CONTROL DATA" 6000 SERIES COMPUTER SYSTEMS
CHIPPEWA OPERATING SYSTEM DOCUMENTATION

Volume | Preliminary Edition

Page 1

RECORD OF REVISIONS

REVISIONS NOTES
1 Preliminary CHIPPEWA Operating System
Documentation update
2

Update May 15, 1966.

Page 2

TABLE OF CONTENTS

NCAR Assembler

The Dead Start Process and The System Loader
Pool Processors and Peripheral Processor Residents
The System Monitor, MTR

Central Memory Resident

System Peripheral Packages and Overlays
Alphabetic Peripheral Packages

Circular Input/Output

Dayfile

The System Display

The Job Display

Disk Routines and Overlays

System/Operator Communication

Page 3

CONTROL DATA CORPORATION

Product Marketing Management

NCAR ASSEMBLER

Chippewa Operating System

Page & VERSION D ... 15 November 1965

I. SUMMARY

The ASCENT assembler will produce Chippewa binary decks from Ascent or
Asper coding. The language specifications are as described for SSD Ascent

and Asper but with some extensions and a few restrictions.

Restrictions

1. Fortran statements may not be mixed with Ascent coding.

2. System macros are not provided.

Extensions

1. The Ascent assembler can produce and modify COSY decks. A cosy, or
COmpressed SYmbolic, deck contains all information (including comments)
from the source deck but is from 1/10 to 1/5 the size of the source deck,
depending on the number of comments.

2. Two consecutive field separators will terminate the variable field.

3. The variable field may contain the arithmetic operators * for multiplication
and / for division.

4, Programmer macros may be used in both Ascent and Asper. Macros may
call macros.

5. A VFD pseudo-op is available in Ascent.

Page 5

II. ASSEMBLER CALLS

ASCENT (L, X, PA, PC, PB, COSY).
If the first parameter is non-zero, a listing will be written on the
output file.
The second parameter is inoperative. Eventually will cause a load-and-go
file to be written if non-zero.
If the third parameter is non-zero, a Chippewa binary deck will be
written on P80C.
If the fourth parameter 1s non-zero, a Cosy deck will be written on
P80C.
If the fifth parameter is non-zero, a relocatable binary deck will be
written on P80C.
The sixth parameter is the file from which Cosy input may be read. This
may be "INPUT" or "COSY'.
The nominal case is ASCENT (L, 0, O, 0, 0O, INPUT).
Examples:
1. To list only:
ASCENT,
2. To list and punch a Chippewa binary deck
ASSIGN CP, P80OC.
ASCENT (L, O, PA).
3. To list and punch a Cosy deck
ASSIGN CP, P80C.
ASCENT (L, 0, O, PC).
4. To list and write a cosy deck on tape 51
ASSIGN 51, P80C.
ASCENT (L, 0, O, PC).
5. To insert modifications into a cosy deck on tape 51, list, and

punch a Chippewa deck:

Page 6

JOB

ASSIGN cP, P80C.

ASSIGN 51, coSsY.

ASCENT (L, 0, PA, O, 0, COSsY).
7-8-9

Mod pack ending with COSY card

6-7-8-9

Page 7

LOC

LOC

LOC

LOC

LOC

LoC

LOC

ASCENT

LIST

SPACE

EJECT

MACRO

ENDM

IFF

IFZ

IFN

REPLACE

DELETE

INSERT

Cosy
EQU
CON
BSS
BSSZ
BCD
or
DPC

VFD

\'2"

\'2"

NAME, Vl, V2 ees

v1,v2,V3

v1,Vv2

'A%

vVl

Vl’vz LN

V1

V1

nnCOMMENT

or

*COMMENT

b

III. ASCENT PSEUDO-OPS

Sets assembly mode to Ascent

Suppress listing if V1 # o

Space V1 lines

Eject the page

Indicates start of macro definition

Indicates end of macro definition

If V1 = 0, assemble the next card if V2 # V3

If V1 # O, assemble the next card if V2 = V3

Assemble the following V2 cards if the value of V1 = Q.
Assemble the following V2 cards if the value of V1 # 0.
Replace cards from alter nal V1 to V2. If V2 is omitted,
replace card V1.

Delete cards from alter no. V1 to V2. If V2 is omitted,
delete card V1.

Insert following source cards after alter no. Vl.

Indicates end of modifications and start of the cosy deck.
Assign the value V1 to LOC

Assign the values V1, V2, ... to LOC, LOC + 1, ...

Assign a block of V1 core cells to LOC

Assign a block of V1 core cells to LOC

Assemble the nn following characters in BCD or DPC (nn must
be 2 decimal digits).

Assemble the characters enclosed with * in BCD or DPC,.

The VFD card generates a 60 bit word., Field specifications
are:

Dnn/V1 generate nn bits of display code (nn must be a

multiple of 6, the first char must be alphabetic).

-5
Page 8. Nnn/V1 generate nn bits as an integer. VI must not be an
expression
Ann/V1 generate nn bits as an address (1f V1 1s relocatable,
nn must = 18 and the 18 bit byte must be positioned in
bits 0 - 17, 15 - 32, or 30 - 47). V1 must not be an
expression
The sum of all nn's must be = 60. If less than 60, the
result will be left justified with 0 fi11. Examples:
VFD D30/INPUT, N12/0, Al8/NAME
END Vi Indicates last card of assembly. If the variable field is
non-blank, a main program is assumed and relocation bits
will not be punched in the Chippewa binary deck
The following pseudo-ops are available in ASCENT but are meaningful only if
relocatable binary decks are punched.
EXT V1,V2, ... Defines the symbols V1,V2 ... as external symbols
ENTRY V1,V2, ... Defines the symbols V1,V2, ... to be entry points
LOC COMMON vl (L1), v2 (L2), ... Defines common block LOC and arrays V1,v2 ...
of lengths L1, L2, ... Blank common is defined by leaving the
location field blank. A simple variable must be defined as

X (1) and a multiply dimension array as a one dimension array.

Page 9

IV. ASPER PSEUDO-OPS

ASPER Sets assembly mode to Asper
ORG vl Sets location counter to the value of V1

ORGR vVl Sets location counter to the value of V1

All other pseudo-ops are the same as for Ascent except

VFD is not allowed
EXT is not allowed
ENTRY is not allowed

COMMON is not allowed

6=

Page 10

V. ERROR FLAGS

The left margin of the listing may have error flags as follows:

0

U

op-code error.
undefined symbol in the variable field.

doubly defined symbol in the variable field or location field.

VFD error.
range error for Asper jump instructions.
field error in the variable field of a CON, BCD or DPC card.

location field error.

-7~

Page 11

VI. FORCING COMMANDS

The instruction following a RJ, JP or PS will be forced upper.
A + in the location field will cause the instruction to be forced upper.
A - in the location field will cause the instruction to be assembled in

the next available portion of the 60 bit word regardless of the preceding

instrudtion.

-8-

Page 12 -9.

VII. SCAN RULES

A card may have information from columnvl through column 72. Either
a C in column 1 or a period in column 2 will indicate that this is a remarks card.
A period on or after column 11 sets off the remainder of the card as a remark.
This is not true on a CON pseudo-op card or in a literal where a period is a
decimal point.

The label field may start anywhere from column 2 through column 5. The
label ends in column 9.

Column 10 is ignored.

The Op code field may start on or after column 1l. The op code is
terminated by a field separator. A field separator is one of the set:
blank, comma and equal.

The variable field may be any number of field separators from the op
code. The scan will attempt to locate the beginning of the variable field
up to column 72, However, field sepérators after the beginning of the
variable field are used to delineate operands. Two consecutive field
separators will terminate the scaﬁ and remarks may follow without any
preceding period. The operand expressions in the variable field are
evaluated in a left to right scan. Thefefore

B26%51A21 yields (B26 *5) + A2l
and A21+B26*5 yields (A21 + B26) * 5.
The use of parentheses is limited to literals and complex constants.

On a CON card the operand entries may be separated by either blanks
or commas, but two consecutive commas does not define a zero word. E.G.:
CON 8.263E+5,26,27bA53*%25bbCONSTANTS FOR J5 defines & words, a floating

point number and 3 integers.

Page 13

The numbers generated by literals will be listed in the order of
occurrence at the end of the program.
A dollar sign will not define the beginning of the op code field of

another instruction.

«10-

Page 14 .11

€

VIII. PROGRAMMER DEFINED MACROS

Programmer-defined macros are those which the programmer
defines within an ASCENT or ASPER subprogram with a MACRO pseudo instruction.

The form of the definition is:

LOCATION OPCODE ADDRESS
Blank MACRO Symbol, list

where MACRO is the pseudo op code
Symbol is the macro name
List is a sequence of symbols and/or registers separated by commas

which define the formal parameters of the macro.

Macros are used, or called, by writing:
The name of the macro in the opcode field; the quantities to be
substituted for the dummy parameters in the definition in the address

field. -

The following rules apply to éSCENT and ASPER use of macros:

1. The definition of a macro must precede the first executable

instruction of the subprogram in which it is used.

2, Programmer-defined macros are local to the routine in which the
definition appears.

3. A maximum of 100 macros is allowed per subprogram.

4, Macros may be nested to any depth; i.e., macros may be used in the
definition of other macros, provided all macros used in definition
are themselves defined prior to use. Recursive definition (a macro
used inlits own definition) is not allowed.

5. Macro names may be any arrangement of letters and numbers which starts

with a letter and contains no more than 8 characters.

Page 15
VIII.

6.

10.

11.

12,

(Continued) - Page 2 T
The macro name must not be identical to a machine mnemonic code, a
pseudo code, a system macro code, or any other programmer-defined

macro in the same routine.

A maximum of 16 parameters are allowed in a macro parameter list.

The order and count must be the same for formal and actual parameters.

In ASCENT subprograms register names and operands in the formal parameter
list may be chahged by an actual parameter. For example, a parameter

Bk may be changed to Ak or to an operand.

A zero actual parameter will cause insertion of a zero in the

generated instruction if the formal parameter is in the address

field, or a blank if the formal parameter is in the -location field.

A symbol in the location field of a macro call will be assigned to

the first word of the macro, and will override any symbol placed

there as a parameter.

ENDM pseudo-op must be the last instruction in the macro definition.

ASCENT EXAMPLE:

LOCATION OPCODE ADDRESS
MACRO ABC,D,B2,A2,BN, RESULT, X
D SA1 B2
SA2 BN+X
FX6 X1#X2
SA6 RESULT
ENDM
MACRO DEF,X4,AM,F,H, Z, L

SAM oP

Page 16

-13-
VIII (Continued) - Page 3

LOCATION OPCODE ADDRESS
K ABC E,B3,A3,Z,F,0
H FX7 X6/X4
L , SA7 G
ENDM

Using the definitions above, a macro call of
DEF X5,A5,L0C1,L0C2,U*V+Q-10,0

would generate the following set of instructions:

SA5 oP

K SAl B3
SA3 U*V+W-12B+0B
FX6 X1*X2
SA6 LoCl

LoC2 FX7 X6/X5

SA7 G

ASPER EXAMPLE:

LOCATION OPCODE ADDRESS

MACRO XYz, 0p,A,B,C
LDM A,B
op C
STM A,B
ENDM

Using the definition above, a macro call of

Loc XYz SBD,D1,D2,D3
would generate the following set of instructions:
Loc LDM b1,D2

SBD D3
ST™M D1,D2

Page 17

IX. RELOCATION RULES FOR SUBROUTINES

A symbol is any arrangement of letters and numbers which starts with
a letter and contains up to 8 characters. A symbol is relocatable if it
occurs in the label field of an instruction .or pseudo-operation that defines
a core location. A symbol is non-relocatable if it occurred on the label
field of an EQU card whose operand is an integer. Operands that consist of
expressions of non-relocatable symbols will not be relocated. Operands that
consist of expressions that are mixtures of relocatable énd non-relocatable
symbols will not be relocated if (a) a relocatable symbol is the operand in a
multiply (*) or divide (/) operation; (b) an expression consists of the sum
or difference of 2 or more relocatable symbols.

In the Chippewa system relocation bits are bits 16 and 17 of a 30 bit
instruction. Bit 16 signifies common. Bit 17 signifies an ordinary symbol.
Both 16 and 17 on or off.signify a constant. Certain valid instructions
although handled properly by the assembler may be loaded improperly.

E.G.: SX7 220314B. This instruction has bit 16 set and will bé
relocated in common.

The first two words of a subroutine define its name, length, and
relocatable length for the loader. The required words may be generated by
VFD pseudo-ops. They have the form:

VFD D24/NAME, N18/0, A18/END

VFD A18/RELOC, A18/END, N24/PARAMS

The.symbol END should point to the last core cell used by a routine.
The symbol RELOC should point to the first constant used by a routine.

Both END énd RELOC must be non-relocatable. To achieve this they should
be defined in terms of relocatable symbols that have been multiplied by

the integer, l. A subroutine should therefore have the following format:

Page 18
IX. (Continued) Page 2

=15«

ENTRY NAME

VFD D24/NAME, N18/0, A18/END

VFD A18/RELOC, A18/END, N24/N

BSS N N= no. of arguments to subroutine
NAME CON 0

(SUBROUTINE INSTRUCTIONS)

RELOC EQU **]+1 start of constants

(SUBROUTINE CONSTANTS)

END EQU *%¥1+1 end of constants

END

Page 19

X.

-16-

ADDITIONAL NOTES

1. The peripheral routines 2RC and 2PC have been modified for use withASCENT.

2RC will input the entire 80 columns of a binary card if col 1. = 0005.

2PC will punch an 80 column card image if the file name is P80C. The

ASCENT assembler requires a field length of 350008'

2. PAS decks may be translated to ASPER by setting all 20g non-zero.
3. CLAS decks may be translated to ASCENT by setting all 174 non-zero.
4. A PS instruction genérates 30 bits of zeros. |

5. A JP instruction generates an 02 op code.

TABLE SIZES

The tables have been defined on EQU cards and their lengths are easily

changed by re-assembly.

SYMBoL
AS25
AS32
AS33
AS78
AS90

AS91

Ascent tables have the following lengths:

LENGTH
1000
200
500*10
25

50

400

DEFINITION

max number of symbols

max INSERT, DELETE, REPLACE cards
insert table size

number of literals

number of macro names

macro skeleton table length

Page 20

CONTROL DATA CORPORATION

Development Division - Applications

THE DEAD START PROCESS AND THE SYSTEM LOADER

Chippewa Operating System

9/25/65
REV. 1

Page 21

THE DEAD START PROCESS AND THE SYSTEM LOADER

INTRODUCTION

The dead start process requires that a short program (up to 12 instructions)
be set up on the matrix of\toggle switches on the dead start panel. When the
dead start switch is toggled, this dead start program is transmitted to peripheral
processor zero'!s memory and executed. The dead start program in turn transmits a
bootstrap program to another peripheral processor. This bootstrap program brings

in the system loader from the library tape and transfers control to it. The system

loader transfers a resident program to each peripheral processor, causes the Display -

and Monitor programs to be loaded, loads the central memory resident, library, and
tables, and pléces the remaining library programs on the disk. It then inititates

execution of the Display and Monitor programs.,

THE TAM INSTRUCTION

A detailed understanding of the dead start loading process requires some fam-
iliarity with the functioning of the IAM instruction. The IAM instruction is a 24-
bit instruction: the d portion of the instruction holds the channel number and the
. _portion of the instruction contains gggwggg;gggkin peripheral processor memory
where the first data word is to be stored. The A register is assumed to contain
the number of words to be read, The functioning of the IAM instruction is shown in
figure 1. Note the following points:

® During execution of the IAM instruction, the contents of the P register
are stored in location 0, and the P register used to hold the ‘memory
address for the next word to be stored. At the time the contents of

the P register are stored, P holds the address of the second word (m

-1-

Page 22

portion) of the IAM instruction. Before exiting the instruction, the
contents of location 0 are read, incremented by one, and placed in the
P register to provide the address of the next instruction.

The IAM instruction tests the word count in the A register to see if it
has béen reduced to one: 1if so, (A) is reduced by one and the instruct=
ion exkted. Therefore, if the IAM instruction is entered with the con-
tents of the A register equal to zero, the word count is effectively
777774,)

The IAM instruction may be exited in one of two ways: (1) because the

word count has been reduced to zero or (2) because the channel has

become inactive, If the word count has not been reduced to zero and

the channel is active, exit will not take place even though no data is
being read: the processor will idle in trip 4, waiting for the channel

to become full,

THE DEAD START SEQUENCE

When the dead start switch is toggled, the following sequence is initiated:

The Master Clear signal is generated

The A register of each peripheral processor is set to 10000g: the
P register of each peripheral processor is set to zero ”

The K register of each peripheral processor is set to 712 (trip &
of an IAM instruction)

All channels are set to empty and active
All peripheral processors are connected to their respective channels
(i.e., PP0O to channel 0, PPl to channel 1, etc.) by setting the

appropriate channel number in each processor's Q register

The first synchronizer on each channel is selected: the first unit
on that synchronizer is selected

‘The dead start synchronizer is selected on channel 0 R R

The program on the dead start panel is transferred to PP0 memory:
first, a zero byte is transmitted (stored in location 0); next, the

12 bytes from the panel switches are transmitted (stored in location

1 - 14); finally, another zero byte is transmitted (stored in location
15)

wla

-E.

(P)M1 m

FORMAT:

o}
o

F = Operation Code
d = Channel Number
m = PP Memory Address

A Register Preset with Word Count

TRIP 1 K = 000

READ Fd PORTION OF INSTRUCTION
FROM LOCATION (P)

F——» K REGISTER

d— Q REGISTER

(P) + 1— P REGISTER

TRIP 2 : K= 710

STORE (P) AT LOCATION 0000g
(K) + 1 —»K REGISTER

TRIP 3 K= 711

READ m PORTION OF INSTRUCTION
FROM LOCATION (P) AND PLACE
IN THE P REGISTER

(K) + 1 —= K REGISTER

THE IAM .NSTRUCTION

TRIP 4 K= 712

BadEEEEEE————

N CHANNEL
ACTIVE?

Y

cHANNEL) N
FULL?

Y

STORE CHANNEL
REG. CONTENTS
AT LOCATION (P)
(P) + 1-= P REG.

Ay -1 —»
- A REGISTER

o] A) =1 —
A REGISTER

(K) + 1-» K REG.

TRIP 5 = 713

READ CONTENTS OF 0000, ADD
1, AND PLACE IN P REGISTER
CLEAR K REGISTER

Figure 1

€z 9388g

Page 24

® The dead start synchronizer disconnects channel 0, initiating the

execution of the dead start program

Peripheral processor zero treats the data sent by the dead start synchronizer as
it would data arriving from any other controller, When the dead start synchronizer
disconnects from channel zero, peripheral processor zero exits from the IAM 1nsﬁruct-
ion. In exiting, the contents of location 0 are incremented by 1 and used as the
address of the next instruction. Since this location was cleared to O by the dead
start process, the address of the next instruction is 000l: this location holds
the first instruction of the program sent by the dead start synchronizer from the

dead start panel.

THE DEAD START PROGRAM

The dead start program is shown in figure 2, 'The purpose of the dead start
program is to transmit a bootstrap program to peripheral processor xx (PPxx), where
xx is the channel number of the controller on which the system tape is mounted.

The dead start program begins by transmitting a block of 8 words on channel xx.
PPxx is connected to this channel and is idling in trip 4 of an IAM instruction:
it will therefore read in these 8 words and store them in its memory beginning at
location 0. PPxx will not, however, begin execution yet, since the channel is
still active and the word count has not been reduced to zero.

The dead start program next disconnects channel xx: when channel xx becomes
inactive, PPxx exits from the IAM instruction and begins execution of the bootstrap
program. In exiting from the IAM instruction, the contents of location O are read,
incremented by 1, and used as the address of the next instruction. Since the first
word of the 8-word block sent by PP0O was equal to zero, this address is equal to
0001, and the instruction at this address is read and executed.

The dead start prdgram then issues an input instruction for channel 13: since

e

-g-

THE_DEAD START PROGRAM Cooo cor Ve ol g
13

xx = CHANNEL NUMBER FOR CONTROLLER ON WHICH SYSTEM TAPE IS MOUNTED

PPO MEMORY

Gz @38eg

N

LOCATION INSTRUCTION FUNCTIO
0001 1410 SET THE A REGISTER TO 10g
0002 73xx OUTPUT 8 WORDS BEGINNING AT LOCATION 0006
0003 0006 ON CHANNEL xx (PROCESSOR xx WILL STORE

THESE INSTRUCTIONS THESE INTO ITS MEMORY BEGINNING AT LOCATION 0)
ARE EXEGUTED IN PPQ

0004 75xx DISCONNECT CHANNEL xx (THIS PERMITS PROCESSOR
xx TO EXIT FROM THE IAM INSTRUCTION AND BEGIN
EXECUTION OF THE PROGRAM IT HAS RECEIVED)

0005 7113 SET PPO TO INPUT FROM CHANNEL 13 (CHANNEL 13
IS EMPTY AND ACTIVE: PPO WILL IDLE IN THIS
0006 0000 INSTRUCTION UNTIL CHANNEL 13 BECOMES FULL)
0007 77xx
0010 2000
THESE INSTRUCTIONS
ARE TRANSFERRED » 0011 77xx
TO AND EXECUTED
IN PPrx 0012 2020
0013 74xx
0014 7lxx
0015 0000 | «#———— CLEARED DURING DEAD START

Figure 2

Page 26
channel 13 is empty and active, PPO will idle in trip 4 of this instruction waite

ing for channel 13 to become full,

THE LOADER BOOTSTRAP

The bootstrap program (figure 3) in PPxx issues the necessary function, activ-
ate, and input instructions to read the first record on the system tape into its
memory beginning at location 0. When this record, which contains the loader prog-
ram, has been read; PPxx will exit the IAM instruction when the controller disconn-
ects the channel upoﬁ‘detecting the end-of-record gap. PPxx, in exiting the IAM
instruction, reads the contents of location 0, adds 1 to it, and uses this as the
address of the next instruction. Location 0O contains the first word of the record
read from tape: thus, this word supplies the address of the first instruction of

the loader program. -

THE LOADER PROGRAM

The layout of the loader program in PPxx is shown in figure 4. As mentioned
earlier, the first word of the loader program (location 0) contains the address - 1
of the first instruction of the loader. The loader program also contains a periph-
eral processor resident package in locations 000l - 0777g. This package is trans=-
mitted by the loader to each of the other peripheral processors. The resident
program is contained in locations 0100 - 0777g: locations 75, 76, and 77g contain
the values 60, 61, and 62, respectively. These values are the central memory
addresses of the Input Register, the Output Reg;ster, and the Message Buffer for
PPl, and must be modified when the resident package is transmitted to processors
other than PPl,

At the time the loader program begins execution, all channels except the
channel corresponding to the processor containing the loader program (PPxx) are
active and eﬁpty: their corresponding processors are idling in an IAM instruction,

waiting for input. Channel xx, however, was disconnected by the tape controller

-6-

-L-

PPxx MEMORY

LOCATION

0000

0001
0002

0003
0004

0005

0006
0007

INSTRUCTION

0000

77xx
2000

77xx
2020

74xx

71lxx
0000

THE DEAD START PROGRAM

LOADER BOOTSTRAP

FUNCTION

NOT EXECUTED (ADDRESS - 1 OF FIRST INSTRUCTION)

ISSUE FUNCTION CODE: SELECT UNIT O
ISSUE FUNCTION CODE: SELECT BINARY READ

ACTIVATE CHANNEL xx (xx DISCONNECTED BY PPO PROGRAM)

INPUT (A) WORDS FROM CHANNEL xx BEGINNING AT LOCATION
0000 (THE A REGISTER HAS NOT BEEN USED AND STILL
CONTAINS :0)

® THE TAPE CONTROLLER WILL DISCONNECT THE CHANNEL WHEN THE END-OF-RECORD
GAP IS DETECTED AND THUS CAUSE THE PROCESSOR TO EXIT FROM THE 71 INSTRUCTION.

¢ THE FIRST WORD FROM TAPE WILL BE READ INTO LOCATION 0: ON EXIT FROM THE

IAM INSTRUCTION,

THE CONTENTS OF LOCATION O ARE READ, INCREMENTED BY 1,

AND USED AS THE ADDRESS OF THE NEXT INSTRUCTION.

Figure 3

17 9388g

Page 28
when the end-of-éecord gap following the loader program was detected, and is

therefore inactive. The loader program searches for an inactive channel in
order to determine which processor it resides in: it also inserts this channel
number in the appropriate I/0 instructioms.

The loader program then pfoceeds to determine if the system tape is mounted
on a 607-B unit or a 626-B unit, and modifies the function codes accordingly.
Transfer of the resident package to each of the other processors then takes
place. The loader first outputs a single word to tﬁe receiving processor,
which stores it in its memory at location zero. Since the recéiving processor is
in trip 4 of an IgM instruction, it will, upon exiting this instruction, use the
contents of location 0 as the address - 1 of the next instruction it is to execute.
For processors 1 - 8, this address is 778: the address - 1 of the first instruction
of the resident program. For processors 0 and 9, this address is 7778: the address
- 1 of the first instruction of the MIR and DSD programs, respectively. After
transmitting this single word, the loader then transmits the resident package,
which the receiving processor stores in its memory beginning at location COOl.

The receiving processor does not exit the IAM.instruction at this time, however,
since the conditions for exiting (eifher word count réduced to zero or channel
inactive) have.not been met. As the transfer of each resident takes place, the.
loader program modifies the Input Register, Output Register, and‘Message Buffer
pointers to the proper values for each processor.

When all processors have been loaded with the resident package, the loader
program then proceeds to load the MIR and DSD programs from the syétem tape into
processors 0 and 9, respectively.

The format of the system tape is illustrated in figure 5. The tape contains
a single file of binary records: a full physical record contains 1000g CM words.

A logical record, such as the MTR program or the CM resident, may be composed of
more than one physical record: the last physical record for a specific program may
be a short record of less than 1000g CM words. The end of a logical record is
indicated when a short physical record is processed or when a zero length record

8=

-6-

7777

1000

0100
0077

0076
0075

0000

7

LOADER

PP RESIDENT

0062
0061 i
0060 1.

\\\\
N

0777

67 °298g

BASE ADDRESSES FOR PP COMMUNICATIONS
AREA IN CENTRAL MEMORY

ADDRESS - 1 OF FIRST INSTRUGTION IN
LOADER PROGRAM

t
LOADER PROGRAM LAYOUT IN PPxx

(RECORD 1 ON SYSTEM TAPE)

Figure 4

Page 20 . .
(4 PP words) is detected, except for the disk library routines: the end of each

disk liBrary routine is indicated by a short record only. The end of a library
is indicated by a zero length record.

The loader reads the records comprising the DSD program, transferring each rec-
ord as it is read to PP9: when a short record is processed or a zero length record
is detected, loading of the DSD program is complete. This process is repeated for
the MIR program records,

The CM Resident is loaded next. This resident contains table pointers and
initial values for certain tables, such as the track reservation tables. The
resident subroutine iibrary is loaded using the RSL pointer from the CM Resident
to provide the starting address: ‘the resident peripheral library (RPL) is similiar-
ly loaded.” In all three cases (CM Resident, RSL, and RPL), records are read and
transferred to central memory until either a zero length record is detected or a
short record is processed.

The loader program then diéconnects the channels for each of the other process-
ors, permitting these processors to exit from the IAM instruction and begin execution
of their‘programs. Now that MTR is executing, the loader program can utilize the
assistance of MTR in loading the libraries on the disk.

The loader requests a tfack from MIR via its resident, agd picks up thé'Periph-
eral Library Directory pointer from central memory in order to obtain the starting
address of the directory. It then reads a record from the system tape, builds the
PLD entry and writes it in the directory, and transfers the record to the disk.

The next record is then read from tape and written to the disk: this process con-
tinues until a short record is processed, indicating that a complete program has
been transferred. The next record is read from tape, the directory entry construct-
ed and written in the directory, and the proéess of reading records from tape and
transferring them to the disk repeated. The end of a library is indicated by the
detection of a zero length record.

When the peripheral library has been transferred to the disk, the transfer of

the central library to the disk is initiated and executed in the same manner.

-10-

S

. ~ZERO LENGTH RECORD

CENTRAL

)

LIBRARY o

Y
yi

ZERO LENGTH RECORD

od

SYSTEM TAPE CONTAINS A SINGLE FILE OF
BINARY RECORDS

A FULL PHYSICAL RECORD IS A BLOCK OF 1000g
CM WORDS dubce 10000 Fvnes

1¢ =88gq

e v]
PERIPHERAL | . A LOGICAL RECORD (i.e.; MTR, RPL, etc.) MAY
— - LIBRARY | — BE COMPOSED OF A NUMBER OF PHYSICAL RECORDS
THE END OF A LOGICAL RECORD IS INDICATED
— RESIDENT — WHEN A SHORT RECORD IS PROCESSED OR WHEN A
- PERIPHERAL ZERO LENGTH RECORD (4 BYTES) IS DETECTED
LIBRARY —
— - THE END OF PERIPHERAL LIBRARY OR CENTRAL
LIBRARY ROUTINES IS INDICATED BY A SHORT
RESTDENT RECORD ONLY: THE END OF THE LIBRARY IS
SUBR. LIBRARY — INDICATED BY A ZERO LENGTH RECORD
‘ . N qﬁﬂg
— CM RESIDENT on B R
e n L{N;A»flkmcn?k
- MTR QQC} =
- (MONITOR) —
- DSD —
(SYSTEM DISPLAY) . e
E'\ b= 4 ""Afh i Y
; . ol g
' ' -y &JSL P
SYSTEM LOADER , U
A g S AR .

KR

Yoy
N

'

/

e BEGINNING OF TAPE

SYSTEM TAPE FORMAT

Figure 5

Page 32

When a half track is filled during library transfers to the disk, the loader
program requests a new half track from MIR via its (the loader's) resident program.
The resident's POSITION DISK routine is used to position the disk to the new half

track position.

-

When the transfer of the central library to the disk is completed, the loader

program exits to the idle loop of its resident.

1. For the loading process described, the system tape should be mounted on
unit zero of the first controller on channel xx. If channel xx has both
607-B and 626-B controllers, the unused controller's unit zero should be
made not ready. The channel xx may be any channel from 1 to 9.

2. In addition to the bootstrap routine described, a variety of others are

in use. Many of these use a one-card loader.

- 12-

Page 33

SYSTEM TAPE LOADER

Y

FIND INACTIVE CHANNEL BE-
TWEEN 1 AND 7
NUMBER OF THE PP CONTAIN-
ING THE LOADER

(i.e., THE

INSERT CHANNEL NUMBER IN
1/0 INSTRUCTIONS

ASSUME READY

STATUS

I DELAY TO ALLOW TAPE TO

ISSUE STATUS

REQUEST TO

626-B CONTROLLER

(REQUEST ACCEPTED?

)

YES

(;7 TAPE 0 READY?

\
J

NO

MODIFY FUNCTION CODES FOR
607-B CONTROLLER

MODIFY FUNCTION CODES
FOR 626-B CONTROLLER

THIS PP

USE CHANNEL NUMBER TO SET
INPUT REGISTER POINTER FOR | ¥

_L IS THIS PP

1?

)

I YES

SET SWITCH TO BYPASS TRANSA
FER OF RESIDENT TO PPl

SET UP BYPASS OF TRANSFER
OF PP RESIDENT TO PPxx

-13a

Page 34

(CHECK TAPE STATUS: ‘\

PARITY ERROR? "

NO

SET UP TO TRANSFER PP
RESIDENT TO PPl

_______.-ITRANSFER PP RESIDENT TO
DESIGNATED PROCESSOR

MODIFY INPUT REGISTER
(IR), OUTPUT REGISTER
(OR), AND MESSAGE BUFF- -
ER (MB) POINTERS FOR
NEXT PROCESSOR

MODIFY RESIDENT TRANS-
FER FOR NEXT PP

)
IS PPxx NEXT PP?
()
I NO
——(IS PP9 NEXT PP?)

-

YES

TRANSFER RESIDENT TO PP9

MODIFY IR, OR, AND MB
POINTERS FOR PPQ

ZERO LENGTH RECORD?
(LESS THAN 5 PP WORDS?)

NO

TRANSFER RECORD TO PP9 |

WAS THIS A FULL REC-
ORD? (1000g CM WORDS)
| NO

TRANSFER RESIDENT TO PPO

© .

N

A
RJ READ NEXT BLOCK L\
(DSD PROGRAM RECORDS)

Page 35

SET IR, OR, AND MB
POINTERS FOR THIS PP

‘ RJ READ NEXT BLOGCK
(MTR PROGRAM RECORDS)

‘ ZERO LENGTH RECORD?)—

NO

TRANSFER RECORD TO PPQ

QWAS THIS A FULL RECORD? ’

lNo

RJ SET CENTRAL LOGS.
(LOAD AND/OR SET CM
POINTERS AND TABLES: CM
LOCATIONS O - 4777)

RJ SET CENTRAL LOCS.
(LOAD RESIDENT SUBROUTINE

LIBRARY)

RJ SET CENTRAL LOCS.
(LOAD RESIDENT PERIPHERAL
LIBRARY)

DISCONNECT ALL CHANNELS TO
INITIATE EXECUTION

SET MTR FUNCTION 06
(REQUEST TRACK)
Q’P RES: PROCESS REQUEST)
|

READ PLD POINTER FROM CM

RJ STORE LIBRARY
(PERIPHERAL LIBRARY)

Page 36

l READ CLD POINTER FROM CM I

RJ STORE LIBRARY
(CENTRAL LIBRARY)

I REWIND SYSTEM TAPE l

EXIT TO PPxx RESIDENT

IDLE LOOP
[T =meap next BLOGK |
READ RECORD FROM TAPE I
{ FULL RECORD? (1000g CM ‘)
| IORNC 2) -
\ wvxwu o/ J

| o

COMPUTE SHORT LENGTH

wemmeeef® GET TAPE STATUS

FILE MARK?
_
I NO
STOP
(PARITY ERROR?
NO
STOP
EXIT

-16.

Page 37 STORE LIBRARY Tw e e

Y

H RJ READ NEXT BLOCK)

(ZERO LENGTH RECORD?
I NO

INSERT NAME IN DIRECTORY
ENTRY

N

INSERT HALF TRACK NO, AND
SECTOR NO. IN DIRECTORY
ENTRY

|

WRITE ENTRY IN CENTRAL
MEMORY DIRECTORY

INITIALIZE BUFFER PARA- ‘
METERS :

EXIT

SET CONTROL BYTE EQUAL TO
100g (CM WORD COUNT)
I \ YES: ALL FULL SECTORS ARE
HAVE ALL SECTORS IN THIS PROCESSED
RECORD BEEN PROCESSED?
—
-(WAS THIS A SHORT RECORD?)
(RJ WRITE DISK SECTOR)
r NO
sl ADVANCE BUFFER ADDRESS I (RJ' READ NEXT BLOCK)

QJ WRITE DISK SECTOR

ADVANCE FOR NEXT DIRECT-
ORY ENTRY

SET CONTROL BYTE FOR
SHORT SECTOR

«l7a-

Lage

z8

WRITE DISK SECTOR

Y

(PP RES: ©POSITION DISK >

SET UP SECTOR NUMBER FOR
DISK WRITE

READ TRTO POINTER FROM CM
TO GET SECTOR LIMITS

INCREMENT SECTOR NUMBER &
STORE IN CONTROL BYTE

COMPARE SEGCTOR NUMBER WITH
INNER/OUTER ZONE SECTOR LIMI

[

| ——'(LIMIT REACHED?)

I YES

(PP RES: PROCESS REQ.)
STORE NEW TRACK NO., SET
NEXT SECTOR NO. TO ZERO

WRITE SECTOR TO DISK I

EXIT

«18-

Page 39

| SET CENTRAL LOCATIONS

WHICH SEGMENT? READ RSL POINTER, PICK

RPL
IREAD RPL POINTER, PICK _{ READ RSL POINTER, PIOK

UP RPL STARTING ADDRESS

TABLES &
POINTERS

RJ READ NEXT BLOCK

ZERO LENGTH RECORD? }m=

I NO -
EXIT.

BUILD CM WRITE ADDR.]

{ wrITE RECORD TO oM |

l MODIFY CM ADDRESS I

FOR NEXT WRITE

‘ WAS THIS A FULL
RECORD?

NO

EXIT

=19a

Page 40

CONTROL DATA CORPORATION

Development Division - Applications

POOL PROCESSORS AND PERIPHERAL PROCESSOR RESIDENTS

- Chippewa Operating System

10/15/65
REV. 1

Page 41
POOL PROCESSORS AND PERIPHERAL PROCESSOR RESIDENTS

INTRODUCTION

In the Chippewa Operating System, the System Display program (DSD) and the
Monitor program (MIR) permanently reside in two of the ten peripheral processors.
MTR and DSD reside in processors 0 and 9, respectively., The remaining processors,
1 - 8, form a pool of processors to which MIR may assign tasks as required. These
pool processors have no fixed assignments: any processor may be assigned to the
execution of any system routine, and it is possible that more than one processor
may be executing the same routine at the same time, All ten processors contain
a small resident program which handles the communications between pool processor
programs and the Monitor, and initiates the execution of these programs as direct-

ed by MTR,

POOL PROCESSOR STRUCTURE

The structure of a pool processor is illustrated in figure 1., The resident
program is contained in locations 0100 - 0772: 1locations 75, 76, and 77 contain
pointers to the Input Register, the Output Register, and Message Buffer in central
memory. When directed to do so by MIR, the resident loads a program into its
memory and executes it: since that program remains in that processor only for
the period of time required to perform its function, it is calied a transieﬁt
program., Transient programs occuéy locations 0773 - 1772, although the first
instruction is at location 1000. Transient programs generally load overlays to
perform specific tasks. For example, CIO, which is a transient program, calls
various overlays depending on the task (read, write, backspace) and the equip=-

ment (disk. tape, etc.) specified. Overlays are loaded into memory beginning

w]la

[
[4
L}

N

1 2an8t13

Z7

OVERLAY
PROGRAM

TRANSIENT
PROGRAM

7

PP RESIDENT

MB POINTER

OR POINTER

IR POINTER

POOL PROCESSOR

—

TRANSIENT AND OVERLAY PROGRAMS
COMMUNICATE WITH MITR VIA THE
PP RESIDENT PROGRAM

REQUESTS TO MIR ARE
PLACED BY RESIDENT
IN ITS OUTPUT REG.

COMMUNICATION AREA

Zhy °38g

MITR REGULARLY SCANS THE OUTPUT
REGISTER TO DETERMINE IF A

P

=

MESSAGE
[BUFFER

!lLl[

7

MONITOR

INPUT REG.

- CENTRAL MEMORY

N

LRI el "

PROCESSOR 0

MIR ASSIGNS TASKS TO POOL
PROCESSORS BY PLACING THE
ROUTINE NAME IN THE INPUT
REGISTER

POOL PROCESSORS & PP RESIDENT

Page 43
at location 1773: the first instruction falls at location 2000. Overlays are

" generally entered via a return jump. Transient programs have names beginning
with a letter (CIO, EXU) or the numeral 1 (1BJ, 1LT): overlays have names be-
ginning with the numeral 2 (2wD, 2BP, etc.).

Both transient and overlay programs, as well as the resident program, make

extensive use of the low core locations 01 - 74,

THE RESIDENT

The peripheral processor resident program has two main functions to pérform:
© all communication between MIR and the transient or overlay programs
is handled by the resident; |
® the resident, when directed by MIR, loads transient programs from
either the RPL or the disk library and initiates the execution of
these programs.
Communication between MTR and the resident programs is carried out through the
use of ten communication areas in central memory, one for each processor.
(Note: MIR on occasion communicates with itéelf by this means.) Each commun-
ication area consists of a one-word Input Register, a one-word Output Register,
and a six-word Message Buffer. Pool processors address these areas by means of

pointers in locations 75 - 77.

JUvS—-

MfR assigns a task to a pool processor by placing the request in the
processor's Input Register. The format of the request is shown‘in‘figure 2.

The name of the program package which is to be loaded and executed appears in

the high-order 18 bits of the Input Register. This name consists of three display
code characters, such as CIO, 1AJ, etc. The number of the control point to which
this package is assigned is contained in the low-order 3 bits of byte 2 of the
Input Register. The address of the argument(s) required by the package appears

in the low-order 18 bits of the input Register. Thé request remains in the Input
Register until the task is completed. On completion of a task, the transient

program requests MTR to release the processor: MTR then clears the processor!s

-3-

--'7.

44 988g

18
-+

3 .
. /) 1,
PP INPUT REGISTER NAME W //// ARG
. 2 (1 / L
PACKAGE NAME IN DISPLAY ADDRESS OF ARGUMENT
CODE (1AJ, CIO, etc.) OR ARGUMENT LIST
CONTROL POINT NUMBER ~t——

ta

TR REQUEST TO RESIDENT
12 12 ' 12

12 12
ARG. ARG.

FIN NO. ARG, ARG.

PP OUTPUT REGISTER
\\\\\ \\“n\x\t,g==:::::l‘-———""' o
ARGUMENT (CHANNEL NUMBER FOR REQUEST CHANNEL FUNCTION,

FUNCTION NUMBER =
TRACK NUMBER AND TRT ADDRESS FOR DROP TRACK
FUNCTION, etc.)

SOME FUNCTIONS USE THE MESSAGE BUFFER TO SEND ARGUMENTS
TO MIR (e.g., DAYFILE MESSAGE FUNCTION)

RESIDENT REQUEST TO MTR

Z @andyy

Page 45
Input Register. The Input Register of a pool processor is thus clear only

when the processor is idle. When MTR needs a pool processor to assign to a
task, it searches the communication areas for a cleared Input Register: when
one is found, the corresponding processor is assigned to the task.

All communication between the Monitor and the transient and overlay prog-
rams is handled by the resident program. MIR performs a variety of functions,
each of which is identified by a function code of one or two octal digits,

Some of these functions are listed below:

Code Function
01 Process Dayfile Message
02 Request Channel
07 Drop Track
12 Release PP
33 Asgign Equipment

To transmit a request to MTR, the resident places the request in its Output
Register. The format of this request is illustrated in figure 2, Byte 1 of
the Output Register contains the function code in the low-order bit positions.
Bytes 2 - 5 are used for arguments: the number of argument bytes depends on
the particular function. Thus, for a Request Channel functioﬁ (function number
2), the channel number is placed in byte 2. For a Drop Track function, byte 2
contains the address of the Track Reservation Table and byte 3 contains the half
track number., For some functions, the function arguments are placed in the
Message Buffer and only the function code appears in the Output Register.

MTR regularly écans the Output Register of each processor to determine if
a request is present. When the request has been detected, analyzed, and process-
ed, MTR clears the Output Register. The resident, after placing the request in
the Output Register, waits for the Output Register to be cleared before proceed-

ingo

*5a

Page 46

Some functions require that information be returned by MIR to the request-
ing program: for example, the Request Track function (function number 6) returns
a half track number to the requestor. MTIR places any information to be sent to
the requestor in the Message Buffer. The resident returns control to the request=
ing transient or overlay program when it detects that the Output Register has
been cleared by MTR: the requesting program then reads the Message Buffer to
obtain the required information.

The resident contains a routine called Process Request which handles the
transmission of function requests to MTR. The Process Request routine uses
lo;ations 10 = 14 in peripheral processor memory as temporary storage for the
request to be written in the Output Register. A peripheral processor program
may utilize this routine by placing the arguments for the function in bytes
11 and 12, setting the A register with the function number, and executing a
return jump to the Process Request routine at location 76l. The Process
Request routine will enter the function number in location 10 and write the
contents of locations 10 - 14 in the Output Register. OControl will be returned

to the requesting program upon MTR's clearing the Output Register.

THE RESIDENT PROGRAM

When a pool processor program completes execution, it exits to location
100, which is the address of the resident idle loop. In this idle loop, the
processor's Input Register is scanned at intervals of slightly greater than

.

}25 microseconds until a request is found in the Input Register. The delay

N

betweenmé;;cegﬁive scans avoids unnecessary memory and read pyramid conflicts.
When a request is detected, the resident stores the routine name and the con=-
trol point number. It then sends function code 17, Pause for Storage Relocat-
ion, to MIR and waits for MIR to clear the Output Register before continuing.
Should MTR be in the process of relocating the storage assigned to this con-

trol point, the Output Register clear will be delayed until relocation is

.

™

Page 47
complete. The resident then searches the RPL for the requested routine: if

found, the package is read from the resident library into the processor's
memory beginning at location 773, and resident turns control over to this routine
by jﬁmping to location 1000. If the routine name was not found in the RPL, res-
ident then initiates a search of the PLD., If the routine is in the-disk lib-
rary, the resident loads it from the disk into its meﬁnry at location 773, and
jumps to it to begin execution. If the routine is not found in the PLD, the
resident enters the message "XXX NOT IN PPLIB" in the dayfile, and requests MTR
to abort Ehe job which called the routine. The resident then returns to its
idle loop.

In loading a program from the disk, resident begins by reserving channel
0 via the appropriate MIR function request, Next, resident compares the track
number of the requested routine with the curient position of the disk as con-
tained in the TRT pointer word for disk 0. Repositioning and/or head group
switching is done only if necessary. Once the disk has been properly position=
ed, the sectors composing the desired routine are read into peripheral processor
memory. The end of the routine is indicated when a short record (less than
100g central memory words) is read. If a parity error is detected, the sector
in which the error occurred is reread twice, each time at a different clipping
level. Should these reads also fail, the resident enters the message "DISK 0
PARITY ERROR Gx Txxx Sxxx" in the dayfile and then stops (via a UJN 0 instruct=
ion).A A dead start load is necessary to renew systems operation,

Several resident routines are used by transient and overlay programs.

These routines are described below.

Address Routine Entry Conditions Description
761 Process Request Function number Enters function number in
in A register location 10, and writes

locations 10 - 14 to the
Output Register. Exits
when the Output Register
has been cleared

S

Page 48

Routine

Entry Conditions

Description

Address'

741
751

531

701
200

401

Request Channel
Drop Channel

Dayfile Message

Position Disk¥*
Disk Parity Error Exit¥*

Read Sector from Disk
o*

Channel number in
A register

Channel number in
A register

Message address
in A register

Half track nume
ber in A register

Half track num-
ber in location
6, sector number
in location 7

Read address in A
register, half
track number in
location 6, sec~
tor number in loce-
ation 7

* Not a MTR function

Stores channel number in

location 11, sets function

code 2 in A register, and
jumps to Process Request

Stores channel number in
location 11, sets function
code 3 in A register, and
jumps to Process Request

Write message (less than 6
CM words, terminated by a
zero byte) in Message
Buffer, sets function code
1 in the A register, and
jumps to Process Request

Repositions heads and/or
switches head groups as
necessary (for disk 0
only)

Enters error message in
the dayfile and halts

Reads one sector from
disk 0 into memory at the
designated address. Jumps
to Disk Parity Error Exit
if an error occurs.

All of the foregoing routines are entered via a return jump instruction to the

specified address except the Disk Parity Error Exit, which is entered via a

long jump instruction.

-8-

Page 49

PP RESIDENT: IDLE LOOP

"

READ INPUT REGISTER

]
N
(INPUT REGISTER = 0?7)_

YES

DEIAY

STORE NAME AND CONT-
ROL POINT NUMBER

SET MTR FUNCTION 17:
PAUSE FOR STORAGE
RELOCATION

|

{ PROCESS REQUEST > o
]

L4 SEARCH RPL* *:>

< SEARCH PLD* >

Not in RPL

Not in PLD

SP i
QDI LAY ERROR MSG > xx NOT IN PPLIE

SET MTR FUNCTION 13:
ABORT CONTROL POINT

(PROCESS REQUEST >

* IF FOUND, LOAD PROGRAM AND JUMP TO IT

-9-

TRANSIENT PROGRAM
RETURNS HERE
WHEN COMPLETED

Page 50

—

SEARCH RPL

Y

PICK UP RPL POINTER
TO GET RPL BASE ADDR.

READ RPL ENTRY

T

—\

YES

READ PACKAGE INTO
PP MEMORY AT LOC-

BN

JUMP TO PACKAGE
(LOCATION 1000)

ENTRY = 07 :
(' 4 | A EXIT
NO :
ENTRY = DESIRED | YES
ROUTINE NAME? y,
NO
ADD SIZE TO BASE - ATION 773g
ADDRESS TO GET NEXT
ENTRY ADDRESS
SEARCH PLD
PICK UP PLD POINTER
TO GET PLD BASE ADDR.
AND LIMIT
READ PLD ENTRY
YES

ENTRY = DESIRED \
ROUTINE NAME? /]

NO

INCREMENT DIRECT-
ORY ADDRESS ‘

L_NO < DIRECTORY ADDRESS)
?

"\ EQUAL LIMIT ADDR.

% YES
<

EiIT
-10-

STORE TRACK AND
SECTOR NUMBERS

¢/ READ PACKAGE FROM
DISK

)

JUMP TO PACKAGE
(LOCATION 1000)

Page 51 _ READ PACKAGE FROM DISK

Q REQUEST CHANNEL o}
» 1
____.C POSITION DISK >
J |

READ SEGTOR
FRCM DISK
|

PICK UP CONTROL BYTE 1

I YES
IS NEXT SECTOR IN LIB- ,
RARY ON THIS TRACK?

NO

GET NEW TRACK NUMBER
FROM CONTROL BYTE,
SET SECTOR TO ZERO

STORE LENGTH FROM CON-
TROL BYTE 2, RESTORE [wiisemml
CONTROL BYTE LOCATIONS

SET NEXT READ ADDRESS:
SAVE TWO WORDS FOR CON-
TROL BYTE REPLACEMENTS

- NO '
'—_—LWAS THIS A SHORT SECTO@

YES

< DROP CHANNEL 0

P

EXIT

-11-

Page 52
READ SECTOR FROM DISK

i

CONSTRUCT SECTOR NO.
AND STORE

< READ SECTOR >

I
(PARITY ERROR? y e

YES

EXIT

MODIFY HEAD GROUP
CODE FOR MARGIN 7

SELECT HEAD GROUP

< READ SECTOR >

|
NO

: \
PARITY ERROR?
() |
YES

MODIFY HEAD GROUP
CODE FOR MARGIN 1

|

SELECT HEAD GROUP

< READ SECTOR >

|
NO

(PARITY ERROR? ;} .
::f:: YES . ¢=::!:::>

EXIT

g.
(&
3

'JUMP TO DISK PARITY
ERROR EXIT ROUTINE'

-12-

Page 53 ’
POSITION DISK

N_—

i
READ TRT POINTER WORD

YES IS DISK O PRESENTLY AT
THE DESIRED TRACK?

NO

ISSUE TRACK SELECT

il

,(m DISK 0 PRESENTLY AT _YES

THE DESIRED HEAD GROUPy _

NO

ISSUE HEAD GROUP SELECT

UPDATE TRT POINTER WORDp=

=

EXIT

READ SECTOR

~

ISSUE READ

I

REQUEST STATUS
|

-—NO—L ' PARITY ERROR?)

YES

MODIFY EXIT

=1

EXIT

~13~

Page 54

DISK PARITY ERROR EXIT

Used by transient programs and overlays as well as by PP Resident

~

CONVERT HEAD GROUP NO.
TO DISPLAY CODE, INSERT
IN ERROR MESSAGE

CONVERT TRACK NUMBER

IN ERROR MESSAGE

TO DISPLAY CODE, INSERT|

TRANSLATE HALF TRACK
SECTOR NO. TO PHYSICAL
SECTOR NO., CONVERT TO
DISPLAY CODE, INSERT
IN ERROR MESSAGE

{ DAYFILE MESSAGE ;>
i

STOP

DISPLAY ERROR MESSAGE

~

PICK UP ROUTINE NAME

|

ARE 18t TWO CHARACTERS\

DISK 00 PARITY ERROR
Gx Txxx Sxxx

NO

LEGAL DISPLAY CODE? ‘j/

YES

SET CHARACTERS 1, 2 IN
ERROR MESSAGE

SET CHARACTER 3 IN

SET BLANK IN ERROR
MESSAGE

ERROR MESSAGE

<(»DAYFILE MESSAGE A:>

EXIT

wlba

Page 55

DAYFILE MESSAGE

~

STORE MESSAGE ADDRESS

]

CLEAR BUFFER (5 BYTES)

[

PICK UP 1 BYTE OF

MESSAGE
]

< IS THIS A ZERO BYTE?j

"\ ¥Es

NO

STORE BYTE IN PP
MEMORY BUFFER

ADVANCE MESSAGE AND
BUFFER ADDRESSES

1 NO 5 BYTES TRANSFERRED
' FROM MSG TO PP BUFFER?

YES

WRITE 5-BYTE MESSAGE
SEGMENT TO CM MESSAGE
BUFFER OF THIS PP

«l5-

-

WRITE LAST 5 BYTES
TO MESSAGE BUFFER

SET MTR FUNCTION 01:

PROCESS DAYFILE MSG

<£;PROCESS REQUEST :>

EXIT

Page 56

REQUEST CHANNEL

~

STORE CHANNEL NUMBER

SET MTR FUNCTION 02:
REQUEST CHANNEL

<

|

PROCESS REQUEST Aj>

PN

EXIT

DROP CHANNEL

R

STORE CHANNEL NUMBER

SET MTR FUNCTION 03:
DROP CHANNEL

< PROCESS REQUEST)

EXIT

‘PROCESS REQUEST

~

STORE FUNCTION CODE

WRITE REQUEST IN PP
OUTPUT REGISTER (CM)

.

NO

READ PP OUTPUT REGISTER

]
(»IS OUTPUT REG. CLEARA)—-—————

EXIT

1A

DELAY

fﬁge 57

CONTROL DATA CORPORATION

Development Division - Applications

THE SYSTEM MONITOR, MIR

Chippewa Operating System

10/19/65
Rev. 1

Page 58

THE SYSTEM MONITOR, MTR

CONTENTS

Page
INTRODUCTI ON . L] L L] * . L] L L] . . L] . L . . L] . L] L] l
THE CONTROL POINT CONCEPT * L3 . L] L] . L] . . L] L] * * L L] . LJ l

DEAD START HOUSEKEEPING, THE CP IDLE PROGRAM, AND
c ONTROL POINT z ERO . * . L] L[] . L] L] . L] L] . . L] L] . . . L] L] . 5

USE OF LOW CORE LOGATIONS + v v 4 4 4 0 v v w o o v v v o &
MASTER LOOP & v v 4 s o o e v e o e s oo n o g
JOB INITIATION + 4 4 v 4w e v w e s s e s e e s 17
JOB STATUS AND THE CONTROL POINT STACK . » . . » . . .+ . . . 19
EXCHANGE PACKAGE SWITGHING . + & o o o 0 v w v v o 25
PPRECALLPROCESS;:NG.....................29
NORMAL AND ABNORMAL JOB TERMINATION 31
STORAGE ALLOCATION AND RELOCATION . . & o o v o o 35
TIME ACCOUNTING & o v 4 4 v v w w v v v m e v s e s 39
DAYFILE ¢ 4 v e v v v v e e e e e e e e ee e e

APPENDIX A: MTR FLOW CHARTS

APPENDIX B: STORAGE MOVE PROGRAM

Page 59

THE SYSTEM MONITOR, MTR

INTRODUCTION

The moritor, or executive, of the Chippewa Operating System is the MTR
program, which permanently resides in peripheral processor 0. Among the
functions performed by MIR is the allocation of the physical components of
the system to various users. The components controlled by MTR include:

® pool processors

® peripheral equipment - tapes, printers, card readers, etc.

.® data channels

. di;k tracks

. central memory
MIR directs the loading and initiates the execution of central processor
programs, monitors central processor programs for I/O requests and assigns
these requests to available peripheral processors, and monitors peripheral
processor programs for function requests. MTR maintains the time accounting

in the system and is responsible for the maintenance of the dayfile.

THE CONTROL POINT CONCEPT

In a multiprogrammed multiprocessor such as the 6600 system, central
memory is shared by a number of users. In addition to the active and inactive
central processor programs residiﬁg in central memory, many peripheral process-
Or programs require central memory buffers. The allocation of central storage
to these various users is a function which the operating system can handle in
one of two ways:

l. Storage can be allocated to a number of users limited only by

ala

Page 60

the amount of memory available. This assures the maximum
utilization éf central memory, but requires an elaborate
bookkeeping system. In particular, the manipulation of the
variable length tables required, and the relocation of stor-
age to avoid arriving at a "patchquilt" of unallocated memory
locations as jobs complete, present interesting design'prob-
lems.

2, Storage can be allocated to a fixed number of users. If the
limit is properly selected, losses in memory utilization
efficiency will be minimal. In this method, control of storage
allo%gtion and relocation is greatly simplified.

£
For many job mixes,‘system throughput is not materially affected by the use
of one or the other of the above methods.

The Chippewa Operating System uses the second method described. In the
Chippewa Operatf;g System, central memory may be simultaneously shared by up
to seven users, iFor each of the seven users sharing central memory, there is
an area in the-céntral memory resident ca}led the control point area. As
each user is assigned storage, pertinent information about the user is entered
in the control point area: as execution proceeds, entries are made in the con-
trol point area to reflect the current status of the user.

The seven control point areas are each 200g central memory locations in
length, and occupy a portion of the central memory resident between locations
0200 and 1777. The control point areas are numbered one through seven in
accordance with their relative (to one anogher) locations in central memory
resident: control point 1 refers to the control point area in locations 0200 -
0377, control point 2 refers to the control point area in locations 0400 -

0577, and so forth. If the information about a user is contained in a given

control point area, the user is said to be assigned to that control point.

[y 2.

Page 61

The user assigned to a control point may be a peripheral processor
program, a central processor program, or both: the last case occurs when a
central processor program employs a peripheral processor program to perform
an input-output operation. Control point assignments are required not only
for external users (i.e., jobs) but for many of the operating system programs
as well. Thus, the system progrém which transfers jobs from the card reader
to the disk (1LJ) must be assigned to a control point, since a central mem-
ory buffer is required,

In many instances, the system packages READ, NEXT, and PRINT will each be
assigned to a control point. (READ = load a job from the card reader and
place it on the disk, NEXT = load a job from the disk, and PRINT = print the
output of a job.) Each of these packages requires central memory space: the
total space required by all three packages is 103008 locations. These three
packages plus the central memory resident occupy 24300g or about 104001g
locations. This leaves approximately 120,000 locations to be shared by
users assigned to the remaining four control points, or about 30,0007
locations per control point - certainly a reasonable amount of storage for
many jobs,

The control point area is illustrated in figure 1. The first sixteen
words of the control point area contain the exchange jump package. If the
user assigned to the control point is a peripheral procedéh&p&mkgram, no use
is made of this exchange jump package insofar as this user is concerned. If
the user assigned to this control point is a central processor program, this
package is set‘with the appropriate values of P, RA, FL and EM when the prog-
ram is initiated: as central processor programs are interrupted and restarted,
the exchange jump packages for other central processor programs appear here.

Regardless of whether the user assigned to this control point is a cent-

ral processor program or a peripheral processor program, the storage allocated

gﬂﬁ ‘r:}*’?ﬁ "

CONTROL POINT AREAS

CHIPPEWA OPERATING SYSTEM

[] 7 . *
STATUS BYTE
259 Y 48
Wwix]/l2]s]4]s]e]7]8]o]o] & P A0 TR TEEILAETATEANY © ™
/ , RA Al B ! .o
L FL A2 B2 2 e .
PRESENCE OF A "I BIT INDLCATES :
THAT THE CORRESPONDING PPU IS \ EM A3 B3 3 &FLE “,
ASSIGNED TO THIS CONTROL POINT A4 B4 4
PRESENCE OF A "1" BIT INDICATES AS BS 5
THAT THE JOB AT THIS CONTROL y
POINT 1S IN RECALL STATUS A6 B6 6
TaHE Sovan s comno Az 7 o O ExoancE
POINT IS WAITING FOR THE CPU X0 lo > PACKAGE
X "
_ X2 12
EXPRESS FLAG, X3 13
- X« 14
L X5 s
247 ERROR FLAG BYTE 238 536 i _ X6 - 16 %
> - - W&y | 2y X7 of R o 17) -
VA PSC | FLas b STATUS __|ERROR FLAG | 5702255 | RA/100 FL/100 20 POINTER TO NEXT WY,
JOB NAME (D1SPI_AY CODE) o | 21 STATEMENT IN BUFFER N e
([FLAC = L: TIME LIMIT ERROR PRIORITY . |MSG. COUNT . |TRACK COUND | TIME LIMIT | 755728028 socnm, }-22 .. SE A 4
FIAG = 2: ARITHMETIC ERROR [H:I] CPU TIME - (SECS) (MSECS) 23 e y Qw"%,\ Y
=3: g MSECS)
FLAG PPU ABORT _ﬂ[" PPU TIME (seCs) (29 HOLDS PP INPUT REG.
FLAG = 4: CPU ABORT PP RECALL REG. 25 DURING PP RECALL P @/
FIAG = 5: PP CALL ERROR SENSE SWITCHES, LIGHTS Eeame] 5 1725 | 26 MTE cheels Y ewisy 5 $€F0d
FLAG = 6: OPERATOR DROP EQUIPMENT ASSIGNED J — S 27
- . Aogmneadwd ey U Rl | 30 .
ST T PRETMEENETT g LAST_DAYFILE MESSAGE . ' : Coy XC"
| = PRINTER STOP CODE ‘hﬁ% U‘»bé}) féi s'a
' | { \j@“i ¢ '
EQUIPMENT ASSIGNED WORD 5 P 5 v
259 20. 4 ?ki%u o~
l v Pz
p 77 CONTROL STATEMENT BUFFER . 0 N) 7
“ J K SN
> /,__\\ -(Packep pispLavcopE) :é AR
- 4 ONE BIT POR EACH EQUIFMENT,)) \/
e EQUIPMENT NUMBERS & - 77g. ’ _ .
0q BIT = "ln IF CORRESPONDING . -)
c EQUIPMENT 1S ASSIGNED TO THIS ?//_—j _—'/
H CONTROL POINT of<
® Ny et i | 1L Ax
- 0-% ¢ AR

- cou::::::::conron:lon Sog ST TRAINING WATE 6000 [emosmer wo SCCUIMENT ABSTRACY v apenoven FYCPE ™Y eemcito sare
SAMPLE COOE O °%% e ' CONTROL POINT AREA PROsELT mam.
FLOWCHART &) racel or 1 |=mosecT sanx
peEcision TaBLE [} NuMBER 91YE 11-1-65 Taix wo
OTHER S ™ orve 11/65 |raim mane __—

79 98wg

N

Page 63

is always defined by the values of RA and FL in bytes 4 and 5, respectively,
of location 20g within the control point. area. Note that these values are

in hundreds (upper 12 bits of an 18-bit address),

The control point. number is often maintained in the low-order three bits
of a byte. On many occasions, the system derives the control point area
address by shifhing the control point number left 7 places from its low-order
bit positions. For example, a routine might pick up a byte containing the
number of control point 2, which would appear as 0002: shifting this left 7

places, we obtain 0400, the beginning address of the control point 2 area.

MTR: DEAD START HOUSEKEEPING, THE CP IDLE PROGRAM, AND CONTROL POINT 0

During the loading of the system tape, the lower portion of the central
memory resident is initialized by reading a series of records totalling 5000g
CM words into central memory beginning at location 0. This initialization
process sets the first entry in the FNT/FST with the file name DAYFILE and
the file type COMMON.

When the loader releases peripheral processor zero to MTR, MTR obtains
the next available track number from the Track Reservation Table for disk 0.
This half track number is set’in the Beginning Track (byte 2) and Current
Track (byte 3) bytes of the FST entry for the dayfile. Byte 1, the Equipment
Number, is set to zero as is byte 4, the Current Sector byte. The Buffer
Status byte (byte 5) is set to 1, indicating that this file is not reserved.

Once the FNT/FST entry for the dayfile has been completed, MTR issueés
an exchange jump to the central processor idle program. This idle program

‘executes a jump to relative location X, which contains a stop instruction,
and thus halts the central processor with P # 0. The function of the idle
program is to keep P # 0 in all cases except in the case of an error exit
from a central processor program. |

The idle program is a central processor program, and as such must be

5«

Page 64

assigned to a control point. A pseudo control point, called control point
zero, is used for this purpose., Referring to the control point area illus-
tration (figure 1), nﬁte that relative locations 21g and 20g contain, respect=
ively, the job name and the job status. The control point area for control
point zero is assumed to start at location 0 in central memory: central mem--
ory locaﬁions 21g and 20g (absolute) contain the job name and the job status
for control point zero. These are the only locations in this portion of the
resident which are actually a part of the éontrol point zero area: the
exchange jump package for the idle program begins at location 2040, Location .
21g contains MONITOR as tﬁe job name, Byté 1 of location 20g contains the

job status: the low order bits of this byte are used to indicate the assign-
ment of peripheral processors to a control point, For control point zero,

the status byte contains 0003, indicating tﬁat processor 0 (MIR) and processor
9 (DSD) -are assigned to this control point.

The use of the pseudo control point zero is a mechanism simplifying the
manner in which MTR controls the assignment of jobs to the central processor.
The reason for using location O as the start of the control point area for
control point zero is evident when we remember that the address of a control
point may be obtained from its control point number by shifting the control
point number left seven places.

After initiating the central processor idle program, MIR enters its

master loop.

MTR: USE OF LOW CORE LOCATIONS

MTR uses low core locations 26 - 77 to maintain various flags, pointers,
and special-purpose buffers: these are illustrated in figure 2., Locations
75 « 77 contain the Input Register, Output Register, and Message Buffer point-

ers for the peripheral précessor zero communication area. A five-byte area

-6-

-L-

Z 2an81g

77
76
75
74
70
67
66
65
64
63
62
61
60
57
52
51
50
47
46
30
27

26

MESSAGE BUFFER POINTER

OUTPUT REGISTER POINTER

INPUT REGISTER POINTER

DATE LINE BUFFER

SECOND COUNT

MILLISECOND COUNT

CLOCK PHASE

DAYFILE DUMP FLAG

LAST SECOND COUNT

NEXT PP INPUT ADDRESS

COMPLETE DAYFILE FLAG

ACTIVE CONTROL POINT ADDR.

ACTIVE CONTROL POINT STACK

MOVE STORAGE FLAG

TEMPORARY

TEMPORARY

CHANNEL STATUS BUFFER

CP ADVANCE COUNTER

NEXT CP NUMBER

\ ¢ MTR: USE OF LOW CORE

— POINTERS FOR PPO COMMUNICATION AREA

—» USED TO BUFFER TIME-DATE LINES FROM CM
LOCATIONS 30 - 37

—® INPUT REGISTER ADDRESS OF A FREE POOL
PROCESSOR - ZERO IF NONE AVAILABLE

.oy
n et L
{oTrett

‘ ——® POINTS TO CONTROL POINT AREA TO WHICH O+!'"

THE CENTRAL PROGCESSOR IS ASSIGNED

~——» ONE PP WORD FOR EACH CONTROL POINT, 1 - 7

——® OFTEN USED TO TRANSMIT A PP OUTPUT REGISTER
ADDRESS BETWEEN MTR ROUTINES

—-15 PP WORDS, USED IN UPDATING CHANNEL
STATUS TABLE

—— USED IN ADVANCING CONTROL POINT SCAN

69 938eg

 Page 66

consisting of locations 70 through 74 is used to buffer the time line from
the time-date area in central memory locations 30 - 37. Tﬁis central memory
area contains the time and, optionally, the date: it is initialized via the
DSD keyboard entry "TIME". The first word of this central resident area con-
tains the time: this word is read into locations 70 - 74 whenever the time is
to be advanced or entered in a dayfile message. Locations §3, 65, 66, and 67
contain counts used in advancing the clock and in computing time charges to a
control point,

Location 64 contains the Dayfile Dump Flag, wgich, when set, indicates
that the full sectors in the dayfile buffer are being dumped to the disk and
also indicates which.phase of the dumping process is to be executed next.
Location 61 contains another dayfile related flag, the Complete Dayfile Flag,
which is used in insuring that dayfile messages for a specific.job are dumped
to the disk at the end of a job.

Location 62 contains the address of the Input Register of a free poél'
processor: this processor will be assigned by MIR to the next peripheral
processor task. If all pool processors are busy, this location contains
Zero.

Locations 60 and 52 = 57 hold the control point stack. Location 60
represents the top of the stack and contains the address of the control point
area for the program currently being executed by the central processor: if
this location contains zero, the central processor is unassigned (i.e., is
assigned to pseudo control point gzero, the control point for the idle program).
Control points representing programs waiting for the central processor are
stacked in lécations 52 - 57.

Location 51 contains a Move Storage Flag, used when storage is being
reallocated to control points., Location 50 is a temporary storage area: it

is often used to transmit the Output Register address of a peripheral processor

between MTR routines.

-8

Page 67 -

Locations 30 -~ 46 provide a buffer used by MTR in updating the Channel
Status Table. Locations 26 and 27 are used by MTR in advancing the control
point scan: location 27 contains a count used in determining the time inter-
val between Successive scans, and location 26 contains the number of the cone
trol point to be processed on the next scan,

The remaining low core locations, 01 -~ 25, are used for a variety of
temporary storage needs. For example, locations 10 - 14 are used at various
times to hold a peripheral processor's Output Register, the status word from

a control point area, a TRT pointer, and a variety of other quantities.

MTR: MASTER LOOP

The MIR Master Loop is illustrated in figure 3. This loop, from which
all MIR routines are entered (either directly or indirectly), performs the
following four major functions:

® Advances the system clock
® Monitors peripheral processors for function requests
b Monitofs the central processor program curreﬁtly being executed
for I/0 requests and normal or abnormal exit conditions
® Examines one of the seven control points for PP or CP recall
Status and may initiate another central processor program: if
the control point is inactive, the 1AJ routine is‘called to. -
bring a ﬁob from the disk to this control point,
The time between successive scans is primarily a function of the number and
type of requests serviced during a scah, In any case, the fourth function
mentioned above (Advance CPU Job Status) is performed at intervals of no less
than 64 milliseconds.
The Advance Clock routine updates the system clock, which is stored in

location 30 in central memory resident. This word generally has the format _

Pgge 68

<: ADVANCE CLOCK)

READ PPl OUTPUT REGISTER: \ VO
1S OUTPUT REGISTER CLEAR?

YES <17PROCESS PP MESSAGE :>

|

\

l L, > READ OTHER 9 OUTPUT REGISTERS:
| IF NOT CLEAR, PROCESS PP MESSAGE

| J

N0 /CENTRAL PROCESSOR ASSIGN-
ED TO A CONTROL POINT?
RER

YES

READ (RA + 1) OF THIS NO
CONTROL POINT: IS (RA + 1)

CLEARED?
YES <<7 PROCESS PP CALL ;>

READ CPU P REGISTER: IS
P=0? YES

l
NO < SET ERROR FLAG 2 >

\1/

1

-

IS THERE A PP AVAILABLE
FOR ASSIGNMENT?
YES GEARCH FOR FREE PP)

<ADVANCE CPU JOB STATUS >¢

l
(DAYFILE DUMP FLAG SET?)—XES

NO <§UMP DAYFILE NEXT PHASE)

\

MTR MASTER LOOP

Figure 3
-10-

Page 69

"sp HR . MN . SC .", where HR, MN, and SC are each two display code digits
representing, respectively, hours, minutes, and seconds.

