicate
processing that is different from that specified in the
standard. Language and processing that are
implementor-defined but within the standard are not
shaded. Further, references to Control Data features,
such as the direct file organization, are not shaded unless
that feature is the topic under discussion.

XV



COBOL SOURCE PROGRAM 1

A COBOL program is composed of a series of lines that
conform to the structure and syntax of the COBOL
language. The source program is processed by the
COBOL 5 compiler and changed into a set of tables that
can be loaded by the operating system loader and that can
be executed by hardware instructions.

When the compiler executes in response to a control
statement entered through a batch job or interactive
terminal, it performs the following functions:

Read the file containing the source program. INPUT
is assumed to be the file name in the absence of a
parameter specifying another name.

Check the source program for errors in program
structure and language syntax. Write messages that
note any errors to a file to be printed on the line
printer or displayed at a terminal.

Depending on parameters specified on the compiler
call, write a copy of the source program to a print or
display file. Write a data map and a data cross
reference map to this file to summarize data item
descriptions and references within the program.
OUTPUT is assumed to be the output file name in the
absence of a parameter specifying another name.

Compile the source lines into executable code, unless
binary code generation is suppressed by a compiler
call parameter. Write the executable instructions to
a file in a format suitable for loading and executing.
LGO is assumed to be the name of the file to hold the
compiled program in the absence of a parameter
specifying another name.

Once the source program is compiled, it can be loaded and
executed by a control statement that names the file of
executable instructions. Section 12, Compiler Call and
Execution, describes other functions that can be
performed during compilation and execution.

During execution, the compiled program makes use of
execution-time routines that are part of the system
library. Files referenced in the program are opened, read,
written, rewritten, and closed through the CDC CYBER
Record Manager facility common to several products
running under the NOS and NOS/BE operating systems.
Depending on the source program statements, Sort/Merge
routines, Report Writer routines, and CDC CYBER
Database Control System routines might also be used
during execution.

The job in which the program executes is responsible for
making data files available before the program begins
execution and for properly disposing of output files after
execution ends. If the compilation involves information
on a library, the job is also responsible for making the
library file available before compilation.

CDC offers guidelines for the use of the software
described in this manual. These guidelines appear in
appendix F, Before using the software described in this
manual, the reader is strongly urged to review the content
of this appendix. The guidelines recommend use of this

60497100 G

software in a manner that reduces the effort required to
migrate application programs to future hardware or
software systems. :

SOURCE PROGRAM FORMAT

A source program consists of a series of lines with a
particular syntax and structure.

SOURCE LINES

Each line in the source program can be represented as an
80-column punch card or as a card image within the range
of one through 100 characters. The maximum number of
lines that can be specified in a program is 32767.
Columns define areas of varying significance within a line:

Columns 73 through 100

Optional program identification. Any character in
the computer character set listed in appendix A is
allowed in these columns. Characters in these
columns appear on the source listing for the program,
but are not otherwise processed by the compiler.

Columns 1 through 6

Sequence number for the source line. The
sequence number de;senﬂs‘ on, the Pm par.
the compﬂer cel ’ Wﬁgn ,

“Tha sequanca ni:m
spaces. Spaces ar
hawever, the




Columns 7 through 72

Language statements that are processed by the
compiler to produce executable code. Only COBOL
language characters listed in table 1-1 are allowed in
these columns, except when the explanation of a
language element specifically allows any character
from the computer character set. These columns are
divided into three areas:

7 Indicator area
8-11 Area A
12-72 Area B

The indicator area can contain only five characters that
identify the type of line in which it occurs:

space  Normal line to be compiled

- Continuation line explained below

* Comment line explained below
/ Comment line explained below
D Debugging line explained in section 10,

Debugging Aids

TABLE 1-1. COBOL LANGUAGE CHARACTERS

Character Meaning
= e
0-9 Digit
A-Z Letter

Space (blank)
+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Stroke (virgule, slash)

= Equal sign

$ Currency sign

. Comma

H Semicolon

. Period (decimal point, full stop)

" Quotation mark

( Left parenthesis

) Right parenthesis

> Greater than symbol
< Less than symbol

Area A is used to begin the following language elements:

Division header

Section header

Paragraph header

Paragraph-name

Level 01 and level 77 Data Description entries

L_evel indicator

Keywords DECLARATIVES and END DECLARATIVES
Area B is the starting area for:

Record-name or item name and record or item
description

Statements and clauses
Continuation of statements and clauses
Statements that follow a paragraph-name can start in

area A of the same line as the paragraph-name when the
h-name is _limited to a single

Figure 1-1 summarizes source program line format.

Continuation Lines

Any sentence, entry, phrase, or clause can be continued in
area B of the immediately following line. Under two
circumstances the continuation line must contain a hyphen
in column 7 to indicate that the line is a continuation of
the previous line.

A word or a numeric literal is split between lines.
The continuation line must have a hyphen in the
indicator area, a blank area A, and text beginning in
area B. The first nonblank character in area B is
presumed to immediately follow the last nonblank
character of the previous line.

A nonnumeric ot boote literal is split between
lines. The continuation line must have a hyphen in
the indicator area, a blank area A, and the first
nonblank character in area B must be a quotation
mark. All spaces at the end of the continued line
through column 72 are considered part of the literal
and are presumed to immediately precede the first
character after the quotation mark in the
continuation line.

The hyphen should not be used in the indicator area except
under these two circumstances. If a hyphen does not
appear in the indicator area, the last nonblank character
in the preceding line is presumed to be followed by a
space.

Comment Lines

A comment line has an asterisk or slash in the indicator
area. A comment line can appear anywhere in a source
program after the Identification Division header. Any
character in the computer character set can appear in
area A and area B. Comment lines are listed in the
source listing of the program, but are not otherwise
processed by the compiler.

60497100 G

character,




~—

COBOL CODING FORM)ms: PAGE oF
CONTROL DATA GORPORATION) oate: 1DENT: e e m
SEQ. 0. A s STATEMENTS Program identification
t ] [ n " » N, .1 R L. e “ & ,J:LJ_, 72!
-l—l—— . L 4
L - Sequence number area columns 1-6
\ . . .
) L ———— Indicator area column 7: comment code (asterisk or slash)
—— continuation code (hyphen) 4
* debug code D .
= - -
|-~y . e
L — Area A columns 8-11 for start of Division header, Section ]
header, paragraph-name, Declaratives header, FD, SD, RD,
CD (NOS only), comment-entry, 01, 77 entries. T
“ . Level-number entries can start in area A or area B _
— Area B and continuation text area columns 12-72 ——————]
. Comment line text area :
Lines can be broken at any convenient point; spaces can remain at the end of the line.
Space is presumed at end of line without hyphen in indicator area.
On interactive terminals or other devices, lines shorter than 72 characters are filled with At
blanks through column 72. i
1 L 1 LH Llll A;‘ * lN‘ = u‘ = .uA * » L ] * ‘u‘ At ‘n‘ = ‘n‘. -t ‘I‘ At ‘ﬂ‘ + “u + IL n

Figure 1-1. Source Program Line Format

The two characters that indicate a comment line differ as
follows:

*  Comment is listed as it is encountered. Must be
used when a comment line appears in the source
program.

|/ Causes a page eject to occur for the source
listing file before the comment line is listed.
Can be used for the first line of a group of
successive comment lines.

The LIST/NOLIST commands, which contral the printing
of source program and object listings, are specified on
comment lines. This special usage of comment lines is
described in section 12.

Blank Lines

A blank line is one that is blank in columns 7 through 72.
A blank line can appear anywhere in the source program,
except immediately preceding a continuation line.

60497100 G

PROGRAM FORMAT

A COBOL program has four divisions. All divisions are

required, and they must appear in a specific order.
division names in the required order

IDENTIFICATION DIVISION, ENVIRONMENT DIVISION,

DATA DIVISION, and PROCEDURE DIVISION.
general function of each division is:

Identification Division

Names the program and documents the author and

date.

Environment Division

Names each file referenced in the program and
equates it to a file known to the operating system or
to a console or terminal. Establishes checkpoint
conditions, collating sequence, debugging mode, and
sub-schema name. Documents the computer used to
compile and execute the program. Files contained in
a data base described by a sub-schema might be
described here. Refer to section 14, Sub-Schema
Facility.



Data Division

Describes in detail each file and each data item to be
used in the program, including the data items used for
the Message Control System (MCS) under NOS. Items
contained in a data base described by a sub-schema
are not described here.

Procedure Division

Specifies processing to be performed including file
input and output, arithmetic operations, sorting,
report generation, and procedures to execute only
under specific conditions.

Each division contains source statements made up of
language elements described below. Within each division,
most source statements are optional, depending on the
needs of the program. Each division is described in detail
in a separate section of this manual.

Figure 1-2 summarizes source program structure, showing
the sections or paragraphs within each division and the
order in which they must appear.

IDENTIFICATION DIVISION.
program-id paragraph followed by predefined
paragraphs and comment entries

ENVIRONMENT DIVISION.

CONFIGUBATION SECTION.
predefined paragraphs and entries

INPUT-OUTPUT SECTION.
predefined paragraphs and entries

DATA DIVISION.
FILE SECTION.
predefined level indicator entries and
record description entries
COMMON-STORAGE SECTION.
record description entries
WORKING-STORAGE SECTION.
record description entries
SECONDARY-STORAGE SECTION.
record description entries
LINKAGE SECTION.
record description entries
COMMUNICATION SECTION.
communication description entries
REPORT SECTION.
report description entries

PROCEDURE DIVISION.
DECLARATIVES.

declarative statements, procedures
END DECLARATIVES.

statements in paragraphs or sections

Figure 1-2. Source Program Overview

LANGUAGE STRUCTURE

The COBOL language is composed of the 51 characters
listed in table 1-1. Additional characters in the computer
character set listed in appendix A can be used in a
program when they are a part of a nonnumeric literal,
comment-entry, or comment line.

Individual characters of the language are concatenated to
form character-strings and separators. Concatenation of
character-strings and separators forms the text of a
source program.

1-4

Figure 1-3 shows the various types of separators and
character-strings in a source program. Separators can be
concatenated with other separators or a character-string;
a character-string must be concatenated with separators.
The words listed under the box titled Character-Strings in
figure 1-3 present the terminology used throughout this
manual. The rules for forming COBOL words are also
summarized in this figure.

A discussion of the separators and character-strings' of
figure 1-3 follows.

SEPARATORS
A separator is a string of one or more of the punctuation
characters , ; ¢ . " ( ) == and space. Separators

must appear in the source program in specific places. Not
all separators are interchangeable.

Punctuation characters can have uses other than as
separators. These characters do not function as
separators when they appear as part of:

PICTURE clause character-string.
Nonnumeric literal.
Numeric literal.

The punctuation characters have the following functions
as separators:

space Separates language elements. Can be
concatenated with other separators except
as otherwise noted.

. space Terminates headers, entries, and sentences
as defined by formats.

, space Separates clauses and statements for
readability. Optional, and restricted to the
usage indicated in the formats. Cannot
immediately precede the first clause of an
entry or paragraph. Interchangeable with
; space.

s space Separates clauses and statements for
readability. Optional, and restricted to the
usage indicated in the formats. Cannot
immediately precede the first clause of an
entry or paragraph. Interchangeable with
» space.

(and) Delimits subscripts, indexes, arithmetic
expressions, or conditions. Must appear in
balanced pairs.

" Delimits nonnumeric literal. Can appear
only in balanced pairs except when the
literal is continued on subsequent lines.
Opening quotation mark must be
immediately preceded by a space or left
parenthesis; closing quotation mark must be
immediately followed by a separator space,
comma, semicol iod i

60497100 G

Pt



CHARACTERS

I
[ 1

Separators Character-Strings
B followed by quote ]
— Space F | ] ]
L~ Comma followed by space Comment- Picture . COBOL
. Entri Character- Literals Word
| Semicolon followed by space ntries Strings ords .
| Period followed by space Boolean
— Left parenthesis Nonnumeric
L— Right parenthesis Numeric
— Quotation mark Figurative constant
| Pseudo-text delimiter values
User- System Reserved
Defined
Word Names Words
ords , 2 3
— Alphabet-name — Computer-name - Keywords
— Cd-name ! — Implementor-name® L Optional words®
L Condition-name* b— Inpu’t—output-technique7 }— Connectives
L Data-name* L— Input-unit’ - Special registers
— File-name L L anguage-name? |— Figurative constants
— Index-name L. Mode-name® -—Special«:fgaracter

| Level-number®® words

— Library-name

— Mnemonic-name
f— Paragraph-name'0
l— Program-name

— Pseudo-file-name
L. Record-name”

— Report-name

— Routine-name

— Section-name'

— Segment-number®®

L— Text-name

11 through 30 characters composed of A through Z, 0 through 9, or -; however the character - cannot be first or last
character, except as noted in 6.

2Must contain at least one alphabetic character except as noted in 9 and 10. Must be unique except as noted in 4.
3Particular names required.

4Words can be duplicated among these groups if qualified for unique reference.

5Must begin with a letter.

6See text for syntax.

7Documentary only.

8Need not be unique.

2Digits only.

10Need not contain alphabetic characters.

" Can only be used under NOS.

Figure 1-3, Language Structure
60497100 G




pseudo-text in COPY aad
E statements. Can appear only in

balanced pairs. Opening delimiter must be
immediately preceded by a space; closing
delimiter must be immediately followed by a
separator space, comma, semicolon, or
period.

A character used in a source program as a quotation mark
might appear on an output device as a different character,
depending on the device and the character set. In
particular, it might appear as # on a print file.

COBOL WORDS

A COBOL word is a character-string of not more than 30
characters which forms a user-defined word, a
system-name, or a reserved word.

User-Defined Words

A user-defined word is a COBOL word that must be
supplied by the programmer to satisfy the format of a
clause or statement. These words are grouped into the
sets listed in figure 1-3. Condition-name, data-name,
and record-name belong to the same set. All user-defined
words, except segment-number and level-number, can
belong to one and only one set.

Except for level-number and segment-number, all
user-defined words within a given set must be unique or be
capable of being referenced uniquely. Uniqueness can be
achieved by specifying a character-string that is not
identical to any other character-string, by specifying a
REDEFINES reference, or by qualifying the
character-string each time it is referenced. Uniqueness
of reference is discussed in section 5, Procedure Division.

User-defined words are formed by the letters A through Z,
the digits 0 through 9, and the hyphen. Minimum size is
one character; maximum size is 30 characters. The
hyphen cannot be the first or last character in the string.

At least one letter A through Z must appear in
user-defined words, except for those in the sets:
paragraph-name, section-name, level-number, and
segment-number.  Level-number and segment-number
must be one or two digits.

System-Names

A system-name is a COBOL word that is used to
communicate with the operating system. These words are
grouped into the six sets listed in figure 1-3; a given
system-name can belong to one and only one set.

1-6

System-names are formed the same as user-defined
words. Implementor-names, language-names, and
mode-names, however, are subject to further restrictions,
as discussed with clauses in which these words appear.

Reserved Words

A reserved word is a COBOL word listed in appendix D
that can be used in COBOL source programs in a given
context. Reserved words must not appear in the program
as user-defined words or system-names. Reserved words
can be used only as specified in the formats.

Six sets of reserved words exist, as shown in figure 1-3.

Keywords

A keyword is a word whose presence is required when the
format in which the word appears is used in a source
program. Within each format, such words are indicated by
uppercase letters and underlining.

Keywords can be required words in statements and
formats, and words with specific functional meaning such
as SECTION or NEGATIVE.

Optional Words

An optional word is a word whose presence is not required
when the format in which the word appears is used in a
source program. The presence of an optional word often
adds to the understanding of the purpose of the format,
but does not affect the generation of the executable
code. Within each format, such words are indicated by
uppercase letters without underlining.

Connectives

A connective is a word, or a separator comma, or a
separator semicolon. Three types of connectives are:

Qualifier connectives that associate a data-name, a
condition-name, a text-name, or a paragraph-name
with its qualifier. OF and IN are the only two
qualifier connectives.

Series connectives that link two or more consecutive
operands. The separator comma and separator
semicolon are the only two series connectives.

Logical connectives that form conditions. AND and
OR are the only two logical connectives.

Special Reqisters

A special register is a word whose name references a
compiler-generated storage area. The primary use of a
special register is storage of information produced in
conjunction with a particular COBOL feature. These
registers can be referenced in a source program, but must
not be defined in the program. Each has an implicit
description.

LINE-COUNTER
Exists only when the Report Writer facility is used.

One special register exists for each report. See
section 6, Report Writer F acility.

60497100 F



PAGE-COUNTER

Exists only when the Report Writer facility is used.
One special register exists for each report. See
section 6, Report Writer Facility.

DEBUG-ITEM

Exists only when the Debugging facility is used. Only

one special register exists for the program. See
section 10, Debugging Aids.

LINAGE-COUNTER

Exists for each file in which a LINAGE clause appears
in the file FD entry. See the LINAGE clause in the
File Description entry discussion of section 4.

Figurative Constants

Figurative constant values are generated by the compiler
and referenced in a program by a reserved word. These
words must not be bounded by quotation marks.

The singular and plural forms are equivalent and can be
used interchangeably. The figurative constants and their
meanings are shown in table 1-2.

A figurative constant can represent more than one
character. The length of the string depends on the
context:

In a DISPLAY, STRING, STOP, or UNSTRING
statement, a reference to a figurative constant
represents a single character.

In either a VALUE clause or in a statement in which
the figurative constant is associated with a data
item, a figurative constant character-string is
repeated until the size of the string equals the size in
characters of the data item. The repetition is
independent of any JUSTIFIED clause associated with
the data item.

Special-Character Words

A special-character word is an arithmetic operator or a
relation character.

Arithmetic operators indicate an operation to be
performed.

+  Addition
- Subtraction
*  Muiltiplication
/  Division
**  Exponentiation
Relation characters indicate a relation to be tested.
>  Greater than

< Less than

Equal to

TABLE 1-2. FIGURATIVE CONSTANTS

ALL Titeral

Figurative Constant Meaning
ZERO Depending on the context, represents the numeric value 0 or one or more
ZEROS characters 0.
ZERQES
SPACE Represents the character space, which is also known as a blank.
SPACES
HIGH-VALUE Represents the character that has the highest ordinal position in the program

Represents the character that has the lowest ordinal position in the

. This figurative con

HIGH-VALUES collating sequence.
LOW-VALUE

LOW-VALUES program collating sequence.
QUOTE Represents the character "
QUOTES ati

Represents the string of characters comprising the literal. Literal must be
either a nonnumeric literal or a figurative constant other than ALL literal.
The word ALL is redundant in the form ALL figurative constant.

ecliy.n

60497100 F



Within each format, special-character words are required
when such portions of the formats are used.

LITERALS

A literal is a character-string whose value is implied
either by an ordered set of characters of which the literal
is composed or by a reserved word referencing a

figurative constant. The three types of literals are
numerie, nonnumeric, [afid: Nonnumeric llterals
are enclosed in quotat n

in quoﬂ ation marks not ‘preceded
by the character B (including strings that conform to
numeric literal or reserved word formats) is a nonnumeric
literal.

Numeric Literals

A numeric literal is a character-string that represents the
value of an algebraic quantity. Every numeric literal is
category numeric, as discussed with the PICTURE clause.
Numeric literals are specified in standard &¢
notation. (Scientific notation is also known as ex ernal
floating point notation.)

In standard notation, a numeric literal is formed of at
least one and no more than 18 digits 0 through 9, and
optionally, one sign character and/or one decimal point.

The sign character is the character + or the character -.
It must be the leftmost character of the literal. When the
sign character is omitted, the literal is positive.

The decimal point is the character period, except when
the DECIMAL-POINT IS COMMA clause is specified. It
can appear anywhere in the literal except as the rightmost
character. When the decimal point is omitted, the literal
is an integer.

Some examples of numeric. literals in standard notation
are:

567 +567 -5.67 +.567

Nonnumeric Literals

A nonnumeric literal is a string of 1 through 255
characters delimited on both ends by quotation marks.
Any character in the computer character set can be part
of a nonnumeric literal.

When a quotation mark is to be part of the literal, it must
be represented as two contiguous quotation marks within
the character-string. Two quotation marks embedded
between other characters produce a single quotation mark
within the literal.

60497100 F

——

~—

-



The value of a nonnumeric literal in the executable
program is- the string of characters itself, excluding the
delimiters. Punctuation characters are part of the value
of the literal and not separators. All nonnumeric literals
are category alphanumeric, as discussed with the
PICTURE clause.

b r &
character quotation mark.

Examples of nonnumeric literals are:

"PAGEAL4AISAMISSING. "
Produces the 20-character value PAGEAl4AIS
MISSING. A

"4+24,50"
Produces the 6-character value +24.50

nnw EMBEDDEDA" nn "AQUOTEA" Hw
Produces the 20-character value "EMBEDDED A"
" AQUOTEA"

"DEBUG-ITEM"
Produces the 10-character value DEBUG-ITEM

Figurative-Constant Values

Any place a literal is indicated in a clause or statement
format, a figurative constant can be used. Whenever a
literal is restricted to having only numeric characters,
only ZERO or its equivalent spellings can be used. See
table 1-2.

Examples of figurative constant use are:.

MOVE QUOTES TO AREA-A
Fills AREA-A with the repeated character ".

DISPLAY QUOTE "NAME" QUOTE
Displays "NAME".

MOVE SPACES TO TITLE
Sets TITLE to all blanks.

MOVE ALL "4" TO COUNT-FIELD
Fills COUNT-FIELD with the repeated character

IF ALL "S5" IS EQUAL TO DFG
Expands the repeated character 5 to the size of
DFG and compares the expanded size with the
current value of DFG.

PICTURE CLAUSE CHARACTER-STRINGS

A PICTURE character-string is a combination of
characters used as symbols rather than characters. These
symbols appear only after the reserved words PICTURE or
PIC in a Data Description entry in the Data Division.
Punctuation characters within a PICTURE
character-string are symbols rather than separators. See
section 4, Data Division, for a discussion of the PICTURE
clause.

60497100 F

COMMENT-ENTRIES

A comment-entry is a combination of characters following
a predefined paragraph-name in the Identification
Division. The entry must follow a paragraph-name and a
separator period and must be terminated by a separator
period. See section 2, Identification Division.

A comment-entry differs from a comment line only in the
format in which it appears in the source program.

ARITHMETIC OPERATIONS

Arithmetic operations are specified in the Procedure
Division statements ADD, SUBTRACT, MULTIPLY, and
DIVIDE. Arithmetic expressions are specified in the
COMPUTE statement and in conditional expressions.
Refer to the COBOL 5 user's guide for examples of
arithmetic operations.

ARITHMETIC EXPRESSIONS

An arithmetic expression is one of the following:

Identifier of an elementary numeric item
Numeric literal

Identifier of elementary numeric item and/or numeric
literal separated by an arithmetic operator

Two arithmetic expressions separated by an
arithmetic operator

Arithmetic expression enclosed in parentheses

An arithmetic expression must begin with a unary
operator, a left parenthesis, or a variable; it must end
with a right parenthesis or a variable. Consecutive
variables and consecutive binary operators must not
appear.

