

INDEX TO CENTRAL PROCESSOR INSTRUCTIONS

OCTAL MEE-
CODE MONIC

AD-
DRESS

NUMERICAL

NAME PAGE
MEE-
MONIC

OCTAL
CODE

AD-
DRESS

ALPHABETICAL

NAME PAGE

00 PS Program stop 3-23 AXi 21 jk Arithmetic right shift Xi, jk places 3-32

010 RJ Return jump to K 3-43 AXi 23 Bj Xlc Arithmetic right,shift XI: nominally Bj places to Xi 3-33

011 REC 13j + K Read Extended Core Storage 3-46 BXi 10 Xj Transmit Xj to Xi 3-29

012 WEC Bj + K Write Extended Core Storage 3-47 BXi 11 Xj * XI: Logical product of Xj and Xk to Xi 3-29

013 Xj n + K or contents of MA Central Exchange jump F-2 BXi 12 Xj + XI: Logical sum of X,j and El to Xi 3-30

02* JP 13i+ K Jump to Bi + K 3-44 BXi 13 Xj - Xk Logical difference of Xj and Xk to Xi 3-30

030 ZR Xj K Jump to K if .Xj = 0 3-44 BXi 14 -Xk Transmit the comp. of XI: to Xi 3-30

031 NZ Xj K Jump to K if Xj 0 3-44 BXi 15 -Xlc *Xj Logical product of Xj and XI comp. to Xi 3-31

032 PL Xj K Jump to K if Xj = plus (positive) 3-44 BXi 16 -XI: + Xj Logical sum of Xj and XI: comp. to Xi 3-31

033 NG Xj K Jump to K if Xj = negative 3-44 BXi 17 -XI - Xj Logical difference of Xj and XI: comp. to Xi 3-32

034 IR Xj K Jump to K if Xj is in range 3-44 CXi 47 -XI Count the number of l's in Xlc to Xi 3-28

035 OR Xj K Jump to K if Xj is out of range 3-44 DE** 036 Xj K Jump to K if Xj is definite 3-44

036 OF Xj K Jump to K if Xj is definite 3-44 DXi 32 Xj + XI: Floating DP sum of X,j and XI. to Xi 3-38

037 tO Xj K Jump to K if X,j is indefinite 3-44 DXi 33 Xj - Xk Floating DP difference of Xj and XI: to Xi 3-38

04 EQ Bi Bj K Jump to K if Bi = Bj 3-45 DX.i. 42 Xj *Xlc. Floating DP product of Xj and Xk to Xi 3-41

05 NE Bi 13j K Jump to K if Bi Bj 3-45 EQ* 04 Bi Bj K Jump to K if Bi = Bj 3-45

06 GE 13i Bj K Jump to K if Bi 2Bj 3-45 EXi 30 Xj + XI: Floating sum of Xj and XI to Xi 3-37

07 LT Bi Bj K Jump to K if 13i. <Bj 3-45 EXi 31 Xj - Xk Floating difference of Xj and Xk to Xi 3-37

10 BXi Xj Transmit Xj to Xi 3-29 EXi 40 Xj * Xlc Floating product of Xj and Xlt. to Xi 3-40

11 BXi Xj *Xk Logical Product of Xj & Xlc to Xi 3-29 EXi 44 Xj / Xlc Floating divide Xj by Xk to Xi 3-41

12 BXi Xj + Xk Logical sum of Xj & XI: to Xi 3-30 GE* 06 Bi 13j K Jump to K if Bi 2.Bj 3-45

13 BXi Xj - Xk Logical difference of Xj & XI to Xi 3-30 ID** 037 Xj K Jump to K if Xj is indefinite 3-44

14 BXi -Xlc Transmit the comp. of Xlc to Xi 3-30 IR** 034 Xj K Jump to K if Xj is in range 3-44

15 Xj Logical product of Xj & XI: comp. to Xi 3-31 IXi 36 Xj + K Integer sum of Xj and XI to Xi 3-26

16 BXi -Xk + Xj Logical sum of Xj & Xlc camp. of Xi 3-31 Da 37 Xj - Xk integer difference of X,j and XI to Xi 3-28

17 BXi - Xj Logical difference of Xj & Xlc comp to Xi 3-32 JP* 02 Bi + K Jump to Bi + K 3-44

20 LXi jic Left shift Xi, jk. places 3-32 LT* 07 13i Bj K Jump to K if TM <I3j 3-45

21 AXi jk Arithmetic right shift Xi, jlc places 3-32 .LXi 20 jk Left shift Xi, jk places 3-32

22 LXi Bj XI: Left shift Xlc nominally B,j places to Xi 3-33 LXi 22 Bj Xlc Left shift XI nominally Bj places to Xi 3-33

23 AXi Bj Xk Arithmetic right shift Xk nominally Bj places to Xi 3-33 M.Xi 43 :pc Form mask in Xi; jk bits 3-36

24 NXi Bj Xlc NorrnaliZe Xk in- Xi and 13j ' 3-34 NE* 05 Bi Bj K Jump to K if Bi ¢ Bj 3-45

25 ZXi Bj Xlc Round and normalize Xlc in Xi and Bj 3-34 NO t' 033 Xj K Jump to Ii if Xj = negative 3-44

26 UXi Bj Xk Unpack Xk to Xi and Bj 3-35 NO 46 No operation (Pass) 3-23

27 PXi I3j Xk Pack Xi from XI: and Bj 3-36 NXi 24 Bj Xk Normalize Mc in Xi and Bj 3-34

30 FXi Xj + Xlc Floating sum of Xj and Xlc to Xi 3-37 NZ** 031 Xj K Jump to K if Xj 0 3-44

31 EXi Xj Xk Floating difference Xj and Xlc to Xi 3-37 OR** 035 Xj K Jump to K if Xj is out of range 3-44

32 DXi Xj + Xlc Floating DP sum of Xj and XI: to Xi 3-38 PLO* 033 Xj K Jump to K if Xj = plus (positive) 3-44

33 DXi Xj - Ilk Floating DP difference of Xj and Xk to Xi 3-38 PS 00 Program stop 3-23

34 RXi Xj + Xk Round floating sum of Xj and Xk to Xi 3-38 PXi, 27 . B,j Xk Pack Xi from Xi: and Bj 3-36

35 RXi Xj - Xk Round floating difference of Xj and Xk to Xi 3-39 RE 011 . I3j + K Read extended core 3-46

36 IXi Xj + Xk Integer sum of Xj and Xlc to Xi 3-28 RJ 010 K Return jump to K 3-43

37 LXi Xj - Xlc Integer difference of Xj• and Xk to.Xi• 3-28 RXi 34 Xj + Xic Round floating sum of Xj and Xk to Xi 3-38

40 FX.i Xj*Xk Floating product of Xj and XI to Xi 3-40 RXi 35 Xj - Xk Round•floating difference to Xj and Xk to Xi 3-39

41 RXi Xlc Round floating product of Xj and Xk to Xi 3-40 RXi 41 Xj * XI: 118und floating product to-Xj and Xk ko Xi 3-40

42 DXi Xj* Xlc Floating DP product of Xj and Xk to Xi 3-41 RXi 45 Xj / Xk RoUnd floating divide Xj by Xk to.X1 3-42

43 MXi jk Form mask in Xi, jk bits 3-36 SAi 50 Af+ K Set Ai to Aj +K 3-24

44 FXi Xj / Xlc Floating divide Xj by Xk to Xi 3-41 SAi 51 Bj + K Set Ai to Bj + K 3-24

45 RXi Xj Xk Round floating divide Xj by XI: to Xi 3-42 SAi 52 Xj + K Set Ai to Xj + K 3-24
46 NO No operation (Pass) 3-23 SAi 53 Xj * Bk Set Ai to Xj + Bk 3-24
47 eXi Xlc Count the number of l's in Xk to Xi 3-28 SAi 54 Aj + Bic Set Ai to Aj + Bic 3-24
50 SAi Aj + K Set Ai to Aj + K 3-24 SAi 55 Aj - Bk Set Ai to Aj - Bk 3-24
51 SAi Bi + K Set Ai to Bj + K 3-24 SAi 56 Bj + Bk Set. Ai to Bj + Bk 3-24
52 SAi Xj + K Set Ai to Xj + K 3-24. SAi 57 Bi - 13k Set Ai to B,j - Bk 3-24
53 SAi Xj + Bk Set Ai to Xj + Blc 3-24 SRI 60 Aj + K Set Bi to Aj + K 3-26
54 SAi Aj + Bic Set Ai to Aj + Bk 3-24 S131. 61 Bj + K Set Eli to Bj + K • 3-26
55 SAi Aj - Bic Set Ai to Aj - Blc 3-24 SBi 62 Xj + K Set Bi to Xj 4- K.

_

3-26
56 SAi Bj + Bic Set Ai to Bj + Bk 3-24 SBi 63 , -XI. +.13k Set Bi to Xj +.13k 3-26
57 SAi I3j - Bic Set Ai to Bj - Bk 3-24 501 64 Aj + 131: Set Bi to Aj + Blc 3-26
60 SBi Aj + K Set Bi to Aj +K 3-26 5131 65 Aj - Bk Set Bi to Aj - Bk 3-26
61 SBi I3j + K Set Bi to Bj + K 3-26 Sal 66 Bj + Bk Set Bi to Bj + Bk 3-26
62 SBi Xj + K Set Bi to Xj +K 3-26 SBi 67 Bj - Bk Set Bi to B) - Bk 3-26
63 SBi Xj + Blc Set Bi to Xj + Bk 3-26 SXi 70 Aj + K Set Xi to A,j + K 3-26
64 SRI Aj + Els Set Bi to Aj + Bk 3-26 5E1 71 •Bj.+ K Set Xi to Bj + K 3-26
65 SBi Aj - 13Ic Set Bi to Aj - Bk 3-26 SE! 72. Xj•+ K Set Xi toiXj + 3-26
66 SRI Bj + Bic Set Bi to I3j + Bk. 3-26 SE! 73 Xj + Bk Set Xi to Xj + Bk 3-27
67 SBi Bj - Bk. Set Bi to Bj - Bk 3-26 SE! 74 Aj + Bk. Set Xi to Aj + Bk 3-27
70 SXi Aj + K Set Xi to A,j + K 3-26 SXi 75 Aj - ..Bk Set Xi to Aj - Bk 3-27
71 SXi Bj + K Set Xi to Bj + K 3-26 SXi 76 Bj -I- Bk. Set Xi to Bj +131: 3-27
72 SX1 Xj + K Set Xi to Xj + K 3-26 SXi .77 Bj - 131: Set Xi td Bj - Bk- 3-27
73 SXi Xj + Bic Set Xi to Xj + Bic 3-27 OXi 26 13) Xlc Unpack Xlc to Xi and 13) 3-35
74 SXi Aj + Set Xi to Aj + Bic 3-27 WE 012 Bj + K Write extended core 3-47
75 SXi Aj - Bk Set Xi to Aj - Bk 3-27 XS 013*** B) + K or contents of MA Central Exchange jump F-2
76 SX1. Bj + 131c Set Xi to Bj + Blc 3-27 Zit** 030 Xj K Jump to K if Xj = 0 3-44
77 SXi Bj - Bk Set Xi to B,j - Ilk 3-27 ZXi 25 Bj XI: Round and normalize XI: in Xi and 13) 3-34

*Jump to K +B1, and Jump to K if Bi---tests made in Increment unit.
**Jump to K if Xj---tests made in Long Add unit.

***Included in 6700 or those Systems having the applicable Standard Options.
Rev K

CONTROL DATA®
6400/6500/6600/6700 COMPUTER SYSTEMS

Reference Manual

RECORD of REVISIONS
REVISION NOTES

This manual obsoletes the 6600 Computer System Reference Manual, Pub. No. 60045000.

A Publication Change Order CA13186. Addition and deletion of information for technical accuracy.

(4-5-66) Title changed to 6400/6600 Computer Systems Reference Manual. This edition obsoletes all

previous editions.

B Publication Change Order 14568. Pages 3-13, B-4, B-9, B-12, B-13, B-14, B-15, B-16, D-5

(9-1-66) and Index-2 revised.

C Publication Change Order 15036. Page D-6 revised.

(10-27-66)

D Publication Change Order 15866. Addition of 6500 information; title changed to 6400/6500/6600

(2-21-67) Computer Systems Reference Manual. The following pages revised: cover and title page, iv, v,

frontispiece, 1-1, 1-2, 1-3, 1-4, 1-5, 1-7, 1-8, 3-1, 3-2, 3-6, 3-7, 3-12, 3-16, 3-20, 3-51, 4-1,

4-13, 4-24, 4-25, 4-29, 4-30, 4-36, 5-1, 6-1, 6-4, Appendix A title page, A-1, A-2, A-3, A-4,

A-5, A-6, B-2, B-3, B-5, B-6, B-7, B-8, C-1, D-1, D-2, D-3, D-4, D-6, and Comment Sheet.

E Field Change Order 15829. Changes included in Publications Change Order 19635.

(5-16-67)

F Publications Change Order 19635. Deletion of ECS information, addition of COMPASS mnemonics,

(5-16-67) miscellaneous additions and corrections. The following pages revised: Title Page and Record of

Revisions, iii, iv, v, 1-3, 1-8, 3-9, 3-11, 3-23, 3-46, 3-47, 4-7, 4-10, 4-25, 4-26, 4-29, 4-30,

4-31, 4-37, 4-38, 4-39, 6-2, 6-4, A-3, A-4, B-6, Appendix D Title Page, D-1 through D-6,

Index-1, and Index-2.

G Manual revised; includes Engineering Change Order 20617, publication change only. Rages 3-8-,

(9-26-68) 3-13, -and 4-8 revised.

H Manual revised; includes Engineering Change Order 21720, publication change only. Pages iii,

(2-21-69) v, 3-3, 3-4, 3-5, 3-6, 3-7, 3-34, 3-35, 3-42, 3-43, D-2, D-4 and D-5 revised.

J Manual revised; includes Engineering Change Order 23887, publication change only. Pages IV, 1-8,

(11-17-69) and 6-1 revised. Page E-1 and Appendix E (Title page) added.

K Manual revised; includes Engineering_ Change Order 25288. publications change only. The following

(8-4-70) pages revised: Covers, iv, v, Frontispiece, 1-1 through 1-6, 1-8, 2-1 through 2-3, 3-1 through

3-9, 3-21, 3-22, 3-23, 3-25, 3-26, 3-27, 3-39, 3-41, 3-42, 3-46, 3-47, 3-49, 4-1, 4-2, 4-5, 4-10

4-24, 4-25, 4-29, 4-31, 4-33, 4-34, 5-1, 6-1, 6-3, 6-4, A-1, A-2, A-3, A-4, B-1, B-6 throughB-13

Appendix D, divider, D-1, D-2, D-3, D-5, and E-1. The following pages added: 1-9, 1-10,

Appendix F.

Pub.No. 60100000
© 1965, 1966, 1967, 1968, 1969, 1970
by Control Data Corporation

Printed in United States of America

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

);

0
N

2

CONTENTS

1. System Description

1-1

1-3

1-4

1-4

Logical

Shift

Floating Point Arithmetic

Branch

Extended Core Storage
Communication

3-29

3-32

3-37

3-43

3-46

Introduction

Systems Characteristics Summary

System Characteristics

Central Processor
Characteristics

Peripheral and Control
Processor Characteristics 1-5 4. Peripheral and Control Processors

Central Memory Characteristics 1-6
Organization 4-1

Display Console Characteristics 1-7
Peripheral Processor

Systems Options 1-8 Programming 4-6

Instruction Formats 4-6

2. Central Memory Address Modes 4-6

Organization 2-1 Registers 4-8

Address Format 2-1 Description of Peripheral
Processor Instructions 4-9

Central Memory Access 2-1
No Operation 4-10

Memory Protection 2-2
Data Transmission 4-11

Arithmetic 4-13
3. Central Processor

Shift 4-16

Organization 3-1 Logical 4-16

Central Processor Programming 3-4 Replace 4-19

Functional Units 3-5 Branch 4-22

Instruction Formats 3-5 Central Processor and

Operating Registers 3-6 Central Memory 4-24

Exchange Jump 3-9 Input /Output 4-27

Exit Mode 3-11 Access to Central Memory 4-32

Floating Point Arithmetic 3-15 Input and Output 4-35

Fixed Point Arithmetic 3-21 Real- Time Clock 4-39

Description of Central
Processor Instructions 3-22 5. System Interrupt

Program Stop and
No Operation 3-23 Introduction 5-1

Increment 3-24 Hardware Provisions for Interrupt 5-1

Fixed Point Arithmetic 3-28 Exchange Jump 5-1

iii Rev. H

Channel and Equipment Status 5-1 Load Mode 6-1

Exit Mode 5-2 Sweep Mode 6-2

Dump Mode 6-2

6. Manual Control Console 6-4

Introduction 6-1 Keyboard Input 6-4

Dead Start 6-1 Display 6-4

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Augmented I/O Buffer and Control (6416)

Instruction Execution Times

Non-Standard Floating Point Arithmetic

Ascent Mnemonics

6415-7, 6415-8, and 6415-9 Computer Systems

Central Exchange Jump (CEJ) and Monitor Exchange

Jump (MEJ)

Central Memory Access Priority (CMAP)

• Rev. K iv

FIGURES

1-1 CONTROL DATA 6400/6500 3-3 Exchange Jump Package 3-9
6600/6700 Computer Systems 1-1

3-4 Detecting and Handling
1-2 Concurrent Operations in the Central Processor Stops 3-14

6400/6500/6600/6700 1-2 4-1 Flow Chart: 6400/6500/
1-3 Block Diagram of 6600 System 1-6 6600/6700 Systems 4-1

1-4 Block Diagram of 6400 and 4-2 Peripheral and Control
6500 Systems 1-7 Processors 4-5

1-5 Block Diagram of 6700 System 1-10 6-1 Dead Start Panel 6-3

2-1 Memory Map 2-3 6-2 Display Console 6-5

3-1 Central Processor Instruction 6-3 Sample Display 6-6
Formats 3-6

3-2 Central Processor Operating
Registers 3-7

TABLES

3-1 Central Processor Differences 3-1 3-7 Central Processor

3-2 Functional Units 3-5
Instruction Designators 3-22

3-3 Exit Mode: Address Out of
Bounds 3-13

4-1 Addressing Modes for
Peripheral and Control
Processor Instructions 4-8

3-4 Range of Permissible
Exponents 3-16

4-2 Peripheral and Control
Processor Instruction

3-5 Indefinite Forms 3-17 Designators 4-10

3-6 Overflow and Underflow
Conditions 3-20

v Rev.K

A CONTROL DATA 6000 SERIES COMPUTER SYSTEM
Display console (foreground) - includes a keyboard for manual input and operator
control and two 10-inch display tubes for display of problem status and operator
directives.