On each pass through the loop, MIR reads the Output Register of each
peripheral processor, including its own. All requests to MIR from peripheral
processor programs are transmitted in the form of function codes placed in
the requesting processor!s Output Register. When MTR finds a fequest in an
Output Register (i.e., Output Register not cleared), it performs a table
look-up for the routine corresponding to the function number, and jumps to -
that routine. If the request can be execﬁted, the routine clears the Output
Register before exiting back to the master loop: if the request cannot be
executed, the routine exits to the master loop without clearing the Output.Reg-
ister. 1In the latter case, MTR Qill pick up the request again on its next
ﬁrip through the master loop, and attempt to execute the request once again.

The functions performed by MIR for peripheral processor programs are
listed below. The flow chart page numbers refer to the attached flow charts:

memory addresses refer to the version of MTR dated 10/15/64.

e &
Function Starting Flow Chart 3

Number Address Page No, . Function

1 1500 A-3 Process Dayfile Message
2 2000 A4 Request Channel

3 2040 A4 Drop Channel

4 2440 A4 Assign PP Time
/5 1560 A=5 Monitor Step Control

6 2200 A-5 Request Disk Track

7 2300 A5 Drop Disk Track

10 4300 A-6 Request Storage

11 1300 A7 Complete Dayfile

-11-

nge 70

Function Starting Flow Chart

Number Address Page No. Function
12 3730 A-7 Release PP
13 4040 A-7 Abort Control Point
14 3600 A-8 Enter New Time Limit
15 2600 A-8 ‘Request Central Processor
16 3760 A-8 Release Central Processor
17 5200 A-9 Pause for Storage Relocation
20 4640 A-9 - Request Peripheral Processor
21 2750 ~ A-9 Recall Central Processor
22 5600 A-10 Request Equipment
23 5240 4-10 Drop Equipment
24 3240 A-10 quuest Priority
25 3630 A-11 Request Exit Mode
40 33UV - Keserved LoOr ruture use
27 3100 A-11 ' Toggle Simulator
30 2160 A-12 Operator Drop
31 4200 A-12 Ready Tape
32 4240 A~12 Drop Tape
33 6100 A-12 Assign Equipment

34 - 37 3030 - Reserved for Future Use

After servicing any peripheral processor requests which may have been
present, MTR proceeds to determine if any action is required by the central
processor. To determine if the central processor is executing a program,
MTR looks at the top of the control point stack (location 60 in processor 0's
memory). If this location contains zero, the central processor is idle: if
the contents of this location are non-zero, then the central processor is

currently executing a program. The entries in the stack are control point

-12-

Page 71

addresses: thus, location 60 contains the address of the control point area
for the program currently being executed by the central processor. MIR adds
20g to this address to form the address of the Status Qord in the control
point area (see figure 1), reads the Status word and extracts byte &4, which
contains the reference address in hundreds. MTR then reads the contents of
RA + 1 to determine if the central.processor program has issued a request.

If the contents of RA + 1 are not zero, MTR jumps to a routine to process
the request. If RA + 1 contains END or RCL, anothér central processor prog-
ram is initiated in place‘of the current onme: if RA + 1 contains ABT or if
the request in RA 4 1 does not begin with a letter, the appropriate error
flag bit is set in byte 2, location 20g, of the control point area. IfRA+ 1
contains a legitimate PP call, MTR places the call and the control point
number of the requestor in the Input Register of an available pool processor
and assigns the processor to this control point by setting the appropriate.
bit in byte one of the Status word. After processing the call, (RA + 1) is
cleared to inform the central processor that the request has been processed,
and control is then returned to the master loop. If the call was END, ABT,
or illegal, or if the request could not Be processed at this time (no free
pool processor), the routine exits to the master loop Qithout clearing RA + 1.
The subroutine which processes central processor requests for peripheral prog-
rams is entitle@ "Process PP Call", 1Its starting address is 2700, and it
appears on page A-14 of the attached flow charts. |

| After processing the central processor program request, MIR reads the
central processor P register. If P contains zero, it is assumed that an error
exit has occurred, and MTR sets the appropriate error flag in byte 2 of the
Status word in location 20g of the control point area.
MTR then looks at location 62 in its memory to see if it has a pool

processor available for assignment. If this location contains zero (no

Page 72
processor available), MTR scans th2 Input Registers of procéssors 1-38
and writes the address of the first cleared Input Register in location 62.

MIR next examines one of the seven control points and determines if the
control point is in recall status. If it is, then this program may be re-
initiated by MIR, depending upon its priority. If the control point is in=
active, MIR directs the loading of another job at this control point. MIR
scans only one control point on each pass through the master loop: the num-
ber of the control point most recently scanned is maintained in location
26 of MIR's memory. The MTR subroutine which performs this processing is
entitled "Advance CPU Job Status" and is shown on page A-13 of the attached
flow charts. This subroutine will be discussed at greater length during the
description of the control point stack.

If dayfile dumping is not in process, MIR returns to the beginning of the
loop and begins ité scan once more.

As a review of CPU -~ MIR - PP communication, the sequence which takes
piace when & Ceniral process0r PrOgI&Mm

a peripheral processor program is described below. (Refer to figure 4.)

l. The central processor program requests a peripheral processor
by writing the routine name (three display code characters),
left-justified, in location 1 of its program. The address of
any parameters required are written in the low-order bits of
this location.

2. MTR examines the contents of RA + 1 during its master loop: if
(EA + 1) is non-zero, MTR jﬁmps to a subroutine to process the
call.v This subroutine inserts the control point number of the
requesting job in the low-order three bits of byte 2 of the
word read from RA + 1 and then writes this word in the Input
Register of a free pool processor. The routine also sets the
bit corresponding to the processor in byte 1 of word 208 in the

control point area.
-14-

3L

EENTRIL PROLESS OR LROS,

€. 938%g

|2~ #=s. PPL_COMMINIESTION AR
P worre | | src.
‘ | ”~R
SNPYT REC)S TER y
CLESRED P »r78
— \ on
~~— 17 [z Icr] Tars . AR
’ , H
AT FONCTron 77 »
L e Ton [- ((PR+0) coenpes)
i
(PP RURIABLE P)
' Val-1 0}
~~——os [co/70 o i
e |yame Jer] |22 Corr. A B KA v:nr\&
o . IWSERT CPAO., ;¥ ERLL,
Nl PesceE coce v o
(INPOT RECISTER:
OUTPrP) AEGISTER e »
CLEARED P _ CCESR /?J. / J
4 :
8 ;
20RO f £XECOTE * o |o o [~ READ PP Ourpur Fes I
REQUES 7ED PROS, ”» . : T
IR NAME feP ARG : .
‘ L
EXIT ~ARONrY
TRANS 1 &R T (srorsce rove renese72)
PROGRAIM)] ~
\-—Le:ze,m' EOTPIT REFIS rz&]
PITR FUNCTION /2 -
—* ovrmor ReE. ,
¥ ~8 '
H N~ 0r [oo/20 o 1
[]
: zR |wme Jeel | T~ 1l . lﬂ'é'dﬂ PP OOTPYT AES. l
: -1 Soxa w—nclo
rerense e aon BIE AL
CLENR PP 00T PUT 5,
iy [T | CeenR po NPT REE.
F‘]
.
S F rwe rmowsicnr mracmas may 8 '
o© NLSO INITIATE MTA REQUESTS or o P
R PP RESICEN T
~ R o O
cour.::\;::::ca"On:voN LR raain i MASY GO0 |emosecy mo. COCUMENT ABITAACT v | assaaven oave. o APPROVED oary
- SN CP MTE- PP prrirl mrOIECT wan
onciam maee or [reosecrmene CP PROGRAM =~ MTR = PPRES., QOMAUNIEATION
OECISION TABLE wumsen R tasx wo. CHNIPPERS OPERBIINGE SV STEAY
oTnen 4 0are /5 | vann wane

€a 13ra

Page 74

5.

6.

When the peripheral processor resident finds the r§utine
name in its Input Register, it asks MIR if the §torage
assigned to this control point is to be relocated by

issuing the appropriate function request (function code 17).
If the storage assigned to this control point is to be reloc-
ated, MIR will delay the execution of the requested transient
program by not clearing the Output Register of the peripherél
processor until relocation is completed. If no storage
relocation is to be done, MTR clears the Output Register
iﬁmediately upon recognizing the function request.

When the Output Register has been cleared by MIR, the resid-
ent proceeds to load the requested program either from the
resident library or the disk library, and then transfers
control to it.

The transient program and any overlays it may use may also

_communicate with MIR by using the resident subroutines to

transmit function requests to MTR. These programs may élso
communicate directly with the central program by adding the
parameter address (held in the Input Register) to the value
of RA from the control point area in order to obtain the
absolute address of information within the central processor
program.

When the transient programs completes execution, it sends (via
peripheral resident) a Release PP function request (function
code 12) to MTR. MIR clears the processor's Input Register
and Output Register, and clears the bit in byte 1 of the
Status word (control point area, locatidn.208) corresponding

to this processor.

=16

Page 75

MTR: JOB INITIATION

Once the system loader has released cont:ol of the peripheral processors
to their respective programs, the pool processors begin spinning in their idle
loops while MTR and DSD, after performing some initial housekeeping, enter
tﬁeir master loops. To initiate job loading and execution in the system, the
operator may use the DSD keyboard entry "AUTO.". This assigns routines to

control points as follows:

Control Point Routine
1 ILJ (READ)
2 1DJ (PRINT)
3 1BJ (NEXT)
4 1BJ (NEXT)
5 1BJ (NEXT)
6 1BJ (NEXT)

DSD accomplishes this assignment by placing the routine name and control

point numbef in the first two bytes of its Message Buffer and (via peripheral
resident) issuing a Request PP function (function code 20) to MTR. MIR assigns
a processor to the control point by writing the routine name and control point
number in the Input Register of a free pool processor, and then setting the
appropriate bit in byte one of the control point area status word.

The READ package (1LJ and its overlays) brings jobs in from the card
reader and places them on the disk. It enters the job name as the file name
in the FNT/FST table, inserts the priority from the job card in the FNT'entry,
and sets the file type to INPUT. |

The NEXT package (1BJ and its overlays) loads a job from the disk to the
control point to which it (NEXT) is assigned. 1BJ searches the FNT for the
highest priority unassigned file of type INPUT. The file name (job name from
the job card) is entered as the job name in the control point area. The file
name is changed to INPUT, the file type changed to LOCAL, and the file assigned

to this control point. The priority is placed in the control point area by

Page 76

1BJ via an MIR function request (function code 24), 1BJ then calls overlays

to read the first record from the file into the control statement buffer in

the control point area. This record, which may be up to a full sector in length,
contains tﬁe control cards for this job. The Next Control Statement pointer in
the control point area is then initialized.

An overlay is called to complete job card translation. The time and the
field length from the job card are inserted in the control point area by 1BJ
via MTR function requests 10 and 14, respectively. (When 1BJ was initiated,
it requeéted storage from MTR, who set the values of R§ and FL in the control
point area. Central storage is used by 1BJ for a buffer area: when the job
is brought from the disk to the control point, the storage required by the
job is requested by 1BJ. This storage is considered by MIR to be a replace-
ment for, and not an addigion to, the stor#ge originally assigned to the con-
trol point.) In processing the storage request, MIR may have to relocate
storage assigned to other (higher) control points. After this relocation is
performed, MIR sets the value of FL in the control point area, both in byte
4 of location 20 and in the exchange jump package.

When 1BJ has completed its function, it requests MIR to release the
peripheral processor. MTR then clears the processor's Input and Output Reg-
isters, and clears the appropriate bit in byte 1 of the status word in the
control point area. This byte then contains zero. The processing pérformed
by 1BJ has resulted in the control point area being set as follows:

. the job name, time limit, pribrity, and field length have been
set,
® the pointer to the next control statement has been set to address
whatever control card followed the job éard.
® byte 1 of the Status word (location 20g of the control point
area 1s zero,
(Note; the control point areas are cleared during loading of the system and

are also cleared each time a job is dropped from a control point.)

«]l8e

Page 77
Once 1BJ has brought a job to a control point, further action concerning

that job is initiated by MTR. This action will be described shortly: first

we shall discuss the status of a job relative to the central processor.

MTR: JOB STATUS AND THE CONTROL POINT STACK

The status of a job is defined by the setting of bits 21l ang 210 45
byte one of the control point status word, and by the presence or absence in
the control point stack of the control point address for the job. The 210 pi
is the X, or recall, flag. This flag is set when MTR detects RCL in RA+1
of the program being executed by the central processor. The 2!l bit is the W,
or wait, flag. This flag is set by various MIR routines to indicate that the
job at the associated control point is waiting for the central processof. We
may have two queues of jobs waiting for the central processor: one queue con-
sists of jobs in the control point stack, and the other consists of jobs in W
status. The top of the control point stack (locationl60 in PP0 memory) repres-
ents the job currently being executed by the central processor. The remaining
entries in the stack represent jobs interrupted becauée of the entry of a higher
priority jgb into the system.

Whenever MIR sets the W flag for a job at a control point, a subroutine
called Search for CP Priority is called. The flow chart for this subroutine
appears on page A-16 of the attached flow chérts. This subroutine checks the
status of control points beginning with control point one. 1If the W flag at a
control point is set, MTR compares the priority of this job with the priority
of the job currently Being executed by the central processor. If the job at
the control point with the W flag set (i.e., the first control point found in
wait status) has a higher priority than the job currently being executed, the
routine pushes down the stack and inserts the control point address of the new

job at the top of the stack, clears the W flag in the control point area, and

-19-

g/ °3vg

WAIT FLAG -

\\\ //rahRECALL FLAG

WX1234567890
J

BYTE ONE OF STATUS WORD IN CP AREA

- \

-Oz-

S ?an81y

Vv

PP ASSIGNMENTS TO THIS CONTROL POINT

s .
[re— || Se———
o

JOB AT THIS CONTROL
POINT HAS NOT BEEN
RECOGNIZED BY MIR

JOB AT THIS CONTROL

JOB AT THIS CONTROL
POINT DOES NOT NEED
CENTRAL PROCESSOR

JOE AT THIS CONTROL
POINT IS IN THE
CONTROL POINT STACK

CP STATUS FLAGS

JOB AT THIS CONTROL
POINT IS WAITING TO
BE ASSIGNED TO THE

CONTROL POINT STACK

POINT IS AWAITING
RECALL

Page 79

issues an exchange jump to interrupt the current program and initiate the
new job. If the priority of the job currently being executed is higher than
the priorities of any job which is in wait status (W flag set), then the
routine leaves the flag set. This priority search is repeated on a periodic
basis.

When a central processor program issues a recall request (by placing
RCL in RA + 1), MTR processes this by interrupting this program and initiat-
ing the next program in the stack, and then setting the X flag in the control
point area of the interrupted program. At an interval of time after the X
flag is set, MTR will switch the control point from X status to W status and
call the Search for CP Priority routine to re-initiate the job.

If the X flag is set, then, the job at the associated control point.is
awaiting recall. If the W flag.is set, the job is waiting to enter the
stack. The stack is always entered at the top: a job always enters the stack
by taking control of the central processor. Note that the W flag and the X
flag are never both set at the same time. If the W and X flags are both.
cleared, there are three possibilities:

¢ the job at the associated control point is in the stack
] tﬂe job at the associated control point does not require the
central processor
® the job at the associated control point is inactive or has not
yet been recognized by MTR
The interpretation of the X and W flag settings is charted in figure 5.

The status of each control point is examined by a MIR subroutine called
Advance CPU Job Statué. This routine is called each time MTR makes a pass.
through its master loop: however, unless 64 milliseconds or longer has passed
since the routine was last entered, control is immediately returned to the

master loop. This routine examines only one control point on each entry:

-21-

Page 80

thus, a minimum interval of 7 X 64 = 448 milliseconds elapses between
successive scans of the same control point. The Advance CPU Job Status
subroutine and its relationship t§ the MTR master loop are illustrated in
figure 6. (See page A-13 of the attached flow charts for a more detailed
flow chart of this routine.)

Upon entering the routine (if the 64 ms. interval has elapsed) the
pointer for the control point to be scanned is advanced. This pointer is
maintained in location 26 of peripheral processor zero's memory. The X flag
for the control point is then examined: if this flag is set, the W flag i§
set and the X flag cleared. The subroutine Search for CP Priority is then
called to re-initiate the program. If this program's priority is higher than
the priority of the program currently being executed, the running program will
be interrupted and its control point address pushed down in the stack: the
higher priority program will be initiated, its control point address placed
at the top of the stack, and its W flag.cleared.

After processing the central processor recall flaé, the Advance CPU Job
Status routine examines the PP recall word in location 258 of the control
point area. If this word is non-zero, a peripheral processor is assigned to
complete execution of the.recalled task.

The routine next examines byte one of location 20g in the control point
area: if this byte is non-zero, then the W flag or the X flag at this .control
point is set, and/or a peripheral processor is performing a task for the job
at this control point. If this byte is non-zero, then, the job at this con-
trol point is active (although perhaps not in execution at the moment): the
routine therefore exits back to the master loop.

If the storage move flag in byte three of location 20g in the control
point area is set, the storage assigned to this control point is to be or is
being relocated. The routine exits back to the master loop, thus delaying

further action until this relocation is completed.

«22=

T

9 2an81yg

f ' v ENTRY

//hAVE 64 MS. ELAPSED SINCE
LAST ENTRY ?

YES

ADVANCE CLOCK :
MODIFY ROUTINE FOR NEXT
CONTROL POINT

SCAN PP OUTPUT REGS. o JES (308 NAKE = SPACES)

& PROCESS REQUESTS
- IS THE X FLAG SET ?

READ RA + 1 OF CPU ~ YES
PROGRAM: PROCESS

CALL CLEAR X FLAG[SET W FLAG
SEARCH FOR FREE PP { SEARCH FOR CP PRIORITY)
IF NONE AVAILABLE

I
I ‘ IS PP RECALL WORD CLEAR?):

NO
(ADVANCE CPU JOB STAT@ .
INITIATE PP RECALL

PROCESS DAYFILE IF IS CONTROL POINT ACTIVE?
DUMP FLAG SET (STATUS BYTE NON-ZERO?)

NO
| f————ﬁs STORAGE MOVE FLAG SET?)
MTR MASTER LOOP
. NO
t—~—-(js THIS CP IN THE STACK?)
_ NO
ADVANCE CPU JOB STATUS "¢ _CALL 1AJ TO CONTROL POINT

SEE PAGE A-|3 A

18 °8eg

Page 82

It is possible for byte one of the status word (control point area,
location 20g) to be zero and for the program at that control point neverthe-
less to be active. For example, the non-executing programs in the stack will
have zero status (i.e., byte one of the status word = 0), and the running
program will also have zero statﬁs if it is not using a peripheral processor.
Therefore, in addition to determining that the program has zero status, the
routine must also determine if the job is in the control point stack before
it can be ascertained that all activity associated with the control point
has stopped. If it is found that this is the case, the routine assigns a
peripheral processor to the control point and calls the 1lAJ routine to that
processor. The lAJ routine promptly calls the statement translator, 2TS, to
interpret the next control statement. (Note: although not shown in the simp=-
lified flow chart of figure 6, the Advance CPU Job Status routine also checks
to see if the running program has exceeded its time limit;. if so, the
appropriate error flag is set.)

Now let us return for a moment to an earlier point in our discussion.
After 1BJ has brought a job to its control point, the job name, time limit,
priority, and field length have been set in the control point area. Also, byte
one of the status word is zero. Further action involving the control point is
initiated by the MIR subroutine Advance CPU Job Status. When this routine
scans the control point to which the job was brought by 1BJ, it finds that the
job has zero status (byte one of location 20g = 0) and that the job's control
point address is not listed in the stack; Thus, there is no activity at this
control point. The Advance CPU Job Status routine therefore assigns a pool
processor to this control point and calls lAJ to that processor (by setting
the name in the procéssor's Input Register). 1AJ in turn calls an overlay,

: |
2TS, to process the next control statement from the control statement buffer.
If this is a scagement such as.ASSIGN, RELEASE, COMMON, etc., the statement
translator, 2TS, processes the control statement, moves the néxt control

statement pointer (byte 5 of location 2lg in the control Point area) to point

=24a

Page 83
to the next control statement in the buffer, and releases the processor.

This ends the activity at the control point temporarily: the Advance CPU

Job Status routine will recognize this inactivity, and call 1AJ to advance

the job at this control point again. This process repeats until a statement
not recognized as a control point statement - a program card -~ is processed

by 2TS. When 2TS processes a program card, it searches the FNT, the CLD, and
the PLD, in that order, for the program. If the program is found in the FNT,
2TS proceeds to read the program from disk 0 into central memory beginning

at location RA. Upon reaching the end of.record (;r upon detecting the end

of the storage assigned to the job), 2TS sets the proper value of P in the
exchange area, setsbthe field length in Ag, transfers the arguments from the
program card to phe program area beginning at RA + 2, and clears RA and RA + 1.
The value of P if obtained by adding 3 to the number of arguments: the latter
‘quantity is suppﬁied by the low-order six bits of the second word in the prog=-
ram record. Thelfield length is set in Ag so that the program can deterﬁihe
the upper limit of its memory area. The remainder of the exchange area 'is
cleared.

When 2TS has completed setting up the control point area and the program
area, it requests the central processor for the job by sending function code
15 (Request Central Processor) to MTR. MIR sets the W flag in the control
point area, and calls the Search for CP Priority subroutine to initiate the
job. This subroutine will compare the priority of the new job with the prior-
ity of the running job, initiating the execution of the new job if it is high-

er in priority.

MTR: EXCHANGE PACKAGE SWITCHING

As jobs are brought into the system or are recalled from X status, the
running program may be interrupted to permit a higher priority program to
take the central processor: when this occurs, an exchange jump is issued

which results in the exchange package of the interrupted job being stored in

25«

Page 84

the control point area of the newly initiated job. Also, t#e stack is push-
ed down and the control point address of the newly initiatéd job is placed at
the top of the stack. Each control point in the stack contains the exchange
package for the control point immediately below it in the stack, An example
will help to illustrate how this comes about. Assume that 1BJ routines at
control points 3; 4, and 5 bring jobs C, B, and A, respectively, to their
control points, Job C has a priority of 1, job B has a priority of 2, and
job A has a priority of 3, At the time the jobs are loaded, the central
processor is executing the idle program. Figure 7 illustrates a possible
sequence of events involving these jobs:
(:) 1BJ has brought jobs C, B, and A to control points 3, 4, and

5. The central processor is executing the idle program and

thus the top of ;he stack contains zero - the address of the

control point area for pseudo control point zero.

: (:) The Advance CPU Job Status routine has recognized the presence
of the job at control point 3 and called 1AJ to advance the
job; 1AJ's overlay, 2TS, has loaded the program into memory
and, via a MTR request, requested that the job be executed.
The MIR subroutine which processed this request called the
Search for CP Priority routine.. Since job C has a higher
priority than éhe running program, the latter routine issued
an exchange jump to job C which resulted in the idle program's
exchange package being stored in control point three's exchange
area, and then, after pushing down the stack, placed the
addresg of control point three at the top of Fhe stack.

(:) When the process described above was performed for control
point 4, the Search for CP Priority routine recognized that job
B had a higher priority than job C. It therefore issued an

exchange juﬁp to start job B, thus storing C's exchange package

=26=

Gg °8eg

2=

L 2anS1g

ol © [o | o
INITIAL STATE: JOB C RECOGNIZED AND JOB B RECOGNIZED AND INIT- || JOB A RECOGNIZED AND INIT
IDLE PROGRAM EXECUTING INITIATED TIATED BECAUSE OF PRIORITY | IATED BECAUSE OF PRIORITY
¢ L F IDLE IDLE IDLE
EXCHANGE 01 EXCHANGE EXCHANGE EXCHANGE
PACKAGE A R PACKAGE PACKAGE B PACKAGE
RSSO R Qs on”¢ //////////) Mz
FPRIORITY =)j¢22222 ot EZPRIORITY =/;2g22 (PRIORITY = 1‘/§§§§ [PRIORITY = 11555fj -
2222 72 i N
CONTROL POINT 3 AREA CONTROL POINT 3 AREA CONTROL POINT 3 AREA CONTROL POINT 3 AREA
B ~g g B ’ c ¢
EXCHANGE lac EXCHANGE 5 EXCHANGE EXCHANGE
PACKAGE D o PACKAGE PACKAGE ACKAGE |
030887700 B N 266B’§62222?22?/ 536§G§4444a2%39/ ;Jos‘gzzéa/jz//
 PRIORITY = % D D / PRIORITY = 2 2 / PRIORTTY = :% I / PRIORTTY = z/
2778 L N qlrl/// 7 /2027,

CONTROL POINT 4 AREA CONTROL POINT 4 AREA CONTROL POINT 4 ARFA 1 CONTROL POINT 4 AREA

EXCHQNGE B L EXCHA?GE EXCHA%GE ‘. EXCHASCE
‘ PACKAGE 1A A PACKAGE PACKAGE) PACKAGE
st | o | e TRy,
/PRIORITY =/ g }’RIORITY =3 / / PRIORITY = % ;PRIORITY =3
22 N L) 0

CONTROL POINT 5 AREA CONTROL POINT 5 AREA CONTROL POINT 5 AREA CONTROL POINT 5 AREA

CPO - CP3 CP5
CPO CP4 .
i cp3
CPO

CP STACK CP STACK

CP STACK CP STACK

Page 86
'in B's exchange area in control point four. The stack was
pushed down and the address of control point 4 placed at the
top of the stack.
<::) The process is repeated again for control point 5: job A takes
over the central processor, and the address of control point 5
is placed at the tdp of the stack after the stack has been
pushed down.
Should job A complete execution or enter recall stktus, an exchange jump is
issued in which the addréss specified for the exchange package is the address
at the top of the stack., The stack is then pushed up. This would cause the
exchange package for job A to be stored in control point five!s exchange area:
the stack and control point areas would then appear as shown in (::) .

The use of the centrél processor by a job may be suspended by means of a
"DCP" keyboard entry to the DIS package assigned to the job's control point.
When DIS encounters this entry,'it transmits the control point number and
function code 16 (Release Central Processor) to MTR.
which processes this request determines whether or not the control point is
in the stack. If the control point is ﬁot in the stack, the W and X flag
bits are set to zero, and the routine exits. Although.the job'!s control
point is not in the stack and neither the W flag nor the X flag is now set,
the Advance CPU Job Status routine will not consider this job inactive, since
byte one of the status word is non-zero by virtue of the fact that a bit is
set corresponding to the number of the pefipheral processor containing the
DIS package.

If the MTR subroutine which processes this request finds that the con-
trol point address of the job to be suspended is contained in the stack, it
must push the control point add}ess of the job up out of the stack and reorder

the exchange packages so that the control point area of the suspended job con-

~28~

Page 87
tains its own exchange package. To0 accomplish this, MTR exchanges the
running program with the program immediately below it in the stack, and
pushes up the stack. If the program exchanged (i.e., the former running
program) was not that of the job to be suspended, MIR sets the W flag for
this job and repeats the above process. When the job to be suspended has
been exchanged, MTR calls the Search for CP Priority routine to reconstruct
the stack. The W flag for the suspended job is not set.

Many of the DIS entries which modify program ‘parameters utilize this
function to halt the runﬁing program so that parameters can be changed.

To re-initiate execution of the suspended job, the DIS keyboard entry
"RCP." is used. On detecting this entry, DIS sends function code 15 (Request
Central Processor) to MTR. MTR then sets the W flag for this job and calls
the Search for CP Priority routine to re-initiate execution.

Several MTH subroutines are required to push up the stack to extract
a control point ‘address: thesg routines call the Search for CP Priori;y
routine to reconstruct the stack. The latter routine is the only routine
which pushes down the stack and adds new entries to it.

Whenever a routine pushes the stack up or down, a copy of the stack is
written in locations 56 and 57 of central memory resi&ent for use by DSD.
DSD uses an alphabetic code to indicate the position of a control point in
the stack. ?hg control point at the top of the stack (i.e., the running
program) is displayed as having program status "A", the next control point
in the stack is displayed as having program status "B", and so forth. The

W and X flags are also displayed for control points not in the stack.

MTR: PP RECALL PROCESSING

When certain transient programs find they cannot immediately continue
to perform their functions, they enter a process called PP Recall. Some

of the instances where this takes place are:

-29a

Page 88

¢ lﬁJ - while waiting for storage to be assigned

® 1DJ - while waiting for an output file

® 1LJ - while waiting for a card reader to become ready
To enter PP Recall, a routine simply copies the contents of its Input Register
in the PP Recall register for the control point (location 258 of the control
point area), requests MIR to release the processor, and exits to the resident
idle loop.

The PP Recall register in the control point ;rea is examined by the
Advancg CPU Job Status routine. When this routine finds that the contents of
the PP Recall register are non-zero, it recalls the task by copying the con-
tents of the PP Recall register into the Input Register of an available pool
processor, clearing the PP Recall register, and assigning the processor to the
‘control point (by setting the appropriate bit in byte one of the status word).
The design of the transient programs is such that no internal modificationms
or special flags are requiréd for recall: a recall entry is treated just like
an initial entry.

The recall process is also utilized in the loading of peripheral processor
programs. When the statement translator, 2TS, processes a program card, it
first assumes that the program requested is a central processor program, and
searches the FNT and the CLD for the program. If the program is not found in
either the FNT.or the CLD, the statement translator then assumes that the re-.
quest is for a peripheral.processor progrﬁm, and so searches the PLD. If the
routine is found in the PLD, the statement translator places the routine name
and control point number in the PP Recall register for the control point.

MTR's Advance CPU Job Status routine treats this as if it were a recall
entry. It assigns a processor to the control point and copies the PP Recall

register into the processor's Input Register. The processor's resident prog-

ram then proceeds to load the program from the disk library and execute it.

-30-

Page 89
MTR: NORMAL AND ABNORMAL JOB TERMINATION

In normal termination of a central processor job, the central processor
program initiates this termination by writing YEND" in RA + 1. When MTR
detects this request during its master loop, it exchanges this program with
the program at the control point below it in the stack, and pushes up the
stack, If all peripheral processor activity associated with this control
point has ceased, then byte one of the status word in the control point area
will be zero. When the Advance CPU Job Status routine detects that this
control point is inactive, it will call the 1AJ routine to the control point.
If all control statements in the control statement buffer have been processed,
1AJ will wrap up the job.

When a job at a control point involves only peripheral processors and
does not use the central processor,-normal termination involves a process
similiar to that described above. When a peripheral processor program com-
pletes execution, it requests MTR to release the processor (function code 12).
MIR does this by clearing the processor's Input and Output Registers and
clearing the appropriate bit in byte one of the control point's status word.
When all processors associated with this control point have been released, J
the job will have zero status. This will be detected by MTR's Advance GPU
Job Statué routine, which will call 1AJ to the control point.

Abnormal termination of a job may be initiated by a central processor
program, a peripheral processor program, or by MTR. Regardless of who'
initiates abnormal termination, the general procedure followed by MIR is to
set an error flag in byte two of the status word at the control point and
cause the job to assume zero status by clearing the W or X flag, releasing
peripheral processor assignments, and/or pushing the job's control point out

of the stack. When the Advance GPU Job Status routine detects that the job

at this control point has zero status, it will call 1AJ to advance the job.

1AJ senses that the error flag is set and calls an overlay to process the

=31-

Page 90

remaining control statements in the control statement buffer. This overlay,

2EF, searches the control statement buffer for an EXIT statement: if none is

found, control is returned to lAJ to wrap up the job. If an EXIT statement is

found, the control statement immediately following it is picked up for trans-

lation and processing.

For certain of the error flag conditions, the 2EF overlay inserts (via

a MTR request) an error message in the dayfile. Error messages for other flags

are placed in the dayfile by the initiating routine.

The setting and processing of the various error flags is described below.

Error Flag l: Time Limit. Byte four of location 22 in the control

point area contains the time limit in octal minutes for the job.
Bytes three and four of location 23 in the control point area con-
tain the central processor running time in seconds for the job.

Each time the Advance CPU Job Status routine is entered, the running
time of the active central processor program is incremented. The
time (bytes 3 and 4 of loc
is then compared with the time limit (byte 4 of location 22). 1If the
time limit has been exceeded, a subroutine called Set Error Flag
(page A-15 of attached flow charts) is called. This subroutine drops
the job from the central processor either by clearing the W/X flag or
by exchanging the program with the next one in the stack and pushing
up the stack. It then sets the error flag bit in byte two of the
control point's status word. In the case of a time limit error, the
error message is later inserted by lAJ's overlay, 2EF.

Error Flag 2: Arithmetic Error. On each pass through its master loop,

MTR reads the central processor P register. If (P) is zero, it is
assumed that an error exit due to an infinite/indefinite operand

or bounds error has occurred. MTR then calls the Set Error Flag

subroutine to drop the job from the central processor and set the

-32-

Page 91
22 bit in byte two of the control point's status word. The error
message is later inserted by 2EF.

Error Flag 3. PP Abort. There are several instances in which a

peripheral processor program finds it necessary to abandon a task.
Some of these are:
| ® a peripheral resident is unable to locate a package in
the resident or peripheral libraries
¢ CIO's overlay, 2BP, finds an error in the buffer parameters
specified in a call
® a parity error is encountered when backspacing (after three
attempts)
In these instances, the peripheral processor program sends an
error message to the dayfile and then requests MTR to abort the
control point (function code 13). MTR releases the processor (thus
clearing the corresponding bit in byte one of the status word) and
then calls the Set ErrarFlag to set the 23 bit in byte two of the
status word and .to drop the job from the central processor,

Error Flag 4: CPU Abort. When a central processor program finds it

necessary to abort execution, it writes "ABT" in RA + 1. When MTR
detects this during its master loop, it calls the Set Error Flag
Subroutine to set the 2% bit in byte two of the status word and to
drop the central processor.

The central processor program may abort because of some com-
putational condition, or because of a problem in the execution of a
peripheral processor program associated with the job. For example,
if a tape read operation encounters a parity error, after the third
unsuccessful read it sets the 20 bit in byte four of RA and pauses
(function code 17: Pause for Storage Relocation). The central

processor program presumably monitors this location: when it detects

-33-

Page 92

that this bit is set, it must decide whether to abort execution

or to ignore the error. To ignore the error, the central processor
program clears this bit: the peripheral processor program will
sense when the bit is cleared and proceed with its execution. To
abort execution, the central processor program places "ABT" in

RA +.1, which results in an error flag being set. The peripheral
processor program senses this efror flag and, when it finds that
the error flag is set, it requests MIR to release the processor.

In either case, the peripheral processor program will place a
message in the dayfile,

Error Flag 5: PP Call Error. When MIR senses, during its master

loop, that the contents of RA + 1 are non-zero, it calls a sub-
routine to process the request. If the contents of RA + 1 are not
END, RCL, or ABT, then it is assumed that a peripheral program is
being called. The subroutine checks the first character of the
call to see if it is a letter. If it is, the request is issued to
a free pool processor. If it is not, the Set Error Flag subroutine
is called to set the 2? bit in byte two of the control point's
status word and to drop the central processor. The 2EF overlay
later inserts an error message in the dayfile.

ErrarFlag 6: Operator Drop. When DSD detects the keyboard entry

"n.DROP." (n = control point number), it transmits the control point
number and function code 30 (Operator Drop) to MTR. MIR calls the
Set ErrorFlag subroutine to set the 26 bit in byte two of the con-
trol point's status word and to drop the central processore.

Error Flag 7: Track Limit. The number of half tracks on disk 0O

requested by peripheral processor programs assigned to a control
point is maintained in byte 3 of location 22 in the control point
area. This quantity is incremented as tracks are requested and
decremented as tracks are dropped. Each time a track is requested,

«34-

Page 93

MIR checks to see if more than 7778 half tracks have been assigned
to this control point: if so, the Set Error Flag subroutine is
called to set the flag in byte 2 of the control point!s status word
and to drop the job from the central processor. The 2EF overlay
later inserts the error message in the dayfile.

If a routine réquests a half track assignment from MTR, and MIR,
in searching the Track Reservation Table, reaches the end of the table
before an available half track is found, a zero byte is returned to
the requestor in byte one of the first word in the Message Buffer.
The requestor then aborts the control point via an MIR request,
resulting in the setting of error flag'3.

The error message "TRACK LIMIT" indicates that a control point
has requested the assignment of more than 7778 half tracks on disk
0. The error message "DISK X TRACK LIMIT" indicates that disk X

has overflowed.

MTR: STORAGE ALLOCATION AND RELOCATION

The blocks of central memory sﬁorage assigned to the various control
points always occupy positions in central memory relative to the number of the
control point to which they are assigned. Thus, the storage assigned to con-
trol point 2 appears immediately above the Storage assigned to control point 1,
the storage assigned to control point 3 appears ‘immediately above that assigned
to control point 2, and so forth. As the jobs at control points request and
release storage, the storage assigned to higher control points is relocated up
or dewn so that no gaps of unassigneé Storage appear between the storage blocks
of consecutive control points. All unassigned Storage appears at the high end
of memory.

Peripheral processor programs request storage from MIR via a Request

Storage function (function code 10). Whenever 1BJ brings a job to a control

Page 94
point, it requests MIR to assign the storage specified on the job card. In
addition, many peripheral ﬁrocessor programs request storage for their own
use, primarily for buffers. Thus, 1BJ requests 3008 words of storage to use
as a buffer in reading the record containing the control statements, 1LJ
requests 4000g words of storage to use in buffering jobs from the card reader
to the disk, and so forth.
The MTR Request Storage subroutine is shown on page A-6 of the attached
flow charts. Upon entry, a storage move flag is set in location 51 of peri-
pheral processor zero's memory. This flag is the Output Register address of
the requesting processor. The difference between the amount of storage req-
uested and the amount currently assigned to the control point is then computed.
For example, when 1BJ requests that storage be assigned for the job to be loaded,
MTR computes the difference between the requested storage (from the job card)
and the storage already assigned to the control point (the 300g locations used
as a buffer). If the requested storage represents an increase, MIR ascertains
if ¢
It does this by subtracting (RA + FL) fo; control point 7 from 400000g to
determine the amount of unassigned storage. The storage increase requested is
then compared with the amount of unassigned storage. If there is insufficient
unassigned storage available to meet the request, MIR clears the requesting
processor's Output Register, clears the storage move flag in location 50, and
exits. The requesting routine senses if the storage requested has been
assigned by reading the value of FL in byte 5 of location 20 in its control
point area and comparing this value with the amount of storage requested.

If there is room for the storage increase, or if the request represents
a decrease, MTR sets a storage move flag in each control point above the
requesting control point. This flag is the 20 bit in byte 3 of location 20
in the control point area. Thus, if the requesting processor is assigned to

control point 4, storage move flags would be set in control points 5, 6, and 7.

=36~

?age 95

After setting the storage move flags, MTR determines if there is any
peripheral processor activity at the flagged control points. It does this by
first examining byte one of theicontrol point status word. If bits 2 - 9 of
this byte are cleared, then there is no peripheral processor activity at this
control point. If one of fhese bits is set, then MIR reads the Output Register
of the corresponding processor. If this Output Register contains anything but
a 17 function code, MIR exits from the Request Storage routine. Only when all
control points whose storage is to be relbcated either have no peripheral
proéessor assignments or have paused for storage relocation by issuing a 17
function code does MTR proceed to relocate storage.

To relocate storage, MTIR sets up the exchange package for the storage
move program with the parameters required to effect the relocation. This
exchange package begins at location 2000g of the central memory resident. MTR
then proceeds to push up the stack, exchanging each program in turn and setting
the W flag for the control point, until control point O is at the top of the
stack. The storage move program is then exchanged for the idle program. When
the storage move program completes execution, it stops with P = 0. The Request
Storage subroutine monitors P and, when it becomes zero, exchanges the idle
program for the storage move program. The RA value in each of the flagged
control point areas (both in byte five of location 20 and in the exchange
package) is thén updated by adding the iﬁcrease to the original value, and
the storage move flags cleared. The FL value is then set in the exchange pack-
age and status word of the control point area for the requesting processor.
Finally, the Search for CP Priority routine is called to reconstruct the stack,
the storage move flag in location 50 is cleared, and the Output Register of the
requesting processor is cleared.

Many peripﬁeral processor programs, such as 1BJ, 1DJ, and 1LJ, enter PP
Recall if a storage request cannot be immediately satisfied because of lack of.

space. In this case (insufficient unassigned storage), the Request Storage

37~

Page 96

routine clears the requesting processor's Output Register and the storage
move flag in location 50 prior to exiting. Even though sufficient unassigned
storage is available, storage relocation can be initiated only when all
peripheral processor activity has ceased for the control points whose storage
is to be relocated. Should one or more control points have active peripheral
processors, the Request Storage routine exits without clearing the requesting
processor's Output Register. This does two things; it inhibits the requesting
processor's resident from exiting the Process Request subroutine, and it causes
MIR to re-enter the Request Storage subroutine on every pass through its master
loop, since the request remains in the processor's Output Register. Requests
for storage from other processors are ignored while this request is in process.
Effectively, then, MTR checks, on every pass through its master loop, the
peripheral processor activity at the flagged control points to see if relocation
can be initiated.

Cessation of peripheral processor activity may come about because a process-

APTY

or has compieted its assigned task and requested MIR to release it (im whi

{in which
case it may immediately be assigned to agother task), or because the processor
has paused by sénding function code 17, Pause for Storage Relocation, to MIR.
When MTR detects this function request, it examines the storage move flag in
the associated control point area: if set, MIR returns to its master loop
without clearing the processor's Output Register, thus effectively stopping
the processor. When all processors assigﬁed to the flagged control points
have paused, storage relocation can begin.

The peripheral processor residents all pause for storage relocation
immediately upon recognizing a request in their Input Registers. In addition,
many peripheral processor programs pause for storage relocation when delayed

in their execution. For example, tape drivers pause for storage relocation

when the tape unit is not ready or when a tape error occurs.

«38a

Page 97

The READ package (lLJ and its overlays) pauses for storage relocation only
when the card reader is not ready. Similiarly, the PRINT package (1DJ and its
overlays) pauses for storage relocation only when the line printer is not ready.
It is therefore important that these packages should be assigned to control
points one and two. Should they be assigned to higher control points, they
could hold up the allocation of storage for jobs at lower control points for
considerable periods of time.

The coding for the storage move program is shown on page B-1, together
with the 6600 central ?rocessor timing for the loop used in moving storage up.
Storage relocation requires approximately 7.2 microseconds for an increase of

10,0008 words.

MTR: TIME ACCOUNTING
| Location 30 of the central memory resident contains the system time in
hours, minutes, and seconds. This location may be initialized to real time via
the DSD keyboard entry "TIME". If not initialized, this location reflects the
elapsed time since the system was loaded. This time is updatéd by the Advance
Clock subroutine. This routine is shown on page A-2 of the attached flow charts.
In addition to maintaining the system time in location 30 of central mem-
ory resident, che subroutine also maintains a current second count and a current
millisecond count in locations 67 and 66, respectively, of PPO's memory. Upon
entering the Advance Clock subroutine, MIR reads the real time clock on channel
14 and extracts the high-order two bits. These two bits are interpreted as
follows:

high-order bits = 00: real time clock has advanced 0 milliseconds

high-order bits = 0l: real time clock has advanced 1 millisecond
high-order bits = 10: real time clock has advanced 2 milliseconds

1l: real time clock has advanced 3 milliseconds

high-order bits

high-order bits = 00: real time clock has advanced & milliseconds

=39

Page 98

These two bits are compare@lwith the clock phase in location 65 of PPO's memory.
This clock phase is the value of these two bits on the last entry to the sub-
routine: if these two bits are unequal to the clock phase, then a millisecond
has e;apsed since the last entry, and so the millisecond count in location 66

is incremented.

As the real time clock runs through a full period, the millisecond count
is advanced by 4. Actually, a full period represents 4.096 milliseconds: there-
fore, rather than waiting for the millisecond count to reach 1000 before advanc-
ing the second count, MTR advances the second count when the millisecond count
reaches 976. This represents 244 full periods of the real time clock, or an
actual elapsed time of 999+ milliseconds.

If the second count was not advanced, the real time clock is read again
before exiting to determine if a millisecond advance has taken place while the
computations described above were taking place. If no advance has occurred, the
subroutine is exited. If the second count was advanced, MIR reads the system
time from location 30 of central memory resident, updates it, and writes it back
in central memory. The realAtime clock is then read again to determine if an
advance has occurred: if no advance has occurred, the subroutine is exited.

In order for the system time to be properly maintained, MIR must, on the
average, enter this subroutine every millisecond. Therefore, entry to this
subroutine is made from several points in MIR. The MIR routines which call the
Advance Clock subroutine are:

¢ MTR master loop
© Process PP Message Routine
© Request Storage (function 10)
~ © Release Central Processor (function 16)
© Request Exit Mode (function 25)

6 Set Error Flag Routine

~40-

Page 99

The system time in location 30 of central memory resiaent is inserted by MIR
in each dayfile message and is displayed by DSD. This time is not, however,
used in computing time charges to control points.

Location 23g in the control point area holds the central processor time
charged to the job at the control point, while location 248 contains the peri-
pheral processor time charged to the job. These times are maintained in sec-
onds and milliseconds, and are entered in the dayfile by 1AJ upon completion of
the job. Peripheral processor time charges are accumulated by the Assién Time
Increment for PP subroutine. This subroutine maintains a staréing time for
eéch pool processor in central memory locations 41 - 50g. This starting time
represents the time at which the peripheral processor most recently became idle
or active and is maintained in seconds and milliseconds. The Assign Time
Increment for PP subroutine is illustrated in figure 8. This subroutine is
éntered with the number of the pool processor and witﬁ the control point address.
On entry, the starting time for this processor is read from central memory
(location 408 + PP number) and subtracted from the current time in seconds and
milliseconds mzintained in locations 67 and 66 of PPO!s memory. The difference
is added to the contents of word 245 in the specified control point area. The
starting time for the processor is- then reset to the current time in seconds and
milliseconds.

When MTR assigns a pool processor to a task, it enters this subroutine
with the number of the procossor and with the address of contreol point zero.
The difference between the starting time and the current time is the length of
time which the processor has been idle. The new starting time represents the
time at which the processor began execution of the task assigned to it by MTR.
On completicn of the task, MIR agains enters the subroutine - this time with
the number of the processor and the address of the control point to which the

processor was assigned. The difference between the curren:t time and the starting

~4]la

-

g 2an31g

ASSIGN TIME INCREMENT FOR PP

50 | PP8 STARTING TIME READ PP STARTING TIME
CcM hF%IDENT LOCAl‘OV 40 -+ PPi
47 PP7 STARTING TIME S e E"*" TR
46 PP6 STARTING TIME " COMPUTE GURRENT TIME - START. . ©
ING 1]N1 (PPO LOCATIONS 67, 66)
45 PP5 STARTING TIME ISR s)
o it oot R \,.._..-L“» ERI e 2 § e R AR s oo
44 PP4 STARTING TIME ADD DIFLERENGE IN SECONDS AND
MILLISECONDS TO WORD 24 OF
43 PP3 STARTING TIME | \» é 'SPECTFIED COVWPOL POINT ARLA
... Tl R e ' Yl SItItniAgIoTLor g Dt
42 PP2 STARTING TIME i e e ‘wr_zvﬂ;?rﬁﬁﬁ,;g
SET NEW PP SLARLLhG TIME EQUAL,
41 PPl STARTING TIME TO CURRENT TIME) ,
Sepraaboerhri Rl L :., mra ’;, I TN TR "".‘"\'5-“:7:".“??‘*;;5:‘-"
40 CPU STARTING TIME gsi:fff\\

CENTRAT, MEMORY RESIDENT

- © ON ASSIGNING A POOL PROGESSOR TO A CONTROL
POINT, THE ROUTINE IS ENLERED WITH THE PP
NUMBER AND THE ADDRESS OF CONTROL POINT O

© ON RELEASE OF A POOL PROCESSOR, THE ROUTINE

IS ENTERED WITH THE PP NUMBER AND ADDRESS OF
THE CONTROL POINT TO WHICH THE PP WAS ASSIGNED

PP TIME ACCOUNTING

001 °38eg

Page 101
time is the length of time the processor was assigned toAthe control point:
the new starting time is the time at which the processor becomes idle. This
Subroutine accumulates all PP usage times for a job in word 24 of the control
point area. All the idle time for the pool processors is accumulated is con-
trol point zero!s area - location 24 of central meﬁory resident.
The Assign Time Increment for PP subroutine is called by the following

MIR routines:

© Assign PP Time to CP (function 4)

© Release PPU (function 12)

© Abort Control Point (function 13)

© Request PP (function 20)

® Process PP Call

© Advance CPU Job Status
Routines processing jobs ﬁot associated with' the control point, such as the
READ and PRINT packages, must handle their own time charges. When these
routineé begin processing a file, they send function request 4 to MTR. MTR
assigns the idle time .to control point zero and Sets a new starting time for
the processor in which the routine resides. The routines then sets location
24 in the control point arez to zero. When processing of the file is completed,
these routines again send function request 4 to MTR, and MTR computes the
processing time and stores it in location 24 of the coﬁtrol point area. The
routines then read this time from the control point area, convert it to decimal,
and write it in the dayfile via aa MTR request. MIR inserts the job name in
the dayfile message: it is to provide this job name that these routines change
the job name in the control point area from READ or PRINT to the file name
when processing of the file is initiated.

Time charges for the central processor are accumulated in a similiar

manner. There is, however,Aone exception: since central processor programs

have a time limit, the central processor time charges to a control point are

~43a-

Page 102
advanced every'second. Location 40 in central memory resident contains the
central processor starting time. At interv;ls.of one second or less, this time
is read and subtracted from the current time in seconds and milliseconds main-
tained by MIR in locations 67 and 66 of PP0's memory. The difference is added
to the contents of word 23 in the specified control point area, and a new
starting time is set in location 40 in central memory. (Note: the control
point area is cleared at dead start time and whenever 1AJ drops a job from
a control point.) Central processor time charges are updated by the Advance
CPU Job Status routine, and whenever the control point stack is pushed up or
down (i.e., whenever the running program is exchanged).

The Advance CPU Jéb Status routine m;intains 2 Last Second count in loc-
ation 63 of PPO!'s memory. Each time the Advance CPU Job Status routine is
entered, the Last Second count is compared with the current second count in
location 67 of PPO's memory. Lf these two quantities are not equal, the Last
Second count is updated, the central processor time charges are accumulated

mad

3 - P, -
d a test is 1w s te

[¢]

for the job currently using the central processor, ar

determine if the time limit has been exceeded.

MTR: THE DAYFILE

The dayfile is a combination of a time accounting medium and a2 job log."

The contents of the dayfile include:

© all control cards

© all diagnostic messages

© job loading times, job execution times (both for the central

processor and the peripheral processors), and job printing times

© messages tovthe operator

The dayfile is maintained as a COMMON file on the disk. Ia additionm, a number

of the most recent dayfile entries are displayed on the console by DSD. At the.

nbilym

Page 103
end of a job, all dayfile entries for that job are printed as part of that
job's output.

Messages are entered in the dayfile by peripheral processors via a request
to MIR. A central proces;or pProgram may enter a message in the dayfile by
calling the MSG peripheral package. A peripheral processor program initiates
the entry of a message in the dayfile by placing the message in its Messagg
Buffer and then placing function code 1 (Process Dayfile Message) in byte one
of its Output Register. The message may be up to six central memory words in
length and is terminated by a zero byte in byte five of the last word of the
message.

When MTR processes this request, it first checks the dayfile dump flag
in location 64 of PPO's memory. If this flag is set, then dumping of the
dgyfile to the disk is in process, and so MIR returns to its master loop, de~
laying the processing of this message to later. If the dayfile dump flag is
not set (i.e., location 64 contains zero), MIR proceeds with the processing of
the message. The contents of the Message Buffer are copied into words 30 - 35
of the control point area for the control point to which the requesting process=-
or is éssigned. These locations (words 30 - 35), together with the control
point status, the next control statement, and the exchange area, are displayed
on the‘console by the DIS "B" display.

The dayfile message, together with the system time and the job name from
the control point to which the requesting processor is assigned, is placed in
the dayfile buffer. The dayfile buffer (see figure 9) is an area of central
memory resident used to buffer dayfile messages to the disk. Its starting
(i.e., FIRST) address and LIMIT address (last entry address plus one) are
specified by bytes one and four, respectively, of the dayfile buffer (DFB)
pointer word in central memory location 3. Bytes two and three of the DFB

pointer contain the IN and OUT addresses for the buffer. 1In inserting the

=45«

m{;’.v—

———— . . - . —?"
e AT SR SRS R R T e S TS S F

MESSAGE TERMINATED BY A ZERO BYTEL

%01 @3%g

MTR INSERTS NEXT MESSAGE
HERE

o)
]
i
i

'“Oogb”

S =it T AT A N LT L S L T B R U

(/’TO BE DUMPED TO THE DISK

2278

THIS DATA PREVIOQUSLY
WRITTEN TO THE DISK

TNIII LI 77
Z

6 ’ .A .

T TS SIS L TR B g, NSy T T

L e e e oo e

AT LT LTy "“‘":;:.T.':‘;“_ﬂ al Treery Wi b e ymgea s .

3
N I~ I

KL j)
2} JOB NAME: LEFT-JUSTIFIED DISPLA¥5QODE AW

ATERINSIIIDITT L

R S e e P .:.r::.*l-.:;::a—;u—:-vu:;w.'.::&:j@,czag::u::r::;;:.:~

1} SYSTEM TIME: "HR.MN.SC. "

T e s pee e e s

babadiaial s YN

DAYFILE BUFFER

g . t AT TR T REeT

DAYFILE MESSAGE FORMAT

BODY OF MESSAGE MAY CONSIST OF UP TO SIX
CENTRAL MEMORY WORDS

FIRST ! 1IN ﬁ" our H LIMIT

e JOB NAME AND SYSTEM TIME INSERTED BY MIR
DFB POINTER WORD (CM LOCATION 3)

IHE DAYFILE

e

6 QIHBI&

Page 105

message in the dayfile buffer, MIR first copi. ® the system time from location
30 of central memory resident into the buff:-. Next, MIR reads the job name
from word 21 of the requestor's control poi:.: area and copies it into the
dayfile buffer. In doing so, MIR changes . :es in the job name to blanks,
and inserts a period at the end qf the job .. .me. Next, MIR copies the body
of the message from the requestor’s Messaéé Buffer into the dayfile buffer,
copying word after word until a word ending with a zero byte (byte five) is
copied.

Within the dayfile buffer, a message comprises three to eight words: one
word contains the system time, one word contains the job name, and one to six
words contain the body of the message. When the entire message has been copied
into the dayfile buffer, MTR inc?ements the dayfile message count in byte two
of word 22 in the requestor's control point area. Although this count is
incremented each time a message is entered in the dayfile, it is tested against
a limit only by the peripheral package MSG.

As MIR enters each word in the dayfile buffer, it advances the IN address
and compares it with the LIMIT address. When IN = LIMIT, MTR resets IN to the
value of FIRST. After the message has been entered in the dayfile, MTR com-
pares the IN and OUT addresses to determine if the dayfilé buffer contains a
full sector of data: if it does, the dayfile dump flag is set to initiate the
dumping of this data to the disk. MTR dumps the dayfile to the disk in a
series of phases: after each phase has been executed, MTR.returns to its master
loop to procéss requests. from the central processor or from peripheral process-
ors. In this manner, MIR avoids being tied up in a disk operation for a pro-
longed period of time. The dayfile dump flag, when set, contains the address
of the subroutine to be called to perform the next phase of dunping.

Although the nominal size of the dayfile buffer is 1000g words, dumping

is initiated whenever messages totalling 1008 words have accunmulated. From

47

- Page

106
the standpoint of buffering messages to the disk, the deyfile bufler need be

be no longer than 107g words (since it is possible that entry of the last
message increased the total to over 100 words), since no entries can be made
while dumping is in process. By increasing thé buffer size to several times
its minimum requirements, however, the size of the dayfile display on the
console is increased.
The six subroutines corresponding to the dayfile dump phases are shown
on pages A-16, A-17, and A-18 of the attached flow charts. These subroutines
are described below.
Phase 1. In phase one, MTR requests channel O and sets the dump
flag to the address of the phase 2 subroutine. It is interesting
td note ‘that in this case MIR transmits a request to itself: the
channel number and the appropriate function nuﬁber are placed in
PPO's Output Register to be processed by MIR when it returns to
its master loop.
Phase 2. One entering phase two, MTR reads its Output Register to
determine if its geservation request has been accepted. If the
channel has been reserved for MIR, then positioning is initiated.
All other disk users maintain the current half track address for a
file in the FST entry for that file. Althouéh MTR sets the Beginning
Half Track byte'in the FST entry,:;t does not update the Current Half
Track byte as sections of the dayfile are written to the disk.
Instead, the current half track address is maintained by modifying
the appropriate instructions within the dumping subroutines. To
position the disk, MTR uses the Position Disk subroutine in peripheral
processor resident. After initiating repositioning, the dump flag is
set to the address of the phase 3 subroutine.
Phase 3. in phase three, MIR writes the full sector in the dayfile

buffer and a record mark to the disk. Since this write is directed

=48«

Page 107

to a specified sector, it is conceivable that up to 66 milliseconds
could elapse between the time at which this=Subroutine was entered
and the time at which this sector came under the heads. In order
to avoid this delgy, MIR issues a status request to obtain the
number of the sector currently passing under the heads and, unless
the disk is positioned two sectors before the desired sector, MTR
returns to its master loop. A sector may pass under the heads in
as little as 490 microseconds. The minimum time required for MIR
to make a pass through its master loop is approximately 150 micro-
seconds (assuming an active CPU program but no request processing
required) and may be several times longer. It is not impossible,

then, that a revolution or more may be required before the desired

_coincidence is found.

Once coincidence has been obtained, MTR writes the full sector
from the dayfile buffer to the disk, and advances the buffer's OUT
address accordingly. If this sector was the last sector on this
half track, the subroutine coding is modified for the spare half
track. (MIR maintains a spare half track for the dayfile: this is
picked up in the phase four subroutine whenever required.)

It is probable that the message which completed a full sector

in the dayfile buffer resulted in the buffer's containing something
more than 100g words of data. If so, MTR will include these extra
words, which are part of the last message entered in the dayfile
buffer, ,in the short sector written as an end-of-record after each
full sector is written. (The dayfile is a single logical record
on the disk and is not terminated by a file mark sector.)

The phase two subroutine is called again to position the disk,

and the short sector is then written by the phase three subroutine.

-49a

Page 108

Although this sector may include a few words of datae Ivrom the bullcr,
the QUT pointer is not advanced to reflect the transfer o these
words: also, the coding is not modified to reflect the writing o
this sector. The next full sector written to the disk will also
include these few words and will be written over this end-of-record
sector.

After the end-of-record sector has been written, MIR constructs a
release channel reservation request by placing the channel number

and the appropriate function code in PPO's OQutput Register. It then
sets the dump flag to either the address of the phase four subroutine
(if another spare half track is required) or the phase six subroutine
(if the spare half track was not used during this dump operation).

Phases 4, 5, 6. The phase four subroutine requests a spare half track

from MIR and sets the dump flag to the address of the phase five
subroutine. The phase five subroutine stores the spare half track

number andé c..ari he Gt

mp flag.

|8

'If it "'ew not nccessary to pick up the spare half track, the
phase three subroutine sets the dump flag for phase six. The phase
six subroutiné clears the dump flag.

The dayfile buffer is dumped whenever messages totalling a full sector
have accumulated. ” It is also dumped, even though a full sector has not been
accumulated? at the end of each job; As part of a job'!s output, all dayfile

~messages for that job are printed. In order to simplify searching of the dayfile
for the job's messages, the dayfile is dumped to the disk so that only the disk
has to be searched. The PRINT package (1DJ and its overlays) and the DUMP
package (iTD and its overlays) initiate this dumping by sending function reg-
uest 11, Complete Dayfile, to MIR: MIR in turn sets the dayfile dump flag to

phase one,

-50-

Page 109

ADDITIONAL NOTES ON MTR'S ADVANCE CPU JOB STATUS ROUTINE

The Advance CPU Job Status routine performs a cyclic scan of control
points, and initiates the processing of the next control statement (via
1AJ and its overlays) if the job at the control point being scanned is
inactive. The interval between successive scans of the same control
point is on the order of 450 milliseconds. When the Advance CPU Job
Status routine determines that the job at the control point being scanned
is inactive (i.e., the control point is not in the stack, the W or X

flag is not set, and no peripheral processors are assigned), it calls

1AT to advance the job. I1AJ in turn calls an overlay, 2TS, to process
the next control statement. 2TS processes the control statement and
releases the peripheral processor. Processing of the next control
statement is initiated when the Advance CPU Job Status routine scans the
control point and finds it inactive once again. Thus, if a job contained
two ASSIGN cards, for example, the minimum interval between the initialization

- of processing for these control statements would be 448 milliseconds.

At first glance it would seem that an increase in throughput time could

be achieved by reducing the interval between successive scans and/or
modifying 2TS so that it would loop after processing one control state-

ment to initiate processing of the subsequent control statement (unless a pro-
gram carc¢ was encountered). Consider, however, that the most often

used control statements (with the exception of JOB and PROGRAM cards,

which are not pertinent to this discussion) are the ASSIGN, COMMON, and
REQUEST cards. Let us briefly consider these control statements in terms

of the delays which may be encountered in their processing.

ASSIGN: the processing of the ASSIGN statement may be delayed if
(1) operator action is required to supply an equipment number or

(2) there is no space in the FNT to enter the file.

COMMON: the processing of the COMMON statement may be delayed if
(1) the specified equipment is not available or (2) the file is

being used by a job at some other control point,

REQUEST: the processing of the REQUEST statement will be delayed
(1) while the operator assigns an equipment and may be delayed
(2) if there is no space in the FNT to enter the file.

~51

Page 110

The delay most often encountered is the time spent in awaiting operator
equipment assignment, which is always required by the REQUEST card and
may be required by the ASSIGN card. 1In any event, when 2TS encounters
a delay of the type described it releases the peripheral processor.
When the Advance CPU Job Status routine scans the control point again,
1AT will be called once again and its overlay, 2TS, will attempt to
process the control statement again. Thus, although the time required
for the operator to perform the assignment is measured in seconds (at
best), the peripheral processor time is measured in microseconds. The
net effect of this portion of the Advance CPU Job Status routine and
27S overlay design, then, is to greatly increase the available peripheral
processor time over that which would be achieved by designing 2TS in
the manner described above. Furthermore, in view of the operator's
reaction time, there is little point in reducing the interval between

successive scans of a control point by the Advance CPU Job Status routine.

When the Advance CPU Job Status routine finds that the CPU program at the
control being scanned is in recall status, it clears the X flag and sets
the W flag for the job, and calls the Search for CP Priority subroutine
to re-initiate execution. The net effect of this is to bring a job
back from recall every (neglecting priority considerations) 450 milii-
seconds. Since CIO will re-initiate execution of the job when the

1/0 operation is completed, this periodic return from recall may seem
redundant. However, there is a purpose served (in addition to real-time
and "quantum" type uses) by this return. When a I/0 driver encounters '
a pafity error, it sets a pause bit in RA (212 bit) and then loops,
reading in turn the pause bit and the error flag byte until either the
pause bit is cleared (in which case the error is ignored) or the error
flag is set. The operator, on detecting the error message sent by the
1/0 driver, may clear the pause bit (n.GO entry to DSD) or set an error
flag (n.DROP entry to DSD). The central processor program, however, on
this periodic return from recall, may also sense the pause bit and take
its own error action. The program may decide to accept the faulty

data, in which case it would clear the pause bit and thus permit the I/0
driver to proceed, or it may decide to abort, in which case it would set
an error flag by writing ABT in RA+l, which would permit the I/O driver

to exit.

-52

Page 111

MTR PACKAGE
SYSTEM MONITOR

ASSIGN DISK FILE O TRACK FOR DAYFILE
ENTER DAYFILE STATUS IN FST

EXCHANGE JuMP TO IDLE ROUTINE J

N ar— :
,1 RJ ADVANCE CLOCK -

READ PPU | OUTPUT REGISTER
IS REGISTER EMPTY ?

YES

READ PPU 2 OUTPUT REGISTER
IS REGISTER EMPTY ?

YES

READ PPU 3 OUTPUT REGISTER
IS REGISTER EMPTY ?

YES

READ PPU 4 OUTPUT REGISTER
IS REGISTER EMPTY ?

.YES

READ PPU 5 OUTPUT REGISTER
IS REGISTER EMPTY ?

YES

READ PPU 6 OUTPUT REGISTER
IS REGISTER EMPTY ?

YES

RCAD PPU 7 JUTPUT REGISTER
IS REGISTER EMPTY ?

YES

READ PPU 8 GC PUT REGISTER
iS REGISTER EMrTY ?

YES

REAT PPU 9 QUTPUT REGISTER
IS REGISTER EMPTY ?

YES

READ PPL O CuTPUT REGISTER
1S HESISTER EMFTY ?

YES

X

NO ﬁl RJ PROCESS PPU MESSAGE

NO \{ RJ PROCESS PPU MESSAGE J
‘NO >{ RY PROCESS PPU MESSAGE J
NO ~{ RJ PROCESS PPU MESSAGE l
NO \{ RJ PROCESS pn;u MESSAGE J
NC >{ RJ PROCESS PPU MESSAGE]
NO ~{ RJ PROCESS PPU MESSAGE l
NO ;% RJ PROCESS PPU MESSAGE]
NO >lr R4 PROCESS PPU u:sssz
No ,% RJ PROCESS PPU nsssnae]

G CENTRAL PROCESSOR ASS:GNED TO A CONTROL POINT ? [‘NO

TYES
i
';'

REAZ R4 +1) 2 I3NTROL POINT

IS WORD CLEANED ?

YES

>©

(NEXT PAGE)

NO

| Ry PROZESS PP CALL II

A-1

&

(NEXT PAGE)

Page 112

{MTR PACKAGE CONTINUED)

®

IS SIMULATOR OPERATING ? —}-Z-ES—-H READ P FROM SIMULATOR]

NO

[READ P FROM CENTRAL PROCESSORJ

YES

[RJ SET ERROR FLAG 2

(:) ;l IS A PPU AVAILABLE FOR ASSIGNMENT 7 }No—>l RJ SEARCH FOR FREE PPU]

YES

I RJ ADVANCE CPU J08 STATUS lll

[IS DUMP FLAG SET 7 YES RJ DUMP DAYFILE NEXT PHASE—I

NO

e

MTR SUBROUTINE
ADVANCE CLOCK

READ CURRENT CLOCK VALUE NO EXIT
HAS NEXT MILLISECOND BEEN REACHED 7
YES

ADVANCE CLOCK PHASE TO NEXT MILLISECOND
ADVANCE MILLISECOND COUNT
HAS COUNT REACHED 000 MILLISECONDS 7

YES

NO

ADVANCE SECOND COUNT
UPDATE DATE LINE ONE SECOND IN DISPLAY CODE

=2

Page 113

MTR SUBROUTINE
PROCESS PPU MESSAGE

YES
[IS MONITOR IN STEP MOOE ? }-——————9{ SET WAIT STEP FLAG AT CENTRAL ADDRESS 00i4

NO
NO
—rm\s OPERATOR STEPPED MONITOR ?
YES
READ FUNCTION FROM REQUESTING .
I CLEAR STEP FLAG

PPU OUTPUT REGISTER
RJ TO CORRESPONDING MTR SUBROUTINE

l RJ ADVANCE CLOCK

! ExiT

MTR FUNCTION Oi
PROCESS DAYFILE MESSAGE

IS DUMP FLAG SET ? }YES >J| ExiT

NO

LCOPY MESSAGE FROM PPU MESSAGE BUFFER TO CONTROL POINT AREA l

ENTER TIME IN DAYFILE BUFFER
ENTER JOB NAME IN DAYFILE BUFFER
COPY MESSAGE FROM PPU MESSAGE BUFFER TO DAYFILE BUFFER

NO | CLEAR PPU OUTPUT REGISTER
DOES DAYFILE BUFFER CONTAIN A FULL DISK SECTOR OF DATA ?

YES

FSET PHASE ONE OUMP FLAG J

A-3

Page 114

MTR FUNCTION 02
HEQUEST CHANNEL -

READ CHANNEL STATUS TABLE YES it
IS REQUESTED CHANNEL BUSY ? y

NO

ASSIGN CHANNEL TO REQUESTING PPU
UPDATE CHANNEL STATUS TABLE
CLEAR PPU OUTPUT REGISTER

MTR FUNCTION 03
DROP CHANNEL

\l
READ CHANNEL STATUS TABLE

CLEAR REQUESTED CHANNEL ASSIGNMENT
UPDATE CHANNEL STATUS TABLE

ExiT

MTR FUNCTION 04
ASSIGN PP TIME

READ STARTING TIME FOR REQUESTING PPU

SUBTRACT FROM CURRENT TIME IN SECONDS AND MILLISECONDS
ADD TO ACCUMULATED TIME CHARGE IN CONTROL POINT AREA
STORE NEW PPU STARTING TIME

CLEAR PPU OUTPUT REGISTER

Exit

A4

Page 115

MTR FUNCTION 05

MONITOR STEP CONTROL

ExiT

SET MONITOR STEP CONTROL FLAG
CLEAR PPU OUTPUT REGISTER

MTR FUNCTION 06
REQUEST DISK TRACK

SEARCH REQUESTED TRT FOR AN UNASSIGNED TRACK | NO

IS THERE A TRACK AVAILABLE ?

YES

ENTER TRACK NUMBER IN PPU MESSAGE BUFFER
UPDATE TRT FOR ASSIGNED TRACK NO

CLEAR FIRST WORD OF PPU MESSAGE BUFFER
CLEAR PPU OUTPUT REGISTER
ExiT

CLEAR PPU OUTPUT REGISTER
IS TRACK ON DISK FILE O ?

YES

ADVANCE TRACK COUNT IN CONTROL POINT AREA YES

>l] ExiT [

HAS TRACK LIMIT BEEN REACHED ?