Both binary and unary operators must be preceded and
followed by a space. A parenthesis can, but need not, be

separated by a space from the element the parenthesis is
enclosing.

Identifiers and literals in an arithmetic expression must
represent either elementary numeric items or numeric

literals on which arithmetic can be performed.
Flementary numeric items can be any of the following:

DISPLAY items containing only digits and possibly a
sign described by a SIGN IS SEPARATE clause
COMPUTATIONAL item

COMPUTATIONAL-1 item

COMPUTATIONAL-2 item

COMPUTATIONAL-4 item

Special registers LINAGE-COUNTER, HASHED-
VALUE, LINE-COUNTER, and PAGE-COUNTER.

1-9



Binary arithmetic operators and their meaning are:
+ Addition

- Subtraction
*  Multiplication
/  Division

** Exponentiation

Unary arithmetic operators and their meaning are:

+  The effect of multiplication by the numeric
literal +1

- The effect of multiplication by the numeric
literal -1

Parentheses can be used in arithmetic expressions to
specify the order in which elements are to be evaluated.
They can eliminate ambiguities in logic where consecutive
operations of the same hierarchical leve! appear and can
modify the normal sequence of evaluation. Expressions
within parentheses are evaluated first, and, within nested
parentheses, from the least inclusive set to the most
inclusive set of parentheses. A one-to-one
correspondence must exist between a left parenthesis and
a right parenthesis.

When parentheses are omitted, or when parenthetical
expressions are at the same level of inclusiveness,
operations occur in this order:

Unary plus and minus
Exponentiation
Multiplication and division

Addition and subtraction

The order of execution of consecutive operations of the
same hierarchical level is from left to right, unless
parentheses specify a different order.

EVALUATION OF EXPRESSIONS

Arithmetic operations are carried out in intermediate
fields known only to the execution-time routines of the
system. Using operands supplied by the program, the
routines evaluate the expression or produce an
intermediate result. The intermediate result is then
moved to any receiving item specified, with any editing
specified by the description of the receiving item taking
place during the move. When a sending item and a
receiving item share a part of their storage areas, the
results are unpredictable.

Three types of arithmetic can occur:

Display code arithmetic, in which the character
representation (not the algebraic value) of an item is
manipulated; a maximum of 18 digits can be
accommodated.

1-10

Integer arithmetic, in which the algebraic value is
manipulated in 48 bits, with bit 60 being the algebraic
sign; a maximum of 14 digits can be accommodated.

Floating point arithmetic, in which the algebraic
value is manipulated according to mantissa and
characteristic conventions; a maximum of 28 digits
can be accommodated, with one computer word used
for single precision operations and two words for
double precision.

Decimal point alignment occurs as required during these
operations. All intermediate result fields are established
such that no significant digits are lost during operations,
except in cases of COMP-2 items in which the data
format might produce a slight fraction inaccuracy. (The
ROUNDED option should be specified for results involving
COMP-2 items.)

Table 1-3 shows the type of arithmetic used for various
operands. The table also indicates when conversions from
storage format to arithmetic format occur. COMP items,
for instance, must be converted to integer format before
they are multiplied but COMP-1 items need not be
converted.

Different types of operations and arithmetic have
restrictions as follows:

Intermediate results in a COMPUTE statement are
restricted to 28 significant digits.

The number of decimal places provided for division is
not infinite, so the sum of two expressions involvin
division might be inexact. For example, (1/3) + (2/3
gives the result of 0.999.... To increase the
probability of giving an exact result when a
computation involves the sum of two expressions
involving division of fixed point operands, the division
operations are performed so that the operands of the
sum operation have one more decimal position than
required by the result field. For instance, when the
result field in a COMPUTE statement is defined as
9vV9 and the operands are 2/3 and 1/3, the
computation is performed to two decimal places, not
the one place required by the result field; therefore,
the result is 1.0.

The situation with exponentiation and subtract is the
same as noted above for division and addition.

For evaluations performed in floating point mode, the
precision and accuracy of the results are determined
by the floating point hardware of the computer itself.

Some special cases of exponentiation are defined as
follows, assuming x is to be raised to the nth power.

X n Result
0 >0 0
0 <0 Size error
condition
#0 0 1
0 not Size error

integer condition

60497100 F

RN



TABLE 1-8. ARITHMETIC USED FOR OPERAND PAIRS

Operand
Operand Operator giszéﬁg ng;;}4or CoMP-2
DISPLAY + D I1 F
or - D 11 F
COMP * 12 12 F
— / F F F
*k 13 , 13 F
COMP-1 + I1 11 F
\, or - 11 11 F
CcomMP-4 * 12 12 F
/ F F F
*k 13 I3 F
comMpP-2 + F F F
- F F F
* F F F
- / F F F
** F F F
Legend:
D Display code arithmetic; maximum of 18 digits
F  Floating point arithmetic
— I1 Integer arithmetic; F if size of intermediate result determined by aligning operands on the
decimal points is i5 or more digits
I2 Integer arithmetic; F if sum of operand sizes is 15 or more digits
13 Integer arithmetic if integer value; otherwise, F

TABLE 1-4. COMBINATION OF SYMBOLS IN
BOOLEAN EXPRESSIONS

60497100 F 1-11



1-12

60497100 F



CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that can be
tested in a program to determine alternative paths of
action. They are specified in the Procedure Division
statements IF, PERFORM, and SEARCH.

Two categories of conditions are associated with
conditional expressions: simple conditions and complex
conditions. Paired parentheses can be used in both simple

and complex conditions without changing the category of
the condition.

SIMPLE CONDITIONS

Simple conditions include the following:

Class, which determines whether an operand is purely
numeric or purely alphabetic or neither

Condition-name, which compares a variable and a
predetermined value associated with a condition-name

Relational, which compares values of two operands

Sign, which determines the sign of an arithmetic
expression

Switch-status, which tests the ON or OFF status of
an external or internal software switch

Class Condition

The class condition determines whether an operand is
numeric or alphabetic. Class condition format is:

NUMERIC
identifier IS [NOT]
ALPHABETIC

The operand belongs to the numeric class if one of the
following criteria is met:

60497100 H

The operand consists entirely of the digits 0 through 9
and the presence of any operational sign agrees with
the description of the sign. For example, any item
described by SIGN IS SEPARATE must have a
separate, not an overpunch, sign.

The NUMERIC test cannot be used with an item described
as alphabetic or as a group item containing elementary
items with operational signs.

The operand belongs to the alphabetic class only when the
contents consist entirely of the characters A through Z
and the space. The ALPHABETIC test cannot be used
with an item described as numeric.

Condition-Name Condition

The condition-name condition determines whether or not
the specified item is equal in value to one of the
predefined values for the condition. Format of this
condition is simply:

condition-name

The condition-name must be a level 88 item in the Data
Division that is associated with a constant or a range of
values.

The condition is true when the value is either within the
range specified, including both ends of the range, or is
equal to the constant specified. Any sign character must
agree_with the description of the condition-name for the
condition to be true.

Relation Condition

A relation condition (figure 1-4) determines the relative
magnitude of two operands. Table 1-6 shows the type of
operands that can be compared.

Figure 1-4 shows the acceptable formats for the
comparison of two operands. Format 1l is used for
comparison of operands other than those of the boolean
class. At least one variable must be used in the condition
expression “
of the boolean class.

Any two numeric class operands can be compared,
regardless of the USAGE clause descriptions. Comparison
is made with respect to the algebraic value of the
operands. The number of digits represented is not
significant. Zero is a unique value, regardless of its sign.
Unsigned operands are considered positive.

A numeric class operand can be compared with a
nonnumeric operand only when both operands have the
same USAGE clause descriptions and the numeric operand
is an integer data item, integer literal, or an arithmetic
expression containing only integer operands and/or literals.

Two nonnumeric operands or one numeric and one
nonnumeric operand are compared with respect to a
collating sequence in which each character has a
particular value. The collating sequence can be
established in four ways: by default, by the ALPHABET
clause in the SPECIAL-NAMES paragraph, by the
COLLATING SEQUENCE clause in the
OBJCT-COMPUTER  paragraph, or by the SET
statement. Comparison is made from left to right of each
operand. When operands are of unequal size, comparison
proceeds as though the shorter operand were extended on
the right by spaces to make the operands of equal size.



Format 1

Format 2

literal-1

{ identifier-1
arithmetic-expression

i1S [NOT] GREATER THAN
IS [NOT] >

1S [NOT] LESS THAN

IS [NOT] <

1S [NQT] EQUAL TO

IS [NOT]

R

|

identifier~2
literal-2
arithmetic-expression-2

Figure 1-4. Relation Condition Format

TABLE 1-6. RELATION CONDITION COMPARISON

Item Type
Item Type comMpP-1
Literal DISPLAY or
CoMP-4
© (&2 —4
- - O
. . 5 [ . o s . gd} t;;
£ & ' m,lf & =l & v i > x8 o |20 ES
c [ - - @ o— — @ — a [Te ] [T~ 3 <C 4|+ S ;
s|e|E|8|E|8|8|2|8|8 |22 |5 |<8|23|&
= |~ Zz | & | = o — = s —- = S | o|Cui| Bt
Literal: . - .
Nonnumeric - - - - S - - - - - - - | P P - |-
Integer value - - -1 =1 A A - A A A 0 04fS S Al -
Noninteger value - - - = Al A - AL A A 0 0| - { - 1. A -
Boolean f«i~}»’l;-}*x-;!«‘zal-i-l~l-&l‘-l~, -{-}8
DISPLAY item: . . .
Numeric integer S A Al - A Al - A A A 0 0| S S| A -
Numeric noninteger - A A‘l',s“ A A - AlAtILALIO |} OFf- - A | =
Boolean ' b B | - r sl By s de -1‘, -f~’f“- r b B
COMP-1 or COMP-4 item: ‘ ' -
Integer - A A = A A - A A A 0 04 - - A
Noninteger - A Al -] A A - A A A 0 01 - - A
COMP-2 item - A A . A A - A A A 0 0] - - A
INDEX item -]lo}o ojof{~-|olof|lo]o ol - -l -
Index data name - 0 0 0 0 -] 0 0 0 0 01 - - -
Group item P S - S -1 =1 - - - - -1 P P -1
Alphabetic, alphanumeric, | P S| - S - - - - - - -]p p -
or edited
Arithmetic expression - 1A Al A

Boolean expression

- Illegal

A Algebraic value compare

P Character compare

Sign removed, then character compare
Occurrence number algebraic compare

1-14

60497100 F



Two "booiem pe:‘ands ean

The first nonmatching character pair establishes the
greater operand, with the higher collating sequence value
determining the greater operand.

bo character pnm'cim Comp ison
he | gta ordsr pasxtim and co t,m, untll

pnsiﬁon of the opera' 1y
' paxrs o boni

Switch-Status Condition

The switch-status condition determines whether a
specified switch is ON or OFF, Six external switches are
available, identified as SWITCH-1 through SWITCH-6.
Internal switches SWITCH-7 through SWITCH-126 are also
available for testing. Format of this condition is:

condition-name

The condition-name must be specified in the
SPECIAL-NAMES paragraph of the Environment Division
and equated to an ON or OFF status for a particular
switch., The result of the test is true only when the
particular switch associated with the condition-name is
set to the value indicated by the status. External
switches can be manipulated by the SWITCH control
statement in the job deck, by operator action at any time,

or by the terminal user during a program pause (a STOP
ith extefnal and | switches

tatement).

Sign Condition

The sign condition determines whether or not the
algebraic value of an arithmetic expression is less than,
greater than, or equal to zero. The arithmetic expression
must contain at least one reference to a variable. Format
of this condition is:

POSITIVE )
arithmetic-expression IS [NOT] NEGATIVE
ZERO ;
The result is true when:
Keyword Value
POSITIVE Greater than zero
NEGATIVE Less than zero
ZERO Zero

NOT POSITIVE
NOT NEGATIVE
NOT ZERO

Zero or negative
Zero or positive
Greater than or less than zero

60497100 F

be compared only for equality
Bouiean gnrande can 1yr‘be compamd,

COMPLEX CONDITIONS

Complex conditions are:

Simple conditions andfor complex conditions
combined with a logical operator AND or OR.

Simple conditions and/or complex conditions negated
with the logical operator NOT.

The logical operators and their meanings are:

AND Logical conjunction; true only when both
conditions are true

OR Logical inclusive OR; true when at least
one condition is true

NOT Logical negation; true when the condition is
false

Complex conditions can be negated simple conditions or
combined conditions.

Negated Simple Conditions

A simple condition is negated by the logical operator
NOT. The general format for a negated simple condition
is:

NOT simple-condition

Combined and Negated Combined Conditions

A combined condition results from connecting conditions
with one of the logical operators AND or OR., The general
format for a combined condition is:

AND I
condition condition ISP
OR

i

Condition can be any of the following:
Simple condition
Negated simple condition
Combined condition

Negated combined condition in which the logical
operator NOT is followed by a combined condition
enclosed within parentheses

Combinations of the above

1-15



Parentheses can be used to specify the order in which
individual conditions are to be evaluated. Conditions
within parentheses are evaluated first, and, within nested
parentheses, evaluation proceeds from the least inclusive
condition to the most inclusive condition. Left and right
parentheses must be paired.

When parentheses are omitted, or when parenthesized
conditions are at the same level of inclusiveness,
evaluation proceeds in the following order:

Values are established for arithmetic expressions.

Truth values for simple conditions are established in
this order:

relation

class
condition-name
switch-status
sign

Truth values for negated simple conditions are
established.

Truth values for combined conditions are established
for AND logical operators, then for OR logical
operators.

Truth values for negated combined conditions are
established.

Consecutive operations of the same level are evaluated
from left to right.

Combined conditions can be abbreviated such that the
relation-condition and relational-operator need not be
repeated for a consecutive sequence of identical
comparisons. The general format for an abbreviated
combined relation condition is:

relation-condition

The word NOT is interpreted according to the word
following NOT:

NOT is part of the relational operator when followed
by: GREATER, >, LESS, <, EQUAL, or =.

NOT is a logical operator otherwise and results in a
negated relation condition.

Examples of abbreviated combined and negated combined
relation conditions and their expanded equivalents are:

a>b AND NOT<c OR d
is equivalent to
((a>b) AND (a NOT<c)) OR (a NOT <d)

a NOT EQUAL bOR ¢
is equivalent to
(a NOT EQUAL b) OR (a NOT EQUAL ¢)

NOTa=bOR ¢

is equivalent to
(NOT (a = b)) OR (a = ¢)

1-16

NOT (a GREATER b OR<c)
is equivalent to
NOT ((a GREATER b) OR (a<c))

a /b NOT EQUAL ¢ AND NOT d
is equivalent to

((a / b) NOT EQUAL ¢) AND

(NOT ((a / b) NOT EQUAL d))

NOT (a NOT>b AND ¢ AND NOT d)

is equivalent to
NOT ((((a NOT >b) AND (a NOT >c)) AND
NOT {a NOT >d)))

ITEM AND TABLE REFERENCES

All items referenced within the Procedure Division must
be uniquely identified. User-defined words can be
qualified to achieve uniqueness. Items in a table defined
by an OCCURS clause in the Data Division can be
uniquely identified by subscripts or indexes.

Data-names and condition-names can be referenced
uniquely through a combination of qualification, indexing,
or subscripting shown below under the heading Identifier
Definition. In the formats of this manual, the term
identifier refers to a data-name uniquely referenced;
condition-name refers to a condition-name uniquely
referenced.

Qualification of user-defined words is allowed in all
formats of the Procedure Division unless qualification is
specifically prohibited by a specific format.

QUALIFICATION OF USER-DEFINED WORDS

Qualification can be used to uniquely identify user-defined
words or particular special registers. Qualification is
performed by following the user-defined name and
separator with the reserved word OF or the reserved word
IN and a qualifying word. OF and IN are logically
equivalent and can be used interchangeably.

The element that can be used as a qualifier depends on the
item being qualified, as shown in figure 1-5. A qualifying
element can, itself, be qualified. A data-name cannot be
subscripted when it is being used as a qualifier. A
user-defined name can be qualified even though it does
not require qualification. If more than one combination of
qualifiers ensures uniqueness, any such set can be used.

In format 1, each qualifier must be the name associated
with a level indicator or the name of a group item to
which the user-defined word item is subordinate.
Qualifiers are specified in the order of successively more
inclusive levels in the hierarchy. The cd-name can only be
used under NOS.

Formats 2 through 6 show the format for qualifying each
of the following:

Paragraph-name
Text-name
LINAGE-COUNTER special register

PAGE-COUNTER and LINE-COUNTER  special
registers

Data-name in a report

60497100 G



Format 1

{ data-name-1 }
condition-name

Format 2

OIE

paragraph-name [{

Format 3

e[|

} library-name ]

SE

Format 4

[0)

a1l

Format 5

{ﬁ&@.&ﬁ.@.‘Mﬂi} {lN
LINE-COUNTER

Format 6

data-name-3

,—J:s z—/:
iz ISl

[ } report-name

tcan only be used under NOS,

{{&:— } data—name-z} e

F } section—name]

LINAGE-COUNTER [{m} file—name]

-O_F } report—name]

| s
]

=

l

o

K

F} report-name ]

Figure 1-5. Qualification Format

If qualification is used to make a condition-name unique,
the associated conditional variable can be used as the first
qualifier. The hierarchy of names associated with the
conditional variable or the conditional variable itself must
be used to make the condition-name unique.

'TABLE ITEM IDENTIFICATION

References can be made to individual elements within a
table by specifying indexing or subscripting. Indexing is
usually mare efficient than subscripting. Indexing is not
allowed where subscripting is not allowed. Indexing and
subscripting cannot
strict ANSI usage

During execution, the program is responsible for
establishing a table reference that is within the bounds of
the table. Use of the DB=SB parameter on the compiler

60497100 G

call, however, causes the system to
out-of-bounds table references during execution.

diagnose

Subscripting

Subscripts can be used only when reference is made to an
individual element within a list or table of like elements
that have not been assigned individual data-names.
Figure 1-6 shows the general format of subscripting.

data-name
{oondition-name } (subscript-1 [ subscript-2

I |

[, subscript-3

Figure 1-6. Subscripting Format

1-17



The subscript can be represented either by an integer or a
data-name that defines an elementary numeric integer
item. The subscript can, but need not, have a plus sign.
Data-name cannot be an index data item nor a COMP-2
item. Data-name can be qualified, but no subscript itself
can be subscripted. In Report Writer references, neither a
sum counter nor the special registers LINE-COUNTER and
PAGE-COUNTER can be used as a subscript.

The lowest possible subscript value is 1, which points to
the first element of the table. The next sequential
elements of the table are pointed to by subscripts whose
values are 2, 3, 4, and so forth. The highest permissible
subscript value is the maximum number of occurrences of
the item as specified in the OCCURS clause.

Any subscripts must be enclosed in parentheses. They
can, but need not, be separated by commas. When more
than one subscript is required, they are written in the
order of successively less inclusive dimensions of the data
organization. Refer to the COBOL 5 user's quide for
examples of subscripting.

Indexing

References can be made to individual elements within a
table of like elements by specifying indexing for that
reference. An index is assigned to that level of the table
by using the INDEXED BY clause in the definition of a
table. A name given in the INDEXED BY clause is known
as an index-name and is used to refer to the assigned
index.

The value of an index corresponds to the occurrence
number of an element in the associated table. An index
must be initialized by execution of a SET statement, a
SEARCH ALL statement, or a format 4 PERFORM
statement before it is used as a table reference.

Figure 1-7 shows the general format for indexing. Two
types of indexing are possible:

Direct indexing occurs when an index-name is used as
a subscript.

Relative indexing occurs when an index-name used as
a subscript is followed by a literal that increments or
decrements the current value of the index-name item.

When more than one index-name is required, they are
written in the order of successively less inclusive
dimensions of the data organization.

The value of index-name during execution must be within
the range of the possible occurrence number of an
element in the associated table.

IDENTIFIER DEFINITION

In the formats in this manual, the term identifier is used
to reflect a unique reference to a data-name. If the
data-name itself is not unique in the program, the term
identifier implies that the data-name is referenced
uniquely through a syntactically correct combination of
qusalifiers, subscripts, or indexes.

Figure 1-8 shows the general format for identifiers. This
format also applies to condition-names. The cd-name can
only be used under NOS.

If references to a conditional variable require indexing or
subscripting, then references to any of its condition-
names also require the same combination of indexing or
subscripting.

{ data-name

index-name-1 [{+
eondition-—name} (

literal-1

‘index—name—Z [{ +} Iitera|—4]

' l literal-3

} literaI—Z]

index-name-3 [{1} |iteral-6]} )

literal-5

Figure 1-7. Indexing Format

1-18

60497100 G




Format 1

[' {index-name-z [{ +] Iiteral—4]} [ { index-name-3 [{ +} uteral-s] }]] |

literal-3 literal-5

Tcan only be used under NOS.

OF OF ) (file-name
data-name-1 data-name-2 | ... cd-namet [(subscript-l [ subscript-2 [, subscript—3]]
IN IN report-name
i) ]
Format 2
OF OF } (file-name index-name-1[{+} literal-2]
data-name-1 data-name-2 | . . . cd-namet (
N IN report-name literal-1

Figure 1-8. Identifier and Condition-name Unique Reference Format

60497100 H




1-20

60497100 G



Ry

IDENTIFICATION DIVISION

The Identification Division identifies the source program.
The division has one required paragraph and five optional
paragraphs. Format of the Identification Division is
shown in figure 2-1.

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
[AUTHOR. [comment-entry]]
[INSTALLATION. [oomment-entry]]
[DATE-WRITTEN. [comment-entry]]
[DATE-COMPILED. [comment-entry]]
[SECURITY. [comment-entry]]

Figure 2-1. Identification Division Format

The division header is:

IDENTIFICATION DIVISION.

The header must appear on a separate line, beginning in
area A. The separator period must terminate the header.

The first paragraph must be PROGRAM-ID. All other
paragraphs are optional, but, if present, must appear in
the arder shown.

The AUTHOR, INSTALLATION, DATE-WRITTEN, and
SECURITY paragraphs are documentary only.

NOTE

Because of anticipated changes in this product,
use of comment entries is not recommended.
For guidelines, see appendix F.

The comment-entry of the last five paragraphs in the
division can be any combination of characters from the
computer character set shown in appendix A. When the
comment extends to more than one line, the hyphen must
not appear in the indicator area.

60497100 G

PROGRAM-ID PARAGRAPH

The PROGRAM-ID paragraph (figure 2-2) gives the
program an entry point for use by the loader of the
operating system, in addition to giving the program a
name to identify output listings.

PROGRAM-ID. program-name.

Figure 2-2. PROGRAM-ID Paragraph Format

Program-name is a user-defined word. The first seven
characters of the word become the program entry point
name.