Main frame (center) - contains 10 Peripheral and Control Processors, Central Pro-
cessor, Central Memory, some I/O synchronizers. The main frame in this photo is
that of the 6600 Computer System; the main frames for the 6400, 6500 and 6700 systems
differ in physical appearance, depending on options included in the systems.

CONTROL DATA 607 Magnetic Tape Transport (left front) - 1/2-inch magnetic tape
units for suplementary storage; binary or BCD data handled at 200, 556, or 800 bpi.

CONTROL DATA 626 Magnetic Tape Transport (left rear) - 1-inch magnetic tape
units for supplementary storage; binary data handled at 800 bpi.

CONTROL DATA 405 Card Reader (right front) - reads binary or BCD cards at 1200
card per minute rate.

Disk file (right rear) - supplementary mass storage device; holds 500 million bits of
information.

1. SYSTEM DESCRIPTION

INTRODUCTION

The CONTROL DATA® 6400, 6500, 6600, and 6700 Computer Systems are four large-

scale, solid-state, general-purpose digital computing systems. The advanced design

techniques incorporated in these systems provide for extremely fast solutions to data

processing, scientific, and control center problems, as well as multiprocessing,

time-sharing, and management information applications.

Each of the computing systems has at least eleven independent computers (Figure 1-1).

Ten of these, constructed with the peripheral and operating system in mind, are Peri-

pheral and Control Processors. Each of these ten has separate memory and can execute

programs independently of each other or the Central Processor.

CENTRAL
PROCESSOR

(2 IN A
6500 OR 6700

SYSTEM)

CENTRAL MEMORY

V

PERIPHERAL PROCESSORS (IC)

111111111111,
DATA CHANNELS

(I2)

Figure 1-1. CONTROL DATA 6400/6500/6600/6700 Computer Systems

1-1 Rev K

The eleventh computer, the Central Processor, is a very high speed arithmetic device.

The common element of the Peripheral and Control Processors and the Central Pro-

cessor is a large Central Memory.

In solving a problem, one or more Peripheral and Control Processors are used for

high speed information transfer in and out of the system and to provide operator control.

A number of programs may operate concurrently by time-sharing the Central Processor.

(To facilitate this, the Central Processor may operate in Central Memory only within

address bounds prescribed by a Peripheral and Control Processor.) Further concur-

rency is obtained within the Central Processor by parallel action of various functional

segments. Similarly, Central Memory is organized in 32 logically independent banks

of 4096 words (60-bit). Several banks may be in operation simultaneously, thereby

minimizing execution time. The multiple operating modes of all segments of the

computer, in combination with high-speed transistor circuits, produce a very high

over-all computing speed.

LEVEL #1

CONCURRENCY
IN

PROGRAMS

DISK PROGRAM A

TAPE PROGRAM

DISPLAY PROGRAM

DISK PROGRAM B

DISK PROGRAM C

CENTRAL PROGRAM

CENTRAL MONITOR PROGRAM

DISK PROGRAM D

REAL-TIME COMMUNICATIONS PROGR

CARD READERS a PRINTERS PROGRAM

REAL-TIME SEQUENCE PROGRAM

LEVEL #2

CONCURRENCY
IN

FUNCTIONS *

ADD

IREAD

MULTIPLY

NORMALIZE

INCREMENT

ADD

LEVEL # 3

CONCURRENCY
IN AMEMORY BANKS

 /MEMORY BANK A
MEMORY BANK B
MEMORY BANK C

ISTORE

MULTIPLY

MEMORY BANK D

MEMORY BANK E

CONCURRENCY IN MULTIPLE
FUNCTIONS IN 6600/6700
ONLY; 6400 CONCURRENCY
AT THIS LEVEL IS POSSIBLE
FOR ONE COMPUTATION
ACTIVITY AND MEMORY
OPERATION ONLY. IN A
6500/6700 SYSTEM, THE
SECOND CENTRAL
PROCESSOR PROVIDES
ADDITIONAL CONCURRENCY.

Figure 1-2. Concurrent Operations in the 6400/6500/6600/6700

Rev K 1-2

The Peripheral and Control Processor input/output facility provides a flexible arrange-

ment for very high speed communication with a variety of I/O devices. Some of the

I/O devices available are listed below.

• Console Display: a cathode ray tube console with manual keyboard. This

program-controlled unit displays problem status on two cathode ray tubes

and handles operator directives from an alphanumeric keyboard similar

to a standard typewriter keyboard.

• Disk Systems: mass storage disk files providing nominal storage of 500

million bits or 1.3 billion bits.

• Magnetic Tape Transports: 1/2 or 1-inch magnetic tape units which handle I

binary data recording at 800 bits per inch on tapes up to 2400 feet long.

• Satellite Coupler: a systems expansion device which permits direct

connection between any two 6400 or 6600/6700 systems via two standard

12-bit bidirectional data channels.

• Data Channel Converter: a device which permits the systems to use

CONTROL DATA 3000 Series peripheral equipment. Examples of available

3000 Series peripheral equipment are card equipment (readers/punches),

magnetic tape equipment, and line printers.

Refer to the 6000 Series Peripheral Reference Manual for additional

external equipment information.

SYSTEMS CHARACTERISTICS SUMMARY

The following summary lists characteristics of the 6400, 6500, 6600, and 6700

Computer Systems. Where characterics differ between the systems, differences are

noted; otherwise, characteristics listed are common to all systems.

1-3 Rev K

I

I

System Characteristics

• Large-scale, general-purpose computer system

• 11 independent computers; 12 in the Dual Processor 6500 and 6700 systems.

1 Central Processor (60-bit); 2 Central Processors in the 6500 and

6700 system

10 Peripheral and Control Processors (12-bit)

Central Memory (60-bit)

Display console and keyboard

• System communicates with a variety of external equipment

Disk files

Magnetic tapes

Card equipment

Printers

• Central Memory common to the system computers

• Maximum Central Memory storage capability 131,072 words (60-bit)

Major Cycle = 1000 nsec

Minor Cycle = 100 nsec

Memory organized in 32 banks of 4096 words

Multiphase

• Central Processor instructions

Arithmetic, logical, indexing, branch

• Peripheral and Control Processor instructions

Add/Subtract, logical, input/output, access to Central Processor

and Central Memory

• Each Peripheral and Control Processor has 12-bit 4096-word memory

• Solid-state system

Transistor logic

Central Processor Characteristics

I 6600 and 6700

• 10 arithmetic and logical units

Add Shift
Multiply Branch
Multiply Boolean
Divide Increment
Long add Increment

Rev K 1-4

• Additional 6400 type unified arithmetic section operating in sequential
manner (6700 only).

• 24 operating registers for functional units

8 operand (60-bit)

8 address (18-bit)

8 increment (18-bit)

• 8 transistor registers (60-bit) hold 32 instructions (15-bit) or 16 instruc-

tions (30-bit) or a combination of the two for servicing functional units.

6400 and 6500

• Unified arithmetic section, operating in sequential manner (one per

processor in 6500)

• 24 operating registers (one set per processor in 6500)

8 operand (60-bit)

8 address (18-bit)

8 increment (18-bit)

• Instruction Buffer register (60-bit)

Common Central Processor Characteristics

• Floating point arithmetic

Single and double precision

Optional rounding and normalizing

• Format

Integer coefficient - 48 bits

Biased exponent - 11 bits (210)

Coefficient sign - 1 bit

• Fixed point arithmetic (subset of floating

Full 60-bit add /subtract

• Controlled and started by Peripheral and

• Addresses in Central Memory relative

point arithmetic)

Control Processors

Peripheral and Control Processor Characteristics

• 10 identical processors (characteristics as

except as noted)

• 4096-word magnetic core memory (12-bit)

• Random access, coincident - current

Major Cycle = 1000 nsec

Minor Cycle = 100 nsec

listed are per processor

1-5 Rev K

• 12 input/output channels

All channels common to all processors

Maximum transfer rate per channel - one word/major cycle

All 12 channels may be active simultaneously

All channels 12-bit bidirectional

• Real-time clock (period = 4096 major cycles)

• Instructions

Add / Subtract

Logical

Branch

Input / Output

Central Processor access

Central Memory access

• Average instruction execution time = two major cycles

• Indirect addressing

• Indexed addressing

Central Memory Characteristics

• 131,072 words (maximum size)

• 60-bit words

• Memory organized in 32 logically independent banks of 4096 words with

corresponding multiphasing of banks; (32 banks is maximum memory size)

<-3w

'C

UPPER
, 5 .BOUNDARY

CENTRAL
MEMORY

LOWER
BOUNDARY

12
INPUT
OUTPUT
CHANNELS

ADD
A

MULTIPLY

MULTIPLY

DIVIDE

24 LONG ADD
OPERATING
REGISTERS SHIFT

BOOLEAN

INCREMENT

INCREMENT
V

BRANCH

PERIPHERAL a CONTROL PROCESSORS CENTRAL PROCESSOR

Figure 1-3, Block Diagram of 6600 System

Rev K 1-6

o Random access, coincident-current, magnetic core

o One major cycle for read-write

o Maximum memory reference rate to all banks - one address/minor
cycle

o Maximum rate of data flow to/from memory - one word/minor cycle

Display Console Characteristics

o Two display tubes

o Modes

Character

Dot

o Character size

Large - 16 characters/line

Medium - 32 characters/line

Small - 64 characters /line

• Characters

26 alphabetic

10 numeric

11 special

to

C
12

INPUT
OUTPUT
CHANNELS

CENTRAL
MEMORY

UPPER
BOUNDARY

LOWER
BOUNDARY

PERIPHERAL a CONTROL PROCESSORS

24
OPERATING
REGISTERS

24
OPERATING
REGISTERS

4 0
UNIFIED

ARITHMETIC
SECTION

UNIFIED
ARITHMETIC

SECTION

CENTRAL PROCESSOR
I IN 6400, 2 IN 6500)

Figure 1-4. Block Diagram of 6400 and 6500 Systems

1-7 Rev. D

SYSTEMS OPTIONS

The foregoing summary of characteristics assumes a 6400, 6500, 6600, or 6700

system with 10 Peripheral and Control Processors, a Central Processor (except for

the 6500 and 6700 system, which have two Central Processors), and Central Memory

with 131,072 words (60-bit) of magnetic core storage.

Options listed below are available within each system unless otherwise noted.

• Central Memory with 131, 072 words (60-bit) of magnetic core storage.

• Central Memory with 98, 304 words (60-bit) of magnetic core storage

(refer to the publications for Standard Option 10180-1 and 10178-1).

• Central Memory with 65, 536 words (60-bit) of magnetic core storage.

(This is the minimum Central Memory size available for the 6500 Computer

System.)

• Central Memory with 49, 152 words (60-bit) of magnetic core storage

(refer to the publications for Standard Option 10179-1 and 10177-1).

• Central Memory with 32, 768 words (60-bit) of magnetic core storage.

• Extended Core Storage (Refer to ECS Reference Manual) available in the

following sizes:

125, 952 words (60-bit)

251, 904 words (60-bit)

503, 808 words (60-bit)

1, 007, 616 words (60-bit)

2, 015, 232 words (60-bit)

• Extended Core Storage Controller: Couples up to 2, 015, 232 words of

Extended Core Storage from one to four 6400, 6500, 6600, or 6700 central

computer(s) or Augmented I/O Buffer and Control unit(s) in any combination.

• Augmented I/O Buffer and Control: includes 16, 384 words (60-bit) of

magnetic core storage and 10 Peripheral and Control Processors with

storage.

Central Processor Monitor Facility (Central and Monitor Exchange Jump

instructions): Refer to Appendix F.

Rev K 1- 8

• A 6400 Central Computer with ECS Coupler, 7, 8, or 9 Peripheral

Processing Units, and 9, 10 or 11 Data Channels respectively. (See

Appendix E for further information on64XX-7, 64XX-8, and 64XX-9

Computer Systems.)

• Central Memory Access Priority (CMAP): Provides a Peripheral Processor

with the ability to interrupt ECS transfers and also gives priority

Peripheral Processors preference over non-priority Peripheral Processors

in the execution of Central Read and Central Write instructions when ECS

is inactive. CMAP is standard on the 6700.

• Secondary Central Processor Unit (Standard Option 10174): Consists of

a serial type Central Processor, including arithmetic and control functions

able to communicate with Central Memory and Extended Core Storage.

This option is included in the 6700 Computer System.

• Additional Peripheral and Control Processors (Standard Option 10173):

Provides 10 additional Peripheral and Control Processors and 12 addi-

tional I/O channels to a 6000 series computer. The resulting systems

have 20 Peripheral and Control Processors, any one of which can access

any one of 24 I/O channels.

1-9 Rev K

6700 COMPUTER SYSTEM

4

4

41'
4 •

12
INPUT
OUTPUT
CHANNELS

00
•

ORGANIZATION OF 6700 SYSTEM, SHOWING DATA CHANNELS AT
PERIPHERY AND THEN MOVING INWARD TO PERIPHERAL
PROCESSORS, CENTRAL MEMORY, AND DUAL CENTRAL PROCESSORS.

CENTRAL
MEMORY

UPPER
BOUNDARY

LOWER
BOUNDARY

ADD

MULTI PLY

24
OPERATING
REG ISTERS

MULTIPLY

DIVIDE

LONG ADD

SHIFT

BOOLEAN

INCREMENT

NC RE MENT

BRANCH

CENTRAL PROCESSOR

24
OPERATI
REGISTERS

UNIFIED
ARITHMETIC

SECTION

PERIPHERAL AND CONTROL PROCESSORS

CENTRAL PROCESSOR

Figure 1-5. Block Diagram of 6700 System

Rev K 1-10

2. CENTRAL MEMORY

ORGANIZATION

Central Memory is organized into 32K, 49K, 65K, 98K, or 131K words (60-bit) in 8,

16, or 32 banks of 4096 words each. The banks are logically independent, and

consecutive addresses go to different banks. Banks may be phased into operation at

minor cycle* intervals, resulting in very high Central Memory operating speed. The

Central Memory address and data control mechanisms permit a word to move to or

from Central Memory every minor cycle.

ADDRESS FORMAT
The location of each word in Central Memory is identified by an assigned number

(address), which consists of 18 bits. Address formats are shown below for 8-bank

(32K), 8-bank (49K), 16-bank (65K), 16-bank (98K), and 32-bank (131K) systems.

Within the address format, the bank portion specifies one of 8, 16, or 32 banks; the

12-bit address defines one of 4096 separate locations within the specified bank.

8-Bank (32K) Format ADDRESS BANK

17 15 14 32 0

** ADDRESS BANK 8-Hank (49K) Format
17 16 15 1413 32 0

ADDRESS BANK 16-Bank (65K) Format
17 1615 43 0

** 0 ADDRESS 16-Hank (98K) Format
17 161514 43 0

ADDRESS 32-Bank (131K) Format
17 16 54 0

Addresses written or compiled in the conventional manner reference consecutive
banks and hence make most efficient use of the bank phasing feature.

CENTRAL MEMORY ACCESS
References to Central Memory from all areas of the system (Central Processor and

Peripheral and Control Processors) and Extended Core Storage go to a common

address clearing house called a stunt box in the 6000/6700 and are sent from there to

all banks in Central Memory. The stunt box accepts addresses from the various

sources under a priority system and at a maximum rate of one address every minor

cycle.

*Minor cycle = 100 nsec.
**Bit 211 of bank address is supplied by either CM address bit 2

15
or 2

14
(49K) or 216 + 215

(98K), depending on the Section/Chassis configuration selected.

2-1 Rev K

An address is sent to all banks, and the correct bank, if free (the bank ignores the

address if it is busy processing a previous address), accepts the address and indicates

this to the stunt box. The associated data word is then sent to or stored from a central

data distributor. The stunt box issues addresses at a maximum rate of one every

minor cycle.

The stunt box saves, in a hopper mechanism, each address that it sends to Central

Memory and then reissues it (and again saves it) under priority control in the event

it is not accepted because of bank conflict. The address issue-save process repeats

until the address is accepted, at which time the address is dropped from the hopper

and the read or store data word is distributed. A fixed time lapse from address-issue

to the memory-accept synchronizes the action taken.

The hopper (i. e. , a previously unaccepted address) has highest priority in issuing ad-

dresses to Central Memory. The Central Processor and Peripheral and Control

Processors (all 10 share a common path to the stunt box) follow in that order. In the

6700, the 6400 type Central Processor is handled as if it were a Peripheral and

Control Processor (i. e. , third priority).

A data distributor which is common to all processors handles all data words to and

from Central Memory (the Peripheral and Control Processors share one read path

and one write path to the distributor). A series of buffer registers in the distributor

provides temporary storage for words to be written into storage when the addresses

are not immediately accepted because of bank conflict.

Each group of four banks communicates with the distributor on separate 60-bit read

and write paths, but only one word moves on the data paths at one time. However,

words can move at minor cycle intervals between the distributor and Central Memory

or distributor and address-sender.