NO

7{ RJ SET ERROR FLAG 7 1

l ExiT [L

MTR FUNCTiON OT
DROP DISK TRACK

CLEAR PPU OUTPUT REGISTER
Exit

CLEAR TRACK ASSIGNMENT IN REQUESTED TRT
REDUCE TRACK COUNT IN CONTROL POINT AREA

A-5

Page 116

MTR FUNCTION 10
REQUEST STORAGE

YES ~1 NO CLEAR PPU OUTPUT REGISTER
[1S STORAGE MOVE FLAG SET ? }——————)[IS FLAG FOR REQUESTING PPU L]——-—-—) EXIT
NO YES . .
. ™ f
x " .
N . o e Ce
{ SET STORAGE MOVE FLAG FOR REQUESTING PPU } T S f o
“ e A W .
2N ’ 5
— ¥ \
) .X . . W
- 1 NO) 1

rxs REQUESTED STORAGE AN INCREASE 7 |)

YES : .

[13 THERE ROOM FOR THE STORAGE INCREASE 7 }-——)YES i::E:O:EEOS:;::d G'" c;:';;;?_":i?; POINTS >
NO
: Jorie
.
CLEAR STORAGE MOVE FLAG YES
H Y PPU ACTIVITY AT NT WITH M Al EXIT
. CLEAR PPU OUTPUT REGISTER [1s THere any PPU ACTIVITY AT cO ono:. POINTS OVE FLAGS ? l-——)[T |
EXIT N

\
EXCHANGE ALL RUNNING CPU PROGRAMS IN CP STACK AND SET W FLAGS
EXCHANGE JUMP TO STORAGE MOVE PROGRAM WITH PROPER PARAMETERS
|- SENSE P= 0O FOR END OF STORAGE MOVE PROGRAM '

YES

L :
. . - - . r

r f S) .

o . - ') Co o NO
o) 1s P07 [“| RJ ADVANCE CLOCK I
P C NS) B

A

UPDATE RA AND lf'_L IN EACH EXCHANGE PACKAGE
CLEAR STORAGE MOVE FLAGS

f RJ SEARCH FOR CP Pmomrvj

CLEAR PPU OUTPUT REQISTER
EXiT

Page 117

MTR FUNCTION i
COMPLETE DAYFILE

[IS A DUMP FLAG SET ?

1 YES
|

NO

Y

>|] ExiT l

YE
[IS THE COMPLETE DAYFILE FLAG SET ? 1—-5———9

NO

Exit

CLEAR COMPLETE DAYFILE FLAG
CLEAR PPU OUTPUT REGISTER

CEXiT

SET COMPLETE DAYFILE FLAG
SET DUMP FLAG PHASE ONE

MTR FUNCTION 12
RELEASE PPU

CLEAR PPU ASSIGNMENT AT CONTROL POINT
COMPUTE PPU RUNNING TIME AND ADD TO ACCUMULATED PP TIME
UPDATE PPU STARTING TIME

CLEAR PPU INPUT REGISTER
CLEAR PPU OUTPUT REGISTER
Exit

MTR FUNCTION {3
ABORT CONTROL POINT

CLEAR PPU ASSIGNMENT AT CONTROL POINT
COMPUTE PPU RUNNING TIME AND ADD TO ACCUMULATED PP TIME
UPDATE PPU STARTING TIME

SET ERROR FLAG 3
CLEAR PPU INPUT REGISTER

CLEAR PPU OUTPUT REGISTER .

ExiT

Page 118

MTR FUNCTION 4
ENTER NEW TIME LIMIT

ENTER NEW TIME LIMIT IN CONTROL POINT AREA
CLEAR PPU OUTPUT REGISTER
Exit

MTR FUNCTION 15
REQUEST CENTRAL PROCESSOR

YES
IS AN ERROR FLAG SET ? l[

NO

YES . CLEAR PPU OUTPUT REGISTER
DOES {RA + |) CONTAIN END ? }————> EXIT
NO

IS CONTROL POINT LISTED IN CPU STACK ?
NO

1 YES
J

SET W FLAG FOR CONTROL POINT
RJ SEARCH FOR CP PRIORITY
CLEAR PPU OUTPUT REGISTER
ExIT

MTR FUNCTION 16
RELEASE CENTRAL PROCESSOR

CLEAR W AND X FLAGS AT CONTROL POINT

NO
IS CONTROL POINT LISTED IN STACK ? H CLEAR PPU OUTPUT REGISTER

YES ExiT
RJ SEARCH FOR CP PRIORITY
EXCHANGE RUNNING PROGRAM AND PUSH UP STACK | YES RJ ADVANCE CLOCK
WAS ‘REQUESTING CONTROL POINT EXCHANGED ? “| cLear PPU ouTPUT REGISTER
. NO ExiT

_{ SET W FLAG FOR EXCHANGED CONTROL POINT]

A-8

Page 119

PAUSE

MTR FUNCTION (7

FOR STORAGE RELOCATION

[IS MOVE FLAG SET FOR CONTROL POINT ?

NO

CLE

exiT

AR PPU OUTPUT REGISTER

MTR

REQUEST PPU

FUNCTION 20

LA}S THERE

1 NO

YES

A PPU AVAILABLE 7 i

YES

ExiT

CLEAR PPU MESSAGE BUFFER
CLEAR PPU OUTPUT REGISTER

ENTER FIRST WORD OF MESSAGE BUFFER IN PPU INPUT REGISTER
ASSIGN PPU TO CONTROL POINT

ASSIGN PPU IDLE TIME TO
UPDATE PPU STARTING TIME

CONTROL POINT ZERO

ENTER NEW PPU INPUT REGISTER ADDRESS IN FIRST BYTE OF REQUESTING PPU MESSAGE BUFFER
CLEAR PPU OUTPUT REGISTER
RJ SEARCH FOR FREE PPU
et

MTR FUNCTION 2i
RECALL CPU

L 1 YES
IS AN ERROR FLAG SET ?
NO
7 NO
IS THE X FLAG SET ? [EXIT
YES

LIS REQUESTING CONTRO!

— YES

CLEAR PPU OUTPUT REGISTER

L POINT IN CPU STACK? |

NO

SET W FLAG
CLEAR X FLAG

CLEAR PPU OU
ExiT

RJ SEARCH FOR CP PRIORITY

TPUY REGISTER

Page 120

MTR FUNCTION 22
REQUEST EQUIPMENT

[IS REQUEST A NUMBER ? 1[N°
YES

—ﬂliis CORRESPONODING EQUIPMENT BUSY ? l
YES

CLEAR PPU MESSAGE BUFFER

NO

CLEAR PPU OQUTPUT REGISTER
Exit

-—-)Fls EQUIPMENT A DISK FILE ?

YES

‘NO

SEARCH EST FOR AN EQUIPMENT OF REQUESTED TYPE
IS THERE A PROPER TYPE FREE ?

YES

YES
[IS EQUIPMENT A DISK FILE 7 }'_'—'_

NO

ASSIGN EQUIPMENT TG CONTROL POINT
SET EQUIPMENT ASSIGNMENT (N CONTROL POINT AREA

ENTER EQUIPMENT NUMBER IN PPU MESSAGE BUFFER
CLEAR PPU OUTPUT REGISTER
ExiT

MTR FUNCTION 23

RELEASE EQUIPMENT

RELEASE EQUIPMENT ASSIGNMENT IN EST

CLEAR EQUIPMENT ASSIGNMENT IN CONTROL POINT AREA
CLEAR PPU OUTPUT REGISTER

ExiT

MTR FUNCTION 24
REQUEST PRIORITY

ENTER NEW PRIORITY IN CONTROL POINT AREA
RJ SEARCH FOR CP PRIORITY '
CLEAR PPU OUTPUT REGISTER

ExiT

A.10

Page 121

MTR FUNCTION 25
REQUEST EXIT MODE

IS CONTROL POINT iN CPU STACK ? HCLEAN W FLAG AND X FLAG FOR CONTROL POINT}—

YES

EXCHANGE CURRENT CPU PROGRAM
PUSH UP CPU STACK

NO

—'{ SET W FLAG FOR EXCHANGED CONTROL POINT

MTR FUNCTION @7
TOGGLE SIMULATOR STATUS

Y
L WAS REQUESTING CONTROL POINT EXCHANGED ? }“———)LRJ SEARCH FOR CP PRIORITY]

y

I RJ ADVANCE CLOCK I

ENTER NEW EXIT MODE IN EXCHANGE PACKAGE
CLEAR PPU OUTPUT REGISTER
EXIT

[IS THERE A PPU AVAILABLE ? ILNO
YES

RESET EXCHANGE AREA FOR IDLE PROGRAM | YES

7} £xir

EXCHANGE SIMULATOR TO IDLE PROGRAM

I> SIMULATOR CURRENTLY OPERATING 7
NO

EXCHANGE TO IDLE PROGRAM
ENTER SIMULATOR CALL IN PPU INPUT REGISTER
RJ SEARCH FOR FREE PPU

MODIFY MUMTOR PROGRAM TO TOGGLE ALL SIMULATOR REFERENCES
SET MONITOR FLAG

CLEAR PPU OUTPUT REGISTER

ExiT

A-11

CLEAR INPUT REGISTER FOR SIMULATOR PPU
WAIT FOR SIMULATOR TO FINISH

EXCHANGE CPU TO IDLE PROGRAM

MODIFY MONITOR PROGRAM TO TOGGLE SIMULATOR REFERENCES -
CLEAR MONITOR FLAG

CLEAR PPU OUTPUT REGISTER

ExiT

Page 122

MTR FUNCTION 30
OPERATOR DROP

RJ SET ERROR FLAG 6
CLEAR PPU OUTPUT REGISTER
ExiT

MTR FUNCTION 3I
READY TAPE

MODIFY EST ENTRY TO CLEAR EQUIPMENT LOCKOUT BT
CLEAR PPU OUTPUT REGISTER
EXIT

MTR FUNCTION 32
DROP TAPE

MODIFY EST ENTRY TO SET EQUIPMENT LOCKOUT BIT
CLEAR PPU OUTPUT REGISTER
ExiT

MTR FUNCTION 33
ASSIGN EQUIPMENT

READ EST ENTRY YES

IS EQUIPMENT ALREADY ASSIGNED 7
NO

ENTER EQUIPMENT NUMBER IN CONTROL POINT AREA AS OPERATOR ASSIGNMENT | YES

CLEAR PPU OUTPUT REGISTER

IS EQUIPMENT & DISK FILE ?

EXIT

NO

ASSIGN EQUIPMENT TO CONTROL POINT

SET EQUIPMENT ASSIGNMENT BIT IN CONTROL POINT AREA
CLEAR PPU OUTPUT REGISTER

ExiT

A-12

Page 123

MTR SUBROUTINE
RJ ADVANCE CPU JOB STATUS

N
HAS 64 MILLISECONDS ELAPSED SINCE LAST REFERENCE ?jl 0

YES

NO
_{ HAS OME SECOND ELAPSED SiNCE LAST SECOND ADVANCE 7

>J] ExiT

HAS TIME LIMIT BEEN REACHED ?

ADD TIME INCREMENT TO CONTROL POINT CPU ACCUMULATED TIME

NO

YES

YES
ADVANCE SECOND COUNT NO
IS CPU iN IDLE PROGRAM ?
YES
Y
>! s A PPU AVAILABLE ? e
YES | NO

{ RJ SET ERROR FLAG |]

> EXIT

[MODIFY SUBROUTINE TO ADVANCE TO

L DOES CONTHOL POINT HAVE A JOB NAME ?

f
-

NEXT CONTROL POINT (MODULUS 7) [NO

YES

l{ IS THE RECALL FLAG (X) SET FOR THE CONTROL POINT ’ —jLYES

NO

NO

I3 PP RECALL WORD FILLED AT CONTROL POINT ?

EXsT

e |
> e]

SET W.FLAG

YES

‘[ASSISN PPU TO PR RECALL FUNCTION

| CLEAR PP RECALL WORD AT CONTROL POINT
ASSIGN PPU TO CONTROL POINT '

J SET PPU ASSIGNMENT B8IT IN CONTROL POINT AREA

i' ASSIGN PP IDLE TIME TO CONTROL POINT ZERO

4

UPDATE PPU STARTING TIME

Y
LRJ SEARCH FOR FREE Ppﬂ

CLEAR X FLAG
RU SEARCH FOR

CP PRIORITY

IS THERE ANY ACTIVITY AT THE CONTROL POINT ? }155

NO

Y

Y,
Lls THE STORAGE MOVE FLAG SET ?IIES
NO

Es THE CONTROL POINT LISTED IN THE CPU STACK ? JI YES

NO

ENTER IAJ IN PPU INPUT REGISTER

ASSIGN PPU TO CONTROL POINT

SET PPU ASSIGNMENT BIT IN CONTROL POINT AREA
ASSIGN PPU IDLE TIME TO CONTROL POINT ZERO
UPDATE PPU STARTING TIME

RJ SEARCH FOR FREE PPU

Page 124

i MTR SUBROUTINE
‘RJ PROCESS PP CALL

[Does (RA +1) CONTAIN END ?j&———‘—’

NO

EXCHANGE CURRENT CPU PROGRAM
PUSH UP CPU STACK
ExiT

Loozs (RA +1) CONTAIN RCL ? —}L——>

NO

EXCHANGE CURRENT CPU PROGRAM
PUSH UP CPU STACK

SET X FLAG AT CONTROL POINT
CLEAR (RA +i1)

EXiT

RJ SET ERROR FLAG 4

DOES (RA+1) CONTAIN ABT ? JI YES

; NO

1 NO

EXIT

1S ‘THERE A PPU AVAILABLE ? |
N YES

3

IS FIRST CHARACTER IN PP CALL A LETTER ? }_"0__> ::.:ET ERROR FLAG 5

YES

ENTER PP CALL IN PPU INPUT REGISTER

ASSIGN PPU TO CONTROL POINT .
ASSIGN PPU IDLE TIME TO CONTROL POINT ZERO
UPDATE PPU STARTING TIME

RJ SEARCH FOR FREE PPU-~
CLEAR (RA+1)
ExXiT

A-14

>|] EXIT '

Page 125

MTR SUBROUTINE
RJ SET ERROR FLAG

STORE ERROR EXIT FLAG NUMBER IN CONTROL POINT AREA
(1) = TIME LIMIT :
(2) = ARITH ERROR
(3) = PPU ABORT
{4) s CPU ABORT
(5) = PP CALL ERROR
{6) = OPERATOR DROP
(7) = DISK TRACK LiMIT

[IS CONTROL POINT IN CPU STACK ? 1] No ,{ CLEAR W FLAG AND X FLAG 1—9(_5@
YES B /

. XCHANGE CURRENT CPU PROGRAM
. paonhee o ey CPU PRo YES RJ SEARCH FOR CP PRIORITY
Al
WAS THE CONTROL POINT EXCHANGED 7 RU_AovaNce cLocx
NO

—'{ SET W FLAG FOR EXCHANGED CONTROL POINT

MTR SUBROUTINE
RJ SEARCH FOR FREE PPU

SEARCH PPU NUMBERS ONE THROUGH EIGHT FOR AN EMPTY INPUT REGISTER | NO .| CLEAR NEXT PPU INPUT REGISTER ADDRESS
Is THERE A FREE PPU ? . Exit

YES

STORE PPU INPUT REGISTER ADDRESS FOR NEXT ASSIGNMENT
ExiT

Page 126

MTR SUBROUTINE .
RJ SEARCH FOR CP PRIQRITY

PRESET CONTROL POINT SEARCH INDEX Td CONTROL POINT ONE j

READ CONTROL POINT STATS | YES
IS W FLAG SET ? H
il

NO F

PRICRITY OF CURRENT CPU PROGRAM ?J

YES

NO | ADVANCE CONTROL POINT SEARCH ADORESS
WAS THIS THE LAST CONTROL POINT 7

NO
{7 1S CONTROL POINT PRIORITY HIGHER THAN

YES
ExiT 1 ASSIGN ACCUMULATED CPU TIME TO CURRENT CPU PROGRAM
. PUSH DOWN CPU STACK £t ' 5,
EXCHANGE JUMP TO NEW CONTROL POINT

CLEAR W FLAG AT NEW CONTROL POINT
ExiT

MTR SUBROUTINE
RJ DUMP DAYFILE PHASE ONE

ENTER REQUEST CHANNEL O IN MONITOR PPU OUTPUT REGISTER
SET PHASE TWO DUMP FLAG
exir

MTR SUBROUTINE
RJ DUMP DAYFILE PHASE TWO

1S MONITOR PPU OUTPUT REGISTER CLEAR M

YES

POSITION CHANNEL O DISK FILE TO NEXT DAYFILE TRACK
SET PHASE THREE OUMP FLAG
ExIT

A-16

Page 127

MTR SUBROUTINE
RJ DUMP DAYFILE PHASE THREE

A%
f
READ CHANNEL O DISK FILE STATUS NO
; IS GISK POSITIONED TO WRITE NEXT DAYFILE SECTOR ?
-
YES
NO WRITE A SHORT SECTOR ON DiSK FILE
[DOES DAYFILE BUFFER CONTAIN A FULL SECTOR OF DATA 7 } DO NOT UPDATE DAYFILE BUFFER PARAMETERS
YES DO NOT AOVANCE DAYFILE SECTOR
r
} WRITE ONE SECTOR ON DISK FiLE NO .
NG | UPDATE DAYFILE BUFFER PARAMETERS - rls THERE A SPARE DISK TRACK ASSIGNED ? J———
ADVANCE DAYFILE SECTOR NUMBER ; YES
WAS THIS THE LAST SECTOR ON THIS TRACK ?
YES
ENTER RELEASE CHANNEL O IN MONITOR PPU OUTPUT REGISTER
. NG SET PHASE SIX DUMP FLAG
l IS A SPARE TRACK AVAILABLE ? SToP PPU EXIT
YES
ASSIGN FIRST SECTOR OF SPARE TRACK ENTER RELEASE CHANNEL O IN MONITOR PPU QUTPUT REGISTER
CLEAR SPARE TRACK INDICATOR SET PHASE FOUR DUMP FLAG
EXIT
.
L | SET PHASE TWO DUMP FLAG
ExiT
MTR SUBROUTINE
RJ DUMP DAYFILE PHASE FOUR
NO
IS MONITOR PPU OUTPUT REGISTER EMPTY ? -

YES

ENTER REQUEST DISK TRACK iN MONITOR PPU OUTPUT REGISTER
SET PHASE FIVE DUMP FLAG
ExIT

A-17

. Page 128

MTR SUBROUTINE
RJ OUMP DAYFILE PHASE FIVE

FS MONITOR PPU OUTPUT REGISTER EMPTY ? } NO { Exit I

YES

l lSvMESSAGSv BUFFER EMPTY 7 J—lo——)l SET SPARE DISK TRACK INDICATOR l

% | YES

.

CLEAR DUMP FLAG
it

MTR SUBROUTINE
RJ DUMP DAYFILE PHASE SiX

1S MONITOR PPU OUTPUT REGISTER EMPTY ? jL—@

YES

- CLEAR DUMP FLAG
EXiT

A-18

fage 129

STORAGE MCOVE PROGRAM

l. The exchange ;uckage for the storage move program is set by MIR as
follows:

P = 2022

RA=0

FL = 400000

Bl = RA + FL for requesting control point
B2 = RA + FL for control point 7

BZ = Increase or decrease

& -

2. The coding f{:s the storage move program is shown below.

Location Instruction Remarks
2027 CeN 0
202: CON 0
2022 SB7 =1
EQ BL, B2, 0 Exit if contreol point 7 is the reguestor
2025 LT B3,B0,2027 Jump if decrease (B3 negative)
N Pass
NQ . Pass
2024 SAl = B2 ~ B7 "Shuttle up" loop
SA2 = A1 - B7
BX6 = X1
BX7 = X2
2025 SA6 = AL + B3
SA7 = A2 + B3
SB2 = B2 - 2
2026 NE B2,B1,2024
JP 0 Go to stop with P =0
2027 SAl = Bl n"Shuttle down" loop
SA2 = Bl + B7 :
BX6 = X1
BX7 = X2
203¢ SA6 = Al + B3
SA7 = A2 + B3
SBl = Bl + 2
2031 NE B2,B1,2027
JP 0 Go to stop with P =0

3. Timing for th- “Shuttle up" loop of the storage move program is as follows:

Location _+oatruction Issue 3Begin Execution Result Avail. Unit Avail.

2024 . =.B2 - B7 0 c 3(A) 8(X) &
©7 = Al = B7 2 3 6(A) 11(X) 7

oo =X1 3 8 11 12

ve? = X2 12 12 15 16

2023 GaG o= Al + B3 13 13 16 17

Fx7 = A2 + B3 15 15 18 19

Ged = B2 - 2 17 17 20 21

2026 Wi B2,Bl, 2024 19 20 28 -

Note: timing i5 in minor cycles - loop time approximately 2.8 microseconds
for txs sfer of two words. '

B-1

Page 130

CONTROL DATA CORPORATION

Development Division - Applications

CENTRAL MEMORY RESIDENT

Chippewa Operating System

10/1/65
REV. 1

Page 131

CENTRAL MEMORY RESIDENT

INTRODUCTION

The Chippewa Operating System uses a portion of central memory to store
various types of libraries, tables, and flags: storing these tables and lib-
raries in central memory allows them to be readily accessed by any peripheral
processor. The central memory resident is illustrated in figure 1. Generally,
the resident occupies centfal memory locations 0 - 13777g. Resident elements
between locations 0 and 2077g are directly addressed: resident elements above
location 2077g are addressed via pointers contained in central memory locations
1" - 12g., Since the major portion of the resident is relatively addressed, the
size of the resident can readily be reduced or expanded to met installation

requirements.a

CM RESIDENT: LOCATIONS 0 - 57

Central memory location 0 always contains a full word of zeroes: a per-
ipheral processor may read this location in order to clear a 5-byte area in its
memory. Central memory locations 1 - 12g contain pointers to various libraries,
tables, and pointers,

The Channel Status Table, illustrated in figure 2, occupies locations 15, 16,
and 17, Each of the 12 data channels is represented by a byte in this table., If
a data channel is not in use, the corresponding byte is cleared: if a data channel
is being used by a peripheral processor program, the processor number (in display
code) is entered in the byte for that channel. The channel number for a particular

equipment is obtained by a peripheral processor program from the Equipment Status

-l-

-Z-

N

7000

~ 5000

- 4000

-~
- «.f&?_')ﬁ‘

-+ 3000

2700

12600

~- 2500

- 2400

-2200

RESIDENT PERIPHERAL LIBRARY
(RPL)

Ll

RESIDENT SUBR.
: (RSL)

LIBRARY

DAYFILE BUFFER
. (DFB)

FILE NAME/FILE STATUS TABLE
(FNT/FST)
TET &

el 3

TRACK RESERVATION TABLE 2

TRACK RESERVATION TABLE 1~ | !

TRACK RESERVATION TABLE 0

PERIPHERAL LIBRARY DIRECTORY
v (PLD)

CENTRAL LIBRARY DIRECTORY
oo (CcLD)

~ 2100

EQUIPMENT STATUS TABLE

2000

0200

0060

0000

CENTRAL PROCESSOR RESIDENTS o

7
CONTROL POINT AREAS

¥
+

!
PP COMMUNICATION AREAS

POINTERS AND FLAGS

/ﬂ

56 - 57

40 - 52

30 - 37
27
26

24
23

21
20

15 -

[
~!

[
oS

N
-
w

-
- N

-
o

nom-IZ2+-0W
.

- N W s By N

r—

CENTRAL MEMORY RESWENT. (TyPicaL)

CP STACK INDICATORS

L” R I ALK

r—""‘"—-—i

PERIPHERAL AND CENTRAL
PROCESSOR STARTING TIMES

!
[

TIME AND DATE

SIMULATOR P ADDRESS

SIMULATOR XJ ADDRESS

PP IDLE TIME

CPU_IDLE TIME

CPO JOB NAME: "MONITOR!

CONTROL POINT ZERO STATUS

CHANNEL STATUS TABLE

i ﬂhqu‘stQE:pLAG’w” -}
| Es e

TRT2 ﬁZS?}

TRTL |7hpen

TRTO |Fanctc)

CLD \|emur -

RSL - ¢srrr7r

EST |zsve7r

FNT . |zme7m]

DFB | IN |our |LIM.

PLD |zpr07

RPL

00000000 0

Mo

ZE1 °8%%q

Page 133

Table (EST) entry for that equipment., The program transmits its request for
that channel to MTR via its resident: if the table byte corresponding to that
channel is cleared, MIR enters the number of the requesting processor in that
byte and notifies the requestor that the channel has been assigned. When the
requesting processor completes its operation on that channel, it requests MTR
to drop the channel assignment, and MTR clears the corresponding byte in the
table. |
The first 12 bytes in the Channel Status Table correspond to the 12 data

channels: the next tﬁo bytes refer to pseudo-channels 14 and 15. These two
pseudo-channels serve as an interlock to the File Name Table/File Status Table.
Pseudo-channel 15 controls access to File Name Table (FNT) entries: pseudo-
channel 14 controls access to File Status Table (FST) entries., Peripheral
processor programs request these pseudo-channel aésignments in the same manner
as data channel assignments are requested, Not all accesses to the FNT/FST
entries require channel reservation: the function of the interlock scheme is
to prevent two (or more) processors from attempting to modify the same entry at
the same time. Pseudo-channel reservations are required in the following cases:

® whenever an entry is added to the FNT/FST

® whenever a file is assigned to a control point (FNT entry modified)

® whenever the buffer status byte is initialized at the beginning of

an operation (FST entry modified)
Once the appropr;ate pseudo-channel reservation has been acknowledged by MTR,
the requesting program may proceed to perform the desired modification: upon
completion, the pseudo-channel reservation should be dropped by issuing the
appropriate request to MTR.
The remaining locations in this portion of the central memory resident are

used by MIR for flags, indicators, and temporary storage.

-3-

-'7.

2 2an81g

CM LOCATION

CM LOCATION

CM LOCATION

17

16

15

PSEUDO-CHANNEL FOR FST ACCESS CONTROL

/r—’ PSEUDO-CHANNEL FOR FNT ACCESS CONTROL

CHANNEL CHANNEL CHANNEL CHANNEL
12 13 14 15
CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL
5 6 7 10 11
CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL
0 1 2 3 4
12 12 12 12 12

® CHANNEL NOT IN USE:

.. CHANNEL IN USE: CORRESPONDING BYTE CONTAINS USER PP NUMBER

CORRESPONDING TABLE BYTE CONTAINS ZERO

CHANNEL STATUS TABLE

‘g1 °8eq

Page 135_

CM RESIDENT: LOCATIONS 60 - 177; PP COMMUNICATIONS AREAS

These central memory locations contain ten peripheral processor communice
aiion areas, one for eacﬁ processor. The communication areas are illustrated
in figure 3. There are eight words in each communication area:

word 1 Input Register (IR)

word 2 . . 4 « « . » o Output Register (OR)

words 3 - 8 ., . . ., ., Message Buffer (MB)
Each peripheral processor contains pointers to its Input Register, Output Reg-
ister, and Message Buffer in peripheral processor memory locations 75, 76, and
77; respectively. The communication areas are used to provide a means of comm-
unication between MTR and peripheral processor programs. When a peripheral
processor is i@le, its resident program continuously scans its Input Register.
Whgn MTR has a task for that processor, it sets the name of the appropriate
routine in the Input Register of the idle processor, which, when it récognizes
the request, loads the routine and executes it. MTR regularly scans the Output
Register of each peripheral processor. When a peripheral processor program
requires MIR assistance (such as, for example, reserving a data channel), it
places a code in its Output Register. MTR detects the request during its scan
of the output registers and processes it. When the request has been processed,
MTR clears the requesting processor's Output Register: this informs the request=
ing processor that the request has been processed.

The six-word Message Buffer is used to pass parameters and messages between

MIR and the peripheral processor resident programs.

CM RESIDENT LOCATIONS 200 - 1777; CONTROL POINT AREAS

Central memory locations 200 - 1777g contain seven control point areas,
one for each control point. Each control point area occupies 200g locations.
The first 20g words of a control‘point area contain the exchange jump package
for the central processor program which may be associated with this control

point. The next 10g words contain various flags, status indicators, counters,

a5

.9-

¢ @2an81g

PERIPHERAL
PROCESSOR
COMMUNICATION
AREAS

<

177

. PPl COMMUNICATION AREA

PPO

170
PP9

160
PP8

150
PP7

140
PP6

130
PP5

120
PP4

110
PP3

100
PP2

70
PP1

\\\90

67

66

65

64

63

62

61

60

MESSAGE
BUFFER .

POINTER IN PP LOCATION 77

OUTPUT REGISTER POINTER IN PP LOCATION 76

INPUT REGISTER POINTER IN PP LOCATION 75

L INPUT REGISTER SCANNED BY PP RESIDENT,
ENTRIES MADE BY MTR

® OUTPUT REGISTER SCANNED BY MTR,
ENTRIES MADE BY PP RESIDENT

PP COMMUNICATION AREAS

' 9¢1 °8wg

Page 137
etc., which pertain to this particular job. Another lO8 words are used to
Store the most recent console or dayfile message. The remaining 1408 locations
are used to hold the control stateﬁents for the job assigned to this control

point.

CM RESIDENT: LOCATIONS 2000 - 2077; CP RESIDENT

There are two resident central processor programs: a storage move program
of some 24 instructions, and a two-instruction idle program. These two programs,
together with their exchange jump packages, occupy locations 2000 - 2077g of

the central memory resident.

i

CM RESIDENT: THE EQUIPMENT STATUS TABLE
The Equipment Status Table (EST) contains a one-word entry for each peri-
phgral device. The table occupies 6410 locations: 1its base address is provided
to the system by the EST pointer in central memory location 5. The format of
the EST entry is shown in figure 4. The first (leftmost) byte contains zero if
the equipment is not assigned: if the equipment is assigned to a job at a given
control point, this byte contains the control point address (in hundreds). The
:gsecond byte contains the channel number for this equipment, while the third byte
”1fconta1ns the controller and unit number in the'f§rm required by the function codes
vfor this equipment. Byte 4 contains the equipment type in display code: each

type of equipment is assigned a two-letter code, as shown below.

DADisk 0 CR. Card Reader
DB . .« ., . Disk 1 CP Card Punch
DC Disk 2 ML Magnetic Tape (607)
DS Display WL Magnetic Tape (626)

LP Printer
The 211 bit in byte 4 of the EST entry is used as an 6perator controlled inter-

lock for equipment availability. If this bit is zero, the equipment defined by

-7-

-8-

4 2an314

CONTROL POINT ADDRESS

‘TN BURDBEDS

12 12 12 1 11 12
CP CHANNEL |CONTROLLER EQUIP. 7
"ADDRESS NUMBER & UNIT NO. CODE /

CHANNEL NUMBER IN
OCTAL (RIGHT JUSTIFIED)

CONTROLLER AND UNIT #
NUMBER IN FORMAT FOR
INSERTION IN FUNCTION

CODE

RESERVED FOR USE

WITH THE 6681
£ R

5 EQUIPMENT TYPE IN *
DISPLAY CODE: ¢o8t contulley
DA = DISK 0, ETC. <

™3z Diswke 638

—== INTERLOCK BIT CONTROLLED
BY OPERATOR VIA DSD:
nin = EQUIP, NOT AVAILABLE
non = EQUIP. AVAILABLE

® .ONE EST ENTRY FOR EACH PERTPHERAL DEVICE

® EQUIPMENT NUMBER DEFINES LOCATION OF ENTRY IN TABLE

EST ENTRY

m3 g N
A NI

8eT °3%g

Page 139

by this entry is available for assignment. If this bit is one, the equipment
is not available. This bit is set or cleared by use of the DSD keyboard entries
OFF and ONf Byte 5 of the EST entry is reserved for use with equipments connect-
ed via the 6681 data channel converter.

As an example of an EST entry, suppose 607-B unit 3 on the first controller
on channel six is available and not assigned to a control point: the EST entry

would appear as follows:

0000 {0006 | 2003 | 5524* | 0000

*Display Code for MT

Within the system, equipments are identified by an equipment number. The equip=-
ment number for a given device is the relative address. in the Equipment Status
Table of the entry&gor that device,

t

To illustrate the use of the Equipment Status Table, consider the processing

of the control statement -

ASSIGN MT, INFILE

3
4
h

;Uhen the statement translator (2TS overlay) processes this statement, it requests
fTR to assign an equipment of this type. MTR searches the EST until an entry
rith the equipment type (byte 4) equal to MT is found. If this equipment is not
assigned (byte 1 = 0), MIR enters the control point address in byte 1 and,%eturns
the relative location of this entry_in the Equipment Status Table to the state-
ment translator. This relative location is the equipment number: the statement
translator inserts this number in byte 1 of the FST entry for this file. The
routines called to process this file at some later time will use this equipment
number to obtain the EST entry from the table, and from the EST entry will obtain

in turn the channel number and the controller and unit number.

* The interlock bit is set to "1" at load time for equipment types MT and WT.

Page 140

CM RESIDENT: DISK LIBRARY DIRECTORIES

The central memory resident contains two disk library directories: the
Peripheral Library Directory (PLD) for the library of peripheral processor
programs on the disk, and the Central Library Directory (CLD) for the library
of central processor programs on the disk, The location and size of the Peri=
pheral Library Directory is defined by the PLD pointer word in central memory
location 2, and the location and size of the GCentral Library Directory is de-
fined by the CLD pointer word in central memory location 7. The nominal size
of the CLD is 200g locations, while that of the PLD is 100g locations.

The directory format is the same for both the PLD and the CLD, and is

“illustrated in figure 5. The high-order 42 bits of the directory entry contain
the program name in display code, left-justified. The next six bits contain the
sector number of the first disk sector for this program, while the low-order 12
biié give the half track number for this program. The program may occupy one
or more sectors on the disk: the end of the program is indicated by a short

sector {a sector of less th

Byte one (the leftmost byte) of the pointer word supplies the base addrgss
of the directory: byte two supplies the directory limit address, which is the
address + 1 of the last directory entry. When the directory is being searched,
exit from the search occurs (in the non~hit case) when the limit is reached or,
in some cases, when an entry with byte one equal to zero is detected. If it is
desired to delete an entry temporarily for some reason, then, the entry should
be set to something other than zero.

The PLD is searched by the peripheral processor resident programs and by
certain of the transient programs and overlays, When a peripheral processor
resident is directed by MTR to load and execute a peripheral processor program,

it first searches the central memory Resident Peripheral Library (RPL) for that

program: if the program is not found in the resident library, the peripheral

=10~

-'[I-

¢ 2an81g

DIRECTORY FORMAT

LIMIT =

LAST ENTRY ADDRESS + 1

42
PROGRAM NAME IN _________J§&

DISPLAY CODE,
LEFT JUSTIFIED

SECTOR NUMBER

HALF TRACK NUMBER

\

BASE
ADDR.

POINTER WORD FORMAT

PLD POINTER IN CM LOCATION 2

CLD POINTER IN CM LOCATION 7

LIBRARY DIREGTORIES - PLD ¢ cLD

%1 °3%g

Page 142

processor resident proceeds to search PLD., It is thus possible to reduce the
size of the resident library by placing some of the peripheral processor prog-
rams on the disk., Some peripheral processor transient programs follow the same
procedure in loading their overlays: others, however, search only the resident
library. It is therefore not possible to move all peripheral processor programs
from the resident library to the disk library.

The CLD is searched by two programs: the Central Library Loader (CLL) and
the control statement translator (2TS). The function of the Central Library
Loader is to load overlays into central memory when called by a central processor
program., CLL first searches the central memory Resident Subroutine Library (RSL)
for the requested overlay: if not found, the CLD is then searched. If the over=-
lay is not found in either the resident library or the disk library, CLL then
searches the File Name Table (FNT) for a file with this name. The control state=
menﬁ translator, 2TS, searches CLD when processing program cards., When the
statement translator finds a program card, it first searches the File Name Table
for a file with that name: n und, CL b ext; If the prog

is not found in either the FNT or the CLD, a search is made of the Peripheral

Library Directory.

CM RESIDENT: THE TRACK RESERVATION TABLES

The Chippewa Operating System is designed to permit the use of up to three
6603 diskfiles with the system: these diskfiles are identified as Disk 0, Disk
1, and Disk 2. Both the system and the user may store data on Disk 0, while
Disk 1 and Disk 2 are reserved soley for the user. The utilization of space on
a given diskfile is recorded in a table called the Track Reservation Table (TRT).
There is a Track Reservation Table for Disk 0, for Disk 1, and for Disk 2: the
locations of these tables are given by the TRT pointer words in central memory
locations 10, 11, and 12g, respectively. The tables are identical and are ident-

ically manipulated.

=12

Page 143

Since a single peripheral processor cannot maintain a continuous flow pf
data between a diskfile and central memory, the Chippewa Operating System
employs an interlacing scheme in which data is recorded on only the odd-numbered
sectors or only the even-numbered sectors in a track during a revolution over
that track. From a hardware standpoint, a track contains either 128 or 100
sectors, depending upon whether the track lies in the two outer zones or the
two inner zones. The Chippewa Operating System considers a physical track to
be composed of‘two half tracks; one consisting of the odd-numbered sectors on .
the physical track, the other consisting of the even-numbered sectors on that
tradck. A half track, then, contains either 6410 or 50;y sectors, depending
upon its location. Since a diskfile contains 128 tracks at each of 8 head
group selections (1024 tracks), a diskfile contains 2048 (3777g) half tracks.
A given half track is never used for records of more than a single file:
should a file consist §f only a single sector, an entire half track would be
reserved for that file.

The Track Reservation Table is illustrated in figure 6. The table is made
up of 64 words: only the rightmost 32 bits in a word are used. The table thus
contains 2048 bits, one bit for each half track on a diskfile. If a bit is
zero, the correéponding half track is not in use, If a bit is one, the corres-
ponding half track has been assigned. Should a section of the diskfile become
defective, the corresponding bit or bits in the TRT may be permanently set to
one (by modifying the library tape) in order to avoid accessing the defective
areas.,,

Half track assignments are handled by MTR, When MIR receives a track req-
uest from a peripheral processor program, it searches the TRT until the first
zero bit is found. The coordinates of this bit are then assembled to form a

half track number: the bit position in the word (0 - 37g) comprises the low

«l3a.

a

-v'[-

NORD VO, O/HES .
BITS S/ OF NALKE
TRACK AOORESS

I TR
ADODR .

LAST

TRAC K

V72255 | so0s | €24 |

[2

SECTOR L1173
vvER (6€2g) ANO
CUTER (100g) ZONES

FRACKS RESERIED
HRLE TRACK RODR. OF

[rorwt NOIrIBER OF
[Mosr RECENT OPERATION

|

o

POINTER 70 TRT FOR
THIS OISK

TRY POINTER NORLD FOR/IZAT

9 2an3tg

(em coc. 10g #om O15K O)

3/ [-4

oy

el

&Y
WNORDS

\ 7\ 7/
\4 N
oNUS ED WUMIGBER Or 15T
ZERO B17 CIVES
BT O-% OF NRLF
TRACK ALORESS
we ds 3

TRACHK RESERVATION THBLE

O ONE THBLE PER OISK

v
’_.—-A_—-\r—-&—-\
§xxxxxxxxxx%

l—»//fﬂa erovr No. (O-7g)
OCODO/EVEN SECTORS

TRACK NO. (O0-177g)

_NBELF TRACK ADOR. —» LIS K R#OOR.

P GYXIR® R0YE FNTA/ES (0-3777p)8

ONE BIT PER NRLLE TRACK

® YOVBIT: WRLF TRACK 1S ErIPTY
Y BIT: MALE TRACK IS IN USE

TRACK RESERVATION & ROORES SING
CHIPPE R OPERRATING SYST &MY

441 938w |

CONTROL DATACORP
SOFTWARE

ORATION
T

COLUNN FRAWIAL e GOOO [smosncr wo

BOCUMENT aBsTRACT

SAMPLE COOE
PFLOWCHART
DECISION TASLE
oTHER

SO Yen | TRACK RES. # AOPR. PROIECT wan

»ase or PROJECT HamE

:

T
wuseen Sate Tasn no

Cnann sy ATHAY sare /7T | raen nanc

i aswmnOvVED oarg [y aseROVED oave

Page 145

order five bits, while the word position in the table (0 - 778) provides the
next six bits. MIR returns this half track number to the requesting processor
and sets the bit in the table to one. Dropping of track assignments takes place
in a reverse fashion. To drop a half track assignment, the requesting processor
sends MTR the number of the half track to be dropped. MTR disassembles the half
track number into table coordinates and clears the bit in the table.

The low-order three bits of the half track number specify the head group;
the next bit (23) specifies whether this half track uses the odd-numbered
sectors (23 = 1) or the even-numbered sectors (23 = 0); the next seven bits
specify the track number. Since the lower portion of the half track number
comes from the bit position in a table word, the order of selection is such that
the even-numbered half tracks at head groups 0 - 7 are selected first, and the
oad-numbered half tracks at head groups O - 7.are selected next. Only when all
the ?alf tracks at a given'physical position of the heads have been assigned is
a half track number selected which requires repositioning. Thus, the layout of
the table eliminates unnecessary repositioning. .

Byte 1 of the TRT pointer word contains the base address of the table.

Byte 2 contains the last half track used by this diskfile, and thus reflects
the current physical position of the heads and the currently selected head
group. Whenever a disk operation is initiated, the half track number for the
operation is compared with the contents of byte 2, and repositioning or head
group selection performed only if necessary. This byte is updated at the end
of each disk operation.

Bytes 4 and 5 of the pointer word always contain the constants 100g and .
64g, respectively. These constants are the sector limits for tracks in the outer
zones (hig-order bit of the head group number = b) and the inner zones (high-order

bit of the head group number = 1). The disk routines compare the sector nqpber

=15a

Page 146
for the current operation with the appropriate one of these two constants in

order to determine when the end of a half track has been reached.

CM RESIDENT: FILE NAME TABLE/FILE STATUS TABLE

The various types of files currently being controlled by the system are
defined by entries in the File Name Table/File Status Table. These two tables
are interleaved such that the File Name Table (FNT) entry and the File Status
Table (FST) entry for a specific file occupy successive central memory locatioms.
The base address and limit a&ﬁress (last entry address + 1) of the FNT/FST are
contained in bytes 1 and 2, respectively, of the FNT/FST pointer word in central
memory location 4. The nominal size of the FNT/FST is 1000g central memory
words, permitiing up to 2561 files to be defiped at any one time.

The format of the FNTZFST entry is shown in figure 7.- The FNT entry con=-
tains the file name in display code imn the leftmost 42 bits of the word. The
next six bits contain the priority, if any, associated with this file. The
low-order six bits of the entry contain a File Type indicator (3 bits) and the
Control Point Number (3 bits) to which this file is assigned: if unassigned,
the Control Point Number is zero. The File Type indicator may take on the values
0, 1, 2, or 3, indicating that this file is, respectively, aﬁ INPUT file, an
OUTPUT file, a COMMON file, or a LOCAL file.

When a job enters the system (either from a card reader or from a tape
unit), the File Type indicator is set to 0 (INPUT file), the file name is set
to the job name as given on the job card, and the priority is entered from the
job card. Unassigned (Control Point Number = 0) files on the disk of type INPUT,
then, constitute a job stack, and the FNT serves as a job table. When the system
is ready to bring in the next job from the disk, it searches the FNT table for
the highest pri&rity unassigned INPUT file. When this file is assigned to a
control point, the number of this control point is set in the low-order three
bits of the FNT entry, and the File Type indicator is set to LOCAL. The job

name (file name of an INPUT file) and priority are placed in the control point

N

=l6-

‘' Page 147

EXPRESS CONTRCL POINTS

By use of the DSD keyboard entry n.ONEX, a control point (i.e., control
point n) may be designated as an express control point. When DSD detects this
entry, it séts an express flag in the high-order bit of word 24 in the control
point area, and calls 1BJ to the control point.

When jobs are loaded on the disk by 1LJ, jobs with a time limit of one
nminute or less and a field length of 40,000 or less are recognized and a flag
(26 bit of byte 5) set in the FNT entry for the job. When 1BJ is brought to
an express control point, it searches the FNT only for unassigned files of
tyoe IN?UT in which this flag is set. If & file of this type is found, it is
loaded in the conventional manner. If no file of this type can be found, 1BJ
enters the job name WEXPRESSH (ratier than "NEXT") in the control point area
and enters PP recall.

It is advisable tchat the high number control points be designated as
express concrol points. Since jobs presumably will be shuttled in and out
of express control points at avrate faster than jobs assigned to other control
points, express control points will be the source of storage requests more often
than other control points. By designating a high-numbered control point (e.g.,

control point 7) as an express control point, storage allocation can be

e
*

handled more efficiently.
Express jobs whose priority is higher than other jobs in the FNT will be
loaded at any available control point, regardless of whether or not the control

point is designated as an express control point.

16a

LT

PRIORITY (INPUT AND OUTPUT FILES)

—EXPRESS FLAG

FILE TYPE: © — INPUT
| — ouTPUT V@7
2 — COMMON

3 — LOCAL

WORD 1 ' ' i s ASSIGNED AR
FNT ENTRY FILE NAME (DISPLAY CODE) PR /J FTlcp ‘
1 f L o7
a2 6 5 1 3 3
LAST BUFFER_STATUS:
C10 STATUS CODE FOR
?o FOR SYSTEM DISK UNLESS ASSIGNED LAST OPERATION ON
> THIS FILE. .
WORD 2 Hq51Em / swe o Ty
FST ENTRY EQUIR NO. / L8S ¢
w 12 2 1?2 = 6 6
S U SIS P N
Lavp e AL N\ ~ /
{;90":». ' ’2’ Qi ~
DISK FILE TAPE FILE CARD FILE PRINT FILE
1 4 // T
BT cT cs LBN -BLOCK COUNT [A CARD COUNT £OF UNUSED
4&'/\‘/% HALF TRACK CARD COUNT

CURRENT HALF TRACK

CURRENT SECTOR

, 2an8tyg

ENT/EST ENTRY

THIS RECORD

END FILE FLAG

/———P CONTROL POINT TO : N
WHICH FILE IS v R

g1 °8eg

Page 149
area. The file name is then set to INPUT, and the priority field cleared.
Files may be initiated by a job: if a CIO call specifies a file name which
is not contained in the FNT, a new entry is added to the FNT which contains the
specified file name, has the file type LOCAL, and is assigned to the disk.

Data to be printed at the end of a job is written by the job to a LOCAL
file on the disk with the file name OUTPUT. At the end of the job, all LOCAL
files except the LOCAL file named OUTPUT are dropped. The system routine which
closes out a job (1AJ) changes the name of this file from OUTPUT to the job
name, changes the type from LOCAL to OUTPUT, and enters the priority from the
control point area. ﬁffectively, then, files on the disk of type OUTPUT con-

“~§titute a job stack for the print package. The print package selects the next
file to be printed by searching the FNT for the file of type OUTPUT with the
highest priority.

- If it is desired to retain a file at the end of a job for use with some
Ssubsequent job, the file must be declared type COMMON by means of a COMMON con-
trol card. At the end of a job, a file of type COMMON will not be dropped: the
control point assignment will simply be cleared. COMMON type files may be dropped
when desired by use of a RELEASE control card,

The format of the FST entry varies, depending upon the type of equipment
assigned for the file. Files are assigned to disk O unless another equipment
is specified by means of an ASSIGN control card. Eyte 1 of the FST entry always
contains the equipment number, which gives the relative location in the Eqﬁip-
ment Status Table of the equipment type for this file. This byte is either set
by the statement translator (2TS) when an ASSIGN control card is processed or,
if no ASSIGN card appears for this file, is set to correspond to disk O when the
first reference to this file is made (by the 2BP overlay)., Byte 5 of the FST
entry contains the buffer status: this is obtained from the CIO call and insert-
ed in the FST entry (by 2BP) for use by the various I/0 routines: this status

indicates the type of operation to be performed (read, write, rewind, etc.)., If

~18-~

Page 150

the 20 bit of this byte is zero, an operation involving this file is in process:
if the 20 bit is one, this file is not reserved.

Bytes 2, 3, and 4 of the FST entry vary according to the equipment type.
In the case of the printer, these bytes are not used. In the case of the card
reader, bytes 2 and 3 are used to maintain a count of the number of cards pro-
cessed in a record, and byte 4 is set when an end-of-file card (6-7-8-9 card)
is processed. For tape files, bytes 2 and 3 are used to maintain a count of
the number of blocks recorded for this file.

For disk files, byte 2 holds the beginning half track number for the file,
byte 3 holds the current half track number (i.e., the half track on which the
most recent operation involving this file took place) for this file, and byte
4 holds the current sector number. The next read or write to this file will
be to the sector supplied by byte 4 on the half track supplied by byte 3, When
housekeeping for this read or write is performed, the current half track number
in byte 3 will be compared with the last half track byte in the TRT pointer
word to determine if repositioning and/or head group selection is necessarys.

When a file assigned to the disk is rewound, the current half track byte
is set equal to theAbeginning half track byte and the current sector number is
set to zero, Disk files which are COMMON type files are not rewound at the end

of the job.

CM RESIDENT: DAYFILE BUFFER

The dayfile contains a variety of information concerning the status and
progress of jobs in the system, such as start and finish times, peripheral and
central processor usage, diagnostics, etc. Dayfile messages may be issued by
any of the system peripheral processor programs and may also be issued by a
user'!s central processor program via the MSG routine.

The dayfile is maintained on the disk: dayfile entries are buffered through

a portion of the central memory resident area called the Dayfile Buffer. The

=10

Page 151

base address and limit address (last word address + 1) of this buffer are
supplied by the DFB pointer word in central memory loc;tion 3. The nominal
size of the Dayfile Buffer is 1000g locations.

The Dayfile Buffer and its pointer word are illustrated in figure 8. The
first four bytes in the pointer word contain the base address, IN pointer; oUT
pointer, and the limit address: these quantities are analogous to the FIRST,

IN, OUT, and LIMIT pointers used in CIO, and the Dayfile buffer is handled in
much the same manner as a CIO processed buffer.

When a peripheral processor program wishes to insert a message in the day-
file, it places the message in its Message Buffer and iésues the appropriate
request to MTR. MIR copies the message from the Message Buffer into the Last
Dayfile Message area in the .control point area of the job to which the request-
ing processor is assigned., MTR then enters the message, together with the job
name and the time, in the Dayfile Buffer begiﬂning at the location specified‘by
the IN pointer byte of the DFB pointer word.)

Whenever MIR enters a message in the Dayfile Buffer, a test is made to
determine if the buffer contains a full sector of data. (It is possiblé that
the message just entered resulted in the buffer's containing slightly more than
a full sector.) If it does, a flag is set which causes the full sector and the
partial sector, if any, to be dumped to the disk. Dumping is done by MIR in six
phases in order to avoid tying up MIR for an extended pefiod of time. After each
phase has been executed, MTR returns to its master loop to perform any functions
required by other peripheral processors or the central processor. As data is
transferred from the buffer to the disk, the OUT pointer is adjusted accordingly.
Insofar as maintaining the dayfile on the disk is concerned, only slightly more
than 1008 words are required. The nominal size of the Dayfile Buffer is set at
1000g words to permit DSD to display as much dayfile activity as possible. Thus,
if the buffer size is reduced to about 110g words, the soleveffect is to reduce

-
the size of the dayfile console display.

-‘[z-

MTR INSERTS INCOMING
DAYFILE MESSAGES BEGINNING

aifif:::)

CONTENTS OF THIS PORTION
PREVIOUSLY WRITTEN TO
THE DISK

DAYFILE BUFFER

DFB BASE
ADDR.

IN

ouT

LIMIT

DFB POINTER WORD (CM LOCATION 3)

g 2an31g

S

DAYFILE BUFFER

DATA TO BE
WRITTEN TO
THE DISK

ZS1 °8'd

Page 153

CM RESIDENT: RESIDENT LIBRARIES

The central memory resident contains two libraries: the Resident Peripheral
Library (RPL), which contains peripheral processor programs such as 1AJ, 2RD, and
CIO, and the Resident Subroutine Library, which contains central programs su;h as
ACOS and TIME. The starting addresses of the Resident Peripheral Library and the
Resident Subroutine Library are defined by the RPL and RSL pointer words in central
memory locations 1 and 6, respectively.

The library format is the same for both RSL and RPL, and is illustrated in
figure 9. The first word of a library program contains the name in display code
in the leftmost 42 bits. The low-order 18 bits of the word contain the package
size in central memory words. In searching the library, the searching routine
reads the program‘name of the first package and tests to see if this is the
desired routine: if it is not, the size of the routine is added to the base
address to form the address of the first word of the next program. It is import-
ant then, that the size value be correct. The end of each library is indicated
by a word of zeroes.

The RPL is searched by the peripheral processor resident programs and by
most of the transient programs. If the peripheral processor resident does not
find a routine in the RPL, it proceeds to search the PLD., Transient programs
such as 1AJ, 1BJ, CIO, etc., are loaded into peripheral processor memory beginn-
ing at location 773g: the first executable instruction, which is in thé first
byte of the second central memory word in the package, is thﬁs at location 1000g.
Overlay programs, such as 2RD, 2BP, etc., are loaded into peripheral processor
memory beginning at location 1773g. Since these programs are entered via a
return jump (to location 2001g), the first executable instruction is at location
2002g, with location 2000g containing the LJM order code for the exit point.

The RSL is searched by the CLL (Central Library Loader) routine. Programs

in the RSL are assembled to execute beginning at location 0, and so must be

-€z-

6 2an313

LIBRARY FORMAT

0000

N

o

SIZE

PROGRAM NAME
N
PROGRAM NAME SIZE J
42 : 18

J Z___? |
NUMBER OF CENTRAIL MEMORY

<+— END OF LIBRARY

PROGRAM n

PROGRAM 1

WORDS IN THIS PACKAGE

> PACKAGE NAME IN DISPLAY
CODE, LEFT JUSTIFIED

(18 BITS ONLY FOR

PP PROGRAMS)

RPL/RSL SEARCH

READ POINTER TO PICK UP
LIBRARY BASE ADDRESS

|

. READ ENTRY

1

(ENTRY = 0?

NO

(l ROUTINE FOUND?

NO

EXIT TO LOAD
ROUTINE

ADD PACKAGE SIZE TO
BASE ADDRESS

RESIDENT LIBRARIES

$S1 °3%g

Page 155

relocated by the user to the desired location.

The size of the RSL and RPL can be reduced by transferring programs to the
disk libraries. Certain programs, however, may not be transferred, since not
all peripheral processor transient programs search the PLD if a routine is not
found in the RPL. For example, system progfams such as 1AJ, 1BJ, and 1DJ search
only the RPL for their overlays (the transient programs themselves, however,
could be transferred to the disk library). Other transient programs, such as

CI0, search both RPL and PLD for overlays.

24

CONTROL DATA
[cosroraon

CORPORATION 8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

PRINTED IN US.A.

CONTROL DATA" 6000 SERIES COMPUTER SYSTEMS
CHIPPEWA OPERATING SYSTEM DOCUMENTATION

Volume Il Preliminary Edition

Page 156

CONTROL DATA GCORPORATION

Development Division - Applications

SYSTEM PERIPHERAL PACKAGES AND OVERLAYS

Chippewa Operating System

10/21/65

Page 157

Table of Contents

I. Introduction 1
II. 1AJ 2
III. 1BJ 9
IV. 1DJ 14
V. 1LJ 17
VI. 1LT 24
VII. 1TD 30
VIII. 2BP 33
IX. 2BT 37
X. 2EF 41
XI. 2LP N
XII. 2PC 48
XIII. 2RC 52
XIV. 2RT 57
XV, 2TJ T 62
XVI. 2TS 66
XVII. 2WT 76
2DF see P 40

259

Page 158

SYSTEM PERIPHERAL PACKAGES AND OVERLAYS

INTRODUCTION

All peripheral packages that begin with a numberal are special
operating system packages or equipment driver overlays. The system
packages begin with the numeral "1" and begin execution at address
1000 of peripheral memory. Their functions are to load jobs onto the
disk, make control point assignments, process the control statements,
and print the jobs!' output. Whenever specialized operations , i.e.
read tape, punch cards, translate control statements, etc., are re-
quired, an overlay is loaded into the requesting PP at location 2000.
These overlays begin with the numberal "2" and parameters are passed
to them by direct core cells (1-74g). Most of them are maintained in
RPL (resident peripheral library), however they could be kept in PLD
(peripheral library directory) if the system packages searched this
table. Since most of them are fairly short, the system packages

expect them to reside in central memory.

-1l -

Page 159

ROUTINE: 1AJ -~ Advance Job.

PURPOSE : To advance the status of a job by controlling the processing
of the next control card or terminating the job.

GENERAL: This package is called by MIR on its main loop and the following
conditions prevail when 1AJ is called.

a. A job has been assigned to a control point by 1BJ.

b. The central processor is not executing the job at the
control point.

c. The storage move flag is not set.

d. The control point is not listed in the CPU stack, i.e.,
it is not waiting on the central processor.

METHOD : 1. If an error flag for the control point is set, 2EF is
called to process the error. This routine will issue
the proper error diagnostic to the dayfile and then
position the contrel card buffer parameters to the
statement after an EXIT card or, if no EXIT card to
found, to the record separator.

. 2. 2TS is called to process the control statements in the
order encountered and all the statements will be processed
before 1AJ regains control.

3. 1If the control point has zero priority, i.e., PP program
that uses central memory, all files and equipment assigned
to this control point are dropped by 2DF and monitor. A
request is also made to monitor to release the storage
reserved by this control point and a pause loop is main-
tained until the field length is zero. The control point
is then cleared of information and 1AJ is released. No
dayfile data will be written in this case.

4. 1In the normal case with a priority set at the control
point, an attempt is made to locate an "OUTPUT" circular
buffer so that it may be emptied if it is not. The
first 100g words of the program are searched for the
buffer. The lower 18 bits of each of these words specify
an address where the file name and status is located. If
the address is within the field length, the name is checked
for "OUTPUT." The search continues until RA+100g words
have been checked.

Page 160

3.

8.

10.

11.

1f the buffer status indicates that a file mark has already
been requested, it is assumed that the buffer is emptied

of usable information. If the file mark is not set, then
the buffer will be dumped if

a. it is a disk file
b. the last operation was a write.

2WD is called to write the buffer contents on the disk.

Both the amount of central processor and peripheral
processor running time is read from the control point,

"converted to decimal, and sent to the dayfile.

A search is made of FNT to find a file named "OUTPUT"

assigned to this control point. If there is none, then
such a name is entered into the FNT so that the dayfile
can be printed. »

The file name is then changed to that of the job name
and the job's priority is also put into the FNT. The
file is released from the control point by putting a
zero value in the control point byte. This action will
cause the print routines (1DJ or 1TD) to sense a file
ready for printing.

All files assigned to this control point in the FNT are
dropped by 2DF. The FNT/FST entries are completely zeroed.

The upper most byte of the EST has the control point
assignment for the equipment. All the pieces of equipment
assigned by this job are released by a monitor request.

The control point area is then cleared and 1BJ is called
to this PP so that another job may be assigned.

Page 161

1000

1100
1200
1320
1410
1500
1640
1700

1740

1000

1100

1200

1AJ ROUTINES

MAIN PROGRAM

RECORD RUNNING TIMES

DECIMAL CONVERSION

RELEASE OUTPUT FILE

DROP FILES

SEARCH FOR OUTPUT BUFFER
BEGIN OUTPUT FILE

CALL SUBROUTINE

CLEAR CP AREA

DIRECT CORE CELLS

P10/14
P55
P56
P50/54
P70
P71
P72
P74
P75
P01
P10/14

P20/30

P74

P10/14

1700, 1410, 1740, 1500
1100, 1320, 100, 12-760

11200, 530, 530

1640

1700, 23-760
1700

740, 750
2000

10-760, 17-760

CP STATUS

RA

FL

CONTENTS OF INPUT REGISTER
CONSTANT 1

CONSTANT 100

CONSTANT 1800

Ccp ADDRESS

ADDRESS OF INPUT REGISTER
MESSAGE WORD COUNT
CPTIME, LATER PP TIME

CP TIME MESSAGE, LATER P
TIME MESSAGE :

CP ADDRESS

CP OR PP TIME

Page 162

P20/30 CP TIME MESSAGE. LATER PP
- TIME MESSAGE
P71 CONSTANT 100
1320 P10/14 ' FNT ENTRY
P20/24 FNT STATUS
P40 /44 B CP(21) WITH ADDED PRIORITY
P50/54 INPUT- REGISTER
P74 CP ADDRESS
1410 P10/14 FNT>STATUS, LATER EST ENTRY
p20/26. | EST STATUS
P40 /4 FNT ENTRY
P46 ' FIRST OF FNT
P47 | IN OF FNT
P50/54 INPUT REGISTER
P74 CP ADDRESS
1500 PO1 SEARCH ADDRESS
| P10/14 ARGUMENTS LOCATED AFTER RA+2
P20/24 CONTROL WORD OF ARGUMENT AT
RA+2+n
P40 /44 BUFFER STATUS
P45 , LAST BYTE OF CONTROL WORD
P54 RA
P55 | FL.
P57 FST ADDRESS
1640 P01 CONSTANT 2
P10/14 FNT ENTRY
P20/24 FNT STATUS
1700 (A) SUBROUTINE NAME
POl RPL INDEX
P02/03 SUBROUTINE NAME

Page 163

1740

P04
P10/14
POl

P10/14

RPL STARTING ADDRESS
RPL ENTRY

MAXTMUM 200, WORD COUNTER
CP STATUS, LATER ZERO WORD

Page 164

READ REFERENCE ACCRESS AND FIELD
LENGTH FRCM CONTROL PCINT

i

\/
NO
IS ERRDR FLAG SET ?‘J—-——
e) E YES
wt \YJ

| S ————
] CALL 2TS OVERLAY e

T
«
N\ o

f NO
! DOES CONTRGL POINT hAVE ZERO PRIORITY 7 J—————-———>

TYES
WV

.} SEARCHM FNT FOR ASSIGNED FILE

NO

| IS THEWE A FILE ASSIGNED TO THIS CONTROL POINT ? .

F | YES
| Vi

PR, S

L CawL 20F ovReay | B
—_—

SEAMCH EST FOR ASSIGNED EQUIPMENT <

M P PYE i ‘TR y NO
1 is THERE AN EGUIPMENT ASSIGNED TO THIS CONTRCL POINT 2
| Yes
Vi
| —
{ REGUEST MONITGR RELEASE ZQuIPMENT J
_ | REQUZST MONITOR RELEASE CENTRAL STORAGE
) PAUSE FOR MONITOR
\r
np — ,
. B - - -
L————Jl IS FiELD LENGTH ZERO ? J
] YES
\
r
! CLEAR CONTRGL POINT AREA
| ReLEase PPU
-

BESIN SZARCH OF CENTRAL STORAGE FOR OUTPUT BUFFER
SET < .

INITIAL ADGRESS TO RA+ 2 S

)

- YES

{ COES NEXT WORD HAVE A CLEARED UPPER BYTE ? (o ol

[NO
\l
YES
FOES NEXT WORD HAVE LOWEST I8 £iTS CLEARED ?J-——
‘iNO
L 1 YES
[DOES LOWEST I8 BITS EXCEED FIELD LENGTH 7 J_

‘L&No

YES | is CONTROL WORD AT THIS (8
—
BIT ADDRESS NAMED GUTPUT 7
| o
W Y NO
. ADVANCE SEARCH ADDRESS
HAS SEARCH REACHED RA+100B ? -
YES
1 = YES
1 woah CONTAIN A FILF MARK STATUS ? ‘——————
S—

NO

i

1—7551' CONTROL V/GRD STATUS TO REQUEST FILE MARK
]

Vv

CALL 2BP OVIALAY
\
ris THIS FILE O8 DiSK 0 7 =
I YES ’
N
NO
——-{ HaAS FILE BZEN USED 7 |
i YES
i
~ 1 YES
{ Is FILE IN READ MODE 7 =
l NO
A/
CALL 2WD' OVERLAY

V2
UPDATE FILE STATUS
UFDATE BUFFER STATUS

b
RzZAD CP 'TiME FROM CONTROL POINT AREA

CONVERT TIME TO DECIMAL SECONDS AND MILLISECONDS
DAYFILE MESSAGE = CP XXXX.XXX SECONDS

}

READ PP TIME FROM CONTROL POINT AREA
CONVERT TIME TC OECIMAL SECONDS AND MILLISECONDS
CAYFILE MESSAGE = PP XXXX XXX SZCONDS

.

T

v

{ NEXT PAGE)

Page 165

(1AJ PACKAGE CONTINUED)

’{ RELEASE FNT CHANNEL—}'

. \7 .
YES ¢ — > |
'—-——;‘;’)cas FNT CONTAiN AR OUTPUT FILE ASSIGNED TO THIS CONTROL POINT ? |
NO
\
f
REQUEST FNT CHAhNEL . NO
IS THERE A SLANK ENTRY IN FNT ?
YES
7

EKTER AN OUTPUT FILE FOR THIS CONTROL POINT
RELEASE FNT CRANNEL

|
[
1
h
I

f - ~I NO
-’i FILE ASSIGNED TC DISK O ?

[ves

]

!

) REWIND FILE * j

Qf\\’l ‘e l\k | REPLACE OUTPUT FILE NAWEZ WITH JOB NAME AND PRIORITY
"y {TRELZASE FILE FAOM CONTROL POINT

TFTRR {

|
|

! | }

YES [

SEARCH FNT FOR ASSIGNEZD FiLE,

LCALL 2DF OVERLAY |

LREauEsT MONITOR RELEASE EQUIPMENT

—

>‘LIs THERE A FILE ASSIGNED TO YRIS CONTROL POINT 7

l‘NO

\/
SEARCH EST FOR ASSIGNED EQUIPMENT 'z
IS THERE AN EQUIPMENT ASSIGNED TO THIS CONTROL POINT 7

YES |

g

g

NO

g
CLEAR CONTROL POINT AREA
CALL IBJ PACKAGE TO THIS PPU

Page 166

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

1BJ -- Begin Job

To assign a job to a control point and process the job card.

The package is called by DSD where "X.NEXT" is requested and
recalled by 1AJ. The control point assignemtn is specified
in the input register upon entry to the package.

1. If the error flag in CP(20) is set, the package is re-
leased. The error will be processed later by 1AJ and

2EF.

2., 1If the priority is not zero, this is a recall entry.
Otherwise, the following steps occur:

a.

A search is made through FNT for the highest priority
file of TYPE O (INPUT) and no control point assignment.
If none is found, the job name is set to NEXT (for
display) and the message IDLE sent to display and the
package released in recall status.

1f a file was found, the file name in FNT is set as
job name, the file name is changed to INPUT, and the
TYPE is changed to local. Also, the priority of

the job is set in the CP.

3, 1f the job cards have been loaded, this is a recall entry.
Otherwise, the following steps occur:

a.

300, words of central memory are requested of MTR.

If not assigned, the message WAITING FOR STORAGE is
sent to display and the package released in recall

status,.

If 300 words were assignéd, the first ten words are
set as follows:

RA = RA+1 = RA+2 =r0

RA+3 =!INPUT 10 File Name and Buffer

RA+5 = RA+6 =10 010 | FIRST, IN, OUT
0 0300 | LIMIT

RA+H4

[

RA+7

2BP is called to verify the parameters and set
direct core cells for 2RD.

2RD is called to read the controi statement record
into CM.

FST is updated to reflect a completed read. The
control statements are moved from the CM buffer to
CP control statement buffer using PP locations
beginning at 7000 as a transient buffer.

-9 -

Status

Page 167

NOTES:

f. CP(21) is set to reflect the reading of the control
statements.

g. 2TJ is called to translate and process the job card.
The time limit specified on the JOB card is set by
MRQ

4. The field length specified on the job card is requested of
MITR. If not assigned, the message '"WAITING FOR STORAGE"
is sent to display and the package released in recall
status.

5. 1If MIR assigned the memory, the job card is issued to the
dayfile. °

6. Finally, the package is released. The remaining state-
ments will be processed later by 1AJ and 2TS.

All console messages are sent to display by entering the
message in CP (30-37). These messages are line 3 of the
control point display.

The job card is sent to the dayfile by storing it in the
message buffer (address specified by P77) and issuing a
FOl request to MTR.

All overlays called by 1BJ must be in RPL since PLD is not

searched when calling the overlays. These overlays include
2BP, 2RD, 2TJ.

Two recall flags are used:
a. priority given by CP(22).
b. control cards loaded or not loaded by CP(21).

Three conditions may exist which will cause 1BJ to be released
in a recall status. These are::

1. If there exists no unassigned input files in FNT of the
" TYPE input.

2, If MTR will not assign storage for the buffer to load the
control cards into CM.

3. 1If MTR will not assign storage for the job as specified
by FL on the JOB card.

Upon entry to 1BJ, two flags (see above) specify whether this
is the initial entry or a recall entry. If it is a recall
entry, the flags given above cause the package to skip the
areas of code it has executed on a previous call. For example,
if the priority given in CP(22) is zero, this is either the
initial entry or no unassigned input file was found on the
previous entry (same as initial entry). If the priority is
not zero, a file has been assigned and the coding to find and
assign a file is bypassed. If the job cards have not been

- 10 =

Page 168

loaded (specified by CP (21 byte 11-0) = 0) they must be loaded
into the CP control statement buffer. If they have been
loaded, this coding is skipped. 1If the priority is non-zero
and the job cards are loaded, or after these have been done,
storage is requested for the job. If not assigned, the package
is released in recall status again. Upon next entry all coding
will be skipped except this storage request since the

priority will be non-zero and the job cards are loaded.

Releasing a PP in recall status involves storing the contents

of the input register in CP(25) and then releasing the PP
via MTR request 12, A normal release leaves CP(25)=0.

- 11 -

Page 169

1BJ Routines

1000 Main Program 1100, 1440, 1400, 1500, 12-760
1100 Search for Job 740, 750, 12-760, 24-760
1240 Call (Overlay)
Subroutine
1300 Read Control
Cards 1240
1400 Request Storage 10-760, 12-760
1440 Read Job Cards 1400, 1300, 1240, 14-760
15060 Issue Statement 01-760

1BJ Routine Direct Core Parameters

1000 P75 Address of Input register
1100 P50/54 Contents of input register
P74 Address of control point
1240 A) Name of overlay to be loaded and executed
1300 P54 Field Length (FL) from CP-20
P55 Reference Address (RA)
P57 Address of INPUT FST entry.
P63 Lower 12 bits of IN “after control cards are read
P65 Lower 12 bits of OUT =
P70 0001 (constang)
P74 Address of Control point
1400) Field length (in hundreds) needed
P56 Field length (FL) from CP-20.
P74 Address of control point
1440 P36 Time Limit (TL) from JOB card (in tens)
P37 Field Length (FL) from JOB card (in hundreds)
P55 Reference Address (RA)
1500 P74 Address of control point

-12 -

®BZ1-

CONTROL POINT AREA

oo T T)
DN TN .
7 I,

PRIORITY (NONE)

%
S Ra FL
SET BY 1BJ JOB NAME CS POINT
1BJ SETS FILE NAME —>
PRIORITY K9§€9§f2;§€; TIME 595/;<9§C>
TO INPUT, FILE TYPE £
TO LOCAL Z
B y /I rres
REMAINING RECORDS RECORD 1
SOURCE/OBJECT PROGS, DATA CONTROL CARDS CONTROL STATEMENT
N BUFFER
THE TRANSFER OF CONTROL GARDS FROM THE DISK SET BY 1BJ; POINTS TO NEXT
TO THE CONTROL POINT AREA IS PERFORMED BY CONTROL STATEMENT

OVERLAYS TO 1BJ

e FL, TIME, AND PRIORITY SET
BY MTR AS REQUESTED BY 1BJ

e MTR MAY ALSO ADJUST RA

JOB LOADING: "NEXT”

0.1 °8eg

Page 171

184 PACKAGE
EEGIN 403

\;/

‘READ REFERENCE ADDRESS AND FIZLD LENGTH | YES ::RELEASE PPU
IS ERROR FLAG SET ?