When the program is a subprogram that will be executed
as a result of a CALL statement, the program-name must
begin with a letter. If multiple programs are combined to
form a run unit, the first seven characters in the
program-name of each of the programs must be unique.

DATE-COMPILED PARAGRAPH

The DATE-COMPILED paragraph (figure 2-3) causes the
current date to be inserted in the source program listing
produced during compilation. Any comment-entry
specified is replaced during compilation with the current
date.

DATE-COMPILED. [comment-entry] . . .

Figure 2-3. DATE-COMPILED Paragraph Format

Since the date of compilation appears in the heading of
each page of the compilation output listings, the
paragraph is redundant.

2-1



——

~——

ENVIRONMENT DIVISION

Environment Division documents the configuration of the
computers used to process the program and supplies
operating system interface information. The division has
two sections, both of which can be omitted. The division
header is always required, however. A skeleton of the
Environment Division is shown in figure 3-1.

The division header is:

ENVIRONMENT DIVISION.

The header must appear on a separate line, beginning in
area A. The separator period must terminate the header.

ENVIRONMENT DIVISION.
JCONFIGURATION SECTION.
:’fSOURCE—COMPUTER. [source-computer-entry]]
%OBJECT-COMPUTER. [obiect-computer-entryﬁ
[sPECIAL-NAMES. [special-names—entry]]a
[INPUT-OUTPUT SECTION. 7
{FILE-CONTROL. { file-control-entry| . . .]
{1-O-CONTROL. input—output—oontrol-entry]]

Figure 3-1. Environment Division Skeleton

CONFIGURATION SECTION

The Configuration Section contains three optional
paragraphs: SOURCE-COMPUTER, OBJECT-
COMPUTER, and SPECIAL-NAMES. The entire section
can be omitted.

The section header is:

CONFIGURATION SECTION.

The header must appear on a separate line, beginning in
area A. The separator period must terminate the section
header. A header without following paragraphs can
appear.

SOURCE-COMPUTER PARAGRAPH

The SOURCE-COMPUTER paragraph documents the
computer upon which the program is to be compiled and
selects the debugging facility. The paragraph is optional.
The skeleton for the SOURCE-COMPUTER paragraph is
shown in figure 3-2. The paragraph header is:

SOURCE-COMPUTER.

The computer-name clause must appear first; other
clauses can be in any order.

60497100 F

SOURCE-COMPUTER. [computer-name clause

DEBUGGING MODE clause.]

Figure 3-2. SOURCE-COMPUTER Paragraph Skeleton

Computer-name Clause

The computer-name clause is documentary only.
Computer-name must conform to the syntax of a
system-name. The system-name CYBER or CYBER-170 is
recommended for its documentary value. Clause format
is:

computer-name

DEBUGGING MODE Clause

The DEBUGGING MODE clause specifies that all USE
FOR DEBUGGING declarative statements and all
debugging lines in the program are to be compiled as
executable code. See section 10, Debugging Aids.

OBJECT-COMPUTER PARAGRAPH

The OBJECT-COMPUTER paragraph documents the
computer on which the program is to be executed, selects
the collating sequence for nonnumeric c¢ mparlsons, and
specifies a segment section limit. T . s
v The skeleton for the OBJEC’T;COMPUTER
ph is shown in figure 3-3. The paragraph header is:

OBJECT-COMPUTER.

The computer-name clause must be first; other clauses
can appear in any order.

OBJECT-COMPUTER. Ecomputer—name clause
[, COLLATING SEQUENCE clause]
[, SEGMENT-LIMIT clause] .}

Figure 3-3. OBJECT-COMPUTER Paragraph Skeleton

Computer-name Clause

The computer-name clause is optional and documentary
only. Computer-name must conform to the syntax of a
system-name. The system-name CYBER or CYBER-170 is
recommended for its documentary value. Clause format
isz

computer-name




COLLATING SEQUENCE Clause

The COLLATING SEQUENCE clause (figure 3-4) specifies
the collating sequence used to determine the truth value
of all nonnumeric comparisons in a program, including
comparisons for:

Sort or merge operations

Keys of records in files with random organization

Control break processing of report

PROGRAM COLLATING SEQUENCE IS alphabet-name

Figure 3-4. COLLATING SEQUENCE Clause Format

The values of the figurative constants HIGH-VALUE and
LLOW-VALUE are also affected by this clause.

If the clause is omitted, the collating sequence associated
with the native character set is used for all nonnumeric
comparisons, unless another sequence is specified for a
sort. The native character set is defined by the
installation.

The collating sequence specified in the
OBJECT-COMPUTER paragraph can be overridden during
execution.

For nennumeric
can be changerd
statement.

For sort or merge operations, the collating sequence
can be changed by includipg the COLLATING
SEQUENCE clause in the SORT tatemenl;w or th
MERGE statement, It
execution of a format 3 5E

T statement.

The alphabet-name of the clause identifies the selected
collating sequence. It must be the same as an
alphabet-name  specified in the SPECIAL-NAMES
paragraph. Refer to the ALPHABET clause discussion.

SEGMENT-LIMIT Clause

The SEGMENT-LIMIT clause defines  permanent
segments. See section 8, Segmentation Facility.

SPECIAL-NAMES PARAGRAPH

The SPECIAL-NAMES paragraph (figure 3-5) relates
implementor-names to user-specified mnemonic-names
and relates alphabet to character sets and/or collating
sequences. It can also be used to specify the alternative
representation of the guotatis .and  currency
symbol, the alternative use of
col nctuation i

agn
The paragraph header is:
SPECIAL-NAMES.

3-2

SPECIAL-NAMES. [implementor-name clause] . . .
[; ALPHABET clause] . . . [; CURRENCY SIGN clause]

[ SWITCH—n clause]

Figure 3-5. SPECIAL-NAMES Paragraph Skeleton

Implementor-name Clause

The implementor-name clause (figure 3-6) establishes a
mnemonic-name for reference in Procedure Division
statements. More than one implementor-name clause can
appear.

When the implementor-name is a file name of
"TERMINAL" or CONSOLE, the clause associates the
file with a mnemonic-name for reference in an
ACCEPT statement or DISPLAY statement.

When the implementor-name is a single carriage
control character enclosed in quotation marks, the
clause associates the character with a
mnemonic-name for reference in the ADVANCING
phrase of a WRITE statement.

implementor-name IS mnemonic-name

Figure 3-6. Implementor-name Clause Format

File Name as implementor-name

Any valid logical file name can be specified as an
implementor-name and equated to a mnemonic-name.
The mnemonic-name is then used in ACCEPT and
DISPLLAY  statements. When the names INPUT,
TERMINAL, and OUTPUT are specified as
implementor-names, they should be enclosed in quotation
marks (for strict ANSI usage) because they are COBOL;
reserved words. They
impiementar names,
Quotes.

See the ACCEPT and DISPLAY statements in the
Procedure Division for processing possible with particular
implementor-names: "INPUT", "OUTPUT", "OUTPUT-C",
"TERMINAL", "TERMINAL -C", and CONSOLE.

are specified wit the

Files specified in this clause cannot be named in a
SELECT clause in a File-Control entry, with the exception
of "INPUT" and "OUTPUT".

Carriage Control Character as implementor-name

An implementor-name that consists of a single carriage
control character enclosed in quotation marks is a

carriage control character associated with  a
mnemonic-name. A reference to the mnemonic-name in

the ADVANCING phrase of a WRITE statement causes
that carriage contro! character to be added to the
beginning of the line being output.

60497100 F

N

S



Full carriage control characters are shown in the
operating system reference manuals. The more commonly
used characters and their effects are:

Character Effect
space Single space
1 Eject page before print
1] Double space

- Triple space

+ Suppress space befare print

ALPHABET Clause

The ALPHABET clause (figure 3-7) relates an
alphabet-name to a collating sequence or to a character
set. The clause is required in the following instances:

COLLATING SEQUENCE clause is used in an
OBJECT-COMPUTER paragraph of the Environment
Division.

CODE-SET clause is used in an FD entry in the Data
Division.

COLLATING SEQUENCE clause or a CODE-SET
clause is used in a SORT statement or a MERGE
statement in the Procedure Division.

The clause can appear several times to specify different
character code sets or collating sequences for different
operations within the program.

NOTE

Refer to appendix F for recommendations on the
use of collating sequences.

A system-defined character set and associated collating
sequence is selected by one of the keywords shown in the
clause format. The collating sequence for the character
set NATIVE is redefined through the literal phrase of the
clause.

Each of the following system-defined code sets and
collating sequences is shown in appendix A:

ASCII-64

CDC 64-character subset of the 12B-character code
set defined in American National Standard X3.4-1968,
Code for Information Interchange

CDC-64

CDC 64-character code set for the computers on
which COBOL 5 is supported

EBCDIC

CDC 64-character subset of the 12B-character code
set defined for IBM System 360/370 computers

NATIVE

Can be either CDC-64 or ASCII-64, depending on
installation option

STANDARD-1
Equivalent to ASCII-64
UNI

Collating sequence associated with the UNIVAC 1100
series computer

The character that has the highest ordinal position in the
program collating sequence named in the ALPHABET
clause is associated with the ~ figurative constant
HIGH-VALUE. If more than one character has the highest
position in the program collating sequence, the last
character specified is associated with the figurative
constant HIGH-VALUE. Likewise, the character that has
the lowest position (or the first character specified for
the lowest position) is associated with the figurative
constant LOW-VALUE.

NATIVE
CDC-64
ASCII-64
EBCDIC
unt

(mm

AEPHABET alphabet-name IS

THRU i
{ THROUGH } literal-2
literal-1 ——

ALSO literal-3 [, ALSO literal-4] . . .

{THRU

. WUGH } literal-6
, literal-5 B

ALSO literal-7 [, ALSO literal-8] . . .

60497100 F

Figure 3-7. ALPHABET Clause Format




Literal Phrase

The literal phrase of the ALPHABET clause redefines the

collating sequence for the native character set. The first
character identified in the phrase becomes the lowest

position in the collating sequence; subsequent characters
assume ascending contiguous positions. Figurative
constants cannot be specified in this clause.

Characters in the native character set can be identified in
one of two ways:

When the phrase specifies a numeric literal, the
character is identified as the character occupying
that position in the native character set. For
example, the following clause causes the 1llth, 12th,
and 13th characters in the set (J, K, and L) to occupy
contiguous ascending positions in the collating
sequence:

MYALPH 11, 12, 13

Numeric values in the literal phrase must be 1
through 64, (64 is the number of characters in the
native character set). Values greater than 64 are
ignored. The order of characters in the native set is
shown in the table named Standard Character Sets in
appendix A.

When the phrase specifies a nonnumeric literal, the
character is identified directly. For example, the
following clause causes characters J, K, and L to
occupy contiguous ascending positions in the collating
sequence:

MYALPH "J", "K", "L"

Each character can be specified as its own
nonnumeric  literal; alternatively, characters in
contiguous ascending collating sequence positions can
be specified as a single nonnumeric literal. For
example, the following clause causes characters J, K,

and L to occupy contiguous ascending positions in the
collating sequence:

MYALPH "JKL"

No character can be specified more than once in the
literal phrase. The order in which literals appear in the
literal phrase specifies the ordinal positions of the
characters in ascending sequence. The first character
identified has the lowest position and is associated with
the figurative constant LOW-VALUE.

The THRU phrase, or its equivalent THROUGH, assigns a
range of contiguous characters in the native character set
to ascending positions in the collating sequence.
Contiguous characters, beginning with the character
identified by literal-1 and ending with the character
identified by literal-2, are assigned successive ascending
positions. Literal-1 and literal-2 can specify characters in
either ascending or descending order. For example, the
following clause causes characters M, L, K, J, and | to
occupy the first five positions in the collating sequence,
with M in the lowest position:

ET MYBET "M" THRU "I"

The ALSO phrase allows more than one character to be
assigned to the same position in the collating sequence.
Therefore, if this phrase is specified, literal-1, literal-3,
and literal-4 are assigned the same position in the
collating sequence.

3-4

1f the ALSO phrase has been specified and an OPEN
statement is executed for an indexed file or a file with
alternate keys (under Advanced Access Methods only), a

CYBER Record Manager error results and the run is
aborted. Use of the ALSO phrase should be avoided since

it causes a noticeable degradation in execution time.

CURRENCY SIGN Clause

The CURRENCY SIGN clause (figure 3-8) specifies a
character for the currency symbol. In a source program,
the character specified is accepted in a PICTURE clause
as a currency symbol in addition to the standard currency
symbol. During execution, only the character specified by
this clause is produced for edited items. When the clause
is omitted, only the standard currency symbol is accepted
in a PICTURE clause. (The standard currency symbol is $
or #, depending on the character set in use.)

CURRENCY SIGN IS literal

Figure 3-8. CURRENCY SIGN Clause Format

In the clause, the literal must specify a single nonnumeric
character., Any character can be specified except
PICTURE clause editing symbols or the characters: C )
L R ) ("= orspace. -

DECIMAL-POINT Clause

The DECIMAL-POINT clause (figure 3-9) interchanges the
functions of the comma and the period in the

character-string of the PICTURE and in numeric literals.
The effects of this clause are discussed with the PICTURE

clause in the Data Division.

DECIMAL-POINT IS COMMA

Figure 3-9. DECIMAL-POINT Clause Format

60497100 F



pas—

SWITCH-n Clause

The SWITCH-n clause (figure 3-12) associates the ON and
OFF status of an external or internal software switch with:

A condition-name for reference in an IF statement.

To comply with strict ANSI usage, the clause, when
specified, must immediately follow an implementor-name
clause if one is present. If one is not present, the
SWITCH-n clause must be the first clause in the paragraph.

The SWITCH-n clause can appear as often as necessary in
a source program. The same condition-name, however,
should not appear in more than one SWITCH-n clause,
because the name cannot legally be qualified in the
Procedure Division.

The switches that can be specified in the clause are
SWITCH-1 through SWITCH-126. SWITCH-6 has special
meaning for debugging, as discussed in section 10,
Debugging Aids. SWITCH-1 through SWITCH-6 are
equivalent to the external switches 1 through 6 that can
be defined for each job in the system. SWITCH-7 through
SWITCH-126 reference internal COBOL switches that are
set to the OFF status prior to the execution of a COBOL
program.

Prior to program execution, the external switches can be
set on or off by control statements in the job or by
commands from a terminal. The central site operator also
has a command that can change external switch setting.

During program execution, the status of an external or
internal switch can be altered by a format 4 SET
statement” that references mnemonic-name. Alteration
of an external switch is global to a job. An internal
switch is local to a job step.

In the clause, mnemonic-name is the name by which the
switch is referenced within the program. If the switch is
not to be referenced in a format 4 SET statement,
mnemonic-name is not required.

Condition-name-1 and condition-name-2 are user-defined
words. They represent, respectively, the condition-name
associated with the ON status and OFF status for a
switch. Condition-name is used to reference the status of
a switch set externally to the program or within the
program.

INPUT-OUTPUT SECTION

The Input-Output Section specifies information needed to
control transmission and handling of data between a

storage device and the executing program. The section
consists of two paragraphs, FILE-CONTROL and
I-O-CONTROL, both of which canibe ormitted. If the
entire section is omitted, no file input or output is
possible, except through ACCEPT and DISPLAY
statements.

The section header is:

INPUT-QUTPUT SECTION.

The header must appear on a separate line, beginning in
area A. The separator period must terminate the section
header. A header can appear without following
paragraphs.

FILE-CONTROL PARAGRAPH

The FILE-CONTROL paragraph contains File-Control
entries that name each file referenced in the program and
specify other file-related information. The information
specified in a File-Control entry depends on the file
organization.

SWITCH-n

ON STATUS |S condition-name-1
OFF STATUS IS condition-name-2

. ON STATUS IS condition-name-1
IS mnemonic-name | GEF STATUS IS condition-name-2

[, OFF STATUS IS condition-name-2]
[, ON STATUS 1S condition-name-1]

Figure 3-12. SWITCH-n Clause Format

60497100 F



The organization of a file is established at the time the
file is created and cannot be subsequently changed. All
references to an established file must specify, either
implicitly or explicitly, the correct file organization. The
file organizations are:

Sequential

Relative

Indexed

All except relative files are implemented according to the
CYBER Record Manager file organizations of similar
names. Relative files are implemented through
word-addressable files with fixed-length records. The
CYBER Record Manager manuals, in particular the user
guides, present full discussions of the physical and logical

manuals for information about the implications of
parameters of the USE clause or the FILE control
statement, alternative means of specifying file structure
or processing, and utilities available for specific file
organizations.

All of the file organizations, except sequential, have a
unique key associated with each record in the file: system
interpretation of the key item distinguishes the different
organizations. Use of mass storage, processing available,
and access time differ for each organization. Table 3-1
contrasts some organization characteristics. All except
sequential files must reside on rotating mass storage.

NOTE

Refer to appendix F for recommendations on the

structures of the different organizations.

Consult these

use of file organizations.

TABLE 3-1. FILE ORGANIZATION SUMMARY

File Organization
Characteristic
Sequential Indexed Direct Actual-Key Relative Word-Address
File Mass storage | Mass storage [Mass storage | Mass storage Mass storage |Mass storage
residence or tape
Record Fixed or Fixed or Fixed or Fixed or Fixed Fixed or
Tengths variable variable variable variable variable
Key None Integer, Integer, Block and Record number | Record word
contents decimal, decimal, record number | ordinal number
character character
string string
Alternate Not appli- Yes Yes Yes No No
key cable
Physical file |Contiguous Index blocks, [Data blocks Data blocks Continuous Continuous
structure records; data blocks; |preallocated | continuous record slots |word slots
blocked on padding in record slots
tape blocks but no
record gaps
Logical file Continuous Sorted by Random Sorted by Sorted by Record at
structure records; ascending according to | block and record word address
blocked on key value hashed key record slot ordinal
tape value
Updating Add to end, Replace, Replace, Replace, Replace, Replace,
possible replace on delete, delete, delete, delete, insert
mass storage | insert insert insert insert
Sequential By position Sorted Unsorted Sorted by Sorted by By
access block ordinal position
Random access |None By key By key By key By key By key
Utilities COPY copy; COPY copy; COPY copy; COPY copy; COPY copy COPYBR
available FORM restruc-| FORM restruc- |FORM restruc- | FORM restruc- copy
ture ture; IXGEN/ |ture; IXGEN/ | ture IXGEN/
MIPGEN add or |MIPGEN add or | MIPGEN add or
delete alter- |delete alter-| delete alter-
nate keys; nate keys; nate keys
ESTMATE select]CREATE
block size; creation;
SISTAT KYAN key
statistics analysis
3-6

60497100 F



The clauses in the File-Control entry are specified in
alphabetical order after the discussions of the different
file organizations. SELECT must be the first clause;

other clauses can appear in any order with the exception
of the RELATIVE KEY clause.

Sequential File Organization

Sequential files can exist on tape, cards, or mass storage.
Files connected to a terminal must be sequential. The
location of any given file record is immediately following
the previously written record and immediately before the
subsequently written record. The order in which records
are referenced in WRITE statements determines the order
in which they can be retrieved by READ statements.

Records in the file can be fixed or varying length
according to the Record Description entries for the file.

Sequential files offer processing advantages when all file
records are always processed. The program is responsible
for any ordering of the file.

The skeleton of a File-Contro!l entry for a sequenti. !
is shown in figure 3-13.

SELECT clause

[; ACCESS MODE 1S SEQUENTIAL]

; ASSIGN clause

[; FILE STATUS clause]

[; ORGANIZATION IS SEQUENTIAL]
[; RESERVE clause]

Figure 3-13. Sequential Organization File-Control
Entry Skeleton

Relative File Organization

A record key for a relative file is an integer representing
the ordinal of the record in the file. Key value 22
represents the 22nd record in the file; key value 5678
represents the 5678th record in the file, and so forth. The
RELATIVE KEY clause defines the key item for the file.

Since all records in the file have the same length, a record
with any given key value has a predetermined location in
the file. (If the Record Description entries specify
variable length records, the system uses the length of the
largest record for allocating file space for each record.)
If the first record written to the file has a value of 890,
the file on mass storage has, at that time, enough storage
space to accommodate records with key values 1 through
889 also. The system does not retrieve information from
an ordinal position unless a valid record has previously
been written to that position.

Relative files have a fixed access time. Only one mass
storage access is required by the system to return a

record to a program. Unused space exists on mass storage
when key values for relative file records are not
contiguous and do not begin with record ordinal 1.

60497100 F

The skeleton of a File-Control entry for a relative file is
shown in figure 3-14.

SELECT clause
(1; ACCESS MODE clause]
[, RELATIVE KEY clause]]
; ASSI™N clause
[; FILE STATUS clausel
; ORGANIZATION IS RELATIVE
[; RESERVE clause]

§ USE elaiise]

Figure 3-14. Relative Organization File-Control
Entry Skeleton

Indexed File Organization

When Advanced Ar ess Methods (AAM) indexed sequential

~~e installed, one of two types of indexed file

v 1s selected: initial indexed sequential or

=nded indexed sequential. The type of indexed file to

be used is specified through the ORG parameter of the

USE clause or the FILE control statement. ORG=0OLD

indicates that a file is in initial indexed sequential format;

ORG=NEW indicates that a file is in extended indexed
sequential format.

If extended indexed sequential files have been installed
ORG=NEW, which is the default, can be specified to
indicate that the file is in the extended indexed sequential
format. If a file in initial indexed sequential format is to
be created or accessed and extended indexed sequential
files have been installed ORG=0OLD must be specified.

If extended indexed sequential files have not been
installed, the ORG parameter must not be specified.

Records in an indexed file can be fixed or varying length
in any combination. Each record has a unique primary key
and might have alternate records keys within it. The
primary key item is defined by the RECORD KEY clause;
alternate record key items are defined by ALTERNATE
RECORD KEY clauses.

A primary key can be a string of characters gr @ number
with or without a decimal point or sign. Usually, a
primary key value would be a name or number that has
logical meaning to the program or programmer. The
system uses the nummerie value or collating sequence value
of the primary key to determine the location of the record
in the file: records always are in physical and logical
order by ascending primary key values. When an indexed
file is read sequentially from beginning to end, all records
are retrieved in sorted order according to primary key
value.

The first record written to the file can have any primary
key value. The system places the next record written
before or after the first record as necessary to maintain
the records in sorted order. Storage for the file is not
preallocated; rather a data block is created to hold

records as the need arises. Overflow records, as such, do
not exist. The system splits an existing data block when it

is full, so that the physical and logical ordering is always
maintained. The size of a data block is established by the
BLOCK CONTAINS clause of the Data Division.

3-7



In addition to data blocks, indexed files have index blocks
created and maintained by the system to hold information
about data block location and contents. Indexes are

arranged in levels: as long as the number of index levels
does not increase, record access time does not increase

when the number of records in the file increases.

Alternate record keys can be defined for indexed files.
The system indexes the alternate record keys on a
separate file that must be preserved by the job that
creates or updates the file. Only -the primary key
determines record position in the data blocks.