Data words and addresses are correlated by control information (tags) entered in the

stunt box with the address. The tags define the address sender, origin/destination

of data, and whether the address is a Read, Write, or Exchange Jump address.

MEMORY PROTECTION

All Central Processor references to Central Memory for new instructions, or to read

and store data, are made relative to the Reference Address. The Reference Address

Rev K 2-2

defines the lower limit of a Central Memory program. Changes to the Reference

Address permit easy relocation of programs in Central Memory.

During an Exchange Jump, an 18-bit Reference Address and an 18-bit Field Length

(parts of the Exchange Jump package) are loaded into their respective registers to

define the Central Memory limits of the program initiated by the Exchange Jump.

The relationship between absolute memory address, relative memory address, Refer-

ence Address (RA), and Field Length (FL) is indicated in Figure 2-1.

MEMORY MAP

ABSOLUTE
MEMORY

ADDRESS

RELATIVE
MEMORY

ADDRESS

RA P =0

R A + P P <FL

RA +FL P= FL

RA

Figure 2-1. Memory Map

FIRST LOCATION
IN PROGRAM AREA

PROGRAM AREA

SOME ARBITRARY
LOCATION IN
PROGRAM AREA

LAST LOCATION +1
IN PROGRAM AREA

The following relationships must be true if the program is to operate within its bounds:

RA < (RA + P) < (RA + FL) (Absolute Memory Addresses), or

0 < P < FL (Relative Memory Addresses)

NOTE

1) FL is the number of 60-bit words comprising the program. It is not an ad-

dress.

2) To avoid possible "artificial" range faults, instructions should not be stored

near the upper limit address of the Field Length. For example, using

absolute address [(RA + FL) - 1] for an instruction produces a range fault

2-3 Rev K

when the (look-ahead) Read Next Instruction occurs to (RA + FL). Data should

always be stored in addresses near or approaching absolute location (RA + FL),

rather than instructions.

An optional exit condition (EM in the Exchange Jump package) allows the Central Pro-

cessor to stop on a memory reference outside the limits expressed above.

Rev A 2-4

3. CENTRAL PROCESSOR

ORGANIZATION

The Central Processor is an extremely high-speed arithmetic processor which com-

municates only with Central Memory. It consists (functionally) of an arithmetic unit

and a control unit. The arithmetic unit contains all logic necessary to execute the

arithmetic, manipulative and logical operations. The control unit directs the arithmetic

operations and provides the interface between the arithmetic unit and Central Memory.

It also performs instruction retrieving, address preparation, memory protection, and

data retrieving and storing.

The Central Processor is isolated from the Peripheral and Control Processors and is

thus free to carry on high-speed computation unencumbered by input/output require-

ments.

The organization of the Central Processor in the 6400 system differ s from the 6600/67001

Central Processor in two important respects: The 6500 system has two Central

Processors, and both Central Processors are similar to the 6400 Central Processor.

Central Processor differences are tabulated in Table 3-1.

TABLE 3-1. CENTRAL PROCESSOR DIFFERENCES

System Instruction Registers Arithmetic Section

6400 and 6500
Central
Processors

Instruction Buffer Register:
holds one 60-bit instruction
word,

Unified Arithmetic Section:
executes instructions in
serial order. Requires no
reservation control.

6600/6700*
Central
Processor

Instruction Stack: holds eight
60-bit instruction words,

Ten functional (arithmetic &
logical) units: operate con-
currently on unrelated instruc-
tions. Require reservation
control.

*The 6700 also includes a 6400 type Central Processor,

3-1 Rev K

With the exception of differences noted in the above table, the 6400 system Central

Processor operation is identical to the operation of the Central Processor in the

6600/6700 system. Each of the two 6500 Central Processors operate exactly like Et

6400 Central Processor.

Programs for the Central Processor are held in Central Memory. A program begins

with an Exchange Jump instruction from a Peripheral and Control Processor. This

instruction specifies a segment of Central Memory for the central program, specifies

the mode of exit (normal or error) of the program, and sets initial quantities in the

X, B, and A registers.

High speed in the Central Processor depends first on minimizing memory references.

Twenty-four registers are provided to lower the Central Memory requirements for

arithmetic operands and results. These 24 are divided into:

• 8 address registers of 18 bits in length

• 8 increment registers of 18 bits in length

• 8 operand registers of 60 bits in length

Eight 60-bit registers are provided to hold instructions (6600/6700), thereby limiting

the number of memory reads for repetitive instructions, especially in inner loops.

Multiple banks of Central Memory are provided to minimize memory reference time.

References to different banks of memory may be handled without waiting.

Speed of operation in a conventional computer is limited by the serial manner in which

instructions are executed. In the 6600/6700 Computer System, this operational speed

is maximized by providing 10 arithmetic (functional) units and reservation control.

Unrelated instructions are executed simultaneously, providing no conflicts exist in the

arithmetic units.

The 6400 or 6500, with its unified arithmetic section, executes instructions serially,

with little concurrency.

Rev K 3=2

Programs are written for the Central Processor in a conventional manner, specifying

a sequence of arithmetic and control operations to be executed. Each instruction in a

program is brought up in its turn from one of the instruction registers. These registers

are filled from Central Memory in a manner sufficient to keep a reasonable flow of

instructions available.

A branch to another area of the program voids the old instructions in the registers

and brings in new instructions. When a new instruction is brought up, a test is made

to determine which of the 10 arithmetic units is needed, if it is busy, or if reservation

conflict is possible. If the unit is free and no conflict is present, the entire instruction

is given to the specified arithmetic unit for further action. Another instruction may

then be brought up and issued.

The original sequence of the program is established at the time each instruction is

issued. Only those operations which depend on previous results prevent the issuing

of instructions, and then only if the steps are incomplete. The reservation control

keeps a running account of the address, increment, and operand registers and of the

arithmetic units in order to preserve the original sequence.

On occasion, a program may use an Increment Store instruction to modify the contents

of a memory location holding a subsequent instruction. In the 6600/6700, this modifi-

cation must occur before the instruction is read from Central Memory into the stack,

for once in the stack the instruction can not be so modified. To avoid this potential

problem, modification of any subsequent instruction words should be restricted to

relative locations > (P) + 8. This rule applies equally to both "in-stack" loops and to

other programs where, under certain conflict conditions, the Central Processor of

the 6600/6700 may continue reading instruction words from Central Memory while

delaying execution of a previously issued Increment Store instruction.

I

Nearly all Central Memory references for information or instructions are made on an

implicit or secondary basis. Instructions are retrieved from memory only if the instruc-

tion registers are nearly empty (or when ordered by a branch). Information is brought

to or from the operand registers only when appropriate address registers are referenced

during the course of a program. Such references are also accounted for in the reserva-

tion control.

3-3 Rev K

All Central Processor references to Central Memory are made relative to the lower

boundary address assigned by a Peripheral and Control Processor. A Central Processor

program may therefore be relocated in Central Memory by modifying the boundaries

only. Any attempt by the Central Processor to reference memory outside of its bound-

aries causes an immediate exit which can be readily examined by a Peripheral and

Control Processor and displayed for the operator.

The Exchange Jump instruction starts a central program. This instruction starts a

sequence of Central Memory references which exchanges 16 words in memory with

the contents of the address, increment, and operand registers of the Central Processor.

Also exchanged are the program address, the Central Memory and Extended Core

Storage boundaries, and choice of program exit. This instruction may be executed by

any Peripheral and Control Processor and acts as an interrupt to an active central

program as well as a start from an inactive state. The Exchange Jump is used by the

operating system to switch between two central programs, leaving the first program

in a usable state for later re-entry.

CENTRAL PROCESSOR PROGRAMMING

Central Processor program instructions are stored in Central Memory. A 60-bit mem-

ory location may hold 60 data bits, four 15-bit instructions, two 30-bit instructions

or a combination of 15 or 30-bit instructions. Figure 3-1 shows all instruction com-

binations in a 60-bit word and the two instruction word formats.

The Central Processor reads 60-bit words from Central Memory and stores them in

an instruction stack which is capable of holding up to eight 60-bit words.

Each instruction in turn is sent to a series of instruction registers for interpretation

and testing and is then issued to one of 10 functional units for execution. The functional

units obtain the instruction operands from and store results in the 24 operating

registers. The reservation control records active operating registers and functional

units to avoid conflicts and insure that the original instructions do not get out of order.

Rev K 3-4

Functional Units

The 10 functional units in the 6600/6700 system handle the requirements of the various

instructions. The Multiply and Increment units are duplexed, and an instruction is

sent to the second unit if the first is busy. The general function of each unit is listed

in Table 3-2.

TABLE 3-2. FUNCTIONAL UNITS

Unit General Function

Branch

Boolean

Shift

Add

Long add

Multiply

Divide

Increment

handles all jumps or branches from the program.

Ilandles the basic logical operations of transfer, logical
product, logical sum, and logical difference.

I landles operations basic to shifting. This includes left
(circular) and right (end-off sign extension) shifting, and
Normalize, Pack, and Unpack floating point operations.
The unit also provides a mask generator.

Performs floating point addition and subtraction on floating
point numbers or their rounded representation.

Performs one's complement addition and subtraction of
60-bit fixed point numbers.

Performs floating point multiplication on floating point
numbers or their rounded representation.

Performs floating point division of floating point quantities
or their rounded representation. Also sums the number of
"l's" in a 60-bit word.

Performs one's complement addition and subtraction of
18-bit numbers.

Instruction Formats

Groups of bits in an instruction are identified by the letters f, m, i, j, k, and K

(Figure 3-1). All letters represent octal digits except K, which is an 18-bit constant.

The f and m digits are the operation code and identify the type of instruction. In a

few instructions the i designator becomes a part of the operation code.

3-5 Rev K

In most 15-bit instructions the i, j, and k digits each specify one of eight operating

registers where operands are found and where the result of the operation is to be

stored. In other 15-bit instructions, the j and k digits provide a 6-bit shift count.

In 30-bit instructions the i and j digits each specify one of eight operating registers

where one operand is found and where the result is to be stored, and K is taken directly

as an 18-bit second operand.

NOTE

In the 6600/6700, it is permissible to pack the upper-
order 15 bits (fmij portion) of a 30-bit instruction in
the lower-order 15-bit porition of an instruction word.
When this 30-bit instruction is executed, the lower-
order 15-bits of K are taken from the upper-order
15 bits of the instruction word.

In the 6400 and 6500, any 30-bit instruction with its
fmij portion packed in the lower-order 15 bits of an
instruction word will be executed as a STOP instruc-
tion.

INSTRUCTION COMBINATIONS
IN CENTRAL MEMORY

INSTRUCTION

f m i

FORMATS

3 3 3 15 BITS

0

OPERATION
CODE

(5 15 15 15 16.0........B S
RESULTEG.

59 0 R
8)

30 15
OF

OPERAND 1st
REG. OF 81

5 30 15
and OPERAND
REG OF 8)

15 I 15 30

K 30 30 f m
3 3 8 30 BITS

0

OPERATION
CODE

RESULT 2 nd OPERAND
REG.
OF 8)

I St OPERAND
REG II OF 8)

Figure 3-1. Central Processor Instruction Formats

Operating Registers

In order to provide a compact symbolic language, the 24 operating registers are identi-

fied by letters and numbers:

A = address register (AO, Al . . . A7)

B = increment register (BO, B1 . . . B7)

X = operand register (X0, X1 . . X7)

Rev K 3-6

The operand registers hold operands and results for servicing the functional units.

Five registers (X1 - X5) hold read operands from Central Memory, and two registers

(X6 - X7) hold results to be sent to Central Memory (Figure 3-2). Operands and results

transfer between memory and these registers as a result of placing a quantity into a

corresponding address register (Al - A7).

Placing a quantity into an address register Al - A5 produces an immediate memory

reference to that address and reads the operand into the corresponding operand register

X1 - X5. Similarly, placing a quantity into address register A6 or A7 stores the word

in the corresponding X6 or X7 operand register in the new address.

OPERANDS

X OPERAND
1608171

XO

XI

X2

X3

X4

X5

X6

X7

A ADDRESS
116 BIT)

AO

Al

A2

A3

A4

A5

AG

A7

B INCREMENT
B BIT)

RESULTS

CENTRAL
MEMORY

OPERAND
ADDRESSES

RESULT

ADDRESSES

INSTRUCTIONS

BO

81

B2

B3

B4

85

B6

B7

ARITHMETIC
SECTION

(UNIFIED IN
6400 a 6500,
10 FUNCTIONAL
UNITS IN 6600/
67001

INSTRUCTION
WORD REGISTER.

(1 IN 6900 13 6500,
8-WORD STACK
IN 6600/67001

Figure 3-2. Central Processor Operating Registers

3-7 Rev K

I

I The increment instructions place a result in address register Ai (where "i" = 0-7), in

three ways:

• By adding an 18-bit signed constant K to the contents of any A, B, or X

register.

• By adding the content of any B register to any A, B, or X register.

• By subtracting the content of any B register from any A register or any

other B register.

The AO and XO registers are independent and have no connection with Central Memory.

They may be used for scratch pad or intermediate results. Note the special use of AO

and XO when executing Extended Core Storage communication instructions.

The B registers have no connection with Central Memory. The BO register is fixed to

provide a constant zero (18-bit) which is useful for various tests against zero, provid-

ing an unconditional jump modifier, etc. In general, the B registers offer means for

program indexing. For example, B4 may store the number of times a program loop

has been traversed, thereby providing a terminal condition for a program exit.

An Exchange Jump instruction from a Peripheral and Control Processor enters initial

values in the operating registers to start Central Processor operation. Subsequent

address modification instructions executed in the increment functional units provide

the addresses required to retrieve and store data.

Program Address

An 18-bit P register serves as a program address counter and holds the address for

each program step. P is advanced to the next program step in the following ways:

1) P is advanced by one when all instructions in a 60-bit word have been

extracted and sent to the instruction registers.

2) P is set to the address specified by a Go To . . (branch) instruction. If

the instruction is a Return Jump, (P) + 1 is stored before the branch to

allow a return to the sequence after the branch.

3) P is set to the address specified in the Exchange Jump package.

All branch instructions to a new program start the program with the instruction located

in the highest order position of the 60-bit word.

Rev K 3-8

Exchange Jump

A Peripheral and Control Processor Exchange Jump instruction starts or interrupts

the Central Processor and provides Central Memory with the first address (which is

the address in the Peripheral and Control Processor A register) of a 16-word package

in Central Memory. The Exchange Jump package (Figure 3-3) provides the following

information on a program to be executed:

1) Program address (P)
2) Reference Address for Central Memory (RA cm)
3) Field length of program for Central Memory (FLCM)
4) Reference Address for Extended Core Storage (RAECS)
5) Field length of program for Extended Core Storage

(FLECS)* 6) Program exit mode (EM)
7) Initial contents of the eight A registers
8) Initial contents of the eight X registers
9) Initial contents of B registers B1 - B7 (BO is fixed at 0)

10) Monitor Exchange (MA); Optional Instruction
CENTRAL MEMORY

PERIPHERAL AND
CONTROL PROCESSOR

A REGISTER

CENTRAL MEMORY
LOC. n

17

Loc. n

Loc. n + I

LOC. n

LOC. n +3

LOC. n +15

59

MA= MONITOR ADDRESS
P= PROGRAM ADDRESS
RA= REFERENCE ADDRESS
FL= FIELD LENGTH
EM. EXIT MODE = 000000

010000
020000
030000 OCTAL

CONTENTS OF
BITS 36-53,

LOCATION"n +3"

040000
050000

060000

070000

6 18 18 18

,
P AO —

RACM Al BI

FLcm A2 82

Ai EM A3 133

RA
53 3635

ECS 00 A4 16 17 B4 °

RI- ECS 00
A5 B5

/
MA A6 B6

A7 B7

XO

X 1

X2

X3

X4

X5

X6

X7

0

A= ADDRESS REGISTERS
B= INCREMENT REGISTERS
X= OPERAND REGISTERS

DISABLE EXIT MODE
ADDRESS OUT OF RANGE
OPERAND OUT OF RANGE
ADDRESS OR OPERAND
OUT OF RANGE
INDEFINITE OPERAND
INDEFINITE OPERAND OR ADDRESS
OUT OF RANGE
INDEFINITE OPERAND OR OPERAND
OUT OF RANGE
INDEFINITE OPERAND OR ADDRESS
OUT OF RANGE OR OPERAND OUT
OF RANGE

Figure 3-3. Exchange Jump Package

*In the 6400 and 6500 the upper three bits of RA(ECS) are not transferred to the RA(ECS) register.

3-9 Rev K

The Central Processor enters the information about a new program into the appropriate

registers and stores the corresponding and current informationfrom the interrupted pro-

gram at the same 16 locations in Central Memory. Hence, the controlling information

for two programs is exchanged. A later Exchange Jump may return an interrupted pro-

gram to the Central Processor for completion. The normal relation of the A and X reg-

isters (described earlier) is not active during the Exchange Jump so that the new entries

in A are not reflected into changes in X.

PROGRAMMING NOTE

When an Exchange Jump interrupts the Central Processor, several
steps occur to insure leaving the interrupted program in a usable
state for re-entry:

1) Issue of instructions halts after issuing all instructions
from the current instruction word in the instruction stack.

2) The Program Address register, P, is set to the address
of the next instruction word to be executed.

3) The issued instructions are executed, and then

4) The parameters for the two programs are exchanged.

A subsequent Exchange Jump can then re-enter the interrupted pro-
gram at the point it was interrupted, with no loss of program continuity.

To preserve the integrity of an "in-stack" loop (in the event of an
Exchange Jump), it is illegal to modify the contents of any memory
address which holds an executable instruction (or instruction word)
contained within the loop.

EXAMPLE:

Y + 1

Y+2

Y +3

Y+4

Y+5

Y+6

Y+7

X6 X2 + X4 A6 = Y + I

Assume Exchange Jump
comes in at this point

} These instruction
words in stack
(from memory
locations [Y + 1]
through [Y. + 5])
constitute a loop.