NO |

| 1

REQUEST MONITOR ASSIGN vOB PRIORITY =
REGQUEST FNT CHARNEL =it ves "} ENTER JOB NAME IN CONTROL POINT AREA
SEARCH FNT FCR HIGHEST PRICARITY UNASSIGNZD INPUT FILE = CHANGE FILE TYPE TO ASSIGNED LOCAL FILE
IS THERE AN UNASSIGNED INPUT FILE 7 CHANGE FILE NAME TO INPUT
e
i NO RELEASE FNT CHANNEL

I
¥

RELZAST FNT CHANNEL
ENTER JOB NAME NEXT
CONSOLE MESSAGE = IDLE
ENTER PP RECALL
NneTa O
RELEASE PPU

¥

: ‘{EsiL HAVE 38 CARDS BEEN LOADED ? },

INO
i
{

h

\y
REQUEST MCNITOR ASSiGN 3008 WORDS OF STORAGE l

. NO CONSCLE MESSAGE = WAITING FOR STORAGE
Uz.s STORAGE ASSIGNED ? ll ENTER PP RECALL
YES RELEASE PPU

\/
CLEAR CONTENTS OF RA,RA+I,RA+2
ENTER BUFFER CONTROL WORDS FOR INPUT FILE AT RA+3 THRU RA+7

CALL 2BP OVERLAY

CALL 2RD OVERLAY

i \Y Y X

' o X g s <
UPDATE INPUT FILE STATUS hwil il ol o° SN

READ DATA FROM CIRCULAR BUFFER TO PZRIPHERAL STORAGE

COPY DATA FROM PERIPHERAL STORAGE TO CONTROL POINT AREA

SET NEXT STATEMENT LOCATGR IN CONTROL POINT AREA TO INITIAL VALUE

v

i

“ \\“ N

e

\/

CALL 2TJ OVERLAY

\/
REGUEST MONITOR ASSIGN TIME LiMIT
ENTER FIELD LENGTH FOR JOB IN 3RD BYTE OF PPU INPUT REGISTER

¢ \!

\—9‘{ REQUEST MONITOR ASSiGN STORAGE FOR JOE FIELD LENGTH '

\ "o CONSCLE MESSAGE= WAITING FOR STORAGE
WAS STORAGE ASSIGNED ? } ENTER PP RECALL
RELEASE PPU

YES

N

= - Lo

. ISSUE JOB CARD AS DAYFILE MESSAGE
RELEASE PPU

-13-

Page 172

ROUTINE:

PURPOSE :

GENERAL:

METHOD:

1DJ - Phase 3 print
To monitor the processing of an OUTPUT file.

DSD calls 1DJ to a control point to print a jobs' output.
The package appears as "PRINT" and is loaded at dead start
when "AUTO" is typed or whenever "X.PRINT" is typed. It
remains in recall state and is available to print an
OUTPUT file when one is released.

1. 4000, words are requested from MTR. When memory has
been allocated, a line printer is requested and the
package is modified for the equipment parameters.

2. The FNT is searched for an "OUTPUT" file and the
message "IDLE" is displayed until such a file is found.
When found, a "PRINT" entry is made in the dayfile and
when the printer becomes ready, the file name is
changed to the job name in FNT. At the control point
the job name appears instead of "PRINT" and the console
message is changed from "IDLE" to "PRINT".

3. 2RD is called to read from the disk to the circular
buffer in central memory. The reading continues until
the end of the file is encountered or until the central

s 1. cCc_ . -.*11 O 1. -1 3 - ~ s
memory buffer will not hold another f£ull sector.

4. 2LP is then called to print this information and will
continue printing until there is no more data in the
buffer to print.

5. 1If an end-of-file has not yet been detected, control
continues at step 3. When it is detected, the dayfile
is searched for entries belonging to this job and then
the entries are printed. Control reverts back to step 2.

Lo1b -

Page 173

' 10J PACKAGE
PHASE 3 PRINT

\

=
[READ REFERENCE ADDRESS AND FIELD LENGTH FROM CONTROL POINT AREA l

\,

YES !
[IS ERROR FLAG SET ? } RELEASE PPU

NG
\/
[IS FiELD LENGTH 4000B VWORDS ? }No ,{ REQUEST MCNITOR ASSIGN FIELD LENGTH OF 40COB WGORDS J
YES
. \Vi
ENTER CIRCULAR BUFFER ADDRESS (0003) IN PPU INPUT REGISTER) CONSCLE MESSAGE - WAITING FOR STORAGE
CLEAR RA THRU RA + 2 ENTER PP RECALL
RELEASE PPU
i
YES |
'—‘-1 IS LP EQUIPMENT NUMBER IN THIRD BYTE OF PPU INPUT REGISTERS 7
NO

v - \ . NO CONSOLE WESSAGE -NO LP AVAILABLE
REQUEST MONITOR ASSIGN LP EQUIPMENT 'TO CONTROL POINT ENTER PP RECALL

WAS EQUIPMENT ASSIGNED 7 RELEASE PPU
YES

+

[ENTER EQUIPMENT NUMBEZR IN THIRD BYTE OF PPU INPUT REGISTER !

\;

7
_‘—-:“{ MODIFY PACKAGE FOR EQUIPMENT PARAMETERS]

7

O ENTER JOB NAME - PRINT
CONSOLE MESSAGE - IDLE

l REQUEST FNT CHANNEL . NO RELZASE FNT CHANNEL
| SgaRrcH FNT FOR HIGHEST PRIORITY COMPLETED OUTPUT FILE - ENTER PP RECALL
l IS THERE A COMPLETED OUTPUT FILE ? RELEASE PPU
YES
- \

ASSIGN FILE TO CONTROL POINT AS LOCAL FILE
ASSIGN FILE NAME AS JOB NAME
RELEASE FNT CHANNEL

\l
L DAYFILE MESSAGE - PRINT

V4 RELEASE CHARNNEL
REQUEST CHANNEL FOR LP NO CONSOLE MESSAGE - PRINTER NOT READY YES
READ LP STATUS PAUSE FOR MONITOR
IS PRINTER READY ? NO READ RA
YES ’ Is ERROR FLAG SET ?

A/

CLEAR CARRIAGE CONTROLS

SELECT CARRIAGE CONTROL LEVEL ONE
RELEASE CHANNEL

CLEAR PP TIME CHARGES TO CONTROL POINT

\ 4
INEXT PAGE}

- 15 -

Page 174

g

{10J CONTINUED)

ENTER CIRCULAR BUFFER CONTROL PARAMETERS

ENTER J08 MNAME AS FILE NAME
CALL 2BP OVERLAY

\l

CALL 2RD OVERLAY

A

UPDATE FILE STATUS IN FST
UPDATE CIRCULAR BUFFER STATUS

\l7
ENTER PRINT AS CIRCULAR BUFFER FILE NAME
CALL 2BP OVERLAY

ENTER LP EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2LP OVERLAY

/

UPDATE FILE STATUS IN FST
NO

UPCATE CIRCULAR BUFFER STATUS
VWAS LAST REFERENCE A FILE MARK ?

YES

ENTER JOB NAME AS FILE NAME
CALL 20DF OVERLAY

\ly

PRESET TEMPORARY STORAGE FOR READING DAYFILE
REQUEST MONITOR COMPLETE DAYFILE

\

] o 280 oveneay |

A/

CALL 25D OVERLAY

Al

NO *
‘——’L IS DAYFILE AT END OF RECORD ? l
YES

/
ENTER PRINT AS CIRCULAR BUFFER FILE NAME
CaALL 2BP OVERLAY

\!

.| CALL 2LP OVERLAY l

\

UPDATE FILE STATUS IN FST
UPDATE CIRCULAR BUFFER STATUS

5

-16-

Page 175

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

1LJ -~ Phase One Card Load

To build up an input file from the card reader onto the disk.

1LJ is the "READ" package which is called in by DSD when
"AUTO" is typed at dead start. When "READ" is assigned a
control point, it remains in recall state and is available
to read a job whenever the card reader becomes ready.

1.

4,

10.

11,

The job name READ is stored in CP(21). The error flag
is checked and if an error is sensed, the PP is released.
READ must be reassigned when it is needed again,

I1f 4000, words (FL) have not been assigned, the routine
requests the storage and puts itself into PP recall.

A circular buffer address (0003) is entered into the PP
input register and the first 3 words (RA—=RA+2) are
cleared. Any central program must have 3 words reserved
for system communication so that means the circular
buffer parameters are located at RA+3.

FIRST = IN = OUT = 108 are the preset buffer parameters
and LIMIT = 40008.

Upon entry the third byte of the input register may
contain the equipment number of the card reader. If it
does not, then MIR is asked for the assignment., The
number will come back in the first byte of the message
buffer and then is transferred to the third byte of the
input register.

If the assignment was not completed, '"NO CR AVAILABLE"
is stored in CP(30) and the PP put into recall.

The above 6 steps are initialization procedures and are
not repeated unless "READ" is dropped and must be
reassigned.

"READ" appears as the job name in the CP and "IDLE" as
a console message when no reading is being done.

The channel from the card reader entry in the equipment
status table (EST) is requested and then the status of
the card reader is checked. If the reader is not ready,
the PP is put into recall and released. :

After the card reader is found to be ready, the file
name 'READ'" and a buffer status of 108 meaning requested
coded read is entered into BA.

2BP is called to check the legality of the buffer
parameters.,

- 17 -

Page 176

12,

13,

14,

15,

16,

17.

18.

19.

20.

21.

22,

23,

24,

25.

The equipment number of the card reader from the
input register is stored in the FST entry.

2RC is then called to read one card.

The FST entry is updated and stored as is the buffer
status word (BA). Both reflect an 118 condition
completed coded read.

2TJ is called to translate the job card. The job name
is entered in PP(30) from 2TJ and is transferred to
CP(21). Therefore, the control point assigned to READ
has a new job name (from job card) and a console message
of "READ" instead of "IDLE". A dayfile entry of the job
name and READ is made.

Next READ in BA is replaced with the job name and the
buffer status is changed to request coded write (148).

Again 2BP is called to verify the buffer parameters.
Every write operation on the disk is terminated with an
EOF record so that if a file mark was requested it is

not completed so that two file marks will not be written.

2WD is called to write the contents of the buffer of the
disk. o '

Upon reentry to 1LJ, the FST entry and the buffer status
(BA) is updated to reflect a completed coded write.

The file name READ and buffer status of 10
coded read - is again entered into BA.

g~ requested

2BP is called to determine the legality of the buffer
parameters and the card reader equipment number is
placed in the third byte of the input register for 2ZRC,

After 2RC returns control to 1LJ, the FST and buffer
status are updated to reflect a completed coded read.

1f a file mark was not read, then the job has not been
completely read in. The contents of the buffer are
written on the disk and more cards read until a 6-7-8-9
card is found.

When a file separator card is sensed, an MIR request (04)
to update the PP running time at the control point for
the requesting processor is issued. The time is con-
verted to decimal and sent to the dayfile in the form
PPXXXX sec.

In order to release the job to the system the job name
is stored in BA and 2BP is called for a final check of
the buffer parameters. The disk file is rewound by
setting the current track to the beginning track in the

- 18 -

Page 177

26.

27.

FST. Also the current sector byte is cleared and the
last buffer status is set to Ol. The priority is added
to the FNT entry and the control point assignment byte

is cleared. Therefore, the input file is released and
ready for MTR to assign it a control point for execution.

"READ" with a 10, request is again entered into BA of
the circular buf%er and 2BP is called to check the
parameters. An FST entry is cleared in preparation
for a new file and a check is made for a ready card
reader.

If a card reader is not ready, the PP is put into recall
so that it will be able to detect when the card reader
becomes ready.

- 19 <

Page 178

“1000
1040
1100
1200

1300

1400
1440
1500

1600

1700
1740

1000

1040

1100

1200

1LJ Routines

Main Program

Process Job

Dump Buffer

Release Job Lo il
Record Time

Call RPL Package
Request CR

Enter CP Status

Sense CR Ready

Load Buffer

Preset Buffer Parameters

e e [
wodd T e o

1500, 1440, 1600, 1040

1700, 1400, 530, 1100, 1300, 1200
1400 w

1400

14-760, 530
12000

22-760, 12-760, 100
10-760, 12-760, 100, 1740
740, 750, 12-760, 100
1400

Direct Core Cells

FS
R A

o .
s S . Lt

_ Input register

P70 Constant 1

p71 Constant 180

P72 Constant 1000

P75 Input register address
P10/14 Zero word

P20/24 FST entry

P74 CP address

P10/14 CP(21)

P20/24 FST entry

PL4O/44 File control word (BA)
P50/54 Input register

P55 RA

P57 FST address

P10/14 CP(21), zero word
P20/24 FST entry

P35 Job priority

P55 RA

P57 FST address

P74 CP address

- 20 -

Page 179

1300

1400

1440

1500

1600

1700

1740

P10/14
P74
(a)
PO1
P02/03
P10/14
P01
P10/14
P50/54
P74
P77
PO1
P10/14
P54
P50/54
P55
P56
P74
P01
P10/14
P20/24
P50/54
P74
P20/24

' P4O/44

P50/54

P55

P57
P10/14
Pl4
P54
P55
P56

PP time - CP(24)

CP address

Péckage name

RPL ordinal

Package name

RPL entry

Constant 2

Messége buffer

Input register

CP address

Message buffer address
Constant 3

CP(20), zero word

Cons tant 3

Input register

RA

FL

CP address

CR status

EST status

EST entry

Input register

CP address

FST entry

File control word (BA)
Input register

o :

FST address

Zero

108
Constant 3
RA

FL

- 21 -

BIC

FNT

FST

FNT/FST ENTRY

/———— PRIORITY

JOB NAME (FROM JOB CARD) R

0

BT

B PR

\

1LJ CONSTRUCTS THE FNT/FST ENTRY:
SETS FILE NAME TO JOB NAME, FILE

TYPE TO INPUT

JOB CARD

JOB FILE

THE TRANSFER OF THE FILE FROM CARD
READER TO DISK IS PERFORMED BY
OVERLAYS TO 1LJ

JOB FILE ON DISK

WINPUTH

——-- CONTROL POINT:
0 = UNASSIGNED

REMAINING RECORDS

SOURCE/OBJECT PROGS, DATA

RECORD 1
CONTROL CARDS

JOB LOADING: “READ”

081 °88g

Page 181

(e e s
ILJ PACKAGE
PHASE ONE CARD LOAD

A

ENTER RZAD AS CONTROL POINT OB NAME |YES

1S ERRCR FLAG SET ?

i RELEASE PPU:

REQUZST MONITOR ASSIGN 4000B FIELD LENGTH
CONSOLE MESSAGE —WAITING FOR STORAGE .-

NO
. N
< Lw a1 READ RA AND FL FRGM CONTROL POINT AREA | NO
<™ Is FL = 40008 ?
YES

ENTER PP RECALL
RELEASE PPU

ENTER CiRCULAR BUFFER ADDRESS (0003) iN PPU INPUT REGISTER
CLEAR RA THRU'RA +2 -

[15 EQUIPMENT NUMBER IN THIRD BYTE OF PPU INPUT REGISTER ?

NO REQUEST MONITOR ASSIGN EQUIPMENT TYPE CR

YES

/

WAS EQUIPMENT ASSIGNED 7 NO
YES

STORE EQUIPMENT NUMBER IN THIRD

(:) S ENTER READ AS CONTROL POINT JOB NAME
CONSOLE MESSAGE ~IDLE '

AN LY
oW e

“REQUEST CHANNEL FOR CARD READER
READ STATUS - & ..' . i % NO

BYTE OF PPU INPUT REGISTER

CONSOLE MESSAGE=NO CR AVAILABLE
ENTER PP RECALL ‘%', BN
RELEASE PPU

ENTER PP RECALL

RELEASE CHANNEL
IS CARD READER READY ?

YES

ENTER,.FILE NAME READ IN CIRCULAR BUFFER
CALL 2BP OVERLAY

ENTER EQUIPMENT NUMBER IN FILE STATUS WORI
CALL 2RC: OVERLAY

UPDATZ FILE STATUS <« | - . %
UPDATE BUFFER STATUS -}~
CALL 2TJ" OVERLAY

ENTER JOB NAMZ IN CONTROL POINT AREA
DAYFILE MESSAGE = READ

Al

ENTER J08 NAME IN CIRCULAR BUFFER AS FILE NAME
©——-> CHANGE BUFFER STATUS FROM INPUT TO OUTPUT

CALL 23P OVERLAY —

\
IS A FILE MARK REQUESTED ?

N e

\ L RN

RELEASE PPU

- P LT T R R,

B

1 YES
J

NO

CALL 2V/D' OVERLAY
UPDATE FILE STATUS - ~

\/

UPDATE BUFFER STATUS

—>{B) WexT Paca)

n9

Page 182

{ILJ CONTINUED)

®

\'a

CALL 2BP OVERLAY

ENTER FILE NAME READ IN CIRCULAR BUFFER

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD

CALL 2RC OVERLAY

Y

UPDATE FILE STATUS
UPDATE BUFFER STATUS

NO ;<:)

WAS A FILE MARK READ ?

YES

\/

REQUEST MONITOR ASSIGN PP TIME TO CONTROL POINT
READ PP TIME AND CONVERT TO DECIMAL

DAYFILE MESSAGE —PP XXXX SEC.

/

CALL 2BP OVERLAY

ENTER JOB NAME IN BUFFER AS FILE NAME

v
e v

REWIND FILE ‘STATUS
ADD JOB PRIORITY TO FILE NAME

UPDATE FILE NAME AND STATUS IN FNT/FST
RELEASE FILE AS COMPLETED INPUT FILE - -

A

CaLL 2BP

ENTER FILE NAME READ IN CIRCULAR BUFFER

/

DLEAN FILE STATUS WORD TO NEW FILE IN FSTJ

®

-23-

Page 183

ROUTINE: 1LT Phase One Tape Load

PURPOSE: To load jobs from a magnetic tape onto the disk until an
empty file is encountered,

GENERAL: The package is called by DSD after the operator types
"X.LOAD." at the console. The control point for the
package is specified in the input register.

METHOD: 1. Initialization of the routine involves the following
steps:

a. If the requested control point has a job name, the
package is released,

b. Otherwise, the job name LOAD is set in the CP(21)
for display purposes.

c. 10000, words of central memory are requested to be
used as a buffer for reading tape and writing disk.

d. If MTIR does not assign 100008 words, the package
is released. '

e. Otherwise, the CM buffer is set up as follows:

RA = RA+1 = RA+2 4 0
RA+3 %-O. _.H “jFile Name and Buffer Status
RAH: = RA+5 = RA+6 = 00 04 FIRST, IN, OUT
RA+7 =00 010000 LIMIT

f. The buffer address, 0003, is stored in the PPU
input register (internal) for future reference by
the package.

g&. A tape assignment is requested of the operator by
storing REQUEST TAPE in CP(30-37).

h. A function 17 request is sent to MTR while waiting
for the operator to assign the tape. This function
is repeated until the tape is assigned. The equip-
‘ment number specified by the operator is contained
in CP(22).

i. The equipment number is stored in PPU input register
(internal) for future reference by the package.

2. The following steps occur for the initialization of each
file (job):

a. BRA+3 is (re) set as follows:

- 24 -

Page 184

TAPE......10 in order to read the tape files.

b. 2BP is called to verify the buffer parameters and
to set up direct core parameters for 2RT.

c. 2RT is called to read information from the tape and
store it in buffer in central memory.

d. The file status (LBS field) in FST is updated
(odd value) to reflect the record(s) just read.

e. The buffer status (at RA) is updated (odd value)
to reflect the record(s) just read.

f. If a file mark was read at this point, it would have
been the second consecutive file mark and, therefore,
the package (1LT) is released.

g. Otherwise, 2TJ is called to set up the job name and
priority in direct core cells.

h. The job name is in the CP for display and dayfile
accounting purposes.

i. The message LOAD is sent to the dayfile.

The following steps occur as a loop for loading the tape
records onto the disk:

a. The job name (from CP) is stored as file name before
writing disk so that FNT contains the job name of
type input.

b. 2BP is called to set up direct core parameters for
2WD, i.e., also assigns the new file.

c. 2WD is called to write the bufferin central memory
onto the disk, if a file mark was not requested. The
file marks are automatically handled by 2WD on
every write.

d. Again, the FST word and the buffer status are updated
to reflect the record(s) just written.

e. The buffer is again loaded as specified before in
steps 2) a., b., c., d., e.

When a file mark is encountered on the tape (and the
record(s) are written on disk), the following steps are
performed to release the disk file (job) just written.

a. The job name is stored as the file name in order to
call 2BP to set up direct core parameters for
rewinding the file.

b. The file (on disk) is rewound by making the following
changes to FST.

- 25 -

Page 185

NOTES:

i. setting current track=beginning track
ii, setting current sector=0
iii, setting last buffer status=0001
c. The priority, from the job card, is entered into FNT.
d. The file type is set to input.

e. The file status is cleared from file TAPE by a call to
2BP and resetting FST.

PPU time used to load the jobs on the disk is not charged to
the individual jobs.

The package 1LT is released without completing the tape to disk
operation if any of the following conditions arise:

1. too many control cards in a job.

2, 1illegal parameters on the job card.

3. no tracks are available on disk.

&. the track limit (512 tracks) is exceeded for a job.
5. the operator drops the CP.

When the package (ILT) is released, either normally or prematurely,
the files (tape and disk-FNT/FST), equipment (EST), and storage
(CP(20)) are released by a special section of 1AJ. This section
releases these items for control points not using the CPU but
using CM for buffers. 1AJ detects this when a CP has a zero (6)
priority. 1AJ is entered to release the package by the master
loop in MTR.

The dayfile message LOAD is written via MTR function Ol and
resident routine located at 5308. ‘

Since the package is immediately released if 10000. words are

not available from MTR, the operator should call LOAD after dead
start., Otherwise, he will have to wait for the CP's to be
relatively inactive in order not to run into any storage conflicts.

All overlays called by 1LT must be in RPL since PLD is not

searched when calling the overlays. These overlays include
2BP, 2RT, 2WD, 2TJ,

Page 186

11T Load Tape Routines

1000 Main Program 1300, 1440, 1240, 12-760, 1400, 530,
1100, 1160

1100 Dump Buffer 1400

1160 ~ Release Job 1400-

1240 Load Buffer 1400

1300 Enter CP Status 10-760, 12-760

1400 Call RPL Package

1400 Request Tape 17-760, 12-760

Direct Core Cells

P20/24 FST entry for file sent to 2BP
P30/34 Job name from job card set up by 2TJ
VP35 Priority from job card set up by 2TJ
P40/44 File Control Word+Buffer Status (same as RA+3)
P50/54 Input Register

P55 RA from CP(20)

P56 FL from CP(20)

P57 FST entry address set up by 2BP

P70 0001 (constant)

P71 0100 (constant)

P72 1000 (constant)

P74 Control point : address

P75 Input register address

- 27 -

Page 187

T PACKAGE
PHASE ONE TAPE LOAD

i
LDOES CONTROL POINT HAVE A JOB NAME 7) YES

NO

ENTER CONTROL POINT NAME LOAD
REQUEST MONITOR ASSIGN FIELD LENGTH OF 100008 NO

READ RA AND FL ReLEAsE PPU
DOES FL=100060B ?

YES

A\

ENTER BUFFER ADDRESS (0003) IN PPU INPUT REGISTER
CLEAR RA THRU RA +2
ENTER BUFFER PARAMETERS

T

| ConsoLe MESSAGE —REQUEST TAPE |

Aj

PAUSE FOR MONITOR YES
READ RA : ,{ RELEASE PPU l

IS ERROR FLAG SET ?
NO

N
'—O{_HAS OPERATOR ASSIGNED AN EQUIPMENT NUMBER ?j

YES

ENTER EQUIPMENT NUMBER IN THIRD BYTE OF PPU INPUT REGISTER
CLEAR OPERATOR ASSIGNMENT IN CONTROL POINT AREA
CLEAR CONSOLE MESSAJE ’

4
ENTER FILE NAME TAPE IN CIRCULAR BUFFER

@—> REQUEST READ STATUS

CALL 2BP OVERLAY

i
{

!

ENTER EQUIPMENT NUMBLR IN FiLE STATUS WORD
CaLL 2RT OVERLAY

UPDATE BUFFER STATUS

UPDATE FILE STATUS

uns A FILE MARK READ 7 IJYES ,f RELEASE PPU

NO . .

CALL 2TJ OVERLAY
e,

ENTER NEW JOB NAME IN CONTROL POINT AREA
DAYFILE MESSAGE ~LOAD

INEXT PAGE)

-~ 28 =

Page 188

(ILT CONTINUED)

|
l

ENTER JOB NAME AS FILE NAME IN CIRCULAR BUFFER
CALL 28P OVERLAY
IS A FILE MARK REQUESTED ?

YES

NO

CALL 2WD OVERLAY

\\
UPDATE FILE STATUS

UPDATE BUFFER STATUS

ENTER FILE NAME TAPE IN CIRCULAR BUFFER
REQUEST READ STATUS
CALL 2BP OVERLAY

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CaLL 2RT OVERLAY
UPDATE BUFFER STATUS

UPDATE FILE STATUS

&{ WAS A FILE MARK READ ?
YES

ENTER JO3 NAME AS FILE NAME IN CIRCULAR BUFFER
CALL 2BP OVERLAY

REWIND FILE STATUS
ADD PRIORITY TO FILE NAME
RELEASE FILE AS INPUT FILE

ENTER FILE NAME TAPE N CIRCULAR BUFFER
REQUEST READ STATUS

CALL 2BP OVERLAY

CLEAR FILE STATUS WORD TO NEW FILE

-29-

Page 189

ROUTINE: ITD - Phase 3 Tape Dump

PURPOSE: To dump completed output files on tape in order of priority
for off-line printing.

GENERAL: ITD is assigned a PP and a control point when "X.DUMP." is
typed. Whenever all output files are dumped, the package
is released.

METHOD: l. "DUMP" is assigned as the job name for the control
: point. 10000g words of central memory are required
for the buffer and if it is not assigned, the PP is
released.

2. The message "REQUEST TAPE" appears as the third line
of the control point. The operator must enter
"X.ASSIGN YY.", where YY is a tape equipment number.

3. The FNT is searched for the highest priority output
file.

4. The file is assigned to the control point as a local
file and the job name from FNT is set into CP(21).
The job name replaces "DUMP" at the control point and
"DUMP" is displayed as the console message.

5. The central memory buffer is filled by 2RD.

6. 2WT is called and the tape equipment number is set in
FST. 1If the tape assigned is %", a return jump is
made to the BCD write coding in 2WT. A 1" tape assign-
ment giver the binary write of 2WT control.

7. When the buffer is emptied the FST and buffer status
are updated. No file mark is written between jobs.,

8. Whenever the job output file has been dumped and a file
mark requested, 2DF is called to drop the disk tracks
used by the file.

9. 2RD and 2SD search the dayfile for entries pertaining to
the job and they are written after the job output by 2WT.

10. All PP time charges at the control point are cleared.
11. Again FNT is searched for the highest priority output file.
When no more output files exist, a file mark is written and

then the tape is backspaced over it. The tape is left in
this position so that more dumps may be added.

_an _

Page 190

©—

PHASE 3

ITD PACKAGE

TAPE OUMP

foozs CONTROL POINT HAVE A JOB NAME ?Jl YES

NO

ENTER JOB NAME—DUMP
REQUEST MONITOR ASSIGN

FIELD LENGTH OF 100003 | NO

>l RELEASE PPU

n

READ RA AND FL FROM CONTROL POINT
HAS FIELD LENGTH BEEN ASSIGNED ?
YES

5,

ENTER CIRCULAR BUFFER AODRESS (0O003) IN PPU INPUT REGISTER

CLEAR RA THRU RA + 2

ENTER CIRCULAR BUFFER PARAMETERS

CONSOLE MESSAGE ~REQUZST TAPE
PAUSE FOR MONITOR
IS ERROR FLAG SET ?

NO

/

NO | READ RA FROM CONTR

HAS OPERATOR ENTERED EGUIPMENT NUMBER ?

OL POINT

YES

STORE EQUIPMENT NUMBER IN THIRD BYTE OF PPU INPUT REGISTER

CLEAR OPERATOR ASSIGNMENT IN
CLEAR CONSOLE MESSAGE

CONTROL POINT AREA

REQUEST FNT CHANNEL

SEARCH FNT FOR HIGHEST PRIORITY COMPLETED OUTPUT FILE
IS THERE A COMPLETED OUTPUT FILE ?

NO

S RELEASE PPU l

YES

/

ASSIGN FILE TO CONTROL

RELEASE FNT CHANNEL

ASSIGN FILE NAME AS JOB NAME

POINT AS A LOCAL FILE

\/

DAYFILE MESSAGE —~ DUMP J

ENTER JOB NAME AS FILE

'CALL 2BP OVERLAY

ENTER REQUEST CODED READ STATUS

NAME IN CIRCULAR BUFFER

CaLL 2R

D OVERLAY

UPDATE FILE STATUS
UPDATE BUFFER STATUS

{NEXT

PAGE)

-31 -

RELEASE FNT CHANNEL

ENTER TAPE AS FILE NAME IN CIRCULAR BUFFER
ENTER REQUEST FILE MARK STATUS

CALL- 2BP OVERLAY

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2WT OVERLAY
WRITE FILE MARK

Vs
UPDATE FiLE STATUS

UPDATE BUFFER STATUS

ENTER REQUEST BACKSPACE STATUS
CALL 2BP OVERLAY

A
CALL 2BT OVERLAY
UPDATE FILE STATUS
UPDATE BUFFER STATUS

] RELEASE PPU

Page 191

YES

" {ITD CONTINUED)

ENTER TAPE AS FiLE NAME IN CIRCULAR BUFFZR
CALL 2BP OVERLAY

\/

CALL 2WT OVERLAY
IS A FILE MARK REQUESTED ?

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD

NO

{

| 1s Tapz Tvee wr 2 |YES
NO

\/
LRJ CODED WRITE IN 2WT OVERLAY

Vi
UPDATE FILE STATUS

> RJ BINARY WRITE iN 2WT OVERLAY

UPDATE BUFFER STATUS

VIAS A FILE MARK REQUESTED 4”jI NO
YES

\

ENTER JOB NAME AS FILE NAME IN CIRCULAR BUFFER
CALL 2DF OVERLAY

A4

PRESET TEMPORARY STORAGE FOR READING DAYFILE
REQUEST MONITOR COMPLETE DAYFILE

/

Al

CALL 28D OVERLAY

--"—0{ IS DAYFILE AT END OF RECORD ? |
YES

——

ENTER TAPE AS FILE NAME IN CIRCULAR BUFFER
CALL 2BP OVERLAY

YES

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CaLL 2WT OVERLAY
IS A FILE MARK RZQUESTED P

NO

\va

[IS TAPE TYPE WT ?
NO

1 YES
F

[RJ CODED WRITE IN 2WT OVZRLAY

UPDATE FILE STATUS

> RJ BINARY WRITE IN 2WT OVERLAY

UPDATE BUFFER STATUS

CLEAR PP TIME CHARGES IN CONTROL POINT AREA

©

Page 192

PROGRAM : 2BP =-- Read Buffer Parameter

PURPOSE: To examine the buffer arguments for correctness, enter
file name in FNT, and reserve the file.

GENERAL: This routine is called by laJ, 1BJ, 1DJ, 1LJ, 1LT, 17D,
CIO to check the buffer arguments for range and validity.
It also enters file name in the FNT, reserves the file
if possible. The following error messages are produced:
BUFFER ARG ERROR, and FNT LIMIT.

METHOD: 1. Read buffer status and arguments,
2. Move the arguments to a two word/entry table at P60.

3. Check for argument region out of field limit range.
I1f in error, display in-dayfile - BUFFER ARG ERROR,
issue a FC of 13B (abort CP), and exit to PP monitor
loop.

4. Check for LIMIT over field limit and go to the error
procedure if it is.

5. Check for OUT > LIMIT.
6. Check for INY» LIMIT.
7. Check for OUT < FIRST.
8. Check for IN «~FIRST.

9. Check each character of file name to first blank for
less than 37. 1If an error is detected, go through same
error procedure as above. Also senses inserted characters
after the first blank as errors. Finally, it checks
to make certain file name is non-blank.

10. Searches FNT for the file name and matching CP number.
On a find, it saves FST entry address.

11. If the file was not found in FNT, it locks out other
PP's from the FNT. A blank entry is found and the name
is entered with its CP, file set as local, and priority
of zero. A blank entry is written into FST. Channel
15 is released thereby allowing other PP's into FNT, and
FST address is saved.

12, Request channel 14 (FST lock out channel). Check LBS
field of FST for file reserved (even number - reserved).

1f it is not reserved, reserve it (set FST odd), release
channel 14 and exit.

13. 1If it is reserved, release channel 14, and issue a 178

- 33 -

Page 193

function to allow the monitor to move central storage.

1l4. Read CP status., Save reference address. If error flag
is not set, go back to No. 12 above and continue. If
flag is set, release PP(12B) and exit to resident PP
program,

Vs

Page 194

2BP Routines

2000 Main Program 2350, 2300, 2150, 2100

2100 Alter File Status 14-740, 14-750, 17-760, 12-760, 100
2150 Search FNT 15-740, 15-750, 530, 13-760, 100
2300 Verify File Name 530, 13-760, 100

2350 Verify Argument Values 530, 13-760, 100

Direct Core Cells

2000 P50/54 Input register (Buffer address)
P4O/44 Status
POl Counter for buffer parameters
P02 Address for storing buffer arguments
P60/70 Buffer arguments (FIRST, IN, OUT, LIMIT)
PLl0/14 Temporary storage for buffer arguments
2100 P57 File status address
P20/24 File status
P45 Last buffer status from FST
P40/44 Buffer status
P74 Control Point address
P10/14 CP status
P55 Reference address
2150 P20/24 FNT address and limit
P10/14 FNT entry
P4O/44 Buffer status (Name of file)
P51 Input register (CP for file)
P57 File status address
2300 POl .~ Address of file name
| P4O/44 Buffer status (file name)
2350 P53/54 Argument address
P56 Field length
P60/61 FIRST
P62/63 IN
P64/65 ouT
P66/67 LIMIT

- 35 -

Page 195

’1 ENTER 28P ovzauvj

|
?
¥

READ BUFFER STATUS - -
READ BUFFER ARGUMENTS .

NO
[IS ARGUMENT REGION IN RANGE ? }—*

YES
Y
YES

IS LIMIT OVER FIELD LENGTH ?j——-

NO
1 YES

IS OUT EQUAL OR GREATER THAN LIMIT ? r———-u

NO

) YE
IS IN EQUAL OR GREATER THAN LIMIT 2 j‘— S

| NO
i
I
t
i
X E
IS OUT LESS THAN FiRST ?‘]-Y—s————
]f NO
!
i
Y
1 YES
Is IN LESS THAN FIRST ?
NO
Y
NO
Lls FILE NAME iN VALID FORMAT ? }———
. YES

DAYFILE MESSAGE~BUFFER ARG ERROR

ABORT CONTROL POINT
RELEASE PPU

IS FILE NAME IN FILE NAME TABLE (FNT) 7 }-YES——

NO
e~ e L
e ,
5, P
. S oo
YES | REQUEST CHANNEL IS~ b
IS THERE A BLANK ENTRY IN FNT 7 | .
NO e

RELEASE CHANNEL I5
DAYFILE MESSAGE~FNT LIMIT.
ABORT CONTROL POINT
RELEASE PPU

ENTER NAME IN FNT AND ENTER
A NEW DISK~FILE IN FST
RELEASE CMANNEL 15

®

- 36 -

T] REQUEST CHANNEL 14

YES | IS FILE RESERVED ?
L

NO

i
i

Y

RESERVE FILE. =4
RELEASE CHANNEL (4

RELEASE CHANNEL 14

PAUSE FOR MONITOR

READ RA
IS ERROR FLAG SET ?

NO

YES

RELEASE PP

Page 196

ROUTINE:

PURPOSE :

GENERAL:

METHOD:

2BT - BACKSPACE TAPE

To backspace a block of small binary or BCD data on tape and set
buffer addresses accordingly.

The 2BT routine is called in once the backspace request and tape
unit request has been determined. 2BT is called from the CIO
monitor routine.

A. BINARY

1.

If a binary backspace is requested, two blocks are back-
spaced and then the last one backspaced is read.

. This block is checked for a short block; if it is short,

IN and OUT are set equal to FIRST.

. If it is not short, the backing of two blocks and reading

of one is continued until a short block is found.

B. BCD

1.

If a binary backspace is not requested, a check is made to
see if tape type is WT.

. If it is not, i.e., tape type is MI, one block is backed

and IN and OUT set equeal to FIRST and then exit. This
will backspace the one BCD block.

. If the tape type is WT, a transfer is made to location 2401

(BACKSPACE CODED). A first reference flag is set and a
value called D = IN-OUT is calculated.

. One block is backed and then read into a PP buffer. If the

block is a file mark, backspace back over it, set IN=0UT=
FIRST and EXIT. .

. Otherwise, the block length is compared to D. If less than

D, reduce D by the block length, back over the block just
read, and continue the back and a read a block loop with
the new value of D.

. If the block length is greater than D, OUT is set equal to

FIRST+BLOCK LENGTH - D and IN set equal to FIRST+BLOCK LENGTH,
the last block read is then stored into the buffer beginn-

ing at FIRST. The action just taken means the first block
backed over which is small enough to fit in the buffer is
stored into the buffer.

. A check is then made to see if OUT=FIRST. If yes, the loop

of calculating D and backspacing is done again. This hap-
pens when the first D calculated was zero, i.e., IN=OUT,
and the record backspaced and read was a four byte record.

- 37 -

Page 197

10.

11.

12.

. If OUT does not equal FIRST, the first reference flag is

checked. 1If it is set, it is cleared set QUT=0UT-1 and
OUT is checked against FIRST. If OUT=FIRST, a one word
block was read and the compute D loop is done again.

. Once the first reference flag is cleared, a check is made

to see if the contents of (OUT-1) contains a blank lowest
byte. If not, set OUT=0UT-1 and recheck if OUT=FIRST.

If (OUT-1) has a blank lowest byte, IN and OUT are set,
and EXIT taken.

All of this action causes OUT to be backspaced down the
buffer one coded card image.

It should be understood that the tape will be backspaced
but a read is not needed to get the backspaced record into
the buffer.

Page 198

.
257 CVERLAY

! BACKSPALE TAPE

[——"

'

l MGOFY GVERLAY FOR EQUPMENT ?mmzrzasq

'

t . _ - 1 YES
WS A ﬁ:NAﬂY BACKSPACE REQUESTED ? Jr

NG

Y. Y

YES T - —

— IS TAPE UNIT TYPE WT ? BACK ONE OLOCK

| NO

i

':/ Y

————
) :
BACK GNE BLOCK | | Rzas on BLOCK |
| 7]
i | i
_ i M
! SET R 8 N OUT ¢ FIRST I) 5 LNO |
; i \RCUL AR BUFFER iN® | 1S BLOCK A SHORT BLOCK ?
| Ex7 Yes
\ | SET CIRCULAR BUFFER IN=0UT » FIRST

‘__;’lrSET FIRST RFERENCE FLAG J | ExiT

|

'

l

I
\/

@————‘qr COMPUTE © =IN - OuT |

i
|
|
| \ .
| ~] YES T T
| 1S BLOCK A FILE MARK ? _J . BACK ONE BLOCK ‘
; -
i SN ;
i i~ |
| | A/
| : -
| , i SET CiRCULAR BUFFER IN =QUT = FIRST
| | ! ExiT
!
i i
i K i
| Y ves . SET CUT = FIRST + 5L0CK LENGTH - D
f [1S BLOCK LENGTH GHEATER THAN D 741"h—;’i SET IN=FiRST + BLOCK LENGTH
i "0 i STORE B.OCK IN CIRCULAR BUFFER BEGINNING AT FiRST
! | L
: i !
1 - \;’l !
| ! REGUCE D 8Y BLOCK LENGTH } Vi
i L 2 YES
. T , 3
| ; ‘
| i i . NO
\ | :
' | i
{ BACK ONE BLOCK | | Y NO
| ! IS FiRST RCFERINCE FLAG SET 7 JL———-——
! L
! | YES
i
i \|/
| f
; { CLEAR FLAG
{
|
i
|
OuUT = 0uT -
o
{
| DGES (OUT = 1) CONTAIN A DLANK LOWEST BYTE ? Jé—
. ['ves
J
| LPOATE CIRCULAR GUFFER iN AND OUT ADDRESSES |
L ExiT

-39 -

Page 199

o

r
1S TAPE PCSIT.ONED AT BEGINNING YES _ ' SET CiRCULAR BUFFER IN=QOUT= FiRST
GF FIRST B.OCK ON TAPE 2 EXiT FROM CVERLAY
| NO
v
CONSCLE MESSAGE - TAPE XX NOT READY
[Retuce eock count | - OS‘ A & oT Re
§ - RELEAST CHANNEL ~
| R ST CHANNE R TAPE UNT I N YES]
! EQUE CHALNEL FOI £ UNT | NO S PausE FOR MON.TOR RELEASE PPU
L READ TAPE STATUS ~ X
I 1s tapt Atacy ? | READ RA
L= z j IS ERROR FLAG SET 7
YES ; NO
i
v NO
A REGUEST CHANAZL FOR TAP Vi
Yes EQUEST C gL FOR TAPE UNIT

READ TAPE STATUS
IS TAPE READY ?

BACKSPAC

A\

i

RELLASE CHANNEL
PAUSE FOR NMONITOGR
READ RA

\
1
| YES —
¥

iS ERAGR FLAG SET ?J

! RELEASE PPU |
A e t———

NO

EXT

[

287 SUBHOUT.NE |
EAD ONE BLOCK

b e

-]
‘ CUMSOLE MESSAGE - TAPE XX NGT READY |
HEGUEST CHANMEL FOR TAPE UNMIT i RCLZASE CRANNELC bve
i NO i i Yes e s
READ 7APE STATUS ———————p PAUSE FLR MONITOR ; « RELEASE PPU
[H
Is TAPE READY 7 ! | Reap RA !
") 1
| Is ERROR FLAG ST 2
‘[YES | IS (RROR FLAG 54T 7 :
| NG i
| !
| ! i .
, I
} r J
i w | ~o
\I,’ YEsg HECUEST ChANNCL FOR TAPE UNIT
1
| Reap Tape e RCAD TAPE STATUS
> Ty cne LN | se mioe mcasy ?
i iS PARITY CHECK OK ? I.___.ﬂ | 1S TAPE RealY
i
| YES]
1
v i ! -
| i _ . RELEASE CHANNEL
!] i ©YES (-
| (Y NAS A FILE MARR READ 7 5= AGVANCE BLOCK COUNT
_
| RELEASE CHANNEL "NO | EXT
i ADVANCE BLOCK COUNT i
1 ExiT

: | DAYFILE MESSAGE - TAPE XX PARITY ERROR I

A I
i " YES : RELEASE CHANNEL

: t o GL0CK BEZEN READ TiMC! Pr———
FaS ‘00K BEEN READ 3 TiMES P ABORT CONTROL POINT

|
1N |
i NO | RELEASE PPU i

!
i
i
i
!

\
BACKSPACE TarPc

- 40 -

Page 200

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

2EF -- Process Error Flag

To determine type of error and set up to execute the group
of control cards after the EXIT. statement if one exits.,

2EF is called by the Advance Job routine (1AJ) when the
error flag is sensed set (non-zero).

1. Read the control point status word from CP(20).
Clears the error flag and stores status back to CP(20).

2, Uses the error flag to pick up address of error message.
(Error Flag 1- Time Limit, 2- Arithmetic Error, 5- PP
Call Error, 6- Operator Drop, 7- Track Limit)

3. Dayfile message routine is called to enter error message
if the error condition was one of the above.

4. Control statements are searched untilthe last one is
read or an EXIT. statement is encountered. The state-
ment address at CP(21l) is set to point to either the
end of the statement list or the statement after the
EXIT. card.

-~ 41 -

Page 201

2000
2030
2100

2000

2100

2EF Routines

Main Program 2030, 2100, 531
Error Table

Search for Exit

Direct Core Cells

P74 CP address

P10/14 CP status

P01 Error Flag

P74 CP address

P20/24 Next statement address
P10/14 CP status

- 42 -

Page 202

2EF GVEHLAY
PROCESS ERRGR FLAG

i
i

!
Vi

CLEAR ERRCR FLAG AT THE CONTRG. POINT

'
1
i
i
i
I

vt
s

[IS A TIME LiviT iINDICATED 7

i NO

» YIS T

DAYFILE MESSAGE = TimE Lo,

IS AN ARITAmcTIC

. i i YIS L. N m=aa- |
5 A PPU Cacu uFrin inD.ATED 7 3 DAYFILE miluSibe— PP CALL ERASR J‘——-«
)
NG
. |
f YIS PN 1 i
15 AN OPLRATOR [nle NIWCATED 7 s DAYFiLZ wI55468 —CPIRATOR OROP.
I — » Q

NU

]

f Y VES

IS & TRALK Lia T NLilaTol 7

L

cunT

2o LAYFILE MISOHAGE =TRASK LT

1
J

L.

hEAT TROGL BVRTCLINT

ADVANCE
exiT

TO NCAT CUNTROL STATEmMENT

- 43 -

Page 203

ROUTINE:
PURPOSE;

GENERAL:

METHOD ¢

2LP -- PRINT

To transfer data from the circular buffer to the line printer.

2LP is called by the CIO Write Function routine once the file
type has been determined to be a line printer.

1.

A check is made for data left in the buffer. If there
is none and the end-of-record was requested, IN and OUT
are set equal to first, and EXIT is taken,

If there is data, a word is read up and copied into the
print line buffer. If the lowest byte of the word is
not zero and 120 characters have not been assembled,
another word is fetched.

If either a zero byte is found or 120 characters have
been assembled, a transfer is made to location 2150
(PRINT LINE). This subroutine finds an available
printer and prints the line.

Three characters are checked in the first character
position for carriage control:

(0) - advance paper one extra line after printing.
(1) - advance to top of form after printing line.
(+) - print the last line but do not advance the paper.

If there is a 7X code in column one, the last line is
printed, and then printer carriage control X is selected.

If none of the above mentioned codes are in column one,
the line is printed and the paper advanced.

2LP then returns to its beginning routine to check if any
data is left in the buffer.

Page 204

®

ENTER 20LP OVERLAY
PRINT

Y

[MOOIFY OVERLAY FOR EQUIPMENT PARAMETERS]

Y

1

—>

NO 1 NO
T ATA IN T IRCULAR BUFFER ? H AN END RE TED ? EXIT
1S THERE O IN THE CiRCUL BUFFER 7 ! 1s END RECORD REQUESTED I

YES

READ ONE WORD FROM CIRCULAR BUFFER
ADVANCE OUT ADDRESS YES
COPY WORD TO PRINT LINE BUFFER
1S LOWEST ORDER BYTE ZERO ?

NO

l‘m{

HAVE 30 CHARACTERS BEEN ASSEMBLED ? J

YES

l REQUEST CHANNEL FOR PRINTER](———J

READ PRINTER STATUS YES

YES

[SET BUFFER PARAMETERS IN® OUT=FIRST ‘[

RELEASE CHANNEL
PAUSE FOR MONITOR

,LRELEASE PPU

IS THERE A ZERO IN COLUMN ONE ?

{NEXT PAGE)

READ RA
15 ERROR FLAG SET ?
NO
REQUEST CHANNEL FOR PRINTER
REQUEST EL e N0 ST CONSOLE MESSAGE-PRINTER NOT READY |
IS PRINTEHR Rtapy ¢ L
YES
CLEAR CONSOLE MESSAGE YES

PRINT LAST LINE AND ADVANCE PAPER

i
4
]
READ PRINTER STATUS | vgs \:
RELEASE CHANNEL - RELEASE PPU

PAUSE FOR MONITOR

READ RA
IS ERROR FLAG SET 7
NO
TS“L‘;T::E:":::;: ;°R PRINTER ‘—-——>{N° CONSOLE MESSAGE—PRINTER NOT READY
YES

CLEAR CONSOLE MESSAGE
ADVANCE PAPER ONE LINE

CONVERT CHARACTERS IN PRINT LINE BUFFER
TO PRINTER COCE AND OUTPUT TO PRINTER
RELEASE CHANNEL

UPDATE CIRCULAR BUFFER OUT ADDRESS

- 45 -

Page 205

(2LP CONTINUVED)

®
|

’L IS THERE A ONE IN COLUMN ONE ? }_YE_S_.._._.%‘ PRINT LAST LINE AND ADVANCE PAPER
L

NO i
!
READ PRINTER STATUS | ygg

J
RELEASE CHANNEL > RELEASE PPU

PAUSE FOR MONITOR
READ RA

iS ERROR FLAG SET ?
i NO

Y

REQUEST CHANN FOR PRINTER NO > PRINT T READY
cL I CONSOLE MESSAGE ~PRINTER NO EAD
IS PRINTER READY ?

YES

CLEAR CONSOLE MESSAGE
PAGE SPACE PAPER

|
v
CONVERT CHARACTERS IN PRINT LINE BUFFER
TO PRINTER CODE AND OUTPUT TO PRINTER
RELEASE CHANNEL

UPDATE CIRCULAR BUFFER OUT ADDRESS

, T

i
i
i
|
|

®
\‘/

IS THERE A + IN COLUMN ONE ?]—-YL—;{ PRINT LAST LINE AND DO NOT ADVANCE PAPER

TN f

]
| |
' |

\‘[

é READ PRINTER STATUS YES
RELEASE CHANNEL \% RELEASE PPU

(NEXT PAGE) PAUSE FOR MONITOR
READ RA
{$ ERROR FLAG SET ?]
T NO i
|
i
Y
1
REQUEST CHANNEL FOR PRINTER ' NO y |
. _ l————ﬁ{;couso..e MESSAGE —PRINTER NOT READY
IS PRINTER READY ? l J
TYES °
|
!
\/

! CLEAR CONSOLE MESSAGE
j CONVERT CHARACTERS IN PRINT LINE BUFFER
|7 TO PRINTER CODE AND OuTPUT TO PRINTER
| RELEASE CHANNEL
l UPDATE CIRCULAR BUFFER OUT ADDRESS
I
i
i

|

®

- 46 -

Page 206

(2LP CONTINUED)

©

[15 THERE A 7X COD

€ IN COLUMN ONE ?

NO

[PRINT LAST LINE A

ND ADVANCE PAPER J

Y

READ PRINTER STATUS
RELEASE CHANNEL
PAUSE FOR MONITOR
READ RA

IS ERROR FLAG SET ?

NO

4

YES

REQUEST CHANNEL FOR PRINTER
15 PRINTER READY ?

YES

1 YES
I

RELEASE PPU

NO

CONSOLE MESSAGE —
PRINTER NOT READY

{ PRINT LAST LINE AND AOVANCE PAPER]

READ PRINTER STATUS
RELEASE CHANNEL
PAUSE FOR MONITOR
READ RA

IS ERROR FLAG SET ?

YES

; RELEASE PPU

NO

\

IS PRINTER READY ¢

REQUEST CHANNEL FOR PRINTER

NO

YES

SELECT PRINTER CARRIAGE CHANNEL X l

CLEAR CONSOLE MESSAGE
CONVERT CHARACTERS IN PRINT LINE BUFFER
TO PRINTER CODE AND OUTPUT TO PRINTER

RELEASE CHANNEL
UPDATE CIRCULAR BUFFER OUT ADDRESS

..47-

®

Page 207

ROUTINE: 2PC ~-- Punch Cards
PURPOSE: To punch either binary or Hollerith cards.
GENERAL: 2PC is called by the CIO Write Function routine once the

file type has been determined to be a card punch,

METHOD: 1. A check is made for a request to punch Hollerith. A
return jump is made to either PUNCH BINARY or PUNCH
BCD.

A. PUNCH BINARY

1. 1If there is enough dafa for a full card, the
punch buffer is cleared for 15 words.

a) The data is transferred to the punch buffer..
b) The card length is set in column one.

c¢) The checksum set in column two.

d) The card count is advanced.

e) The card c§unt is entered in column 80,

2. A channel is then requested, with a "PUNCH NOT
READY" message displayed if needed. 1If the
punch is ready, a card is punched, the channel
released, OUT is updated, and a check for the
error flag in RA is made.

3. If an error exists, the PPU is released.

4. 1If there is no error, a check is again made to
see if there is enough data for a full card. If
there is not enough data for a full card and an
end-of-record is selected, the partial card will
be punched.

5. 1If there is no data, a 7-8-9 card is punched,
and IN and OUT are set equal to FIRST.

B. PUNCH BESRr 5CD
1. The punch buffer is cleared for 80 characters.

2, If there is at least one word left in the buffer,
the word is converted into 10 Hollerith characters.

3. A check is always made to see if 80 characters
have been assembled. If not, a check for a
lowest order byte of zero is made. If it is not
present, another word is assembled.

AN s}

Page 208

If either 80 characters have been assembled
or a zero byte is found, the card is punched.

The error flag is then checked in RA and the PP

is released if an error exists, 1If there is

no error, OUT is updated, the card count advanced,

and a return is made to convert another 80 characters.

If there is nof another full word in the buffer
and a file mark is requested;.

a) The card count is cleared.

b) A 6-7-8-9 card is punched.

c) 1IN and OUT sgt equal to FIRST, and
d) An EXIT taken.

If an end-of-record is requested,

a) A 7-8-9 card is punched.

b) The card count is cleared.

c) 1IN and OUT set equal to FIRST, and

d) EXIT taken.

- 49 a

Page 209

i
’

X

| MOCH Y GVERLAY FOR ECUIPMENT PARAMI TERS

|
i

f 1 NO
] %S THME CiRCuLAk BUFFER N A WRITE CGDED MGDE ? ;——9@ (NEXT PAGE)
J

Yes

b e

r 0
¢ T CLEAR PUNCH BUFFER FGR 80 CHARACTERS 1
R

A

i
J

YES

T
: i
i P
it
|

v
"

CONVERT WORD iNTO iQ HOLLERTH CRARACTERS
I MAVE B0 CHARACTERS GLEN ASSEMBLED 7
i

' NO

Y

i
| NO
[—1: WAS LOWEST ORDEK bLYTE GF WORD ZERO 7

7

! REQUEST CrANNEL FOR PUNCH I no

‘Lls PUNCH READY 7]

YES

i
'
i
I
)

vy

CLEAR CONSOLE MESSAGE i
i
REGUEST ChANNEL FOR PUNCH |
PUNCH ONE CARD |
|
|

RELEASE CHANNEL

1
1
|

v

PAUSE FOR MONITOR

| Reao PuNCH STaTus ! =
| RELLASE CHANMEL -— Y

L

T 7 NC YES -
I_“'ﬁ 15 THERE ANGTHER WGORD IN THE CIRCULAR BUFFER 7 ,——a{ I8 A FiLE MARK REQUESTED 7 v SET BUFFER PARAME TERS

| NO
!
i
|
‘
|
|
\

Al

YES
% IS AN END RECGRD REGUESTED ? }———)1 SET BUFFER PARAMETERS

i NO

CLEAR C4RD COUNT
PUNCH 6785 CARD

! IN=OUT =FIRST

Lim 1

CLEAR CARD COUNT
i PUNCH 789 CARD

i IN=OUT =FIRST
Exiv

CONSOLE MESSAGE - PUNCH NOT READY
PAUSE FOR MONITOR

READ RA

IS ERROR FLAG SET ?

YES H
p————————>= RELEASE PPU |
-

READ RA

1

| IS ERROR FLAG SET ?
|

1

NO

v

|

J

!

} 1

{ UPDATY BUFFER JuT ADDRESS |
| ADVANCE CARD COUNT :
{ h

> RELEASE PPU |
[—

50 -

Page 210

|

(2PC OVERLAY CONTINUED)

: Y
[:s THE CIRCULAR BUFFER IN A WRITE BINARY MODE 7 }£———>
l YES
)
Y

f =1 1S THERE ENOUGH DATA FOR A FULL CARD ? l
1 YES

ino
|
|

AV
X

SET BUFFER PARAMETERS IN * OUT = FIRST
ExiT

—

1 NO

NO
l 1S AN END RECORD REQUESTED ?]r

YES

\/

1 YES
1S THERE GATA IN ThE BUFFER 7 j_'——‘

NO

Y

PunCH 789 CaARD

SET BUFFER PARAMETERS IN=QUT »FIRST
CLEAR CARD COUNT

ExiT

S U

CLEAR PUNCH BUFFER FOR |5 WORDS

TRANSFER CATA TO PUNCH BUFFER

ENTER CARD LENGTH iN COLUMN ONE

ENTER SUM OF DATA BYTES MODULO 4095 IN COLUMN TWGC
ADVANCE CARD COUNT

ENTER CARD COUNT iN COLUMN 80

A

REQUEST CHANNIL FOR PUNCH | o)

‘ IS A FILE MARK REQUESTED ?
YES

=

>]] ExiT

PUNCA 6769 CARD

SET GUFFER PARAMETERS IN=OUT = FIRST
CLEAR CARD COUNT

ExiT

CONSOLE MESSAGE -PUNCH NOT READY

READ PUNCh STATUS
RELEASE CHANNEL

NG

PAUSE FOR MONITOR
READ RA

IS PUNCH REACY 7

L
|

CLEAR CONSOLE MESSAGE
REQUEST CHANNEL FOR PUNCH
PUNCH ONE CARD
RELEASE CHANNEL

T

.]

\/

UPOATE BUFFER OUT ADODRESS

NO | PAUSE FOR MON:TOR

IS ERROR FLAG SET 7

ﬁi———-ﬁﬂ RELEASE PPU

READ RA
1S ERROR FLAG SET ?

)
|
!
i
b
i
!
J

e 51 =

> RELEASE PPU

Page 211

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

2RC - Read Cards

To read cards from the card reader and process them either
as binary or BCD cards.

>

2RC is called by the CIO Read Function routine once the file
type has been determined to be a card reader.

1.

If the End-of-Job flag is set, 2RC clears the flag, sets
the file mark and exits.

A check is made to see if the buffer has room for 15 words
of input. If not, an EXIT is taken and no read is performed.

A return jump is taken to READ NEXT CARD which requests the
correct channel, makes sure the reader is ready, and reads
the next card,

Once a card is read, the card count is advanced in the FST
entry and a check is made for 7-8-9 punches in column one.
If there are only 7-9 punches, a transfer is made to
PROCESS BINARY CARD. 1If neither condition exists, PROCESS
HOLLERITH CARD is given control.

After the card is. processed, the IN address of the central
memory buffer is incremented by the number of words read.

Another card is then read if the buffer length allows it
and there are no errors.

If a 7-8-9 card was found, an end-of-record indicator is
set and the card count is cleared. An EXIT is then made.

If a 6-7-8-9 card was found:

a) and the last record was not complete, the End-of-Job flag
is set along with End-of-record. The next time through
2RC, the EOJ flag will be cleared and a file mark will be
written,

b) and the last record was complete, the file mark indicator
is set if the buffer is empty.

c) and the last record was complete, the EOJ flag and End-of-
record indicator are set if the buffer is not empty.

A. PROCESS BINARY CARD

1.

2.

The number of significant columns is determined from the
word count in column one.

If there is a correction punch in column one, the significant

words are copied into the Circular buffer, IN is advanced
and an EXIT taken,

‘- 87 _

Page 212

Otherwise, the checksum is cleared and the column index is
set to 2. Each significant column is then added to the

checksum module 4095, If the checksum is zero, the signi-

ficant words are copied into the buffer and IN is advanced.

If the checksum is not zero, a binary card error is displayed.
After a 4 second delay, a check is made to see if the card
reader is ready. 1If it is not, then the operator is given

a chance to reread the card,

If the reader is ready, a check of the error flag in RA is
made. If the error flag is not set, then the binary card
error is displayed again.,

PROCESS HOLLERITH CARD

1.

2.

The last significant column is determined.

A table look-up is then done on each character to change the
Hollerith character into display code. The significant
characters are stored in the buffer by advancing IN.

If the last word's last byte has significant data, a cleared

word is stored after it. If not, the last byte will be
cleared,.

- 53 -

Page 213

L.}

f
I ENTER 2RC OVERLAY
I

Y | CLEAR END OF JOB FLAG

r Y YES
| Is ENG OF OB FLAG SET 2 }—————> SET FILE MARK

TNO ExiT

.
MNOOIFY OVERLAY FOR EQUIPMENT
‘l PARALME TERS

v/ W ‘

r - A
- DOES BUFFER HAVE ROOM FGR IS | NO “:]Exn’
i WORDS OF INPUT DATA 2
TYEs
: !
| " REGUEST CHANNEL FOR CARD REAGER | .
i PR Srarus i NO RELEASE CHANNEL
i he vs: CONSOLE MESSAGE—READER NOT READY
IS CARD READER READY ?
(- T
YES |
!
Y

s
| "PAUSE FOR MONITOR

’ ‘kREAO RA YES RELEASE PPU

IS ERROR FL4G SET ?
! i NO
E i

I |

v
REQUEST CHANNEL ! NO
READ EQUIPMENT STATUS
iS CARD READER READY ?

YES

!
|
|
|
|

Y

i St . - . P -
| ABVANCE CARD COUNT IN FILE STATUS ‘—‘I Cuean consoLz MaSSAG:}

1 1S 789 PUNCHED IN COLUMN ONE ?

T YeES f . | NO
NO i >
! 7Lls 6789 PUNCHED IN COLUMN ONE ?
‘ TYES
o |
! [IS 79 PUNCHED IN COLUMN ONE ? }YES—}{ vy
; NO - l WAS LAST RECORD COMPLETE ?1%
|
. 1
Lol 14 : | ves |
5 M] ’g,“,"f 1
[PROCESS HOLLERITH c‘mo !\c v \]/ i
| ——-{S IS BUFFER EMPTY ?1
i
; ’ NO
Y Y

UPDATE IN ADDRESS IN CENTRAL S‘romegj \
NG | PAUSE FOR MONITOR .. . i

Ly ‘ |

" N £S RELEASE PPU L SET END OF 408 FLAG I |

~RE4D RA i . > i |
o ' H

j

i

~T?

IS ERROR FLAG SET » & w
L J] 1

Y .
SET END OF RECGRD)
i CLEAR CARD COUNT
%, ExiT

G0 SET FILE MARK
N CLEAR CARD COUNT
EXIT

- 54 a

Page 214

[2RC PRGCESS BINARY CARD]

Y

DETERMINE NUMBER OF SIGNIFICANT
COLUMNS FROM WORD COUNT IN COLUMN ONE

¥

rls THERE A CORRECTION PUNCH IN COLUMN ONE ?

1 YES

t

NO

Y
CLEAR CHECK SuM
SET COLUMN INDEX TO COLUMN 2

\XJ

[ADD COLLMN TO CHECK SUM MOGULO 4095 A‘é—

/

ADVANCE COLUMN INDEX
WAS THIS THE LAST SIGNIFICANT COLUMN ?

YES

Ale
X

1Y

l[IS CHECK SUM ZERO P]
| NO

Y

CONSOLE MESSAGE - BINARY CARD ERROR
DELAY 4 SECGNDS

REQUEST CHANNEL FOR CARD READER
READ STATUS

RELEASE CHANNEL

IS CARD READER READY ?

YES

Y
PAUSE FOR MONITOR
READER RA
Is ERROR FLAG SET?
YES NO

COPY SIGNIFICANT WORDS 10 CIRCULAN BUFFER
ADVANCE CIRCULAR BUFFER IN ADDRESS BY

WORD COUNT

RELEASE PPU

EXIT

% THIS PATH PROVIDES AN OPPORTUNITY FOR THE OPERATOR TO REREAD THE FAULTY CARD

Page 215

2RC PROCESS MGULERITH CARD 1]

i

SENSE TRAILING SPACES AND OETERMINE
LAST SIGNIFICANT CGiLUMN

|

Y

LSET COLUMN INDEX TO FIRST COLUMN]

NO

P

®

iS THIS FIRST CHARACTER IN BYTE ?J-L—

YES

TABLE LOOKUP FOR DISPLAY CODE
STORE CHARACTER IN UPPER HALF OF BYTE

!
!
A\
CLEAR WORD BUFFERI
T

L

1

!

Y
r
i St T BYTE INDEX TO FIRST BYTE 1
Y

' |
| CLEAR CHARACTER BUFFER |

|

|

4

T

——— iS KOW |2 PUNCHED ? |

i
YES

Nol 1S ROW ii PUNCHED ?]
YES

1
[ADD 408 TO CHARACTER }—
I

l—){ - ~
NO | IS ROW O PUNCHED ?T
YES

N i
‘ ADD 208 TO CHARACTER !

i
i

‘l ADD 608 TO CHARACTER jr——-

ADVANCE COLUMN INDEX
WAS THIS THE LAST SIGNIFICANT COLUMN ?

YES

STORE WORD iN CiRCULAR BUFFER o
ADVANCE CIRCULAR BUFFER IN ADDRESS ‘*'*

YES

DID THIS WORD HAVE DATA IN LAST BYTE ?

YES

STORE CLEARED WORD IN CIRCULAR BUFFER
ADVANCE CIRCULAR BUFFER IN ADORESS

NO

[o =

TABLE LOOKUP FOR DISPLAY CODE ~
ADD CHARACTER IN LOWER HALF OF BYTE

ADVANCE COLUMN INDEX
WAS THIS THE LAST SiGNIFICANT COLUMN ?

)

|

M ;
ADVANCE BYTE INDEX

No [

WAS THiS THE LAST BYTE iN WORD 2
YES

STORE WORD IN CIRCULAR BUFFER
CLEAR WORD BUFFER

Y
" YES |
IS ROW | PUNCHED ? | ADD | TO CHARACTER e
1 NO
Y -
[= YES !
| IS ROW 2 PUNCHED . ADD 2 TO CHARACTER r———ri
L J i
| NO
|
Y

YES

r 1 !
‘1 IS ROW 3 PUNCHED ? f_—__>1 ADD 3 TO CHARACTER j_

NO

[IS ROW & PUNCHED ? }-liei

IENO

'

1
ADD 4 TO CHARACTER Jr————*

1 r 1

[iS ROW 5 PUNCHED 7 }&)l ADD 5 TO CHARACTER ———
;

|

NO

|
v

»

NO

r 1 YE
| IS ROW 7 PUNCHED ? r—LE——>{ ADD 7 TO CHARACTER
N

i NO
}

\

NO

YES
[iS ROW 9 PUNCHED ? H ADD 1iB TO CHARACTER

ROW 6 PUNCHED ? }—M ADD 6 TO CHARACTER

1 YE f
l iS ROW B PUNCHED 2 I—s,-q ADD 0B TO. CHARACTER

SET BYTE INDEX TO FIRST BYTE
ADVANCE CIRCULAR BUFFER'IN' ADORESS

A
Yo

YES
—9{ IS ROW 8 PUNCHED ? H ADD 10B TO CHARACTER }—

"NO

|
|
|

Y

l IS ROW 9 PUNCHED ? }—Y—r‘s—){ ADD 1B TO CHARACTER

NO

—

—

|

1 !
J

i

'

®

St

Page 216

ROUTINE: 2RT -- Read Tape

PURPOSE: To read binary and BCD data from magnetic tape or rewind
the tape.

GENERAL: This package is called by the CIO Read Function when a

magnetic tape is to be read. Control is transferred by
CIO to one of three locations within 2RT:

a) READ BINARY TAPE
b) READ BCD TAPE

c) REWIND

METHOD: A. READ BINARY TAPE

1. There must be room in the buffer for a full block
(10008 words) of data or no reading is done,

2. The requested tape unit status is checked. If it
is not ready, the message "TAPE XX NOT READY" is
sent to the control point display and no further
processing is done until the tape is ready or an
error flag is set,

3. One block of data is read in odd parity. If the
length is less than 4 bytes (signifying noise) it
is ignored and another record is read.

4, If an end-of-file was encountered, the buffer status
is changed to reflect it and an EXIT is made.

5. When a parity error is encountered, the tape is
backspaced one block and reread. The message
"TAPE XX PARITY ERROR" is sent if the parity error
still exists after 3 attempts. A pause bit is set
in RA and is cleared only after "X.GO." is typed
in answer to the display message.

6. When the pause bit is cleared, the bad data is
stored in the buffer and a new block is read.

7. The data is read until an end-of-record or end-
of-file is sensed.

B. READ BCD TAPE

1., The requested tape unit status is checked. TIf it
is not ready, the message "TAPE XX NOT READY" is
sent to the control point display and no further
processing is done until the tape is ready or an
error flag is set.

- 57 -

Page 217

NOTES:

1.

2-

One block of data is read in even parity. If an
end-of-file was encountered, the buffer status is
changed to reflect it and an EXIT is made. If the
length is less than 6 bytes (signifying noise), it
is ignored and another record is read,

If a parity error is sensed, the tape is backspaced
one block and reread. The message "TAPE XX PARITY
ERROR" is sent if the parity error persists after

3 attempts. A pause bit is set in RA and is cleared
only after '"X.GO." is typed in answer to the display
message.

When the pause bit is cleared, the normal processing
continues,

The number of significant BCD characters is deter-
mined and trailing spaces are suppressed by a zero
byte.

The BCD characters are converted to display code by
a table look-up. A blank (558) is substituted for
an illegal character.

The data is copied into the central memory circular
buffer until a zero byte is found.

8. Only one record (120 characters) is read and then
an EXIT is made.

REWIND/UNLOAD

1. The tape is checked for ready status and if an

unload was requested the tape is rewound and then
unloaded.

If only a rewind was requested, the tape is rewound.

The block count in the FST entry is cleared and an
EXIT is taken,

Noise records in binary is a block less than 4 bytes and
in BCD less than 6 bytes.

°

BCD characters which do not have a legal display code
counterpart become blanks (558).

- 58 =

Page 218

ENTER 2RT OVERLAY
BINARY TAPE READ

MODIFY OVERLAY FOR
EQUIPMENT PARAMETERS

BUFFER FOR A FULL BLOCK OF DATA ?