Indexed files offer advantages for processing large files
that are to be accessed randomly by key as well as
sequentially in sorted order. They can be structured so
that large inserts do not increase the time needed to
access a file record. When an indexed file is being
created, the sequential access mode should be used for
most efficient processing.

The File-Control entry skeleton for an indexed file is
shown in figure 3-15.

SELECT clause

[; ACCESS MODE clause]

[; ALTERNATE RECORD KEY clause]
; ASSIGN clause

[; FILE STATUS clause]

; ORGANIZATION IS INDEXED

; RECORD KEY clause

Figure 3-15. Indexed Organization File-Control
Entry Skeleton

60497100 F



60497100 F

3-9



ACCESS MODE Clause

The ACCESS MODE clause (figure 3-19) specifies the
manner in which records are to be operated upon within
the system. If the clause is omitted, ACCESS IS
SEQUENTIAL is assumed.

SEQUENTIAL
RANDOM

ACCESS MODE IS
DYNAMIC ‘

Figure 3-19. ACCESS MODE Clause Format

For relative files, the ACCESS MODE clause must
immediately precede any RELATIVE KEY clause.

For files with sequential organization, only SEQUENTIAL
can be specified. For files being created with indexed
organization, SEQUENTIAL should be specified for most
efficient processing. For all other organizations, access
mode can be SEQUENTIAL, RANDOM, or DYNAMIC.

SEQUENTIAL
Allows access by sequential position only.
RANDOM

Allows access by key values only. The programmer
controls the sequence in which records are accessed
by specifying the key value for the record needed.

DYNAMIC

Allows access by sequential position and by key
values intermixed. The programmer changes from
sequential access to random access at will by using
appropriate formats of the input-output statements.

The ACCESS MODE clause, in conjunction with the OPEN
statement of the Procedure Division, establishes the
input-output statements that can be used for a given file.
Table 3-2 shows ACCESS MODE clause and OPEN
statement interaction.

ALTERNATE RECORD KEY Clause

The ALTERNATE RECORD KEY clause (figure 3-20)
specifies a key item that defines an alternate record key
fqr indexed, direct, or actual-key files

The clause must be repeated for each alternate record

key. As many as 255 alternate record keys can be defined
for a given file.

Data-name-1 must specify a data item defined within a
Record Description entry for the file. The relative
location of the item within the record and the item
description must not change for the life of the file.

An item of category alphanumeric
specified as an alternate record key; that |s, the item

least one X

. scribed
USAGE IS COMP-1. Alternate keys cannot ‘exceed 255
characters in length, or, if numeric, a numeric value that
can be stored in a single memory word.

must be described by a PXCTURE clause contamlng at
V] IC tai ’

Figure 3-20. ALTERNATE RECORD KEY Clause Farmat

3-10

60497100 H



TABLE 3-2. INPUT-OUTPUT STATEMENTS ALLOWED BY ACCESS MODE AND OPEN MODE

File Organization
Open s
Mode Sequential Relative Iggeﬁgl’m?lx;t’ Word-Address
Statement 0 I-0 E I 0 I-0 1 0 I-0 I 0 I-0
READ X X X X X X X X
= WRITE X X X X X
t | REWRITE X X X
-
g | START X x | X X
DELETE X X
§ READ X X X X X X
> g |MRITE x| x X | x x | x
w
3 2 | REWRITE X X
]
< -
@ START
* DELETE X X
READ X X X X X X
o WRITE X X X X X X
8 | REWRITE X X
>
S | START X X X X
DELETE X X
I INPUT specified in OPEN statement.
0 OUTPUT specified in OPEN Statement.
I-0 1-0 specified in OPEN statement.
E EXTEND specified in OPEN statement.
X Statement is allowed for organization and open mode.
blank Statement is not allowed for organization and open mode.

Data-name-1 cannot reference an item whose leftmost
character position corresponds to the leftmost character
position of an item named in the RECORD KEY clause or

60497100 F

of any other data-name item in an ALTERNATE RECORD
KEY clause associated with this file; that is, an alternate
record key cannot begin in the same location as th
primary key or any other alternate record key. |

25

DUPLICATES Phrase

The DUPLICATES phrase specifies that more than one
record can contain the same value for a specific alternate
record key. If the DUPLICATES option of the
ALTERNATE RECORD KEY clause is not specified,
alternate key values must be different for a specific key
for each record in the file. If not, a duplicate value
encountered on a write causes execution of the INVALID
KEY clause.




The order of primary key values within a set of duplicates
depends ‘on the presence or absence of the ASCENDING
option of the DUPLICATES phrase. The ASCENDING

option specifies that records are to be returned in
ascending primary key order when records within a set of

duplicates are read sequentially. The ascending order is
established by the collating sequence in effect for
alphanumeric keys. If the ASCENDING option is omitted,
primary key values associated with a given alternate key
value are maintained in the order in which they were
written to the file (first in, first out). Refer to the
Muitiple-Index Processor (MIP) user's guide for further
discussion on index file structure.

3-12

ASSIGN Clause

The ASSIGN clause (figure 3-21) specifies the name by
which the operating system identifies the file. This clause
is required for all files.

ASSIGN TO implementor-name-1

[,implementor-name-2] . . .

Figure 3-21, ASSIGN Clause Format

Implementor-name-1 specifies the name by which the
operating system identifies the file-name used in the
SELECT clause. It must be one through seven letters or
digits beginning with a letter. Implementor-name-1 is the
logical file name parameter used on control statements
for functions such as permanent file catalog or magnetic
tape request. Files can be assigned special dispositions
and other characteristics by using implementor-names
that correspond to the special-named files of the
operating system. See the operating system reference
manual for information about files with logical file names
such as INPUT, OUTPUT, PUNCH, PUNCHB, P80C, and
Ps.

Since INPUT and OUTPUT are reserved words, they should
be enclosed in quotes if they are used S
implementor-names (for strict  ANSI usage)

.

Ut implementor-name
that duplicates the file-name or that duplicates any other
data-neme in the program must be enclosed in quotes.
See the ACCEPT and DISPLAY statements for
information about implementor-names associated with the
terminal or operator console.

Implementor-name-2 is the logical file name of the index
file for an indexed, direct, or actual-key file that has
alternate record keys. It must be one through seven
letters or digits beginning with a letter. The job is
responsible for preserving the index file between jobs and
for making it available on mass storage to any job that
updates the file specified by file-name or to any job that
reads the file specified by file-name using alternate
record keys. Implementor-name-2 is the logical file name
used on control statements for permanent file functions.

Any additional implementor-names are checked for
syntax, but they do not affect program execution.

More than one file can be assigned to the same
implementor-name and the same implementor-name can

be assigned in a main program and a subprogram. Only
one of the files assigned to an implementor-name can be
open at a given time, however.

60497100 F




execution of the statements: CLOSE, DELETE, OPEN,
READ, REWRITE, START, and WRITE. When the clause
is omitted, the program can detect file-related errors and
the at-end condition through a USE AFTER ERROR
PROCEDURE declarative procedure or through an AT
END or an INVALID KEY phrase imperative-statement in
the Procedure Division, depending on the particular error
or condition involved.

FILE STATUS IS data-name

Figure 3-23, FILE STATUS Clause Format

The data-name specified must be a two-character
alphanumeric category data item that is defined in other
than the File Section or Report Section. File

Status values that might be
returned and their meanings are in table 3-3.

The use of FILE STATUS for detection of errors or file

FILE STATUS Clause position is limited for data base files. The only file

position returned by CDCS is end-of-file. CDCS errors
The FILE STATUS clause (figure 3-23) specifies a data are not reflected in the FILE STATUS data item. Refer
item in which the system returns a status code during to section 14, Sub-Schema, for further information.

TABLE 3-3. FILE STATUS VALUES

Value Meaning
00 Successful execution.
02 Successful execution:
READ Key value for the current key of reference is equal to the value of

that same key in the next record within the current key of reference.

WRITE or Record just written created a duplicate key value for at least one
REWRITE alternate record key.

10 At-end condition.
21 Invalid key condition from a sequence error:
WRITE Indexed file must be created with ascending prime key values.

REWRITE  Primary key cannot change between format 1 READ and REWRITE.

22 Invalid key condition because duplicate key values are not allowed.

23 Invalid key condition because no record with a specified key exists in the file.

24 Invalid key condition because of a boundary violation of a relative or indexed file.

30 Permanent error, such as parity error, transmission error, or mass storage
unavailable.

34 Permanent error because of boundary violation; limit established by the FLM
parameter of a FILE control statement reached.

90 CYBER Record Manager error other than those listed above.

99 COBOL detected error.

60497100 G 3-13



AT END, Status 10

The at-end condition might occur as a result of the
execution of a READ, RETURN, or SEARCH statement. In
general, the condition indicates the end of a file, but can
also indicate the end of a table.

When the at-end condition occurs, execution of the
input-output statement that recognized the condition is
unsuccessful and the file is not affected. The following
actions take place:

The FILE STATUS data item, if any, is set to 10.

Control transfers to any imperative-statement
specified by an AT END phrase in SEARCH or the
input-output statement; any procedure specified by a
format 1 USE statement declarative for the file is not
executed.

When an AT END phrase is not included in the input-output
statement, any procedure specified by a format 1 USE
statement declarative executes.

INVALID KEY, Status 2n

The invalid key condition might occur as a result of
DELETE, READ, REWRITE, START, or WRITE statement
execution when a file is being written or updated by key.
In general, the condition indicates an illegal operation,
such as a write of two records with the same key, but could
also indicate that the key data item is incorrectly
formatted.

When the invalid key condition occurs, execution of the
input-output statement that recognized the condition is
unsuccessful and the file is not affected. The following
actions take place:

The FILE STATUS data item, if any, is set to one of
the values associated with an invalid key condition.

Control transfers to any imperative-statement
specified by an INVALID KEY phrase in the
input-output statement; any procedure specified by a
format 1 USE statement declarative for the file is not
executed.

When an INVALID KEY phrase is not included in the
input-output statement, any procedure specified by a
format 1 USE statement declarative executes.

CYBER Record Manager Error, Status 90

An error detected by CYBER Record Manager, the system
routines that execute input-output statements, is not
reported in detail in the FILE STATUS data item. To learn
the specific error, the following statement must be
executed:

ENTER "C.IOST" USING file-name, data-name-1,
data-name-2.

3-14

File-name is the name of the file in which the error was
detected. Data-name-1, which must be a four-digit integer
described as USAGE IS COMP-1 in its Data Description
entry, receives one of the detailed error codes listed in the
CYBER Record Manager reference manuals, COBOL
returns the decimal equivalent of the error code (an octal
value) listed in the CYBER Record Manager reference
manuals; for example, for the CYBER Record Manager
error code 142 (octal)) COBOL returns the code 142
(decimal). Therefore, the user can use without translation
the code returned in data-name-l. Data-name-2, which
must be a one-character alphanumeric data item, receives
a letter to indicate the severity of the error as classified
by COBOL. The letters returned to data-name-2 can be F
or T. The following items indicate the significance of the
classification:

F Fatal error. Usually, this code is returned only
when the C.IOST routine is called in a USE
AFTER STANDARD ERROR declarative
procedure; execution of the program is aborted
after execution exits from the declarative. To
help prevent the abort of program execution, the
ENTER "C.IOENA" statement can be executed
before exiting the USE AFTER STANDARD
ERROR declarative procedure; however,
execution of the C.IOENA routine cannot always
prevent the abort of execution. If the program
error limit as indicated by the ERL field of the
file information table (FIT) is exceeded, CYBER
Record Manager overrides the routine and aborts
program execution.

T  Trivial error. Further input-output operations are
possible for the file unless CYBER Record
Manager aborts program execution because the
trivial error limit as indicated by the ERL field of
the FIT is exceeded. Even if program execution
continues, trivial errors might have serious
impact on file integrity or results needed, and, in
general, should not be ignored. COBOL treats
CYBER Record Manager error codes 040, 052,
060, 135, 137, and 176 as trivial errors. The
parity error codes, 135 and 137, which a user may
want to be treated as trivial, are usually fatal
errors. These parity error codes are treated as
trivial errors only if the error option (EO) field of
the FIT is set (via a FILE control statement or
USE clause) to a value other than the default
value. (For further information about the EO
field see the CYBER Record Manager Basic
Access Methods reference manual.)

COBOL Detected Error, Status 99

COBOL detected an error, such as open input on a
nonexisting file. An appropriate error message has been
output to the dayfile. To learn the specific error, the
following statement must be executed:

ENTER "C.IOST" USING file-name, data-name-1,
data-name-2.

Execution of the above statement returns an error code
that is dependent on the dayfile messages as listed in
table 3-4. Refer to CYBER Record Manager Error,
Status 90 in this section for a description of file-name,
data-name-1, and data-name-2.

60497100 H



TABLE 3-4, COBOL-DETECTED ERROR CODES

Error

Codes Execution Diagnostics

2001 RECORDING MODE BINARY ON ADVANCING FILE

2002 RECORD TYPE NOT PRINTABLE ON AN
ADVANCING FILE

2003 ATTEMPT TO OPEN FILE WITH SAME NAME AS
AN OPEN FILE

2004 FILE OPENED INPUT OR I-O DOES NOT EXIST
2005 ATTEMPT TO OPEN ‘A LOCKED FILE

2006 HOME BLOCK COUNT NOT SPECIFIED FOR A
NEW DA FILE

2007 RECORD LENGTH ON OLD RELATIVE FILE DIFF
THAN PROGRAM

2010 RELATIVE FILE HEADER NOT VALID
2011 OLD RELATIVE FILE EMPTY - NO HEADER

2012 DELETE OR REWRITE ON SEQ ACCESS FILE
WITH NO VALID READ PRECEDING

2013 READ ... NEXT WITH UNDEFINED CURRENT
REC POINTER

2014 REWRITE RL DOES NOT EQUAL OLD RL

2015 ILLEGAL RECORD TYPE FOR REWRITE

2016 MULTI-FILE FILE NOT ASSIGNED TO TAPE
2017 READ ON FILE OPENED FOR OUTPUT

2020 ATTEMPT TO OPEN FILE OPENED BY ACCEPT
OR DISPLAY AND PROCESSING DIRECTION
DIFFERS

2021 DELETE FILE ON OPEN FILE - IGNORED
2022 AT END WHILE TRYING TO ACCEPT FROM FILE

2023 RELATIVE FILE CREATED WITH PRUF=YES BUT
REQPENED AS NON PRUF

2024 MRL OR FL SET IN FILE STATEMENT IS
LARGER THAN RECORD AREA-TRUNCATED TO
RECORD AREA SIZE

1f the declarative USE AFTER STANDARD ERROR is
selected for the file in error, executing an ENTER
"C,IOENA" statement prevents the abort (resulting from
the current error) that would normally occur after the
declarative is executed. To prevent aborts resulting from
subsequent errors in the same file, the ENTER "C.IOENA"
statement must be reexecuted. The appropriate error
message continues to appear in the dayfile when the
ENTER "C.IOENA" statement is used.

60497100 H

ORGANIZATION Clause

The ORGANIZATION clause (figure 3-24) specifies the
structure of a file. It is required for any organization
other than sequential. When the clause is omitted,
sequential organization is assumed.

SEQUENTIAL
RELATIVE
INDEXED

ORGANIZATION IS

Figure 3-24. ORGANIZATION Clause Format

RECORD KEY Clause

The RECORD KEY clause (figure 3-25) specifies an item
that defines the primary key for records in indexed, direct,
or actual-key files. The clause is required in any program
that accesses a file with these organizations.

RECORD KEY IS data-name

Figure 3-25. RECORD KEY Clause Format

During execution, the data item referenced by data-name
specifies the value of the primary key. Values assigned
must be unique among records of a file.

Data-name must specify a fixed length item within the
Record Description entry assoc:ated with the file ¢ “
itern defined in the' i Section. The relatlve
position of the item within ‘the record and the item
description cannot change for the life of the file. The
description of data-name is affected by the file
organization.

For indexed files, data-name can be a category
alphanumerlc or numerlc elementary or group item. £
data-

with the DEPENDING ON phrase of an OCCURS clause
cannot be specified. An alphanumeric item cannot exceed
255 characters.

3-15



RELATIVE KEY Clause

The RELATIVE KEY clause (figure 3-26) specifies the key
item for a file with relative organization. During
execution, the key item specifies a relative record number
within the file. The ordinal of the first record in the file
is 1. The clause must be specified for relative files that
are open in the random or dynamic access mode or that are
referenced by a START statement.

RELATIVE KEY IS data-name

Figure 3-26. RELATIVE KEY Clause Format

When the clause is specified, it must immediately follow an
ACCESS MODE clause.

The data item referenced by data-name must be an
unsigned positive integer. It cannot be defined in the
Record Description entry associated with the file. The
data item must not be described by, nor be subordinate to,

When the access mode is sequential, the RELATIVE KEY
clause is optional, If the clause is omitted, the system
reads or writes the records in order by ascending ordinal
value. If the clause is specified for sequential access, the
value of the relative key for the record just read or written
is returned to data-name by the system.

RESERVE Clause

The RESERVE clause (figure 3-27) affects the size of the
central memory buffer used during internal processing of
sequential, relative, and word-address files. The clause is
ignored for files with other organizations. If the clause is
omitted, buffer allocation is under system control.

AREA
RESERVE integer [AREAS]

Figure 3-27. RESERVE Clause Format

In the clause, integer must be an unsigned integer in the
range 1 through 4095. Specification of a large value might
result in an abort during execution if the required memory
is not available.

The system uses the specified integer to calculate buffer
size.

Buffer size is affected by the file organization and the
block size as described in the following list. (For more
information see BLOCK CONTAINS clause in the FD entry
of the Data Division.)

Sequential File
Five times maximum block size, plus two words if

clause omitted; otherwise, integer times maximum
block size, plus two words.

3-16

Relative File

Two times 64 words if clause omitted; otherwise
integer times 64 words.

Word-Address File

Two times maximum block size, plus two words if
clause omitted; otherwise, integer times maximum
block size, plus two words.

Indexed, Direct, Actual-Key File

Buffer size allocated by gystem.

If any file is accessed in a very random manner, use of this
clause might result in system performance degradation.

SELECT Clause

The SELECT clause (figure 3-28) identifies the file
associated with the File-Control entry in which the clause
appears. SELECT must be the first clause in the entry.

SELECT [OPTIONAL] -file—name

Figure 3-28. SELECT Clause Format

In the clause, file-name specifies a file named in an FD
entry or an SD entry; only one SELECT clause can
reference a given file. If file-name specifies a file in an
SD entry only the ASSIGN clause can follow the SELECT
clause.

The OPTIONAL phrase can only be specified for input files
with sequential organization. It is required for input files
that are not necessarily present each time the program
executes.

60497100 H



So—

60497100 H

1-O-CONTROL PARAGRAPH

The 1-O-CONTROL paragraph is used to specify the points
at which rerun is to be established, the memory area that
is to be shared by different files, and the location of files
on a multifile reel. The paragraph is optional and the
clauses can appear in any order. The skeleton for the
I-O-CONTROL paragraph is shown in figure 3-31. The
paragraph header is:

1-O-CONTROL.

1-O-CONTROL.
[; MULTIPLE FILE TAPE clause] . . .
[; RERUN clause] . . . [; SAME clause] . . .

Figure 3-31. I-O-CONTROL Paragraph Skeleton

MULTIPLE FILE TAPE Clause

The MULTIPLE FILE TAPE clause (figure 3-32) specifies
that a file named in the program shares the same physical
tape reel or set of reels with other files; it also indicates
the position of the specified file within the multifile tape.
The clause is required when a file that resides on a
multifile tape is referenced by a program, unless the file
position is specified by control statement parameters.

3-17



The tape files must have labels described with LABEL
RECORDS ARE STANDARD in their FD entries.

More than one MULTIPLE FILE TAPE clause can appear to
descrlbe each file involved. The position of the file is
Ly the position of the file-nam
name within the sequence of file-names and
r by an associated POSITION phrase.

File-name-1 and file-name-2 name files that are
referenced in an OPEN stateme
_associated with = the file;

The multifile name (MFN) is the name used to assign a
multiple file tape. The MFN depends on several factors
and differs for each operating system, as described in the

following paragraphs.

On the NOS operating system, the first six characters
of the implementor-name (as specified in the ASSIGN
clause) are used as the MFN. The lmplementor-name
can be from one to seven characters in length, The
seventh character can differ for each file in a set. If
FILE-SET-ID is specified in the FD entry for the file,
it is used to check the multifile set name field in the
label. If FILE-SET-ID is not specified, MFN is used to
check the multifile set name field in the label.

On the NOS/BE operating system, if FILE-SET-ID is
specified in the FD entry for the file, it is used as the
MFN. If FILE-SET-ID is not specified, the first six
characters of the implementor-name are used. In this
case, implementor-name must be seven characters in
length, and the last character should differ for each
file. The REQUEST or LABEL control statement,
specifying MFN, must contain the MF parameter and
must specify U labels. The multifile set name field in
the label is not checked on input, but is set to MFN on
creation.

Regardless of the operating system, the MFN for
file-name-1 and file-name-2 must be the same and
must conform to the rules for file names in the
operating system being used.

The POSITION phrase of the MULTIPLE FILE TAPE clause
specifies the ordinal position of the file on the multifile
tape. It must be used if all fi e are not
specified by _a file-name y or if the
file-names ) cified in
consecutive ordinal order correspondlng to their physical
placement on the tape. The first file on the tape has
position 1. Integers must be unsigned and positive with a
value greater than zero.

RERUN Clause

The RERUN clause (figure 3-33) specifies the conditions
under which the system is to checkpoint the program.
When a checkpoint occurs, the current state of the program
is copied to a checkpoint tape along with information about
files attached to the job. In the event the program
terminates abnormally, the RESTART capability of the
operating system can be used with the checkpoint tape to
continue the program from the situation existing at the
last checkpoint.

Any change made to a permanent random access file since
the last checkpoint dump will remain in the file, and
attempts to update the changed records can result in
errors. Therefore, it is recommended that the RERUN
clause not be used when updating permanent random access
files.

More than one RERUN clause can be specified as long as
no RERUN clause duplicates an integer-1 RECORDS
condition specified for a particular file-name.

ON Phrase

The ON phrase is documentary only, but should be
specified. When the job requests a tape and designates it as
a checkpoint tape, that tape holds the checkpoint dumps.
Otherwise, a tape with the name CCCCCCC is requested
by the system and used for the checkpoint.

EVERY Phrase

The EVERY phrase specifies the conditions under which a
checkpoint is to occur.

gE===N.

MULTIPLE FILE TAPE CONTAINS {

‘.9

[POSITION integer—1]

[POSITION integer—Z]]. ..