Rev. A 3-10

After executing the
lower instruction at
[1r + 3], the contents
of memory location

+ 1] differ from the
contents of [Y. + 1] in
the stack. If the Ex-
change Jump comes
in a's indicated, sub-
sequent reentry will
call up the modified
loop from memory,
rather than the stack
loop in its original
un-modified form.

All Central Processor references to Central Memory for new instructions, or to fetch

and store data, are made relative to the Reference Address. This allows easy reloca-

tion of a program in Central Memory. The Reference Address or beginning address

and the Field Length define the Central Memory limits of the program. An Exit Selec-

tion allows the Central Processor to stop on a memory reference outside these limits.

The Program Address register P defines the location of a program step within the limits

prescribed. Each reference to memory to fetch instructions is made to the address

specified by P + RA. Hence program relocation is conveniently handled through a single

change to RA.

A P = 0 condition specifies address zero and hence RA. This address is reserved for

recording program exit (error) conditions and should not, therefore, be used to store

data or instructions of a program.

Exit Mode

The Exit mode feature allows the programmer to select Exit or Stop conditions for the

Central Processor. Exit selections are loaded into bits 36-53 of memory location "n+3"

of the Exchange Jump package (Figure 3-3), When the Exchange Jump occurs to that

package, the exit selections are stored in the Central Processor and the exit occurg as

soon as the selected condition is sensed. The Exit conditions, as stored in bits 36-53

of address "n+3" in the Exchange Jump package, are shown below in octal format:

EM = 000000 Disable Exit mode - no Exit selections made.

010000 Address out of range -
a) an attempt to reference either Central Memory

or Extended Core Storage outside established
limits, or

b) the word count, [(Bj) + K] , in an Extended Core
Storage Communication instruction is negative.

(For details on action when an address is out of range,
refer to the Increment and Extended Core Storage instruc-
tion descriptions.)

020000 Operand out of range - floating point arithmetic unit
received an infinite operand (see Range Definitions
under Floating Point Arithmetic following).

3-11 Rev. F

030000 Address or operand out of range

040000 Indefinite operand - floating point arithmetic unit (Add,
Multiply, or Divide) attempted to use an indefinite operand
(see Range Definitions, page 3-17).

050000 Indefinite operand or address out of range

060000 Indefinite operand or operand out of range

070000 Indefinite operand or operand or address out of range

Typically, the Reference Address (RA) for any program is left cleared to all zeros.

When an error exit is taken, the Central Processor records at RA the exit condi-

tion (upper 2 octal digits only) and the Program Address at exit time (refer to the format

below).

NOTE

The Exit condition(s) recorded at RA comprises all the
Exit conditions detected since the last Exchange Jump,
regardless of whether they were selected. Thus, com-
binations of error Exit conditions (03, 05, 06 or 07) can
appear at RA:

a) When at least one Exit condition was selected and
the selected condition plus another condition occur-
red since the last Exchange Jump, or

b) When more than one Exit condition was selected
and each occurred in the same minor cycle.

The contents of RA are then read up, interpreted as a Stop instruction, and the Central

Processor stops.

59 54 53 48 47 30 29 O

0-0 O-X X X 0
 J.

STOP EXIT ZEROS

P=(P) + I ; AT TIME OF ERROR EXIT.

For error stops, (P) + 1 gives only an approximate location of the error since the Cen-

tral Processor may have issued other instructions to the functional units (one of which

may have been a branch) before the exit was sensed.

On an Address Out of Range, hardware action differs from that outlined above. In some

cases, a stop occurs when an address is out of bounds even though an Exit mode stop is

not selected for this condition. Table 3-3 summarizes hardware action for operations

which may reference addresses that are out of bounds.

Rev. D 3-12

TABLE 3-3. EXIT MODE: ADDRESS OUT OF BOUNDS

HARDWARE ACTION

OPERATION EXIT MODE SELECTED EXIT MODE NOT SELECTED

RNI to an ad-
dress that is
out-of bounds
(occurs when
an instr. is
located in
absolute ad-
dress (RA +
FL) - 1).

1. Detect error condition

2. Clear P

3. Stop by reading(RA)

4. Write EM and (P) + 1 into RA

1. Detect error condition

2. Stop by reading (RA)

3. Nothing stored in RA

4. (P) = out of range P or
(P) + 1

Branch to an
address that
is out-of-
bounds.

1. Detect error condition

2. Clear P

3. Stop by reading (RA)

4. Write EM and jump address + 1 in RA

1. Detect error condition

2. Stop by reading (RA)

3. Nothing stored in RA

4. (P) = out of range P or
(P) + 1

Read
Operand

1. Detect error condition

2. Clear P

3. Stop by reading (RA)

4. Write EM and (17)) + 1 into RA

5. (Xi) = (AAZ)

1. Detect error condition

2. Read (RA) into Xi

3. Continue program

Write
Operand

1. Detect error condition

2. Clear P

3. Stop by reading (RA)

4. Write EM and (P) + 1 into RA

1. Detect error condition

2. Read (RA) , but (Xi)
not stored; (Xi) and
(Ai) unchanged.

3. Continue program

Action After Exit Mode or Normal Stop

Typically, a Peripheral and Control Processor periodically searches for an unchanging

Central Processor Program Address register (any value) to determine if the Central

Processor has stopped. Once it has been determined that the Central Processor has

stopped, the examining Peripheral and Control Processor can transfer control to an error

routine to determine the nature of the condition causing the Stop. Figure 3-4 illustrates

sample steps for processing Central Processor stops (either Exit mode or normal).

3-13 Rev. G

Via P & CP, read
CP Program
Address Register

(Are (13)
unchanged from
last test?

Yes

Are (P = 0?

Yes

May be other ,
steps in this I
routine

L

Stop is due to an error
and the error stop
was selected.

Examine (RA) to
determine approxi-
mate location of error -
producing instruction.

Branch to Error
Routine to Recover
From Error.

Yes

Stop is due to either:
1) Normal (instr.)
stop, or
2) Stop because of
RNI or Branch to an
out-of-bounds address
(with Exit mode un-
selected).

Branch to routine to
determine nature of
stop.

(Is stop due to an
 out-of-bounds error?

Take appropriate
action for a stop
condition.

Figure 3-4. Detecting and Handling Central Processor Stops

Rev. A 3-14

Floating Point Arithmetic

Format

Floating point arithmetic takes advantage of the ability to express a number with the gen-

eral expression kBn, where:

k = coefficient

B = base number

n = exponent, or power to which the base number is raised

The base number is constant (2) for binary-coded quantities and is not included in the gen-

eral format. The 60-bit floating-point format is shown below. The binary point is con-

sidered to be to the right of the coefficient, therebyproviding a 48-bit integer coefficient,

the equivalent of about 14 decimal digits. The sign of the coefficient is carried in the

highest order bit of the packed word. Negative numbers are represented in one's com-

plement notation.

COEFFICIENT BIASED
SIGN EXPONENT

INTEGER
COEFFICIENT

I I 48

59 58 48 47 0

BINARY
POINT

The 11-bit exponent carries a bias of 210 (2000
8) when packed in the floating point word

(biased exponent sometimes referred to as characteristic). The bias is removed when

the word is unpacked for computation and restored when a word is packed into floating

format. Table 3-4 lists (in decimal and octal notation) the complete range of permissible

exponents and the octal form of the corresponding positive and negative floating point words.

Thus, a number with a true exponent of 342 would appear as 2342; a number with a true

exponent of -160 would appear as 1617. Exponent arithmetic is done in one's comple-

ment notation. Floating point numbers can be compared for equality and threshold.

3-15 Rev. A

TABLE 3-4. RANGE OF PERMISSIBLE EXPONENTS

EXPONENT (n) REPRESENTATION OF kxBn (OCTAL)

DECIMAL OCTAL
POSITIVE

COEFFICIENT
NEGATIVE

COEFFICIENT

+1023 +1777 (infinite operand) 3777 X X 4000 X X

+1022 +1776 3776 X X 4001 X X

. . .

. . .

. . .

. . .

+1 +1 2001 X X 5776 X X

+0 +0 2000 X X 5777 X X

-0 -0 (indefinite operand) 1 777 X X 6000 X X

-1 -1 1 776 X X 6001 X X

. . .

. . .

. . .

. .

-1023 -1777 0000 X X 7777 X X

Normalizing and Rounding

Normalizing a floating point quantity shifts the coefficient left until the most significant

bit is in bit 47. Sign bits are entered in the low-order bits of the coefficient as it is

normalized. Each shift decreases the exponent by one.

A round bit is added (optionally) to the coefficient during an arithmetic process and has

the effect of increasing the absolute value of the operand or result by one-half the value

of the least significant bit. Normalizing and rounding are not automatic during pack or

unpack operations so that operands and results may not be normalized.

Single and Double Precision

The floating point arithmetic instructions generate double-precision results. Use of un-

rounded operations allows separate recovery of upper and lower half results with proper

exponents; only upper half results can be obtained with rounded operations.

Rev. D 3-16

Double length registers appear as follows:

MOST SIGNIFICANT BITS LEAST SIGNIFICANT BITS

95 48.47

 V

LOWER HALF
RESULT

UPPER HALF
RESULT

Range Definitions

BINARY
POINT

0

A result with an exponent so large that it exceeds the upper limit of octal 3777 (overflow

case) is treated as an infinite quantity. A coefficient of all zeros and an exponent of octal

3777 or 4000 is packed for this case. An optional exit is provided when an attempt is

made to use an infinite operand in the floating arithmetic units since its use may propagate

an indefinite result as shown in Table 3-5. No error exit occurs when an infinite or inde-

finite result is generated in a functional unit.

TABLE 3-5. INDEFINITE FORMS

CD — CO = INDEFINITE co + N = co

CD ÷ CO = INDEFINITE co + N = co

CO • 0 = INDEFINITE co — N z 03

O + 0 = INDEFINITE N + 0 = co

INDEFINITE +,—,+, • (X) = INDEFINITE 0 + co = 0

co + op = co 0 • 0 = 0

aP • co = co 0 ÷ N 7. 0

co + 0 7. co N + co = 0

WHERE: a) = INFINITY , N = INTEGER,
X = co ,N OR 0.

A result the exponent of which is less than the lower limit of octal 0000 (underflow case)

is treated as a zero quantity. This quantity is packed with a zero exponent and zero co-

efficient. No exit is provided for underflow. A result with an exponent of octal 0000 and

a coefficient which is not zero is a non-zero quantity and is packed with a zero exponent

and the non-zero coefficient.

3-17 Rev. A

Use of either infinity or zero as operands may produce an indefinite result. An exponent

of octal 1777 and a zero coefficient are packed in this case, and an optional exit provided.

Note that zero, infinite, and indefinite results are generated or regenerated in floating

arithmetic operations only. The branch instructions test for infinite or indefinite quan-

tities.

In all floating arithmetic operations, an attempt to normalize an indefinite quantity re-

turns the original quantity, e. g. , if the number 17770237. . . were to be normalized, the

result would be the same as the original number. Note that Exit mode does not occur on

detecting an indefinite quantity in the Shift Unit.

Exit mode tests for infinite and indefinite operands are made only in the Floating Add,

Multiply, and Divide Units. The 12 most significant bits of each operand are tested for

these special forms.

In the Multiply and Divide Units (but not in the Floating Add Unit) there is a special test

for zero operands as determined by the 12 most significant bits.

Thus the special operand forms (in octal) are:

3777X. . . X ()

4000X. . . X (- a)) }
(+IND)

6000X.. . X (-IND)

1777X. . . X

0000X. . . X (+0)

7777X. . . X (-0)

infinite operands

indefinite operands

zero operands for
Multiply and Divide
units only

Whenever infinite, indefinite, or zero results are generated in accordance with the rules
given in Table 3-5 and Appendix C, only the following octal words can occur as results:

37770.. . 0 + co (result)

40000.. . 0 - cc) (result)

17770. . . 0 = +IND (result)

00000. . . 0 = +0 (result)

Rev. A 3-18

Note that in these cases the 48 least significant bits of the result are zeros. Indefinite

and zero results generated in accordance with Table 3- 5 and Appendix C are always pos-

itive, but the sign of infinite results is determined by the usual algebraic sign conven-

tion. For example:

(+0)/(-0) = +IND = 17770. . . 0

(+N)*(-0) = +0 = 00000. . . 0

(-03)/(-0) + co = 37770. . .0

(+co)/(-0) -CO = 40000. . . 0

There is no special treatment of zero operands in the Floating Add unit. Zero coeffi-

cients and the forms 0000X. . . X and 7777X. . . X are not specially detected, and unstand-

ardized zero results can be produced. (See description of 30 instruction, page 3-37.)

Overflow and Underflow

Exponents lying outside the range -17778 to +17778 cannot be generated during execution

of a floating point arithmetic instruction or during execution of a Normalize instruction.

An attempt to generate an exponent greater than +17778 yields an infinite result (overflow

case). An attempt to generate an exponent less than -17778 yields a zero result (under-

flow case). All cases of overflow and underflow are listed in Table 3-6.

Converting Integers to Floating Format

Conversion of integers to floating point format makes use of the Shift Unit and the zero

constant in increment register BO. The BO quantity provides for generation of exponent

bias in this case. For example, the instructions:

• Sum of Bj and Bk to Xi (where i = 2, j = 3, k = 4)

• Pack Xi from Xk and Bj (where i = 2, j = 0, k = 2)

form an 18-bit signed integer in operand register X2 as a result of the addition of the

contents of increment registers B3 and B4. The integer coefficient with its sign, plus

the octal 2000 exponent is then packed into the floating format shown earlier. The coef-

ficient is not normalized; normalizing may be accomplished with a Normalize instruction.

3-19 Rev. A

TABLE 3-6. OVERFLOW AND UNDERFLOW CONDITIONS

OVERFLOW

INSTRUCTIONS OVERFLOW CONDITION RESULT

Normalize (24, 25)

Upper Sum (30, 31, 34, 35)

Lower Sum (32, 33)

Upper Product (40, 41)

Lower Product (42)

Quotient (44, 45)

None

None (see Note 1)

None

*ni + n2 + 608 > 20008

ni + n2 > 20008

n1 - n2 - 578 > 20008
...

Xi = 3777 0....08 or
4000 0....08

(True Sign)

UNDERFLOW

INSTRUCTIONS UNDERFLOW CONDITION RESULT

Normalize (24 only)

Normalize (24, 25)

Upper Sum (30, 31, 34, 35)

Lower Sum (32, 33)

Upper Product (40, 41)

Lower Product (42)

Quotient (44, 45)

Initial coefficient = ±0

Final Exponent < -20008

None

Final Exponent < -20008

ni + n2 + 578 < -20008

nl + n2 - 1 < -20008

ni. - n2 - 608 < - 20008

Xi = 0000 0.... 08, (B3) =

608
Xi = 0000 0.. ..08, (Bi) are
correct. (See Note 2.4)

Xi = 0000 0. ... 08

Xi = 0000 0.. ..0 8

*ni and n2 are the initial exponents.

Note 1. Overflow of Upper Sum: Overflow cannot occur unless one operand is infinite.
In this case the result is as indicated. If a one-place Right Shift occurs when
the larger operand exponent is equal to +17768, a correct result with exponent
+17778 is generated.

Note 2. Underflow of Exponent During Normalization: The final (B1) are the same as if
underflow had not occurred. In particular, if the initial coefficient is zero, (B3)
are equal to 608.

Rev. D 3-20

Fixed Point Arithmetic

Fixed point addition and subtraction of 60-bit numbers are handled in the Long Add

Unit (6600/6700). Negative numbers are represented in one's complement notation,

and overflows are ignored. The sign bit is in the high-order bit position (bit 59) and

the binary point is at the right of the low-order bit position (bit 0).

The Increment Units provide an 18-bit fixed point add and subtract facility. Negative

numbers are represented in one's complement notation and overflows are ignored.

The sign bit is in the high-order bit position (bit 17), and the binary point is at the

right of the low-order bit position (bit 0). The Increment Units allow program index-

ing through the full range of Central Memory addresses.

Fixed point integer addition and subtraction are, possible in the Floating Add Unit

providing the exponents of both operands are zero and no overflow occurs. The unit

performs the one's complement addition (or subtraction) in the upper half of a 98-bit

accumulator. If overflow occurs, the unit shifts the result one place right and adds one

to the exponent, thereby producing a floating point quantity. Thus, care must be used

in performing fixed point arithmetic in the Floating Add Unit.

Fixed point integer multiplication is handled in the multiply functional units as a subset

operation of the unrounded Floating Multiply (40, 42) instructions. The multiply is

double precision (96 bits) and allows separate recovery of upper and lower products.

The multiply requires that both of the integer operands be converted (by program) to

floating format to provide biased exponents. This insures that results are not sensed

as under-flow conditions. The bias is removed when the result is unpacked.

An integer divide takes several steps and makes use of the Divide and Shift Units. For

example, an integer quotient Xl = X2/X3 is produced by the following steps:

Instructions Remarks

1) Pack X2 from X2 and BO Pack X2
2) Pack X3 from X3 and BO Pack X3
3) Normalize X3 in XO and BO Normalize X3 (divisor)
4) Floating quotient of X2 and XO to X1 Divide
5) Unpack Xl to Xl and B7 Unpack quotient
6) Shift Xl nominally left B7 places Shift to integer position

3-21 Rev K

The divide requires that:

1) both integer (2
47

maximum) operands be in floating format

and 2) the divisor be shifted 48 places left

or 3) The quotient be shifted 48 places right

or 4) any combination of n left-shifts of the divisor and 48-n right shifts of the

quotient be accomplished.

The Normalize X3 instruction shifts the divisor n places left (n > 0), providing divisor

exponent of -n. The quotient exponent then is: 0 - (-n) - 48 = n - 48 < 0.