IS THERE ROOM IN THE CIRCULAR NO

YES

REQUEST CHANNEL FOR TAPE UNIT

N
READ TAPE STATUS 0

NO

>|| ExiT

IS TAPE READY ?
YES

CONSOLE MESSAGE—TAPE XX NOT READY
RELEASE CHANNEL

PAUSE FOR MONITOR

READ RA

IS ERROR FLAG SET ?

SET FILE MARK
ADVANCE BLOCK COUNT
RELEASE CHANNEL

ExIT

———————{ BACKSPACE TAPE ONE BLOCK J

Y

NO

Was

STORE DATA IN CIRCULAHN BUFFER
UPDATE BUFFER IN ADDRESS YES

CLEAR CONSOLE MESSAGE NO
READ ONE BLOCK OF TAPE (ODD PARITY)
IS LENGTH AN ODD FRACTION OF WORD ?
YES
YES !
IS LENGTH LESS THAN 4 BYTES ? J
NO
Y
READ TAPE STATUS
WAS FILE MARK READ » | YES
NO
X YES
IS PARITY CHECK OK ? }
t NO
|
i
I
Y
1 YES
HAS BLOCK BEEN READ 3 TIMES ? [————————a
T
| NO
|
Y

RELEASE CHANNEL

ADVANCE BLOCK COUNT ()

YES

RELEASE PPU

DAYFILE MESSAGE —

TAPE XX PARITY ERROR
RELEASE CHANNEL

SET PAUSE BIT IN (RA)

REaD RA

YES

NO
PAUSE FOR MONITOR —————ﬁ(iﬂhs PAUSE BIT BEEN CLEARED In (RA) ?

|
)

No]

IS ERROR FLAG SET 2
YES

RELEASE PPU

SET END OF RECORD

BLOCK A SHORT BLCCK ?

BxiT

- 59

Page 219

ENTER 2RT OVERLAY
BCD TAPE READ

MODIFY OVERLAY FOR
EQUIPMENT PARAMETERS

READ TAPE STATUS
IS TAPE UNIT READY ?

LREOUEST CHANNEL FOR TAPE UNIT 2 NO

NO

YES

CLEAR CONSOLE MESSAGE

READ ONE TAPE BLOCK (EVEN PARITY)

WAS A FILE MARK READ 7

CONSOLE MESSAGE~TAPE XX NOT READY

RELEASE CHANNEL ves
PAUSE FOR MONITOR RELEASE PPU

READ RA
IS ERROR FLAG SET ?

SET FILE MARK
ADVANCE BLOCK COUNT

NO

YES
-y

WAS BLOCK LENGTH

LESS THAN & BYTES ?]

NO

P .
NO
WAS PARITY CHECK OK 7 H HAS BLOCK BEEN READ 3 TIMES ?jﬁi
’ NO

YES

Y

DETERMINE NUMBER OF

SIGNIFICANT CHARACTERS IN

DATA ELIMINATING TRAILING SPACES

\J(

CODE BY TABLE LOOKUP

CONVERT CHARACTERS TO DisPLAY

i
|

Y

COPY DATA INTO CIRCULAR BUFFER |

TO A BLANK LOWEST HYTE

|

|

Y

UPDATE BUFFER IN ~DDRESS |

ADVANCE BLOCK COUNT
RELEASE CHANNLL
Exit

RELEASE CHANNEL
ExiT

LBACKSPACE TAPE ONE BLOCK

DAYFILE MESSAGE — TAPE XX PARITY ERROR

RELEASE CHANNEL
SET PAUSE BIT IN (RA)

YES NO
6—-{ HAS PAUSE BIT BEEN CLEARED IN (RA) ?]6— PAUSE FOR MONITOR

[vo

READ RA
IS ERROR FLAG SET ?

YES

RELEASE PPU

Page 220

ENTEN 2RT OVERLAY
REWIND T4PE

i

Y.
MODIFY OVERLAY FOR
EQUIPMENT PARAMETERS

|

!

" REQUEST CHANNE FOR TAPE uniT NO
t
“ ' 1 E :
| i
| !
¥ NO
e

CONSOLE MESSAGE—TAPE XX NOT READY
RELEASE CHANNEL

PAUSE FOR MONITOR

READ RA

IS ERAROR FLAG SET ?

—Y—E—s—-—é-{ RELEASE PPU

READ TAPE UNIT STATUS
IS TAPE UNIT READY ?

YES

!
|
t
\1/

IS UNLOAD REQUESTED 7 |

J
NO ['ves

N

\/ A
|
REWIND j| [REWIND UNLOAD

|
7
i

\/ \l

{ RELEASE CHANNEL |
i ;
| CLEAR BLOCK COUNT :
J

LE)“T

Page 221

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

27J -~ Translate Job Card

To check the parameters on the job card for errors and
assemble the values for use by other routines.

2TJ is called by 1BJ, 1LJ, or 1LT. The job card is read
from the control card buffer located in the control point
area, Upper entry to 2TJ, the buffer parameters are
passed through the PP's direct core cells. All job card
parameters except the job name are converted from display
code to binary.

1'

If the circular buffer contains more than 95 words or
190 characters, the PP is released with a dayfile
diagnostic - "TOO MANY CONTROL CARDS".

Otherwise, the job name is assembled in left-justified
display code with trailing spaces. The job name may
not be blank or begin with a number.

The priority is extracted and converted to binary.
Only the lowest 4 bits are stored for the job priority.

The time limit is extracted and converted to binary.
The lowest order 5 octal digits are rounded to the nearest
108 seconds and stored for the time limit.

The field length is extracted and converted to binary.

The lowest order 17 bits are rounded up to the nearest

1008 words.

The PPU time charges for the CP area are cleared in
order to assign future PP activity to the job.

A dayfile message - JOB CARD ERROR - is caused by:

a) Job name exceeding 7 characters or not beginning
with an alphabetic character.

b) Priority exceeding 7 characters.
c) Time limit exceeding 7 characters.
d} Field length exceeding 7 characters.

If any parameter is blank, a corresponding value is
inserted,

a) priority - 1
b) time limit - 108 seconds

c¢) field length - 400008 words

- 62 -

Page 222

NOTES:

The routine READ NEXT CHARACTER reads one central memory
word (10 characters) whenever the character string is
depleted.

The parameters for the control statement buffer used
by 2TJ, P60-65, are set by the circular buffer I/0
routines,

2TJ and the calling routine 1BJ, 1LJ, or 1LT are released
and control reverts to the idle loop if one of the
following conditions occur:

a) Too many control cards - more than 190 characters
in all control cards, excluding trailing blanks.
About 40 cards can be used and this error usually
occurs when a record separator (7-8-9 card) has
been omitted.

b) If the job name field is blank or absent.

c¢) If the first character of the job name field is not
an alphabetic character.

- 63 -

Page 223

2TJ Routines

Location Routine Calls
2000 Main Program 2100, 2200, 2300, 2340
2100 Assemble Argument 2140
2140 Read Next Character -
2200 Decimal Conversion 531, 12-760
2300 | Assemble Name 2100

2340 Clear PP Time 04-760

Direct Core Cells

Entry

P60/61 FIRST

P62/63 IN

P64/65 ouT

P55 RA

Exit

P30/34 Job Name

P35 Priority

P36 Time Limit (Rounded to Tens)

P37 Field Length (Rounded to Hundreds)

- 64 -

Page 224 IS

27 OVERLAY 1
TRANSLATE O3 MAWE

ey

ot 5

1 YES

DAYFILE MESSAGE -TOO MANY CONTROL CARDS
RELEASE PPU

{ ARE THERE MORE THAN G5 WGRUS N THE CIRCULAR BUFFER ?4,-————9-
. NO
M
11 READ FiRST CONTHGL CARD "

j

A
1

ASSEMBLE ALPHANUMERIC WORD TO SEPARATOR

DAYFILE MESSAGE - JOB CARD ERROR

DOES WORD EXCEED 7 CHARACTERS 7 ;

i NO
v

‘
1 NO

RELEASE PPU

iS5 FIAST CHARACTER & LETTER 7
: J
YES

[STORE WORD AS N&ME OF 40

—

| WAS SEPARATOR A BuAhK 7
L

i NG

;

A2

XL

ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR

YES

SET PRIORITY |. . Ve
SET TIME LIMIT ONE MINUTE.--
SET FIELD LENGTH 40000

ExiT

|

DAYFILE MESSAGE -JOB CARD ERROR

DOES WORD EXCEED 7 CHARACTERS ?
NO

|

N
X

©NO

Vi
rSTONE LOWEST ORDER 4 BITS AS PHRIORITY

r\ws SEPARATOR A igunhr ? ExiT
{ NU
\"’
ASSEMBLE NEXT ALPHANUMERIC WORD TG SEPARaTOR | TES . DAYFiLE MESSAGE - JOB CARD ERROR
DOES WORD EXCTED 7 CHAKALCTERS ? i RELEASE PPU
— S—

i NO

v
by

CONVERT OCTAL CHARACTENS TO wiNARY
ROUND UP LAST OCTAL DIGIT
STORE LOWEST ORDER 5 OCTAL MGITS As TWME LT

, —

K

CONVERT OCTAL CHARACTERS TO BiNARY | YES
ARE LOWEST ORDLR & u6iTS ZERD 7 T\)

—

RELEASE PPU

SET PRIORITY |

SET TIME LIMIT ONE MINUTE
SET FIELD LENGTH 40000
ExiT

SET TIME LIMIT ONE MINUTE
SET FIELD LENGTH 40000

YES
IS TIME wLiMiT ZEWO ? : \l SET TIME LIMIT ONE MINUTE
I—)
NG]
I i
‘ZL‘I”‘ﬁ . . v
1 S
D“S SEPARATON A GLARK 7 b £S5 SET FIELD LENGTH 40000
— ExiT
1 NG

i
1

A

]
ASSEMBLE NEXT ALPHANGMERIC WORD TO ScPARATOR | YES

DOES WORD EXCEED 7 CHARACTERS 7 !

—eee 5

DAYFILE MESSAGE - JOB CARD ERROR
RELEASE PPU

SET FIELD LENGTH 40000

—
P NO
o
A 1
CONVERT OCTAL CHARACTCEHS TO LINAWY !
ROUND UP LAST TWO OCTAL DiGITH i
STORE LOWEST OHDER 17 0iTS AS FICLD LENGT i
Y —
|
\‘/
- - L YES
IS FIEelDd vchoTH ZERO 7
i
1 NO
N
CLEAR PPU TIME CHARGES TO CONTAQL POINT !
Exit '
J

et

Page 225

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

2TS -- Translate Control Statement

To examine each statement in the control card buffer of the
control point area and dinitiate the execution.

This package is called by 1AJ which was in turn called by
MTR to advance the job status at a control point. Each
time a control statement is initiated the PP is released
and MIR must then reload 1AJ. This process continues until
a blank entry in the control card buffer is encountered and
IAJ can continue subsequent processing.

1. 1If the next control statement is blank, all control
cards have been processed so an EXIT is made to 1AJ.

2, ASSIGN

a) No separator is required between ASSIGN and equip-
ment type.

b) If either field is incorrect, an error flag of 3
is set in the control point area and an EXIT made.
A "CONTROL CARD ERROR" message is sent to the day-
file and the next time 1AJ is called the PP will
be aborted. '

c) The file name from the card is stored and a request
is made of MTR for the octal code that the equip~
ment type designates, If a mnemonic, i.e., WT, CR,
etc., instead of octal digits, i.e., 51, 42, etc.,
was specified, a conscle message "WAITING FOR XX'"
will appear,

d) The file name is assigned an FNT entry with local
type status. The equipment type is set into the
FST entry.

e) The control statement buffer address is advanced so
that the next statement will be processed when 1AJ
is reloaded.

f) A dayfile message noting the equipment assignment
(XX ASSIGNED) is sent and the PP released.

3. COMMON

a) If the file name exceeds 7 characters, a control
card error exit is made.

b) The FNT is searched for a file name identical to the
one on the card. It must be assigned to the calling

control point.

c) If the found file is not on the disk, MTR is requested

- 66 -

Page 226

d)

e)

to assign the proper equipment. If the request is
not fulfilled, a console message "WAITING FOR XX"
is sent and the PP released,

If there is no file assigned to the control point
with the proper name, a console message '"WAITING FOR
COMMON FILE" is sent and the PP is released.

A file with the correct name and control point assign-
ment is given common status and then the PP is released.

RELEASE

a)

b)

c)

The FNT is searched for a common file with assign-
ment to the requesting control point and a name
identical to the control card. If one is found,
the common type is changed to local so that when
this job is logged off the file will be erased.

A dayfile message "RELEASE XXXX" is sent even if
the file was not found.

A common file may be released by a job but still used
by it because the file is not lost until the job is
terminated.’

EXIT

a)

b)

d)

If this control card is the next to be executed an

i+ 41¢ made from thie Avarlavw
(Lt L& made ITrem Tials over.ay.

[}

1AJ checks the error flags before any control is
given to 2TS. 1If such a flag is set, 2EF is called
to read the rest of the control cards in the buffer
and position the buffer parameters to the statement
after an EXIT card, if one is found, or to a blank
word, if no EXIT card was issued.

If no errors have thus far been encountered and an
EXIT card found, 2TS will exit and 1AJ will finish
the rest of its processing.

An EXIT card will cause job termination when encount-
ered if no errors exist in the job.

REQUEST

a)

b)

c)

If an equipment has not been assigned by the operator
the message "REQUEST XXXX" is sent.

When the operator does make the assignment, the octal
digits will appear in CP(22). This byte is cleared
and a blank entry in the FNT is searched for.

The requested file will be given an FNT entry with

- 67 =

Page 227

local type and the equipment number wiil be set
in the FST.'

d) A dayfile message '"(XX ASSIGNED)" is sent and the
PP released.

MODE

a) The

octal digit is assembled and MTR is requested

to assign the corresponding exit mode.

b) A dayfile message "MODE X" is sent and the PP
released,

c) MIR will change the exit mode in the exchange
- package for the control point.

SWITCH
a) FNT

1)

2)
3)

4)

5)

6)

7)

8)

b) CLD

1)

search

The FNT is searched for a file with the name
identical to the one on the card and assigned
to the control point. If none is found, the
library is searched.

The file must be on disk 0.

The file is then read into central memory
beginning at RA until an end-of-record or field
length is reached.

The exchange area is cleared and P is then set
to the number of arguments + 3 and FL is put
into AO.

The sense switches already set in the control
point are passed to RA and RA+1l is cleared.

The parameters on the control card are assembled
and replace their corresponding entry in the
argument area. Blank parameters will cause the
original value to remain. A period or closing
parenthesis must terminate the parameters.

If the RSS (read next control statement but stop
before execution) flag is set, the card is sent

to the dayfile and the PP is released.

Otherwise, the central processor is requested of
MIR to begin execution of the newly loaded program
and the statement is sent to the dayfile.

search

Each entry in CLD is searched for the file name

- 68 -

Page 228

c)

2)

PLD

Y]

2)

3)

4)

and if it is found it is read into central
memory beginning at RA until an end-of-record
or field length is reached.

The program is read in from the disk in the same
manner as described by (4) above.

search

If the file name is not found in FNT or CLD,
PLD must contain it or an error results.

If the name does not begin with a letter, an
error message is sent to the dayfile.

Parameters may appear in the call. If they do,
then the first one is assembled into bits

18-35 and the second into bits 0-17 of PP recall
register. If only one parameter is needed, it
resides in the lowest 18 bits of the register.
The call is assembled in the PP recall register
at the control point so that when MIR senses this
request, the package will be assigned to a free
PP.

The statement address is advamced to the next
statement and the PP is released.

- 69 -

Page 229

2000
2040
2100
2170
2200
2240
2300

2400
2460
2500
2600
2660
3000
3100
3150

3200
3300
3360
3400
3460
3540
3640
3700
3740

2TS Routines

Main Program

Message for ASSIGN

Unpack Next Statement

EXIT

2100, 2200, 3200, 3300, 3540, 3100

Search for Special Format

Assemble Name

ASSIGN

REQUEST

MODE

Assign File
RELEASE

COMMON

Issue Exit
Error Exit
Enter Arguments

Program

Search for Assigned File

Search CLD
Console Message

Read Program

in

Clear Exchange Area

Search PLD
SWITCH
Assemble Data

Assign Equipment

- 70 -

3100 |
2240, 22-760, 3360, 12-760, 2500,
2040, 3100, 3000

2240, 2500, 2040, 12-760, 3000
2240, 25-760, 3000

740, 750, 23-760, 12-760

2240, 3000

2240, 740, 750, 3740, 12-760, 3000
01-760, 530, 12-760

3000

2240
2240, 3400, 3460, 3150, 15-760, 3000
2240, 3400, 3460, 3150, 15-760, 3000

740, 700, 400, 750

2240, 3700, 3000
2240, 3000

22-760, 3360, 750, 12-760

BQL-

RA + 3

RA + 2
RA + 1

PROGRAM
i
ARGUMENT
ARGUMENT
ARGUMENT
000 -
000

PROGRAM AREA

RA, RA + 1 CLFARED BY 2TS

MTR DETECTS THE PRESENCE OF THE JOB AT
THE CONTROL POINT AND CALLS 1AJ.
CALLS AN OVERLAY, 2TS, TO PROCESS THE
NEXT CONTROL STATEMENT (ASSUMED HERE

TO BE A PROGRAM CARD).

2 Ap*

EXCHANGE PACKAGE AREA

(CLEARED BY 2TS)

STATUS —

0000 V700070 ® | FL

JOB NAME [vExT C.S.

2TS
TRANSFERS
THE ARGUMENTS

'igIORITYPC427?C/;¢47;ﬂ TIME VY

A s rre

FROM THE CONTROL CARD
TO THE PROGRAM AREA

CONTROL STATEMENT
BUFFER

JOB INITIATION: /AJ/ 2TS

CONTROL POINT AREA

* P AND Ay ARE SET BY 2TS: Ag IS
SET WITH THE FIELD LENGTH

0cz °3%g

Page 231

27TS GVIRLAY |
THANSLATE CONTROL STATEMENT I

T
i

L

READ NEXT CONTROL STATEMENT YES

IS STATEMENT 4 ELANK ?

| NG
E
\/
f 1
0 IS FIRST wWORG ASSIGN 2 ;
| NO

YES

v

NEXT PAGE

|
¢

STCR

i

A

Lo

1%

e} . 70
< EXiT |
[SE—— 1 .
{
! ASSEMBLE NEXT ALPHANUMIRIC WORD TO SEPARATOR YES ERROR EXIT
‘{ DCES WGRO EXCEED 7 CHARACTERS ?
; NO A §
\"/
1 YES
IS WORD A BLANK 7 I
L
TNO
!
& WGRD
|
I
A
Y
SSEMBLE NEXT ALPHAMUGERIC WORD TO SEPARATOR | YES ERROR EXiT
OOES WORD EXCEED 7 CHARACTERS ?
N

'nNO
|
‘

vy

! IS WORD A BLANK 7
—_

VNG
i

v/

YES l

—

STORE WORD AS Ficd NAME
REQUEST MONITUR A>SiGN ECUIPMENT TYPE CESIGNATED
I WAS AN EQUIPAINT

ASSISKIS P

—
f
|

NO

ET—

v

REQuiEsT

FNT ChANNEL

I
US TREAD A &LANK EnTRY IN FNT ?

iyes

N
\/

ENTER FNT WiTh NAMEZD LOCA. FILE
RELEASE ChAANEL

ENTER cGuPMENT NUMBER IN FiLE STATUS WGRO

SET FiLE STATUS TO NEW FiE

($Sul STATLmL

TO ODAYFILE

ADVANCE STATIMENT ADIRESS

]
|
!

v
|

DAYFILE wmiuSAGE = (XX ASSIGNED

3

L.

RELEASS PP

RELEASE CHANNEL

REQUEST MONITOR REZLEASE EQUIPMENT
CONSOLE MESSAGE —WAIT FNT SPACE
RELEASE PPU

Page 232

(2TS CONTINED)

:
i
|
i
;
!
;
|
L

l 15 FIRST WCRD JOMMONP !

YES

7
|
!

Y

Y

m
w

SEPARATOR

ASSEMBLE NEAT ALPHANUMERIC WIRD ¥
S

REGULST FNT CHANMIL YES

STARCH FNT FOR ASSEMBLED NaME

15 THERE AN AVAILABLE COMMON FILE IN FNT WiTH THIS NaME 7
—

I NO
i
I
1
|

i
. | YES

IS TREAT A FILE AU5GAED TO TS

ERRCR EXIT

T 7 YES
1 IS FILE A O3:8K Fikl 7
R i
| NO
N/
RIQUEST MONITOR ASSIGN YES

EQUIPMENT TO CONTROL POINT
WAS EQUIPMENT ASSIGNED 7

"'no

\Y4

<

CONSOLZ MESSAGE - WAITING FOR XX
RELEASE FNT CHANNEL
RELEASE PPU

|
|

ASSWGN FiLE TO CONTROL |

|
| CONTROL POINT WiTH THiS NAME 7 |
— |

1 !

RELEASE FNT ChANMMEL ;
t CONSOLE MESSAGE - WAITING FOR COMMON FILE
RELCASE PPUL

iS FRST WGCnD RILEASZ 7 |
_

NO | YES
{ NEXT PAGE } 'e—"'—'——J |
|
\

KEXT ALPHANUMIAIC WORD TO SZPARATOR | VES

PONT IN COMMON STATUS

-
i
i
| RELZaws FNT CHANNEL

V

ISSUE STATEMEINT TO DAYFILE
ACVANCE STATEMENT ADDRESS

RELEASE PPU

XCCED 7 CHARACTERS 7

o
o
il
“ m
ES
Q
A
o
m

| NO
I
|
v

Vi
SEARCH FNT FCA 4 COMMON FILE ASSIONED 1 NO
TO THIS CONTKOL POINT WITH TH!S NAME
IS THERE SUCH A FILE 7

|
|
|
L

I

| YES
Vi
1
CHANGE FILE STATUS TO LGCAL F«LEAJ
I

Y]

ISSUE STATEMENT TO DAYF..E !

ADVANCE STATEMENT AODCRESS re—-——-

RELEASE PPU AJ

ERROR EXIT

Page 233

(27S CONTINUED }

Y
I Y H—)
(IS FIRST wokg EXIT 7 e > EXIT FAOM OVERLAY
[— i jo—
NO
|)
Y - r 7
Y vE! S CMAL T NI ae PP, - = - vz ~ kg
0 FIRST WORD REQUEST 2 ‘YLS -, ~SSEMBLE NEXT ALPHANUMIRIC WORD TO SEPARATOR ! YES ERROR EXIT o
5 | COES WORD EXIEED 7 CHARACTERS ? . O
I INO ..
I H
; I
! y R L7 d
| , v e :
NG/ - R 1. b
t HAS C>ZRATOR ASSIGNED AN EQUIPMENT ? I ",
[: e
| YES '
; 2
: \7 Ty
‘ CLEAH OPERATOR ASS.GNMENT -~ e ENTER ASSEM3.ED NAME AS LOCAL FILE IN FNT
; | REQUEST FNT CHANNEL 3 ENTER EQUIPMENT NUMBER IN FILE STATUS WORD [°
IS THERE A BLANK ENTRY IN THE FNT ? SET FiLE STATUS TO NEW FILE o ' ¢ 4
TNO RELEASE FNT CHANNEL
i Y
N
[RELEASE FNT ChANNIL v
g RIQUEST MCHITGR RELEASE EQUIPMENT ISSUE STATEMENT TO DAYFILE L
| . CONSOLE MESSAGE ~WAIT FNT SPACE o T MAENT ADORESS: [ofewers
I | RELEASE PPU ¥)
L
- \/
! ,) DAYFiLE MESSAGE - (XX ASSIGNED)
i OiSPLAY STATEMENT &S CONSOLE MCSSAGE ! RELEASE PPU
—
| RELEAIE PPY
V2
. N 7 YES ASSEMBLE NEXT ALPAANUMWIRIC WORD TO SEPARATOR | YE ’
R g = S— £ NexT Crene WORS ‘ S ERROR EXIT
R DOES WORD EXCEED 7 CHARACTERS !
i ' NO
| i
|
f REQUEST MONITOR ASSIGN EXiT mODE
1 AS INDICATED BY ASSEMGLID GIGIT
1
! ;
i i
! :
|
i H 1
I | ISSUE STATUENT TO DAYFiLE |
! | RdvaNCZ STATemenT acomess |
! | RELEASE PPU
| L ELZase J |
i
t
v/
. —_ s cor .
o ‘ " ye SSEMGLE NEXT ALPHANUWERIC WORD TO SEPARATOR | y&
I IS FINST WORD SWITCH 7 jooo SeSEmObE WX AuPnAnu.c 7O SEPARATOR | ¥ES ERROR EXIT
o— G " OGES “GRD EXCEED 7 CHARACTERS ?
i NO
i
+
v v
(NEXT PAGE) | IS WORD A DiGIT LETWIEN | AND & P [’\‘o]
— i
| YES
i
| |
0 |
[SET SENSE SWiTCm v (RAJ &3 W3ICATED | i
i
|)
| |
h
I\ !
ISSUE STATEMENT TO DAYFILE | i
ADVANCE STATEMENT- ADDKESS riemmrmm—d

RELEASE PPu

73

Page 234

(2TS CONTINULED)

v
SEARCH FNT FOR AN ASSIONEC FILE WROSE
RAME AGREES WITH TmE FIRST WORD YES [T ?
>4 JCES Twi £ AN 4SS IPMENT ¢
{5 THERE SUCK A FILE ASSIGNED TO THIS { DOLS TriS FILE HAVE AN SSIGNED EQUIPME
CONTRCL POINT ? | YES ' NO
NO

v/ .

REQUEST CHANNEL ZERO)
PGSITION GISK TO FIRST SECTOR OF #KE !

¥

BTN BN C

READ FILE INTO CENTRAL STORAGE BEGINNING AT RA A i
7| UNTIL END OF RECORD OR FIELD LENGTH IS REACHED
RELEAST CHANNEL O R oL
; .
o
\l/ . N {‘ ,. o e ‘

P

CLEAH EXCHANGE AREA FGR CONTROL POINT -7

i
3 @——) SET PROGGRAM ATCRESS TO LUWEST 6 BITS OF (RA} i +3 ' P

STORE FIELD LENGTH iN AO

] .
. | T
13 '_ ! !
iy \{{
SET RA + 2 AS NEXT ARGUMENT AODRESS
' CLEAR {RA) &ND (RA + 1) .
\/

YES [,
"l 1S THE NEXT CHARACTER IN ThHE CONTROL STATEMENT

r———>ol A PERiOD OR A CLOSEDC PARENTHESIS ?
! NO

|

i

|

|

\/
ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR YES

! ZAROR EiT
OCES WORD EXCEED 7 CHARACTERS ? \

8O S ——p——

Y
[STOGRE WOARD IN NEXT ARGUMENT POS.TION LEFT JUSTIFIED
l AOVANCE ARGUMENT ADORESS

|
|
|
|

3 ! . . .

iS5 RSS FLAG SET IN PPU INPUT REGISTER 7 l
. NG

- \

f REQUEST CENTRAL PRCCISSOR TO BIGIN EXECUTION PROGRAM]

Y
ISSUE STATEMENT TO DAYFILE
AOVANCE STATEMENT ADDRESS
RELEASE PPU

7

ST —_—

Y FLQUEST CHANNEL ZEAD

SEARCH CLD FOR A PROGRAM WKOSE ! YES PGCSITION DISK TO FIRST SECTOR OF PROGHAM

NAME AGREES WITH THE FIRST WORD i 5+ READ PRGGARAM INTO CENTRAL STORAGE BEGINNING AT RA
IS YHCRE SUCH A PROGRAM 7 J UNTIL END OF RECORD OR FIELD LENGTH IS REACHED
RELEASE ChaNNEL O

NO

(NEXT PAGE}

®—|

- 74 =

Page 235

(27S CONTINGED)

/

R

N

SEARCHIPLD FOR 4 PERIPHERAL PACKAGE
WHOSE NAME AGREES W.TH THE FiRST WORD
IS THERE SUCH A PACKAGE 7

YES '
-—5—\7[DOES THE PACKAGE NAME BEGIN WITH A LETTER ? |
NO | YES

‘NO
!

U4

-

/ ,——\

iSSUE STATEMENT TO DAYFILE

DaYFiLE MESSAGE - CONTROL CARD EZRRI%
SET ERROR FLAG =

ADVANCE STATEMENT ACDRESS

RELEASE PPU

1
|
|
|
|
]

—

'
P
|
i
1

\/

i —
NO | /:3SE. uLE OCTAL DIGITS TO SEPARATOR
IS SIPARATOR A COMMA ?

| YES

Y
ENTER ASSEMGLED NUMBER IN PP RECALL
REGISTER 8IT PCSITIONS (8 THRU 35

y
SSEMBLE OCTAL Di3iTS TO SEPARATCOR

I

S

— T
| ENTER ASSEMBLED NUMBER IN LOWEST |-+ AR ¥
SN

L 8 BiTS OF PP RECALL REGISTER o o

|
|
I
I
i

\/

ENTER PACKAGE NAME AND CONTROL
POWNT NUMBER IN PP RECALL REGISTER
ISSUE STATEMENT TO DAYFILE

AQVANCE STATEMENT ADDRESS
RELEASE PPU

-~ 75 -

page 236

ROUTINE: 2WT =-- Write Tape
PURPOSE: To write both binary and BCD blocks of data on magnetic tape.
GENERAL: Once a write code is detected in the request parameter, a

call is made to the CIO Write Function routine which then
checks the equipment type of the file. When a file type of
tape is determined, a call is made to load 2WT. When the
mode of binary or BCD is determined, the appropriate trans-
fer is made by CIO.

METHOD: A. BINARY WRITE

1. The circular buffer is checked to determine if there
is a full block of data. If there is not, and an
end-of-record function is not requested, execution
returns to the CIO Write Function routine.

2. 1If end-of-record is requested, the last partial
record will be written.

3, A transfer is made to subroutine Write Binary Tape
in 2WT to actually write the block. A check is made
for tape ready. If the tape is not ready, a message
is displayed and a pause is executed waiting for
tape to be made ready or the error flag set in RA.

4, Once tape is ready, the data is written and a parity
check is made. If there is parity, a message is
displayed, the tape is backspaced, and rewritten
until either the parity does not exist or the error
flag has been set in RA by monitor.

5, If a good write is performed, the OUT address of the
buffer is then updated. 1If a short block was
written meaning end-of-buffer, IN and OUT are set
equal to FIRST and EXIT is taken to CIO Write Function.

6. If the buffer is not empty, more data is written
until a short record is encountered.,

B. BCD WRITE

1. If the request is a BCD write request, a jump 1is
made from CIO Write Function to the subroutine WRITE
BCD TAPE at location 2640,

2. A check is made to see if there is data in the buffer.
If there is none, and the end-of-record is requested,
IN and OUT are set equal FIRST. If end-of-record is
not requested, an EXIT is taken,

- 76 -

Page 237

NOTES:

If the buffer is not empty, one word at a time is read
from the buffer and it is converted from display code

‘to BCD advancing OUT as each word is read., Whenever

the last byte of a word is zero, the line is padded
with spaces up to 120 characters.

When a full line of data is made up, a jump to 3001
is taken (WRITE CODED RECORD) to write the record.
The same write and parity checking operation is done
here as in the binary write.

When a good write is completed the block count is
advanced, the channel released, and more data is
written until the buffer is empty.

WRITE FILE MARK

1,

2.

If a file mark is requested, a jump is taken from
CIO Write Function to WRITE FILE MARK.

This routine simply finds the tape, makes sure it is
ready, writes a file mark, advances the block count,
and releases the channel.

An end-or-record write must be issued to empty a buffer
which does not contain a full block of data.

Binary tape records has a maximum size of 10008 central
memory words.

BCD tape records are all 120 characters (one print line).
Each record is padded with spaces to maintain the proper
size,

- 77 =

Page 238

ENTER 2WT OVERLAY
WRITE BINARY TAPE

Y
MODIFY OVERLAY FOR EQUIPMENT pnnmerensj

Y
s, |5 THERE ENOUGH DATA IN THE ﬂ——-———){is AN ENO RECORD FUNCTION REQUESTED 7 |
CIRCULAR BUFFER FOR A FULL BLOCK ?
YES
YES
i f
|
\" CONSOLE MESSAGE—-TAPE XX NOT READY
REQUEST CHANNEL FOR TAPE UNIT NO | RELEASE CHANNEL YES
READ TAPE STATUS NO PAUSE FOR MONITOR
IS TAPE READY ? READ RA
YES IS ERROR FLAG SET ?
|
%
CLEAR CONSOLF MFSSAGE
WRITE DATA ON TAPE NO J RELEASE CHANNEL
READ TAPE STATUS ’1 SET PAUSE BIT IN {RA)
IS PARITY CHECK OK 2
YES
! J,
ADVANCE BLOCK COUNT i DAYFiLE MESSAGE—TAPE XX WRITE PARITY ERROR
NO | RELEASE CHANNEL PAUSE FOR MONITOR YES
UPDATE BUFFER OUT ADDRESS READ RA
WAS BLOCK A SHORT BLOCK ? 1S ERROR FLAG SET ?
YES | NO
{
NO \L"
SET BUFFER INsQUT sFIRST ——-—{ HAS PAUSE BIT BEEN CLEARED IN (RA) ? J
ExiT YES
f
REQUEST CHANNEL FOR TAPE UNIT

BACKSPACE TAPE ONE BLOCK

- 78 -

Page 239

ENTER 2WT OVERLAY
WRITE BCD TAPE

Y

—
LMODIFY OVERLAY FOR EQUIPMENT PARAMETERS]

\/

——-e-{ IS AN END RECORD REQUESTED ? }io—

YES

t
"/

SET BUFFER IN=0UT =FIRST 1

NO
———-—){ IS THERE DATA IN THE CIACULAR BUFFER 2 1
[

J

YES

READ ONE WORD FROM CIRCULAR BUFFER

ADVANCE BUFFER OUT ADDRESS
IS LAST BYTE OF BUFFER WORD ZERG p

CONVERT DISPLAY CODE TO BCO CODE BY TABLE LOOMUS

i NG
|

y

HAVE 120 CHARACTERS BEEN CONVERTED P |

S "
-—-)[PAD LINE WITH SPACE
L

S TO i20 CHARACTERS l

i
_f

f YES
?

Y

REQUEST CHANNEL FOR TAPE UMIT
READ TAPE STATUS
Is 1aPe ReADY ?

AGE -
NO CONSOLE MESSAGE - T

t
E————————————— RELEASE CHANNEL

NO

PAUSE FOR MONITOR

I ves

v

CLEAR CONSOLE MESSAGE

WRITE ONE BLOCK {EVEN PARITY)
READ TAPE STATUS

1S PARITY CHECK OK P

READ RA
IS ERROR FLAG SET

APE XX NOT READY

?

i YES

v

ADVANCE BLOCK COUNT

RELEASE CHANNEL
UPDATE BUFFER OUT AODRESS

NO
-———{ HMAS PAUSE BIT BEEN

L SET PAUSE

j RELEASE CHANNEL

BIT IN (RA)

it

I
|

l

'

DAYFILE MESSAGE - TAPE XX WRITE PARITY ERROR

READ RA

;
| PAUSE FOR MONITOR
> st
!
i IS ERROR FLAG SET 7

NO

CLEARED IN (RA) ? _]

YES

REQUEST CHANNEL FOR TAPE UNIT

] | BACKSPACE TAPE

ONE BLOCK

- 79 -

Page 240

ENTER 2WT OVERLAY
WRITE FILE MARK

Y
[MOOWY OVERLAY FOR EQUIPMENT PARAMETERS]

CONSOLE MESSAGE~TAPE XX NOT READY
) REQUEST CHANNEL FOR Tapg umiT | NO RELEASE CHANNEL N
READ TAPE STATUS NO | PAUSE FOR MONITOR YES
IS TAPE READY ? READ RA
YES IS ERROR FLAG SET ?

CLEAR CONSOLE MESSAGE
WRITE FILE MARK
ADVANCE BLOCK COUNT
RELEASE CHANNEL

ExiT

- 80 -

Page 241

Line Limit

The seventh argument on the RUN card for the Chippewa FORTRAN compiler
is an octal line limit. This limit applies only to the standard output
file ("OUTPUT") of an object program. If not specified on the RUN card,
the line limit is set by the compiler to 10,0008. If, during the
execution of the object program, the number of lines written to the
output file exceeds the line limit, the job is aborted. The line

limit is checked by the execution time output routine OUTPUTC.

81

Page 242

CONTROL DATA GORPORATION

Development Division - Applications

ALPHABETIC PERIPHERAL PACKAGES

Chippewa Operating System

10/20/65

Page 243

VI,
VII,
VIII.

1X.

Table of Contents

Introduction

DMP

LBC

LoC

MSG

PBC

Program Partitioning
a) RUN modes

b) FORTRAN usage

¢) Machine language calls

18
21
27
29
33
34
35

38

Page 244

ALPHABETIC PERIPHERAL PACKAGES

INTRODUCTION

The packages described on the following pages may be called by a
central program. They are loaded into a peripheral processor from
either RPL (resident peripheral library) or PLD (peripheral library
directory). A central program, by setting the package name in left-
justified display code in RA+1, requests MIR to assign the package to
a free PP. Each package begins execution at location 1000 in the PP
and arguments are passed to it from the central proéram through the
lower portion of RA+1l. If the execution of the package is terminated
normally or abnormally the PP is released and must be reassigned when
it is needed again.

The last section of this narrative gives a few practical examples

about the use of some of the routines.

Page 245

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

DMP -- Storage Dump

To enter an octal dump of a requested area of central memory
into the OUTPUT file.

This package may be called by a control card or DIS console.
Three calls may be made:

a) no parameters - dump only exchange package
b) one argument - dump from RA to the specified address

c¢) two arguments - dump area between the two addresses.

1. Two checks made on the arguments passed through the
input register may cause a diagnostic:

a) terminal address < initial address
b) terminal address » field length

Either condition will cause a '""DMP ARG ERROR" dayfile
message and the control point aborted.

2. In the case that both parameters are equal, i.e.,
usually zero, the exchange jump area (first 16 words of
control point area) is set up as the dump address. The
title of the dump is changed to "DMPX."

3. The FNT is searched for a file of local or common and
assigned to this control point. The name must be OUTPUT
and the file on disk O with buffer status indicating
not busy (odd value). If no such file is found, an
entry of this type is made into FNT so that the dump can
be printed. The file status in either case is set to
148 (request coded write).)

4, TIf no OUTPUT file was found while searching FNT, then
the new file just added must have a track assignment.
A track is requested of MIR and when it is assigned the
number is inserted in the FST entry of the new file.

5. If the last reference to the file was a read operation, then
no dumping will be done, This prevents writing over
output data that may have been repositioned by the read.

6. The dump has a header of either DMPX, for an exchange
area dump, or DMP. for any other dump. Each central
memory word has an address relative to RA and 4 five
digit groups of data with two spaces between the address
and data and a space separating each byte. The peripheral
buffer spans . from 2000-7000 and is filled before it is
passed to the output file.

-2 -

Page 246

NOTES:

The dump address is incremented by one until the
terminal address specified in the input register is
reached., A return jump is issued to dump the PP buffer
into the OUTPUT file when it is full or the terminal
address is encountered.

The PP buffer is written on disk O a full sector

(100, words) at a time until short sector is found.

It ié written on the disk followed by a file mark and
then channel 0 is released, The buffer input address is
reset so that more data may be inserted if the terminal
address has not been reached. Every write to the disk is
terminated by a file mark but the sector number is not
incremented. This will prevent a file from ever

running away but still allow more information to erase
the file mark and reside within one file.

After the formatted octal dump has been successfully
passed to the OUTPUT file, the buffer status byte in
FST is changed to 158 (completed coded write). Then
the PP is released.

Successive identical lines are not suppressed.

One print line contains only an address and a central
memory word,

Page 247

1000

1100
1200
1300

1560
1600
1700
1740
2000
2030

1000

1100

1200

Main Program

DMP Routines

1560, 1100, 1200, 12-760, 100,
530, 13-760

Search for Output File 740, 750, 12-760, 100

Enter Output

File 6-760, 1300, 1600

Enter Line in Buffer 1600

Process Exchange Area

Dump Buffer

740, 1700, 700, 1740, 750

Enter Control Byte 6-760

Write Sector
Disk Buffer
Begin Output

File 15-740, 750, 12-760, 100

Direct Core Cells

P10/14
P50/54
P55
P60/61
P62/63
P74
P75
POl
P10/14
P20/24
P45
P50/54
P57
POl
P10/14
P20/24
P45
P57
P60/61

CP Status

Input register contents

RA

First argument

Second argument

CP address

Input register address

File type (local or common)
FNT entry

FNT status later FST entry
Last buffer status from FST
Input register contents

FST address

Central memory word count
PP message buffer contents
FST entry A
Last buffer status from FST
FST address

First argument

-4 -

Page 248

1300

1560

1600

1700

1740

2030

P62/63
P64
P10/14
P60/61
P64

P60/61

P62/63
P55
P74
POl
P02
P20/24
P64
P65
202
P10/14
P20/24
P01
P20/24
POl
P10/14
P20/24

Second argument

IN address for PP buffer
Central memory word to be dumped
First argument

IN address for PP buffer
First argument

Second argument

RA

CP address

Central memory word count
Sector length

FST entry

IN address for PP buffer
OUT address for PP buffer
Disk status byte

Message buffer

FST entry

Disk status byté from FST
FST entry

FNT index

FNT entry

FNT status

Page 249

CAYFILE MISSAGE — OmtP
ASORY CONTROL POINT
REILEASE PPU

®

i
J

| IS TERMINAL ACCRESS GREATER TRAN FIELD LENGTR 2 — -
L]
NG i
; i
L f
- ~ ! ENTER IMTIAL AND TERMINAL ADDRESS FOR
YEL | Scanln FNT FUR GUTPGT FiLE ASS(GNES TO TmiS CONTROL POINT 1 _ .
T i theee N GUTeLT FiLE ? RET——] EXCHANGEZ PACKAGE AT CONTROL PGINT
Pln TRERE AN TPLT Fio P -
; { nERER AN Meree c . i JCDIFY HEADLINE GF PPU BUFFER TO DMPX
i i NO
| !
i H
M
Il 1
% i no RELZASE CHANNEL
| | RELEASE PPU
! i i
g ;
; W
; ENTER AN GUTPUT FILE IN TnE FNT
! RELEASE CHANKIL !
N L H
i Il
i {
| \!,
i | HEGUEST FST CrANNEL | vzs RELEASE CHANNEL
-
ral
! IS AN EQUIPMINT ASSIOGNED TO THAE QUTAUT FILE 2 I RELEASE PPU
.
* | NO N
H i -
i
¥
1 YES
[IS THE OUTPUT FILE BZING USED 7 ;
NG
Al
i TRACK [SNTER TRACK NUMSER
! | IN FILE STATUS WORD
L
7
" 1] |
- - YZ§ RELEASE FILE STATUS [
WAS LAST FilE N RZIAD wOSE 7 | { i
e e P! RELEASE PPU j 4
i NG — '
|
Vi
f |
I READ NEAT WORD TO GE DUMPED |
)i ENTZR A LINE OF CODING IN PPU BUFFER CONSISTING GF A
; 6 0IGIT ADCRESS AND 4 FiVE DiGIT GROULPS OF DATA YES
i RAS BUFFER LIMIT BEEN RCACHED 7 E
i i
| | NO- ;
f \ |
| v i
|) it
; NO | AODVANCE CUNP .ACOARZISS '
MO AUVANCE Dul?.ALOR i { RJ DUMP PPU BUFFER
HAS TEAMINAL ADORISS GEZEN AEACHED LJ L
i YZs
|
v/

CLEZ4R NEXT wWORD IN PPU

v
I RJ SutP PPU BUFFIR |
H J
7
i
|
N/
A4 UPDATC FiLE STATUS WOARL N FST

RELEASE PPU

Page 250

CMP SUSAGUTINE
DUNP PPU BUFFER

|
!

|
\

RIQUEST CHANNEL ©

RESCYT BUFFER OUTPUT ADCRESS

N/

--:’l IS THERZ SUFFICITNT DATA iN TRE BUFF

ER FOR A FULL SECTOR ?

<
w

2

!
|

v/

!NO

1
Vi

POSITION DiSK TO NEXT SECTOR
WRITE FULL SECTOR
CE BJUFFER OUTPUT ADDRESS

T

t POSITION DISK TO NEXT SECTOR
WRITE SHORT SECTCR
WRITE FILE MARK

\if

! RELEASE CHANNEL
[RESET BUFFER INPUT ADDRESS

EXIT

Page 251

ROUTINE

PURPOSE

GENERAL

METHOD

EXU - Execute Compiled Program

To locate and read a specified file from the disk into central
memory. The appropriate exchange jump package parameters are
set up and then the central processor is told that the file is
ready for execution.

After a file has been compiled and stored on the disk, EXU is
used to load a file into central memory beginning at the calling
program'!s reference address. The location of the name of the
file (left-justified display code) to be called and executed

is set in the lower 18 bits of the input register.

l. The error flag at the control point is checked. If it is
set, the package is released so that error processing may proceed.

2, The file name is read in by adding RA and the lower 18 bits
of the input register. FNT is searched for the file name and
if it 1is located a check is made on its control point assign-
ment.,

3. When the file is located, its type from the FNT is checked
for input and output. Only common or local files may be executed.

4. The FST entry must reflect that the file is on disk and has
been used.

5. A dayfile message of "PROGRAM NOT ON DISK" is sent if:

a) The file name was not located in the FNT.

b) The file was not assigned to the calling control point.

c) The file has either an input or output status.

d) The file has an equipment other than disk assigned,
i.e. it is a card file or tape file.

e) The file has not been used, i.e. no track has been
assigned. This status is reflected by checking the
~beginning track byte in the FST for non-zero.

6. A request for channel 0 is made and the disk is positioned
to the beginning track and sector for the file.

7. The file is read and stored one sector at a time into central
memory beginning at the control points! reference address. '
Encountering a short sector or reaching the field.limit causes
the reading of the file to be terminated.

8. If the field limit was reached before the end of the file,

a dayfile message of "PROGRAM TOO LONG" appears and the control
point aborted.

- 8 -

Page 252

NOTES

9. Thee:change jump package in the control point area is
updated to permit execution of the newly loaded program.

a) First the sense lights and switches from word 26 of the
control point are stored in RA.

b) RA+1 is read and then cleared.

¢) P in the echange jump area is set to the number of para-
meters from RA+1.plus 3. The field length (in hundreds)
from word 20 is stored in AQ.

d) RA and FL remain the same values, but all of the other
registers are cleared.

10. The central processor is then requested by a MIR code
15g. When this request has been processed, the PP is released.

1. The calling program is completely overlayed by the file
read in off the disk.

2. Sense lights and switches are passed from the calling
program to the new program through RA.

3. The field length specified in RA of the called program
is ignored. Only the field limit assigned initially to the
control point is checked.

Page 253

EXU Routines

.1000 Main Program 12-760, 100, 1100, 1200,
1300, 15-760, 531, 13-760

1100 Search for file 1160, 1064

1200 Read program from disk 740, 700, 400, 750

1300 Clear exchange area

Direct Core Cells

1000 PO6 beginning track number of file
207 Sector number
P10/14 CP(20) - status word
P20/24 contents of FST entry
P50/54 ' contents of input register
P55 RA
P56 FL
P57 FST status
P74 control point address
P75 address of input register
P7200/7702 disk buffer

1100 POl control point assignment
P10/14 ' FNT entry, later FST entry
P20/24 File name in left;justified display code
P30/34 FNT status

- 10 -

Page 254

1200 POl control point assignment

P04 RA (in hundreds)
P05 FL (in hundzeds)
P06 track number
PO7 sector number

" 1300 POl control point assignment

| P10/14 zerqed, later each word of exchange area

P20/24 CP (26), later RA+1
P30/34 CP (20)

w 11 =

Page 255 -

RZAD RA AND FL FRG
IS ERROR FLAG SET 7

M CONTROL POINT AREA | YES

_
RELZASE PPU

!
i
J

NO

|
v

READ A
READ FILE NAME FRGM ARGUMENT LOCATION
SEAKRCH FNT FOR FILE NAME

UMENT ADORESS FROM PPU INPUT REGISTER

IS NAMED FILE ASSIGNED TO THiS CONTROL PCINT ?

NO

g el

YES

DAYFILE MESSAGE —PROGRAM NOT ON DISK
ABO0RT CONTROL POINT
RELEASE PPU

\:/
) T)YES
IS AN EQUIPMENT NUMBZER ASSIGNED 7 f—
NG
.
Yy
5
S LNC
;

RZGQUEST Channel O
{'OSITION DiSK FILE.TO BEGINNING TRACK AND SECTOR

Y
READ CiSK DATA TO A SmORT SECTGR OR FIELD LIMIT
WaS FL REACHED 7

BEGINNING AT RA

NO

=

| RELEASE CHANNEL
CLEAR EXCHANGE AREA

SET P TO LOWER SiX BITS OF (RA+i) PLUS 3

ENTER FL iN AD
CLEAR RA AND RA I

I

is
Al

REQUEST CENTRAL PROCESSOR |
RELEASE PPU

-12-

——

RELEASE ChANNEL
DAYFILE MESSAGE ~PROGRAM TOO LONG
ABORT CONTROL POINT

RELEASE PPU

Page 256

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

CLL -- Central Library Loader

To load one or more overlays into an area specified by a
central memory calling program.

The location (BA) of the overlay parameters is set into the
lower 18 bits of the input register. The location (BA)

BA FWA
BA+1 LIMIT
BA+2 NAME ADDR
:
BA+n42 § O==m=mmcemm e ee e 0
FWA - beginning address for first overlay
LIMIT - last address for group of overlays
NAME - name of overlay (left-justified display
code)

The address of where the overlay begins will be returned in
the lower 18 bits of its location in the BA area (ADDR). If
it cannot be loaded because the length exceeds LIMIT, an
address of 777777, will be inserted. The address will remain
cleared if the ovgrlay cannot be located. A zero word must
terminate the parameters.

1. The RA and FL are read from CP(20) and stored in hundreds.

2. From the input register the location of BA is read and
incremented by RA so the first parameter is read.

3., When the LIMIT is read, a check is made to insure that
it is within the field length. If LIMIT exceeds Fl, the
PP is released and no diagnostic results.,

4. Fach argument is read and checked for zero. If it is
zero, then the list is assumed to be exhausted,

5. The resident subroutine library (RSL) is first searched.
The first entry in RSL is checked against the name of
the overlay. If a match is not found, then the field
length of the RSL entry is added to the beginning address
of RSL, in order to find the next subroutine in the table.

6. If the overlay is found in RSL, the length is added to
FWA and that total may not exceed LIMIT. If it does, then
77777_ is entered into the beginning address area of that
overlay (ADDR). The next argument will be read and
processed.

- 13 -

Page 257

NOTES:

10.

11.

12,

13.

14,

FWA will reflect the next available location for loading
§o it is stored as ADDR for that argument. The program
is transferred 100, words at a time and FWA is increased
by the number of words stored until a short record is
encountered. A zero length record is not transmitted.

FWA is increased to the next available central memory
address and then the next argument is processed,

If the name is not found in RSL then the central library
directory (CLD) is searched, The format of this table
is:

NAME (DISPLAY CODE) | SEC [TRACK
42 6 12

It is terminated by a zero word or table limit.

When the overlay is found to be in CLD, then FWA is
stored as the overlay's beginning address. Channel 0
for the disk is requested and it is positioned to the
proper track.

One sector at a time is read and its length recorded.

If a zero length is found, it is not transmitted. If
the sector length exceeds the number of words to LIMIT
then they are not stored and 77777, is set as the
beginning address. Track repositioning is checked after
every read. If the short sector is encountered before
the LIMIT exceeded, it is stored and FWA is updated to
be the next available program address. Another argument
is then processed.

If the name was not found in the RSL or CLD, then the

job file is read. If the package is found in the FNT,
then it must be assigned to the calling program's control
point and be on disk 0. If it is not, then the next
argument is processed,

When a file is found in the FNT, the same disk operations
apply as those with CLD.

When an argument is found to be zero then the next
available program address (FWA) is zeroed. BA is also
cleared to inform the calling program that CLL was
finished. Then an MTR code of 15_, requesting the
control processor is made and the PP released.

The FORTRAN compiler uses CLL to load its subroutines.

All files loaded by CLL are compiled to execute from 0.
Therefore, if a program wanted to take advantage of this
feature, all K portions of the instructions must be
modified for a different starting point.

The last overlay loaded by CLL is followed by a zero

word,
- 14 -

Page 258

CLL Routines

1000 Main Program 1101, 1201, 15-761, 12-761,100

1100 Read arguments 12-761

1200 Process argument 1301, 1501, 1601
1300 Search RSL

1500 ~ Search CLD 1601

1600 Enter program from disk 741, 701, 401, 751

Direct Core Cells

1000 P10/14 . CP address
P20/24 Argument
P50/54 Contents of Input register
P55 RA in hundreds
P56 FL
P57 Constant 100
P60/61 FWA - next available program address
P74 CP address
P75 Address of Input register
1100 P10/14 FWA and later LIMIT
P50/54 Contents of Input register
P55 RA
P56 : FL
P60/61 Location of BA
P62/63 FWA
P64/65 LIMIT
1200 POl CP assignment
P06 Track number
PO7 Sector number
P10/14 FNT entry
P20/24 Contents of Input register
P30/34 o FNT status
P74 Address of Input register

- 15 =

Page 259

1300 PO1 Number of words read
P10/14 RSL entry
Pl4 Total number of words transferred
P20/24 Contents of Input register
P30/34 RSL status
P55 RA
P57 ‘ Constant 100
P62/63 FWA, next available program address
P64/65 LIMIT
P7200/7302 Input buffer
1500 P06 Track number
PO7 Sector number
P10/14 CLD entry
P20/24 Input register
P30/34 : CLD status
1600 POl Sector length
P04/05 Number of words to LIMIT
P06 : Track number
PO7 Sector number
P20/24 Input register
P55 RA
P60/61 BA
P62/63 FWA
P64/65 LIMIT

- 16 =

Page 260

IA)

LL PACKAGE
CENTRAL LIBRARY LOADER

READ RA AND FL FROM CONTROL POINT AREA

READ ARGUMENT AREA AGDRESS FROM PPU INPUT REGISTER

READ STARTING ASCRESS ARD LIMIT AJDRESS

it
X

e
l IS LIMIT ADORESS GREATER THAN FIELD LENGTH 7 } YES

NO

At

YeS

NO

\/
READ NEXT ARGUMENT

¥
1
% IS NEAT ARGUMENT ADSRESS OVER FIZLD LENGTH 2 I

\/
> RELEASE PPU l

CLEAR NEXT PROGRAA ADDAZSS LOCATION
CLEAR FIRST ARGUMENT

IS ARGUMENT A EBLANK WORAD ?

REQUEST CENTRAL PROCESSOR

NO RELEASE PPU
\i
SEARCH RSL FOR ARGUMENT NaME | YES
IS PACKAGE IN RSL ?
I \
NO NO
—i WILL PACKAGE EXCEED LIMIT ADDRESS 7]
‘ YES
v
l SET LIMIT FLAG IN ARGLMENT LOCATION ‘!—}G\}
L J O/
STORE INITIAL PROGRAM ADDRESS IN ARGUMENT LOCATION
> COPY PROGRAM
ADVANCE PROGRAM ADDRESS
\'
M
SEARCH CLD FOR ARGUMENT NAME | YES
IS PACKAGE IN CLD ? I
NO V)
STORE INITIAL PROGRAM ADDRESS IN ARGUMENT LOCATION
REQUEST CHANNEL O
Ay NG POSITION DISK FILE TO BEGINNING OF PACKAGE
OPY PACKAGE UNT £
\o | SEARCH FNT FOR ARGUUINT NAME :m':u:;_ ADEDRUESSILR::z:ZDS;CTOR OR LIMIT ADDRESS
ASSIGNED TO THIS CONTROL POINT
IS PACKAGE IN FNT ? YES
YES
\
f SET Li4T FLAG IN ARGUMENT LOCATION
NO 1 YES RELEASE CHANNEL

IS PACKAGE ON DiSK FILE O ? I—‘

RELEASE CHANNEL

- 17 =

ADVANCE PROGRAM ADDRESS

Page 261

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

LBC -- Loading Binary Corrections

To load binary cards from the INPUT file into central
memory.

The lower 18 bits of the input register contain a beginning
address for the card loading. If the address is zero, the
binary cards. are loaded beginning at RA. It may be called
via a control card or from a DIS console.

1.

From the control point status word (20), the RA and FL
are read.

Each entry in the FNT is searched for type local and
assignment to this control point.

If no entry is found, then the PPU is released without
a diagnostic.

When an entry is found, the file name is checked against
INPUT. 1If it does not match, the search of FNT continues.

After the INPUT file is located, the FST entry is
checked. The file must be on disk 0 or the PPU is
released,

The last buffer status is checked. If it is even, then
the file is being used and no action will be taken. If
it is odd, then the file has no operation begin performed
on it, so the status is decreased by one to make it
active. When another PP wants to access this file, the
buffer status will reflect an even number informing the
requesting PP that the file is being acted upon.

The disk .is positioned to the track stated in the FST and
one sector is read into PP memory. After each read,

a check is made for file mark and data exceeding field
length., If a file mark is encountered, the buffer status
is made odd and the PP released. A dayfile message

"LBC RANGE LIMIT" appears if the field length would be
exceeded thereby also causing the buffer status to be
changed and the CP aborted.

After the sector read is checked, it is transferred to
central memory at the location specified from the input
register.,

Only one record will be read from the INPUT file so when

a short sector is encountered, the buffer status is
changed and the PP is released.

- 18 -

Page 262

1060

1200

1000

1200

LBC Routines

Main Program) 1200, 740, 700, 400, 750,
12-760, 530, 13-760
Search for Input file 740, 12-760, 750

Direct Core Cells

POl Sector length

‘Pﬂé . Track number

PO7 Sector number

P10/14 CP status (word 20)

P20/24 FST entry

P50/54 Contents of input register
P55 RA (in hundreds)

P56 FL

P74 CP address

P75 Address of input register
P7200/7702 Disk buffer

PO1 File type of local and CP
P10/14 FNT entry

P20/24 FNT status

P20/24 FST entry

P50/54 Contents of input register
P57 FST address

- 19

Page 263

L3l PACKAGE
LOAD BINARY CORRECTIONS

READ RA AND FL FRCM CONTROL POINT AREA

READ INITIAL DATA ENTRY ADDRESS FROM PPU INPUT REGISTER
' SEARCH FNT FOR iNPUT FiLE

iS INPUT FILE ASSIGNZD TO THIS CONTROL PGINT 7

| YES

\;I
NEQUEST FST CHANNEL
READ FILE STATUS WORD

;
NO RELEASE PPU]
. —

IS AN EGUIPMENT NUMBER ASSIGNZD ?

\
RELEASE CHANNEL

NO
\/
B IS FILE bEING USED ?‘PLS
NO

|
SET FILE STATUS WORD TO ACTIVE STATE
l RELEASE FST CHANNEL

.

T
!
f
i
1

4

RELEASE PPU

EEQUEST CHANNEL O l NG

HAS FiLE BEEN USED ?
) i YES

\
POSITION DISK FILE TO NEXT TRACK AND SECTOR

]

YES

\
, UPDATE FILE STATUS WORD

READ SECTOR TO PPU STORAGE
WAS SECTOR 4 FILE MARK ?

NO

Vi
ADVANCE FILE STATUS TO NEXT SZCTOR YES

RELEASE CHANNEL O
,LRELEASE PPU

DAYFILE MESSAGE—~LBC RANGE LIMIT
UPDATE FILE STATUS

WILL DATA EXCEED-FIELD LENGTH ?
‘ NO
!

vy

NO’ STORE DATA IN CENTRAL STORAGE

L 1 ADVANCE DATA ADDRESS
WAS SECTOR A SHORT SECTOR P

YES

7

UPDATE FILE sTATusj
RELEASE CHANNEL O
RELEASE PPU

. - 20 -

RELEASE CHANNEL O
ABORT CONTROL POINT
RELEASE PPU

Page 264

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

1LOC -~ Load Octal Corrections

To make octal corrections to a program already residing in
central memory,

Three calls may be made to this package:

a)

b)

A call without parameters will change the central memory
words specified on cards in the next INPUT record.

With one parameter, central memory is cleared from RA
to the address specified and the cards in the next
INPUT record are assembled,

Two parameters cause the memory between the two arguments
to be cleared and then the correction cards to be read.

RA and FL are read from CP (word 20).

The arguments, beginning address and terminal address,
of where the corrections are to be inserted are checked,

a) First greater than second.
b) Second greater than field length.

If the two arguments are not equal, the central memory
contained within the two is cleared.

The FNT is searched for a file INPUT associated with this
control point and of local or common type, If one is
not found, no diagnostic results, but the PP is released.

The proper file must be on disk file 0 and have an odd
buffer status (not busy). If either condition is not
met, then the PP is released.

By decreasing the buffer status by one, this control
point puts the file in active status.

Channel 0 is requested for the disk which is positioned

to the proper track from the FST, The PPU buffer is
filled with the octal correction cards from INPUT until
the buffer is either full or a short sector is encountered.

The cards have trailing spaces suppressed by a zero byte
and are written in 100, word sectors. Since the buffer is
5000, PP words long, many sectors may be read. Each
sector has a two word control byte which is not useful
data to the program. 1In order to have all the useful
data packed, the last two words of the previous sector
are temporarily stored out of the buffer and the next
sector is read over their initial location. When the

-21-

Page 265

NOTES:

9.

10,

11.

12,

13,

control bytes have been used, the two words are restored
to their buffer positions and the last two words of the
sector just read are temporarily stored out of the
buffer,

When the buffer is either filled or all the correction
cards read, INPUT is put into an inactive state (status
is odd) so that another PP may use it,

Each octal correction card is unpacked into a character
string buffer (one character per word). A zero byte
terminates the unpacking of one card.

When the line buffer is loaded, the address is assembled,
The address must be between column 1 and column 7. Spaces
are suppressed and leading zeroes are not necessary, If
a non-octal digit appears, the address is not assembled
and no diagnostic is given,

After the address is assembled, the data word is packed,
The data must begin after column 7 and contain 20 digits,
If a non-octal digit appears the word is not assembled
and no diagnostic is given,

The assembled address is checked against field length and
is not inserted into its position if it exceeds FL. The
assembled word is then entered into its assembled address.

If corrections are to be made to a binary deck, LBC
(load binary cards) should be used before LOC. LOC only
makes changes to programs already. in central memory.

Central memory may be cleared using LOC only if an
empty record appears in the INPUT file.

On the correction cards, the address must end before

column 7. Spacing is : not important and leading zeroces
may be dropped.

- 22 -

Page 266

LOC Routines

1000 Main Program 1500, 1100, 1200, 1400, 1600
1300, 12-760, 100

1100 Search For Input File 12-760, 100, 740, 750

1200 Load Buffer 740, 700, 400, 750

1300 Assemble Word '

1400 Unpack Character String

1500 Clear Storage 530, 13-760

1600 Assembled Address

Direct Core Cells

1000 P20/24 FST entry
P4LO/44 Assembled word
P50/54 Input register
P55 RA (in hundreds)
P56 FL (in hundreds)
P60 Input buffer address
P61 ‘ OQutput buffer addréss
P63/64 Assembled address
P75 Input register address
1100 POL Local type and CP assignments
P10/14 FNT entry
P20/24 FNT status
P20/24 FST entry
P50/54 Input register
P57 FST address
1200 POl Sector length
P06 Track.number
PO7 Sector number
P20/24 FST entry
P46 Data byte
P47 Data byte
P60 Buffer input address

P2000/7000 Buffer

-23-

Page 267

1300

1400

1500

1600

POl

P02
P40/44
P62
P60
P61
P62
P7200/7400
P10/14
P50/54
P55
P56
P62/63
PO1
062
P63/64

Octal digit
Byte address

Assembled word
String address
Input

Output

String address
String buffer
Zero word
Input register
RA

FL

First argument
Octal digit
String address

Assembled address

- 24 -

Page 268

LOC PackaGE
LCAD CCTAL CORREZCTIONS

U

READ RA AND FL FRUM CONTRGL POINT AREA YES

READ ARGUMENTS FROM PPU INPUT REGISTER
Is FiRST ARGUMENT GREATER THAN SECOND ARGUMENT ?

DAYFILE MESSAGE~-LOC ARGUMENT ERROR
ABORT CONTROL POINT
RELEASE PPU

NG
YES [
1 ARE ARGUMENTS EGUAL ?1
NO
\
— = 1 YES
l IS SECOND ARGUMENT GREATER THAN FIELD LENGTH 7 }——-——9-
NO
\

CLEAR CENTRAL STORAGE FRGM FIRST ARGUMENT
ADDRESS TO SECOND ARGUMENT ADDRESS

7

SEARCH FNT FOR AN INPUT FilE NO
1S THERE AN INPUT FILE ASSIGNED TO THIS CONTROL POINT ?
YES
\iy
pi
REQUEST FST CHANNEL YES

RELEASE PPU
{ revesse peu |

READ FILE STATUS WORD
IS AN EQUIPMENT NUMEER ASSIGNED 7

NO

—— 1 Yes

|
>t RELEASE FST CHANNEL]

Lxs THE INPUT FILE GEING USED ?)
NO

v/

RESERVE FiLE ‘
RELEASE FST CHANNEL

/
REQUEST CHANNEL O NO

RELEASE FILE STATUS
RELEASE CHANNEL O

Has FILE BZEN USED ?
YES

\
YES | POSITION DISK FILE TO NEXT SECTOR

READ SECTOR TO PPU BUFFER

RELEASE PPU

UPDATE FILE STATUS

WAS A FILE MARK READ ?
NO
Wi
1 YZS
LIs PPU BUFFER FuLL ? [
NO
v -
NO
‘-—-[_was A SHORT SECTOR RZAD P
YES
\/

RELEASE FILE STATUS

RELEASE CHANNEL O

i’

RELEASE CHANNEL O

—25-

“1

YES

NO
[iS PPU BUFFER EMPTY P }—)@ (NEXT PAGE)

{LOC conTinuED)

Page 269

Y

LC;.EAR LINE BUFFER

Y

N§ HAS END OF BUFFER DATA BEEN REACHED ?
. YES

/

YES
WAS LAST. SECTOR A SHORT SECTOR ?} -
= % B

s

REQUEST CHANNEL O
RESET PPU BUFFER ADDRESS

YES | PosiTioN DIsK FILE To NEXT SECTOR
READ SECTOR TO PPU BUFFER
WAS A FILE MARK READ ?

NO
o LYES UPDATE FILE STATUS
Lxs PPU BuFFER FuL 2 | RELEAiE CHANNELUO
NO
. Y
NO
-‘-{Jas A SHORT SECTOR READ ?

YES

RELEASE FILE sTATUS L >(1S PPU BUFFER EMPTY ?
RELEASE CHANNEL O I g
NO

RELEASE PPU

-‘_ﬁiﬂPM‘,K NEXT WORD INTO LINE BUFFER I
.

YES
LHAS LINE BUFFER LIMIT BEEN REACHED 7
NO
NO ==
-‘—*——!ﬁss LAST WORD END IN A BLANK BYTE ?
YES
Y
ASSEMBLE OCTAL DIGITS IN FIRST SIX CHARACTER POSITIONS OF LINE vES
SKIP SPACES ﬁ\@
IS THERE A NON-OCTAL CHARAGTER IN FIRST SIX POSITIONS 7 I
NO
Y
STORE ASSEMBLED ADDRESS FOR DATA ENTAY
ASSEMBLE 20 OCTAL OIGITS BEGINNING IN POSITION 7 OF LINE BUFFER | YES CA)
SKIP SPACES
1S THERE A NON - OCTAL CHARACTER BEFORE 20 DIGITS 7
NO
X YES
[IS ASSEMBLED ADORESS GREATER THAN FIELD LENGTH ? F ,@
NO

ENTER ASSEMBLED WORD AT ASSEMBLED ADDRESS

;

- 26 =

Page 270

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

MSG - Dayfile Message

To enter messages from a central memory program into the
dayfile,

This package checks the legality of the characters to be
displayed and transmits them from central memory to this

PP's message buffer. The lower 18 bits of the input register
contains a beginning address of the message to be displayed.

1.

The field length from CP(20) is read and the argument
address of the message must be in bounds.

The message is checked character by character for legal
display codes (0-60_,) and if all are legal, they are
stored in the message buffer area of the PP.

" A dayfile message "MESSAGE FORMAT ERROR" appears if:

a) The argument address is not within the field length.
b) There is an illegal character in the message.

¢) The message length is greater than 6 central memory
words.

. In CP(22) there is a count of the total number of

messages sent to the dayfile from ihe job assigned to this
control point. If more than 100, messages have been

sent, a dayfile message of "MESSEGE LIMIT" appears and

CP aborted,

A MTR code of 01 (dayfile message) is sent to the PP

resident and after it has been processed, the PP is
released.

- 27 =

Page 271

MSG PACKAGE
DAYFILE MESSAGE

T

|
i
i

|
y
READ ARGUMENT ADORESS FROM PPU INPUT REGISTER

YES

READ FIELD LENGTH FROM CONTROL POINT AREZA

IS AGRUMENT ADDRESS GREATER THAN FIELD LENGTH 7
| NO
|

V7

COPY MESSAGE FROM ARGUMENT ARZA TO PPU MZSSAGE BUFFER | YES

DavFILE MESSAGE - MESSAGE FORMAT ERROR
ABORT CONTROL POINT
RELEASE PPU

ARE THERE ANY ILLEGAL CHARACTER CODES 7

['no

Y

1 YES

Looss MESSAGE LENGTH EXCEED BUFFER LENGTH 7 [~———————————>> ABORT CONTROL POINT

“NO

%

RELEASE .MESSAGE TO DAYFILE
RELEASE PPU

-28-

DAYFILE MESSAGE - MESSAGE LIMIT

RELEASE PPU

Page 272

ROUTINE:

PURPOSE :

GENERAL:

 METHOD:

PBC - Punch Binary Cards.

To fommat an area of central memory and punch it in the form
of binary cards.

This package may be called by a control card or DIS console.
Four calls may be issued:

1.

2.

no parameters - a binary deck beginning at RA and terminating
gne address less than the field length specified in the

first word of the program. This call may be used to punch
either a central or peripheral program in binary form.

one argument - area between RA and the address are punched.

two arguments - first argument is initial address and second
is terminal address for a binary deck.

flagged - 400000g argument - initial address specified by
4000008 + address. Lower 18 bits of this address added to
it to form terminal address.

The initial address for the binary deck is read from the
input register.

A check is made for the special 400000g call. If the
eighteenth hit of the terminal address is set, then the lower
portion of the address (that left after 400000g is subtracted)
is set as the initial address. The lower 17 bits of this
location is added to the initial address and used as the
terminal address for the binary deck. Therefore, only a
limited amount of memory may be punched if the 18th bit

flag is set.