Figure 3-32. MULTIPLE FILE TAPE Clause Format

file—-name-1

RERUN [Qﬂ { implementor—name

integer—1 RECORDS
condition—name

}] EVERY {[ﬂp_ OF) {%}} OF file-name-2

Figure 3-33. RERUN Clause Format

3-18

60497100 H



END OF REEL /UNIT

Specifies that checkpoint is to occur each time an
end-of-reel or unit condition is encountered on
file-name-2. (The terms REEL and UNIT are
synonymous and interchangeable.) For tape files, the
end-of-reel condition can occur either as the result of
executing a CLOSE statement with a REEL/UNIT
phrase or as a result of reaching the physical end of a
tape reel. For mass storage sequential files, the
condition only occurs as the result of executing a
CLOSE statement with a REEL/UNIT phrase.
File-name-2 cannot reference a file described with an

SD entry GFiwith Ehs EXT clause in ¢! ,
# LR o .
TBntey . file-name-2 cannot be referenced in more than

|

“one RERUN clause.

Integer-1 RECORDS

Specifies that checkpoint is to occur at the end of
processing each integer-1 records. Integer-1 must be
positive and unsigned with a value greater than zero
but not exceeding 215.1, or 32767.

Condition-name

Specifies that checkpoint is to occur when a particular
switch status exists at the time the program resumes
execution after halting from STOP literal statement
execution. Condition-name must be defined in the
SWITCH-n clause of the SPECIAL-NAMES paragraph
and be associated with a mnemonic-name and an ON
or OFF status, An external switch can be manipulated
by a SWITCH control statement between job steps, by
a central site operator at any time, or by a terminal
operator followi a STOP literal statement

system interrogates the switch as
operation resumes after the STOP statement. A
checkpoint occurs when the switch condition
corresponds to that defined in the RERUN clause.

a

SAME AREA Clause

The SAME AREA clause (figure 3-34) can be specified by
four phrases. The first three phrases (SAME AREA, SAME
SORT AREA, SAME SORT-MERGE AREA) indicate that
the named files share the same buffer. The fourth phrase
(SAME RECORD AREA) indicates that the named files
share the same record area within the program.

sgon as

Buffer Sharing

The SAME AREA, SAME SORT AREA, and SAME
SORT-MERGE ARFEA clauses are equivalent and are used
to specify that different files can use the same internal
buffer area. Only one file named in one of these clauses
can be open at any given time. The buffer area is
allocated by the system when the file is opened and is
released when the file is closed. The released area is
available as buffer space for other files or for sorting or
merging operations whether or not the SAME AREA
clauses are present.

A file-name defined by an SD entry can appear only in a
SAME SORT AREA or a SAME SORT-MERGE AREA
clause. No file-name can appear more than once in each
type of phrase of the SAME AREA clause. If a file-name
appears in two or more types of SAME AREA clauses, all
of the file-names in those clauses must be duplicated in
each clause.

Record Area Sharing

The SAME RECORD AREA clause specifies that two or
more files are to use the same memory area for processing
the current record. All of the files can be in the open
mode at the same time, and a record in the SAME
RECORD AREA is considered as a record of each opened
input and output file whose file-name appears in a SAME
RECORD AREA clause.

A file-name must not appear in more than one SAME
RECORD AREA clause. However, a file-name can appear
in both a SAME RECORD AREA clause and one or more of
the SAME AREA clauses. If one or more file-names of a
SAME AREA clause appear in a SAME RECORD AREA
clause, all of the file-names in that SAME AREA clause
must appear in the SAME RECORD AREA clause.
Additional file-names not appearing in the SAME AREA
clause can also appear in the SAME RECORD AREA
clause.

Although all files mentioned in a SAME RECORD AREA
clause can be opened at any given time, when the files are
also mentioned in a SAME AREA clause the rule that only
one of the files mentioned in a SAME AREA clause can be
opened at one time takes precedence over the rule for files
named in a SAME RECORD AREA clause.

RECORD
SAME SORT
SORT-MERGE

}] AREA FOR file-name-1 |, file-name-2{ . ..

Figure 3-34. SAME AREA Clause Format

60497100 H

3-19



——

DATA DIVISION a

The Data Division describes all data referenced in the
program, whether it is data read or written to files, data
that is developed during program execution, or data that
is assigned a value which remains constant during program
execution,

The Data Division is made up of seven optional sections.
Within each section, different types of entries, which

begin with a level indicator or level number, describe the
physical representation and logical use of the data.

A skeleton of the Data Division is shown in figure 4-1.
The division header is:
DATA DIVISION.

The header must appear on a separate line, beginning in
area A. The separator period must terminate the header.

DATA DIVISION SECTIONS

The six sections of the Data Division each describe a
different use of data:

File Section
Describes data in input or output files.

Working-Storage Section
Describes constants or data developed within a

program.

Linkage Section
Describes data passed to a subprogram by a
CALL statement.

Communication Section
Describes data passed to and from MCS. The
section can be used only under NOS.

Report Section
Describes content and format of report to be
generated by the Report Writer facility.

DATA DIVISION.
[FILE SECTION.

{ file-description-entry }
sort-merge-file-description-entry

§é B fSkn:

WORKING-STORAGE SECTION.

[

77-level-description-entry
record-description-entry

LINKAGE SECTI

- 77-level-description-entry
record-description-entry s

COMMUNICATION SECTION

L.

REPORT SECTION.

[report-description-entry

[record-description-entry] . . . ] e

[communication-description-entry [record-description-entry] . . ] . ]

{ report-group-description-entry } . . .

Figure 4-1, Data Division Skeleton

60497100 G

4-1



All sections are optional. When the section is omitted,
the section header can, but need not, be omitted. When
included, sections must be in the order shown in
figure 4-1. This figure also shows the different types of
entries that can appear in each section. Figure 4-2
further defines terminology of entries.

FILE SECTION

The File Section defines the structure of data files. Each
file used for input, output, or sort or merge operations
must be defined in this section. Files referenced in the
Procedure Division only by the ACCEPT or DISPLAY
statements are not defined in the File Section, with the
exception of the file with the implementor-name
"OUTPUT" which can, but need not, be defined.

The File Section is composed of a section header followed
by a number of File Description entries or Sort
Description entries. The section header is:

FILE SECTION.

The header must appear on a separate line, beginning in
area A, and must be terminated by a separator period.

File Description entries, which begin with an FD level
indicator, define input, output, and report files. For input
and output files, Record Description entries follow the FD
entry to describe the data. For report files, however, the
data is described in Report Description entries within the
Report Section, as discussed in section 6 of this manual.

Sort-Merge-File-Description entries, which begin with an
SD leve!l indicator, define the record and the sort keys, as
discussed in section 7 of this manual. Record Description
entries follow the SD entry.

When the File Section is omitted, no files can be
referenced in the program, except through ACCEPT and
DISPLAY statements that assume default file and data
descriptions. See the discussion of these statements in
section 5 of this manual for details.

WORKING-STORAGE SECTION

The Working-Storage Section describes data that is not
part of a record in a file. Data items defined in this
section can be assigned values in this section or can be
assigned values developed during program execution.

The Working-Storage Section is composed of the section
header followed by any number of level 77, level 66, or
level 88 Data Description entries and/or Record
Description entries. The section header is:

WORKING-STORAGE SECTION.

The header must appear on a separate line, beginning in
area A, and must be terminated by a separator period.

The VALUE clause can be used to set the initial value of
an item in the Working-Storage Section. If an initial value
is not specified for a data item, its initial content is
undefined.

Level FILE SECTION
Indicator————FD file-name

file-description-entry clauses.

02 or subordinate data-description-entries.

01 data-description-entry.

} FD entry

01 data-description-entry.

) Record
Description
Entry

Level WORKING-STORAGE SECTION.
Numberi——»77 data-description-entry.
01 data-description-entry.

Figure 4-2, Data Division Terminology Summary

R o2

60497100 G



——

LINKAGE SECTION

The Linkage Section is valid only in a called subprogram.
See section 15, Inter-Program Communication Facility.

COMMUNICATION SECTION

The Communication Section is required in programs that
use the Message Control System (MCS). The
Communication Section can be used only under the NOS
operating system. The Communication Section defines the
two Communication Description (CD) areas that
communicate with MCS. These CD areas are referenced
by the six statements (ACCEPT MESSAGE COUNT, SEND,

RECEIVE, DISABLE, ENABLE J in the Procedure
Division that interact with MCS the NOS operating
system.

The Communication Section is composed of the section
header and two CD areas, one CD area for input-type
functions, and one CD area for output-type functions. The
section header is:

COMMUNICATION SECTION.

The header must appear on a separate line, beginning in
area A, and it must be terminated by a separator period.

REPORT SECTION

The Report Section describes reports that are generated
through the Report Writer. See section 6, Report Writer
Facility.

DATA DIVISION ENTRIES

Entries within the Data Division begin with a level
indicator or a level number.

A level indicator consists of two characters: FD, SD, RD,
or CD.

FD and SD entries must appear only in the File Section.
RD entries must appear only in the Report Section.

CD entries must appear only in the Communication
Section and only under NOS.

The level indicators FD or SD must be immediately
followed by a file-name specified in a SELECT clause of
the Environment Division. The level indicator CD must be
immediately followed by a cd-name defined in the
Communication Section of the Data Division. The CD
level indicator can be used only under the NOS operating
system. The level indicator RD must be immediately
followed by a report-name specified in the Report Section
of the Data Division. The level indicator must begin in
area A of a line; the file-name, report-name, or cd-name
should begin in area B,
within the entry define general characteristics and data

60497100 H

items in each group. The entry is terminated by the
separator period.

Entries that begin with a level indicator are followed by
Data Description entries that begin with a level number.
Entries of level 01 through 49 describe the hierarchy of
items: that is, they describe records, group items, and
elementary items. Entries of level 66, 77, and 88 have
special purposes and do not define the hierarchy of the
items described.

The remainder of this section describes File Description
entries, Record Description entries, Data Description
entries, and Communication Description entries. Data
Division clauses that can appear only in RD entries and SD
entries are discussed in sections 6 and 7, respectively.

FILE DESCRIPTION ENTRY

A File Description entry defines the physical structure and
either the record names or report names pertaining to a
given file. It also specifies the manner in which data is
recorded on the file, the size of the logical and physical
records, and the labels on the file. A skeleton of a File
Description entry is shown in figure 4-3.

FD file-name
[; BLOCK CONTAINS clause]

[; CODE-SET clause]
[; DATA RECORDS clause]

; LABEL RECORDS clause
; LINAGE clause]
ECORD clau

—

—

: REPORT clause }

Figure 4-3. FD Entry Skeleton

The level indicator FD must be immediately followed by a
file-name that has been specified in a SELECT clause and

equated to an implementor-name in the FILE-CONTROL
paragraph of the Environment Division. The clauses in the
FD entry can be in any order; only the LABEL RECORDS

clause is required. Punctuation between clauses is optional.

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause (figure 4-4) specifies
information the system uses to determine the physical size
of a block in the file. The clause is valid only for files with
sequential, indexed, direct, and actual-key organizations;
it is ignored for files with relative and word-address
organization.

BLOCK CONTAINS [integer—1 TO]

Figure 4-4. BLOCK CONTAINS Clause Format



Integer-1 and integer-2 are unsigned numeric literals
indicating the number of records or characters to be used
in system calculations. Integer-2 must be greater than

The physical block size that results from this clause or the
omission of this clause depends on the file organization;
and, in the case of sequential files, depends also on the
device on which the file resides. The number of records
that exist in each block is affected by actual record size
(see the RECORD clause), by sequential file block type,
and by system use of space within the block. Indexed file
data blocks, for example, contain key information as well
as user records.

(See the CYBER Record Manager manuals for information
about choosing an appropriate block structure, about other
parameters that can affect block structure, and about
alternative means of specifying file structure.)

Indexed Files

Indexed files have index blocks and data blocks. The
BLOCK CONTAINS clause affects only the size of data
blocks. For indexed files in the extended indexed
sequential format, the size of a data block is always a
multiple of PRU size (640 characters) less 50 characters.
For indexed files in the initial indexed sequential format,
the size of a data block is always a multiple of PRU size
(640 characters) less 10 characters. The value, in
characters, that the system rounds upward for block size is:

Maximum record size if the clause. is omitted.

Maximum record size multiplied by integer-2 when
RECORDS is specified.

Integer-2 when CHARACTERS is specified.

For indexed files in initial indexed sequential format, the
AAM utility ESTMATE should be used to select an efficient
data block size for a file with a given average record size,
key type, and key length. For indexed files in extended
indexed sequential format, the AAM utility FLBLOK should
be used to choose the block size.

Direct Files

For direct files in the extended direct format, the size of a
block is always a multiple of PRU size (640 characters) less
S0 characters. For direct files in the initial direct format,
the size of a block is always a multiple of PRU size (640
characters) less 10 characters, The value, in characters,
that the system rounds upward for block size is:

Two average size records when the clause is omitted.

Maximum record size multiplied by integer-Z when
RECORDS is specified.

Integer-2 when CHARACTERS is specified,

Actual-Key Files

For actual-key files in the extended actual-key format, the
size of a block is always a multiple of PRU size (640
characters) less 50 characters. For actual-key files in the
initial actual-key format, the size of a block is always a
multiple of PRU size (640 characters) less 10 characters.

The value, in characters, that the system rounds upward
for block size is:

Maximum record size multiplied by eight, plus 90
characters, when the clause is omitted.

Sum of {(maximum record size multiplied by integer-2)
and ((integer-2 plus 1) multiplied by 10) when
RECORDS is specified.

Integer-2 when CHARACTERS is specified.

Sequential Files

A block in a sequential file has a type and a size that
depends on the device.

When the file is on a mass storage device, the block is
always a C type block of 640 characters.

When the file is on a tape in SI or I format, the block is
always a C type block of PRU size. PRU size for
coded tape is 1280 characters; for binary tape PRU
size is 5120 characters.

When the file is on a tape with S or L format, block
type and size vary according to the clause
specification:

Omitted
Block type K with one record per block.
Integer-2 RECORDS

Block type K with the size of each actual block
varying as the sizes of the particular integer-2

records vary.
Integer-1 TO integer-2 RECORDS

Block type E with minimum block size of
integer-1 multiplied by minimum record size, and
with maximum block size of integer-2 multiplied
by maximum record size.

Integer-2 CHARACTERS
Block type E with integer-2 characters per block.
Integer-1 TO integer-2 CHARACTERS

Block type E with minimum block size of
integer~1 characters and maximum block size of
integer-2 characters.

K type blocks and E type blocks always have an even
number of characters, so the system adds a padding
character to the block if necessary. K type blocks have
the same number of records in each block; if the size of
the records in the block varies, the block size varies
accordingly. E type blocks have as many records as can be
accommodated between the minimum and maximum block
sizes. W type records cannot be used with K or E type
blocks.

CODE-SET Clause

The CODE-SET clause (figure 4-5) is used for internal code
convergion between an external alphabet and the display
code used internally by the system.

60497100 H



CODE-SET IS alphabet-name

Figure 4-5. CODE-SET Clause Format

The alphabet-name specified must be associated with an
external alphabet in the ALPHABET clause of the
SPECIAL-NAMES paragraph of the Environment Division.

The CODE-SET clause provides a way of assisting the user
in reading andf/or writing information for processing on
another manufacturer's system. Information is usually
transferred via magnetic tape or punched cards.

Tape Processing

The CODE-SET clause can be used for 7-track tapes with
odd parity written on a UNIVAC 1100 series system.
Tapes are read or written in UNIVAC 1100 Series
FIELDATA code if the alphabet-name in the CODE-SET
clause is associated with the external alphabet UNI in the
SPECIAL-NAMES paragraph. Specifying the CODE-SET
clause causes automatic translation between FIELDATA
code and the internal display code of the system.

The operating system provides normal read/write
processing for 9-track tapes in ASCII or EBCDIC code and
7-track tapes in external BCD code.

Card Processing

Card decks consisting of characters from the 64-character
ASCII or EBCDIC subset can be processed as input, but
cannot be punched out unless the operating system is
installed in ASCII mode. The CODE-SET clause must be
used to punch a deck using the full 64-character subsets of
ASCII and EBCDIC. The clause must also be used to read a
deck coded in one of these subsets plus the lower case
alphabet.

The alphabet-name must be associated with the external
alphabet ASCII-64, STANDARD-1, or EBCDIC, depending

on the code translation desired.

If the CODE-SET clause is specified, the object time
input-output routines translate code in free-form binary
format to the internal display code used by the system. (A
card in free-form binary format contains 12
bits-per-column and a maximum of 16 words-per-card.)

To create an input file in free-form binary format from an
ASCIHlI or EBCDIC deck under the NOS operating system,
the deck must be preceded and followed by cards with a
5/7/9 punch in column 1 and a 4/5/6/7/8/9 punch in
column 2. The deck must be in a record by itself,

To create an input file in free-form binary format from an
ASCII or EBCDIC deck under the NOS/BE operating
system, the deck must be preceded and followed by cards
with punches in all 12 rows of both columnl and
column 2. The deck must be in a record by itself.

A file created using this procedure is punched by specifying
a disposition code of P8 on a ROUTE or DISPOSE control
statement. For more detailed information, consult the
appropriate operating system reference manual.

60497100 H

If binary information is to reside on either the file INPUT
or the file PUNCH, a FILE control statement must be used
to override the default block type and record type for
these files. The FILE statement must specify F type
records and C type blocks.

DATA RECORDS Clause

The DATA RECORDS clause (figure 4-6) associates the
names of data records with their files. It is documentary
only, but should be specified.

RECORD IS }
DATA {RECORDS ARE data-name-1

[, data-name-2} . . .

Figure 4-6. DATA RECORDS Clause Format

The data-names must specify level 01 Record Description
entries that are subordinate to the FD entry containing the
DATA RECORDS clause.

LABEL RECORDS Clause

The LABEL RECORDS clause (figure 4-7) specifies
whether or not standard labels exist on the file. It can also
specify values for standard label fields. The clause is
required in every FD entry.

OMITTED
Specifies that no explicit labels exist for the file.

Must be specified for all files that reside on mass
storage or are Exterrial files,

4-5



STANDARD

Specifies that tape file labels conform to the
standard system format, which is that defined in
American National Standard X3.27-1969, Magnetic
for Information Interchange.
gnetic tape files @l

In the phrase, each implementor-name specifies' a label
record item. These names correspond to fields in standard
HDR1 labels with similar names. Table 4-1 defines the
implementor-names that can be specified and the meaning
of the fields. The contents of the items should conform to
the length and type of character the standard defines;
larger data items are truncated.

External files. If STANDARD is
d for a mass storage file, the labels are

Both data-name and literal specify values for the items.
ignored. It must be specified when the MULTIPLE Literals for all except implementor-names FILE-ID and
FILE TAPE clause is used to position a multiple file FILE-SET-ID must be numeric. A figurative constant can
tape. be substituted for the literal. Data-names must be

defined in the Working-Storage Section and must be
described as USAGE IS DISPLAY; they cannot reference

The VALUE OF phrase is valid only for tape files with an item described with an OCCURS clause. Data-names

labels specified as STANDARD. It specifies the value of can be qualified when necessary, but cannot be

label record items to be written during output file subscripted or indexed.

processing or to be checked during input file processing.

Label processing occurs at the time the file is opened

during execution.

See the operating system reference manual for more
information about standard tape labels.

{RECORDS ARE} { STANDARD }

LABEL \RECORD IS OMITTED

{ data—name-1 }

[; VALUE OF implementor-name-1 IS | jiteral-1

. data—-name-2
[, implementor-name-2 IS {Iiteral—z }] .. ]

Figure 4-7. LABEL RECORDS Clause Format

TABLE 4-1. STANDARD LABEL ITEMS FOR TAPE FILES

Implementor-name Contents
FILE-ID 1-17 character file identifier.
FILE-SET-ID 1-6 character identifier of multifile set. See discussion of

MULTIPLE FILE TAPE clause for usage of this field.

FILE-SECTION-NUMBER* 1-4 digits indicating number of this reel in a set. Normally

starts with 1 and is incremented by the system for each new
reel.

FILE-SEQUENCE-NUMBER 1-4 digits indicating number of file in a multifile set.

GENERATION-NUMBER 1-4 digits.

GENERATION-VERSION-NUMBER 1-2 digits indicating edition of file.

CREATION-DATE 5 digits: 2 digits for year followed by 3 digits for
day of year.

EXPIRATION-DATE 5 digits: 2 digits for year followed by 3 digits for day of
year. Indicates the first date the file might be overwritten.
99999 is indefinite retention.

1 character. The tape cannot be read unless the value matches
that written in the label. Default is
blank.

ACCESSIBILITY?

t1tems can be specified, but this label field is not processed by the system. See the operating
system reference manual for more information about standard tape labels.

4-6 60497100 G

S



LINAGE Clause

The LINAGE clause (figure 4-8) specifies the number of
lines in a logical page of a file to be printed. The values
specified by the clause are used during opening and writing
of the file to control vertical positioning of output lines.
The clause can specify top and bottom margins and a
footing area within the page.

The clause cannot appear in an FD entry that has a
REPORT clause.

The LINAGE clause defines logical pages; the programmer
is responsible for reconciling the physical page size and
top-of-form alignment for a particular printer with the
values in this clause. The logical page defined by the
clause need not have any relation to physical page size.

A separate special register LINAGE-COUNTER is
generated for each file whose FD entry contains a LINAGE
clause. The special register is an implicit unsigned integer
item. The value in the special register for a given file is
the current line number within one page body. The value is
set to 1 when the file is opened because the first line on a
logical page is line 1. If neither LINES AT TOP nor LINES
AT BOTTOM is specified, blank lines are written to
position the page. If either LINES AT TOP or LINES AT
BOTTOM is specified, the page must be positioned by other
means. The special register can be referenced within the
Procedure Division, but it cannot be directly changed by
the program. When more than one file is described with a
LINAGE clause, all references to LINAGE-COUNTER must
be qualified by file-name.

All data-names specified in the LINAGE clause must
reference elementary unsigned numeric integer data
i Integers must b igned and positi ‘

Data-name-1 or integer-1 specifies the number of lines
that can be written and/or spaced on a logical page. The
value of data-name-1 or integer-l1 must be greater than
zero.

Footings and margins are specified by the following
phrases. The values in these phrases must be logically
consistent with the page size. A value of zero can be
specified for the margins.

WITH FOOTING AT

Specifies the line number within the page body at
which the footing area begins. The value of
data-name-2 or integer-2 must be greater than zero
and less than the value specified by data-name-l or
integer-1. A footing ends at line data-name-1 or
integer-1, Default value is integer-1.

LINES AT TOP

Specifies the number of lines at the top of a logical
page. Zero lines can be specified. The default value
is zero.

LINES AT BOTTOM

Specifies the number of lines in the bottom margin of
a logical page. Zero lines can be specified. The
default value is zero.

If either LINES AT TOP or LINES AT BOTTOM are
specified in the file, when the file is opened, a blank
line with a Q in the carriage control position (to
suppress auto-eject) is written, followed by a blank
line with a 1 in the carriage control position (to eject
to the top of the page). Thereafter, no page eject
carriage control characters are generated. Instead, a
number of blank lines are written to position the page
properly. These lines can contain double, triple, or
suppress space printer control characters. If neither
clause is specified, the positioning is done with the
normal page eject carriage control mechanism (that is,
1 in the first position of a line). Therefore, for normal
printer output, neither clause is used. The usual use
for these clauses is for terminal output.