After unpacking and shifting nominally left, the negative (or zero) value in B7 shifts

the quotient 48 - n places right, producing an integer quotient in Xl. A remainder may

be obtained by an integer multiply of X1 and X3 and subtracting the result from X2.

Description of Central Processor Instructions

Instruction grouping follows a somewhat pedagogical approach (i. e., simple to complex)

and does not necessarily relate instructions to the functional units (6600/6700 system)

which execute them. Central Processor instructions as related to functional units

are tabulated in Appendix B, Instruction Execution Times.

TABLE 3-7. CENTRAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use

A

B

fm

jk

K

k

Specifies one of eight 18-bit address registers.

Specifies one of eight 18-bit index registers; BO is fixed and
equal to zero.

A 6-bit instruction code.

A 3-bit code specifying one of eight designated registers
(e. g. , Ai).

A 3-bit code specifying one of eight designated registers
(e. g., Bj).

A 6-bit constant, indicating the number of shifts to be taken

A 3-bit code specifying one of eight designated registers
(e. g., Bk).

An 18-bit constant, used as an operand or as a branch
destination (address).

Specifies one of eight 60-bit operand registers.

•

Rev K 3-22

Preceding the description of each instruction is the octal code, mnemonic code and

address field, the instruction name and length. Mnemonic codes and address field

mnemonics are from COMPASS. The equivalent ASCENT mnemonics are given in

Appendix D.

EXAMPLE:

v1.121 BXi Xj-_41___ ja Logical Sum of Xj and Xk to Xi \ 15 H4r i_____J:ts)

Octal Mnemonic Address Instruction
Code Code Field Instruction Name Length

Instruction formats are also given; parallel lines within a format indicate these bits

are not used in the operation.

Program Stop and No Operation

00 PS

29

Program Stop

24 23 0

(30 Bits)

This instruction stops the Central Processor at the current step in the program. An

exchange Jump is necessary to restart the Central Processor.

46 NO No operation (Pass)

fm

14 9 8 0

(15 Bits)

This instruction is a "do-nothing" instruction that is typically used to pad the program

between certain program steps.

3-23 Rev K

EXAMPLE:

P

P + I

59 0

30- BIT INST. 15- BIT INST. PASS

30 -BIT INST. 30 -BIT INST.

In this example, a Pass instruction is used to pad the remainder of the word

at P. Since the next instruction is 30 bits, it cannot fit in P and must be placed

in P+ 1.

Increment

50 SAi Aj + K Set Ai to Aj + K (30 Bits)
51 SAi Bj + K Set Ai to Bj + K (30 Bits)
52 SAi Xj + K Set Ai to Xj + K (30 Bits)

fm K

29 24 23 21 20 18 17 0

53 SAi Xj + Bk Set Ai to Xj + Bk (15 Bits)
54 SAi Aj + Bk Set Ai to Aj + Bk (15 Bits)
55 SAi Aj — Bk Set Ai to Aj — Bk (15 Bits)
56 SAi Bj + Bk Set Ai to Bj + Bk (15 Bits)
57 SAi Bj — Bk Set Ai to Bj — Bk (15 Bits)

fm k

14

Rev A

9 8

3-24

6 5 3 2 0

These instructions perform one's complement addition and subtraction of 18-bit operands

and store an 18-bit result in address register i. Overflow, in itself, is ignored, but

an address range fault may result from overflow in this set of instructions.

Operands are obtained from address (A), increment (B), and operand (X) registers as

well as the instruction itself (K = 18-bit signed constant). Operands obtained from an

Xj operand register are the truncated lower 18 bits of the 60-bit word.

Note that an immediate memory reference is performed to the address specified by

the final content of address registers Al - A7. The operand read from memory address

specified by Al - A5 is sent to the corresponding operand register X1 - X5. When A6

or A7 is referenced, the operand from the corresponding X6 or X7 operand register

is stored at the address specified by A6 or A7.

NOTE

If, in this category of instructions, the result placed
in address register Ai is an address out of range, the
following occurs: (Note that this action is independent
of an Exit selection on Address Out of Range.)

If i = 1-5: Operand register Xi is loaded with the
contents of absolute address zero and the contents of
memory location (Ai) are unchanged.

If i = 6 or 7: Operand register Xi retains its original
contents and the contents of memory location (Ai)
are unchanged.

EXAMPLE:

Initial Quantities:

50 SAi = Aj + K

SA4 = A6 + K

i = 4

j = 6

SA
4

= 032100
8

+ 234567
8

SA
4

= 2E6667
8

K = 234567
8

A4 = 3211108

A
6

= 032100
8

X
4

- 00 00
8

Storage location 266667 = 7 753421046008
Final Quantities:

A
4

= 266667
8

A
6

= 032100
8

X4 = 7 . . . 75342104600
8

3-25 Rev K

60 SBi Aj + K Set Bi to Aj + K (30 Bits)
61 SBi Bj + K Set Bi to Bj + K (30 Bits)
62 SBi Xj + K Set Bi to Xj + K (30 Bits)

fm K

29 24 23 21 20 18 17 0

63 SBi Xj + Bk Set Bi to Xj + Bk (15 Bits)
64 SBi Aj + Bk Set Bi to Aj + Bk (15 Bits)
65 SBi Aj — Bk Set Bi to Aj — Bk (15 Bits)
66 SBi Bj + Bk Set Bi to Bj + Bk (15 Bits)
67 SBi Bj — Bk Set Bi to Bj — Bk (15 Bits)

fm

4 3 2 0

These instructions perform one's complement addition and subtraction of 18-bit

operands and store an 18-bit result in increment register Bi. An overflow condition

is ignored.

Operands are obtained from address (A), increment (B), and operand (X) registers as

well as the instruction itself (K = 18-bit signed constant). Operands obtained from an

Xj operand register are the truncated lower 18 bits of the 60-bit word.

70 SXi Aj + K Set Xi to Aj + K (30 Bits)
71 SXi Bj + K Set Xi to Bj + K (30 Bits)
72 SXi Xj + K Set Xi to Xj + K (30 Bits)

fm K

29 24 23 21 20 18 17

Rev K 3-26

73 SXi Xj + Bk Set Xi to Xj + Bk (15 Bits)
74 SXi Aj + Bk Set Xi to Aj + Bk (15 Bits)
75 SXi Aj — Bk Set Xi to Aj — Bk (15 Bits)
76 SXi Bj + Bk Set Xi to Bj + Bk (15 Bits)
77 SXi Bj — Bk Set Xi to Bj — Bk (15 Bits)

fm k

14 9 8 6 5 3 2 0

These instructions perform one's complement addition and subtraction of 18-bit

operands and store an 18-bit result into the lower 18 bits of operand register Xi. The

sign of the result is extended to the upper 42 bits of operand register Xi. An overflow

condition is ignored.

Operands are obtained from address (A), increment (B), and operand (X) registers

as well as the instruction itself (K = 18-bit signed constant). Operands obtained from

an Xj operand register are thr truncated lower 18 bits of the 60-bit word.

EXAMPLE:
Initial Quantities:

73 SXi Xj + Bk i = 2 X
2 = 0 . . . 0745321402

8
SX2 X3 + B1 j = 3, k = 1

.
X3 = 0 . . . 06522243108

SX
2

= 0 . . . 0652224310
8

+ 511245
8

B
1

= 511245
8

SX
2

= 7 . . . 7777735555
8

Final Quantities:

X2 = 7 . . . 7777735555
8

X3 = 0 . . . 0652224310
8

B
1

= 511245
8

3-27 Rev K

Fixed Point Arithmetic

36 /Xi Xj + Xk Integer sum. of Xj and Xk to Xi

fm k

14 9 8 6 5 0

(15 Bits)

This instruction forms a 60-bit one's complement sum of the quantities from operand

registers Xj and Xk and stores the result in operand register Xi. An overflow condition

is ignored.

37 IXi Xj — Xk Integer difference of Xj and Xk to Xi

fm k

14 9 8 2

(15 Bits)

This instruction forms the 60-bit one's complement difference of the quantities from

operand registers Xj (minuend) and Xk (subtrahend) and stores the result in operand

register Xi. An overflow condition is ignored.

47 CXi Xk Count the number of "I's" in Xk to Xi (15 Bits)

fm

14 9 6 5

//
3 2 0

This instruction counts the number of "l's" in operand register Xk and stores the count

in the lower order 6 bits of operand register Xi. Bits 6 through 59 are cleared to zero.

Rev. A 3-28

EXAMPLE:

47 CXi Xk 1 = 4

CX4 X1 k = 1

CX
4 = 118

Logical

10 BXi Xj Transmit Xj to Xi

Initial Quantities:

X
1 = 0 . . 0543321

8

X4 = 23420. . . 00055478

Final Quantities:

X1 = 0 . . 05433218

X4 = 0 . . 0000011
8

fm

14 9 8 6 5 3 2 0

(15 Bits)

This instruction transfers a 60-bit word from operand register Xj to operand register

Xi.

11 BXi Xj * Xk Logical Product of Xj and Xk to Xi (15 Bits)

fm k

I4 9 8 6 5 3 2 0

This instruction forms the logical product (AND function) of 60-bit words from operand

registers Xj and Xk and places the product in operand register Xi. Bits of register Xi

are set to "1" when the corresponding bits of the Xj and Xk registers are "1" as in the

following example:

Xj = 0101

Xk = 1100

Xi = 0100

3-29 Rev. A

12 BXi Xj + Xk Logical sum of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand reg-

isters Xj and Xk and places the sum in operand register Xi. Bits of register Xi are set

to "1" if the corresponding bit of the Xj or Xk register is a "1" as in the following example:

Xj = 0101

Xk = 1100

Xi = 1101

13 BXi Xj — Xk Logical difference of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand

registers Xj and Xk and places the difference in operand register Xi. Bits of register Xi

are set to "1" if the corresponding bits in the Xj and Xk registers are unlike as in the

following example:

Xj = 0101

Xk= 1100

Xi = 1001

14 BXi —Xk Transmit the complement of Xk to Xi (15 Bits)

I4

Rev. A

fm

9 8

3-30

V///A k

6 5 3 2 0

This instruction extracts the 60-bit word from operand register Xk, complements it, and

transmits this complemented quantity to operand register Xi.

15 BXi —Xk * Xj Logical product of Xj and complement of Xk to Xi (15 Bits)

fm

14 9 8 6 5 3 2 0

This instruction forms the logical product (AND function) of the 60-bit quantity from op-

erand register Xj and the complement of the 60-bit quantity from operand register Xk,

and places the result in operand register Xi. Thus, bits of Xi are set to "1" when the

corresponding bits of the Xj register and the complement of the Xk register are "1" as in

the following example:

Xj = 0101

Complemented Xk= 0011

Xj = 0001

16 BXi —Xk + Xj Logical sum of Xj and complement of Xk to Xi (15 Bits)

fm 1 k

14 9 6 5 3 2 0

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand

register Xj and the complement of the 60-bit word from operand register Xk, and places

the result in operand register Xi. Thus, bits of Xi are set to "1" if the corresponding

bit of the Xj register or complement of the Xk register is a "1" as in the following exam-

ple:

Xj = 0101

Complemented Xk = 0011

Xi = 0111

3-31 Rev. A

17 BXi —Xk — Xj Logical difference of Xj and complement of Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the logical difference (exclusive OR) of the quantity from operand

register Xj and the complement of the 60-bit word from operand register Xk, and places

the result in operand register Xi. Thus, bits of Xi are set to "1" if the corresponding

bits of register Xj and the complement of registerXk are unlike as in the following exam-

ple:

Shift

20 LXi jk

Xj = 0101

Complemented Xk = 0011

Xi = 0110

Left shift Xi, jk places (15 Bits)

fm jk

14 9 8 6 5 0

This instruction shifts the 60-bit word in operand register Xi left circular jk places. Bits

shifted off the left end of operand register Xi replace those from the right end.

The 6-bit shift count jk allows a complete circular shift of register Xi.

21 AXi jk

Rev. A

Arithmetic right shift Xi, jk places (15 Bits)

fm jk

14 8

3-32

6 5 0

This instruction shifts the 60-bit word in operand register Xi right jk places. The right-

most bits of Xi are discarded and the sign bit is extended.

22 LXi Bj Xk Left shift Xk nominally Bj places to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction shifts the 60-bit quantity from operand register Xk the number of places

specified by the quantity in increment register Bj and places the result in operand regis-

ter Xi.

1) If Bj is positive (i. e., bit 17 of Bj = 0), the quantity from Xk is shifted left-

circular. (The low order six bits of Bj specify the shift count.)

2) If Bj is negative (i. e., bit 17 of Bj = 1), the quantity from Xk is shifted right

(end off with sign extention). (The one's complement of the low order eleven

bits of Bj specify the shift count.) If any of bits 2
6
-2

10
, after complementing,

are "l's", the shift is not performed and the result register Xi is cleared to

all zeros.

23 AXi Bj Xk Arithmetic right shift Xk nominally Bj places to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction shifts the 60-bit quantity from operand register Xk the number of places

specified by the quantity in increment register Bj and places the result in operand regis-

ter Xi.

1) If Bj is positive (i. e., bit 17 of Bj = 0), the quantity from register Xk is

3-33 Rev. A

shifted right (end-off with sign extension). (The low order eleven bits of Bj

specify the shift count.) If any of bits 2
6
-2

10
are "lis", the shift is not

performed and the. result register Xi is cleared to all zeros.

2) If Bj is negative (i.e., bit 17 of Bj = 1), the quantity from register Xk is shifted

left circular. (The complement of the lower order six bits of Bj specify the

shift count.)

24 NXi Bj Xk Normalize Xk in Xi and Bj (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction normalizes the floating point quantity from operand register Xk and

places it in operand register Xi. The number of left shifts necessaryto normalize the

quantity is entered in increment register Bj. A Normalize operation may cause under -

flow which will clear Xi to all zeros regardless of the original sign of Xk. Normalizing

either a plus or minus zero coefficient sets the shift count (Bj) to 4810 and clears Xi to

all zeros.

If Xk contains an infinite quantity (3777X. . . X or 4000X. . . X) or an indefinite quantity

(1777X. . . X or 6000X. . . X), no shift takes place. The contents of Xk are copied into Xi

and Bj is set equal to zero. Optional error exits do occur.

25 ZXi Bj Xk Round and normalize Xk in Xi and Bj (15 Bits)

fm

14 9 6 5 3 2 0

This instruction performs the same operation as instruction 24 except that the quantity

Rev. H 3-34

from operand register Xk is rounded before it is normalized. Rounding is accomplished

by placing a "1" round bit immediately to the right of the least significant coefficient bit.

Normalizing a zero coefficient places the round bit in bit 47 and reduces the exponent

by 48. Note that the same rules apply for underflow.

If Xk contains an infinite quantity (3777X. . . X or 4000X. . . X) or an indefinite quantity

(1777X. . . X or 6000X. . . X), no shift takes place. The contents of Xk are copied into Xi

and Bj is set equal to zero. Optional error exits do occur.

26 UXi Bj Xk Unpack Xk to Xi and Bj (15 Bits)

fm

14 9 8 6 5 3 2 0

This instruction unpacks the floating point quantity from operand register Xk and sends

the 48-bit coefficient to operand register Xi and the 11-bit exponent to increment register

Bj. The exponent bias is removed during Unpack so that the quantity in Bj is the true

one's complement representation of the exponent.

The exponent and coefficient are sent to the low-order bits of the respective registers as

shown below:

PACKED QUANTITY

SIGN BIASED EXPONENT COEFFICIENT

I 1 48

59

EXPONENT SIGN
EXTENDED

UNPACKED •
B1

17

58

UNBIASED
EXPONENT

¶11

48 47

10 9 0 59

COEFFICIENT
SIGN EXTENDED

3-35

48 47

0

X k

Xi

0

Rev. H

27 PXi Bj Xk Pack Xi from Xk and Bj (15 Bits)

fm k

14 9 6 5 3 2 0

This instruction packs a floating point number in operand register Xi. The coefficient of

the number is obtained from operand register Xk and the exponent from increment regis-

ter Bj. Bias is added to the exponent during the Pack operation. The instruction does

not normalize the coefficient.

Exponent and coefficient are obtained from the proper low-order bits of the respective

registers and packed as shown in the illustration for the Unpack (26) instruction. Thus,

bits 48 to 58 of Xk and bits 11 to 17 of Bj are ignored. There is no test for overflow or

underflow.

Note that if Xk is positive, the packed exponent occupying positions 48 to 58 of Xi is ob-

tained from bits 0 to 10 of Bj by complementing bit 10; if Xk is negative, bit 10 is not com-

plemented but bits 0 to 9 are.

43 MXi jk Form mask in Xi, jk bits (15 Bits)

fm jk

14 9 8 6 5 0

This instruction forms a mask in operand register Xi. The 6-bit quantity jk defines the

number of "l's" in the mask as counted from the highest order bit in Xi.

The contents of operand register i = 0 when jk = 0.

Rev. A 3-36

Floating Point Arithmetic

30 FXi Xj + Xk Floating sum of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the sum of the floating point quantities from operand registers

Xj and Xk and packs the result in operand register Xi. The packed result is the upper

half of a double precision sum.

At the start both arguments are unpacked, and the coefficient of the argument with the

smaller exponent is entered into the upper half of a 98-bit accumulator. The coefficient

is shifted right by the difference of the exponents. The other coefficient is then added

into the upper half of the accumulator. If overflow occurs, the sum is right-shifted one

place and the exponent of the result increased by one. The upper half of the accumulator

holds the coefficient of the sum, which is not necessarily in normalized form. The ex-

ponent and upper coefficient are then repacked in operand register Xi.

If both exponents are zero* and no overflow occurs, the instruction effects an ordinary

integer addition. For treatment of special operands and/or indefinite forms, refer to

Table 3-5 and Appendix C.