If the initial address is greater than the terminal address,
the package is released without a diagnostic.

If the initial and terminal addresses are equal, then the
lower 18 bits of RA is used as a terminal address. The
initial address is cleared so that the area between RA
and the FL-1 will be punched. :

When the initial and terminal addresses have been set up
properly, MIR is requested to assign the card punch to this
job. 1If no card punch is available, the processing must
walt on assignment.

Card punch assignment causes channel and synchronizer

references within the package to be modified according to
the entries from the EST,

- 29 -

Page 273

7. Since the card punch is generally the slowest piece of
equipment and PBC retains control of the PP until the
complete binary deck is punched, a pause for MTR to adjust
RA and FL during storage move is issued after every card is
punched.

8. "PBC RANGE ERROR" and control point abort result if the
terminal address ever becomes greater than the field length.

9. The punch buffer is loaded with data for the next card. In
column one is stored 7-9 punches and card length. The
data bytes are summed and stored in column two module 4095.
Column 79 is not used and the binary sequence number is
stored in column 80.

10. The punch must be ready or a console message '"PUNCH NOT
READY" is sent.

11. Ome card is then punched.
12, When the terminal address is reached, the package is

released so that one less than the terminal address words
are punched.

NOTES: 1. The flagged call is used by the Fortran compiler to punch a
deck in I mode.

- 3N -

Page 274

PBC Routines

1000 Main Program 1640, 1600, 1200, 1500, 1100,
1300, 1400, 23-760, 12-760, 100
1100 Sense CP status 17-760, 530, 13-760, 12-760, 100
1200 Request CP 22-760, 1100
1240 Sense punch ready
1300 Load Punch buffer
1400 Punch one card 13-740, 1240, 1440, 750
1440 Output one byte to punch
1500 Modify program for
equipment parameters
1540 - Channel modification table
1560 ‘Synchronizer modification
table
1600 Process RA length 12-760, 100
1640 Process flag length

- 31 -

Page 275

————

| P8¢ Packise
!
i PUNCH BINARY CARDS

\Vs

Nol REAC INITIAL AND TERMINAL ADDRESSES FROM PPU
us TERMINAL ADORESS <M OR GREATER 7

iNPUT REGISTER

TOVOCHT ves
v

FTOOTs

READ LOCWER 18 B8ITS FROM THIS STORAGE' LOCATION
INJTIAL ADDRESS TO FORM NEW TERMINAL ADORESS
ARE NEW INITIAL AND TERMINAL ADDRESSES EGUAL ?

} SUBTRACT e FF?OM TERMINAL ADDRESS AND ENTER AS INITIAL AODRESS‘]
AND ADD TO NEW ! YES

—] RELEASE PPU I
N .

| YES
J

’ NO
v
—‘-_,{ IS INITIAL ADDRESS GREATER THAN TERMINAL ADDRESS ?
NO
NO

T
IS INITIAL ADDRESS EGUAL TO TERMINAL ADGRESS P]

| YEs
i ‘f/ Fd

IS TERMINAL ADORESS 22RO ?

L NEAD LOWER 18 BITS OF (RA) AND ENTER AS TﬁFMiNAL ADDRESS | YES

J

'\I’ NO

i
|
(CLEAR INITIAL ADDRESS TO ZERo]

!

\ir

CONSGLE MESSAGE=~NO CP AVAILABLE

REQUEST MONITOR ASSIGN CP EQUIPMENT TO CGONTROL POINT’ NO

WAS EQUIPMENT ASSIiGNED ? '

PAUSE FOR MONITOR
READ RA AND FL

=] recease ey |

' YES

A\
MODIFY PACKAGE FOR EQUIPMENT PARAMETERS I
CLEAR CARD CGUNT ll

v

[PAUSE FOR MONITOR
READ RA AND FL
IS ERROR FLAG SET ?
['no
v

|
|
J | 15 earor Fuas SET ?

{ |
‘No
1"

IS TERMINAL ADDRESS GREATER THAN FIELD LENGTH r]
LYES
\

DAYFILE MESSAGE~—PBC RANGE ERROR
ABORT CONTROL POINT
RELEASE PPU

NG T

RELEASE PPU

US TERMINAL ADDRESS GRZATER THAN FiELD LENGTH?}L:S

[NO
A

LOAD PPU PUNCH BUFFER WiTH DATA FOR NEXT CARD
STORE CARD LENGTH AND 7-5 PUNCH IN COLUMN ONE

STORE CARD NUMBER IN COLUMN 80O

/ STORE MOD 4095 CHECK SUM IN COLUMN Two

]
DEQUEST CHANNEL FOR CARD PUNCH

!
READ PUNCH STATUS NO

1S PUNCH READY ?

|
|

YES
PUNCH ONE CARD !
RELEASE CHANNZL
HAS TERMINAL AODDRESS SEEN REACHED ?
| YES

]

i REQUEST MONITOR RELEASE CARD PUNCH
LRELEASE PPU

~] CONSOLE MESSAGE —PUNCH NOT READY]
C D—

- 32 -

Page 276

Program Partitioning

Introduction

Chaining is a method used to execute a program which exceeds
available storage or field length. The program is separated
into a main program and any number of segments which may be
called and expcuted as needed by the FORTRAN program. Both
the main progfam and segments may contain one or more sub-
routines and/qr functions. Overlays may be loaded (and
executed) or replace the calling program by appropriate
central program machine language action. '

- 33 -

Page 277

II.

RUN Modes

A copy of the compiled program or segment(s) is always left on the
disk. - Either may be called (by name) and executed separately. Each
partition (segment) including its subroutines must be separated from
the main program or other partitions by a record separator. Two
consecutive record separators must separate the last END statement
from the first data card or file separator,

A.

Cklain MOde - RUN(C,:.......)

Chain mode is comparable to 6 mode except that segments may be
assembled following the main program. That is, no listing is pro-
duced and execution is assumed unless compile errors are encountered.
The programs to be compiled must be a PROGRAM followed by one or
more SEGMENT(s) each separated by a record separator.

Batch Mode -- RUN(B,..v0v...)

Batch mode is comparable to S mode except that any combination

of one or more programs, subroutines, segments, or functions may
be compiled. Also, a listing of the source language is always -
produced and execution is not assumed., Each program and segment is
written on the disk as a file using the name specified on the
PROGRAM or SEGMENT card. Therefore, execution may be initiated

by a Program Call Card.

Page 278

III. FORTRAN Usage
A. Definition of Segment
Each segment must begin with the statement:

SEGMENT name (fl? f2’ f3,...., fn)
where name is an alphanumeric identifier for the segment. This
is the name that must be used when calling the segment

£, £, ..are file names of the files used any place in the

1 ’program. These file names must agree in number and
order with those specified for the main program. -’
All files used in the execution of the main program
and all segments must be specified on the PROGRAM
and all SEGMENT cards.

Compilation of segments and programs differ only in the following
respect;

1. Blank common is not cleared to zero by the object code
in a segment.

2. Buffer space and parameters are not initialized by the
object code in a segment. They are carried over from the
main program in order not to destroy amy input or output
when calling segments.

1

B. Calling a Segment
A segment is called by using the FORTRAN statement:
CALL CHAIN (name)

Where CHAIN is the subroutine that loads and initializes
execution of the called segment.

name 1is the identifier of the segment to be loaded and
executed,

Segments to be called by CHAIN may reside as a named file on the
disk, The only parameter to CHAIN must be the segment name,

C. General

1. Segments may be called from either the main program or
another segment.

2, Calling of a segment causes the segment to be loaded over the
calling program thus destroying the main program or segment
that issues the call.

3. Segments may be called more than once.

4, Parameters and communication between segments can be passed

only through the use of blank common.

- 35 -

Page 279

Each segment is compiled beginning with relative address
zero (RA = 0). ,

In order to match locations of blank common, all elements of
blank common must be described in the same order and number
in the main program and all segments or the length of

common must be declared on the RUN card.

- 36 =

Page 280

Example:

CHNTST, 1, 100, 40000

MODE 7.
RUN (B)
CHN.
7-8-9
* PROGRAM CHN (INPUT, OUTPUT, TAPE10)
wek COMON I, J, K, A(5), B(10)
READ 5, A
CALL CHAIN (S2)
END
7-8-9
* SEGMENT S1 (INPUT, OUTPUT, TAPE 10)
dek COMMON I, J, K, A(5), B(10)
WRITE (999, 10) B(10)
CALL CHAIN (S3)
END
7-8-9
%* SEGMENT S2 (INPUT, OUTPUT, TAPELO)
dok COMMON I, J, K, A(5), B(10)
CALL CHAIN (S1)
END
7-8-9
* SEGMENT S3 (INPUT, OUTPUT, TAPELO)
ook COMMON I, J, K, A(5), B(10)
END
7-8-9
7-8-9
Data Deck
6-7-8-9

* These statements must specify all file names even though they are not
referenced in the segment or program.
* All elements must be included in the list.

- 37 -

Page 281
IV. Machine Language Calls

Two peripheral packages are available for loading and/or executing
segments., One loads one or more segments., The other loads and
executes one segment or program destroying the calling program.

A. EXU

This package loads a program to replace the calling program and
initiates execution of the loaded program. The calling program is
destroyed.

1. CALL

The routine is called by setting certain parameters into
RA+1 of the calling program.

RA+1 = EXU00.........0LLLLLL
18 24 18 bits
when EXU is in display code,

LLLLL is the address of the argument. The argument
is the name of the central program to be loaded
and executed. The name is specified in display
code with trailing spaces.

2, Usage

After the monitor recognizes the request in RA+1 and

assigns a PPU to process the request, RA+1 is cleared to

zero by the PPU. At this point, the central program must ter-
minate itself normally in order to allow the PPU to load the
program. The central program is terminated by placing END
(trailing spaces) in RA+l and looping until it is terminated.

EXU resets or clears all operational registers - A s B 0’ X -
n
before executing the called program.

EXU loads only from job files on disk O (common or local)

3. Example:
Following is an ASCENT subroutine which may be called from a
FORTRAN program to call EXU., This example is very similar

to the CHAIN subroutine except the name of the program is
fixed to SEGL.

Col. 2 7 11
ASCENTF SUBROUTINE LDS
PS
PS
EXIT PS
TAG1 SAl =1

- 38 -

Page 282

B.

TAGZ

TAGS

SEGL
END

CLL

Nz X. TAGl +ASSURE RA+1 = 0

SX6=053025B

LX6 42

SX1=SEG1l

IX6=X6+X1

SA6=1 .SET RA+1 TO EXU PARAMETER
SAZ=1

NZ X2 TAG2 WAIT FOR PPU TO ACCEPT CALL
SX7=051604B

IX7 42

SA7=1 .SET RA+1 TO END

ZR BO BO TAG4 .WAIT FOR THE PROGRAM TO TERMINATE

CON 23050734000000000000B

This package loads one or more central programs or segments into
an area of memory specified by the calling program.

1. Call

This routine is called by setting certain parameters into
RA+1 of the calling program.

RA+1 = CLL 0.‘.'.0 BA

BA-+n+1
BA+n+2

where CLL
BA

FIRST

LIMIT
PROGL
PROG2
PROGn

P1,P2
. .’Pn

18 24 18 Dbits

FIRST

LIMIT
PROG 1 Pl
PROG 2 P2
PROG n Pn

(zero)

is in display code

is an 18 bit address where the parameters are
located

is the beginning address for loading the first
program.

is the limit address for loading the programs

are the names (in display code with trailing
spaces) of the programs or segments to be loaded.

are set by CLL after loading the programs and are
the beginning addresses of the associated overlays,

All of the parameters except Pn must be set up by the calling
program prior to setting RA+1.

« 39

Page 283

Usage

CLL loads the programs one at a time beginning with the
name specified at BA+2. The order of search for locating
the overlays is:

1. Resident Subroutine Library - RSL
2. Central Library Directory - CLD
3. Assigned Job Files - common or local

The programs are loaded into the consecutive memory locations
beginning with FIRST. No program may be loaded beyond the
address specified by LIMIT. After a program is loaded, its
beginning address is entered into the lowest 18 bits of the
respective parameter word. After Cll has completed the call,
BA is cleared to zero.

If program cannot be located, the address Pn for the program
is not modified by CLL. If a program exceeds LIMIT, the value
777777 is entered into the respective address Pn. The last
parameter must be followed by a full word containing zero.

It should be remembered that programs and segments compile with
a reference address beginning with zero (000000). Since the
central program calling CLL resides at zero, the loaded
programs (by CLL) will not have proper address terms for those
instructions containing 18 bit address. Therefore, the

user must modify the addresses of the loaded program or use
some addressing scheme where the calling program defines a
pseudo-reference address in an index register whenever

memory is referenced,

- 40 -

Page 284

CONTROL DATA CORPORATION

Development Division - Applications

CIRCULAR INPUT OUTPUT

Chippewa Operating System

10/20/65

Page 285

CIRCULAR INPUT OUTPUT

CIo

INTRODUCTION

All input and output for a filé'is passed through a circular central
memory buffer. Buffer parameters are initialized by the central memory
program and then the CIO package is called to perform the transfer to or
from the physical medium of the file. These parameters are altered by CIO
or the central program as data is inserted or extracted from the buffer.

A circular effect is achieved by allowing the data to wraparound the buffer
whenever the limit address of the buffer is reached. For example, on an
input request data is inserted into contiguous words until the last address
of the buffer is encountered. The next piece of data will be stored in

the beginning address of the buffer so that the total capacity of the
buffer may be utilized. All system central memory buffers, i.e. dayfile,
etc., use this circular motion even if CIO is not specifically called to

perform the I/0 operation.

CALLING SEQUENCE

A program requesting I/0 must set up certain buffer parameters. The
location of these parameters is sent to CIO via the lower 18 bits of RA+1.
These parameters, along with the buffer itself must reside within the
field length of the job, and their addresses are relative to RA,

Five central memory words, designated as BA to BAt+4, hold the para-
meters. In the first word is the name of the file in.left-justified display
code to be acted upon and a six bit ccde called the buffer status. The
first digit of the buffer status specifies the type of operation: the
second gives the direction (read/write) and the mode (coded/binary).

-1

Page 286

BA+1 contains the beginning address of the buffer and is called FIRST.
Along with LIMIT, the last address of the buffer plus one, FIRST remains
dormant, i.e.‘CIO never changes‘these values. No data‘is stored in LIMIT.
When LIMIT is reached, the next available address for storage is FIRST. The
buffer capacity is referred to as the area between FIRST and LIMIT-1.

The two remaining words, BA+2 and BA+3, are the actual pointer addresses.
IN (BA+2) defines the next available address for insertion of data into the
buffer. OUT (BA+3) holds the address for removal of data from the buffer,
Therefore, the amount of data residing in the buffer is that between IN and
QUT. 1IN is advanced around the buffer, but never passing OUT so as not to
overstep the buffer capacity, by a !'read! operation. Any 'write! requeét
causés OUT to move in the direction of IN and to pass data from the buffer
to the file in its advance.

Either CIO or the central program may update IN and OUT. By moving IN,
CIO could read data from a file to the buffer and the central program could
remove the data from the buffer for its own use by moving OUT. The opposite
effect would result if the central program inserted data into the buffer by
incrementing IN and CIO transferred the buffer data to the file by moving OUT.

Initially, the buffer parameters are set FIRST = IN =0UT with IN and
OUT circling the buffer as data is inserted or removed. An empty buffer is
refiected by IN = OUT. This condition is distinguished from a full buffer,
IN = OUT-1, by an unused word between IN and OUT.‘ The useable data in the
buffer begins at OUT and continues (circling the buffer if necessary) to

IN-lc

7 ///////////>//// - %/////%

\\\\ AMUIIIIMID I IY
i

c1 o7 84

CENTRAL PROGRAM CALL

CIO PARAMETERS

187 °8eg

Page 288

BUFFER STATUS

The buffer status appears as a 2 digit octal code in the lower 6 bits
of BA., This code indicates the mode of the buffer and provides an interlock
for peripheral package activity. The buffer status has an even value when
CIO is called. It is set to an odd value when the periphéral package has
completed the I/0 function. This six bit code is also kept as the last
buffer status in the FST entry for the file. Whenever this value is checked
and found to be even, the file is assumed to have an operation being per=-
formed on it, i.e. it is active. An odd value means that the file is not
busy and is available for use.

Normal reads and writes use 'buffer I/0' as the type of operation
(first octal digit with the second digit specifying the mode). This is
iﬁterpreted by CIO as a request to transfer as many records as possible
between the file and the buffer. A short record, i.e. end-of-file or
end-of-record, or a full buffer will terminate a read operation and a
write request is stopped whenever OUT = IN. If a read was requested, CIO
will alter the code to indicate whether an 'end-of-record! or 'end-of-file!
was read. Whenever the buffer is to be emptied to the file by a write
-operation, the central program must issue either an tend-of-record! or
tend-of~file! write. This causes all of the data to be transferred and an
tend-of-logical-record! or !end-of-file! to be written on the file.
Therefore, if the buffer does not contain a full record of data and an
tend record! write was not issued, no data will be transferred.

When MTR accepts the I/O request by assigning CIO to a PP, RA+1 is
cleared. In order for the central program to know when the PP has finished

the I/0 operation, the buffer status must be checked for an odd value.

1 :::“////////

FFFFFFFFFF o

77 ke

Page 290

If a 'read! was requested, the first octal digit may have been altered by
CIO, but otherwise, only the second digit is incremented by one. On a
'binary backspace! the first digit is a 4 and the second may be either a
2 or 6 because only the second bit in the code is checked for the set

condition.

INTERNAL STRUCTURE

Whenever an I/0 operation is to be performed on a file, the CIO package
is assigned to a peripheral processor. CIO examines the request and passes
control wiﬁhin itsglf to the proper function. The buffer parameters are
checked for 1ega1i§y to insure that the operation remains within the job's
field definition. |

A file may be of any eqpipment type - disk, card reader, card punch,
line printer, or magnetic tape. The driver for each operation on a piece
of equipment is written as a separate routine. The CIO function decides
which driver is needed and calls it into the PP as an overlay. These over-
lays do the physical 1I/0 and update the buffer parameters accordingly.
Whenever their task is finished, CIO completes the request so that the

calling program may continue its execution.

OPERATION

Each function (read, write, or backspace) within CIO calls special
-Q?erlays. These overlays do more specific parameter checking to insure
fﬁat the buffer can contain the amount of data requested. Parity error

checking and buffer status updating are also the reSponsibilities of the

overlay.

-6 =

Page 291

The Read function calls 2RD (read disk), 2RT (binary tape read),
2RC (read cards), and 2RT (BCD tape read). IN is incremented to reflect
the number of words read from the file to the buffer and the first octal
digit of the buffer status may be changed if an 'end-record' or 'end-file!
is read.

Data is read by 2RD one sector (1008 central memory words) at a
time until a short sector is encountered or the buffer is filled. 1If a
disk parity error is found, the sector is reread with varying margins
three times and if it persists the PP stops. Only dead start will force
reinitialization.

2RC transfers only useable data to the buffer by suppressing trailing
blanks with a zero byte (12 bits). Ten characters per word are translated
from Hollerith to display code and packed until a zero byte is inserted
to signal 'end-of-physical-record!. A 7-8-9 card causes a short sector
to be transferred. Only one file mark may appear within one diskfile, so
when a 6-7-8-9 card is found, an 'end-of-record! sector is copied along

with a second short sector to indicate end-of-file.

A binary record of less then 4 bytes is considered a noise record by
2RT. If this overlay discovers that there is not enough room in the
buffer to handle a full block of 512 words, no data is transferred. A
read is tried 3 times before a parity error message 1is sent to the dayfile.
Only one block of data is read per request. Rewinding is also done by
this overlay.

A BCD tape record is a constant 120 characters long. All trailing
spaces are eliminated by a zero byte and the BCD characters are translated
into display code. A record less than 6 bytes is considered noise and a

record is read 3 times before a parity error message is sent.

-7 -

Page 292

The Write function is in~charge-of updating OUT, As data is removed
from the buffer and copied to the file, OUT moves in the direction of IN
until OUT = IN. Only a short record request will cause the buffer to be
completely dumped of information and the appropriate indicator to be
written on the file.

A check is made to see if the last reference to a disk file was a
write., If it was not, the tracks thus far reserved by the file are
dropped by 2DT. This provides multi-use of a file. Data written on a
file can be backspaced and read and another write request will cause the
beginning of the file to be referenced.

2WD is loaded to write disk data. If there is not enough data in
_the buffer for a full sector (64 words) and an 'end-record! was not
requested, no data is written on the file, Every write is terminated by
an EQF sector but since none of the parameters are advanced, the next
write request will write over this sector. It prevents a file from ever
running away. Two tracks are requested at once so that time is not wasted
whenever one track is filled and another is needed.

To punch both binary and Hollerith cards, 2PC is loaded. This overlay
is called whenever a file has been assigned to the card punch by a control
card and a write operation requested on the file. Eighty characters or
the number of characters to the first zero byte are assembled from display
code to Hollerith. A 7-8-9 or 6-7-8-9 card is punched if requested. 1In
the case of a binary regquest, 15 words of data are punched on a card with
the appropriate binary controls - word count, 7-9 punches in column one,

checksum, and sequence number.

- 8 =

Page 293

2LP is loaded to print the file assigned to a line printer. A print
line konsists of either 130 characters or the number of characters to a
zero byte. Page spacing is checked by this overlay.

To write a binary tape 2WT is loaded. This overlay is called into
play to do all writes on 1" tape and binary writes on %" tape. Coded
records on 1" tape are in packed display code and terminated by a zero
byte. A logical record consists of 1000g central memory words. If a
parity error is encountered, the tape is backspaced and rewritten with
no erasing until a good write is made or an error flag is set. 2WT
also writes a file mark when one is requested.

2WT is loaded to write BCD tape. All BCD tape records are 120
‘characters long. If a zero byte is found before 120 characters have been
converted from display code to BCD, the record is padded with spaces until
120 characters are reached. The writing continues for full blocks of data
contained in the buffer until an !end-record! or lend-file! is requested
to empty the buffer.

The Backspace function is called to backspace either binary or coded
records. An end-of-file is considered a record or a coded line in each
mode respectively. This action causes IN to be advanced down the buffer
and a read is not necessary after a backspace to make the data available
for use. A binary disk backspace may be very slow. Since a record can
be written on several tracks, each pointer word before each sector must
be checked for a track change. If a file contains only one record, a
rewind operation is much faster.

2BD does either binary or coded backspacing on the disk. A binary

backspace is done wuntil a short sector is found. The file will be

- 90 .

Page 294

positioned either in front of the file mark just written or at the
beginning of the last record. Only one coded line is backspaced with
this request. OUT will reflect the address before the last card image
or zero byte. No read is required to bring the data back in because the
pointer words are properly adjusted.

2BT is loaded to perform the same backspace operations on tape.

i

The physical tape is moved.

RECALL

The central program retains control of the central processor while
CIO is performin the I/0 operation. MIR clears RAt+l1 when the CIO request is
accepted informing the central program to continue processing. If no
further processing can be_done until the data is transferred, the central
processor should be given to another job. By imserting an RCL call
(recall) in RA+1, control is taken away from the central program by
MTR and switched to another job. Control is regained when a PP com-
pleting an operation tells monitor to recall the proper central program,
or a time span of near 250 ms. has lapsed. Effective use of recall
allows the central processor to be utilized more efficiently.

A workable sequence of events that will allow the central processor
to execute other jobs while an I/0 operation is holding up a central
program is:

1) Send CIO call to RA+1

2) Wait until MTR has accepted the request by clearing RA+1

3) Check buffer status for an odd value.

4) 1If an odd value is found, continue normal processing, otherwise
send RCL call to RAt+1
5) Repeat steps 2-4, exiting only if the buffer status is odd

- 10 -

Page 295

first digit

0X not used
1X buffer I/0
2X end record
3X file mark
4X backspace
5X rewind
6X rewind/unload
7X not used
EXAMPLE:
request to CIO
READ
answer from CIO
request to CIO
WRITE

answer from CIO

BUFFER STATUS

X0
X1
X2
X3
X4
X5
X6
X7

10
11

21
31

14
24
34

X5

- 11 -

second digit

request coded read
completed coded read
request binary read
completed binary read
request coded write
completed coded write
request binary write
completed binary write

- full buffer

end of record encountered
end-of-file encountered

dump as many complete records as possible
empty buffer and write end of record
empty buffer and write end of file

where X from the call is unaltered

Page 296

BEGIN CIO
BUFFER CONTROL ADDRESS
IN INPUT REGISTER OF PPU

CALL 2BP OVERLAY
VERIFY ARGUMENTS
READ BUFFER STATUS
RESERVE FILE

YES
[IS A READ FUNCTION REQUESTEHO READ FUNCTION }

NO

YES
[IS A WRITE FUNCTION REQUESTED ?J————%{ CIO WRITE FUNCTION Ir

NO

YES YES
Fs A BACKSPACE FUNCTION REQUESTEDH IS FILE A DISK FILE ? |.—_, CALL 28D OVERLAY

BACKSPACE DISK
NO NO

NO YES [~
r——-[IS FILE A DISK FILE 7J fls FILE A TAPE UNIT ? I,._—> ALL 2BT OVERLAY
- d BACKSPACE TAPE

YES NO

Il RESET FILE STATUS FOR REWIND lr

IS FILE A TAPE UNIT ? | Ne SET READ MODE
—"‘{] SET IN = OUT » FIRST
YES

—

SET READ MODE '6——

CALL 2RT OVERLAY
REWIND TAPE RELEASE FILE

STORE BUFFER STATUS

] RECALL CPU
RELEASE PPU I

- 12 -

Page 297

ENTER CIO READ FUNCTION I

NO
LIS FILE A DISK FILE ?‘}

YES

NG
ﬂHAS FILE BEEN USED ?]

YES

CALL 2RD OVERLAY
READ DISK DATA

l Exit '

_91 SET FILE MARK
ExiT I

: [] YES
—> IS FILE A CARD READER ? |

NO

1

CALL 2RC OVERLAY
READ CARDS
EXIT

SET FILE MARK

NO
S FILE A TAPE UNIT ? i

YES

CALL 2RT . OVERLAY
IS MODE BINARY ?

NO

ExiT

YES

L READ BINARY TAPE J‘L

“L

IS TAPE TYPE MT ? ‘]

NO YES

ExiT e

13 -

jl READ BCD TaPE l

Page 298

ENTER CIO WRITE FUNCTION J

\ CaLL ZPC OVERLAY

N YES
[IS FILE A DISK FILE ? | - [1s riLe a cano puucnd—E—-—> PUNCH CARDS
] L EXIT

YES NO

NO
HAS FILE BEEN USED ?
YES YES CALL 2L.P OVERLAY
{ IS FILE A LINE PRINTER ? }-——> PRINT DATA

! NO EXIT

WAS LAST USE IN WRITE YES

MGDE ?
NO NO
rIs FILE A TAPE UNIT ? EXiT

YES
CALL 2DT OVERLAY.
DROP DISK : TRACKS.
CALL 2WT OVERLAY NO
IS A FILE MARK REQUESTED ?
YES

L>Iils A FILE MAAK REQUESTED p
: NO

YES NO
rWAS LLAST RECORD COMPLETED 7
Uves
v
NO
Y WAS LAST RECORD COMPLETED p }—‘

YES NO
—{ IS THERE DATA IN THE BUFFER ? l
|

o
VeSS

NO
;—{ IS THERE DATA IN THE BUFFER 7 I

YES
[IS TAPE TYPE MT p [

YES NO

CaLL 2WD OVERLAY

WRITE DISK DATA YES
. | Is MODE BINARY 7 WRITE BINARY DATA

NO

s et
WRITE BCO 0ATA

f 1S A FILE MARK REQUESTED 7 j('———

NO YES

WRITE FILE MARK

- 14 -

Page 299

CONTROL DATA CORPORATION

Development Division -~ Applications

DAYFILE

Chippewa Operating System

10/20/65

Page 300 DAYFILE

INTRODUCTION

The dayfile is a combination accounting medium and job status record. It appears
as a major display for the system console and is part of every job's output. Any
message a programmer wishes to convey to an operator is passed through the day-

file. All control cards, error diagnostice, running times, and equipment assign-
ments appear as a console display and are later sorted for a particular job's out-

put.

A message may enter the dayfile from a central memory program or a peripheral
routine. In the case of a central memory program, a peripheral package (MSG) is
called to transfer the message from central memory to the PP message buffer and
then to inform monitor that dayfile action is required. A peripheral routine
need only put the message in the message buffer and let monitor take the appro-
priate steps. When monitor does sense that a message is ready, it transfers the
message to the associated control point's dayfile area and then sends the message
to the dayfile buffer in the proper format. This new éntry is then picked up by
the display program (DSD) and shown on the console.

STRUCTURE

The dayfile buffer status (DFB) is contained in word three of central memory. It

points to a 1000, word buffer for dayfile entries and maintains the FIRST, IN,

8
OUT, and LIMIT addresses. Each entry made in the dayfile consists of three parts.

1) The time that a message is sent.
2) The name of the job to which the message belongs.
3) The message of not more than six words.

All three parts are in separate words. Therefore, every dayfile entry is at
least three words long but not more than nine. The time is read from word thirty
of central resident and is in the form XX.YY.ZZ. where XX is hours, YY is min-
utes, and ZZ is seconds. At dead start this word is zeroed so it will reflect

the time since dead start unless a "TIME" entry is made to DSD via the keyboard.

Monitor changes the spaces in the job name to blanks and terminates the field

with a period. A zero byte ends the message so that word after word is trans-

ferred until the zero byte is found.

-1

Page 301

UPDATING BY CENTRAL PROGRAMS

In order for a central program to make entries into the dayfile, a peripheral
program (MSG) is called to retrieve the message from central memory and inform
monitor of the request. The location of the message and MSG (in left-justified
display code) is inserted in RA+l of the program. This causes MSG to be assigned

to a PP and the message transferred to the PP's message buffer.

A check is made to insure that every character is a legal display code. If an
illegal character is found, MESSAGE FORMAT ERROR is issued to the dayfile and
the job is abandoned. Every entry made into the dayfile by a particular job ad-
vances a message count by one. In MSG this total is examined for an excess of
1008 messages. No more than 6 words may be passed to the dayfile in one message.

If either of these rules is violated, MESSAGE LIMIT is sent to the dayfile.

After the message 1s residing in the PP's message buffer, MTR is informed so that
the message can be passed to the dayfile buffer. MSG is used by the Fortran com-

piier to enter the name of the program currently being compiled or executed.

In a peripheral processor's resident program is a section of coding which copies
a message from a transient program into the PP's message buffer. Each of these
ﬁessages is assumed to have legal display codes and ended by a zero byte. The
location of the message is in the A register upon entry to the routine. A return
jump to location 530 will cause the message to be transferred to the PP's message

buffer and then MIR is told of the request.
All transient programs use this method of making entries into the dayfile and

each request will advance the message count at a job's control point, even though

MSG is the only program which checks for a excess of the limit.

MIR - ISSUE DAYFILE

Whenever a PP has a message for the dayfile, the message 1s put into the message

-2 -

Page 302

buffer and 0001 is inserted into the first byte of output register. MIR senses

a request and begins dayfile updating procedures.

The message is passed from the PP buffer to an eight word area in the control
point area. Word 30 of central memory which contains the current time is read
into one word and the name of the job is put into another word. Next the message
is copied until a zero byte is encountered and then all three sections are sent
to the dayfile buffer. The PP output register is cleared to inform the PP that
the message has been transferred. Only at this pointe is the message count in-

creased by one so that every message is totalled.
IN and OUT are checked to see if 1008 words (a full sector) of information is

contained in the day file buffer. If there is, phase one dump flag is set. No

additions may be made to the buffer when a dump flag is set.

MTR ~ COMPLETE DAYFILE

This function is issued by 1DJ (print package) or 1TD (tape dump package) when
a job's output is being férmatted. "Its purpose is to remove all dayfile infor-
mation from the buffer to the disk so that only the disk need be read when a job's
dayfile is to be printed. The complete dayfile flag and 'dump phase one' flag
are set. If the 'complete dayfile' flag is found to be set, then this is the sec-

ond time through so it is cleared along with the output register.

Only the two MIR functions issue dayfile and complete dayfile, may set phase one

dump flag.

MIR - CLOSE OUT

The dayfile buffer is dumped into the disk whenever a full sector of data is built
up or whenever a job is to be printed. This process involves several steps, each
of which set a flag for the subsequent phase. No entry may be made to the buffer

when a dump flag is set.

Page 303

Gn MTR's main loop a check is made to see if a dump flag is set. This
flag is an address of the next phase and each phase is entered by a
return jump. Every disk positioning request constitutes a different

phase so that time is not wasted waiting on the disk.

Phase one requests channel O for the disk and phase two dump flag is
set. MTR regains control and will continue its processing until the
dump flag is checked again. This time phase two 1is entered via a
return jump. If channel 0 is ready for use, a request for disk posi-
tioning to the proper track is issued and phase three dump flag is set.
The current track and sector to be used by the dayfile is maintained
by absolute coding. The 'update control byte! routines set the value
of the current track and sector into the different dump phase locations

directly.

Phase three checks channel O disk file status. The next sector musSt
correspond to that set by 'update control byte! or an exit 1is made.

One sector is written on the disk and the buffer parameters are updated
accordingly. Then phase two flag is set. The buffer is dumped one
sector at a time until a short sector is encountered. It is written

on the disk but neither the buffer parameters nor the sector number are
advanced. This scheme is used in order to maintain the dayfile as

one record but still have all the information on the disk. Channel 0
is released via.the output register and phase six flag is set if a
spare track is assigned. 'If no spare track has been assigned, channel

0 is still released but phase four dump flag is set.

Page 304
Phase six makes sure that the channel is released and clears the dump
flag. This terminates dumping the dayfile buffer onto the disk so

that normal procéssing may continue,

Phase four requests a track of MIR and sets phase five dump flag. When
phase five is entered via a return jump, the spare track number is
retrieved from the first byte of the message buffer and then the dump

flag is cleared. This also completes the dayfile dump.

JOB DAYFILE LISTING

At the end of each job'!s output a complete history of each run during
one dead start period is printed. 1DJ (print package) or 1TD (tape
dump package) requests MTR to dump the dayfile buffer contents on the
disk in the manner just previously described. Next, one sector of the
dayfile is read and it is searched for the job's entries by 2SD (search

dayfile).

Since the time a message is issued appears in the word before the job
name, every word of the sector is checked for the proper(job name. If
the word does not match, it is copied into the peripheral buffer but
its parameters are not advanced. When the name finally matches, the
time has already been copiéd into the peripheral buffer so the job
name is added in the next word. Then the subsequent message is trans-

ferred until the zero byte is encountered.

Control fluctuates between the dump package, i.e. 1DJ or 1TD, which
reads a sector of the dayfile, and 2SD, which searches it for a parti-

cular job name. The dayfile is searched in this manner until a short

Page 305

sector is found. When it is encountered, a MIR function requesting
assignment of PP time to the control point is made. This computes

the total PP running time and stores it in word 24 of the control point
area. 2SD converts this time to decimal seconds and then sends out a

dayfile message "PP XXXX SEC',

A top of form request is made as the first entry into a circular buffer
in central memory. The peripheral buffer containing the dayfile informa-
tion for this job is copied to the circular buffer. An entry of the

same type, "PP XXXX SEC", that was sent to the dayfile is added to the
circular buffer. Now the job'!s dayfile is complete and ready for

printing.

NOTES

1. The dayfile is the first entry in FNT. It is set from the library
tape and is of common type SO that any program may access it.
2. Any message sent to the dayfile also appears as a console message

(line 3 of the control point display)

CORPORATION

CONTROL DATA
[corroraTion]

8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

PRINTED IN U.S.A.

CONTROL DATA’ 6000 SERIES COMPUTER SYSTEMS
CHIPPEWA OPERATING SYSTEM DOCUMENTATION

Volume Il Preliminary Edition

Page 306

CONTROL DATA CORPORATION

Development Division - Applications

DSD - THE SYSTEM DISPLAY

Chippewa Operating System

11/25/65

Page 307

DSD: The System Display

Introduction

The display conéole is controlled by a display program, DSD, which
permanently resi<des in peripheral processor 9. DSD displays a variety
of information concerning the status of the system, including a display
of the dayfile, a display of the jobs waiting to be executed and waiting
to be printed, and a display showing the status of each control point,
DSD permits selected portions of central memory to be displayed, and
also provides for the modification of central memory locations.

In addition ?o its display function, DSD processes keyboard messages
from the operator. Operator functions include bringing a job to or
dropping a job from a control point, assigning equipment, and selection
of various types of displays. The Chippewa Operating System also
contains a job display package, DIS. DIS, when called,-is assigned to a
control point, and permits the modification of job parameters, memory
locations, and control statement sequences for this job assigned to the

control point. For the most part, DSD and -DIS displays are identical.

The main components of the display console are the two cathode ray tubes
and the keyboard. By issuing the appropriate function codes to the
display console controller, displays of 16, 32, or 64 chafacters per
line may be selected on either the right or left screens. A dot mode
display is also available, although only the character mode display is
used by the operating system. The display area can be considered to be
composed of a grid of points, 512 by 512 points in size. A display can
be initiated at any point in the display area by issuing the coordinates
of that point. A vertical, or Y, coordinate is sent to the controller
in the low-order nine bits of a byte in which the high-order octal digit
is a 7. Similarly, a horizontal, or X, coordinate is sent to the controller
in the low-order nine bits of a byte in which the high-order octal digit
is é 6. If the display console controller receives a byte in which the
high-order octal digit is neither a 6 or a %, it is assumed that this

byte contains two display code characters.

To display a line of information on the screen, an X and a Y coordinate

are sent to the controller via the appropriate output instructions

l&

Page 308

(OAN or OAM). These coordinates define the location of the lower left:
corner of‘the first character to be displayed. The information to be
displayed is then sent to the controller via an OAM instruction. As
each character is displayed the X coordinate is automatically incremented,
To display another line, the Xfand Y coordinates should be reinitialized,
A coordinate of.X=000 defines the left-most boundary of the display area;
a coordinate of X=7778 defines the right-most boundary of the display
area; a coordinate of Y=7778 defines the upper boundary of the display
area, and a coordinate of Y=000 defines the lower boundary of the display

area,

The Chippewa Operating System uses a display of 64 characters per line
in both DSD and DIS. Generally, the Y (vertical) coordinate spacing
between successive liﬁes is 128' The display must be regenerated at
least 25 times per second in order to avoid flicker. The DSD display

is designed to maintain an average rate of 40 displays per second.

DSD Master Loop

The DSD master loop is shown on page A-1l of the attached flow charts.
On the initial entry to this routine (i.e., at dead start time), a
subroutine is called to perform housekeeping. This subroutine clears
the temporary storage areas used by DSD, selects the "A" display
(dayfile) on the left screen and the '"B" display (control points) on
the right screen, and requests reservation of channel 10 from MTR.
Display selection in DSD is performed by setting the address of the
desired display subroutine in location 70 for the left screen and in

location 71 for the right screen.

On each pass through its master loop, DSD selects the display console
keyboard and issues an input instruction to read the keyboard. If a
zero byte is returned, then no key has been depressed since the last
pass through the master loop. If a non-zero byte is returned, the key-
board character in the low-order bits of the byte is processed. If the
character is a carriage return, the Message Ready flag is set and the

keyboard message is processed.

Page 309

After keyboard processing is completed, DSD issues a function code to
select the left screen, and displays the time and date from central
memory resident beginning at location 30. The contents of this area are
read and displayed, word by word, until a zero byte is encountered.
Regardless of the display selected for the left screen, the time-date
line is always displayed, DSD then jumps to the subroutine whose address
is contained in location 70 to process the selected left screen display.
At the bottom of the left screen, the keyboard message currently being
entered is displayed. If an error is encountered in processing this
message, the error message "FORMAT ERROR" will be displayed immediately
above the keyboard message. Once processing of a valid message 1s com-

plete, the message will be no longer displayed.

DSD then issues a function code to display the right screen. At the top
of the right screen, the contents of the central processor P register

and the status of the 12 data channels are always displayed. DSD reads
the central processor P register, converts the contents of the P register
to display code, and displays these characters. On the same line, three
groups of four characters, one character for each of the 12 data channels,
are displayed. Each channel is first tested to determine if it is active
or inactive, If the channel is inactive, the displayed character cor-
responding to that channel is a "D" (disconnected). If the channel is
active and empty, an "E" is displayed, while if the channel is active

and full, an "F'" is displayed. (See figure 1) DSD then jumps to the
subroutine whose address is contained in location 71 to process the

selected right screen display.

After both screens have been displayed, DSD calls the Adjust DiSplay
Period subroutine (shown on page A-l of the attached flow charts). The
purpose of this subroutine is to control the number of passes made through
DSD's master loop in a fixed time interval in order to avoid flicker.

On each entry to the Adjust Display Period subroutine (i.e., on each

pass through DSD's master loop), a display cycle counter is advanced.

At the end of each second, the display cycle count is examined to determine
if the display was repeated more than 508 times in the past second.

If it was, a delay count (D) equal to the display cycle count - 508 is

set. If the display was repeated less than 50 times in the past second,

this delay count is set to zero. The delay count is used to establish

-3-

01¢ °3%g

TIME, AND DATE IF ENTERED, FROM : CENTRAL PROCESSOR P REGISTER

CM RESIDENT LOCATION 30
CHANNEL STATUS, CHANNELS 1 - 12

D = CHANNEL INACTIVE
F = CHANNEL FULL
E = CHANNEL EMPTY

-v-

{04.41.02. NOVEMBER 1965 P = 11714}{,CHANNELS DDEF EDDD FEDD |/
ANAVAVANA AN VA VANAN L S
SELECTED DISPLAY SELECTED DISPLAY
A-H A-H

1 @an81J

AN AN VAN \\
|FORMAT ERROR |

\NAVANANAVANA
|KEYBOARD MESSAGE

EgsgﬁAgisigggACE DISPLAYED AS ENTERED DSD_FIXED DISPLAYS £
: SR , DISPLAY PLACEMENT

Page 311

a delay between successive passes through DSD's master loop: the larger

the delay, the greater the time between successive passes through the

master loop. Also, in the next second, D will be set to zero if the

display is repeated 50-D times or less. If in any second, then, the

display is repeated more than 508 times, a delay so that the display will

be repeated less than 508 times in the subsequent second: over a period

of several seconds, the display rate should average out to 508 times per

second. At the end of each second, the display cycle counter is reset

to zero. 5

/

In a 6000 system with a single display console, DSD must relinquish control
- to DIS when the latter is called to a control point. When DIS begins

execution, it requests MTR to assign an equipment of type DS. MTR

searches the EST for an entry of this type, and, when found, enters the

requestor's control point address in byte one of the EST entry. On

each pass through its master loop, DSD reads the EST entry for equip-

ment number 10. If byte one is non-zero, then this equipment has been

assigned to another user - DIS. DSD then releases the channel reservation

for the channel to which the display controller is connected, and loops

on a test of byte one of the EST entry. When this byte becomes zero

once again, DIS has released control of the console, and so DSD requests

the channel once again and returns to its master loop.

One of the keyboard entries processed by DSD is the "STEP." message,
which causes MTR to enter a step mode of operation. In step mode, MTR
pauses for operation intervention before processing each request from

a peripheral processor. To process the STEP message, DSD sends function
request 5 to MTR. MIR then sets a switch in the subroutine which
processes requests from peripheral processors. When a request‘is next
received from a peripheral processor, MIR will set a.Wait flag in byte

5 of central memory location 14, and will then loop until this flag has
been modified. Entering a space on the keyboard will result in the
clearing of this flag by DSD: MTR will then process the request just
received, but will pause again before processing subsequent requests,
Entering a period on the keyboard will result in this flag's being set to
7777 by DSD: MTR will then reset the switch in the subroutine which

processes peripheral processor requests, and will process subsequent

requests in the normal manner. Since a space or a period is not, in

-5-

Page 312

itself, a conventional DSD message, DSD checks for the entry of these

characters on each pass through its master loop if MIR is in step mode.

DSD Keyboard Message Processing

The processing of characters received from the keyboard is shown in

the flow chart on page A-1l. If the character received is a carriage
return, then a complete message has been entered and so the Message Ready
flag is set. If the character received is a backspace, DSD clears the
last character entered in the buffer, resets the bufE;} address accordingly,
and clears the error flag which may have been set if an attempt was made
to process the message. If the drop key was depressed, then the entire
message is deleted: the buffer address is reset to the starting address,
and the error flag cleared. Should the character be a valid keyboard
character, it is entered in the message buffer and the buffer address
advanced. Note that the space character from the keyboard (628) is not

a display code character, and so a blank (558) is substituted for it.

When DSD detects that a carriage return has been entered on the keyboard,
the Message Ready flag is set to indicate that a message is ready for
processing. DSD then proceeds to interpret the message. Message
processing is illustrated in the flow chart.on page A-2. The second
character is examined to determine if it is a period: if it is, then the
message is a control point message, and so the first character is examined
" to determine if it is a valid control point number (1-7). If the first
character is not a numeric in the range 1-7, the Message Error flag is
set and control returned to DSD's master loop, where the message 'FORMAT
ERROR" will be displayed. If the first character is a valid control
point number, then a table search is made for the address of the appropriate
subroutine, If the message is not found in the table, the Message Error
flag is set and control is returned to DSD's master loop. Processing of

the valid control point messages is described below.

ONSW: If the message is of the form.n.ONSWx., DSD sets the bit

corresponding to X+5 in byte 5 of location RA for control point n,
and in word 26 of control poimt area n. Control is then returned

to DSD's master loop.

Page 313

OFFSW: 1If the message is of the form 2.0rTSWx., DSD clears the
bit corresponding to X+5 in byte 5 of location RA for control
point n, and in word 26 of control point area n. Control is then

returned to DSD's master loop.

LOAD: 1If the message is of the form n.LOAD., DSD writes the package
name (1LT) and the control point number, n, in its Message Buffer,
Word 21 of control point area n is then examined to determine/}f the
control point area contains a job name. If it does not, DSD requests
MIR to assign a pool processor to control point n.‘ MIR will copy

the contents of DSD's Message Buffer into the Input Register of a
free pool processor, and assign the processor to control point n.
Control is then returned to DSD's master loop. If the control

point area contains a job name (word 21 non-zero), control is

returned to the DSD master loop. If the control point area contains

a job name (word 21 non-zero), control is returned to the DSD master

loop without requesting the assignment of a processor.

NEXT: Processing of the message n.NEXT. is identical to the pro-
cessing of the LOAD message with the exception that the package name

IBJ is written in DSD's Message Buffer.

READ: Processing of the message n.READ. is identical to the pro-
cessing of the LOAD message with the exception that the package

name 1LJ is written in DSD's Message Buffer.

PRINT: Processing of the message n.PRINT. is identical to the pro-
cessing of the LOAD message with the exception that the package

name 1DJ is written in DSD's Message Buffer.

DIS: 1If the message is of the form n.DIS., DSD writes the package
name DIS in its Message Buffer, and requests MTR to assign a pool
processor to control point n. Control is then returned to DSD's

master loop.

ASSIGN: The ASSIGN message is generally entered in response to a
REQUEST statement display or the message WAITING FOR XX. If the
message is of the form n.ASSIGNXX., DSD requests MTR to assign the

-7-

Page 314

specified equipment to the control point. MIR looks up the
corresponding entry in the EST: if equipment XX is not already
assigned, then MTR assigns the equipment to control point n and
writes the equipment number in word 22 in the control point area.
After initiating the MTR request, control is returned to DSD's

master lodp.

GO: The 20 bit in byte 4 of location RA is a pause bit. This bit
is set by a FORTRAN PAUSE statement, and is also set by certain
peripheral packages when an error is detected. For example, 2RT
sets this bit when a parity error has occurred after reading a
record three times. When the n.GO. statement is processed, this
bit is cleared. Also, the most recent message in~the control

point area (presumably the PAUSE statement) is cleared.

END: If the message is of the form n.ENDI., n.END2., n.END3.,

or n.END4., DSD sets a printer stop code in byte 2 of word 20 in

the control point area. This stop code is equivalent to setting

the low-order second octal digit of this byte to the digit following
the word END in the message. The printer stop code is sensed by

the four-printer print programs.

DROP: If the message is of the form n.DROP., DSD writes the control
point number n in its Output Register, and requests MIR to drop
the job at control point n. MIR sets error flag six (Operator

Drop) to initiate error processing.

If the second character in the message was a period, and the message was
not found to be one of those described above, the Message Error flag is

set and control returned to DSD's master loop. If the second character

in the message was not a period, the first character is examined to
determine if it is an octal digit. Should the first character be an

octal digit, it is assumed that the message is a storage entry message of
the form a,d., where a represents a central memory address and d represents
the data to be entered in memory at that adaress. The characters 1in

the message are assembled and converted to octal until a separator is
found: if the separator is not a comma, the Message Error flag is set.

Once the address has been assembled, the characters following the comma

-8~

Page 315

are assembled and converted to octal until another separator is found.

If this separator is not a period, the Message Error flag is set. The
assembled data is stored, right-justified, in a 5-byte area, and the
contents of this area are then written in central memory at the specified
address. A
If the first character is not an octal digit, the third character is
examined to determine if it is a period. If the third character is a
period, the message is assumed to be a display mode ﬁessage of the form
AB., where A and B represent characters specifying the desired display
on the left and right screens respectively. The subroutine address
corresponding to the specified display (A-H) is located in a table and
stored in location 70, in the case of the left screen display, or

location 71, in the case of the right screen display.

If the third character was not a period but was a comma, it is assumed
that the message is a display field change message of the form mf,a.,
where m is the display mode (C-G), A is the field whose starting address
is to be changed (0-3 for fields 0-3, or 4 for all four fields), and a

is the new starting address. Each of the storage display subroutines for
storage displays C, D, E, F, and G maintains a list of four addresses,
one for each of the four fields displayed. When this message is detected,
DSD modifies the appropriate address in the list of field addresses for
the specified display if the second character is 0-3. If the second
character of the message is 4, the first address in the list is set to
the address contained in the message, the second address in the list

is set to the address contained in the message plus 108, and so forth.

If the third character in the message is not a comma, it is assumed to

be a non-control point message of the form described below. DSD searches
a table for the address of the appropriate subroutine: if the message

is not found in the table, the Message Error flag is set and control
returned to DSD's master loop. Processing of these messages is described

below.

DCN: If the message is of the form DCNXX., where XX is an octal
channel number, DSD assembles the channel number and tests the

channel to determine if it is inactive. If the channel is active,

-9-

Page 316

a channel disconnect is issued.

FCN: If the message is of the form FCNXX.,, where X is an octal

‘channel number, the channel number is assembled and a test made to

determine if the channel is inactive. If the channel is inactive,

a zero function is sent to the channel.

AUTO: If the message is AUTO., DSD assigns READ (1LJ) to control
point 1, PRINT (1DJ) to control point 2, and NEXT (1BJ) to control
points 3, 4, 5, and 6. To assign a package to a control point,
DSD writes the package name and control point number in bytes one
and two of word one of its Message Buffer, and ﬁgnds function
request 20, Assign PPU, to MTR. MIR locates a free pool processor,
assigns it to the control point, and copies word one of DSD's

Message Buffer into the pool processor's Input Register.

STEP: If the message is STEP., DSD requests MIR to enter step

mode by sending function request 5 to MTR, (See discussion on

page 5.)

ON or OFF: The messages ONXX° and OFFXX. permit the operator to
clear and set, respectively, the interlock bit in the EST table
entries. In these messages, XX is an octal equipment number which
defines a location in EST. The interlock bit is generally used

only with magnetic -tape units. When this bit is set, the corresponding
equipment will not be automaticaily allocated in response to an

ASSIGN request: if this bit is cleared, and a request such as

ASSIGN MT is processed, the equipment will be automatically assigned
by MTR. For equipment types MT and WT, this bit is set at load

time. (See page 9 of CENTRAL MEMORY RESIDENT.)

TIME: If the message begins with the characters TIME., and

contents of the keyboard message buffer following these characters
are copied into central memory resident beginning at location 30..
This information may comprise up to six central memory words. It

is assumed that the first portion of this message has the form _HR.MN.
SC., where HR represents hours, MN represents minutes, and SC

represents seconds., - This time will be advanced by MIR and will

-10- ,

~ Page 317

appear in all dayfile messages and at the top of the left screen
display. The information following the time may be the‘date and/or
any other desired information. The date portion will also be
displayed at the top of the left screen, and will be printed at

the end of a job's dayfile listing.

DSD Displays

" The various display modes which may be selected in DSD are as follows:
AieveeessoDayfile Display
Beooeessoo.Control Point Display
CevevesessStorage Display (5 groups of 4 digits)
Deeeseeeco.Storage Display (5 groups of 4 digits)
EeeeessossStorage Display (5 groups of 4 digits)
FeeoeoosssStorage Display (4 groups of 5 digits)
GeeseeseossStorage Display (4 groups of 5 digits)
HeeeeeosesdJob Backlog Display
The format of these displays is illustrated in figures 2, 3, and &.
Each display is processed by a separate DSD subroutine: these sub-
routines appear on pages A-3 and A-4 of the attached flow charts.
For the most part, display processing is quite straightforward, and

discussions of these displays will be limited to points of interest,

"A" Display: The "A" display is a display of the dayfile buffer
(DFB) contents from FIRST to IN. It is possible that the bottom

of the display area may be reached before all the information in

the dayfile has been displayed. If so, the subroutine parameters
are modified so that on the next entry to the subroutine, the
message which previously appeared at the top of the display will not
be processed, thus permitting a new message to be displayed. Also,
the point at which the display begins is moved down by the width of
a line, and gradually moved back up during the next 10 displays.

As a result, a revolving or rolling effect is obtained.

'"B'" Display: The B display shows information concerning each of the
seven control points, as shown in figure 3. On entry to this
subroutine, the copy of the control stack which MTR maintains in

locations 56-57 of central memory resident is read. For each control

-11-

04.40.29. FLEWIS . READ.

04.40.31. FLEWIS . PP 002 SEC.
04.40.32, FLEWIS . FLEWIS,4,30,60000.
04.40.33. FLEWIS . RUN(L)

04.40.,36. FLEWIS ., END

DAYFILE MESSAGE

[
o JOB NAME
' SYSTEM TIME
DISPLAY "A" . DAYFILE
i
| gad
18]
[=
(a3
[
N

DSD_A £ H DISPLAYS

INPUT FILES. OUTPUT FILES.

GAUSS ,17. FLEWIS ,15,
PDQ4 11,
CANDID,11.

JOB NAME

PRIORITY

DISPLAY "H" ~ JOB BACKLOG

81¢ °3%g

-EI_

¢ 2an81g

CONTROL POQINT 1

ANV Y

CONTROL POINT 2

SOOI

CONTROL POINT 3

SOONONNSSSSY

CONTROL POINT 4
AN N TN SN
CONTROL POINT 5
DM AN NTXTENTXX
CONTROL POINT 6

RANANA AN A AN
CONTROL POINT 7

ASSIGNED PERIPHERAL PROCESSORS

P
37 FLEWIS ,

3

TAPE 41 NOT READY

CONTROL POINT STATUS
RUNNING TIME
TIME LIMIT
PRIORITY
JOB NAME
CONTROL ‘::;%;ﬂ\
| \
17

400,

——65000, 10000, 05, 40, 41
———

— S -

—

ASSIGNED EQUIPMENT
REFERENCE ADDRESS

FIELD LENGTH

LAST CONSOLE/DAYFILE MESSAGE

. DSD 8" DISPLAY: CONTROL POINTS

61¢ @3®g

Page 320

point in the stack, a status indicator, A-G, is set to represent

the position of that control point in the stack (i.e., A represents
the top of the stack, B 'the second entry in the stack, and so forth).
The status byte in each control point is also read, and the status
indicator set to W or X depending on the setting of these flags.,

The remaining proceésing performed by the subroutine consists of
reading information from the control poiht area and displaying

this information.

Displays C-G: The storage displays, C'through G, each display &
fields of 8 central memory words (see figure 4), Displays C, D,

E are identical in format and display each central memory word as

5 groups of 4 octal digits. Displays F and G are identical in
format and dispiay each central memory word as & groups of 5 octal
digits. There is a separate subroutine for each of these five
displays: each of these subroutines maintains a list of four field
addresses which specify the starting point for each of the four
8-word field displays. These address 1lists are set via keyboard
messages (see page 9). The address lists are initialized at load

time as follows:

C DisplayWords 20-27 of ;ontrol point areas 1, 2, 3, and &4
D DisplayCM resident locations 0-37

E DisplayCM resident locations 60-117

F DisblayCentrél Memory locations 10000-10037

G DisplayCentral Memory locations 10040-10077

The reason for identical displays (C, D, E, and F, G) is to permit
the operation to switch between scans of selected memory areas
without the necessity of entering starting addresses each time he

switches from one area to another.

"H'" Display: The H display lists the input and output files in the
FNT. Upon entry to the H display subroutine, the FNT is searched
and two lists prepared: one, a list of FNT addresses for entries
of file type INPUT, and the other a list of FNT addresses for
entries of file type OUTPUT. The entries represented in these lists

“14-

-g'[-

H 2an314

CONTENTS OF LOCATION

LOCATION

FIELD O

<~

FIELD 1

T /

L

\

FIELD 2

T

FIELD 3

DSD DISPLAYS C THRU G

—~

04600
04601
04602
04603
04604
04605
04606

\ 04607

\

I, .

r
00000
00000
51202
67312
56730
51700
76710

00000
00000
60002
51300
51402
00002
51730
61102 60005

00000 00006\
00000 01000
63220 43052
00002 11730
60003 10740
71730 00003
00004 67112
01004 00200

4 GROUPS OF 5 OCTAL DIGITS

(DISPLAYS F

~ 04600
04601
04602
{ 04603

04604
04605
04606
\. 04607

0000
0000
5120
6731
5673
5170
7671
6110

AND G)

0000
0000
2600
2513
0514
0000
0517
2600

0000
0000
0263
0000
0260
0271
3000
0501

0000 0000
0000 1000
2204 3052
0021 1730
0031 0740
7300 0003
0046 7112
0040 0200

5 GROUPS OF 4 OCTAL DIGITS

(DISPLAYS C, D, AND E)

12¢ @3eg

Page 322

are then read, and the file name and priority displayed. These

lists are updated only at intervals of 1/10 of a second in order

to reduce unnecessary read pyramid conflicts.

=

xO

re———{ WS A PER1OD ENTERED 7

READ KEYBOARD: IS A |

YES

CHARACTER PRESENT ? I

NO

[PROCESS CHARACTER]
YES
WAS CHARACTER A CARRIAGE]
RETURN ? [
K o
{ PROCESS CHARACTER]

NO

——=| SET MESSAGE. READY FLAC

EXIT

CLEAR MESSAGE ERROR FLAG

CLEAR LAST CHARACTER
| [was cHARACTER A BACKSPACE 1

YES no
:::“Aigéxg;z;z’muc: '——————L PROCESS MESSAGE] s
- ' [[was cHARACTER A sPack 7 —
NO
YES

SELECT LEFT SCREEN
DISPLAY DATE LINE
DISPLAY LEFT SCREEN

{_1s MESSAGE ERROR FLAG SET? }

YES

{ WAS THE DROP KEY PRESSED ? }
. L

RO

: NO
®{ _DISPLAY "FORMAT ERROR" | F.or [L1S_THIS A LEGAL CHARACTER ? }—

| __o1sPLAY KEYBOARD MESSAGE)

SELECT RIGHT SCREEN
DISPLAY CHANNEL STATUS
DISPLAY RIGHT SCREEN

[__aomust orseiay perion)

No |
te————{ 15 MONITOR IN STEP MODE 7 |
¥

ES

»
|___was A SPacE ENTERED 7 1;

YES

e——{ SET STEP FIAG TO STEP MIR |

YES

SET STEP FLAG TO EXIT
STEP MODE

DSD: PAGE a-/

l‘__.

' : - Tt YES

STORE CHARACTER IN BUFFER | YES

18 SAGE BUFFER FULL ? ~ |
NO

-
|_apvarce surFer ADDRESS)

| apsust p1seray perioo]

| Aovance piseLay cycie cir)

READ SYSTEM TIME
s . HAS SECOND COUNT ADVANCED ?
YES

STORE NEW SECOND COUNT YES
WAS DISPLAY REPEATED 50 - D

OR MORE TIMES THIS SECOND ?

xXo

[ser 0 = 0 FoR NEXT SEconp |

| PRESET TEMPORARY STOBAGE]

b o INTER-CYCLE DELAY |

SET D = CYCLE COUNT + D
- 50 FOR NEXT SECOND

]

CLEAR TEMPORARY STORAGE I
I‘ READ EST ENTRY FOR DISPLAY NO
l - HAS DISPLAY CONSOLE BEEN

SELECT DAYFILE DISPLAY ASSICNED TO A CONTROL POINT?
ON LEFT SCREEN YES
SELECT DISPLAY "Bn ON .
RIGHT SCREEN
| DROP DISPLAY CuANwEL]
REQUEST DISPLAY CHANNEL
L il] r———={ READ EST ENTRY FOR DISPLAY]
ves I
————1{ 1S DISPLAY STILL ASSIGNED 1 |
X0

| Request prseiay cuanneL |

o[ENTER A BLANK IN BUFFER EXTT
o
b
|
| cLEAR MESSAGE ERROR FlAG],_‘_.@
" |__RESET BUFFER ADDRESS i
1T
EXIT

£2€ 23eq

A PROCESS MESSAGE]

NC

-
S TER1007] WAS THE FIRST CHARACTEP g
[[15 SECOND CHKARACTER A PEK1OD? :l whs THE FLET S
” * B @
NO
1S FIRST CHARACTER A VALID | r
SET MESSAGE ERROR FLAG J—#e EXIT ASSEMBLE ADDRESS NO !
I CONTROL POINT KIMBER ¥ I o J . 15 ADDRESS TERMINATED BY w-{ SET KESSACE ERKCR FLAC r———@
YES A COMMA ?
. YES
YES]
—— 1 SET SENSE SWITCH BIT IN RA
[15 wessage ~onsw 2 I ® AND IN CONTROL POINT AREA
* o ::Snme.{gizw?k?rmamRDMTm ® —a]SET MESSAGE ERRCK FLAC L it |
o sex o a |
YES CLEAR SENSE SWITCH BIT IN TR BY A PERIOD ?
[35 uESsace roFFSW" 7 “} ‘J, RA AND CONTROL POINT AREA [exit] p - .
: NO
STORE DATA WORD IN CENTRAL
1S MESSAGE MEMORY
NO "LOAD" -
ANEXTH
"READ"
mPRINTT 7
YES 7
' . YES
YES WRITE PACKAGE NAME, CP NO. Y ETETITY e 3
[1s cosTRoL PoINT IDLE 7} IN MESSAGE BUFFER) EXIT A PERIOD ?]
REQUEST MTR ASSIGN PPU !
ro)
NO
B [WAS THE THIRD CHARACTER
A coMMA ? .
YES
YES __[write D15 IN MESSAGE BUFFER
e 15 MESSAGE rDISY 7 o |REQUEST MIR ASSIGN PPU .
SELECT DISPLAY MODE TO BE
No MODIFIED AS sptzcxnm)) BY
1ST CHARACTER (C - G
YES)
[15 MESSAGE vASSIGN" 7 } a| REQUEST MTR ASSIGN EQUIP- (ot o
rl 0 CONTROL FOINT ASSEMBLE ADDRESS |
NO MENT ONTR [
IS 2ND CHARACTER 0 - 3 7 [~
YES .
[15 sEssace rcon } [CLEAR PaUSE BIT IN BA ____ }—] EXIT] YES
NO
[cumcs STARTING ADDRESS FOR I CHANGE DISPLAY STARTING J
1ED FIELD (0 - 3 ADDRESS
1S MESSAGE SPECIFIED FIELD (0 - 3) .
MENDL® YES]
MEND2" o] SET STOP BIT IN CONTROL EXIT
WEND3" | POINT AREA [exir] EXIT
WENDG™ 7)
NO -
YES * NO
ol €
YES L——e{ 15 MESSAGE "DONY ? .} ASSEMBLE CHANNEL NUMBER }_'E
[15 mEssace nproP+ 7] «] REQUEST MIR TO DROP JOB }—e Ex17] No | 15 cuawser acTivE (=1t |
YES
¥o
[“ser wmssace Error FLAG] ' [p1scomvecT craswEL b—e{exr |
' YES ASSENBLE CHANNEL NUMBER No
EXIT L1s MESSAGE vECNY ? }—“——’l 15 CBANNEL INACTIVE ?
NO : YES - .
ISSUE ZERO FUNCTION e i |
NO .
[15 wEssace mautor ¢ H (NEXT PAGE)
YES
WRITE 1LJ IN MESSAGE BUFFER
REQUEST PPU FROM MTR FOR CPL
WRITE 1DJ IN MESSAGE BUFFER | . .., ... ‘i
REQUEST PPU FROM MTR FOR CP2 | ' '
WRITE 1BJ IN MESSAGE BUFFER WRITE 1BJ IN MESSAGE BUFFER
REQUEST PPU FROM MTR FOR CP3 REQUEST PFU FROM MTR FOR CPS
WRITE 1BJ IN MESSAGE BUFFER WRITE 1BJ IN MESSAGE BUFFER
REQUEST PPU FROM MTR FOR CP4 REQUEST PPU FROM MTR FOR CP6
DSD: PAGE A-2

SD "AY DISELA SYFILE
PROCESS MESSASE, CONTINUE DSD A DISELAY (LAYFILE)]

SET DISPLAY ADDRESS TO
DFB STARTING ADDRESS

: SET UPPER DISPLAY
IS MESSAGE WSTEPY 7] o] REQUEST MONITOR TO ENTER COORDINATE

Gee °3eg

STEP MODE i]
NO ; : YES
Es ————3] 1S DISPLAY ADDRESS = N7 f
—— 1 _ — | REQUEST MONITOR TO TOGGLE Yo
1S MESSAGE "SIN" ? = smuiator EXIT
NO
YES
: HAS BOTTOM OF DISPLAY
YES ASSEMBLE EQUIPMENT NUMBER : AREA BEEN REACHED 7
{15 uEssace wonn 2 - - REQUEST MONITOR TO CLEAR EXIT -
o EST INTERLOGK BIT
YES ASSEMBLE EQUIPMENT NUMBER DISPLAY ONE DAYFILE MSG
1S MESSAGE "OFF» ? IL REQUEST MONITOR TO SET EXIT ADVANCE DISPLAY ADDRESS
- EST INTERLOCK BIT o -
YES ’ S o Eacs ' ————{ DISPLAY ADDRESS = vLiMIT" 7
- — COPY REMAINDER OF ME ;
1S MESSAGE "TIME" 7 J ™1 IN M RESIDENT TIME AREA EXIT) YES
NO N
; : SET DISPLAY ADDRESS TO
SET MESSAGE ERROR FLAG | : DFB STARTING ADDRESS
EXIT
I NO
DID LAST DISPLAY START AT
TOP OF DISPLAY AREA ? I
YES
[oiseiay craser status]
] REDUCE UPPER DISPLAY
READ CPU P REGISTER COORDINATE FOR ROLL EFFECT
CONVERT TO DISPLAY GODE
wp = "
DISPLAY "P = XXXXXX ADVANCE DFB STARTING
I ADDRESS TO SKIP ONE MSG
- N
TEST DATA CHANNELS [-~ SET STATUS INDICATOR T0 D J———
1S CHANNEL ACTIVE ? I
EXIT
J YES
NO ! .|
[(35 cramver FuiL 7 — w{ SET STATUS INDIGATOR TO E [osp piseiavs ¢, b, £, L o
YES
SET POINTER TO LIST OF
[ser staTus 1wp1catTor 10 ¥ FIELD ADDRESSES .
— |
DISPLAY = SELECT DISPLAY MODE:
- CHANNEL XX XX XX XX XX xxn [5 GROUPS OF 4 DIGITS (C,D,E)
i 4 GROUPS OF 5 DIGITS (F.G)
Ko ‘mvz ALL CHANNELS BEEN I
DISPLAYED 7 l : SET CENTRAL READ ADDRESS
po— TO FIRST FIELD ADDRESS
[
- : READ CENTRAL MEMORY WORD
DISPLAY ADDRESS
DISPLAY CENTRAL MEMORY WORD
NO
“————{HAVE 6 worDs pren DISPLAYED? |
YES
)
HAVE FOUR FIELDS BEEN o] SET CENTRAL READ ApDRC
DISPLAYED 7 ™10 NEXT FIELD ADDRSSS
YES

READ CONTROL POINT STACLK
SET STATUS INDICATORS (A-G)-
FOR EACH CONTROL PQINT IN
THE STACK

~———{ READ CONTROL POINT STATUS |

o SET STATUS INDICATOR FOR

THIS CONTROL POINT TO W

J_

[SET STATUS INDICATOR FOR

| THIS CONTROL POINT TO X

]

ADVANCE CONTROL POINT
ADDRESS

SET DISPLAY COORDINATE
. FOR FIRST CONTROL POINT

DISPLAY CONTROL POINT
NUMBER

READ CONTROL POINT AREA
DISPLAY JOB NAME
DISPLAY PRIORITY
DISPLAY TIME LIMIT
DISPLAY RUNNING TIME

[

DISPLAY STATUS INDICATOR
READ CONTROL POINT STATUS
DISPLAY PPU! ASSIGNMENTS

FOK NEXT LINE

READ CONTROL POINT STATUS
DISPLAY RA AND FL

]

READ CONTROL POINT AREA
DISPLAY EQUIPMENT
ASSIGNMENTS

ADVANCE DISPLAY COORDINATE
FOR NEXT LINE

l

READ CONTROL POINT AREA
DISPLAY LAST DAYFILE MSG

{ ADVANCE DISPLAY COORDINATE

HAVE ALL CONTROL POINTS YES
BEEN DISPLAYED ?

I NO
ADVANCE ADDRESS FOR NEXT
CONTROL POINT
ADVANCE DISPLAY COORDINATE
POR NEXT CONTROL POINT

LT PAGE /44

I ves
[[1s v Fiac seT }
NO
YES
[[1s x rLag seT ? I
NO
-
HAVE ALL CONTROL POINTS =
BEEN SCANNED ? —
YES
NO

DILILAY (1% BACKLOG,

NO

I

No HAS 1/10 SECOND ELAPSED
SINCE LAST ENTRY ?

YES

INITIALIZE LIST ADDRESSES
INITIALLZE FNT ADDRESS

l

STGPRE FNT ADDRESS IN

READ FNT ENTRY |
IS FILE TYPE INPUT ? I~

NO

YES

T | INPUT FILE LIST

1

o

[1s F1Le TYPE OUTRUT ? 1
No

#{ STORE FNT ADDRESS IN
1 OUTPUT FILE LIST

]

ADVANCE FNT ADDRESS

HAS END OF FNT BEEN

REACHED ?