RECORD Clause

The RECORD clause (figure 4-9) specifies information the
system uses to determine record size (for all file
organizations) and record type (for all file organizations,
except word-address and relative). This same file
organization information is determined by the Record
Description entry when the RECORD clause is omitted.

For word-address files the record type is always U
(undefined). The program must set the record size
correctly before a read operation can be performed. For
read operations, the largest record description is used if
the program has multiple record descriptions and no
DEPENDING ON clauses (either OCCURS or RECORD).
Write operations use the size of the record specified in the
WRITE statement. For relative files the record type is
always F (fixed-length).

Table 4-2 shows the minimum and maximum record sizes
that result from clause specifications. Sizes are caiculated
in 6-bit characters.

NOTE

Refer to appendix F for recommendations on the
use of the RECORD clause.

data- -1
LINAGE 1S { ferer ™

{ data-name-3

[, LINES AT TOP integer-3

} LINES [ WITH FOOTING AT {integer—z

}] [, LINES AT BOTTOM {integer-4

data—name-2 }]

data—name-4 }]

Figure 4-8. LINAGE Clause Format

60497100 H



Format 1

RECORD CONTAINS [integer—1 TO]

integer—-2 CHARACTERS

Format 2

Figure 4-9. RECORD Clause Format

TABLE 4-2. RECORD SIZE AND TYPE

Sequential, Indexed, Direct, PR Word-
Aétual-Key Relative Address’
RECORD
Clause CYBER Max imum Minimum Actual Actual Actual
Rec. Mgr. Record Record Record Record Record
Record Type Sizett Sizett Size™ Size Size
Omitted
A11 Record Descrip- F Largest Largest Largest Largest Largest
tions same size record record record record record
Record Description W Largest Smallest Named Largest Named
not all same size; record record record record record
no OCCURS/ plus 10 plus 10 size size
DEPENDING ON plus 10
OCCURS/DEPENDING ON T Largest Largest Calculated Largest Calculated
in the Record De- record record from data- record from data-
scription entry name name
OCCURS/DEPENDING ON W Largest Smallest Calculated Largest Calculated
not in Record De- record record from data- record from data-
scription entry plus 10 plus 10 name name
plus 10
RECORD CONTAINS
Integer-2 CHARACTERS it Integer-2 Integer-2 Integer-2 Integer-2 Integer-2
characters characters characters characters characters
Integer-1 TO ws Integer-2 Integer-1 Named Integer-2 Named
integer-2 CHARACTERS characters characters record characters record
' plus 10 plus 10 size size

60497100 H




TABLE 4-2. RECORD SIZE AND TYPE (Contd)

Sequential, Indexed, Direct, .ot Word-
Actua]-Key’ Relative Addresst
- RECORD
Clause CYBER Maximum Minimum Actual Actual Actual
Rec. Mgr. Record Record Record Record Record
Record Type Sizeft Sizett Sizef? Size Size

S
pa——e
TWord-address files are always set to RT=U. Relative files are, in effect, always set to RT=F. |
—_ tT1f RT=Z, size in storage is increased if necessary to place a zero-byte terminator in bits 0
: through 11 of the last word.
"1 Record type Z if the file name is INPUT, OUTPUT, or PUNCH.
- Record type T if data-name is in Record Description for entry with OCCURS DEPENDING ON. [ |

—_ 60497100 H 4-8.1/4-8.2



The size of the record indicated in this clause must be the
number of character positions required to store the record,
regardless of the types of characters used to represent the
items within the logical record. For instance, items
described by a USAGE clause containing COMP-1 or
INDEX occupy a full memory word and have a size of 10
characters, no matter what the maximum number of digits
in the value of the item; any item described with a
SYNCHRONIZED clause must take slack characters into
account; and so forth. The size of a record is determined
by the sum of the number of characters in all elementary
data items. The size of the maximum number of table
elements, if any, described in the record is included in the
summation. This sum might be different from the actual
size of the record.

In format 1, integer-2 must not be used by itself unless all
the data records in the file have the same size. In this
case it specifies the exact number of characters in each
record. If integer-1 and integer-2 are both specified,
integer-1 is the minimum number of characters in any
record and integer-2 is the maximum number of
characters. Integer-2 must be greater than integer-l.
Unsigned positive integers are required.

60497100 H

4-9



REPORT Clause

RECORD DESCRIPTION ENTRY

A Record Description entry consists of a set of Data
Description entries that furnish information about the
physical structure and identification of a record. It begins
with a level 01 Data Description entry and ends
immediately before the next level 01 Data Description
entry or the end of the section. A Record Description
entry can appear in any section of the Data Division
except the Report Section.

The general format is shown in figure 4-11.
Data-description-entry-1 must have level number 01;
data-description-entry-2 must have a level number
greater than 01. Data Description entries are discussed
on the following pages.

4-10

data-description-entry-1
[data-description-entry-2] . . .

Figure 4-11. General Record Description Entry Format

In the File Section, Record Description entries are
associated with files. Each file can have records with
different elementary and group items intermixed. A file
can have more than one level 01 entry; each level 01
entry is a redefinition of the memory area associated with
that file.

In sections other than the File Section, data can be
grouped into logical! records and defined by a series of
Record Description entries, each of which describes a
unique memory area, unless the entry is redefined by
another Record Description entry.

DATA DESCRIPTION ENTRY

A Data Description entry specifies the characteristics of
a particular item of data. Each entry consists of the
following ordered elements:

Level-number

Data-name or the keyword FILLER that names the
data item, or condition-name

Series of independent clauses that describe the data
item

Terminating separator period

Figure 4-12 shows the skeletons of the three formats of
the Data Description entry. Punctuation between format
elements is optional.

Format 1 is the full entry to describe data of level 01
through 49 and level 77.

Format 2 is an entry with a 66 level-number that
renames prior group or elementary items.

Format 3 is an entry with an 88 level-number that
assigns condition-name values.

Level-number is the first element of a Data Description
entry. Level-number consists of two digits in the range 01
through 49, 66, 77, or 88. Level-number values 1 through
9 can be written either as a single digit or as a zero
followed by a digit 1 through 9.

Levels 01 through 49 describe the hierarchy of data
items: that is, they define record, group, and elementary
items. Levels 66, 77, and 88 have special meaning and do
not define the hierarchy of the item described.

Entries with level-number 01 or 77 must begin in area A
of a line; the following data-name or FILLER should begin
in area B 4 4 4 ;

60497100 F




~—

Format 1
data-name-1
level-number
FILLER

[; BLANK WHEN ZERO clause}

Format 2

Format 3

} [; REDEFINES clause]

[; JUSTIFIED clause] [: OCCURS clause}
[; PICTURE clause] [; SIGN clause]
[; USAGE clause] [; VALUE clause] .

66 data-name-1; RENAMES clause.

88 condition-name; VALUE clause.

[; SYNCHRONIZED clause]

Figure 4-12. Data Description Entry Format Skeletons

Successive entries can be indented to improve readability
of the source listing. Indentation does not affect the
magnitude of a level-number.

The maximum size of any group or elementary entry is
131 071 characters.

Table 4-3 summarizes Data Description entry clauses and
the level-number of the entry in which they can appear.
The individual clause descriptions contain additional
information about clause interactions and restrictions on
clause use.

Format 1 Data Description Entry

In format 1, level-number can be 77 or in the range 01
through 49. Clauses can be in any order, except that any
REDEFINES clause must immediately follow data-name or
FILLER. Clauses are presented below in alphabetical
order.

Level 01 through 49

Data Description entries that begin with level-number 01
through 49 can appear in any section of the Data
Division. A level 01 entry with a REDEFINES clause,
however, cannot appear in the File Section.

A Data Description entry with level-number 01 is a
Record Description entry. Levels 02 through 49 indicate
the organization of elementary and group items within the
record.

An elementary item is defined as an item whose
level-number is equal to or greater than the
level-number of the next item. The PICTURE clause
must be specified for every elementary item, except
for data items described as USAGE IS INDEX or
COMP-2, The clauses PICTURE, JUSTIFIED, and
BLANK WHEN ZERO are valid only for elementary
items.

60497100 F

TABLE 4-3. DATA DESCRIPTION ENTRY CLAUSE USE

Level of Entry
Clause

01 02-49 |77 |e6tt |sstt

BLANK WHEN yes yes yes no no
ZERO

JUSTIFIED yes yes yes no no
OCCURS no yes no no no
PICTURE yes yes yes no no
REDEFINES yesf*f yes yes no no
RENAMES no no no yes no
SIGN yes yes yes no no

SYNCHRONIZED | yes yes yes no no
USAGE yes yes yes no no
VALUE yesTH yesTTT yesTTT no yes

tApplicable only in Common-Storage,
Working-Storage, and Linkage Sections.

tNot applicable in Secondary-Storage or Report
Section.

ﬁ"hNo in File Section.

A group item is defined as an item whose
level-number is less than that of the next item. A
group item includes all group and elementary items
following it until a level-number less than or equal to
the level-number of that group is encountered.

4-11



NOTE

Refer to appendix F for recommendations on the
use of group items.

Level-numbers within a group item need not be
consecutive; however they must be ordered so that the
higher the level-number the lower the entry in the
hi hy 3 to a

. An item whose level number
he level number of a given
preceding item is not subordinate to that item.

A data-name or the keyword FILLER must be the first
word following level-number, for strict ANSI usage. If
1

Data-name

Specifies the name of the data item being described.
Syntax must conform to the rules for user-defined
words. Data-names can be referenced explicitly
elsewhere in the program.

FILLER

item that cannot be

Specifies an elementary
referenced explicitly

An example of a group item with two elementary items is:

03 FULL-NAME,
25 LAST-NAME PICTURE X(15).
25 F-INITIALS PICTURE X(3).

Level 77

A Data Description entry with level-number 77 identifies
an independent, noncontiguous data item that is not a
subdivision of another data item. A level 77 entry cannot
itself be subdivided. The entry is allowed only in the
Common-Storage, Working-Storage, and Linkage Sections
of the Data Division.

NOTE

Because of anticipated changes in this product,
use of level 77 items is not recommended. For

guidelines, see appendix F.

A data-name or the keyword FILLER must be the first
word following 77 (for strict ANSI usage) as described in
the preceding discussion for level 01 through 49 items. !

Examples of level 77 entries are:

77 RECS-READ PICTURE 9(5).
77 CONSTANT-MULTIPLIER USAGE 1S COMP-2
VALUE IS 3.6.

4-12

Format 2 Data Description Entry

In format 2, the Data Description entry begins with
level-number 66. Data-name must follow level 66, as
described for format 1. L.evel 66 items rename
elementary and group items. Only the RENAMES clause
is valid.

The RENAMES clause is required in, and only permitted
in, a level 66 entry. The entry must follow all entries of
the highest group level of which the renamed item is a
subentry. The RENAMES clause cannot rename a level
66, 77, 88, or 01 item.

An example of a level 66 item specification is:

20 IN-GROUP-1 PICTURE X(20).

20 IN-GROUP-2.

25 ITEM-2 PICTURE XXX,

25 ITEM-3 PICTURE XX.

66 OUT-GROUP RENAMES IN-GROUP-1 THRU
IN-GROUP-2.

Format 3 Data Description Entry

In format 3, the Data Description entry begins with
level-number 88. A condition-name must follow level 88.
Level 88 entries specify condition-names that are
associated with particular values of a conditional
variable. (A conditional variable is a data item that is
followed by one or more level 88 entries.) The conditional
variable can be FILLER.

Level 88 entries must immediately follow the conditional
variable to which they apply. A condition-name can be
associated with any Data Description entry except:
another condition-name, a level 66 item, an item
described by WUSAGE IS INDEX, or a group item containing
items specified with the JUSTIFIED or SYNCHRONIZED
clause or usage ather than display. The description of the
conditional variable implicitly describes condition-name.

An example of level 88 item specification is:

05 PASS-OR-F AIL PICTURE 999.
88 PASS-EM VALUE IS 70 THRU 100.
88 FAIL-EM VALUE IS 0 THRU 69,

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause (figure 4-13) blanks a
numeric item when a zero value is moved to that item.
The clause is an alternative to a PICTURE clause with
editing symbols to cause blanking. The clause can be used
only for an elementary item described by USAGE IS
DISPLAY and whose picture defines a numeric or numeric
edited item. The category of the item is always
considered to be numeric edited.

The clause cannot be used when the PICTURE clause of an
item includes an asterisk for zero suppression.

BLANK WHEN ZERO

Figure 4-13. BLANK WHEN ZERO Clause Format

60497100 F



JUSTIFIED Clause

The JUSTIFIED clause (figure 4-14) specifies nonstandard
positioning of data in a receiving data item. It can only
be specified for a nonnumeric elementary item for which

no editing is specified. JUST is an abbreviation for
JUSTIFIED.

JUSTIFIED

{_JUST } RIGHT

Figure 4-14, JUSTIFIED Clause Format

When the JUSTIFIED clause is specified for a receiving
item smaller than the sending item, the leftmost
characters of the sending item are truncated.

When the JUSTIFIED clause is specified for a receiving
item larger than the sending item, the data is aligned at
the rightmost position in the receiving item and the
unused leftmost character positions of the receiving item
are filled with spaces.

When the JUSTIFIED clause is omitted from a receiving
item, the standard rules for aligning data within an
elementary item apply.

OCCURS Clause

The OCCURS clause (figure 4-15) specifies the number of
occurrences of a repeated data item and supplies
information required for the application of subscripts and
indexes. It is wused in defining tables and other
homogenous sets of repeated data items. The clause has
two formats:

Format 1 specifies the exact number of times an item
repeats.

Format 2 specifies the range of the number of times
an item repeats and identifies the data item that
determines the exact repetition during execution.

All Data Description entries subordinate to an item whose
description includes an OCCURS clause apply to each
repetition of the item described. An item containing both
OCCURS and SYNCHRONIZED clauses is synchronized at
each occurrence.

The OCCURS clause must not be specified in a Data
Description entry that contains any of the following:

Level-number 01, 66, 77, or 88
Subordinate variable-occurrence data item

VALUE clause
subordinate entry

in either the entry itself or a

Whenever an OCCURS clause is specified for a Data
Description entry, the entry and any subordinate entries
must be either subscripted or indexed whenever they are
referenced, except in a SEARCH statement, in a USE
FOR DEBUGGING statement, or as the object of a
REDEFINES clause.

All data-names in the clause can be qualified. Integers
must be positive. The value of integer-Z cannot be zero
or greater than the number of occurrences of the repeated
data item. The maximum number of occurrences allowed
for a repeated data item is 65535.

Neither integer-1 nor integer-2 can exceed 131071
characters. The product of the number of character
positions subordinate to this- item and integer-1 or
integer-2 cannot exceed 131 071.

Format 1 OCCURS

In format 1, the value of integer-1 represents the exact
number of occurrences of the repeated data item.
Data-name cannot appear in more than one OCCURS
clause.

Format 1

OCCURS integer-1 TIMES

{ ASCENDING
\DESCENDING

Format 2

{ASCENDING
DESCENDING

} KEY IS data-name-1 [, data-name-2] . . ] .

[INDEXED BY index-name-1 [, index-name-2] . . ]

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

} KEY IS data-name-2 [, data-name-3] . . ] -

[INDEXED BY index-name-1 [, index-name-2] . . ]

Figure 4-15. OCCURS Clause Format

60497100 F



The KEY 1S phrase indicates the order in which repeated
data items are sequenced. This phrase must be included
when a SEARCH ALL statement is used to search the table
for an element satisfying a particular condition. The
data-names are listed in their descending order of
significance. Data-name-1 can be either the name of the
entry containing the OCCURS clause or the name of an
entry subordinate to the entry containing the clause.
Data-name-2 must be the name of an entry subordinate to
~ the entry containing the OCCURS clause.

If data-name-1 is not the name of the entry containing the
OCCURS clause, then:

All of the items identified by the data-names in the
KEY IS phrase must be within the group item that is
the subject of this entry

Iterns identified by the data-names in a KEY IS phrase
must not contain an OCCURS clause

No entry containing an OCCURS clause can appear
_between the items identified by the data-names in the
KEY 1S phrase and the subject of the entry. That is, a
key item cannot be subordinate to an occurring item
which is subordinate to the subject of this entry.

The INDEXED BY phrase specifies the indexes that are
used to index repeated data items. It is required if the
subject of the entry containing the OCCURS or one of its
subordinate entries is to be referred to by indexing. The
index-name must be a unique name that is not specified
elsewhere in the program; the item is allocated and
formatted by the compiler and cannot be associated with
any data hierarchy.

Format 2 OCCURS

In format 2, the subject of the entry has a variable number
of occurrences. Integer-1 is the minimum number of
occurrences of the repeated item; integer-2, which must
be greater than integer-1, is the maximum number of
occurrences.

Data-name-1 is the item that contains the number of
occurrences at any given time. If it is within the Record
Description containing the OCCURS clause, it must be
within the fixed portion; it must not be within the entry
containing the OCCURS clause itself. The value of
data-name-1 must fall within the range of integer-1 and
integer-2, inclusive, during execution and must be
unsigned. An attempt to reference an occurrence outside
the limits set by the integer-1 and integer-2 range causes
unpredictable results.

When a format 2 clause is subordinate to a group item, a
reference to the group item involves only the part of the
table area that is specified by the value of data-name-l.
Data names are evaluated once before the reference
operation takes place.

The KEY IS and INDEXED BY phrases are the same as for
format 1.

A format 2 OCCURS clause can only be followed by
subordinate entries of higher levels, not by Data
Description entries of the same or lower levels. Some
example of OCCURS clause usage are shown in figure 4-16.

PICTURE Clause

The PICTURE clause (figure 4-17) describes the general
characteristics and editing requirements for an elementary
item. (The physical representation of data within memary
is influenced by the USAGE clause.) It must be specified
for every elementary item, except that it must not be
specified for an item with a USAGE clause specifying
INDEX or COMP-2,

{ PICTURE } .
PIC IS character-string

Figure 4-17. PICTURE Clause Format

The character-string specifies, by its combination of
allowable characters from the COBOL character set, the
category of the elementary item. It also specifies the size,
location of decimal point, and the presence or absence of a
sign.

a. The table PARTS-LIST contains 1000 entries, 100 lower level entries for each 03 level entry
and 10 entries at the 03 level. To reference the table with subscripts it must be redefined

using OCCURS:

01 PARTS-TABLE REDEFINES PARTS-LIST.
03 LiST OCCURS 10 TIMES.
05 PART PICTURE 9(10) OCCURS 100 TIMES.

b. A table to be searched by the SEARCH ALL statement can be described as:

02 DATA-LIST OCCURS 25 TIMES INDEXED BY LIST-INDEX,
DESCENDING KEY IS ITEM-KEY, ITEM-KEY-2.

04 ITEM-KEY PICTURE X.

04 ITEMA OCCURS 10 TIMES INDEXED BY ITEM-INDEX.
06 AVALUE PICTURE 9(7).
88 VALA VALUES ARE 1 THRU 999999.

04 ITEM-KEY-2 PICTURE IS 99.

Figure 4-16. Example of OCCURS Clause

4-14

60497100 H

Ry



The maximum number of symbols allowed in the
character-string of the clause format is 30. Since
repeating symbols can be indicated by an unsigned nonzero
integer enclosed in parentheses after the symbol to be
repeated, the character-string limit does not limit the
value of the data or the number of character positions in
the item in storage.

The six categories of data that can be specified by a
PICTURE character-string and the class to which each
belongs are shown in table 4-4. Table 4-5 specifies the
symbols that can appear in the character-string for each
category and the contents allowed in the data item.

Every elementary item belongs to both a category and a
class. Any group item is treated during execution as if it
belonged to the alphanumeric class, regardless of the class
of elementary items subordinate to that group item.

PICTURE

When specifying a character-string, the

following apply:

The number of character positions described cannot
exceed 131 071,

TABLE 4-4. CLASSES AND CATEGORIES OF DATA ITEMS

Level of Item Class Category
Elementary Alphabetic Alphabetic
Numeric Numeric
{ Boolean BooTean
Alphanumeric| Numeric Edited
Alphanumeric Edited
Alphanumeric
Group Alphanumeric] Alphabetic
Boolean
Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

TABLE 4-5. PICTURE CLAUSE SYMBOLS ALLOWED BY ITEM CATEGORY

Allowable Symbols Usage Examples
Category in PICTURE Contents of
Character-String em PICTURE of Item { Source Data Ttem
Alphabetic AB Letters and AAAAA or A(5) COSTS
spaces
Boolean B
Numeric |Unsigned | 9 v P Digits 999 123
99v999 12.345 3]a]5] |
PPP9999 .0001234 3[4]
Signed [9VPS Digits + - $99v99 +12.34 3]4] i
SPPP9999 -.0001234 | ,0 0 0[] 213[4]
S999PPP -123000. 000, |
Alphanumeric AX9 A1l characters | XXXXXXXX or X(8) | ABCD-*+** {A]Bfc|D]-|*]|*|*]
(without editing) in COBOL
character set | XXXXXXXX or X(8) |123.4567 [1]2]3].]4]5]6]7]
AAAA999 or ABCD123 AjB[c]D}1]2]3]
A(4)9(3)
Alphanumeric AX9BO/ A11 characters | AAOOAA WXyz W] X]0]0] Y] 7]
Edited in COBOL
character set | XXBBXX A1B1 A 1]a]a] 8] 1]
X0X0X0 XY HEREER
XB(3)X0(4)X N15 Inialalal1fofo]ojo] 5
Numeric Edited B/PVZOY9, Digits See the discussions below:
1.*+-CRDB Floating Insertion Editing
Currency symbol Zero Suppression and Replacement Editing
¢ assumed decimal point
A blank

60497100 G 4-15



The size of an elementary item is determined by
allowable symbols that represent character positions.
Multiple repeating symbols can be indicated by an
unsigned nonzero integer enclosed in parentheses
following the symbols A , X 9 P Z / *0 + - B

I or the currency symbol.

The symbols S V . CR and DB can appear only once
in a given picture.

Numeric and numeric edited items are limited to a
maximum of 18 digit positions. A sign described with
a SIGN IS SEPARATE phrase occupies a character
position but is not included in the digit position count.

A numeric edited item must contain at least one of
the symbols 0 B / Z * +,. - CR DB or the
currency symbol.

An alphanumeric edited item must contain at least
one of the following combinations of symbols:

B8 and X 0 and A
0 and X / and A
/ and X

Symbols Used in Character-5Strings

Each of the symbols used to describe an elementary item
has a specific function.

A

4-16

Represents a character position that can contain
either a letter or a space. i

Represents a character position into which the space
character is to be inserted.

Indicates an assumed decimal scaling position and the
location of the assumed decimal point when the point
is not within the number that appears in the data
item.

The scaling position character P:

Is not counted in the size of the data item, but is
counted in determining the maximum number of
digit positions (18) in numeric edited and numeric
items.

Is considered to contain the value zero.