31 FXi Xj — Xk Floating difference Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the difference of the floating point quantities from operand reg-

isters Xj and Xk and packs the result in operand register Xi. Alignment and overflow

operations are similar to the Floating Sum (30) instruction, and the difference is not

necessarily normalized. The packed result is the upper half of a double precision differ-

ence.

An ordinary integer subtraction is performed when the exponents are zero. For treat-

ment of special operands and/or indefinite forms, refer to Table 3-5 and Appendix C.

*A zero exponent is 20008.

3-37 Rev. A

32 DXi Xj + Xk Floating DP sum of Xj and Xk to Xi (15 Bits)

fm k

14 9 6 5 3 2 0

This instruction forms the sum of two floating point numbers as in the Floating Sum (30)

instruction, but packs the lower half of the double precision sum with an exponent 481ess

than the upper sum. For treatment of special operands and/or indefinite forms, refer

to Table 3-5 and Appendix C.

33 DXi Xj Xk Floating DP difference of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the difference of two floating point numbers as in the Floating

Difference (31) instruction, but packs the lower half of the double precision difference

with an exponent of 48 less than the upper sum. For treatment of special operands and/

or indefinite forms, refer to Table 3-5 and Appendix C.

34 RXi Xj + Xk Round floating sum of Xj and Xk to Xi (15 Bits)

fm

14 9 8 6 5

k
3 2 0

This instruction forms the round sum of the floating point quantities from operand regis-

ters Xj and Xk and packs the upper sum of the double precision result in operand regis -

ter Xi. The sum is formed in the same manner as the Floating Sum instruction but the

Rev. A 3-38

operands are rounded before the addition, as shown below, to produce a round sum.

1) A round bit is attached at the right end of both operands if:

a) both operands are normalized, or

b) the operands have unlike signs.

2) A round bit is attached at the right end of the operand with the larger exponent

for all other cases.

3) In the event that the operands have equal exponents, a round bit is attached to

the coefficient for only one of the operands.

For treatment of special operands and/or indefinite forms, refer to Table 3-5 and

Appendix C.

35 RXi Xj — Xk Round floating difference of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the round difference of the floating point quantities from operand

registers Xj and Xk and packs the upper difference of the double precision result in

operand register Xi. The difference is formed in the same manner as the Floating

Difference (31) instruction but the operands are rounded before the subtraction, as

shown below, to produce a round difference.

1) A round bit is attached at the right end of both operands if:

a) both operands are normalized, or

b) the operands have like signs.

A round bit is attached at the right end of the operand with the larger exponent

for all other cases.

3) In the event that the operands have equal exponents, a round bit is attached to

the coefficient for only one of the operands.

For treatment of special operands and/or indefinite forms, refer to Table 3-5 and

Appendix C.

3-39 Rev K

40 FXi Xj * Xk Floating product of Xj and Xk to Xi (15 Bits)

fm k

14 8 6 5 2 0

This instruction multiplies two floating point quantities obtained from operand registers

Xj (multiplier) and Xk (multiplicand) and packs the upper product result in operand

register Xi.

The two 48-bit coefficients are multiplied together to form a 96-bit product. Theupper

48 bits of the product (bits 48-95) are then packed together with the resulting exponent.

Note that when using unnormalized quantities, the entire result could lie in the lower-

order 48 bits of the product; hence, this result would be lost when packing occurs.

The result is a normalized quantity only when both operands are normalized;the exponent

in this case is the sum of the exponents plus 47 (or 48).

The result is unnormalized when either or both operands are unnormalized; the exponent

in this case is the sum of the exponents plus 48. For treatment of special operands and/

or indefinite forms, refer to Table 3-5 and Appendix C.

41 RXi Xj * Xk Round floating product of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction multiplies the floating point number from operand register Xk (multi-

plicand), by the floating point number from operand register Xj. The.upper product re-

sult is packed in operand register Xi. (No lower product available.) The multiply oper-

ation is identical to that of instruction 40 with the following exception:

Rev. A 3-40

Before the left shift of the final product and during the merge operation to form the

final product, a "1" bit is added to bit 246 . The following rounded result is the net

effect of this action:

• for products > 2
95

, round is by one-fourth
• for all other products, round is by one-half
• when one or both operands are unnormalized, round is by one-fourth.

The result is a normalized quantity only when both operands are normalized; the

exponent in this case is the sum of the exponents plus 47 (or 48).

The result is unnormalized when either or both operands are unnormalized; the

exponent in this case is the sum of the exponents plus 48. For treatment of special

operands and/or indefinite forms, refer to Table 3-5 and Appendix C.

42 DXi Xj * Xk Floating DP product of Xj and Xk to Xi (I5 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction multiplies two floating point quantities obtained from operand

registers Xj and Xk and packs the lower product in operand register Xi. The two

48-bit coefficients are multiplied together to form a 96-bit product. The lower-order

48 bits of this product (bits 47-00) are then packed together with the resulting exponent.

The result is not necessarily a normalized quantity. The exponent of this result is

48 less than the exponent resulting from a 40 instruction using the same operands.

For treatment of special operands and/or indefinite forms, refer to Table 3-5 and

Appendix C.

44 FXi Xj / Xk Floating divide Xj by Xk to Xi (15 Bits)

fm 1 k

14 9 8

3-41

6 5 3 2 0

Rev K

This instruction divides two normalized floating point quantities obtained from operand

registers Xj (dividend) and Xk (divisor) and packs the quotient in operand register Xi.

The exponent of the result in a no-overflow case is the difference of the dividend and

divisor exponents minus 48.

A one-bit overflow is compensated for by adjusting the exponent and right shifting

the quotient one place. In this case the exponent is the difference of the dividend and

divisor exponents minus 47.

The result is a normalized quantity when both the dividend and the divisor are normal-

ized. A divide fault occurs when the coefficient of the dividend is two or more times

as large as the coefficient of the divisor. This forces an indefinite result (17770. 0).

To avoid this, normalize both operands before executing this instruction. For treat-

ment of special operands and/or indefinite forms, refer to Table 3-5 and Appendix C.

45 RXi Xj / Xk Round floating divide Xj by Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction divides the floating quantity from operand register j (dividend) by

the floating point quantity from operand register Xk (divisor) and packs the round

quotient in operand register Xi. Rounding is accomplished by adding one-third during

the division process. In effect, the quantity "2525. . . . 25258" resides immediately to

the right of the dividend binary point prior to starting the divide operation. On the

first iteration, a "1" is added to the least significant bit of the dividend. After each

iteration (subtraction of divisor from partial dividend) a two-place left shift occurs

and a "1" is again added to the least significant bit of the partial dividend. Thus,

successive iterations gradually bring in the one-third round "quantity" (25. . . . 258).

Rev K 3-42

The result exponent in a no-overflow case is the difference of the dividend and divisor

exponents minus 48.

A one-bit overflow is compensated for by adjusting the exponent and right shifting the

quotient one place; in this case the exponent is the difference of the dividend and divisor

exponents minus 47.

The result is a normalized quantity when both the dividend and the divisor are normal-

ized. A divide fault occurs when the coefficient of the dividend is two or more times

as large as the coefficient of the divisor. This forces an indefinite result (17770_ 0).

To avoid this, normalize both operands before executing this instruction. For

treatment of special operands and/or indefinite forms, refer to Table 3-5 and

Appendix C.

Branch

010 RJ K Return jump to K (30 Bits)

fm

29
(KA

21 20 18 17

K

0

The instruction stores an 04 unconditional jump and the current address plus one[P) -F

1] in the upper half of address K, then branches to K + 1 for the next instruction. Note

that this instruction is always out of the instruction stack, thus voiding the stack.

The octal word at K after the instruction appears as follows:

UNCONDITIONAL
JUMP P+ 1

K 0 4 0 0 XXXXXX 000 0

59

Bi = Bj

30 29 0

A jump to address K at the end of the branch routine returns the program to the original

sequence.

3-43 Rev. H

02 Bi + K Jump to Bi +K

fm 7/A
29 24 23 21 20 18 17

K

0

(30 Bits)

This instruction adds the contents of increment register Bi to K and branches to the

address specified by the sum. The branch address is K when i = 0. Addition is per-

formed modulo 2
18

-1.

Note that this instruction is always out of the instruction stack, thus voiding the stack.

For anunindexed, unconditional jump, the 04 instruction with i = j = 0 is a better choice.

Thus, if this instruction is contained in a tight loop, the instruction at K can be obtained

from the stack, if possible.

030 ZR Xj K Jump to K if Xj = 0 (30 Bits)
031 NZ Xj K Jump to K if Xj 0 0 (30 Bits)
032 PL Xj K Jump to K if Xj = plus (positive) (30 Bits)
033 NG Xj K Jump to K if Xj = negative (30 Bits)
034 IR Xj K Jump to K if Xj is in range (30 Bits)
035 OR Xj K Jump to K if Xj is out of range (30 Bits)
036 DF Xj K Jump to K if Xj is definite (30 Bits)
037 ID Xj K Jump to K if Xj is indefinite (30 Bits)

fmi K

29 21 20 18 17 0

These instructions branch to K when the 60 -bit word in operand register X. meets the

condition specified by the i digit. The instruction allows zero, sign, and indefinite forms

tests for fixed or floating point words.

Rev. A 3-44

The following applies to tests made in this instruction group:

a) The 030 (ZR) and 031 (NZ) operations test the full 60-bit word in Xj. The

words 000. . . 000 and 777. . . 777 are treated as zero. All other words are

non-zero.

b) The 032 (PL) and 033 (NG) operations examine only the sign bit (259) of Xj. If

the sign bit is zero, the word is positive; if the sign bit is one, the word is

negative. Thus, the sign test is valid for fixed point words or for coefficiet

in floating point words.

c) The 034 (IR) and 035 (OR) operations examine the upper-order 12 bits of Xj.

Both plus and minus infinity are detected:

3777XX. . . XX and 4000XX. . . XX are out of range; all other words

are in range.

d) The 036 (DF) and 037 (ID) operations examine the upper-order 12 bits of Xj.

Both plus and minus indefinite forms are detected:

1777XX. . . XX and 6000XX. . . XX are indefinite; all other words are

definite.

04 EQ Bi Bj K Jump to K if Bi = Bj (30 Bits)

05 NE Bi Bj K Jump to K if Bi 0 Bj (30 Bits)

06 GE Bi Bj K Jump to K if Bi . . Bj (30 Bits)
07 LT Bi Bj K Jump to K if Bi < Bj (30 Bits)

fm K

29 24 23 21 20 18 17 0

These instructions test an 18-bit word from register Bi against an 18-bit word from reg-

ister Bj (both words signed quantities) for the condition specified and branch to address

K on a successful test. All tests against zero (all zeros) can be made by setting Bj = BO.

3-45 Rev. A

The following rules apply in the tests made by these instructions:

a) Positive zero is recognized as unequal to negative zero, and

b) Positive zero is recognized as greater than negative zero, and

c) A positive number is recognized as greater than a negative number.

Note that the 06 and 07 instructions first perform a sign test on Bi and Bj and the

Branch/No Branch determination is based on the above rules. If Bi and Bj are of the

same sign, a subtract test is performed (in the Increment Unit) and the sign of the

result (Bi-Bj) determines whether a Branch is made.

Extended Core Storage Communication

This category of instructions provides the ability to communicate with Extended Core

Storage (ECS). This section briefly describes Extended Core Storage itself, and a

full description of the instructions is to be found in the Extended Core Storage

Reference Manual.

These instructions must be located in the upper order position of the instruction word.

If they are not, any attempt at execution will cause an exit to RACM regardless of the

error mode bits. This will also happen if the instructions are used in a system that

does not have ECS.

011 RE Bj + K Read Extended Core Storage (30 Bits)

f mi K

59 51 50 48 47 30

This instruction initiates a Read operation to transfer [(Bj) + K] 60-bit words from

Extended Core Storage to Central Memory. The initial Extended Core Storage address

is [(XO) + RAECS];
 the initial Central Memory address is [(AO) + RACM].

Rev K 3-46

012 WE Bj + K Write Extended Core Storage

fmi

59 51 50 48 47 30

(30 Bits)

This instruction initiates a Write operation to transfer [(Bj) + K] 60-bit words from

Central Memory to Extended Core Storage. The initial Central Memory address is

[(AO) + RACM]; the initial Extended Core Storage address is [(XO) +
RAECS].

3-47 Rev K

a

ABSOLUTE
ADDRESS

100

1400

16 00

FL
CM

= 5300

6200

6477

6700

CENTRAL
MEMORY

READ/
ECS

/

.e.„...- RA
CM

}PROGRAM

RA CM + FL
CM

ABSOLUTE
ADDRESS

100

26500

27303

27602

30300

EXTENDED
CORE

STORAGE

RA ECS

(X) RA 0 ECS

FL
ECS

= 1600

RA + FL EC S ECS

Figure 3-5. Memory Map (Read ECS Example)

Address Range Faults: Four address range fault conditions can arise when executing

the Extended Core Storage Communication instructions:

• Word count fault

• Central Memory address out of range

• Extended Core Storage address out of range

• Last 60-bit word (word 7) in
FLECS

is referenced

3-49 Rev K

a) Word Count

If, in forming the word count [(Bj) + K], the result is negative, an

address range fault occurs. If the Address Out of Range bit is set in the

Exit Mode register, an error stop occurs; if this bit is clear, the Central

Processor passes to the next instruction word at (P)+1 withno data transfe

b) Central Memory Address

Central Memory address out of range is checked by comparing
FLCM

with the sum [(AO) + (Bj) + K]. FLCM must be greater than this sum

or an address range fault occurs. If the Address Out of Range bit is set

in the Exit Mode register, an error stop occurs; if this bit is clear, the

Central Processor passes to the next instruction word at (P)+l withno data

transfer.

c) Extended Core Storage Address

Extended Core Storage address out of range is checked by comparing
FLECS

with the sum {(X0) + (Bj) + K] In the comparison, FLECS is a

24-bit quantity with 36 upper-order bits of sign extended; XO holds

the 24-bit address quantity with 36 zeros occupying the upper-order bit

positions. The result of this subtraction should always be negative;

if positive, an address range fault occurs. If the Address Out of Range

bit is set in the Exit Mode register, an error stop occurs; if this

bit is clear, the Central Processor passes to the next instruction word at

(P)+l with no data transfer.

d) Word 7 reference in FL
ECS

If, after formation of the ECS address, the address format specifies a

reference to word 7 in relative address
FLECS'

an address range fault

occurs. If the Address Out of Range bit is set in the Exit Mode register,

an error stop occurs; if this bit is clear, the Central Processor passes

to the next instruction word at (P) + 1 with no data transfer.

Note that address range checks are made on the entire block of both Extended Core Stor-

age and Central Memory addresses before the transfer (Read or Write) is begun. If any

address in the block to be transferred is out of range, either in Central Memory or Ex-

tended Core Storage, no data is transferred, regardless of whether or not the Address

Out of Range bit is set in the Exit Mode register.

Rev. A 3-50

Error Action: An error exit is an exit to the lower-order 30 bits of the instruction word

containing the ECS Read or Write instruction. These 30 bits should always hold a jump

to an error routine.

Three error conditions cause an error exit:

1) Parity error(s) when reading ECS. If a parity error is detected, the

entire block of data is transferred before the exit is taken.

2) The ECS bank from/to which data is to be transferred is not available

because the bank is in Maintenance mode, or the bank has lost power.

If either of these conditions exists on an attempted Read or Write, an

immediate error exit is taken.

3) An attempt to reference a nonexistent address. On an attempted

Write operation, no data transfer occurs and an immediate error

exit is taken. If the attempted operation is a Read, and addresses

are in range, zeros are transferred to Central Memory. This is a

convenient high-speed method of clearing blocks of Central Memory.

Exchange Jump During ECS Communication: If an Exchange Jump occurs while an Ex-

tended Core Storage transfer is in progress, the exchange waits until completion of a

record. Action is then as follows:

a) If the record just completed is the last record of the block transfer, and

the transfer was error -free, the Central Processor exits to (P)+1. The

Exchange Jump then takes place.

b) If the record just completed is the last record of the block transfer, and

an error condition exists, the Central Processor exits to the lower in-

struction, executes it, and the Exchange Jump is performed.

c) If the record just completed does not complete the block transfer, the

Exchange Jump occurs, and (P) are stored in the Exchange Jump package.

A return Exchange Jump to this program begins execution with the ECS

Read or Write instruction and restarts the transfer. Note the transfer

does not resume at the point it was truncated; rather, the entire transfer

must be repeated.

3-51 Rev. D

4. PERIPHERAL AND CONTROL PROCESSORS

ORGANIZATION

The ten Peripheral and Control Processors are identical and operate independently

and simultaneously as stored-program computers. Thus ten programs may be running

at one time. A combination of processors can be involved in one problem, the solution

of which may require a variety of I/O tasks plus use of Central Memory and Central

Processor(s). Figure 4-1 shows data flow between I/O devices, the processors, and

Central Memory.

The Peripheral and Control Processors act as system control computers and I/O

processors. This permits the Central Processor to continue high-speed computations

while the Peripheral and Control Processors do the slower I/O and supervisory

operations.

INPUT

START -4.4.44.

OUTPUT

•"" Itt 21Q CP 16500/67001
CENTRAL PROCESSOR

6600/6700

6400 a
6500

10 FUNCTIONS,
INCLUDING:

• 2 ADDERS
• 2 MULTIPLIERS

REAL
• I DIVIDER

TIME
CLOCK

[-I.
0

• 2 INCREMENTORS
• I SHIFT 10

CHANNEL PERIPHERAL
• 1 BOOLEAN

PERIPHERAL
8 CONTROL

CENTRAL

• 1 BRANCH
CENTRAL

CONTROL
PROCESSORS

MEMORY MEMORY
PROCESSORS

OPERATING FROM
12 24 REGISTERS 12

I/O 4444 I/O
EACH

PERIPHERAL
EACH

PERIPHERAL

CHANNELS 131,072

60-BIT

• 8 ADDRESS
REGISTERS

131,072

60-alT
CHANNELS

& CONTROL WORDS • 8 INCREMENT WORDS 0 CONTROL
PROCESSOR REGISTERS PROCESSOR

PERIPHERAL
EQUIPMENT

PERIPHERAL

EQUIPMENT

HAS A 4096
WORD CORE

MEMORY

• 8 OPERAND
REGISTERS

HAS A 4096
WORD CORE

MEMORY

FROM A:

DISK FILES • 32 INSTRUCTION
STACK 16600/67001 DISK FILES

MAGNETIC
TAPES DR MAGNETIC

TAPES

CARD
• I INSTRUCTION

REGISTER (6400 CARD
READERS 6500 PUNCHES

CONSOLES CONSOLES

ETC. LINE
PRINTERS

ETC.