YES

" DISPLAY HEADING
WINPUT FILES....OUTPUT FILES"

INITIALIZE LIST ADDRESSES
SET DISPLAY COORDINATE FOR
FIRST LINE

DOES INPUT FILE LIST CONTAINI

YES

- I READ FNT ENTRY

AN FNT ADDRESS ?

NO

DOES OUTPUT FILE LIST NO
CONTAIN AN ENT ADDRESS ?

YES

READ FNT ENTRY
DISPLAY FILE NAME, PRIORITY

ADVANCE LIST ADDRESSES

ADVANCE DISPLAY COORDINATE

7‘ DISPLAY FILE NAME, -PRI

FOR NEXT LINE

HAS END OF LISTS BEEN J

REACHED ?

YES

9z¢ °3%g

Page 327

CONTROL DATA CORPORATION

Development Division - Applications

THE JOB DISPLAY, DIS

Chippewa Operating System

10/15/65

Page 328

INTRODUCTION

OPERATIONS

CONSOLE DISPLAY

~~
f.
~

DIS JOB DISZLAY

DIS is the name of the Chippewa Operating System peripheral
program that monitors comsole - keyboard activity for a

job assigned to a particular control point. DIS must be
loaded in as many PPU units as the number of control points
for which it is required. The package is usually located
on the system disk in the peripheral library; therefore,
its name will appear in the PLD (Peripheral Library Direct-
ory). DIS may be brought to a control point in any one

of three ways:

~1. Typing "A. DIS CR" when DSD (system display) is active.

2. Inserting a DIS control card.
3. A central memory pfogram requesting DBIS through a call
to MSG.

DIS is concerned with the following functions:

» Job Displays

* Monitoring Keyboard Activity

* Processing Requests for job control debugging for oaly
the job assigned to its control point.

DIS operates during the time the job to which it is attached

has the control point. If it is desired to manually re-

lease DIS, a drop request is made, which in turn causes

a drop PPUs %o be issued by the PPU containing DIS. DIS

would have -to again be loaded for future use by this con-

trol point. If an error condition (error byte becomes non-

zero in CP area) the program will drop itself; a check of

this nature is méde on each iteration through the master

control loop.

One of the prime functions of DIS is displaying informa-
tion concerning the status of the job at the control point
to which it is attached. To do this, DIS outputs informa=-
tion in the form of display coded characters (see SIPROS

DEF Manual) and necessitates issuing X and Y coordinate

Page 329 (2)

values followed by the string of 6-bit display code chax-
acters. The screen of each CRT may be considered a grid

of. points as follows:

Y ‘
Y=7777 \ Y=7777

X=6000 X=6777
Y=7000 Y=7000

Figure 1

The coordinates (x=6xxx, Y=7xxx) specify the position of
the first display coded character follow. Thereafter,
the x coordinate is advanced (by one character space)
along the increasing x axis but the y coordinate remains
constant until another y coordinate (7xxx) is issued.
For example, the dayfile display program in DSD uses the

area 7200 to 7660 and form 6000 to 6777.

Page 330 o (3)

In the dayfile display, the y coordinate is allowed to
increase by +1, from 7646 to 7660 on each cycle of the mas-
ter control loop. As will be seen, this has the effect of
» "rolling" the display upwards on the screen. The use of
the console display is quite simple, involving only .the
outputing of appropriate X and y coordinates followed by

the display coded string of characters.

Besides the formation of display characters and screen
 positioning, the program also controls the brightness
(or intensity) of the image on the screen. The latter
increases in proportion to the number of times per second
the display coded information is presented to the console.
To maintain a stable visable image, the code must be out-
put to the console at least every 1/25 of a second. More
repetitions per second will produce a brighter image. A
delay loop is commonly employed to control the image out-

put- period.

Example of display loop:

LM %3, 10B Jump 1f channel‘loB inactive
ICN 108 .Disconnect channel 10B

LOO0P FNC 7001B10B .Select 32 Char/Line left screen
ACN | 108 .Activate channel
LDC 70008 -+A= Y coordinate
OAN 10B .Output Y coordinate
LDC 63378 .A= X coordinate
0AC 108 .Output X coordinate
1LDC 16 .A= No. Words to output
OAM Buffer,10B .Output from buffer]
LDN 01B .Set A= No. milliseconds delay .
SHN 9 .Convert for LOOP

DELAY SBN 1 .2 us delay loop
PIN Delay

LIM Loop .End of millisecond loop.

DISPLAY PLACEMENT

Y COORDINATE

TOP OF DISPLAY
DATE LINE

1

TOP OF DISPLAY

P REG CHANNEL STATUS
¢

7700

DAYFILE DISPLAY

DISPLAY AREA
AREA

Vv
ERROR MESSAGE (IF ANY)

7100

7066

KEYSET MESSAGE

LEFT RIGHT

Figure 3

1€€ °8eq

(%)

Page 332

START

KEYBOARD

The logic in DIS which controls console output is not
basically different from the above example. The overall

scheme can be visualized as follows:

i

&

e]
t

I3

/
' Jerr \ JRIGHT \\)
l“\ ~~ !’\ 2
m | SCREEN j======_"x! gCREEN \==== = | DELAY ;

v T

Figure 4

To maintain the delay function, a parameter may be in-
serted into the ADJUST DISPLAY PERIOD and PRESET INITIAL
VALUES ROUTINES. It has the form: LDN nn, where nn is
the number of milliseconds (from 00 to 478) in the delay.

For maximum brlghtness, this is preset to nn=00; it can

‘be modified, however. Since other operations (keyboard

monitoring) take place in DIS, this constant also effects
the total sensitivity of the whole system. For normal
operations, it is not necessary to alter this constant.
Notice in figure & the image is established through contin-

uous trips around the display loop.

Along with the display screens at the console unit is gz
typewrite-like keyboard containing keys for alphabetic,
numeric and special characters. These, in display code,
are listed on page 46 of the manual on CODES for the 6000
Computer System. Keys are also present for the following

special purposes:

Page 333

(6)

KEY DISPLAY CODE
Carriage Return (CR) : 60
Backspace ' 618
Space ’ 628

These keys are used by the K&wBOARD MONITORING routine to
control the proper filling of the KB (keyboard) assembly
buffer (location 1300/1377 in DIS). A CR 1is interpreted
by DIS as an end of message. The backspace key will erase
the last character input. The drop key (code 55) will
cause the string of characters of the current message,in-
put to that time, to be cleared; the next character keyed

will be treated as the first of a new message.

When it is desired to interrogate the keyboard for keyed
information, an input to A is given. Lf there was a char-
acter keyed, 'the console unit controller will return the
character, in display code, in the lower 6 bits of a 12-
bit byte (the high order 6 bits are cleared to 00). If
no key was activated, however, the controller will return

an all zero 12-bit byte.

On each cycle of the Master Control Loop, DIS examines the
data at the keyboard. If a valid character is input, the
byte is stored away in a contiguous manner in the KB.
assembly buffer. A cleared byte (0000)
will cause no data to be stored. Appropriate action is
taken when the CR, backspace or drop key is activated.

When a CR is recognized, a flag, called the keyset Ready
flag is set to 0001; representing the "on" condition. This
flag is examined once during each control cycle. If not
set (0000) no action is taken; if set (0001), however, the
message in the KB Assembly buffer is interpreted, processed

and the flag reset to 0000.

Figure 5 illustrates the position of the keyboard process=-

ing in the control sequence of DIS (see figure & also):

(7)

FUNCTIONAL SEQUENCE OF DIS

Bt Hpniamy LTI AT LT - "l:r::::::;':::::' g AR I et - A
o i \/ LMON L- i KEYSET
m 4 ¥ e T -+
~ START ‘““T"‘"\\ATSR {7\ FLAG SET?
™~ ! <

e A

=wes > DELAY

ygm—
b o
BmAr e S I AT DI T
YE S]

_ ﬁmnhmxw
PROCESS KB
R”QUEST

""".i" PRI GA0 P P44 e

Figure 5

Page 334

Page 335

MASTER CONTROL

PROGRAM

(8)

Figure 5 combines several of the functions which make up

the MCP (MASTER CONTROL PROGRAM):

*Keyboard Monitoring

-Request Processing initiation
‘Left Screen Display

*‘Right Screen Display

*Display Period Adjustment

Only a few more functions need to be added to produce the
operations performed by the MCP. Regardless of the dis-
play mode selected (A, B, ..., G) there are permanent dis-
plays on both the left and right screems. On the left ap-
pears the time and date line stored in Central Memory lo-
cations .30/37; this is displayed at Y coordinate 7700.

At Y coordinates 7100 and 7066 are the error message (if
any) and the contents of the KB Assembly Buffer (at that
point in time), respectively. The current Central Pro-
cessor BPregister and the status of all 12 data channels
ae displayed at Y coordinate 7700 on the right screen.

In the functional diagram (figure 5) these displays may
be thought of as belonging to the left and right screen

displays.

One function remains: breakpoint monitoring. The user

is given the opportunity to request (via the keyboard) a
breakpoint debugging action. This routine reads the CP P
register and if the contents match the requested breakpoint
address (in P 52/53) the Central Processor is dropped from
the control point and the word at the breakpoint (saved

in P40/144 during breakpoint initiation) is restored in

CM. This function follows the display period adjustment
routine. All functions of the MCP areiillustrated in de~

tail in MCP flow chart (see appendix A).

Page 336

DISPLAY PROGRAMS

DISPLAY MODES

(9)

DIS is able to provide four different types (modes) of
displays. The operations indicated ia the two circles in
Figure 5 refer to the particular display and its assoc-
iated display program selected for that screen for dis-
cussion purposes. The permanent displays were considered
here as well. Initially, DIS will put up the dayfile
display on the left screen and the job status infor

on the right. These can be altered, if desired, by key-

ing the following request.
LR. '"CR"

The mode code placed in the L position will bring the dis-
play for that code to the left screen and one placed in R
will specify the right screen display. The address for

the left and right screen programs are stored in locations

70 and 71, respectively.

CODE DISPLAY INFORMATION
A Day File
B Job Status
C, D, E Program Storage
F, G Data Storage

Day File Display - MODE A

This program displays the contents of the DFB (Day File
Buffer) between Y coordinates 7660 (top) to 7200 (bottom).
This coordinate is stored in location 64. The most cur-
rent being displayed message will always appear at the
bottom of the display. Up to 3/10 messages can appear be-
tween these limits. After each message is displayed, the

Y coordinate is decremented by 128.

A pointer in location 65 is maintained to indicate the ad-
dress of the DFB message to be displayed at the top of
the display. Initially this pointer ecuals the '"OUT" ac-

dress of the DFB status word (CM location 0003); this is

Page 337

(10)

advanced as the number messages between the current address
(at 65) and the "INPUT" address exceeds 3110. When 31 or
fewer DFB messages are between (65) and "INPUT) the display
staYs constant with new messages being displayed at the

bottom of the display as they appear in the DFB.

If, however, the number of messages in the DFB exceeds the
maximum number that can be processed at one time, the dis-
play will not remain fixed. Rather, it will "roll up" on
the face of the screen. This gives the impression that
when the message now at the head of the display reaches
the top it is rolled off the screen and a new (and more
current) message enters the display at the bottom. This
will continue until the number of DFB messages betweén
the address stored in 65 and the INPUT DFB status indica-
tor becomes less than 31. This rolling is accomplished
by allowing the beginning Y coordinate to vary from 7646
to 7660 (in increments of 1) on each cycle of the DIS mas-
ter control loop. Therefore, 128 iterations will be
necessary to roll off a message. As each message is rolled
off the screeﬁ, the DFB pointer in 65 is advanced to the
address of the next message in the DFB. All display ref-
erences are made relative to this address. Eg: if 65
contained 2334 then the first (top most) message would be
picked up from the CM location 002334. Then the next 30
messages (not the next 30 cells) to be displayed will be
picked up. When the message beginning at CM 002334 is
rolled off the display, the address in 65 will be set to
point to the first word of the next DFB message. If the
message at CM 002334 is three cells long, 65 will be set
equal to 002337. Whenever a message is rolled off, the Y
coordinate is reset equal to 7646. See the flow chart in

Appendix A, A~39 for a detailed description of the process.

Job Status Display - MODE B
This display exhibits the control point status. (W, X, 4,

ceee.G,. =), last dayfile message the next control state-

'Page 338 (11)

ment to be processed and the exchange jump package. This

information is gathered from the control point area.

Storage Displays = MODES €, D, E,E, G

Modes C, D, E are primarily used to display program text
residing within Central Memory. These form display octal

digits in the form of 4 groups of § digits each.

Modes F,'G, in contrast, display octal digits in 5 groups
of 4 digits. These coorespond to the 12-bit PPU words and

hence modes F, G are used for data storage.

Besides the above differences, the five modes all share
these characteristics. ALl displays have four fields.
A field is the display of the eight words XXXXX0 - XXXXX7.
The particular field specification is given by the typed
statement:

Xn, m. "CR"
» D, E, F, G

Field 0 begins with m
Field 1 begins with m
Field 2 begins with m
Field 3 begins with m
Four consecutive field beginning with m.

where X =

n=

PO O O

m = Central memory relative (to RA) address.
This should be of the form XXXXX0. In any
case, the low order digits is made 0 if any
other digit is specified.

Eg: 1. C2,330. "CR" would set field 2 beginning address
equal to 000330 and display 000330 - 000337.

Eg: 2. E3,351. "CR" would set field 3 equal to 000350
and display 000350 - 000357.

All displays give the relative CM address tothe left of"
each entry of the display.

REQUEST PROCESSING On each iteration through the Master Control Loop the Key=~

set Ready flag is examined. If the flag has the value

Page 339

0000 (i.e., not set) the remaining portion of the loop
is traversed. If, however, the flag is set, control is
given to the INTERPRET KEYBOARD MESSAGE routine. This
routine scans the information in the KB buffer and gives

control to the proper routine to process the keyed request.

The requests may be classified into the following groups:
1. Display mode selection and mode field specifi-
cation
2. Central Memory modification
3. Exchange Jump Package and Control Point modifi-
cation
4. Job control

5. Debugging Aids.

The KB interpretive routine first checks for a special for-
mat (see list of possible requests following this discuss~
ion) and if request is of this gives control to the routine
specified (see flow charts A-17 to A-36). 1If it is not

one of these, the statement is examined for z display entry
(mode or field 'change); if it is of this type, control goes
to proper display procéssor. I1f the statement still can
not be identified, it is treated as a possible PP call and

the RPL and PLD are reached. If a match is made, a re-

Hh

quest is set up in 10/14 and a return is made to PP Resi-
dent to inform EXEC that there is a request to process.

If the request is not a PP call, it is considered to be
an error and the message "FORMAT ERROR" is desplayed on
the left screen. The Keyset Ready flag is then cleared to
0000 and control is returned to the Master Control Pro-
gram. For a complete descripﬁion of individual request

processing, consult the DIS flow charts in Appendix A.

Page 340

DIS REQUESTS

(13)

The following commands to DIS refer to the control point

to which it is attached.

Some of the entries cause the

job to be switched away from the CPU (e.g. when the job's

exchange package has to be changed). Execution can be

resumed using RCP or BKP, Numbers are in octal.

. ENP, 12345.

. ENA3, 665000.

. ENB2, 44.

. ENX5, 2223 4000-
0000 0000 0200.
(Spacing unimportant)

. ENEM, 7.

. ENFL, 10000.

. ENTL, 200.

. ENPR, 5.

. DCP?

. RCP.

. BKP, 44300.

Set P = 12345. (Next instruc-
tion address in exchange package).

Set A3=665000 in exchange
package.

Set B2=44 in exchange package.

Set X5=22234000000000000200 in
exchange package.

Set Exit Mode = 7 in exchange
package.

Set FL=100000 en exchange pack-
age. (Storage moved if necess-
ary).

Set CPU Time Limit = 200
onds.

sec-
8

Set job Priority = 5.

Drop central processor and dis-
play exchange package (in dis-
play B). Using DIS, the exchange
package is displayed.in any case
if the job does not have status
A, B, etc.

Request central processor. This
puts the job in W status, and it
will take the CPU if its priority
is sufficient. The register set-
tings of the exchange package
will be used.

Breakpoint to address 44300 in

- the program. CPU execution be-

gins at the current value of P
and stops when P = 44300. DIS
effects this by clearing 44300
to stop the program at that
point, and restores the origin-
al word when the stop occurs.

Page 341

(14)

. RNS.

. RSS.

. ENS . XXXXXXXXXXKXXX .

‘e Go.

L] ONSW3 .

. OFFSW&4.

. HOLD.

. DROP.

. DMP (200, 300).

. DMP (400).

. DMP.

Read next control statement
and obey it. (During usc of
DIS the normal advance of
control statements is inhib-
ited).

Read next control statement
and begin execution. This is

- like RNS, except that a cen-

tral program is only brought
to central memory, and not
executed.

This command allows the entry

of any control statement as if
it had been entered on a con~-

trol card. The statement can

then be processed using RNS or
RSS.

This command restarts a pro-
gram which has paused.

Set sense switch 3 for the job.

Switch off sense switch & for
the job.

This entry causes DIS to re-
linquish its display console,
but the job is held at its pres-
ent status. A console must be
reassigned to continue use of
DIs.

This causes DIS to be dropped
and normal execution of the job
is countinued. It does not mean
'Drop the job.'

Dump storage from 200 to 277 in
the output file.

Dump storage from the job's
reference address to 377.

Dump exchange package to out-
put file.

(IMP formats are the same as if used on contrel cards).

Page 342

APPENDIX A - DIS FLOW CHARTS

INDEX

TITLE

MAIN CONTROL PROGRAM
PRESET INITIAL VALUES
MONITOR KEYBOARD
INTERPRET KEYSET MESSAGE
DISPLAY DATE LINE
DISPLAY ERROR MESSAGE
DISPLAY KEYSET MESSAGE
DISPLAY CHANNEL STATUS
ADJUST DISPLAY PERIOD
MONITOR BREAKPOINT ADDRESS
ENP

ENFL

ENTL

ENEM

ENTER EM

ENA

ENB

ENX

ENS

DROP

ENPR

GO

RCP

DCP

BREAKPOINT REQUEST
RSS

PAGE

A-01
A-03
A-04
A-06
A-08
A-09
A-10
A-11
A-14
A-16
A-17
A-17
A-18
A-19
A-19
4A-20
A-22
A-23
A-24
A-26
A-26
A-27
A-27
A-28
A-29
A-30

Page 343

ADVANCE

RNS

HOLD

ONSW

OFFSW

ENTER P, FL, RA, EM
DISPLAY C, D, E, F, G
DISPLAY DAYFILE

DISPLAY B (EXJ PACKAGE)
SEARCH FOR SPECIAL FORMAT

A-30
A-31
A-32
A-35
A-36
A-37
A-38
A-39
A-41
A-43

Page 344

ODIS TEMPORARY STORAGE ALLOC{ “jJON

40/44 BREAKPOINT WORD

50 REFERENCE ADDRESS
51 FIELD LENGTH

52/53 BREAKPOINT ADDRESS

60 KEYBOARD READY FLAG

61 KEYBOARD ERROR FLAG

62 KEYBOARD ADDRESS

63 EQUIPMENT ADDRESS

64 DAYFILE DISPLAY COORDINATE
65 DAYFILE DISPLAY ADDRESS
66 DISPLAY CYCLE COUNTER
67 DELAY COUNT

70 LEFT SCREEN PROGRAM

71 RIGHT SCREEN PROGRAM
73 KEYSET INITIAL ADDRESS
74 CONTROL POINT ADDRESS
75 INPUT REGISTER

76 OUTPUT REGISTER

77 MESSAGE BUFFER

Page 345

DIS - MAIN CONTROL

PROGRAM

FIL e

PRESET
INITIAL
VALUES

MONITOR
KEYBOARD

.
.
/

A
i

i

. YES
KEYSET READY

?

2

NO
:

\

. / INTERPRET

KEYSET MESa
AGE

SELECT LEFT i

i

SCREEN, CONSOLE?
CHANNEL 11 i
ACTIVATE CHAN 1}

;‘l
]
i
§

DISPLAY
DATE LINE

@
i
i

DISPLAY PR
GRAM

LEFT SCREEN \
O- /

MESSAGE

ISPLAY ERROR

/

A-Cl

Page 346

T ATN AAVTDAT DLAnD it S AncTmTas
D.LS - ...-\ O. \ Ll :'u'\}u:‘);._—_'. [T A A

. J

I

I

i

DT !
: N

\

i

I
DISCONNECT

CHANNEL 11

it

i
'SELECT FAGHT

SCREEN, CHAN 11

T

i

i

£

Lx.crm TH CHAN 11
|

/ DISPLAY \

7 CHANNIL

\\\hSTATUS

1
1

i
i
/ RIGHT N
SCRzEN N
DISPLAY /
\MOGD”*
=
f‘ ‘ g}
DISCONKECT Fo
CHANNEL 11
H
f f
1; ¢

/ ansust N\
/' DISPLAY N
PERIOD .

i
f
|PICK P DREMK- |
{POINT ADDRESS
. P52/53 :
‘ 1

s BREM{POIM\\YES
OPTION IN USE

0 |

MONITOR \
_ BREAKPOINT \

‘2
i~
!

7

|
|
Q'f

{ B §,§ LOOP

A-02

Page 347

st CP Means Control Point

e}
H
| €]
|
‘d
&
n
&3]
=]
l:—*l
[23]
i3
]
it
‘I’-q
[

leoau OUTPUT AD-

ENTER
{CLEZR TO 0000: |
{READY FLAG PO |
[ZRROR FLAG P6L
1DELAY COUNTER P67

|
ISET KB POINTER |
P62 = INITIAL KB |
{ADDRESS P73 =
(13008

|

DRESS OF DAYFILE |
{BUFFER IN P65
H

’bLl LEFT SCREEN ;
i?ROGRAY ADDRESS
D'}’() = DISPLAY DAY
lrILW F

a
|°ROGRAM ADDRESS |
571 = DISPLAY B |
i {

CCHPUTE CP¥ AD- |
DRESS GND STORE |
N P74. CP NUM- a
JER IN P75 f

i

_ |

1 CLEAR TO 0000

i BREAKPOINT INDI-

|
QCA”OR P52/53 g

ettt Sorug Miresnily

[

'
o/

N\
REGUEST Di/)>

Li

i
;
4
P

i y
| OBTAIN CHANNEL |
il NUMBER OF DS U- |
% NIT. STORE IN §
(L j

/RE(;}'UES 'l‘ \) ‘u\,-é' Wil e
<§\FHANNEL //>~BJ T4

i
13
}
}

o

O\

\
MODIFY ‘\
PARAMETERS

A-03

Page 348
DIS - MONTTOR XRVROARD

3 SELECT RICHT
SCRZEN, CHAN 11 |
ACTIVATE CHAN 11

i
INPUT BYTE FROM
BYTE = 00XX, XX is in D:Lspla.y KEYBOARD TO A
Coae i DISCONNECT CHAN
11

WAS cdmxm \
ENPTY ?

(XX = 00) /
\ J

NO ‘

XX = 60 NYS

m

Carrsige Retur/&’

i
NO @7

X.Xzélg? \

\\\BACKSPACE

¥
NO V9

! é XX =62g

;f SET (4) EQUAL #, YRS ! ;
¢ TO 0055, STORE j™ SPACE

g IN XB BUFFER g j

|

4

RSN P A S oy

¥ — KB Means Key Board

FLAG (P60) TO
0001

"rw._..:mr

SET KEYSET READY

T
il

/ IS THIS 1ST \ NO DECRIIJAENN KEYV-

BYTE INPUT9

‘\

BOARD ADDRESS P62
,EBY 1 (BACKSPACE) |

v

ﬂ

1
' K‘if

I SET LiST BYTE
| IN KB* BUFFER
T0 0000 (CLEAR

)

i atie’

CLEAR KB ERROR
FLAG - P é1

:

N EXIT
i e

A-04

Page 349

DIS - MONITOR KEYBOARD [CONTINUED)

B

g | CLEAR KB BUFFER
! | BYTE P62 T0 P
| 5

XX = 53g YES IS THIS THE FN BACKSPACE KB .

DROP KEY _&7 «f 1ST ENTRY IN ¥\ .f BUFFER ADDRESS |

/!o /KKB BUFFER)/’ /F P62 BY 1

;_ T

NO f! NO
V7 Q'

YES | 2 CLEAR ERROR J EXIT
INVALID —-7":——7*
\ CEARACTER P61 = 0000 4 g/

STORE THE 12 BIT
BYTZ OOXX IN
KB BUFFER AD-
DRESS P62 j

i

f

H
|DVANCE KB BUF-
FER POINTER, P62,
BY 1

' N\
IS KB BUFFER \
s \‘i NO

A

FIL,ED ?

(MAX = 76g //

BYTES)
yEs |
\'y

g BACKSPCE KB
{ BUFFER POINTER

N2

2

~EP62 BY 1

A-05

Page 350

DIS — INTF " AEVSET MISSAGE
A
,i EXTER i
L J

N\
SCARCH FOR \
SPHCTAL /

PACIAL
FORMAT

¢?ﬁ"55 L VALIL\X YES
SPECIAL FOR- |

&\ I{AT FOUND ?

o
MO i
- \V
SSET XB BUITER,
P01 = INITIEL
LDDRESS P73

{i
f
q
i

/ IS THE FIRST \ :
CHARACTER IN KB BN P HOCESS \

45 gy vt

T

STORAGE
T
3U1T F%R %N ocmu/ SNTRY /

H
N0 p

7.3 3:{1) C*mn— \
[ACTBR A YES(\/ PROCISS

" 2 DISPLAY MOD
(DIS COU“ 57) \ChA’\TGﬁ, /

|
NO &
<) i
/ ingi‘DAcm‘ YZS_,/ PROCISS \\
& w0 DISPLAY FIELD
IR, CHANGE
(DIS CODE 56) N /
NO \t ,

Page 351

DIS - INTERPRET

KEYSET MESSAGE (CONTINUED)

S THE

BUFFER = Q0 ?

Q\THAQACTMR IN K;\,Y“s

=

J

s REQUEST A \

VALID PP CALL?

\-ﬁfrm/

!

7

o P6L =
}
1

iSET ERROR FLAG

{FORMAT ERROR
MESSAGE

ADDRESS OF}

&}‘

CLEAR KEYSET READY

FLAG P61 TO 0000

XTI

WA

'
1

!

/ts ERROR FLAG
SET?

 ie, P6140000

psn

YES

>

NO il

ADDRESS P73

| RESET KB ADDRESS:
P62= INITIAL KB |

ey

i
A
|
|

BUFFER TO 0000

JCLEAR ENTIRE KB ﬁ

A-07

Page 352

DIS - DISPLAY DATE LINE

ENTER

l" ‘dj
i

I

|

i

p

it

tf

INATE 7700 ON

pUTPUT Y COORD-

CHANNEL 11 i
| §
i
i
i
i :
SET A = 0030, CM AD- |
EDRESS OF DATE LINE §

?%
i

DISPLAY ONE\

LINE

TR I TN O T

A-08

Page 353

DIS - DISPLAY ERROR MESSACGE

ENTER

T,

PICK UP ERROR
FLAG P61l

p
=i
%1

(L) CONTAINS ADDRESS OF é;ngEﬁb AN \x o (A) = 0000
THE FIRST CHARACTER OF ');

APPROPRIATE ERROR MES-

SAGE.

i
s |
\Wi
OUTPUT ¥ COORD- |
INATE 7100 ON g*
b]

e ey

CHANNZL 11

eom e dus ot

7
¢ OUTPUT X COORD-
INATE 6000 ON

: CHANNEL 11

- ot
b 31 S L2 JRR AR

o
e
{
- PICK TP NEXT TWO
CHARACTERS FROM
ERROR MESSAGE.
POINTER, POl

|
:

OUTPUT CHARACT 10 END OF MESSAGE
. ADVANCE MESSAGE |-)

. POINTER N (ie: 0000)

YES i<
' \Vi

4=-09

EXIT

Page 354

oo}
+—
w

}

)
=1
wom
]
=
[
-
t=f
F<
wn
3]
e

4
tod
n
[}

Jet}

g g
b ENTER g
! ‘
i
4
i
3

IGUTPUT X COORD-
{INATE 6000

;
i
}

/OUTPUT ¥ COOHD-
¥NATE 7066

e

[

LN
i P2
‘ H

FORM PAIR

OF DIS-

| PLAY CODE CHARS |
| FROM NEXT THO KB |
; BUFFER BYTES

E‘ i f NO
: i |

! ! |

Y\ J j,
- — % YES IS CHANNEL
\v |47

: . CHARS = 0000 3/ |

g
: i
i} i
¥l NO \v,_

OUTPUT TWO
CHARACTERS

O A by S 44 D

| ADVANCE KE BUF- |

) FER ADDRESS
POINTER, Pé2,

BY 2

D eonger » A IEAd o yese

A-10

Page 355

DIS - DISPLAY CHANNEL STATUS

E ENTER

f
H

z
|
|
{
!

reeew
iy

IREAD P FROM CENTRAL
PROCESSOR SAVE IN

" P13/14
|

{ SET DISPLAY CODE FOR
P (20) INTO HEARING

OUTPUT: X COCRD

Y COORD and

€%

i SET A = P ADDRESS
_ HSAVED IN P13/14

OUTPUT:
. CHANNELS

| INITIALIZE POl = 00
| EQR CHANNEL ACTIVITY

.J

C

P

u j)
'FORM CHAN ACTIVE
JUMP INST. FOR
NEXT CHANNEL IN
POL

A-11

Page 356

DIS -~ DISPLAY CHANNEL STATUS (CONTINUED)

'FORM CHANNEL EMP-}
TY JUMP INST. FOR
| NEXT CHANNEL IN

| POL

i s s

1
STATUS . CODE CHAR !
SET STATUS D IN
DISCONNECTED 04 D A REG TO INITIAL-
EMPTY 05 E IZE CHANNEL STAT=
FULL 06 F - US SCAN

i
f
li

/‘ 15 CHANNEL \ YES D-STATUS
i INACTIVE ? , LN

}'" v
)/ L
J i
NO ,3 ;
<y
'"ADVANCE CHANNEL STAT-h
HUS TO E ?
|
/IS CHANNEL \x YES E-STATUS
K\EMPTY ? \ o

iﬂ ’

oy
!2 ADVANCE CHANNEL STAT-)
L US TOF i F-STATUS
i
i
IS
zl
| STORE STATUS IN PO2.
! RIGHT ADJUSTED 5
i
[ADVANCE CHANNEL NO. |
LIN PO1 i
| !
|
OUTPUT STATUS CODES YES \% SCAN NEXT CHANNEL
Us!

/DOES P02 CON=
@{;w TAIN TWO STAT @
\J)DES ?

Page 357

'DIS - DISPLAY CHANNEL STATUS (CONTINUED)

QUTPUT TWO STATUS
CODES IN P{2

&%

i
|

]

HAVE FOUR
CODES BEEN
OUTPUT?
a
YES |
P
X7
L5 et
E OUTPUT TWO SPACES f
| f
i
- N NO
HAVE ALL CHAN- &

! NELS BEEN EX-
AMINED ?

\2

n NO

A=

1

e
-

Page 358
DIS - ADJUST DISPLAY PERIQOD

] ¢
i ENTER i
¢ }
li
ﬁ
= =
| ADVANCE CYCLE COUNTER i
BY +1 P66 ,}

i
i
READ CM* SECOND CLOCK |
FROM CM LOC 000030 ‘

Ei

/HAS CLOCK AD- \\ NO
VANC‘?D SINCE // f\<B) DELAY & EXIT

\\LAST CYCLE?

SR

I
¢y

6 == =
JEJPDATE DIS SECOND CLOCK!
{ : J
' i
ADD CYCLE COUNT TO
DELAY COUNT ;

TR

/ DOES SUM ° \, YES SE\I'ITER DIFFERENCE T

\ (MAX 37g) IN DELAY
\E}{CEED 5057 ; v j COUNTER P67 !

/

S ?

- \7]

RESET DELAY COUNTER

P67 TO INITIAL VALUE
34
.
i~
;

CLEAR GCYCLE COUNTER
6

T e s

rJ
o t!

!
i

PAUSE FOR \

\\STORAGE RELO=-

CATION
\

sl

Page 359

DIS - ADJUST DISPLAY PERIOD (

AT
Ui e Zan el

ID)

N
Y
A

i

!

b
{READ CONTROL POINT

; STATUS

i
4

SSAVE RA IN P50
| SAVE FL IN P51

IS ERROR FLAG
SET TO 0000?

e

|
i
{

A
\/

YES |
\7
«@oas CONTROL \x YES
POINT HAVE 0000
\KPRIORLTYV
\
sl
et
</

i

PICK UP DELAY COUNTER

FROM P67
|
1

CONVERT TO MILLISEC=~
i OND CONSTANT FOR LOOP

|

<

e~ |

H DECREMENT MILL~CON«
i STANT BY +1

7

NO ERROR AT CONTROL POINT

DROP DIS FROM GONTROL. POINT,

== = =

% PICK UP EQUIPMENT ;
ADDRESS FROM P1l

/A : |

#/PP_RESTIDENT RESIDE\T\R

DROP EQUIP- /;>

MENT
PP RESIDENTN

DROP CHANNEL

PP RESIDENT
DROP THIS PP

FROM CONTROL
POINT

e

EXIT TO 0L00 IN PP RESIDENT

- A-15

Page 360

DIS - MONITOR BRAEKPOINT ADDRESS

STATUS CODE
WAITING W
RECALL X
ACTIVE A

IN STACK BtoG

* BP Means oreakPoznt

ENTER

yo=nrrazTe

\READ P REG FROM CEVTRAL
PROCESSOR ﬁ
5

i
f

f/bOES P EQUAL \ NO
| BREAKPOINT , N
ADDRESS 1IN v
P52/53
— YES i

Vi

//f. SENSE ‘\\

JPPU ACTIVITY \

N
N

i

b

//is THERE AN fﬂ\ﬁ YES |
ACTIVE PPU AT Yo

\THIS CONTROL]
\ POINT?
2]

YES

Q?_
READ CP

STATUS FLAG N
NSTATUS 1IN A
\OF_RETURY _

I
Y

DOES CONTROL NO

7

gonvit e BT

I FORM CM ABSOLUTE |
{[BP* ADDRESS FROYX |
EBP P52/53 AND !
gRA, P50 i

b

g

i

'RESTORE BP WORD
#INTO CENTRAL
MEMORY

7
i
d
CLEAR BP ADDR?SS
| IN P52/53

P~
Fop

o

AT bt e e med S A |

b

POINT HAVE A
ISZS\CCL;IVE) STAT-

YES <9

{SET A = 16, DROP CENT-
iRAL PROCESSOR CODE

()

[

i
i

i

PPU RESI-
DENT. PROCESS
REQUEST

A~

S - A

EXIT

Page 361
DIS - ENP REQUEST PROCESSOR

g ENTER 6

p—

g§§§=i’REc = 0000 g

EXIT

DIS - ENFL REQUEST PROCESSOR

L ™ J

ASSEMBLE

/’OCTAL DIGITS
X, RIGHT ADJUSTED

———
PICK UP FL, DIVIDE
BY 1008, STORE IN
P11

SET A REG = 0010

oo

d

i
I

PP RESIDENT

REQUEST STOR-
AGE

A-17

Page 362
DIS - ENTL REQUEST PROCESSOR

g ENTER g
i '
~ N

///ASSEMBLE \

7/ DIGITS N\

\\\ 4//’ RETURNED IN P33/34

!

N} |

{ SET A REG EQUAL TO /
ggTAL STRING IN P33/

i
[

jADD 7 TO LOW ORDER | -
POSITIQN AND DIVIDE ; ‘
i BY . l8§ i :

— =

o Ty
N

TORE TIME IN
11 FOR REQUEST
ROCESSING

g g W

e T T I I

TTINTETET

SET A REG = 0014
(TIME LIMIT)

e —

T M T T

f
3

PP RESIDENT %
TIME LI MIT
REQUEST

,h.mm.——....rz

EXIT

Page 363

DIS -~ ENEM REQUEST PROCESSOR

E ENTER a

g

SET A REG = 0003 |

ENTER EM

EXIT

DIS - ENTER EM

ASSEMBLE
DIGITS

| SET A REG

PP_RESIDENT
DROP CENTRAL
PROCESSOR

EQUEST

COMPUTE ADDRESS OF
WORD CONTAINING EM

IN EXCHANGE JUMP PACK-
AGE (P06) |

0016 f

7

| READ WORD INTO i

.20/24 a

:

]

ISOLATE EM CODE ¢P34)
STORE IN P20 !

t]

WRITE 20/24 INTO EX- |
CHANGE JUMP AREA ;

g

EXIT

A-19

Page 364 DIS - ENA REQUEST PROCESSOR

ENTER

[et
|

i
(-——-—-——-—.-—_——--—_.,.....__._.\ sy
i ICK UP NEXT BYTE FROM%
r KB BUFFER (POl) H

S—

i

i

*‘\ YES (ERROR)
{18 IT ALPHABETIC) o
] ? /} 4 |
!
\
IS IT OTHER YES
THAN AN OCTAL 1 o
DIGIT ? /} v,
; R
NO - 1’4
&7 : o
{ 2 i 3
| STORE THE OCTAL IN ﬂ i i ¢
| » 06 i
[i
i i 1
i § 1 SET P61 = 1670 f
{ ADVANCE KB POINTER ; ADDRESS OF FORMAT :
BY +1 PO1 f { ERROR MESSAGE Q
H 1
: 1
i
s4¢ : i
IS NEXT BYTE Y\, NoO
A nyuno9 \1 E
i
YES
11 ¢

.
ADVANCE KB BUFFER E

1

R SR R T S R T

F POINTER BY +1 POl r
i
i -
!
ASSEMBLE
DIGITS RETURNED
IN P33/34

NO

IS THE NEXT

BYTE A nono? jmt
YES f"E
R})

Page 365

DIS - ENA REQUEST PROCESSOR (CONTINUED)

{SET A REG = 0016 L
j

i
.

PP RESIDENT‘\\
DROP CENTRAL

s/

| COMPUTE CM ADDRESS OF
An IN EXJ PACKAGE i
OF CONTROL POINT

f

|
| READ WORD FROM EXJ
PACKAGE INTO 20/24

i

S v AT LN YaY

ENTER NEW Ap INTO

P22/23 FROM P33/34

~— S

!

M

WRITE P20/24 INTO
i EXJ PACKAGE AREA

A=21

Page 366

DIS - ENB REQUEST PROCESSCR

ENTER

. PICK UP NEXT BYTE FROM;’
|XB BUFFER i

N ‘1
S IT AN OCTAL \
NUMBER?

NO

,{\

VES {9

RE OCTAL DIGIT IN |

O

ST D)

i

i

ADVAWCE KB POINTER TO |
| NEXT BYTE

§

- f/’zs NEXT BYTE

A uyn?
YES;

Wi

' ADVANCE KB POINTER TO
| NEXT BYTE §
3

ASSEMBLE
DIGITS

S NEXT BYTE
0

[5 n,u ?

__
YES |

= d7
ﬁ SET A = 0016

N i

Py

AT T T

|

(7
PP RESIDENTN
DROP CENTRALH\\%
\. PROCESSOR RE=
\ QUEST é/’V

H
f!

H COMPUTE ABSOLUTE AD-

. BESSo ®s

JH

'é

1
t

ST

H
"
'

| INSERT NEW B,
JBACK TO CM

. WRITE !

{SET P61 = 1670, AD

{MESSAGE

DRESS OF FORMAT ERROR]

1
8

|

t

g

Page 367

DIS - ENX REQUEST PROCESSOR

! ENTER

)
}
PICK UP NEXT BYTE FROM

KB BUFFER

2

NO
/IS IT AN OCTAL\\

@
S

‘kNU'MBER?

YES @7

'ADVANCE ADDRESS BY 108
ITO POINT TO X ENTRIES

:

K

| ADVANCE KB POINTER TO |
NEXT BYTE i‘;

IR

ey

NO - /Is NEXT BYTE \
o A II " ? i
\ j
\ ‘. J
Y5 |
)
ADVANCE KB POINTER TO
NEXT BYTE

NO IS NEXT BYTE
A ., 9

@)
AN

v
SET A = 0016

|

X NUMBER (0-7)

PP RESIDEVT
DROP GENTRAL
PROCESSCR

i

4
COMPUTE ABSOLUTE CM
! “ADDRESS OF X ENTRY

oy

i

i

{

i
| WRITE NEW 60 BIT WORD
| | INTO XJ PACKAGE

SET P61l = 1670
ADDRESS OF FORMAT
| ERROR MESSAGE

Qo

A=23

Page 368

DIS - ENS REQUAST PROCESSOR

i g
i ENTER i
i i
e = : ;
 PICK UP NEXT ¥R BYTE | i
i P01 % 1
] : i
i
; , i
\ i
7 1s 17 A SPACE\\ vas g)
i 9 i | ADVANCE KB POINTER g
\\ (55, DIS Lonpi/ “ﬁ BY +1 POL é
<7
i 2
" FORM ADDRESS OF CONTROL|
| POINT CONTROL STATE~ !
inVT B”“FER, SAVE 1IN
f 06 - 4

:

! CLEAR THE NEXT WORD OF
E CONTROL STATENENT BUF-
;. TER ;
t ﬁ
: NO f/HAS ALL OF T \ﬁ
; f BUFFER BEEN
CLEARED? /}
YES
<7
{READ WORD 021 OF CP |
| INTO 10/14 :
3

'SET ADDR OF m:xm et i

STATEMENT TQ THE 1ST
WORD OF THE BUFFZR

!1

i

WRITE 10/14 BACK INTO
CONTROL' POINT AREA :

iy {ijj}
~ D
i CLEAR P10/14 i

Page 369
DIS -~ ENS REQUEST PROCESSOR (CO\TI\)

< A’j

;1

| SET P02=10, ADDRESS OF
! 18T_BYTE T
| ASTERETe ARpRTATEMENT
£ Q‘h
f i
i I
i | PICK UP NEXT BYTE FROM|
h { KB BUFFER, STORE IN
i ! UPPER 6 BITS OF AS-
1 | SEMBLY AREA (P02) -
j
5 i
: © ADVANCE KB POINTER
i i BY +1 POl
| a
} 4
{ ; PICK UP NEXT BYTE i
i FROM KBYBUFFER,)
5 'STORE IN LOWER 6 BITS |
f i OF ASSEMBLY AREA (P02);
I o END OF STATEMENT
b
| PR . - i 5
| aarS\ YES i WRITE PL0/14 INTO 1ST d
H v I Am muros AANnTTDAT b
;é = Oooo? ri; AN (V2% Fyyew WUV L AVL B
; g\; /ﬂ g STATEMENT BUFFER q
Y ; 3 5

NO iy

e e e
T TN

A\DVANCE.KB BUFFER POINT.
X éﬁ BYCE, KB BUFFEZ PO Ti
Bl :
|
P : :
g | ADVANCE ASSEMBLY AREA |
b POINTER BY +1 P02 {
i Y :
i '
i
i]
ﬁ NO _
ﬁ END OF ASSEMBLYY
\::REA ?
YES
gg |
WRITE P10/14 INTO CP |
STATEMENT BUFFER !
(P06) j
| !
. ADVANCE STATEMENT 1
D N | BUFFER ADDRESS p0g

A-25

‘Page 370

DIS - DROP REgUEST PROCESSOR

ENTER jﬁ

4]

EXIT TO DROP DIS IN ADJUST DISPLAY PERIOD

DIS - ENPR REQUEST PROCESSOR

ASSEMBLE
OCTAL DIGITS

RIGHT AD- /
JUSTED
| STORE PRIORITY IN i

i P11

! e

PP RESIDENT N\
REQUEST PRI~
ORITY

A-26

Page 371

DIS - GO REQUEST PROCESSOR

E ENTER g

5

| CLEAR P10/14 F

i

\COMPUTE CM ADDRESS OF
{CONTROL POINT DAYFILE
'MESSAGS BUFFER (1ST
WORD)

! CLEAR DAYFILE MESSAGE

E‘

5 COMPUTE RA and READ
| CONTENTS OF RA INTO
] P10/ 14

E g O
o .
H~ O

! CLEAR BIT 00 OF P13 |

| AND WRITE P10/14

| BACK INTO N CM
EXIT

* DIS - RCP REQUEST PROCESSOR
=S

SET A REG = 0015

PP RESIDENT\\\
REQUEST CEN-

RAL PROCESSO

_A-27

Page 372

DIS - DCP REQUEST PROCESSOR

ENTER

ST AT

e sx o spmed

SET A REG = 0016 |

RCSTESIITT)

i
PP RESIDENT
DROP CENTRAL \
PROCES SOR

REQUEST

i
| PICK UP BREAKPOINT |
| ADDRESS IN P52/53

i
IS IT EQUAL
ES NOT BEING USED
TO 0000 ? _ YES (NOT BEING USED)
R e ™
\ /
i

{ COMPUTE ABSOLUTE. CM
i ADDRESS OF BP FROM
{ RA P50 AND P52/53

PRI biplor b

- =
| WRITE INTO CM THE WORD!
| SAVED IN P40/44 FROM !
| BP INITIALIZATION :

5

CLEAR BP ADDRESS f
P52/53 »

Enn b ey

A-28

Page 373
‘ DIS - INITIATE BREAKPOINT REQUEST PROCESSOR

ENTER

Corrorrae

j

i

ASSEMBLE RETURNED IN P33/34
DIGITS g

i

CLEAR P10/14

)
PICK UP BP ADDRESS
DIVIDE BY 100g

DOES BP AD-
DRESS LIE WITHINY

7]
of !
FIELD LENGTH? vl SET A REG = 5160

ADDRESS OF OUT OF o}
RANGE MESSAGE ‘

g
>
i
i
)
i
o
7
1
Zz

COMPUTE ABSQLUTE .CM
ADDRESS OF BP FROM

RA AND BP ADDRESS IN
P53/52 g

o I

READ CM WORD AT THIS Q
LOCATION INTO P40/44

-

CLEAR BP WORD IN CM

TR

0015 i

| SET A REG =

e e et e

REQUEST
CENTRAL

PROCESSOR //,

& .bb
"’;; , EXT

A-29

Page 374
DIS - RSS\REQUEST_239§§§§Q§

(]
2
3
txy
w0

i CLEAR 910/14 g{
=
;if
| SET P14 = 0001 ;

h PLACE DLSDLAV CODE FOR!
? 1" A 3
l %E%O/il :

ADVANCE TO

NEXT CONTROL N
STATEMENT ji/)

EXIT
DIS - ADVANCE TO NEXT CONTROL STATEMENT

: ENTER

?

READ CP WORD 021 INTO
PlO/14

Loy

r“‘c::..".*::z‘ g

g
#

§PICK UP ADDRESS OF NEXT

'CONTROL STATEMENT FROM

‘P14, READ INTO 10/14

i

——————

;

I3
fr

PICK UP FIRST BYTE OF
STATEMENT

ﬁ SET A REG = 0020
f
87

\\ NO 4¢/’PP RESIDE\T\\\

I/ e

// IS IT EQUAL TO REQUEST PBU \-~=====f\\\\

0000 ? ji /\\\ J//”“
' i

EXIT

A-30

Page 375

DIS -~ RNS REQUEST PROCESSOR

2

ENTER

e

i
i

ﬂ CLEAR P10/14 ﬁ
F i
| :

il

i

i

|
f =Y
i STORE DIS CODE FOR |
§ nlav IN P10 ﬂ
{ H

|

i

ADDRESS AND CONVERT

Tg CONTROL POINT NUMBEﬁ,
J |

;

|

! PLACE DIS CODE FOR ||
nJn" IN P11l

PICK UP CONTROL POINT 3

PRIt i ru g

T e

i

!
il

WRITE P10/1& INTO

PP MESSAGE BUFFER

(IN P77)

e —

e

SR x~ e - rarar o

s

EXIT

A-31

Page 376
' DIS - HOLD REQUEST PROGCESSOR

=t
LI

i

YPICK UP EQUIP ADDRESS
+ |IFROM P63, SAVE IN P11

)

PP RESIDENT\\\§
DROP EQUIP
REQUEST

R —

SET A REG = CHANNEL
NUMBER OF DIS

i

i

PP RESIDENT
ROP CHANNEL

REQUEST ‘fj/

g SET P02 = 0002

I
| |

I SET A REG = ADDRESS OF{
{LAST DAYFILE MESSAGE |

1

DA i s

f

i

L.

| WRITE INTO ADDRESS TN
5 A REG:
"REQUEST DISPLAY, "

L. ~

j “i

SET A REG = 0017

(:EZ)*“Z&'

A-32

Page 377

\!
LOOP FOR DIS ASSIGNMENT \\

BY CPERATOR

DIS -~ HOLD REQUEST

vl
-t

P

PP RESTDENT N
PAUSE FOR RE-
LOCATION RE=
QUEST

il
i

b
’RLAD CP STATUS (020)
JIVTO 10/14 F

|

k\

/ IS ERROR FIAGN, NO | ,
00007 gj SET A REG = 0012

(Pl4) =
\

I

N7
ﬁ READ CP STATUS WORD F
ﬁ (022) INTO 10/1& i

|

YES # IS OPERATOR \

{ ASSIGNED FLAG)
.= 0000 J
GO

NO |

W
STORE EQUIPMENT NUMBERH
IN P63 p
H

>

]

e g

b
I3
i
i

i CLEAR P14, WRITE STATUS]
{WORD (022) INTO CP H
ARFA

Hi

U
ﬂ

FCOMPUTE ADD DRSS

|OF LAST DAYFILE MESSAGE
IN CP AREA »

1

V7
H

!

| CLEAR LAST DAYFILE
j MESSAGE

ERROR CONDITION SET

7

PP RESIDENT
TEASE PPU
REQUEST

\y
EXIT TO 0100
OF PP RESIDENT

‘A=33

Page 378
DIS -~ HOLD REQUEST PROCESSOR (CONTINUED)

©
i;f

! READ EST POINTER FROM
| CM 000005 INTO 1C/14 i

|

Hi

| COMPUTE ABSOLUTE AD-
DRESS OF EQUIP IN 243

T st o P B

§
b
e i _
| READ EST ENTRY INTO |
520/24 §
[%
I
| SET A REG = CHANNEL |
FNUMBER (P20) §

5
F

PP RESIDEN T‘\

REQUEST
CHANNEL ;’z?

MODIFY
PARAMETERS

Page 379

P

ENTER

ASSEMBLE

DIGITS
RETU

| ISOLATE LOWER THREE
| BITS OF P34, IN A

i

FORM COMPUTED 1 LEFT
SHIFT, BIASED BY 5

SET A REG = 0001

L

PERFORM COMPUTED SHIFT}
(TO PROPER SW POSITION)|

t]

A

STORE MASK IN POl

L L LTS

|

AS m OPERAND OF LPC
INSTRUCTION.

! COMPLEMENT A AND SAVE

|

| READ WORD 026 OF CP
AREA INTO P10/14.
(PICK UP SENSE LIGHTS
i AND SWITCHES)

:

;”OR” ON BIT FOR THE
: SWITCH IN REQUEST.

Pl4

rp i e e,

DIS - ONSW REQUEST PROCESSOR

RNED IN P34

-

ITLONETLN

3 teriea o i

| WRITE UPDATED CM WORD

}
i
IN P10/14 INTO E
CONTROL POINT AREA i

PICK UP WORD AT RA, ‘
UPDATE SWITCH SETTINGH

%ﬁD WRITE BACK INTO
i

|

EXIT

A=33

Page 380

)IS - OFFSW REQUEST PROCESSQ

G ENTER %
S)

//lssz MBLE ,
<\\?101Ts f/)
f l
o ! = =3
| ISOLATE LOW ORDER ||
| THREE BITS OF P34 i
1 i
R J
i
(‘; ” AAAAA e Y — __..\]‘
| FORM COMPUTED LEFT |
% SHIFT, BIASED BY 5 ﬁ
A M
!
it =
| SET 4 REG = o001 '
¢ | .
1
g e
| PERFORM CONPUTED _'¢'
| SHIFT |
\ b
. i S
jcowPLEMEVT A AND STORE! "
| AS A MASK i
i 4 AL
| COMPUTE ABSOLUTE AD- .
| DRESS OF WORD 026 OF ||
| CP. READ INTO P10/14 |
! j
L j
I
X o]
| PICK UP P14, uaNDW |
WITH PRESET MASK i
| i
i |
*]
1
WRITE P10/14 INTO |
CONTROL POINT AREA ;
i

pRESheo navieg At

RETURNED IN P34

e y————

P

Heco

[—

:

|

|
|
PICK UP CONTENTS OF q
RA. UVANDW WITH PRE- |
| SET MASK. |
i

j
f WRITE BACK INTO |
' RA. (IE: RESTORE %
hUPDATED SENSE LIGHTS |
! AND SWITCHES) i

A-36

Page 381

DIS - ENTER P, FL, RA, EX

’ g
f ENTER i
e - .

["STORE &4 kG IN P06

((INDEX IN THE CP EX-

iiCHANGE JUMP PACKAGE) |
!

d

J

ASSEMBLE

DIGITS / RETURNED IN P33/34

gi

SET A REG = 0016 {

£ e e

Hi
Hi
1

/‘p“rs*g‘g sﬁj\\

/4 DROP CENTRL \
PROCESSOR
_ REQUEST

[
COMPUTE ADDRESS OF ﬂ
EXJ PACKAGE + P06 j
H
il

T

|
}
)

READ THE WORD INTO
20/24 il

|
i
i
i

== o
| INSERT NEW VALUE ~IN ||
i 33/34 INTO P20/21 i
r |
{ ¥
|
|

F WRITE WORD IN 20/24 |

| BACK INTO EXJ PACKAGE !
| AREA |

4-37

Page 382

trl
iy

DIS - DISPLAY C, D,
S

v
U ¢

s J
v

ENTER

{
ﬁ
[

ET P24 = ADDRESS OF |

i

I's
l 1ST ENTRY OF DISPLAY
PFIELD TABLE. (EACH !
|TYPE OF DISPLAY HAS ITS||
" owN TABLE) ;
; MODE ADDRESS
} c 1470

D 1520

E 1550
: F 1600
ki e 1630

NOTE: EACH TABLE HAS

i

+ FOUR ENTRIES, TWO PPU j

! WORDS EACH. ”DRRESPOVD-i . ’
| ING TO FIELD.

|

FSET A REG = ADDRESS OF ||
'DISPLAY FORMAT PROCES- !
iSOR: |
! MODE ADDRESS
. C 3000 j
i D 3000 i
f E 3000 |
F 2600 1
i G 2600 |
'NOTE: b
(3000)=4GRPS OF 5DIGTS !

1 (2600)=5GPS OF 4DIGTS%
L [%

1"
i
i

DISPLAY ‘%K
STORAGE N

/

O ——

EXIT
A-38

'Page 383

DIS - DISPLAY DAVFILE

n
! ENTER i

:
'
}

L SET PO4 = INITIAL DFB¥ %
| DISPLAY ADDRESS |
| STORED IN P45 !

!

i

| SET P03 = INITIAL Y
| COORDINATE VALUE
| STORED IN P64

{
i
a]
|

-

v o e e e
ToITITm eIl

TITST LI IR

ST SRRSO

P e R Terder]

- 2
! DECREMENT Y COORDINATE
IN P03 BY 12g '

AL LTRSS T

= i ging

y
S e
vi

_ YES DOES P04 = \
7 N\, DFB INPUT
) """““‘W P21

NO |
}
g
ves AHAS Y COORD- N\

== Y
%) { INATE BEEN RE- |
A DUCED TO 200
BOTTOM OF DISP

i
NO &
7

éOUTPUT Y COORDINATE
jIN P03

N\
///DISPLAY ONE\\\
<§§\LINE OF THEA/2>

g

DFB

I

1
ADVANCE DFB POINTER
4 BY +1 P04

K

DOES PO4 = \§
DFB LIMIT (P23) '

DFB STATUS WORD HAS BEEN READ
INTO P20/24.

YES

DFB

20

INP | OUT
21 22

LIM
23

24

ESET P04 = P20.

i
<

\ ? ;

\ .

N

NO {ls

VI
I
{

| WORD OF DFB.

I1E:
=, RESET POINTER TO 1ST

Page 384

DIS - DISPLAY DAYFILE (CO: NTINUED)

i
H

b
gl

YES /DOES P64 =7660

G

, #(TOP OF DISPLAY) !
:‘(‘ j ‘* ? /z
l§ . /1/
; i
)
i ISET P64 = 7646 l
E(RESET Y COORDINATE) ||
’ 7 }
t ——— =
: | “i
i | | READ DFB FROM ADDRESS ;
? IN ‘P65 INTO P10/14 }
: 4
= I , =
; ; I
| I ADVANCE DFB POINTER
1‘ , i BY +1 P65 |
\ i A ..
; i i
f
/égE:Qgii igﬁ;g“\g YES f; RESET P65 = DFB 1ST
Q\L , / ,WORD ADDRESS !
! - | |
4 . NO I !
i » . E"\’ ‘
- O
, !

NO IS THE LAST
BYTE OF DFB =

\0000" //

| YES g;
& i !
el 7
DOES P6l= ‘ ._ .
7660 (UPPER YES "’f ADVANGE P64 BY +1 U
DISPLAY Y cooxwy 7 rff
{ ;
No | |
e
f\.

N -

Page 385

DIS - DISPLAY 3B

ENTER

T e S

&
;1
[
}

SET P07 = Y COORDINATE
7650

g

e

e

DISPLAY
(CONTROL POINT
STATUS

A
I

| DECREMENT Y COORDINATE
gm P07. OUTBUT PO7.

T

{CLEAR LOC P23

DAYFILE MESSAGE IN
CONTROL POINT AREA

{COMPUTE ADDRESS OF LAST]

|

DISPLAY LAST N\

DISPLAY
NEXT CONTROL
STATEMENT

5

TPICK UP RA FROM EXJ
E AREA

Page 386
DIS - DISPLAY B (CONTINUZD

IS THIS THE 4\\

SAME RA AS STORED, _NO EXIT
IN P50? //
:
YES §

/STORE CONTROL POINT
ADDRESS IN PO

y

E

DISPLAY
EXJ AREA

EXIT

A-42

~)<::jL"‘RJ,Bm4
21T

Page 387

DIS - SEARCH FOR SPECIAL FORMAT

! ENTER i
§
4
g
; i
| SET P07 = ADDRESS OF THI
ETHE FIRST ENTRY OF THE |

PATTERN TABLE

g zzaI

i
Sof
B i
. i

7

STORE INITIAL KB ADDRESS
IN LOC POl

E
(|
| STORE ADDRESS OF PAT-
%TERN TABLE IN P02

]

NO MATCH

ADVANCE RETURN veEs /HAS THE ENTIRE
ADDRESS SET BY « .1 PATTERN TABLE

\\EBEEN SEARCHED?

(P02=0000)

N

NO i

b
Ty
3

" P

i ‘

i { PICK UP WORD INDIRECT-
LY FROM P02. (WORD

, ‘JAS THE FORM: 00XX)

| ' 1

i i

; i

: é?

j : HAVE THE CHARS\ YES

LAST WORD = 0000

/ GO PROCESS \ ,
SPECIAL FORMAT]

IN PATTERN TABLE

ADVANGE P02 AND POL BY | BEEN SCANNED?

Y

!

I

! +1. GET SET TO COMPARE
| NEXT CHARACTER IN STRING

-]

!

)

YESE

A]
; OES WORE AT
' (PO01) = WORD
READ FROM PAT-
TERN TABLE? / +1

\"®J oz, p02 /| EXIT

ADVANCE PATTERN
TABLE POINTER BY
PO7

Page 388

CONTROL DATA CORPORATION

Development Division - Applications

DISK’ ROUTINES AND OVERLAYS

Chippewa Operating System

11/1/65 -

Page 389

Disk Routines and Overlays

Contents

Introduction

6603 Disk File: Description and Organization
6603 Disk File: Timing Considerations
6603 Disk File: Disk Capacity
Chippewa Operating System Disk Usage
The Disk Write Overlay, 2WD

The Disk Read Overlay, 2RD

The Backspace Disk Overlay, 2BD

The Drop Track OVerlay, 2T

2WD Flow Chart

2RD Flow Chart

2DT Flow Chart

2BD Flow Chart

Page

W W N

17

*

‘*Page 390

DISK ROUTINES AND OVERLAYS

Introduction

In the Chippewa Operatiﬁg System, there is no single system element used
to perform disk operations for all other elements of the system.
Instead, each system element performs its own disk operations. This,
while requiring additional coding for each of the system elements using
the disk, eliminates the need for a request queueing and priority

scheme required by the use of a single system element to process all
disk operations. In addition, the housekeeping required by a disk
subroutine in one system element can overlap, to some extent, a disk
operation being performed by another system element. Among the system

elements which perform disk operations are:

* peripheral processor resident (reads transient programs from the
disk library)
+ MIR (writes the contents of the dayfile buffer to the disk)

- some transient programs (read overlays from the disk)

Disk operations for external users are performed via the overlays

2WD (write disk), 2RD (read disk), and 2BD (backspace disk). These
overlays are called by CIO when a disk operation is requested by a
central processor program. In addition, these overlays are used by
certain transient programs to perform disk operationms. Thus, 1LJ

and 1LT call 2WD when loading jobs from the card reader and a tape unit,
respectively, while 1DJ and 1TD call 2RD when transferring job output to

the printer or a tape unit,

Regardless of where in the system they are performed, disk operations are
similar: this discussion will therefore be limited to the over lays
2WD, 2RD, and 2BD. Before discussing these routines a short review of

the physical characteristics of the 6603 disk file is in order.

Page 391

6603 Disk File: Description and Organization

The 6603 Disk File contains fourteen disks, each coated on both sides

with magnetic oxide. Thus, there are a total of twenty-eight recording
surfaces. On two of these surfaces timing tracks are recorded, two are
used for spares, and twenty-four are used for recording data (see figure 1).
All fourteen disks are mounted (in a vertical plane) on a common axis and
rotate at a speed of approximately 900 revolutions per minute. TIwelve

of the data surfaces are on the right side of the unit, and twelve are

on the left. Information is recorded on the .disk in 12-bit bytes:

each bit in a 12-bit byte is recorded on a separate disk surface.

Associated with each disk surface is a set of four read/write heads
(see figure 2). An assembly consisting of a rocker arm and a head bar
fits between each pair of facing disk surfaces. The head bar holds two
sets of four heads, one set for each of the two facing surfaces. The
read/write heads are mounted on this head bar in a fixed position
relative to each other. The rocker arm-head bar assemblies for all

disks mount on a common bracket which can be rotated. This rotation

-1

ona 1T +%h
-y C e e -

~ ~a
[y #1619

A Ava
G bua.u

heads accessing the timing track surfaces: these heads are fixed).

The disk surface is divided into four zones. A zone is that portion of
the disk surface transversed by one of the four heads associated with
that surface as the head (on its head bar-rocker arm assembly) moves
through its maximum angular rotation. A byte may be written on the
twelve data surfaces on the right side of the disk file or on the

twelve data surfaces on the left side of the disk file: on either side,
a byte may be written in any one of four zones. On eacﬁ side of the disk
file and for each zone on side, a single set of twelve read/write heads
are used to record a byte (see figure 1). This set of twelve heads is
called a head group. There are four head groups for each of the two sets

of twelve disk surfaces: a total of eight head groups.

Each zone contains 128 tracks. A track is the recording path available
to a given head group in a given position as the disk makes a complete

revolution, To move from one track to another requires a physical

-2- -

Y ~SPARE

Nu|

"HEAD
GROUPS

[N CRN N
!‘\: >

DATA DISCS

- .
i

i £l m]

|

7

q
1

|

[

DATA HEADS

ALL HEADS (EXCEPT FIXED HEADS){ MOVE TOGETHER

~<—- CLOCK g

B S MOTOR o
44| PEDESTAL

e L

HEADS

DATA DISCS
A

| «Grme FIXED =g f ||

-

T N

N
NN

g
i - 2 oY
IR Y

boe-di2 e
o x
. T

SPARE-—
,&/

HEAD
] 7

6603 DISC FILE

DATA HEADS

HEADS

z6€ °38g

Page 393

movement, or repositioning, of the head bar-rocker arm assemblies, At

a given position, each head group accesses the same track in its zone.
Thus, if head group 2 is positioned to track 125, the other 7 head

groups are also positioned to track 125.

Tracks are divided into sectors: a sector is the smallest addressable
segment of a track. There are 128 sectors in each of the tracks in the
two outer zones. In the two innermost zones, there are only 100 sectors
per track because of the reduced track length near the center of the
disk compared to the trackllength available near the outside edge. A
sector contains 351 bytes (each bit in a byte is recorded in one of 12
corresponding sectors across 12 disk surfaces). The first four bytes
recorded are reserved for use by the controllexr: They provide a time
lag between consecutive sectors and contain all zero bits. After the
last data byte has been written, the controller writes a longitudinal
parity byte, . The sector format is illustrated in figure 3. Of the
351 bytes in a sector, then, five are used by the controller: The
remaining 346 bytes may be used for data. Normally, 320 bytes (the

equivalent of 64 central memory words) are used for data.

The number of words read from or written to the disk is solely a function
of the weord count specified in the IAM or OAM instruction. It is
possible to read or write more than one sector at a time; it is

possible to read or write in the group switch gap; it is possible for

a read or write to wrap around on the same track. A read or write
operation always begins at the beginning of a sector. When a write is
initiated, the disk controller inserts four zero bytes before the data
~and inserts a parity byte after the last data byte. (The parity byte

is not necessarily in the last byte position in a sector.) When a read
is initiated, the controller assumes that the first four bytes are zero
bytes, and does not pass these on to the data channel. When the word
count in a read has been reduced to zero, the controller assumes that the
next byte to be read is the parity byte. Thus, any attempt to read a
number of bytes different than the number of bytes written will invariably
create problems due to the interpretation of zero bytes and parity bytes
as data and vice versa. For this reason, regardless of the amount of

data to be recorded, a fixed number of bytes is written in each sector,

.

P SECTOR 0 (OUTER)

REFERENCE MARK*“”““M““*\\\w\

GROUP SWITCH GAP =y

_,—" SEGIOR 1 (OUTER)

N\

7z 2an31g

h
I

Y‘”"*x

INNER
SECTORS ﬁ?g

7 ENOZ
£ ENDZ
Z ZNOZ
T ENOZ

TR

TRRPPEP.

HEAD T2

HEAD BAR

ROCKER ARM ~—— et

u DISC ORGANIZ ATION
it

%6€ °%8g

-9-

12 DISK SURFACES ON 7 DISKS

D

SECTOR

® PARITY BYTE: WRITTEN AFTER LAST DATA BYTE =——__

\

® UP TO 346 DATA BYTES

® 4 ZERO BYTES: INSERTED AND
EXTRACTED BY DISK CONTROLLER \ ;

€ @2an81 1

SECTOR FORMAT: 6603 DISK FILE

S6E °38g

Page 396

and only one sector is written at a time (i.e., data is recorded in

physical records of one sector).

A reference mark on the disks containing the timing tracks defines the
beginning of sector 0 in all four zones. Beyond this point, the
starting point of sectors in the two inner zones does not coincide with
the starting point of sectors in the two outer zones (see figure 2),

The clock surfaces contain timing tracks for each zone. As the disk
rotates, one of these timing tracks (depending on which head group is
selected) drives a cell counter. This counter in turn triggers a sector
counter. Both counters are initialized when the reference mark is
detected. The cell counter is incremented as the timing track is read:
When it reaches a count of 351, it is reset and the sector count
advanced. The controller compares the sector number specified in a read
or write function code: When equality is obtained, the read or write
operation is initiated. The contents of the sector counter appear in

the low-order 7 bits of the status response,

6603 Disk File: Timing Considerations

The rotational speed of the disk is approximately 900 revolutions per
minute, corresponding to a revolution time of about 66 milliseconds.

The time required to read or write a byte is approximately 1.4 micro-
seconds on the two outer zones and 1,8 microseconds on the two inner
zones. In the outer zones, then, a sector passes under the heads

cvery 490 microseconds, It requires a minimum of 325 microseconds to
transfer the 64 central memory words in a sector from peripheral pro-
cessor memory to central memory, and, because of memory and pyramid
conflicts, will probably require longer. A single peripheral processor
cannot maintain a continuous data flow between consecutive sectors on the

disk and central memory.

If the programmer wishes to read or write in a given sector, he simply
issues the appropriate function code and, when the sector comes under
the heads, the operation is initiated. The programmer may prefer to
minimize the time spent waiting for this sector by sensing (via a

status request) the position of the disk. Timing considerations make

-7-

Page 397

it impossible to sense for a given sector and then initiate an operation
in that sector: If one wishes to read or write sector N, then sector
N-2 should be sensed in order to assure that a revolution will not be

lost,

There are two types of delays which are of concern to the disk programmer.

One of these is the positioning delay: The time required to move the

heads to a new track. When a track select function has been received

by the disk controller and positioning initiated, a delay determined by
counting a#g-reference marks is provided to permit the head assembly to

stabilize. Thus, depending on when positioning is 1n1t1ated up to 33 Z& O

milliseconds may be required. During positioning, a status request will

receive a "NOT READY" reply.

The second type of delay is the switching delay encountered when a

different head group is selected. When head group switching is initiated,
the controller provides a one millisecond delay to allow the circuits to
stabilize: Furthermore, reading or writing cannot be initiated until a
reference mark is detected. Thus, depending on when the head group
select function is issued, up to 66 milliseconds may be required for head

group selection.

Between the last sector in a track (sector 127 in the outer zones, sector
99 in the inner zones) and the first sector (sector 0) on that track

is an area called the group switch gap (see figure 2). This area is

approximately equivalent to three sectors in size. It is provided to
accommodate the minimum 1 millisecond switching delay. A programmer can
thus read or write the last sector in a track, select a new head group,
and read or write sector zero of the new track without incurring a

delay.

The function code for head group selection is 160X, where X is the head
group number {0-7). It is possible to vary the second octal digit in this
function code (normally zero) from 1 to 7: In doing so, the manner in
which the data signals from the disk are sampled is varied. Use of the

feature is reserved for error routines,

Page 398

6603 Disk File: Data Capacity

There are 128 physical positions of the heads: At any one position,

a track may be accessed by selecting one of eight head groups. Thus,

the disk has a total of 8 x 128 = 1024 tracks. Of the eight head

groups, four cover inner zones and four cover outer zones. In the

inner zones, there are 100 sectors per track: In the outer zomes, there
are 128 sectors per track. Therefore, 512 tracks each contain 100 sectors
while the other 512 tracks each contain 128 sectors. The disk file thus
contains 116, 736 sectors. In normal use, up to 64 central memory words
are recorded in a sector. The capacity of the 6603 disk file is thus

approximately 7.5 million central memory words.