Can only appear as the leftmost or rightmost
character or continous character string of P's
within a PICTURE description, implying an
assumed decimal point to the left or to the right,
respectively.

Is redundant when used with the V character.

Cannot appear in the same character-string as
the symbo! . (period).

Indicates the presence of an operational sign. It does
not necessarily specify either the position or the
representation of the sign. See the SIGN clause.

The S is not counted in determining the size of the
item unless the entry includes a SIGN clause that
specifies the optional SEPARATE CHARACTER
phrase.

DB

Indicates the location of the assumed decimal point.
It does not represent a character position and is not
counted in the size of the data item.

Only one V can appear in a character-string. It is
redundant in a character-string that has the scaling
position character P and redundant as the rightmost
character in a character-string.

Represents a character position that can contain any
allowable character.

Represents a leftmost leading numeric character
position that is to be replaced by a space character
when the contents of that character position is zero.

Represents a digit position that can contain a

numeral.

Represents a character position into which a zero is
to be inserted.

Represents a character position into which the slash
character is to be inserted.
Represents a character position into which the
comma is to be inserted.

If the DECIMAL-POINT IS COMMA clause is
specified in the SPECIAL-NAMES paragraph, the
function of the period and comma are exchanged,
causing the rules for the period to apply to the
comma and the rules for the comma to apply to the
period.

Represents the decimal point for alignment purposes
and a character position into which the period is to be
inserted.

If the DECIMAL-POINT IS COMMA clause is
specified in the SPECIAL-NAMES paragraph, the
function of the period and comma are exchanged,
causing the rules for the period to apply to the
comma and the rules for the comma to apply to the
period.

Represents two character positions into which the
editing sign CR is to be inserted. Only one of the
editing sign control symbols + - CR or DB can be used
in a given character-string.

Represents two character positions into which the
editing sign DB is to be inserted. Only one of the
editing sign control symbols + - CR or DB can be used
in a given character-string.

Represents a character position into which the plus
sign is to be inserted. Only one of the editing sign
control symbols + - CR or DB can be used in a given
character-string.

Represents a character position into which the minus
sign is to be inserted. Only one of the editing sign
control symbols + - CR or DB can be used in a given
character-string.

Represents a leading numeric character position into

which an asterisk is to be inserted when the content
of the position is zero.

60497100 F



cs

The currency symbol represents a character position
into which the designated currency sign is to be
inserted.

The currency symbol can be either the currency sign
($ and #, or its equivalent graphic character) or the
single character specified in the CURRENCY SIGN
clause of the SPECIAL-NAMES paragraph.

The symbol $ or # or the character designated by
CURRENCY SIGN clause are valid currency symbols
in the same program, but not in the same picture.

Table 4-6 summarizes the symbols of the clause, the
number of times they can be used in a single PICTURE
clause character-string, and the resulting size.

TABLE 4-6. PICTURE CLAUSE EDITING

Editing Rules

Two types of editing can be specified in the PICTURE
clause:

Insertion editing, which places a character in the
position indicated. Different types of insertion
editing are: simple insertion, special insertion, fixed
insertion, and floating insertion.

Replacement editing, which replaces leading zeroes
in the data with spaces or asterisks.

The type of editing that can be defined for a given data
item depends on the category to which the item belongs.

SYMBOL FUNCTIONS AND LIMITS

Symbo Function Symbol

Number of
Times Symbol

Number of Positions

Represents Can Occur in In Total Item Size
Picture

A Letter or space no limit 1 for each symbol
B Space no limit 1 for each symbol
P Assumed decimal scaling no timitt none

position
S Operational sign 1 1 if SEPARATE CHARACTER;

otherwise none

v Location of assumed decimal Al none

if P omitted
X Any language character no limit 1 for each symbol
Z Blank leading zero indicator no timitt 1 for each symbol
9 Digit position 18t 1 for each symbol

0 Zero insertion position
/ Slash insertion position
R Comma insertion position
. Decimal point position if
P omitted
CR + Sign position
DB -
* Asterisk replace leading
zero indicator
currency Currency symbol position
symbol

no limit?

no 1imitt 1 for each symbol
no Timitt 1 for each symbol
1 1

1 of 4 symbols

no limit?

1 for each symbol

2 for CR or DB;
1 for + or -

1 for each symbol

TIf total of digits and editing characters exceeds 18 for numeric and numeric edited items,

truncation occurs during item use.

60497100 F

4-17



Category Editing Allowed
Alphabetic Simple insertion of space
Numeric None
Alphanumeric None
Alphanumeric edited Simple insertion of 0 space

and/or /
Numeric edited All

Simple Insertion Editing - Simple insertion editing is
specified in a PICTURE character-string by an insertion
symbol B 0 , or /. An insertion symbol represents the
position in an item into which a space, zero, comma, or
slash is inserted when data is placed in that item.

When the comma is the rightmost symbol in a PICTURE
character-string, the PICTURE clause must be the last
clause of the Data Description entry. This results in
either the combination of , . or, if the DECIMAL-POINT
1S COMMA clause is specified in the SPECIAL-NAMES
paragraph, two consecutive periods appearing in the Data
Description entry.

Special Insertion Editing - Special insertion editing is
specified in a PICTURE character-string by the period.
The period, which represents the decimal point for
alignment purposes, is counted in the size of the item.

When a decimal point is the rightmost symbol in a
PICTURE character-string, the PICTURE clause must be
the last clause of the Data Description entry. This results
in either two consecutive periods or, if the
DECIMAL-POINT IS COMMA clause is specified in the
SPECIAL-NAMES paragraph, the combination of , .
appearing in the Data Description entry.

Fixed Insertion Editing Fixed insertion editing is
specified in a PICTURE character-string by a currency
symbol or one of editing sign control symbols + - CR or
DB . The rules for fixed insertion editing are:

Only one currency symbol and one editing sign control
symbol «can appear in a given PICTURE
character-string.

The symbols CR and DB represent the two rightmost
character positions of the item.

The symbol + or - can be either the leftmost or the
rightmost character position of the item.

The currency symbol must be the leftmost character
position to be counted in the size of the item, except
that it can be preceded by a + or - symbol.

The final contents produced by the editing sign control
symbols is affected by the value of the data item being
edited:

Result When Result When

Data Item Data Item
Editing Symbol Positive or Zero Negative
+ + -
- 1 space -
CR 2 spaces CR
DB 2 spaces DB

4-18

Floating Insertion Editing Floating insertion editing is
specified in a PICTURE character-string by a string of at
least two floating insertion symbols. Floating insertion
editing results in characters appearing in the data item in
a position appropriate for each particular data value,
within the limits of the editing specification.

The floating insertion editing symbols are the currency
symbol, and the + and - signs. If the’ fixed insertion
symbols CR or DB are part of the string, they must be the
rightmost symbols. The currency symbol and the + or -
symbol are mutually exclusive when they are used as
floating insertion symbols.

The leftmost character of the floating string represents
the leftmost limit of the floating symbol in the data item,
and the rightmost character represents the rightmost
limit. The second leftmost character of the floating
string represents the limit of the numeric data that can be
stored in the item.

The floating string can be structured in two ways: either
any ar all of the leading numeric character positions to
the left of the decimal point are represented by the
insertion character, or all of the numeric character
positions are represented by the insertion character.

When the insertion characters are only to the left of the
decimal point, a single floating insertion character is
placed in the character position immediately preceding
either the decimal point or the first nonzero digit in the
item, whichever is farther to the left in the PICTURE
character-string. The characters preceding the placement
of the floating insertion character are replaced with
spaces.

When all numeric characters in the character string are
represented by the floating insertion character and the
entire data item is zero, the entire data item will be
replaced with spaces. If the data is not all zeros, floating
insertion editing is handled the same as if the insertion
characters were not placed to the right of the decimal
point.

Simple insertion editing characters , B 0 and / can
appear among the floating string characters, but cannot
be the leftmost symbols in the string. Floating string
processing takes precedence in this instance: spaces
always appear to the left of the properly placed floating
character. Simple insertion characters that are not
enclosed in the floating string appear as indicated in the
character-string of the clause.

Some examples of floating insertion editing are:

Picture  Source Data Item
$$$9.99 000824
---9.99 -00526
++49.99 03456
$$$.99 3265

$$$%9 1234 $1112[3]4]

$$$%9 0123 A$]1]2] 3]
$$$,$22.99 000001 lilegal Picture

$85,$88.99 5355 AARRGEEREE

60497100 F

——

~—



Zero suppression and replacement editing is specified in
the PICTURE character-string by a string of one or more
of the symbols Z or * . Any simple insertion characters
that are either embedded in the string or to the
immediate right of the string are part of the replacement
string. If Z is specified, a leading zero in that position in
the receiving field is replaced by a space; if the asterisk
is specified, the leading zero is replaced by an *.

The replacement string can be structured in two ways:
either any or all of the leading numeric character
positions to the left of the decimal point are represented
by the replacement symbol, or all of the numeric
character positions are represented by the replacement
symbal.

When replacement symbols are designated to the left of
the decimal point, the replacement character is placed
into all character positions immediately preceding either
the decimal point or the first nonzero digit in the item,
whichever is further to the left in the PICTURE
character-string.

When all numeric characters in the character-string are
represented by Z and the entire receiving item is zero, the
entire data item is set to spaces. When all numeric
characters in the character string are represented by *
and the entire receiving item is zero, the receiving item is
set to * except for the decimal point. If the field is not
zero, replacement insertion is handled as if the
replacement characters were designated only to the left
of the decimal point.

Some examples of zero suppression and replacement
editing are:

Picture Source Data Item
22999 00923 RRERE
22799 00923 Al 9{2]3]
R RN 000000
§xxx.99 00923
279999 123456
279999 000005
72777 00010 [alala] 10
2/z/9 023 alal2]/3]

Editing Precedence Rules

Table 4-7 shows the order in which symbols can appear in
the PICTURE clause character-string. The
character-string must contain one of the following:

At least one symbol A X Z 9 or *

At least one string of floating insertion symbols
In the table, several symbols appear twice: the leftmost
column and uppermost row for each symbol represents its
use to the left of the decimal point position. The second

appearance of the symbaol in the table represents its use to
the right of the decimal point position.

60497100 F

REDEFINES Clause

The REDEFINES clause (figure 4-18) gives a new
data-name and description for a previously specified item
of the same level. Storage is not allocated for the new
data-name: only one item physically exists. The item can
be referenced by either data-name. Any use of the data is
in accordance with the description associated with the
data-name by which the item is referenced.

NOTE

Refer to appendix F for recommendations on the
use of the REDEFINES clause.

REDEFINES data-name-2

th
i

Figure 4-18. REDEFINES Clause Format

The clause, when it is specified, must be the first one in
the Data Description entry. The Data Description entry
with the new name must immediately follow the entry for
the item being redefined, with no intervening items of
lower level number. The entry might appear in the
Working-Storage Section, for example, as:

05 NAME-ORIG PICTURE 9(5).

05 NAME-NEW REDEFINES NAME-ORIG.
06 NEW-1 PICTURE 9(4).
06 NEW-2 PICTURE 9(1).

05 NAME-NEW2 REDEFINES NAME-ORIG
PICTURE 9999V9.

Multiple redefinitions of the same item sre possible. All
redefinitions of the same st hould reference
e original data-na Fan

g

In the clause, data-name-2 is the item that is being
redefined. (Data-name-1 is the data-name of the new
item.) The level number associated with both data-names
must be identical. Level 01 entries in the File Section,
level 66 items, and level 88 items cannot be referenced in
this clause.

Data-name-2 must not be described by an OCCURS
clause, but can be subordinate to an item that contains an
OCCURS clause. Data-name-2 cannot be subscripted,
indexed, or qualified.

Data-name-1, the new data-name, cannot be an
elementary item with a SYNCHRONIZED clause nor a
group item whose first elementary item has a

SYNCHRONIZED clause unless data-name-2 has the
proper boundary alignment. The new description must not
contain a VALUE clause nor the DEPENDING ON phrase
of an OCCURS clause.

4-19



TABLE 4-7. PICTURE CLAUSE SYMBOL PRECEDENCE RULES

First Nonfloatin Floating '
Symbo1 Insertion Symgols Insertion Symbols Other Symbols
Second {+} +} CR {Z} {Z} +} {+ A
Second o/ . . [ {HITHIER o | Ao |45 M sl es |9 R]s|v]r]P
B X I X X |X X X X X X X iX X X\ X X X
0 XXX ]1X 11X X X X X X X {X X X| X X X
<1 7 Ixx[x]x x| «x x | ox x| x [ x x| x [x]x X X
g’).ﬂ
50, IxIx|x|x|x]x x |ox Px [ x[x|x]x |x X X
S
=2 . X1 XXX X X X X X X
[
O
29 |(+-)
S
(+<) X1 XXX |X X X |X X X X X1 Xi{X
(CRDB)X | X} X1X|X X X |X X X X ) X1 X)X
cs X i |
Z* {x|x|x|x X X | X L
" o
sl {x|x|[x|x|x]x X x |x X x|
?vg” (+-) |x x| x X X
%8
o5 (+-) (X x]x{xix X X 1X X X
T
@ |cs x [ x| x]x X X
cs X1 Xp x| x|x X X X X X
9 Ix{x|x|xjix| x x | x X X x| x} x| x x|
AX X1 X1 X x| x i
17}
) v X X1 X X X X X X X X X o
& o
s P
o
P
The symbol at the top of the column can precede the symbol at the left of the row.
{} Symbols within the braces are mutually exclusive.
cs Currency symbol.

RENAMES Clause
JHRU

The RENAMES clause (figure 4-19) specifies an RENAMES data-name-2 [{THROUGH} data—name-3]
alternative grouping of elementary items, with possible -

overlap, under a new name. The clause must be specified
in a leve! 66 item; it cannot reference level 77, 88, or 01
items.

Figure 4-19. RENAMES Clause Format

4-20 60497100 F



When RENAMES is specified, the Data Description entry
cannot contain other clauses. The full entry in which the
clause appears is:

66 data-name-1 ; RENAMES data-name-2 .

One or more RENAMES clauses can be written for each
record. The clauses must immediately follow the last
entry of the associated record.

NOTE

Refer to appendix F for recommendations on the
use of the RENAMES clause.

In the Data Description entry data-name-1 specifies the
name of the alternate grouping of one or more elementary
items, Data-name-1 cannot be used as a qualifier;
however, it can be qualified by the name of the associated
level 01, FD or SD entry.

In the RENAMES clause, data-name-2 and data-name-3
must be names of elementary items or groups of
elementary items in the same record. They cannot have
the same name, but the names can be qualified. Neither
data-name-2 nor data-name-3 can be described by an
OCCURS clause or be subordinate to an item described by
an OCCURS clause.

If the THRU phrase is not specified, data-name-1 can be
either an elementary item or a group item since it has all
the attributes of data-name-2.

When the THRU phrase is specified, data-name-2 and
data-name-3 designate a range of elementary items that
make up the group item data-name-l. None of the items
can be described by the DEPENDING ON phrase of the
OCCURS clause. Data-name-1 includes all items within
the range, beginning with the first, or only, elementary
item specified by data-name-2 and ending with the last, or
only, elementary item specified by data-name-3.

When data-name-3 is specified, it cannot name an item that
is defined before data-name-2 nor one that is subordinate
to data-name-2; it can, however, start within the item
specified by data-name-2.

SIGN Clause

The SIGN clause (figure 4-20) specifies the position and the
representation of the operational sign for an item. It can
only be specified for a numeric or numeric edited item
described by a PICTURE clause containing the symbol S
and a USAGE IS DISPLAY clause, for a group item
containing at least one such entry, or for both if the SIGN
clauses are not contradictory.

SEPARATE specifies that the positive and negative signs
are the characters + and - respectively. When
SEPARATE is stated, the symbol S in the PICTURE clause
character-string results in one character added to the size
of the item.

If SEPARATE is omitted, the sign is combined with the
first or last digit of the item. When the item is displayed in
output or is received in input as a card image, the signed
digit appears as specified in the second column of
table 4-8. When the item is to be received as input from a
card, the signed digit must be punched as specified in the
third column of table 4-8. When input data is positive or
unsigned, output data is the same as the input data. The
negative sign is represented by a - overpunch in row 11;
the positive sign by the absence of an overpunch or the
presence of a + overpunch in row 12.

TABLE 4-8. SIGN OVERPUNCH REPRESENTATION

g;g" Output Hollerith
Digit Representation Punch
+9 I 12-9
+8 H 12-8
+7 G 12-7
+6 F 12-6
+5 E 12-5
+4 D 12-4
+3 C 12-3
+2 B 12-2
+1 A 12-1
+0 < 12-0
-0 \% 11-0
-1 J 11-1
-2 K 11-2
-3 L 11-3
-4 M 11-4
-5 N 11-5
-6 0 11-6
-7 P 11-7
-8 Q 11-8
-9 R 11-9
TUnder NOS, the 029 keypunch cannot be used
to make the Hollerith punch patterns that
represent +0 or -0.

LEADIN
[[SIGN IS] {ﬁ;;,—,_,TGG} [SEPARATE CHARACTER]]

Figure 4-20. SIGN Clause Format

If the SIGN clause is not specified for a numeric item, the
SIGN CONTROL clause of the SPECIAL-NAMES

aragraph, if present, specifies sign control for the item.
Ff neither is present, 4IGN 15 TRAILING is assumed.

LEADING or TRAILING indicates whether the sign is at

the beginning or the end of the item, respectively. Default
is TRAILING.

60497100 H

SYNCHRONIZED Clause

The SYNCHRONIZED clause (figure 4-21) specifies that an
elementary item is to be aligned on word boundaries of
computer memory. The alignment is such that no other
data item occupies any of the character positions in the
word in which the elementary item is synchronized. If the
number of character positions in the elementary item is
less than a full word, or multiple of a full word, the
unfilled positions are known as slack character positions.

{SYNCHRONIZED} LEFT
SYNC RIGHT

Figure 4-21. SYNCHRONIZED Clause Format

4-21




The SYNCHRONIZED
shouldM i

clause, or its abbrevig

All level D1 Record Description entries are automatically
aligned to begin on word boundaries, COMP-1, COMP-2,
and INDEX items are always aligned within word
boundaries regardless of whether or not the
SYNCHRONIZED clause is specified.

If SYNCHRONIZED LEFT is specified for a
COMPUTATIONAL or DISPLAY item, the item is left
justified in the computer word; if SYNCHRONIZED
RIGHT is specified, the item is right justified within the
word. When SYNCHRONIZED is not followed by either
LEFT or RIGHT, LEFT is assumed for all items except
level 77 items. Level 77 items are right justified unless
the ANSI=77LEFT parameter, which causes left
synchronization, is specified on the compiler call.

The operational sign of an item appears in the normal
operational sign position regardless of whether the item is
SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

Slack character positions are the unused positions in
computer words for synchronized items of less than a
multiple of 10 characters. The contents of the slack
characters are undefined and can be changed by any store
into the associated data item.

The slack characters are included in the size of any group
item to which the elementary item belongs. The slack
characters are also counted in the size of a redefined item
and in determining any action on an item that depends on
size, such as justification, truncation, or overflow.

Slack characters are included as follows:

If the item being synchronized immediately follows
an elementary item, the slack character positions are
inserted as a filler item immediately before the item
being synchronized.

If the item being synchronized immediately follows a
group item, the slack character positions are inserted
as a filler item between the immediately preceding
elementary item and the following group item.

The number of slack character positions inserted for left
synchronization, right synchronization, or group items
described with an OCCURS clause is determined as
follows:

The total number of character positions occupied by
all elementary items preceding the item to be
synchronized, including any slack character positions
previously added, are added together.

This sum is divided by 10, giving a remainder R1.

If the remainder R1 is equal toc zero, no slack
character positions are required. Otherwise, 10 - R1
slack character positions are required.

USAGE Clause

The USAGE clause (figure 4-22) specifies the manner in
which a data item is stored in memory. Storage form does
not restrict the use of the data, although some Procedure
Division statements might require data items to be
declared by a particular USAGE clause. If the USAGE

4.22

clause is omitted for a data item or for any group to
which the data item belongs, the default is USAGE IS
DISPLAY.

/ COMPUTATIONAL

1Y

[USAGE IS] <

DISPLAY
\ INDEX ]

Figure 4-22. USAGE Clause Format

The USAGE clause can be written at any level. If it is
written at a group level, it applies to each elementary
item within the group. The USAGE clause of further
elementary and group items cannot conflict with the
USAGE clause of their group level items.

COMPUTATIONAL

A COMPUTATIONAL item must be of the numeric
class and have decimal numeric values. (See the
PICTURE clause for the attributes of a numeric
item.) Each digit is stored by its display code
representation, unless the CC1l parameter is used on
the compiler call. The SYNCHRONIZED clause can
be used with a COMPUTATIONAL item to control
data placement.

If a group item is described as COMPUTATIONAL,
the elementary items within the group item are
COMPUTATIONAL; however, the group item itself is
considered to be DISPLAY and cannot be used in
computations.

A COMPUTATIONAL item whose PICTURE clause
character-string does not contain an operational sign
is assumed to be positive when used as a sending item
and is made positive when it is the receiving item.

Although a COMPUTATIONAL item provides
efficient storage, it requires conversion to integer or
floating point format for multiplication, division, and
exponentiation.

60457100 G



DISPLAY

A DISPLAY item is stored internally in display code.
The category of the item can be alphabetic,
alphanumeric, alphanumeric edited, numeric, numeric

) 60497100 F 4-23



INDEX

An INDEX item is represented internally in binary
form and occupies a full computer word in memory.
No PICTURE, JUSTIFIED, VALUE, or BLANK WHEN
ZERO clauses can be included in the Data Description
entry when USAGE IS INDEX. An item described
with this clause is known as an index data item.

An index data item contains a value that corresponds
to an occurrence number of a table element. It
cannot be a conditional variable.

If a group item is described with the USAGE IS
INDEX clause, the elementary items within the group
are index data items, but the group itself is not. The
group item cannot be used as an index data item.

An index data item can only be referenced explicitly
in a SEARCH statement, a SET statement, a relation
condition, the USING phrase of a Procedure Division
header, or the USING phrase of a CALL statement.

An index data item is not represented internally in
the same format as an index-name that is defined in
the INDEXED BY phrase of an OCCURS clause. (See
section 6 of the COBOL user's guide for further
detail.)

VALUE Clause

The VALUE clause (figure 4-23) specifies the initial value
of an item at the start of the object program or the value
of a level 88 condition-name.

Format 1 either specifies a Report Section printable
item or specifies an elementary or group item in the
Working-Storage, Common-Storage, or Secondary-
Storage Section.

Format 2 specifies a condition-name in a level 88
item in the Working-Storage Section.

Format 1

VALUE IS literal

VALUE IS _ THRU _
{VALUES AREf literal-1 {THROUGH literal-2

[ [T} s ]|

Figure 4-23. VALUE Clause Format

Format 1 VALUE

The VALUE clause defines the value of Report Section
printable items, the initial value of Working-Storage
items, and the initial value of data items in the
Common-Storage Section.