Figure 4-1. Flow Chart: 6400/6500/6600/6700 Systems

4-1 Rev K

Each processor has a 12-bit, 4096 word random-access memory (not a part of Central

Memory) with a cycle time of 1000 ns (major cycle). Execution time of processor

instructions is based on memory cycle time. A minor cycle is 1/10 of a major cycle

and is another basic time interval.

All processors communicate with external equipment and each other on 12 independent,

bidirectional I/O channels. All channels are 12-bit (plus control) and each may be

connected to one or more external devices. Only one external equipment can com-

municate on one channel at one time, but all 12 channels can be active at one time.

Data is transferred into or out of the system in 12-bit words; each channel has a

single register which holds the data word being transferred in or out. Each channel

operates at a maximum rate of one word per major cycle.

Data flows between a processor memory and the external device in blocks of words

(a block may be as small as one word). A single word may be transferred between

an external device and the A register of a processor.

The I/O instructions direct all activity with external equipment. These instructions

determine the status of and select an equipment on any channel and transfer data to

or from the selected device. Two channel conditions are made available to all

processors as an aid to orderly use of channels.

• Each channel has an active/inactive flag to signal that it has been selected

for use and is busy with an external device.

• Each channel has a full/empty flag to signal that a word (function or data) is

available in the register associated with the channel.

Either state of both flags can be sensed. In general, an I/O operation involves the

following steps:

1) Determine channel inactive

2) Determine equipment ready

3) Select equipment

4) Activate channel

5) Input/Output data

6) Disconnect channel

Rev K 4-2

One processor may communicate with another over a channel which is selected as

output by one and input by the other. A common channel can be reserved for inter-

processor communication and order preserved by determining equipment and channel

status.

A real-time clock reading is available on a channel which is separate from the twelve

I/O channels. The clock period is 4096 major cycles. The clock starts with power

on and runs continuously and cannot be preset or altered. The clock may be used

to determine program running time or other functions such as time-of-day, as required.

Each processor exchanges data with Central Memory in blocks of n words. Five

successive 12-bit processor words are assembled into a 60-bit word and sent to

Central Memory. Conversely, a 60-bit Central Memory word is disassembled into

five 12-bit words and sent to successive locations in a processor memory. Separate

assembly (write) and disassembly (read) paths to Central Memory are shared by all

ten processors. Up to four processors may be writing in Central Memory while

another four are simultaneously reading from Central Memory.

The processors generally do not solve complex arithmetic and logical problems;usually

they perform I/O operations for running Central Processor programs and organize pro-

blem data (operands, addresses, constants, length of program, relative starting ad-

dress, exit mode), and store it in Central Memory. Then, an Exchange Jump instruc-

tion starts (or interrupts) the Central Processor and provides it with the starting ad-

dress of a problem on file in Central Memory. At the next convenient breakpoint, the

Central Processor exchanges the contents of its A, B, and X registers, program ad-

dress, relative starting address, length of program, Exit mode and Extended Core Stor-

age parameters with the same information for the new program. A later Exchange Jump

may return to complete the interrupted program.

Programs for the ten processors are written in the conventional manner and are exe-

cuted in a multiplexing arrangement which uses the principle of time-sharing. Thus,

the ten programs operate from separate memories, but all share a common facility for

add/subtract, I/O, data transfer to/from Central Memory, and other necessary instruc-

tion control facilities. The multiplex consists of a 10-position barrel, which stores in-

formation (in parallel) about the current instruction in each of 10 programs, and a com-

mon instruction control device, or slot (Figure 4-2). The 10 program steps move

4-3 Rev. A

around the barrel in series, and each step is presented in turn to the slot. A portion

of or all of the instruction steps are performed in one pass through the slot, and the al-

tered instruction (or next instruction in a program) is reentered in the barrel for the

next excursion. One or more trips around the barrel complete execution of an instruc-

tion. Thus, up to 10 programs are in operation at one time, and each program is acted

upon once every 1000 ns.

One cycle of the multiplex is 1000 ns, with 900 ns consumed in the barrel and 100 ns

(minor cycle) in the slot. Instructions in the barrel are interpreted at critical time

intervals so that information is available in the slot at the time the instruction is ready

to enter the slot. Hence, a reference to memory for data is determined ahead of time

so that the data word is available in the slot when the instruction arrives. Similarly,

instructions are interpreted before they reach the slot so that control paths in the slot

are established when the instruction arrives.

The slot contains two adders as part of the instruction control.. One adder is 12 bits,

and the other is 18 bits. Both adders treat all quantities as one's complement.

For I/O instructions or communication with Central Memory, one pass through the

slot transfers one 12-bit word to or from a peripheral memory. Thus, block transfer

of data requires a number of trips around the barrel.

The barrel network holds four quantities which pertain to the current instruction in

each of the programs. The quantities are held in registers which require a total of

51 bits. (The barrel can be considered as a 51 x 10 shifting matrix which is closed

by the slot.) The barrel registers are referred to implicitly in the instruction steps

and are discussed under Registers, page 4-8.

Rev. A 4-4

10 MEMORIES, 4096 WORDS EACH , 12-BIT

0 1 2 3 4 5 6 7 I0 II

CENTRAL 0
w ;Ea

cr DI
N)

READ
PYRAMID

—3.
MEMORY

(60) ..-4--
C \ I t.; (12)

0 i 2 3

r,

SLOT

(TIME- SHARED
INSTRUCTION

CONTROL)

}

10 PROGRAMS
IN BARREL

WRITE
PYRAMID

>
(12)

\\,.. (12)

3 ro

ti3"
Nr

0
(I)

4 5 6 7 10 I I 12 13 14

1(12)

EXTERNAL EQUIPMENT

CENTRAL
— MEMORY

(60)

REAL-TI ME

I/O CHANNELS

Figure 4-2. Peripheral and Control Processors

4-5 Rev K

I

PERIPHERAL PROCESSOR PROGRAMMING

Instruction Formats

An instruction may have a 12-bit or a 24-bit format. The 12-bit format has a 6-bit

operation code f and a 6-bit operand or operand address d.

OPERATION
CODE

f

OPERAND OR
OPERAND ADDRESS

d
6

I I 6 5 0

The 24 -bit format uses the 12 -bit quantity m,' which is the contents of the next program

address (P + 1), with d to form an 18-bit operand or operand address.

OPERATION
CODE

f

OPERAND OR OPERAND ADDRESS

d m

6 6 12

I I 0 II

(P

Address Modes

0

(P+I)

Program indexing is accomplished and operands manipulated in several modes. The

two instruction formats provide for 6-bit or 18-bit operands and 6-bit, 12-bit or 18-

bit addresses.

No Address

In this mode d or dm is taken directly as an operand. This mode eliminates the need

for storing many constants in storage. The d quantity is considered as a 12-bit num-

ber the upper six bits of which are zero. The dm quantity has d as the upper six bits

and m as the lower 12 bits.

Rev. A 4-6

Direct Address

In this mode,d or m + (d) is used as the address of the operand. The d quantity specifies

one of the first 64 addresses in memory (0000-00778). The m+(d) quantity generates

a 12 -bit address for referencing all possible peripheral memory locations (0000-77778).

If d # 0, the content of address d is added to m to produce an operand address (indexed

addressing). If d = 0, m is taken as the operand address.

EXAMPLE: A.ddress Modes

Given : d= 25
m = 100
contents of location 25 = 0150
contents of location 150 = 7776
contents of location 250 = 1234

Then:

MODE INSTRUCTION A REGISTER

No Address LDN d 000025
LDC dm 250100

Direct Address LDD (d) 000150
LDM (m + (d)) 001234

Indirect Address LDI ((d)) 007776

Indirect Address

In this mode, d specifies an address the content of which is the address of the desired

operand. Thus, d specifies the operand address indirectly. Indirect addressing and in-

dexed addressing require an additional memory reference over direct addressing.

The Description of Instructions section, page 4-9, uses the expression (d)to define the

contents of memory location d. An expressionwith double parentheses ((d)) refers to

indirect addressing. The expression (m + (d)) refers to direct addressing when d = 0

and to indexed direct addressing when d # 0. Table 4-1 summarizes the addressing

modes used for the various Peripheral and Control Processor instructions.

4-7 Rev. F

TABLE 4-1. ADDRESSING MODES FOR PERIPHERAL

AND CONTROL PROCESSOR INSTRUCTIONS

INSTRUCTION
TYPE

ADDRESSING MODE

DIRECT INDIRECT NO ADDRESS

Load 30, 50 40 14, 20

Add 31, 51 41 16, 21

Subtract 32, 52 42 17

Logical Difference 33, 53 43 11, 23

Store 34, 54 44 :,

Replace Add 35, 55 45

Replace Add One 36, 56 46

Replace Subtract One 37, 57 47

Long Jump 01

Return Jump 02

. /

Unconditional Jump
////////v/ 03

Zero Jump 04

Non-Zero Jump 05

Positive Jump 06

Minus Jump 07

Shift 10

Logical Product 12, 22

Selective Clear 13

Load Complement 15

Registers

The four registers in the barrel are A, P, Q, and K. Each plays an important part in

the execution of processor instructions.

A. Register (18 bits)

The Arithmetic or A register is an adder. Quantities are treated as positive

and over flows are not recognized, although an end-around carry does occur.

No sign extension is provided for 6-bit or 12-bit quantities which are entered

in the low order bits. However, the unused high-order bits are cleared to

Rev. G 4-8

zero. Zero is represented by all zeros. The A register holds an 18-bit Central Mem-

ory address during several instructions. A also participates in shift, logical, and some

I/O instructions.

P Register (12 bits)

The Program Address register or P register holds the address of the current instruc-

tion. At the beginning of each instruction, the contents of P are advanced by one to pro-

vide the address of the next instruction in the program. If a jump is called for, the

jump address is entered in P.

Q Register (12 bits)

The Q register holds the lower six bits of a 12-bit instruction word, or, when the six bits

specify an address, Q holds the 12-bit word which is read from that address. Q is an

adder which may add +1 or -1 to its content.

K Register (9 bits)

The K register holds the upper six bits (operation code) of an instruction and a 3-bit trip

count designator. The trip count is a sequencing scheme to lend control to the sequential

execution of an instruction.

There are other registers which provide indirect or transient control during execution

of instructions. These include registers associated with the I/O channels, the registers

in the read and write pyramids which assemble successive 12-bit words into 60-bit words

or vice versa, and registers which hold the storage address and the word at that address

for each peripheral memory.

Description of Peripheral Processor Instructions

This section describes the Peripheral and Control Processor instructions. Table 4-2

lists designators used throughout the section.

4-9 Rev. A

TABLE 4-2. PERIPHERAL AND CONTROL PROCESSOR
INSTRUCTION DESIGNATORS

Designator Use

A The A register.

d A 6-bit operand or operand address.

f A 6-bit instruction code.

m A 12-bit quantity used with d to form an 18-bit operand
or operand address.

P The Program Address register.

Q The Q register.

() Contents of a register or location

(0) Refers to indirect addressing.

Preceding the description of each instruction is the octal code, mnemonic code and

address field, the instruction name and instruction length. Mnemonic codes and

address field mnemonics are from COMPASS, a Peripheral and Control Processor

Assembly language. The equivalent ASCENT mnemonics are given in Appendix D.

EXAMPLE:

52
_f_v- v

 BM --\S- / --
md

1"--v—
Subtrack (r, 11 - JP (c1)) (24 ‘ __ThAsl: . i

Octal Mnemonic Address Instruction Instruction
Code Code Field Name Length

Instruction formats are also given; hashed lines within a format indicate these bits

are not used in the operation.

No Operation

00 PSN Pass (12 Bits)
24 PSN Pass (12 Bits)
25 PSN Pass (12 Bits)

f

I I 6 5 0

These instructions specify that no operation be performed. They provide a means of

padding out a program.

Rev K 4-10

Data Transmission

14 LDN d Load d

I I

f d

6 5 0

(12 Bits)

This instruction clears the A register and loads d. The upper 12 bits of A are zero.

15 LCN d Load Complement d (12 Bits)

I I

f d

6 5 0

This instruction clears the A register and loads the complement of d. The upper 12 bits

of A are set to one.

30 LDD d Load (d)

II

f d

6 5 0

(12 Bits)

This instruction clears the A register and loads the contents of location d. The upper

six bits of A are zero.

34 STD d Store (d)

f d

I I 6 5 0

This instruction stores the lower 12 bits of A in location d.

4-11

(12 Bits)

Rev. A

40 LDI d Load ((d)) (12 Bits)

f d

6 5 0

This instruction clears the A register and loads a 12-bit quantity that is obtained by in-

direct addressing. The upper six bits of A are zero. Location d is read out of mem-

ory, and the word obtained is used as the operand address.

44 STI d Store ((d))

f d

I I 0

(12 Bits)

This instruction stores the lower 12 bits of A in the location specified by the contents of

location d.

20 LDC dm Load dm

f d m

23 18 17 1211 0

(P) (P -F1)

(24 Bits)

This instruction clears the A register and loads an 18-bit quantity consisting of d as

the higher six bits and m as the lower 12 bits. The contents of the location following

the present program address are read out to provide m.

Rev. A 4-12

50 LDM m d Load (m + (d)) (24 Bits)

f d m

23 18 17 12 II

(P)

0

This instruction clears the A register and loads a 12 -bit quantity. The upper six bits

of A are zero. The 12-bit operand is obtained by indexed direct addressing. The

quantity "m", read out of memory location P + 1 serves as the base operand address

to which (d) is added. If d = 0, the operand address is simply m, but if d # 0, then

m + (d) is the operand address. Thus location d may be used for an index quantity to

modify operand addresses.

54 STM m d Store (m + (d))

f d m

23 18 17 12 1 1 0

(P) (P+I)

(24 Bits)

This instruction stores the lower 12 bits of A in the location determined by indexed ad-

dressing (see instruction 50).

Arithmetic

16 ADN d Add d

f d

I I 6 5 0

(12 Bits)

This instruction adds d (treated as a 6-bit positive quantity)to the content of the A reg-

ister.

4-13 Rev. D

17 SBN d Subtract d

f d

I I 6 0

(12 Bits)

This instruction subtracts d (treated as a 6-bit positive quantity) from the content of the

A register.

31 ADD d Add (d) (12 Bits)

f d

I I 6 5 0

This instruction adds to the A register the contents of location d (treated as a 12-bit

positive quantity).

32 SBD d Subtract (d) (12 Bits)

I I

f d

6 O

This instruction subtracts from the A register the contents of location d (treated as a

12-bit positive quantity).

41 ADI d Add ((d)) (12 Bits)

f d

II 6 O

This instruction adds to the content of A a 12-bit operand (treated as a positive quantity)

obtained by indirect addressing. Location d is read out of memory, and the word ob-

tained is used as the operand address.

Rev. A 4-14

42 SBI d Subtract ((d)) (12 Bits)

f d

I I 6 5 0

This instruction subtracts from the A register a 12 -bit operand (treated as a positive

quantity) obtained by indirect addressing. Location d is read out of memory, and the

word obtained is used as the operand address.

21 ADC dm Add dm

f d m

23 18 17 12 1 1 0

(P) (P+I)

(24 Bits)

This instruction adds to the A register the 18-bit quantity consisting of d as the higher

six bits and m as the lower 12 bits. The contents of the location following the present

program address are read out to provide m.

51 ADM m d Add (m + (d))

f d m

23 18 17 12 II 0

(P) (P+1)

(24 Bits)

This instruction adds to the content of A a 12-bit operand (treated as a positive quantity)

obtained by indexed direct addressing (see instruction 50).

4-15 Rev. A

52 SBM m d Subtract (m + (d)) (24 Bits)

23

f d m

I8 I7 12 1 1 0

(P) (P+1)

This instruction subtracts from the A register a 12-bit operand (treated as a positive

quantity) obtained by indexed direct addressing (see instruction 50).

Shift

10 SHN d Shift d (12 Bits)

II

f d

6 5 0

This instruction shifts the contents of A right or left d places. If d is positive (00-37)

the shift is left circular; if d is negative (40-77) A is shifted right (end off with no sign

extension). Thus, d = 06 requires a left shift of six places. A right shift of six places

results when d = 71.

Logical

11 LMN d Logical difference d (12 Bits)

f d

1 1 6 5 0

This instruction forms in A the bit -by-bit logical difference of d and the lower six bits

of A. This is equivalent to complementing individual bits of A that correspond to bits

of d that are one. The upper 12 bits of A are not altered.

Rev. A 4-16

12 LPN d Logical product d (12 Bits)

f d
II 6 5 0

This instruction forms the bit-by-bit logical product of d and the lower six bits of the A

register, and leaves this quantity in the lower 6 bits of A. The upper 12 bits of A are

zero.

13 SCN d Selective clear d

f d

II 6 5 0

(12 Bits)

This instruction clears any of the lower six bits of the A register where there are corres-

ponding bits of d that are one. The upper 12 bits of A are not altered.

33 LMD d Logical difference (d) (12 Bits)

f d

II 6 5 0

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A

and the contents of location d. This is equivalent to complementing individual bits of

A which correspond to bits of (d) that are one. The upper six bits of A are not altered.