Chippewa Operating System Disk Usage

As we have seen, a single peripheral processor cannot maintain a con-
tinuous data flow from consecutive disk sectors to central memory.
Therefore, the Chippewa Operating System uses a half track scheme in

its disk operations. -A half track is composed of either the odd-numbered
or the even-numbered sectors iﬁ a track. In a disk operation, the system
reads or writes alternate sectors, transferring data to or from central
memory while passing over the intervening sector. Since the disk
contains 1024 physical tracks, the equivalent half track capacity is
2048, The allocation of half tracks is controlled by MIR: disk

write routines obtain half track addresses from MIR via the Request

Track function. MTR maintains a table called the Track Reservation

Table (TRT) which contains an entry for each half track on a disk. On
receipt of the Request Track function, MTR searches the table for an
unassigned half track, and returns the half track address to the requestor
in the upper Byte of the Message Buffer. If no half track is available,
a zero address is returned to the requestor. A half track is never

split between files: thus, the half track is the smallest unit of

storage allocated on the disk.

The format of the half track address, and its relationship to physical

disk addresses, is illustrated below.

.o‘[-

» sanf13

-

PHYSICAL
SECTORS

HALF

LOGICAL
SECTORS

_TRACK 1344

O

TRACK USE: AN EXAMPLE

——/
TRACK 1348———'—/- -
- EVEN-NUMBERED SECTORS — ‘
HEAD GROUP 2

THE SYSTEM READS SECTOR 31g OF THE
HALF TRACK INTO PERIPHERAL PROCESSOR
MEMORY '

WHILE PASSING OVER THE NEXT PHYSICAL
SECTOR, THE DATA JUST READ IS TRANS~
FERRED TO CENTRAL MEMORY

THE SYSTEM IS THEN READY TO READ THE
NEXT SECTOR ON THE HALF TRACK

HALF TRACK ADDRESS:/ 63024 \

66¢ °2eg

Page 400

19:0,8:0:0:0:0:0:9,0.0:¢
I-I:————-head group number (0-78)

"1" if odd sectors, "0" if even sectors

— track number (0-1778)

Sector numbers maintained by the system (éuch as the Current Sector

in an FST entry) are logical sector numbers, and refer to a sector
within a half track. In the outer zones, sectors within a half track
are numbered 0-778: In the inner zones, sectors within a half track are

numbered (0-61 To convert a logical sector number to a physical sector

number, the sistem shifts the logical sector number left one place and
inserts the 24 bit from the half track address into the low-order bit
position. For example, consider logical sector 778 (6310) in a half
track composed of the odd-numbered sectors in a physical track. In this
case, the 24 bit of the half track addéess will be a "1". By shifting
the logical sector left one place and inserting the "1" bit from the 24
bit position of the half track address, we obtain 1778 (12710) for the
physical sector number. For the remainder of our discussion, a reference
to "sector number'" will refer to the logical sector number unless other-

wise described.

For files recorded on the disk, the physical record is, of course, the
sector. A logical record may be composed of several sectors. The

format of the physical recdrd is shown in figure 5. 5028 bytes are

always written in each sector. The first two bytes written are control
bytes: the remaining 5008 bytes are data bytes., Control byte Zrcontains
the number of useful central memory words in this sector: If control byte
2 contains 1008, all 5008 bytes in this sector contain useful information,
A sector in which control byte 2 contains less than 1008 is called a
short sector, and is interpreted as a record mark., A logical record

may comprise several full sectors, but is always terminated by a short
sector., If the data to be recorded as a logical record is a multiple of
1008 CM words, the system will write, as the record mark, a sector in

which control byte 2 contains zero.

Control byte one points to the next physical record in this file. If

the next sector is on the same half track, then this byte contains the

"11.-

AL

¢ san31z

10% °8eg

CONTROL
BYTE 1

CON1ROL
BYTE 2

320 BYTES ALWAYS (2;£ITTEN]

commrm—

ZC————n-NUMBER OF USEFUL CM WORDS IN THIS SECTOR

POINTER TO NEXT SECTOR

SECTOR NUMBER (0 - 77g) IF ON SAME HALF TRACK

© HALF TRACK NUMBER IF ON ANOTHER HALF TRACK

CONTROL BYTE 1

NON-ZERO

NON-ZERO

NON-ZERO

ZERO

CONTROL BYTE 2

RECORD

100g
NON-ZERO, <:1008
ZERO

ZERO

WFULL" SECTOR: PART OF A LOGICAL RECORD
nSHORT" SECTOR: PART OF A LOGICAL RECORD; RECORD MARK
WSHORT" SECTOR: RECORD MARK

FILE MARK

DISK FILE PHYSICAL RECORD FORMAT

1)

Page 402

number of that sector. If the next sector is on another half track,
then this byte contains the half track address for that half track,
(The file would be continued beginning with sector zero of the new half

track.)

At the end of each write operation, the system writes a file mark. The
Current Sector byte of the FST entry is not incremented to reflect this
" file mark sector, so the effect is equivalent to writing a file mark

and backspacing over it. On the disk, a file mark is a sector in which

both control bytes contain zero.

. The Disk Write Overlay, 2WD

Disk write requests by users are executed by CIO's overlay 2WD. This
ovérlay is also used by 1LJ and 1LT in loading jobs on the disk, Before
calling 2WD, CIO calls the 2BP overlay to check the legality of the buffer
parameters FIRST, IN, OUT, and LIMIT. After checking these parameters,
2BP searches the File Name Table for the file name specified in the CIO
call (i.e., in the first word of the argument list). When found, 2BP
stores the address of the corresponding FST entry. Should the file name
not be found in the FNT, 2BP constructs an FNT entry for this file,
Finally, 2BP clears the 20 bit in the buffer status byte of the FST

entry to reserve the file,

CIO then calls 2WD. (Refer to the flow chart on page A-1.) 2WD reads
the FST entry for the file and extracts the equipment number from byte
one. The equipment number is added to the EST base address, and the

EST entry read., The channel number from byte 2 of the EST entry is then

inserted in the appropriate I/0 instructiocns.

The output data in the circular buffer may appear as a contiguous Block,~
or may wrap around the buffer, as illustrated in figufe 6. In computing
the total number of sectors in the circular buffer, then, the 2WD routine
first subtracts OUT from IN. If the difference is positive, then this
difference is the total number of words to be written, and Z§D shifts

off the lower six bits of this word couni in order to obtain the
equivalent number of sectors. If OUT-IN is negative, the value of

LIMIT is added to the difference and FIRST subtracted to obtain the

TN

--17'{..

9 2an81y

LIMIT

out

QA be il T

FULL
SECTORS

SPLIT
SECTOR

%g;izzg;;g?ﬁéégzzzizgiz"

/////}, FIRST

POINTERS STORED BY 2BP

CIRCULAR BUFFER

PARTIAL SECTOR:

ONLY IF END RECORD OR END

FILE REQUEST

CIRCULAR BUFFER PARAMETER PROCESSING -~ 2WD OVERLAY

WRITTEN

BUFFER PARAMETER PROCESSING

1.

2.

coy 93wg

COMPUTE TOTAL NUMBER OF
WORDS IN OUTPUT AREA

COMPUTE TOTAL NUMBER OF
SECTORS IN OUTPUT AREA
BY SHIFTING TOTAL WORD
COUNT RIGHT 6 PLACES

COMPUTE NUMBER OF WORDS
BETWEEN OUT AND LIMIT

COMPUTE NUMBER OF SECTORS
BETWEEN OUT AND LIMIT BY
SHIFTING OUT-LIMIT WORD
COUNT RIGHT 6 PLACES

EXTRACT LOW-ORDER 6 BITS
OF OUT-LIMIT WORD COUNT:
THIS GIVES THE NUMBER OF
WORDS IN THAT PART OF THE
SPLIT SECTOR BETWEEN OUT
AND LIMIT T

SUBTRACT NUMBER OF WORDS
COMPUTED IN (5) FROM 100g
TO GET NUMBER OF WORDS

TO BE READ FROM THE BUFFER
BEGINNING AT FIRST IN
ORDER TO COMPLETE THE
SPLIT SECTOR

SET UP INSTRUCTIONS FOR

+ PROCESSING THE SPLIT

SECTOR

Page 404

total word count and, from that, the equivalent number of sectors.

Regardless of whether the data is coutiguous or wraps around the buffer,
2WD proceeds on the assumption that the data does wrap around, and
Proceeds to compute the values needed to process the wraparound case,

The steps involved are listed in figure 6. These values, although

always computed, are not required in the contiguous case: in either
case, the terminal path is entered when the total sector count is reduced
Lo zero. By computing these values regardless of whether the data is
contiguous in the buffer or wraps around the buffer, computations during

the period when the disk is actively in use are reduced.

Next, ZWD‘picks up the channel number from the EST entry'and requests
reservation of that channel from MTR. The Current Track byte of the
FST entry for this file is then examined. If this byte is zero, then
this file has not previously been used. A half track assignment is
requested from MTR: MTR returns a half track address to the'requestor
in byte one of the first word in the message buifer. If no half track .
is available, MTR will return a zero byte to the requestor: 2WD then
inserts an error message in the dayfile and aborts the control point
after dropping the channel reservation., 2WD now has the address of the
half track where the next operation is to be performed, and proceeds

to position the disk to this half track, This nalf track address’is
compared with byte 2 of the TRT pointer word for this disk, and
repositioning or head group selection performed only if required, Byte

2 of the TRT pointer is then updated,

2WD next requests another half track assignment from MTR. This half
track is a spare: by keeping it available, it is possible for 2WD to
switch head groups within the group switch gap if this action should be

required when the end of the current half track is reached.

The transfer of data from the buffer to the disk then begins, 2WD reads
1008 words from central memory into peripheral processor memory, sets
control bytes one and twe, and then writes the completed sector to the
disk., As each sector is written, the number of the sector is examined
to determine if the end of the half track is reached, To do this, 2wD

compares the sector number with byte 4 of the TRT pointer word (if head

Page 405

group number = 0-3) or byte 5 of the TRT pointer word (if head group

number = 4-7). These bytes contain the values 1008 and 628, respectively.

If the end of the half track has been reached, 2WD positions the disk to
the spare half track: again, the half track address. is compared with byte
2 of the TRT pointer word and positioming or head group selection per- |
formed only if required. éfter initiating any repositioning which might

be required, 2WD requests a spare half track from MIR.

2WD continues reading 1008~word blocks from central memory and writing
them to the disk until it recognizes that there is not enough data in
the circular buffer for a complete sector. (Some part of a sector &ay
still, however, remain.) 2WD then examines the buffer status contained
in byte 5 of the FST entry to see if an end record was requested

(24 bit = 1). If an end record was requested, 2WD writes a short sector
to the disk. If any data remained in the circular buffer, it will be
written in this short sector: otherwise, control byte 2 will simply be

sct to zero.

After the last data sector has been written to the disk, 2WD writes a
filec mark -~ a sector with both control bytes equal to zero, The Current
Scctor byte of the FST entry is not, however, incremented to reflect the
writing of this file mark: the next write to this file will write over
the file mark sector. After the file mark has been written, ZWD requests
MIR to drop the spare half track assignment and to release the channel

reservation.

If no end record function was requested, 2WD simply updates the OUT
pointer before returning control to CIO: There may still be some data
in the circular buffer. If an end record function was requested, no
data remains in the buffer: 2WD therefore sets IN = OUT = FIRST to

indicate that the buffer is empty.

When control is returned to CIO, CIO sets the 20 bit 6f the buffer
status in the FST entry to 1 to indicate that the file is no longer in
use, and sets the 2o bit of the buffer status in the calling program's
argument 1list to 1 to indicate to the calling program that the operation

has been completed.

-16-

Page 406

The Disk Read Overlay, 2RD

Disk read requests by users are executed by CIO's overlay 2RD. This
overlay is also used by 1DJ and 1TD. The processing performed by 2BP

in this case is identical to that performed in the case of 2WD. On

entry, 2RD reads the FST entry for the file, picks up the equipment number
from byte one, and uses this number to obtain the EST entry. The channel

number from the EST entry is then set in the I/O instxuctions.

2RD then proceeds to compute the number of sectors which can be loaded

into the circular buffer, If there is not room for a full sector, control
is returned to CIO. The data to be read may fit in the buffer in a
contiguous block, or may wrap around the buffer. The computation of

the values (total word count, total sector count, etc,) used in controlling
the transfer of ?ata to the buffer is performed in a manner similar to

ZWD. Again, the wraparound case is assumed.

The Current Track byte of the FST entry is examined. If this byte is
zero, the file has not been used before and so contains no data. 2RD
sets the buffer status to indicate a file mark and returns contrel to

CIo.

2RD requests a channel reservation from MIR and positions the disk to

the half track address contained in the FST entry's Current Track byte.
As in all disk routines, the half track address is compared with the disk
position specified in the TRT pointer, and repositioning or head group

switching performed only if necessary,

2RD then uses the Current Sector byte of the FST entry to construct the
read function code, and reads the specified sector into peripheral
processor memory. A status request is then issued, and the response

is examined to determine if a parity error occurred. In the event of a
‘parity error, the system rereads the sector three times; once using the
normal sampling method and twice at

varied sampling margins. If the parity error re-occurs in each of the
rereads, 2RD inserts an error message in the dayfile and stops (via a
UJN O instruction). Since the halt occurs without the disk chanmnel being

released, all system activity will shortly cease (if this disk is the

-17-

Page 407

system disk, disk 0)., A dead start load will be necessary to reinitiate

processing.

1f the read was successful, 2RD examines the high-order six bits of
control byte one: if these bits are zero, then this control byte contains
a sector number, while if these bits are non-zero, this control byte
_contains a half track number. In the latter case, 2RD positions the disk

tb the new half track address. While any repositioning or head group

switching which might be required is in process, 2RD transfers the

number of words specified in controlibyte 2 from peripheral processor

memory to the circular buffer, and updates the values used in controlling
' the transfer. If the sector just read was a full sector (1008 CM words

of data), and if there is enough room in the circular buffer for another

full sector, 2RD loops to read the next sector from the disk.

If the last sect;r read was a short sector, then the end of a logical

record has been reached, and the buffer status is set to reflect a

record mark., If the end of logical record has been reached, or if there

is not enough room in the circular buffer for a full sector, 2RD requests

calling program's argument list, and returns control to CIO. CIO

updates the buffer status in the FST entry to release the file reser-

vation, and updates the buffer status in the calling program's argument

list to indicate that the operation has been completed.

1f, after reading the last logical record in a file, the calling program
issues another read to the file, the file mark will be read. 'The pro-
cessing proceeds as described above: 2RD reads a sector whose address is
specified in the Current Track and Current Sector bytes of the FST entry.
Since control byte 2 is zero, 2RD recognizes this as a short sector, sets
the buffer status to reflect a record mark, and releases the channel.

2RD then examines control byte one; since this contains zero, the file

mark is recognized and the buffer status set accordingly before returning

control to CIO.

Page 408

The Backspace Disk Qverlay. 2BD

Disk backspacing may take the form of a BCD backspace or, more commonly,
a binary backspace. In either case, it is desired to backspace over a
logical record, and it is assumed that any backspacing over logical
records in the buffer has been done by the calling program, Backspacing
over the physical records which may constitute a logical record is
essentially a matter of backspacing over two sectors and then reading a

Sector,

2BD uses a subroutine to backspace over a sector. (See flow chart on
page A-5.) This subroutine examines the Current Sector byte of the FST
entry, and, if non-zero, subtracts one from this number and exits.

This is equivalent to backspacing over one physical record (i.e., one
sector). If the Current Sector number is zero, then the preceding
physical record is on another half track. In this case, the subroutine
stores the Current Track byte from the EST entry for this file, since it
will have to search the file for a sector which has this half track
address contained in control byte one.

The subroutine rewinds the file by picking up the Beginning Track byte
from the FST entry. (Should the Beginning Track byte be equal to the
Current Track byte, the subroutine exits, since this indicates that the
system has backspaced over all physical records in this file.) After
rewinding the file, the subroutine reads each sector in the file until
it finds a sector with the desired half track address in control byte
one. The number of this sector is then stored, and control returned to
the calling routine. A backspace operation on a file of any size may
take conéiderable time if it should become necessary to rewind the file

and search forward,

A binary backspace on the disk consists of backspacing over two sectors
(using the subrwutine described above)} and reading a sector until a

short record is found, indicating the end of a logical record. 2BD sets
the circular buffer pointers IN and OUT equal to FIRST, and returns
control to CI0. CIO updates the buffer status in the FST entry and in the

calling program's argument list.before exiting.

]G~

Page 409

It is also possible to issue a BCD backspace to the disk., For the disk,
as for 1" tape (but not for 1" tape), a logical BCD record consists of
a series of central memory words presumably containing display code data,

terminated by a central memory whose low-order byte (byte 5) is zero.

The BCD backspace begins with the computation of the amount of data left
in the buffer as a result of the last read. This quantity, referred to
as D, is equal in IN-OUT if the data in the buffer is contiguous, or
IN-OUT + LIMIT~FIRST if the data wraps around the buffer. This data was
left in the buffer as a result of the last read, and may have been

stored on the disk in several sectors. The system assumes that the
calling program will backspace within the buffer, and so, before beginning
a logical BCD record backspace on the disk, 2BD will backspace the

disk a number of sectors.equivalent to the amount of data contained in

the buffer. This quantity is represented by D.

2BD therefore backspaces over a sector (by the same subroutine used in
binary backspacing and described earlier) and reads that sector into
peripheral processor memory. The sector length in control byte 2 is

then compared with D: if less than D, then this sector is assumed to
contain data which has already been read into the buffer., 2BD then
decreases D By this amount, backspaces over this sector and the sector
preceding it, and then reads a sector. The process of backspacing,
reading, and reducing D is repeated until a sector is read whose length
is greater than the present value of D: this sector could not entirely
be part of the read data in the buffer, and so must be searched for a
logical record. 2BD transfers this sector from peripheral orocessor
memory to the circular buffer beginning at FIRST. If D is still non-zero,
then part of this sector c!mtains data residing in the buffer at the time
the backspace was requested, and presumably has been searched by the
calling program: 2BD therefore sets the OUT pointer to FIRST + sector
length - D. At the same time, the IN pointer is set to reflect the

transfer of the sector to the buffer.

2BD then searches each word in the buffer from OUT - 1 down to FIRST
until a word with a zero low-order byte is found, indicating the end of
a logical 2CD reccrd. When the end of the record is found, 2BD updates

the IN and OUT pointers in the calling program's argument list, and

«20-

Page 410

returns control to CIO. OUT now points to the first word following the
end of the logical record. If no zero low-order byte was found, then
2BD backspaces two sectors and reads one, and then repeats the buffer

search.

The Drop Track Overlay, 2DT

When CIO receives a disk write request, it first calls the 2BP overlay
to check the legality of the buffer parameters and to search the FNT for
the file name. CIO then reads the EST entry for this file, and examines
the buffer status in byte 5. If the buffer status indicates that the
last operation performed on this file was a read operation, then an
overlay, 2DT, is called to drop the subsequent portion of the file. In
effect, then, if some part of a file is read and it is then decided to

write to that file, thz remainder of the file is erased.

The flow chart for the 2DT overlay is shown on page A-3 of the attached
flow charts. The routine picks up the Current Track byte and Current
Sector byte from the FST entry for the file, and reads the sector at rthis
‘address. If this sector is a file mark, 2DT returns control to CIO.

If control byte one of this sector contains a half track address, 20T
requests MIR to drop this half track reservation., MTR then clears the
bit in the Track Reservation Table corresponding to this half track
-address. 2DT positions the disk to this half track address and begins
reading sectors until z file mark is found or the end of the half

track is reached. The process of reading and dropping half tracks

continues until the end of the file is reachad,

At the end of a job, all local files associated with the job are
aropped., For disk files, a process similar to that described above is
required to release half track reservaticns. This is performed for
1AJ by the‘ZDE!overlay. 2DF differs from 2DT in that 2DF drops files

TR |

assigned to other equipment as well as those assigned to the disk, and

[

DF drops all the half tracks reserved by a file, not just those following
the half track specified in the Current Track byte of the FST eatry.
2DF is alsc called by 100 and 1TD when orinting files or writing files

on tape,

" Page 411

DISK PARITY ERROR PROCESSING

When a disk parity error persists after three re;reads in any of the disk
read routines, control is transferred to a peripheral processor resident routine
tagged DPAR at location 0200. This routine loads the 7DP overlay - Disk Parity
Error Handler - into peripheral processor memory at 1oca#ion 7553. Note that
this over.ay is loaded above the memory area used to buffer the sector from
the disk: the latter occuppies locations 7000 - 7501.

On entry to 7DP, the logical sector number and the half track number are
converted to the physical sector number, head group number, and track number.
The error message "DISK 0 PARITY ERROR Gx Txxx Sxxx'" is entered in the dayfile.
Nekt, the pause bit is set in location RA (20 bit of byte 4). 7DP then enters
a loop in which it pauses for storage relocation, tests the error flag in byte
1 of word 20 in the control point area, and restcs the pause bit in RA. This
loop is repeated until the operator typés the DSD keybozrd entry n.GO (which
clears the pause bit in RA) or the entry n.DROP (which sets an error flag). If
the error flag is set, 7DP requests MIR to drop the channel, and exits to the
resident idle loop. If the operator clears the pause bit, execution proceeds

as if no error had occurred.

Page 412

7D? - EANDLE DISK PARITY ERROR

Translate half track and
sector numbers to track,
group, ané sector numbers

H

Enter dayfile message
"DISK 0 PARITY ERROR
Gx Txxx Sxxx!

> N £ -
~ ' fause for storage
! ; relocation

f - i
| Is error flag set ? ;

: §
| | , | |
b—— Is pause bit cleared ? § Request MIR drop channel |
| Exit to PP resident idle |
; Loop f

t«f
>
el
o

.23

Page 413

NO

i ACGUEST A NEW TRACK FROM MONITOR

ENTER 2WO QVERLAY
WRITE CisK FILE

A2
[Mooi#Y oveaLaY £GA LouPuENT pamaMETERS |

\J N
Is A
l REQUEST CHANNEL FOR DISK FiLE j [

REGUEST A& NEW TRACK FROW MONITOR
1S A TRACK AVAILABLE ?

YES

Vi
rHAS TS FILE BEEN USED BEFOREL}'&————)
YES
.,
o \YJ

POSITION DISK TO PROPER TRACK NO

13 A TRACK AVAILABLE ?
YES

A\

1S THERE ENOUGH DATA IN THE CIRCULAR
BUFFER FOR A FULL SECTOR P

YES

3\

DAYFILE MESSAGE=DISK X TRACK LIMIT

WRITE END OF FILE SECTOR
RELEASE CHANNEL

ABORT CONTROL POINT
RELEASE PPU

MIS AN END RECORD FUNGTION REQUESTED

~0 3% DAYFILE MESSAGE—DISK X TRACK LIMIT
RELEASE CHANNEL
ABORT CONTROL POINT
RELEASE PPU
.
1.NO
2

YES

WRITE SECTOA ON DISK
IS THIS THE LAST SECTOR ON THIS TRACK 7
YES
-
Y

POSITION DISK TO NEW TRACK NO

Y

WRITE ENO OF FILE SECTOR

CALL MONITOR TO DROP SPARE TRACK
RELEASE CHANNEL

DO NOT ADVANCE FILE STATUS FOR THIS SECTOR

REQUEST A NEW TRACK FROM MONITOR
1S A TRACK AVAILABLE ?

YES

) !

NO | Was THIS SCCTOR A SHORT SECTOR ?J
YES

DAYFILE MESSAGE=DISK X TRACK LIMIT
WRITE ENO OF FILE SECTOR

RELEASE CHANNEL

ABORT CONTROL POINT

RELEASE PPU

UPDATE BUFFER CONTROL OUT AODDRESS
EXIT

WRITE ENO OF FILE SECTOR ~

DO NOT ADVANCE FILE STATUS FOR THIS SECTOR
CALL MONITOR TO DROP SPARE TRACK
RELEASE CHANNEL

v

STORC BUFFEM CONTROL INs QUT oFIRST
EXiT

Aal

-t

Page 414

[

,
| LNTER ZRD GVERLAY

SGK FulE WEAD

'

i
a.

| OMLLFY GVTALAY FOR
T

EGu PMENT PLraMETEHS |

1
)

Y

| COMPULTL Nauln OF

Wr.lr CAN LI

SECTORS
LOADED INTO THE

CiHCuUL AR BUFFLHN.

|

iS5 hoeMuER OF LECTORS

ZERG ?

!

: YES

|

: NG

v

f
| nMas Twis FICE 6iEN USED BEFORE P
L

1NO 5
4

I YES

v,

[

REGudST

PUSITION 55K

CrannD. FOR DISK FILE
TG PROPCR TRACK

‘e

U RiAD ORE ECCTOR |

NO

SET
xiT

FILE MARK

Sk EXIT
1
| S

REREAD SECTOR

READ 0ISK STATUS

RCAL DILK LTATUS i
i ve PamiTY UK 2 !
— e

Yoo

o

=

|

15 CURTHUL ofTE A hdw TRAUK

NusloER 7

-

I NO

iS PARITY OK ?

YEs
|

1

f SELECT MARGIN |

REREAD SECTOR

i READ DISK STATUS
IS PaRITY Ox 7

| YES

|

e

; SELECT manGin 2 |
| REREAD SECTOR :
REAJ 0ISK STATUS |

('

{ I5 PARITY Ok ?

YES | i NO

i
I
-

i
NO

I
)
—

1 reS

v

PusiTiot bR TO NEW THACK J

|

B

|
|
!
|

i
!

v

| AuvANCe PalE STATUS FOR NEXT SECTOR]
—

{
|
'

\r

.
i
i

L

SET END OF RECORD
RELEASE CHANNE
E N;L._Jn

LTUNE SECTOR UATA i SinCULAR BUFFER I"ES '
AUVANCL but U IN AGGHESS ;———-——)«
15 Thl LclTUR A SHONT SLUTOR 2 | L
i NO
N

OmTA
—

s Trl CiRCULAR nufFER 2

5 TReRO AOUM FOR AROThuR LE0TOA OF

i
|

T NO
!
L

A

|
|
[

J
|
Y

| RCLEASE CHANNEL

[—

| UPDATZ GiACULAR BUFFER iN AGDRCSS }
| IS DiSK AT FiLE MARK ?

A

i
l

A2

X
OAYFILE MESSAGE —
DISK PARITY ERROR
GX_TXXX SXXX
STop. i

[

207 OVERLAY

FILE STATUS IN

* DROP DISK TRACKS

20726 |

\/

rMODIFV OVERLAY FOR El

QUIPMENT PARAMETERS]

\

rms FiLE BEEN USED ? =

] NO

\/

YES

HOLD CURRENT TRACK NUMBER AND SECTOR NUMBER
REGUEST CHANNEL FOR DISK FILE

\

7z

—

.y POSITION DISK FOR NEXT SECTOR l

s

READ NEXT SECTOR
15 SECTOR A FILE WARK ?

YES

\

NO

| NO

A

IS SECTOR THE LAST SECTOR
IN THIS TRACK ?

\:

Yes

-—'{ RZQUEST MONITOR RELEASE NEXT TRACK l

A=3

RELEASZ CHANNEL
RESTORE TRACK AND SECTOR NUMBER
ExIT

Page 416

H YES SET CIRCULAR BUFFER | 2 Fj
| WAS LAST REFERENCE A FILE MARK ? L S = N= OUT» FiRST
L J ExiT
j NG e
F ‘y
e . - rameTERe |
i NOUIFY OVERLAY FOR EQUIPMENT PARAMETERS ‘ .
|
Vi
r YES
| IS & BINARY BACKSPACE REGUESTZD 7 F BACK ONE SECTOR
E NO
\J/ '’
Lse'r Fik3T REFERENCE FLAG 1 | BACK ONE SECTOR
|
~ . ' Y — Y
\u/—-—-*:q CGMPUTE D=IN=OUT | REQUEST CHANNEL FOR olsxii
T POSITION DISK !
! | READ ONE SECTOR]
J/] RELEASE CHANNEL J
! LY
—> IS ALNT SECTOR THE FIRST SICTSR N THE FILE 2 rﬁ——(f
N0 | ‘
| | v
83 [| IS SECTCR A SOAT SECTOR ?j&o—
[
| BACK ONE SECTGR | | YES
-7 J
v N ::’T CIRCULAR BUFFER IN= QUT = FIRST
REGUEST CHANNEL FOR DiSK

|

PCSITION DISK TO NEXT SECTOR
READ ONE SECTOR
RELEASE CHANNEL

I SET OUT = FIRST + SECTOR LENGTH — D

==

[

i SET IN » FIRST + SECTOR LENGTH
\,‘/ broaa SECTOR IN CIRCULAR BUFFER BEGINNING AT FIiRST
. - . YES T
| 45 SECTOR LENGTH GREATER TMAN D ? !

i
l
i
|
|
|
|
|
i
|
i
|
|

} [:s FIRST REFERENCE FLAG SET ? }.—NO__
{ BACK ONE SECTOR : | YES

|

RO
y -
v ————>{ DoZs OUT * FIRST 7 }Y‘S
| Decrease O 8y sectom LENGﬂ NO
| v

CLEAR FLAG
Al
! oUTeOUT-i
n
!
NO
OCES (OUT~1) CONTAIN A BLANK LOWEST 8YTE ?ﬁ}@—‘
YES
Y
UPDATE GiRIu.4R LUSFER N AND SUT AGOAESSES |
|

Page 417

| 280 suBAGUTINE !
i H
i

| BACK ONE SECTOR

i
!
i
{
\
FS NEXT SECTOR THE FIRST SECTOR F TRACK ? L&——é‘
v IRST T OF A o [EXiT

'r-REDuCE SECTOR NUMBER ONE CO\JNT;

J

' YES

N
rHOLD CURRENT TRACK NUMBER N

-
Y
\/

" YES

Fs N THE FIRST TRLCK FOR ThE FulE P
NG

N

REWIND DiSK FiLE
REGUEST CHANNEL FOR DISK FILE

F S

NEXT SECTOR J

e ——————
| POSITION DISK

T0
\L
; NO | READ ONE SECTOR i
! IS THIS THE LAST SECTGR IN THIS TRACK 7

YES

N
_——-& 's ‘xr TRA KN R N ? i
{ is NEXT TRACK NUMBZ
YES

RELEASE CHANNEL
EXiT

y EXIT
[

Page 418

CONTROL DATA CORPORATION

Product Marketing Management

SYSTEM/OPERATOR COMMUNICATION

Chippewa Operating System

May 2, 1966

Page 419

SYSTEM/OPERATOR COMMUNICATION

CONSOLE AND DISPLAY SCOPES

SYSTEM DISPLAY

SYSTEM DISPLAY CODES

Codes Display
A Dayfile
B Job Status
C Data Storage
D Data Storage
E Data Storage
F Program Storage
G Program Storage
H Job Backlog
JOB DISPLAY CODES
Codes
A Dayfile
B Job Status
C Data Storage 5 groups of
D Data Storage 4 octal digits
E Data Storage per group
F Program Storage 4 groups of
5 octal digits
G Program Storage per group

(1)

Yage 420

SYSTEM/OPERATOR COMMUNICATION

SYSTEM DISPLAY

JOB STATUS (B)

DISPLAY
an S in place of P indicates
simulator in use PROGRAM CHANNEL EQUIPMENT
ADDFESS ASSI?NMENT
— N\ ~ N
P = 2. CHANNELS DDDD EDDD DDDD
FILE NAME \
1. READ . . . cmmmmm——
14000. 4000. 05.
FIELD IDLE, /
LENGTH
2. PRINT mememee- .
20000 4000, 07.
IDLE.
3. NEXT . . . Kemommnnm -
24000
IDLE,
INTROL
POINTS 4. NEXT . A SR .
24000.
IDLE.
5. NEXT . . P P LT LIS
24000. .
PRIORITY \\\IDLE' \
REFERENCE \\\ \\\\ 6. BETA . 17.70000. 10X-==5-==~.
ADDRESS 24000, 50000. 11, ;
LOC, N—

7.
74000.

LAST PROGRAM
“F.SSAGE (NAME
OF PP PROGRAM
REING RUN)

STATUS OF CHANNELS
D - Disconnected
E - Empty
F - Full

Blank
PROGRAM W
STATUS X
A-G
TIME LIMIT

(OCTAL SECONDS)

ACTUAL CENTRAL
PROCESSOR TIME
(OCTAL SECONDS)

PERIPHERAL PROCESSQR
(PP5 ASSIGNED TO R S
CONTROL POINT)

(2)

- -

EQUIPMENT
ASSIGNMENTS

Page 421

Hours

This column represents

the time each control

statement was requested

for execution.

(A total of 32 lines may
be contained on the day-
file)

New dayfile information
appears at the bottom of
the screen automatically;
old dayfile information
is deleted at the top of
the column as new times
are entered into the day.
file.

DAYFILE (A) DISPLAY

ACTUAL TIME Name of JOB to which

message belongs

Min

SYSTEM TAPE LABEL

JOB NAME

. MERGE,7,1000,1000,
00.00.17. MERGE , ASSIGN 50,A.
00.00.17. MERGE . (50 ASSIGNED)
00.00.17. MERGE , ASSIGN 51,B.
00,00.17. MERGE . (51 ASSIGNED)
00.00.18, MERGE' , REWIND (F)
00.00.25. MERGE . REWIND (F)
00,00.25, MERGE COPYBF (F.D)

00.00.27. BETA . READ,

00.00.30. MERGE ., REWIND (F)

00.00.30. MERGE , REWIND (F) \

00.00, 30, MERGE . CP 006.(D) SEC, This column represents the
00.00.30. MERGE . PP 019.421 SEC, control statements introduced
00,00.30. MERGE , PRINT, via card input and contains
00.00.30. MERGE ., PP 000 SEC. r the system's history.
00.00,31, BETA . PP 015 SEC,

00.00.31. BETA . BETA,77,70000,50000.| A summary of the day's total
00.00.31. BETA . DIS, run may be printed out upon
00.01.04. BETA . INPUT, request,

00.01.05. BETA . LOC,

00.01.11, BETA . BUFFER ARG ERROR,
00.01.12, BETA . CP 002,575 SEC,
00.01.12. BETA . PP 020,265 SEC,
00.01.12, BETA . PRINT.

00.01.2¢4, BETA . PP 0l1 SEC.

00,04.05 BETA . READ

00,04.10 BETA . PP 015 SEC.

00.04.10 BETA . BETA,77,70000,50000,

00.04.10 BETA . DIs.
00.04,40 BETA . INPUT,
00,04,40 BETA . LOC,

NOIE: 'Dayfile display data will appear on the
printout at the end of each job automatically

(3)

Page 422

Storage (C Thru H) Displays

CONTENTS OF ADDRESS
00.17.21. PROGRAMMING CHECKOUT

ADDRESS P
010000° 132670 62330 60133 70520
010001 30645 26010 14316 53261
010002 07125 06232 00101 43165
010003 32610 70401 00235 00000
010004 20002 06602 00053 11413
010005 02000 76101 00010 00000
010006 00000 00000 00000 00000
010007 35022 40000 00000 00126
010010 01000 00002 00224 13024
010011 12020 51430 03100 70705
010012 02002 56130 17000 00200
010013 24010 32100 00020 02561 TeTTe (0] 3§VEIZ§63§§AL}
010014 02002 56102 00210 13004 OF FOUR.OCTAL DIGITS) —
010015 10660 56730 00346 23464
010016 30615 46334 05140 06010
010017 30625 41330 05341 43053
010020 10063 15510 06315 41602
010021 62103 06434 13306 53414
010022 30531 00631 55100 65154
010023 16036 21001 00200 00000
010024 00000 00000 00000 00100
010025 00003 03102 00074 13032
010026 76000 20023 01140 03403 Job Names
010027 30725 40430 32162 07600 (Input stack)
010030 74002 00050 00710 02700
010031 04113 40137 04150 55501
010032 04020 67303 03000 07500
010033 02002 30112 02040 50200
010034 23011 22004 12305 10200
010035 07513 62210 03352 10100
010036 21000 00036 03110 50407
DISPLAY AREA 010037 30321 63076 00010 02115
FOR OPERATOR TYPEIN I Jobs stacked for output
(Always on left screen) (1f no jobs are waiting for

output none will appear)

(4)

Page 423

SYSTEM DISPLAY (DSD)

KEYBOARD ENTRIES The keyboard, during the display of the overall system status; is used to
initiate and control equipment assignment and job progress. The following
table describes the keyboard codes and formats.

Typein

AUTO.

STEP.

SIM.

OFFxx.

ONxx.

TIME. 12.10.03,
March 12, 1965.

SYSTEM DISPLAY KEYBOARD ENTRIES

Action Initiated

Used after dead start from system tape to initiate
automatic job processing with card input and printer
output.

Selects a step mode for the operating system monitor
in PP0. Requests from other PP's are processed when
the keyboard space bar is pressed. High speed opera-
tion may be resumed by entering a period and depress-
ing the carriage return key.

Replaces the central processor with a simulator in a
PP (the 007 location program); normally used in
machine check out. Normal operation can be resumed
by repeating SIM. Successive entries toggle the system
between a simulated and a real central processor. The
letter preceding central processor address on system
display denotes the mode.

P = xxxxxx real central processor
S = XXXXXX simulated central processor

Indicates to the system that equipment number xx must
not be used, for example, during maintenance.

Returns equipment xx to the pool of available equipment.
Example of how to inform the system of clock time and
date. The system uses this time (updated every second)

for dayfile messages. If a TIME command is not given,
the time since dead start is used.

(5)

Page 424

Typuin

SYSTEM DISPLAY KEYBOARD ENTRIES (cont'd.)

Action Initiated

CONTROL POINT COMMANDS TO DSD

Each of these commands is preceded by a control point number and a period.
The numbers in the following examples are for illustrating format only.

4. DROP.

5. DIS.

5. ASSIGN10.

- 1. READ.

2. PRINT.

6. DUMP.

(READ, PRINT, L

[Pe STy

OAD. DUMP, a

Drop job at control point 4.

Assign DIS package to control point 5. If there is no
other console, DSD may relinquish the main console
with the ASSIGN statement.

Assign main console to control point 5.

Bring READ package to control point 1 for loading jobs
from cards. This entry is needed if READ (usually
initiated by AUTO) drops after reading a faulty job card.

Bring print job to control point 2; normally initiated by
AUTO, but may be brought in separately.

Bring Load package to control point 7 to load jobs from
tape to double file mark.

Bring Dump package to control point 6 to dump output
files on tape.

" (LOAD and DUMP request assignment of a tape unit).

NEXT have no effect if the control point

already has a job name).

7. NEXT.

6. GO.

5. ASSIGNS3.

4. ONSW2.

4. OFFSW3.

DCN11.

FCNI10.

Bring job NEXT to control point 7 to look for a real
job (on disk) for the control point.

Continue job at control point 6 if it has come to a pause
(usually as a result of a FORTRAN pause statement,
or if repeated tape transfers after parity failure is not
effective).

Assign equipment 53 to control point 5; normally used

after a request for tape has been displayed, but any
equipment may be assigned in this way.

Set sense switch 2 for FORTRAN program at control
point 4. Settings are preserved at RA and at a word in
the control point area.

Turn off sense switch 3 for control point 4.

Disconnect channel 11g. (used by maintenance engineer)

Enter a zero function on channel 10g. (used by main-
tenance engineer)

(6)

Page 425

SYSTEM DISPLAY KEYBOARD ENTRIES (CONT'D)

Type In Action Initiated
3.DISs. At any unassigned control point, typing in DIS will

bring up the Job Display.

The values at the control point will be:

JOB NAME DIS
TIME LIMIT 600g SECONDS
FIELD LENGTH 600008 CM LOCATIONS
PRIORITY 17
2.ENDn A print job may be aborted without affecting other

print operations. The Dayfile will be printed for
the terminated print job where n is the number of
the print job (from Display) to be terminated.

6.EXPRESS. This will reserve the control point (control points)
for jobs of the following types:

1. JOB cards with no priority, time limit, or
field length.

2. JOB cards with TIME LIMIT equal or less than
100g and FIELD LENGTH equal or less than
40,000g.
4.COMMENT. comments.
The remarks following COMMENT are entered in the Dayfile

(and printed in the job Dayfile at the end of the listing)
and displayed at the control point.

(7

Page 426

JOB DISPLAY —DIS A job display (DIS), similar to DSD, is used for information more relevant
to a single job. Using DIS, the B display can demonstrate the exchange jump
area of the job; central memory addresses relative to the job's reference

address are used for data and program displays.

DIS can be called either from a control card (DIS.) or by a command to DSD.
The job display package (DIS) may be called at any time during the execution of
job. This package stops further automatic advance of the job control cards.
The display covers only data pertaining to the particular job. The keyboard is
used to advance the job control cards and to provide any two of the following

displays in the same manner as for the DSD display.

JOB DISPLAY CODES

Codes
A Dayfile
B Job Status
C Data Storage
D Data Storage
E Data Storage
F Program Storage
G Program Storage

(8)

5 groups of
4 octal digits
per group

4 groups of
5 octal digits
per group

Page 427

CHANGING PRIORITY All jobs are assigned priorities from the job control card (0-17); a zero priority
causes a job to be ignored. The operator may change the priority of any job
through the keyboard, the range is 0-77g with 77g being highest priority.

The operator may proceed as follows:

1. Type in: ENPR, dd.
dd = a two-digit octal priority number

2. Press the carriage return key. If a priority change is attempted during a
run, the program will stop (normal stop) and the operator may type in

RCP, to resume central processor operation. A priority change may be
made only when the job is assigned to a control point.

ENTRIES FOR CHANGING JOB DISPLAY CONTENTS

ENP, 12345. Set P = 12345. (next instruction address, in
exchange jump area).

ENA3, 665000. Set A3=665000 in exchange jump area.
ENB2,44. Set B2=44 in exchange jump area.

ENXS5, 2223 4000 0000 0000 0200. (Spacing is unimportant)
Set X5=22234000000000000200 in exchange package.

ENEM, 7. Set Exit Mode = 7 in exchange jump area.

ENFL, 10000. Set F1~10000 in exchange jump area. (storage
moved if necessary).

ENTL, 200. Set central processor time limit = 2008 seconds.

ENPR,5. Set job priority = 5.

DCP. Drop central processor and display exchange jump

area (in display B). When DIS is used, the exchange
jump area is displayed in any case if the job does
not have status A, B etc.

RCP. Request central processor. This puts the job in
W status, and it will use the central processor if
its priority is sufficient. The register settings of
the exchange jump area will be used.

BKP, 44300. Breakpoint to address 44300 in the program.
Central processor execution begins at the current
value of P and stops when P = 44300. DIS clears
44300 to stop the program at that point, ahd
restores the original word when the stop occurs.

RNS. Read and execute next control statement.

RSS. Read next control statement and stop prior to
execution.

ENS. xoXXXXXXXXXXX . Allows the entry of any control statement

XXXXXXXXXXxxxX as if it had been entered on a
control card. The statement can then be pro-
cessed using RNS. or RSS,

GO. Restarts a program which has paused.

P RN

Page 428

ENTRIES FOR CHANGING JOB DISPLAY CONTENTS (cont'd)

ONSW3.
OFFSW.

HOLD.

DROP.

DMP (200, 300)
DMP (400)

DMP.

Set sense switch 3 for the job.

Turn off sense switch 4 for the job.

DIS relinquishes the display console, but the job
is held at the present status. A console must be

reassigned to continue use of DIS.

DIS is dropped and normal execution of the job is
continued; it does not drop the job.

Dump storage from 200 to 277 in the output file.
Dump storage from the job reference address to 377.

Dump exchange jump area to output file. (DMP for-
mats are the same as if used on control cards).

(10)

Page 429

DUMP STORAGE This peripheral program may be called from a display console with a control
card in any of the forms shown below: An octal jump is entered in the output
file with the central storage address and one data word per line.

DMP,
dumps the exchange area into the output file.

DMP, 3400.

dumps from the reference address to the parameter address.

DMP (4000, 6000)
dumps from the first address specified to the second.

MODE n.

This control card may be used to change the arithmetic exit mode. nis a
single octal digit (See Exchange Jump Information, Section 3.3.) The exit
mode is set to zerc unless otherwise specified.

Example:

MODE 3.

(11)

Page 430

EXIT.

The EXIT card can be used to separate the control cards associated with the
normal execution of a job from a group of control cards to be executed in the
event of an error exit as listed below:

1 TIME LIMIT. Job has used all the central processor time it
requested.

2 ARITHMETIC ERROR. Central processor error exit has occurred.
3 PPU ABORT. PP has discovered an illegal request, e.g.,

illegal file name or request to write outside job
field length.

4 CPU ABORT. Central program has requested that the job be
aborted.
5 PP CALL ERROR Monitor has discovered an error in the format of

a PP call entered in RA+1 by a central program
(can occur if a program accidentally writes in
RA+1, ag can condition 3),

6 OPERATOR DROP. Operator has requested the job be dropped.
7 DISK TRACE LIMIT. No more room on a disk unit used by a job.

When one of these conditions occurs, an error flag (numbered as above) is set
at the control point. In cases 1, 2, 5, 6, 7, a dayfile message is issued; and
in case 3, the fault-finding PP issues a message (BUFFER ARGUMENT ERROR
from CIO, or NOT IN PPLIB).

When an error flag is set, a search is made for the next EXIT control card;
and if it is not found, the job is terminated. If an EXIT card is found, the
error flag is cleared and succeeding control cards are processed. If an EXIT
card is met and no error flag is set the job is terminated normally at that
point.

(12)

Page 431

Example:

" MYJOB, 1, 400, 100000. dob card

ASSIGN WT, TAPEL. Request scratch tape

RUN. Compile and execute

EXIT,

DMP. Dump exchange package
DMP,1000. Dump first 10008 words of store
7,8,9 End of control cards

(Program)

7,8,9

(Data)

6,7,8,9

The dumps are made only if an error condition occurs.

Record Separator

This card, consisting of a 7,8,9 punch in column 1 » S8eparates the different
types of records (control cards, source language cards, data cards) within a
job.

File Separator

This card, consisting of a2 6,7, 8,9 punch in column 1, must be the last card of
each job deck. No job may use information beyond this card.

(13)

Page 432
UTILITY ROUTINES

BKSP Backspace medium

COPY Copy to double file mark
COPYBF Copy binary file

COPYBR Copy binary record
COPYCF Copy coded file

COPYCR Copy coded record
COPYSBF Coi)y shifted binary file
REWIND Rewind medium

RETURN Release equipment from control point assignment
RUN Compile and run FORTRAN
UNLOAD Rewind and unload medium

VERIFY Verify two media
COPYX Copy to Name
Example: Two binary files on magnetic tapes are to be copied to disk as a
single file called TAPEY for use by a FORTRAN program which uses
the punch.
THEJOB, 10,1000,200000. Job card
REQUEST FIRST. Get first tape
REWIND(FIRST)
REQUEST SECOND Get second tape
REWIND(SECOND)
COPYBF(FIRST, TAPE9) First tape to disk
REWIND(FIRST)
BKSP(TAPEY) Backspace over file mark
COPYBF(SECOND, TAPEY) Second tape to disk
REWIND(SECOND)
REWIND(TAPE9)
ASSIGN CP, PUNCH.
RUN.
7,8,9
PROGRAM H3 (INPUT, OUTPUT, PUNCH, TAPEY)
(Rest of Program)
7,8.9
(Data)
6,7,8,9

Since TAPE9 has not been assigned specifically, it goes to disk.
(14)

Page 433

FORTRAN Subroutines

BACKSP

CHAIN

DISPLA

ENDFIL

INPUTB

INPUTC

OUTPTB

OUTPTC

RANF

REWINM

XLOCF

Backspace medium

Loads a program from the disk file and executes it. Parameters passed from one
program to another must be in the common region. All segments to be chained must
be compiled with the same file names. The segment name is transferred to the day
file and displayed prior to execution.

Displays a variable name and its numerical value as an integer if unnormalized, in
floating point format if normalized.

Write end-of-file.

Binary input

FORTRAN data input
Binary output

FORTRAN data output
Random number generator
Rewind medium

Returns the memory location of a variable name.

(15)

Page 434
EQUIPMENT
ASSIGNMENT

Any file not specifically assigned on control cards is assigned by the system
to storage on disk unit zero. A job need not request card reader and printer
for normal input/output since its cards are already stored in the job input file
on disk, and output for a printer is sent to the job output file on disk. Input
and Output files are normally stored on disk zero.

The control cards of a job are processed in order, so any equipment assign-
ment must be made before the corresponding file is referenced.

ASSIGN u, f This control card assigns any available peripheral unit of type u to a file
named f. The type u may be any of the equipment listed below or it may be an
equipment number, in which case, operator action is not required.

DA disk cabinet, channel 0 CR card reader

DB disk cabinet, channel 1 LP line printer

DC disk cabinet, channel 2 MT 607 magnetic tape (1/2")
DS display console WT 626 magnetic tape (1")

CP card punch

This must be the first appearance of the name { in the job file. The file name f
is alphanumeric, begins with a letter, and is a maximum of seven characters
long. Muitipie file names are not allowsed.

Examples:

ASSIGN50, TAPES. Assign equipment number 50 {channel 5, unit 0,
1/2" tape) to TAPE6. The job will be held up if
this tape is presently assigned to another job.

ASSIGN CP, PUNCH. Assign a card punch to the file named PUNCH.
When the job writes to the file PUNCH, data
will be punched on cards.

ASSIGN MT, TAPE2. Operator to assign a 1/2'" tape to file TAPE2.

ASSIGN WT, TAPE3. Operator to assign a 1" tape to file TAPES.

For MT and WT a message for the operator is displayed under the
number of the job's control point:

WAITING FOR MT (or WT)

To assign tape 61 to control point 6, the operator would key
6.ASSIGN61.

ASSIGN01, TAPES. Use disk unit 1 to store file TAPES.

For TAPE, the ASSIGN statement is intended for scratch tapes only;
the operator may assign any free tape of the specified type.

A user supplied tape should be assigned with a REQUEST statement. -
(16)

Page 435

COMMON f.

RELEASE f.

REQUEST f.

COMMON FILES

Common files are files that are not discarded upon job completion. Normally,
input files used by a running job (type local) are dropped; disk space is freed
or equipment released. Output files are printed and discarded after printing.
A job may declare a file to be common so as to make it available to other jobs.
However, a job to which a common file is attached, can change it to local if
discarding is desired.

This control card has two effects:

1. If the file name, f, has common status in the FNT/FST and is not being
used by another job, it is assigned to this job until dropped. If the file is
being used by another job or does not have common status, this job must
wait until the file is available.

2. If the file name, f, already appears as a local file name for the job, the
file will be assigned common status in the FNT/FST and is available to
any succeeding job after it is dropped by this job.

A file generated by a job may not be declared in a COMMON card until the job
has been completed.

Example: COMMON BFILE.

With this control card, the common file named f currently assigned to this job
will be dropped from common status and assigned local status in the FNT/FST.

Example:

RELEASE BFILE.

The common file, named BFILE, attached to this job is changed to type
local so that it will be dropped at the end of the job.

This control card requests the operator at the system display console to
assign to this job the peripheral equipment specified by f. This must be the
first appearance of the name f. The job waits for operator action before
proceeding.

Example:

REQUEST TAPE 4.
Operator to assign an equipment for file TAPE 4.

In this case, the message REQUEST TAPE4. is displayed under the num-
ber of the job's control point, and the operator can key the number of the
equipment on which the user's tape is mounted. For control point 4:

4. ASSIGN71.

an

Page 436

EXPORT/IMPORT

I. MONITOR MESSAGES

1. (Name) In Job Stack

2. (Name) Assigned Control Point N
3. (Name) In Output Stack

4, (Name) Output Complete

5., Job Table Full

6. All Remote Jobs Complete

7. Communications With Central Lost

1I. OPERATOR DIRECTIVES

1. STAT, (Name) Job Status Request

2. CPP, (Name), (Priority) Change Priority

3. CPT, (Name), (Minutes) Change Run Time

4, RPNT, N Reprint N Sectors

5. RPCH, N Repunch N Sectors

6. PRNT, N Print N Copies

7. DVT, X, (Name) Divert Output X = C C-»R

X =K K=-»C

8. TERM, dv Terminate Output

9. ABT, (Name), S Abort Job
10. DISP, (Message) Display Message
11. LIST List Remote Jobs in System
12. END Shut Down Communications

ITI. JOB STATUS RESPONSE

1. (Name) In Job Stack

2. (Name) Assigned Control Point (X,W,A,eee.)
3. (Name) In Output Stack

4. (Name) Not in System

(18)

SUN U N

v & ‘;OEX

* ot

-

i

-P i()" iy

Aot f B

Lsepa" "
M’DA:&T,”% -]')\3 _ | FMQ
oo 0] mwm ~ Zo00

}m;&

BQ OLA Shact beggfmv\ C‘An potiu;é;m‘l‘; -)
o R e
e A -
) 1 2513 Do _dsaconneddt . vR
e e —febode T C OB ‘ T-’g\\wg_‘)

 sde u:ruup * 8 on eda VR
N uv\.\' 0 (Cuswalls Wq."; whire MT VD
Ruoid saleched cquipment

f- 3| codkln

Y-

4o0

 Read B»nm\(v h-cncl-s{; ftaf'cl

aDIE A

C’\‘\ UQ¥& M H.Z__. -t

-ofq‘rm
|

703

\np__m_*

©

3

1 Am_jr

j UCM/GQ.J docw[mge,4~-:e§— L

OOIS

/’w
o

from ch . 'Eo \D‘ka

VR,

Sprpp—

S ?12\:&.’,0 .
—t L O B B)
i

“Loader

Dead Start ' Bootstrap./ ' ,
program on % £ PPO Qi ~— Q—PPPQ —- $PP1 N U TR o
D. S. Panel : v e
System includes the : Pod
Bootstrap D.s. Tape - PP Resident PPl identifies itself '
for the gwitch : program and modifies PP Resident
Bootstrap Loader PPl > program for his use —m
Program ‘
on

System Tape

PPl outputs PPL outputs

ey A MOOT7T7M WOLd o L A MQ7 771 WOrd i mand sends g et

, to PPO and PP9Y
PO

to PP2-PP8
[by 3
R S S L {

PPl modifies PPl reads PPl modifies PPl reads
-pand transfers —....fpand sends A-———fand sends....

PP Resident to "DSD" to PP Resident "MTR" to

PP2 thru PP9 pPpP9- to PPO PPrO

PPl reads and PPl reads and
loads the "CM loads "Resident
~——»{>Resident" into...—_ pSubroutine Library"
cM . (RSL) into CM,
(address 0-4777) “using Pointers from
. CM Resident

C.0.S DEAD START, SIMPLIFIED, PART I

PP1 reéds and
loads Y"Resident PPl disconnects

—pD Peripheral Library"—— ___pall active
into CM, using . channels
CM Resident oy
Pointers

Voo g

f‘«““'f..‘ -’

7/23/67

PAGE 1

~

MTR enters its

PPO (MTR) assigns next MTR Exchange Jumps
available track to the.... - ;>CPU into Idle Program

lst TNT/FST entry at Control Point O
(DAYFILE) (Stop instruction, P:OuOZ.)

PP9 (DSD) initiates itself, DsSh requests DSD enters its

selects "A" screen on lefte— . _N,MTR to ReserveHMWWWw"E>.Master.Loop,
tube, "B" screen on right tube Channel 10 paints "A" & "RBM"

screens, looks

for Keyboard entries
and sets up delay
for next loop.

PPl requests PPl reads and transfers the rest of Vﬁ,<'*“ PPl enters

an available,wwwmﬁ_mM‘£>the System Tape to disk, recording St ,/‘its PP Resident
track from the name and disk location of each Idle Loop

MTR package in the CM Resident Directories.

PP2 thru PP8 enter their PP Resident program "Idle Loop!"

C.0.S. DEAD START, SIMPLIFIED, PART II 4/17/67

>Master Loop and
processes Request

PAGE 2

System
waits for
operator
directions
via the
keyboard
entry

. MTR

Channels Store Request ‘wants a Search for, Execute request
Lthru 8 =~ IR=0 7. (no)> name, CP#, - Wd..“>8torage (no w> find, and... .AV-M._m\“,pdc:kage ey Rel ease
dlfconnected/\ and parameters, Move? load package PPy
(yes) if any. . requested
(yes)
» Wait until
V. . _delay storage is.l-
AN - 125us

relocated

PPR (PP RESIDENT) MASTER LOOP, SIMPLIFIED 4f/17/67

PAGE 3

Channel 9

disconnected. .

Channel 0

disconnected........2

Process
,,,,,,,,, S imulator
operation

w_mw;{;>

MTR MASTER LOOP, SIMPLIFIED

place DAYFILE
Phase X in PPO IR ot s

1/13/67

Preset Check for and Display Display . adjust . In Process
~m5>temporary«m-~5>process KeyboardWMME> 1eftuuw.m€>,righEM1me> delay :>Step (YQ§%>Keyboard
storage entries screen screen timing Mode? entry
1\ ave=40) , (10) '
(times/sec‘
S I et
~
DSD MASTER LOOP, SIMPILIFIED 1/13/67
“Assign Disk Exchange Jump- Advance Search - Search
»File "0O" track-cme N CPU to GPO .MMMWW,Mw€;>system«wwmwwmi>»PP O.R.'smw-www;> CPU "OaRe M
to DAYFILE, and (Idle Routine) clock (1 thru 0) , (RAFL)
enter DAYFILE R I
status
/ v
Check for Advance] Dump (no)
_~w€;>CPU errors-rm—Job %wmmﬂmwm- DAYFILE?
(P ==07) ‘Status |

e

PAGE 4

Operatdr DSD recogniées

enters - ... >»a non-zZero
"AUTO. (cr)?"

Upon recognizing

Keyboard input

the entry, VAUTOM,.

wmmwm;>.a (cr), DSD translatesg--

DSD places "ILJ'" and
WWWE>CP”1” in its Message

Buffer and requests MTR
to "ASSIGN PPU" (Function
20 in its 0. R.)

MIR finds the Function 20 MTR clears out

in PP9's (DSD) O.R., finds a - PP9's O.R. and
Mwmﬂ5> free PPU, assigns it to..we > continues in its...
CPl, and copies word one Master Loop

of DSD's Message Buffer
to that PP!'s I.R.

DSD finds its

0.R. empty and

places "10T" and-
CP"2" in its Message
Buffer, and requests
MTR with a Tunction "20"

‘MTR processes
~>this request e
P woREh :

like the 15t

DSD writes MTR processes DSD writes

MTR processes DSD writes
e TIBI M & CP”3",ww«ﬂ_aE> this request mwmwmmm;>”lBJ” & CP”4Ummmmwm§>this LeQUESE S HIBJIY & CPU5Meen,
requests a PP. like 15t like 1St like 18t like 15t
MTR processes DSD writes MTR processes DSD returns
-w~;>this requestm-w—§> WIRJ™ & CP"6"»~w~ww~E>this request weme> to Master
like 1st like 1st

like 1st

C.0.S., "AUTO. (CR)", SIMPLIFIED, PART I

Loop

4/17/67

PAGE 5

Initialize "READ" Package Card Reader

(have storage assigned for—— -

card huffer area, /N (no)
sct up buffer, obtain
card reader, etc.)

Translate the) -
15t card (Job Card) ° '!

(yes) Read and Transfer card _Read (no)
~W€B>RE DY? = translatenmmmmmm€>>to OM Buffer -~ ---> an e
one card Area, 7 E.0.R.?
\l (Binary->Binary) Spgent nrgt, .
PP Recall (Coded—>» DPC) m o orolg
Write record Read and Transfer

Hudm;> (DAYFILE entry of jobu«m~m~m€>>on disk

name and "READM™) {Control Cards)
(Job name~—-2FNT)
(Disk location >FST)

~E>translate the —e s

,;> to CM
next card

Buffer Area

(no)
Read (no) " Buffer ' Read
— _,..> an et e e .> Ar ea .._Mw_(}}.92> an
E.O.R.7? full : E.O.F.
(yes) = I (yes) (yes)
Set up for Set up Write . (no)
a Write til For Full
E.0.R. Sector Write Last
’ \D record card
| >, i
=

C.0.5., JOB LOAD, SIMPLIFIED

on disk ﬂ~ww;>E.O.F.?»w£XE§2

MTR assigns Release Job to System

PP time to (Rewind file)

CP. Record in-——— ;} (Priority to FNT)-—e

DAYFILE. (Make file type "INPUT")
(Assign job to CPO)

-APlace FL in /C.S. byte—

- +in the FSTwentryQamﬁ

- ek
Lnxuﬁwuﬁvw

4/19/67

PAGE 6

Overall MTR
MTR subroutine CP status assigns a PP translates All (yes) Terminate Job
"Advance CPU Job«wmmmm«£>>indicateSH-mmww‘ ;;PP to CP > next Control— ~{;>gero'swmmwmwm;>(Re1ease equip.,
Status" scans CP. "Advance" to Adv. Job Card disk space, CM,
the Job (no) etc.)
(find)
“Mi;>Disp1ay : Release
- (XXX NOT 1IN LIB)W_“WM§>PPU
Is it a Search FNT, Read in Advance "Next MRequest After MTR
Program—»f l—~ CLD and PLD-M(1nd) \>prog AN e ey, CONIETO L ey GPUM 2y answers request,
Call Caxd? to find program and set up Statement | reguest a
CP Exch. Pointex! ! "Release PPUM
(no) Jump Package : }
Process Advance Release o :] |
the ... Next .WWWN”WVPPU I |
statement Control 1eaveb the ea loader | |
Statement | status operation on |
Pointer byte‘ /> <ipage 9 : |
| |
U S S S % I
i - - T T T -
| le
| MTR recognizes Search For Exchange Jump Release MIR
L — © ' ST Master
> "Request CPU" ”’;>CP Priority ~ highest priority . PPU :>IL
Job into oop
execution

C.0.5. ADVANCE JOB, SIMPLIFIED

4/17/67

" PAGE 8

Job name =
=>Console msg = IDLE ~----—-——3Release
Enter PP Recall

(no find)

Initialize Searches for the highes
”NEXT"wﬁﬁm_mwm~~;>priority, unassigned, «-

§g§ﬂ§) :>.in CP Arca. —

NEXT

PPU

Read 18t record

Enter job name
wwmwwwwwwwE}’from disk, then transfer

package type "INPUT!" file Obtain disk location into "Control Statement
with an FL that from FST Buffer" at CP Areca
will £it in CM.
Translate Job Card Advance "Next Reguest MTR
1st ControL~mwwmww§>payameter5mw~wwmmw5> Control Statement - meﬁsReleasewwwwm~ :>re1easesw~w»-§9 w
Card to CP Area Pointer!" PP PP
(Job Card) (Allocate
CM) etc.
* This will leave the CP status byte = Q- 0, and the Recall register equal to Q--veer—e0. Also

the CPU has not yet been called, thus the CP address is not in the CPU Job Stack.

will indicate to MTR to "Advance" the Job.

C.0.5., BEGIN JOB, SIMPLIFIED

These conditions

4717767

PAGE 7

1AJ 2TS 2TS enters 2TS) nLoD" L.OD searches LOD loads

callsw“m~ﬂ_translatesmmm~m£>parametars S — calls-mwnm-ww*;>overlaysw“m-;>RSL & CLD—e >, "LOADER™ into
2TS Program for load operation "1,0D" 1AJ & 2TS for "LOADER" RA -+ FL - the.
Call Card into RA through (through PPR) (0773-> ; loader length

~ RA + 77g 2256) and up.

Set P in ex- ' ‘
change jump package - LOD calls - Exit IDR calls 2LA c¢alls LDR

to enter LOADER-WWMNWME>>“LDR” throughwwmm~m~f;>into~mwww»ﬂw%}>ZLA to »mwwwwm{;> 218 to »Mwmwwwg}~loads the named
program at . PPR "LDRY . check the rostore file into CM,
"LOADER 10 (0773-7632) parameters LDR RA + 100 aud up.

Request CPU Request CPU is exch. LOADER finds CPU jumps Program
(to startﬁg_mmww£>Release s moe e Jumped iNto v X3 out main programwwwwwwsbto main ~w~~€> needs next
LOADER) PPU. LOADER is loaded program /) Segment or

/ Overlay

v /

CPU jumps LOADER Is LOADER / .
to LOADER calls LDR (ves) links CPU jumps / CPU Stop
with parameters.— ... "LDRM to-w«~w;>finished~mmZme;> Segment~*»~»~f;>to main eeem e etc.WWngacalls»mmw-CpU
for next Segment load next loading? or Overlay program "END"
or Overlay Segment (no) to main
‘ program
Lee—Recall

6000 SCOPE 2.0 "SIMPLIFIED" LOADER OPERATION 4/17/67

PAGE 9

o

\; \.'

\ - ;
b /
}
!

OVERLAYS |

i
!
|
.
|

SEGMENTS
PRIMARY | SECONDARY

LEVEL LEVEL
NUMBER NUMBER

JON‘EN&S OF USER'S JOB ARFA 1IN
4EM@RY}AFTER LOADING OF OVERLAY

LOADING

LOADTNG |SEGMENT | CONTENTS OF USER'S JOB AREA IN - ORDER

ORDER LEVEL | MEMORY AFTER LOADING OF SEGMENT

— ~E..r ;
1 0 0 (0,0)

UNUSED

2 1 0 (o,o} (1,0

2 3 0 SEG 3 T e
I Boshain ; X : s T
s | e L 4 ! 2 (0,0) | (1,0)
LA 9 | SEG 0 | SEG 3 i e N

5 1 1 (0,0 (1,0) ,

0 ‘ 1 3 7 (0,0) (1,0)

7 5 SEG O SEG 1

8 2 0 (0,0) | (2,0)

SEG 8

8 8 SEG 0 SEG 1

AN S N (9,0 (2,0)

9 7 SEG O SEG 1 SEG 5 SEG 7

10 2 2 (0,0) (2,0)
1 3 0 (0,0) (3,0)

o~y

w Ty

e e ‘ 12 4 0 0,0) | 4,0)

Syt Vgl Lave e z

s Uw e ok A
6000 SCOPE 2.0 LOADER

PAGE 10

\L e

Cry

exchange Run Set up Call Is (yes) Is (n0) Program MTR

jumped w ,_,> program— - buffer . ,> HeTON.... M> (RAHL) - \.,.,:...,.w.._;:;.”BS” e 2 CPU o e e e restarts

into parameters = 07 odd? Recall program

program .

‘ (yes)
Continue Program Stop
in eersee CPU wooome CPU
program HEND!
L

BA = (File Name) (B3)

BA - L = (FIRST)

BA - 2 = (IN).

BA - 3 = (our)

BA I 4 =

(LIMIT)

RA -+ 1 = CI0 - - -~ Address

RA + 1 =END -~ ~ ~ =
of BA .

¢.0.5. CPU PROGRAMMED INPUT/OUTPUT

4/17/67

PAGE 11

10T loaded Error (n Storage (10) Determine Request MTR Enterxr
into PPU Flags,,m_u,,gww> a551gned?h,__ 1:10 > size of FI,._ “_..._,_,_w..,,-ﬁ._v.w.,> to assign —co e PP

set? (yes) needed storage _ ~~ Recall
\lfyes) .

Release PPU

(o) . - |
IJ the Are the Set up Buffer Parameter Clear out the Buffer
\ébL value.- (yes). \\BUJreV Are aulw(no) —>>Axeas and Buffer Point wwwww?fwmw«;>Point headings for -
correct? . preset? i headings. (Sece page 13) 1 output devices
L (yes e e e not present
L £ b £
Search for a Search FNT for Is it a (Is it a (00) Is it a (10) Is it a (no)
- >{_‘ ree Buffer Point - oo w~> highest priority - m> NPRINTM -~ “,NF}_Q._).} NPYUNCIM .,,3.1,9...“...>, NETLMN B0 npropr RO/
and selb- up parameters unassigned file, type file? type filae? type f£ile? type file?
for an output (yes) (yes) {yes) (ves)
- type device , P P
1 4 SRR o b e S0 e e AL AR s S8 TR Y . 8 . - R A Ak AL b AR o 5 T o A b SOt mamiacl (S ilni 1 ar LO ”PRINT " Op erat jor’.)
Assign the file (‘es) Request "LP" (yes) Transfer EST entry for Enter "PRINTM Store file name
~~~5hto a free Buffer— 2. »§>type equip. ~~3m»-:\cqu1pmenr to Buffer P01nLNMFW%MWT\as Buffer Point——-—>and BSC at
PoanL. Assigned? from MTR. area. (Include entry AR meobage Buffer Point
(no) Received ecquip? address for that program) Area
(no) :
V -V \
A '
Place "PRINT" as Transfer file - Call and executgq Request Place latest Enter
ww§>file name in w--~«~3>ndme and message»»»{}> 30T for — Y. ;> MTR to'—m«w~:>messagcs at -~ ——>PP
FNT entfry to'Buffer Point—— "PRINT" file —f}>rg1ease FNT  Buffer Point Recall
‘display area ' -—;>(ca11 1PO (etc))mAJ . channel Area
< ! NS z ,}Sﬁ 3 . . ('/f}
é"' ! Qx“‘ :'A. )
IERCA RPN

€.0.S./SCOPE 2.0 "OUTPUT" SIMPLIFIED FLOW CHART 8/28/67

PAGE 12




RA + 0 - 7 Not used ’ , :
RA + 10 | File Name ‘ suffer Starus Pm”n\i
Sy 411 L ON/U FIRST —~ | |
R& + 12 | N/U N Buffer
Ra + 13 | N/U oUT 1 > Point #l's
S Parameter
v RA+ 14 N/U ‘ L LIMIT Area
. RA+15 | Job Name I E e N/U
e AT = T
B .. .. Program | RN BIr .= - .
¢ RA+16 iZntry Addr.i B A | D ¢c 'cox 0/ ED U '
RA + 17 | Buffer Point Time Accumulation—=> .. ?\“;*5;// by 3
RA + 20 - 27 | Buffer Print #2's Parameter Area _ C
RA + 30 - 37 Buffer Point #3's Parameter Ares

RA + 40 - 47 Buffer Point #4's Parameter Area « :

RA + 50 -~ 57 ! Buffer Point #5!'s Parameter Area
: _ |
RA + 60 - 67 Buffer Point #6's Parameter Area i
) 1
RA + 70 - 77 | Not used ' |
RA + 100 B
through | Buffer Point #l's Buffer Area
RA + 1077
RA + 1100 .
through | Buffer Point #2's Buffer Area
RA + 2077
RA + 2100
through | Buffer Point #3's Buffer Area
RA + 3077
Ra + 3100
through | Buffer Point #4's Buffer Area
RA + 4077
RA + 4100
through |Buffer Point #5's Buffer Area
RA + 5077
RA + 51C0 | .
through |Buffer Point #6's Buffer Area
RA + 6077

C.0.S./SCOPE 2.0 "OUTPUT" PARAMETER/ZUFFER ARZA 8/28/67

PAGE 13



CONTROL DATA

CORPORATION 8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

PRINTED IN US.A.



	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	155a
	155b
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	305a
	305b
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	_01
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	_11
	_12
	_13
	_14
	xBack