If the clause is not specified in an item description, the
initial value of the item is unpredictable.

4-24

The VALUE clause must not be specified for:
An entry containing an OCCURS clause
An entry containing a REDEFINES clause

An entry subordinate to an OCCURS clause or a
REDEFINES clause

A group entry .containing items with descriptions
including a JUSTIFIED or SYNCHRONIZED ciause, or
a USAGE clause that does not specify DISPLAY

In format 1, the literal
nonnumeric literal,
constant. The following rules apply

ifi be a numeric literal,

.or a figurative

[

If the PICTURE clause defines a numeric item, all
literals must: be numeric and adhere to the PICTURE
character-string specifications.

If the PICTURE clause defines an alphabetic,
alphanumeric, alphanumeric edited, numeric edited
item, all literals must be nonnumeric. The literal will
be aligned as if the item were alphanumeric.

If the item is a group level entry, the literal must be
a figurative constant or a nonnumeric literal. The
group item is initialized without consideration for the
individual elementary and group items contained
within the group. The elementary and group items
within a group item specifying a VALUE clause must
not themselves contain a VALUE clause.

When the initial value set by the VALUE clause remains
unchanged during program execution, the item is known as
a constant.

Format 1 can be used to specify a level 88 item.

In a report group, the VALUE clause is one of the three
clauses that can be used for the required definition of the
purpose of each elementary item. The discussion of the
GROUP INDICATE clause in section 6 further explains
the effects of the VALUE clause on a Report Section item.

Format 2 VALUE

Format 2 must only be used to specify the range of values
for a condition-name in a level 88 entry. Only the
condition-name and the VALUE clause are allowed in the
entry.

The literals can be

. ra
greater than literal-3,

be greater than
and so forth.

COMMUNICATION DESCRIPTION ENTRY

A Communication Description (CD) entry defines the two
types of Message Control System (MCS) interface areas in
a COBOL program. The two interface areas, CD input
and CD output, are referenced by six statements in the
Procedure Division to perform input-type and output-type
functions for MCS. The data in these two areas is used

60497100 G




.

for communicating information about the message being
handled between MCS and the program. Interface with

MCS is only allowed under NOS.

CD Input

The CD input area (figure 4-24) specifies the CD level
indicator, a cd-name (communication description name),
and a series of independent clauses. The independent
clauses include the symbolic queue and sub-queue names,
message date, message time, source, text length, end key,
status key, message count, and the user-defined
data-names. The independent clauses can be written with
only the data-names.

These independent clauses are used to execute the
statements RECEIVE, ACCEPT MESSAGE COUNT,
DISABLE INPUT, and ENABLE INPUT. A COBOL
program that receives messages must define at least one
CD input area.

Each CD input record area is 87 contiguous character
positions. The record area consists of symbolic name
clauses that are interpreted as data-names with picture
descriptions and level-numbers. The record area is
defined to MCS as follows:

SYMBOLIC QUEUE clause defines data-name-1 as
the name of an elementary alphanumeric data item
with a field length of 12 characters that occupies
positions 1-12 in the record.

SYMBOLIC SUB-QUEUE-1 clause defines
data-name-2 as the name of an elementary
alphanumeric data item with a field length of 12

SYMBOLIC SUB-QUEUE-2 clause defines
data-name-3 as the name of. an elementary
alphanumeric data item with a field length of 12
characters that occupies positions 25-36 in the record.

SYMBOLIC SUB-QUEUE-3 clause defines
data-name-4 as the name of an elementary
alphanumeric data item with a field length of 12
characters that occupies positions 37-48 in the record.

MESSAGE DATE clause defines data-name-5 as the
name of a data item that internally describes a
6-digit integer without an operational sign and that
occupies character positions 49~54 in the record.

MESSAGE TIME clause defines data-name-6 as the
name of a data item that internally describes an
8-digit integer without an operational sign and that
occupies character positions 55-62 in the record.

SYMBOLIC SOURCE clause defines data-name-7 as
the name of an elementary alphanumeric data item of
12 characters that occupies .positions 63-74 in the
record.

TEXT LENGTH clause defines data-name-8 as the
name of an elementary data item that internaily
describes a 4-digit integer without an operational sign
and that occupies character positions 75-78 in the
record.

END KEY clause defines data-name-9 as the name of
an alphanumeric data item of one character that
occupies position 79 in the record.

STATUS KEY clause defines data-name-10 as the
name of an elementary alphanumeric data item of
two characters that occupies positions 80-81 in the

characters that occupies positions 13-24 in the record. record.
Format 1
CD cd-name; FOR [INITIAL] INPUT

[; MESSAGE DATE
[ ; MESSAGE TIME

[; TEXT LENGTH
[:END KEY
[;STATUS KEY

[ ; MESSAGE COUNT

[[ ;. SYMBOLIC QUEUE IS data-name-1 ]
[;SYMBOLIC SUB-QUEUE-1
[ ; SYMBOLIC SUB-QUEUE-2

[ : SYMBOLIC SUB-QUEUE-3

[ ; SYMBOLIC SOURCE

[data-name—L data-name-2, . . . .

IS data-name-2 ]
IS data-name-3 }
IS data-name-4 ]
IS data-name-5 ]
IS data-name-6 ]
IS data-name-7 ]
1S data-hame-8 ]
1S data-name-9 ]
1S data-name-10 ]

IS data-name-11 ]]

Figure 4-24. CD Input Area

60497100 H

4-25



MESSAGE COUNT clause defines data-name-1l1 as
the name of an elementary data item that internally
describes a 6-digit integer without an operational sign
and that occupies character positions 82-87 in the
record.

INITIAL Clause

The INITIAL clause specifies a communication description
(CD) input area that is updated by MCS before program
execution. The INITIAL clause can be specified in only
one CD input area within a single COBOL program. The
INITIAL clause must not be used in a program that
specifies the USING phrase in the Procedure Division
header.

Each COBOL program containing an INITIAL CD input
area automatically calls MCS prior to the execution of its
first Procedure Division statement. If MCS scheduled the
job stream and this is the first call to MCS, then MCS fills
in the queue name fields of the INITIAL CD input area. If
MCS did not initiate the job stream or this is not the first
call to MCS, then MCS initializes the queue name fields of
the INITIAL input CD input area to spaces. Therefore, if
a job stream scheduled by MCS contains more than one
COBOL program, the first program that uses MCS should
contain an INITIAL CD input area so the queue names
from MCS are not lost.

Whenever a program is scheduled for execution by MCS,
the symbolic names of the queue structure that demanded
this activity are placed in the data items for QUEUE,
SUB-QUEUE-1, SUB-QUEUE-2, and SUB-QUEUE-3 of the
CD input area containing the INITIAL clause prior to the
execution of the first Procedure Division statement.

The execution of a subsequent RECEIVE statement
naming the same contents of the QUEUE, SUB-QUEUE-1,
SUB-QUEUE-2, and SUB-QUEUE-3 data items returns the
actual message that caused the program to be scheduled.
Only at that time is the remainder of the area updated.

An INITIAL CD input area can be used in all cases where
an input CD area needs to be referenced. Its fields are
used and updated in the same way as those of any other
CD input area.

Symbolic Queues

The symbolic queues contain four names that are used to
communicate between the MCS and a COBOL program.
The symbolic queue names are SYMBOLIC QUEUE,
SYMBOLIC SUB-QUEUE-1, SYMBOLIC SUB-QUEUE-2,
and SYMBOLIC SUB-QUEUE-3. The data-names given to
the symbolic names of a COBOL program must be defined
in the application definition for the MCS application that
communicates with the COBOL program. An application
definition uses the Application Definition Language to
define and describe application components to MCS.
(Refer to the Message Control System reference manual.)

The characters used to form a symbolic queue name are
A-Z, 0-9, and - (hyphen). The first character must be a
letter and the last character must not be a hyphen. The
maximum length is 12 characters. Sybmbolic queue names
that are less than 12 characters are left justified and
space filled.

The symbolic queue can be either simple or compound.
The simple queue is a queue that does not contain
sub-queues. A compound queue contains sub-queues. The
order of the sub-queues of a compound queue determines
the queue selection ordering used when a COBOL program
executes a RECEIVE statement.

4-26

To access a simpie queue, one to four symbolic queue
names must be entered (depending on the number of levels
that identify a given simple queue) in the appropriate
symbolic queue name fields. If all symbolic queue name
fields are not needed, or if a compound queue is accessed,
all unused symbolic queue name fields must contain spaces
during execution of the communication facility statement
that references that communication description area.
(See Queue Hierarchy in the Message Control System
reference manual.)

MESSAGE DATE

The MESSAGE DATE is the date that MCS acquires the
final portion of the message transferred to the COBOL
program that executed the RECEIVE statement. The
MESSAGE DATE is updated with the execution of the
RECEIVE statement if message text is transferred. The
format for MESSAGE DATE is yymmdd (year, month, day).

MESSAGE TIME

The MESSAGE TIME is the time that MCS acquires the
final portion of the message transferred to the COBOL
program that executed the RECEIVE statement. The
MESSAGE TIME is updated with the execution of the
RECEIVE statement if message text is transferred. The
format for MESSAGE TIME is hhmmsstt (hours, minutes,
seconds, hundredths of a second). The value of hh can be
0 through 23; mm and ss can be 0 through 59; tt must be
zeros.

SYMBOLIC SOURCE

The SYMBOLIC SOURCE is the symbolic name that MCS
associates with the source of the message being
transferred when a COBOL program executes a RECEIVE
statement. Execution of the ENABLE INPUT or DISABLE
INPUT statements, along with the keyword TERMINAL,
can establish or break the logical paths between the
source of the message being transferred and all input
queues receiving messages from the source.

Symbolic source names that are less than 12 characters
long are left-justified and space-filled. Symbolic source
names used in an application must be defined in the
application definition. (See the Message Control System
reference manual.) The association of a symbolic name
with a given name is part of the definition.

TEXT LENGTH

The TEXT LENGTH is the number of message characters
transferred to the COBOL program with the RECEIVE
statement. The TEXT LENGTH is updated with a
successful execution of the RECEIVE statement. If no
message characters are transferred and control s
returned to the program, TEXT LENGTH is set to zero.

END KEY

The END KEY indicates the part of a message that has
been transferred. When a RECEIVE statement with the
SEGMENT phrase is executed, the END KEY assumes one
of the following values:

A 0 indicates that less than a message segment has
been transferred to the COBOL program that
executed the RECEIVE statement.

60497100 G



S

Al

which
end-of-segment

message text transferred.

A 2,
(EMI), terminates the message text transferred. An
EMI implies an ESI.

A 3, which indicates an end-of-group indicator (EGI),
terminates the message text transferred.

which indicates an end-of-message indicator

implies an EMI and an ESI.

indicates a complete segment or an

indicator  (ESI),

When a RECEIVE statement is executed with the
MESSAGE. phrase, the END KEY assumes the values 0, 2,
or 3.

terminates the

STATUS KEY

The STATUS KEY indicates if any exception conditions
were detected during execution of an MCS statement that
references a CD input area. Table 4-10 indicates the
codes that the STATUS KEY can assume for particular
exception conditions that occur with a statement
execution.

An EGI

TABLE 4-10. INPUT CD AREA STATUS KEY CODES

Column
Legend Exception Conditions

1 2 4 5 6 7

X X X X X 00 The communication facility statement executed successfully.

X X X 15 One or more of the queue/source paths were already disabled or enabled.
Action applied to other paths.

X X X 20 One or more symbolic queue names invalid or unknown. No action was
taken while executing the communication facility statement.

X X 20 Symbolic source name invalid or unknown. No action was taken while
executing the communication facility statement.

X X X 40 Password invalid. No action was taken while executing the communication
facility statement.

X X X X X 90 System error. The results of the communication facility statement are
unpredictable and the program should terminate processing.

X X X X X 91 MCS is not running or MCS is not defined as a System Control Point.

No action was taken while executing the communication facility statement.

X X X X X 92 No valid application name parameter specified on the program call
statement or the specified application is not running. This code can
only occur if the program was not initiated by MCS. No action was taken
while executing the communication facility statement.

X X X X X 93 The program-name of the program is unknown or a program with the same
program-name is already established with MCS. No action was taken while
executing the communication facility statement.

X X X X X 94 MCS or the application is shutting down. No action was taken while
executing the communication facility statement.

X X X X X 96 Sufficient resources (e.g., central memory) are not available to satisfy
the request. No action was taken while executing the communication
facility statement. The program request can be repeated.

X X X X X 97 MCS encountered a CIQ0 error when accessing a mass storage queue. The
resuTts of the request are unpredictable and the program should termi-
nate processing. Further attempts to access the queue by any part of
the application results in the application being closed down by MCS.

COLUMN LEGEND

Column 1 - RECEIVE

Column 2 - ACCEPT MESSAGE COUNT

Column 3 - DISABLE INPUT (without the keyword TERMINAL)

Column 4 - DISABLE INPUT TERMINAL

Column 5 - ENABLE INPUT (without the keyword TERMINAL)

Column 6 - ENABLE INPUT TERMINAL

Column 7 - STATUS KEY codes

60497100 G

4-27 @



MESSAGE COUNT

The MESSAGE COUNT is the number of complete
messages that exist in the message queues. The number
represents the complete messages enqueued by MCS into a
simple or compound queue when an ACCEPT MESSAGE
COUNT statement is successfully executed.

If a compound queue is specified, the MESSAGE COUNT
indicates the number of complete messages in all simple
queues that are subordinate to the specified compound
queue.

Usage of CD Input Areas

Table 4-11 summarizes the usage of the CD input areas.
The symbols I, +, *, $, U, O, and a blank indicate how the
field must be used or updated.

TABLE 4-11. USAGE CD INPUT AREA

Column Legend

Fields

112)]314]5]6]7
SYMBOLIC QUEUE {1} I $
SYMBOLIC SUB-QUEUE-1 * P+ |+ + 3
SYMBOLIC SUB-QUEUE-2 ol B B + $
SYMBOLIC SUB-QUEUE-3 * |+ ]+ + $
MESSAGE DATE 0
MESSAGE TIME 0
SYMBOLIC SOURCE 0 I I
TEXT LENGTH 0
END KEY 0
STATUS KEY vjujuijujuiju
MESSAGE COUNT 0

COLUMN LEGEND

Column 1 - RECEIVE
Column 2 - ACCEPT MESSAGE COUNT
Column 3 - DISABLE INPUT
(without the keyword TERMINAL)
Column 4 - DISABLE INPUT TERMINAL
Column 5 - ENABLE INPUT
{without the keyword TERMINAL)
Column 6 - ENABLE INPUT TERMINAL
Column 7 - INITIAL input CD areas at the

beginning of the Procedure Division

An 1 indicates that a symbolic name must be entered in
that input area before executing the communication
facility statement that references the area.

A + indicates that either a symbolic queue name or spaces
must be entered in the area btefore executing the
communication facility statement. Entering a queue

® 4-28

name or spaces is dependent on whether a compound or
simple queue is referenced. For a simple queue, the
choice depends on the number of levels required to
identify the simple queue in a queue hierarchy.

An * indicates that either a symbolic queue name or
spaces must be entered before executing the
communication facility statement. If message text was
transferred and a compound queue was referenced, MCS
enters symbolic queue names in as many of the
space-filled * areas as necessary to identify the simple
queue containing the returned message.

A $ indicates that either the field is filled with spaces or
a symbolic queue name before executing the first
Procedure Division statement of the program. The
following criteria determine whether a symbolic queue
name is entered into a field:

If the job stream containing the program was
scheduled for execution by MCS.

If the threshold of the queue was exceeded.

If an INITIAL input CD preceded the program that
used MCS.

If this is the first program in the job stream
containing an INITIAL input CD area.

The number of levels necessary to specify the simple
or compound queue whose message count caused the
job to be scheduled by MCS.

A U indicates that MCS updates the area during execution
of the communication facility statement, regardiess of
any exception conditions.

An O indicates that the area is conditionally updated by
MCS during execution of the communication facility
statement.

The absence of an entry indicates that the area is not used
or updated.

CD Output

The CD output area (figure 4-25) specifies the CD level
indicator, a cd-name (communication description name),
and a series of independent clauses. The independent
clauses include the fields destination count, text length,
status key, destination table occurs, indexed, error key,
symbolic destination, and the user-defined names of these
fields. These clauses are used to execute the statements
SEND, PURGE, DISABLE OUTPUT, and ENABLE
OUTPUT. A COBOL program that sends messages must
define at least one CD output area.

DESTINATION COUNT

The DESTINATION COUNT specifies the number of
destinations that applies to a specific communication
facility statement. The DESTINATION COUNT must have
at least a value of one, and must not exceed integer-2.
The destination order for the communication facility
statement is determined by the content of the SYMBOLIC
DESTINATION; the ordering continues up to and including
the number of destinations given by the content of the
DESTINATION COUNT.

60497100 G



Format 2
CD  cd-name; FOR OUTPUT
[; DESTINATION COUNT 1S data-name-1 ]
[: TEXTLENGTH Is data-name-2 ]
- : [, STATUSKEY - IS data-name-3 ] -
[; DESTINATION TABLE OCCURS integer-2 TIMES
[ : INDEXED BY index-name-1 [, index-name-2] ... ]]
[; ERRORKEY IS data-name-4 }
[; SYMBOLIC DESTINATION IS data-name-5 ]

Figure 4-25. CD Output Area

TEXT LENGTH

The TEXT LENGTH indicates to MCS the number of
character positions transferred during execution of the
SEND statement. Before executing a SEND statement,
the number of leftmost character positions of the message
to be transferred must be entered in the TEXT LENGTH.

STATUS KEY

The STATUS KEY indicates any exception conditions
detected during execution of a communication facility
statement that references a CD output area. Table 4-12
indicates the codes that the STATUS KEY can assume for
particular exception conditions that occur with the
execution of each statement.

ERROR KEY

The ERROR KEY indicates any exception condition
detected for a specific destination. MCS updates the
ERROR KEY as part of the execution of a communication
facility statement, whether or not any exception
conditions were detected. Table 4-13 indicates the codes
that the ERROR KEY can assume for particular exception
conditions that occur with the execution of each
statement.

SYMBOLIC DESTINATION

The SYMBOLIC DESTINATION indicates to MCS the
destination that applies to a communication facility

60497100 G

statement. The symbolic name that MCS associates with
each destination must be entered in the SYMBOLIC
DESTINATION.

Symbolic destination names that are less than 12
characters long must be left justified and space filled.
Symbolic destination names and the associated given
destinations used in an application must be defined in the
application definition language. (See the Message Control
System reference manual.) Symbolic destinations can be
terminals, queues, journals, or a broadcast list. The
ERROR KEY field for a broadcast list cannot completely
describe for all list members the results of the statement
executed.

Usage of CD Output Areas

Table 4-14 summarizes the usage of the CD output areas.
The symbols I, U, O, and a blank indicate how the area
must be used or updated.

An I indicates that the field shown on that line must be
set before executing the communication facility
statement that references the field.

A U indicates that the field is always updated by MCS,
regardless of any -exception conditions detected during
execution of the communication facility statement.

An O indicates that the field is conditionally updated by
MCS during execution of the communication facility
sta_tement.

The absence of an entry indicates that the field is not
used or updated.

4-29 @



TABLE 4-12. OUTPUT CD AREA STATUS KEY CODES

Column
Legend Exception Conditions

1 2 3 4 5

X X X X 00 The communication facility statement executed successfully.

X X 10 The communication facility statement executed successfully for all destinations
referenced; however, one or more of them are currently disabled.

X X 15 One or more destinations already disabled or enabled. Action applied to other
destinations.

X X X X 20 One or more symbolic destination names invalid or unknown. Action successfully
completed for all valid destinations.

X X X X 30 DESTINATION COUNT invalid or exceeds the maximum value possible. No action was
taken while executing the communication facility statement.

X X 40 Password invalid for one or more destinations referenced. Disabled or enabled
action applied to other destinations.

X 50 TEXT LENGTH invalid or exceeds the maximum value possible. No action was taken
while executing the SEND statement.

X 60 A portion of a segment or message is to be sent, but no message area is referenced
and/or TEXT LENGTH is set to zero. No action was taken while executing the SEND
statement.

X 70 One or more destinations do not have partial messages associated with them. PURGE
statement successfully completed for other destinations.

X X X X 80 Two or more of the conditions designated by the STATUS KEY codes 10, 15, 20, 40,
70 and 95 have occurred. Action successfully completed for those destinations for
which no exception condition exists.

X X X X 90 System error. The results of the communication facility statement are
unpredictable and the program should terminate processing.

X X X X 91 MCS is not running or MCS is not defined as a System Control Point. No action was
taken while executing the communication facility statement.

X X X X 92 No valid application name parameter specified on the program call statement or the
specified application is not running. This code can only occur if the program was
not initiated by MCS. No action was taken while executing the communication
facility statement.

X X X X 93 The program-name of the program is unknown or a program ﬁith the same program-name
is already established with MCS. No action was taken while executing the
communication facility statement.

X X X X 94 MCS or the application is shutting down. No action was taken while executing the
communication facility statement.

X 95 Output queue threshold for one or more destinations exceeded. SEND statement
successfully completed for other destinations.

X X X X 96 Sufficient resources (e.g., central memory) are not available to satisfy the
request. No action was taken while executing the communication facility
statement. The program may repeat the request.

X X X X 97 MCS encountered a CI0 error when accessing a mass storage queue. The results of

the request are unpredictable and the program should terminate processing.

COLUMN LEGEND

Column 1 - SEND
Column 2 - PURGE

Column 3 - DISABLE OUTPUT Column 5 - STATUS KEY
Column 4 - ENABLE OUTPUT

® 4-30

60497100 G



—

TABLE 4-13. OUTPUT CD AREA ERROR KEY CODES

TABLE 4-14. USAGE CD OUTPUT AREA

Column Legend
Fields

1 2 3 4
DESTINATION COUNT I I 1
TEXT LENGTH I
STATUS KEY U U U u
ERROR KEY 0 0 0 0
SYMBOLIC
DESTINATION I I I

COLUMN LEGEND

Column 1 - SEND
Column 2 - PURGE
Column 3 - DISABLE QUTPUT
Column 4 - ENABLE OUTPUT

Column
Legend Exception Conditions

1 2 3

X X X No exception condition
for this destination.

X X X Symbolic destination
name invalid or unknown.

X X Destination or asso-
ciated output queue is
disabled.

X Password invalid for
this destination.

X No partial message
associated with this
destination.

X Destination already is
disabled or enabled.

X Output queue threshold
for this destination
exceeded.

X No queue is defined for
this destination.

COLUMN LEGEND

Column 1 - SEND

Column 2 - PURGE

Column 3 - DISABLE OUTPUT

Column 4 - ENABLE QUTPUT

Column 5 - ERROR KEY

60497100 G

4-31 @



PROCEDURE DIVISION

”

Procedure Division is required in every source program to
specify the processing that is to take place. It is the last
division in the program. Program execution begins with
the first statement of this division, excluding any
declar