4-17 Rev. A

43 LMI d Logical difference ((d)) (12 Bits)

f d
II 6 5 0

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A

and the 12-bit operand obtained by indirect addressing. Location d is read out of mem-

ory, and the word obtained is used as the operand address. The upper six bits of A

are not altered.

22 LPC dm Logical product dm (24 Bits)

f d m

23 18 17 12 11 0

(P) (P-1-1)

This instruction forms in the A register the bit-by-bit logical product of the contents

of A and the 18-bit quantity dm. The upper six bits of this quantity consist of d and

the lower 12 bits are the content of the location following the present program address.

23 LMC dm Logical difference dm (24 Bits)

f d m

23 18 17

(P)

12 11 0

(P+I)

This instruction forms in A the bit-by-bit logical difference of the contents of A and

the 18-bit quantity dm. This is equivalent to complementing individual bits of A which

correspond to bits of dm that are one. The upper six bits of the quantity consist of d,

and the lower 12 bits are the content of the location following the present program ad-

dress.

Rev. A 4-18

53 LMM m d Logical difference (m + (d)) (24 Bits)

f d m

23 18 17 12 11 0

(P) (P+I)

This instruction forms in A the bit-by-bit logical difference of the lower 12-bits of A

and a 12-bit operand obtained by indexed direct addressing. The upper six bits of A

are not altered.

Replace

35 RAD d Replace add (d) (12 Bits)

f d

II 6 5 0

This instruction adds the quantity in location d to the contents of A and stores the lower
12 bits of the result at location d. The resultant sum is left in A at the end of the oper-
ation and the original contents of A are destroyed.

36 AOD d Replace add one (d) (12 Bits)

f I d

I I 6 5 0

The quantity in location d is replaced by its original value plus one. The resultant sum

is left in A at the end of the operation, and the original contents of A are destroyed.

4-19 Rev. A

37 SOD d Replace subtract one (d) (12 Bits)

f d

I I 6 5 0

The quantity in location d is replaced by its original value minus one. The resultant

difference is left in A at the end of the operation, and the original contents of A are

destroyed.

45 RAI d Replace add ((d)) (12 Bits)

f d

II 6 5 0

The operand which is obtained from the location specified by the contents of location d,

is added to the contents of A, and the lower 12 bits of the sum replace the original oper-

and. The resultant sum is also left in A at the end of the operation.

46 A01 d Replace add one ((d)) (12 Bits)

f d

I I 5 0

The operand, which is obtained from the location specified by the contents of location

d, is replaced by its original value plus one. The resultant sum is also left in A at

the end of the operation, and the original contents of A are destroyed.

Rev. A 4-20

47 SOI d Replace subtract one ((d)) (12 Bits)

f d

I I 6 5 0

The operand, which is obtained from the location specified by the contents of location

d, is replaced by its original value minus one. The resultant difference is also left

in A at the end of the operation, and the original contents of A are destroyed.

55 RAM m d Replace add (m + (d))

f d m

23 18 17 12 1 1 0

(P-1-1)

(24 Bits)

The operand, which is obtained from the location determined by indexed direct ad-

dressing, is added to the contents of A, and the lower 12 bits of the sum replace the

original operand in memory. The resultant sum is also left in A at the end of the oper-

- ation, and the original contents of A are destroyed.

56 AOM m d Replace add one (m + (d))

f d m

(24 Bits)

23 18 17 12 1 1 0

(P (P+1)

The operand, which is obtained from the location determined by indexed direct address-

ing, is replaced by its original value plus one (see instruction 50, page 4-13 for explana-

tion of addressing). The resultant sum is also left in A at the end of the operation, and

the original contents of A are destroyed.

4-21 Rev. A

57 SOM m d Replace subtract one (m + (d)) (24 Bits)

f d m

23 18 17 12 1 1 0

(P) (P+I)

The operand, which is obtained from the location determined by indexed direct address-

ing, is replaced by its original value minus one (see instruction 50, page 4-13 for ex-

planation of addressing). The resultant difference is also left in A at the end of the op-

eration, and the original contents of A are destroyed.

Branch

03 UJN d Unconditional jump d

f d

I I 0

(12 Bits)

This instruction provides an unconditional jump to any instruction up to 31 steps forward

or backward from the current program address. The value of d is added to the current

program address. If d is positive (01 - 37), then 0001 (+1) - 0037 (+31) is added and the

jump is forward. If d is negative (40 - 76) then 7740 (-31) - 7776 (-1) is added and the

jump is backward. The program stops (a Dead Start is necessary to restart the

machine) when d = 00 or 77.

04 ZJN d Zero jump d (12 Bits)

f d

II 6 5 0

This instruction provides a conditional jump to any instruction up to 31 steps forward or

backward from the current program address. If the content of the A register is zero,

the jump is taken. If the content of A is non-zero, the next instruction is executed. Neg-

ative zero (777777) is treated as non-zero. For interpretation of d see instruction 03.

Rev. A 4-22

05 NJN d Nonzero jump d (12 Bits)

f d

I I 6 0

This instruction provides a conditional jump to any instruction up to 31 steps forward

or backward from the current program address. If the content of the A register is

nonzero, the jump is taken. If A is zero, the next instruction is executed. Negative

zero (777777) is treated as nonzero. For interpretation of d see instruction 03.

06 PJN d Plus jump d (12 Bits)

I I

f d

6 5 0

This instruction provides a conditional jump to any instruction up to 31 steps forward

or backward from the current program address. If the content of the A register is

positive, the jump is taken. If A is negative, the next instruction is executed. Pos-

itive zero is treated as a positive quantity; negative zero is treated as a negative quan-

tity. For interpretation of d see instruction 03.

07 MJN d Minus jump d (12 Bits)

I I

f d

6 5 0

This instruction provides a conditional jump to any instruction up to 31 steps forward

or backward from the current program address. If the content of the A register is

negative, the jump is taken. If A is positive, the next instruction is executed. Pos-

itive zero is treated as a positive quantity; negative zero is treated as a negative quan-

tity. For interpretation of d see instruction 03.

4-23 Rev. A

01 LJM m d Long jump to m + (d) (24 Bits)

23

f d m

18 17 12 II

This instruction jumps to the sequence beginning at the address given by rn + (d). If

d = 0, then m is not modified.

02 RJM m d Return jump to m + (d) (24 Bits)

23

f d m

18 17 12 1 1 0

(P) (P+I)

This instruction jumps to the sequence beginning at the address given by m + (d). If

d = 0 then m is not modified. The current program address (P) plus two is stored at

the jump address. The new program commences at the jump address plus one. This

program should end with a long jump to, or normal sequencing into, the jump address

minus one, which should in turn contain a long jump, 0100. The latter returns the

original program address plus two to the P register.

Central Processor and Central Memory

260 EXN Exchange jump (12 Bits)

f

1 1 6 5 3 2 1 0

(DUAL CP BIT

This instruction transmits an 18-bit (absolute) address (only 17 bits are used) from

the A register to the Central Processor with a signal which tells the Central Processor

to perform an Exchange Jump, with the address in A as the starting location of a file

of 16 words containing information about the Central Processor program to be executed.

The 18-bit initial address must be entered in A before this instruction is executed.

The Central Processor replaces the file with similar information from the interrupted

Central Processor program. The Peripheral Processor is not interrupted.

In 6500/6700 systems with dual Central Processors, the lowest order bit of the instruc-

tion format specifies which Central Processor the Exchange Jump will interrupt. In

6400 and 6600 systems, this bit is not interpreted.

Rev K 4-24

27 RPN Read program address (12 Bits)

f

1 I 6 5 I 0
(DUAL CP BIT)

This instruction transfers the content of the Central Processor Program Address

register, P, to the Peripheral Processor A register; this allows the Peripheral

Processor to determine whether the Central Processor is running. In a 6500/6700

system with dual Central Processors, the lowest order bit of the instruction format

specifies which Central Processor P register is to be examined. In 6400 and 6600

systems, this bit is not interpreted. The largest value that (P) may be is 17 bits.

The remaining bit (bit 17) will appear set to this instruction when an ECS transfer

is in progress. However, bit 17 is not set in P.

60 CRD d Central read from (A) to d (12 Bits)

f d

1 I 6 5 0

This instruction transfers a 60-bit word from Central Memory to five consecutive

locations in the processor memory. The 18-bit address of the Central Memory

location must be loaded into A prior to executing this instruction. (Note that this is

an absolute address.) The 60-bit word is disassembled into five 12-bit words begin-

ning at the left. Location d receives the first 12-bit word. The remaining 12-bit words

go to succeeding locations.

61 CRM m d Central read (d) words from (A) to m (24 Bits)

f d m
23 18 17

(P)

12 II 0

(P+1)

This instruction reads a block of 60-bit words from Central Memory. The content of

location d gives the block length. The 18-bit address of the first central word must be
loaded into A prior to executing this instruction. (Note that this is an absolute address.)

During the execution of the instruction, (P) goes to processor address 0 and P holds m.
Also, (d) goes to the Q register where it is reduced by one as each central word is
processed. The original content of P is restored at the end of the instruction.

4-25 Rev K

Each central word is disassembled into five 12-bit words beginning with the high-order

12 bits. The first word is stored at processor memory location m. The content of P

(which is holding m) is advanced by one to provide the next address in the processor

memory as each 12-bit word is stored. If P overflows, operation continues as P is ad-

vanced from 77778 to 00008. These locations willbe written into as if they were conse-

cutive.

The content of A is advanced by one to provide the next Central Memory address after

each 60-bit word is disassembled and stored. Also, the contents of the Q register are

reduced by one. The block transfer is complete whenQ = 0. The block of Central Mem-

ory locations goes from address (A) to address (A) + (d) -1. The block of processor

memory locations goes from address m to m + 5(d) -1.

62 CWD d Central write to (A) from d (12 Bits)

f d

I I 6 5 0

This instruction assembles five successive 12-bit words into a 60-bit word and stores

the word in Central Memory. The 18-bit address word designating the Central Memory

location must be in A prior to execution of the instruction. (Note that this is an absolute

address.)

Location d holds the first word to be read out of the processor memory. This word

appears as the higher• order 12 bits of the 60-bit word to be stored in Central Memory.

The remaining words are taken from successive addresses.

Rev. F 4-26

63 CWM m d Central write (d) words to (A) from m (24 Bits)

f d m

23 18 17 12 II 0

This instruction assembles a block of 60-bit words and writes them in Central Memory.

The content of location d gives the number of 60-bit words. The content of the A reg-

ister gives the beginning Central Memory address. (Note that this is an absolute ad-

dress.) During the execution of this instruction (P) goes to processor address 0 and P

holds m. Also, (d) goes to the Q register, where it is reduced by one as each central

word is assembled. The original content of P is restored at the end of the instruction.

The content of P (the m portion of the instruction) gives the address of the first word

to be read out of the processor memory. This word appears as the higher order 12 bits

of the first 60-bit word to be stored in Central Memory.

The content of P is advanced by one to provide the next address in the processor memory

as each 12-bit word is read. If P overflows, operation continues as P is advanced from

7777
8

to 00008. These locations will be read from as if they were consecutive.

The content of A is advanced by one to provide the next Central Memory address after

each 60-bit word is assembled. Also, Q is reduced by one. The block transfer is com-

plete when Q = 0.

Input/Output

64 AJM m d Jump to m if channel d activc

f d m

23 18 17 12 I I

(P)

0

(P+I)

(24 Bits)

This instruction provides a conditional jump to a new program sequence beginning at an

address given by the contents of m. The jump is taken if the channel specified by d is

active. The current program sequence continues if the channel is inactive.

4-27 Rev. A

65 IjM m d Jump to m if channel d inactive (24 Bits)

f d m

23 18 17 12 1 1

(P)

0

(P+1)

This instruction provides a conditional jump to a new program sequence beginning at

an address given by m. The jump is taken if the channel specified by d is inactive. The

current program sequence continues if the channel is active.

66 FJM m d Jump to m if channel d full

f d m

23 18 17 12 1 1 0

(P) (P+I)

(24 Bits)

This instruction provides a conditional jump to a new program sequence beginning at an

address given by m. The jump is taken if the channel designated by d is full. The pres-

ent program sequence continues if the channel is empty.

An input channel is full when the input equipment has placed a word on the channel and

that word has not yet been sampled by a processor. The channel is empty when a word

has been accepted. An output channel is full when a processor places a word on the

channel. The channel is empty when the output equipment has sampled the word.

67 EJM m d Jump to m if channel d empty

f d I m

23 18 17 12 II 0

(P) (P-1-1)

(24 Bits)

This instruction provides a conditional jump to a new program sequence beginning at an

address specified by m. The jump is taken if the channel specified by d is empty. The

current program sequence continues if the channel is full. (See instruction 66 for ex-

planation of full and empty.)

Rev. A 4-28

70 IAN d Input to A from channel d (12 Bits)

f d

6 5 0

This instruction transfers a word from input channel d to the lower 12 bits of the A

register. The upper 6 bits of the A register are cleared to zeros.

NOTE

This instruction will hang up the Peripheral Processor
if executed when the channel is inactive.

71 IAM m d Input (A) words to m from channel d (24 Bits)

f d m

23 18 17 12 1 1 0

(P) (P +1)

This instruction transfers a block of 12-bit words from input channel d to the processor

memory. The content of A gives the block length. The first word goes to the processor

address specified by m. The content of A is reduced by one as each word is read. The

input operation is complete when A = 0 or the data channel becomes inactive. If the

operation is terminated by the channel becoming inactive, the next location in the

processor memory is set to all zeroes. However, the word count is not affected by

this empty word. Therefore, the contents of the A register gives the block length

minus the number of real data words actually read in.

During this instruction address 0000 temporarily holds P, while m is held in the P

register. The content of P advances by one to give the address for the next word as

each word is stored.

NOTE

If this instruction is executed when the data channel is
inactive, no input operation is accomplished and the
program continues at P + 2. However, the location
specified by m is set to all zeroes.

4-29 Rev K

72 OAN Output from A on channel d (12 Bits)

f d

I I- 6 5 0

This instruction transfers a word from A (lower 12 bits) to output channel d.

NOTE

This instruction will hang up the Peripheral
Processor if executed when the channel is
inactive.

73 OAM m d Output (A) words from m on channel d (24 Bits)

f d m

23 18 17

)

12 11 0

(P+1)

This instruction transfers a block of words from the processor memory to channel d.. The

first word comes from the address specified by m. The content of A specifies the num-

ber of words to be sent out. The content of A is reduced by one as each word is readout.

The output operation is complete when A = 0 or the channel becomes inactive.

During this instruction address 0000 temporarily holds P, while m is held in the P reg-

ister. The content of P advances by one to give the address of the next word as each

word is taken from memory.

Rev. F

NOTE

If this instruction is executed when the data
channel is inactive, no output operation is
accomplished and the program continues at
P+ 2.

4-30

74 ACN d Activate channel d

f d
I I 6 5 0

(12 Bits)

This instruction activates the channel specified by d. Activating a channel (must pre-

cede a 70 - 73 instruction) alerts and prepares the I/O equipment for the exchange of

data.

NOTE

Activating an already active channel causes the
Peripheral Processor to hang up.

75 DCN d Disconnect channel d

I I

f d

6 5 0

(12 Bits)

This instruction deactivates the channel specified by d. As a result, the I/O equipment

stops and the buffer terminates.

NOTE

1) Do not deactivate an already inactive channel or
the Peripheral Processor will hang up.

2) If an output instruction is followed by a disconnect
instruction without first establishing that the infor-
mation has been accepted by the input device
(check for channel empty) the last word trans-
mitted may be lost.

3) Do not deactivate a channel before putting a useful
program in the associated processor. Processors
other than 0 are hung up on an Input instruction
(71). Deactivating a channel after Dead Start causes
an exit to the address specified by the contents of
location 0000 plus 1 and execution of that program.
If the channel is deactivated without a valid program
in that processor, the processor will execute what
ever program was left in memory; it could, there-
fore, run wild.

4-31 Rev K

76 FAN d Function (A) on channel d (12 Bits)

f d

II 6 5 0

The external function code in the lower 12 bits of A is sent out on channel d.

NOTE

Do not execute this instruction when the
channel is Active or the Peripheral Processor
will hang up.

77 FNC m d Function m on channel d

f d m

23 18 IT 12 I I 0

The external function code specified by m is sent out on channel d.

Access to Central Memory

(24 Bits)

The Peripheral and Control Processors have access to all Central Memory storage lo-

cations. Four of the instructions (60, 61, 62, 63 - described previously) transfer one

word or a block of words from a peripheral memory to Central Memory or vice versa

Data from an external equipment is read into a peripheral memory and, with separate

instructions, transferred from there to Central Memory where it may be used by the

Central Processor. Conversely, data is transferred from Central Memory to a peri-

pheral memory and then transferred by separate instructions to external equipment.

Note that all addresses sent to Central Memory from Peripheral and Control Proces-

sors are absolute addresses, rather than relative addresses.

Read Central Memory

The 60 and 61 instructions read one word or a block of 60-bit Central Memory words.

The Central Memory words are delivered to a five stage read pyramid where they are

disassembled into five 12-bit words, beginning with the high-order word. Successive

Rev. A 4-32

stages of the pyramid contain 60, 48, 36, 24 and 12 bits. The upper 12 bits of the

word are removed and sent to a peripheral memory as the word is transferred through

each stage. Thus, a 60-bit word is disassembled into five 12-bit words.

Words move through the pyramid when the stage ahead is clear. One pass through the

slot determines that the next stage is clear, sends 12 bits of the word to a peripheral

memory, and moves the word ahead to the cleared stage. The pyramid is a part of the

slot and may be time shared by up to four processors. Thus four Central Memory

words may be in the pyramid at one time in varying stages of disassembly. With a

full pyramid, Read instructions from other processors are partially executed (house-

keeping) and circulated unchanged in the barrel until the number of pyramid users

drop below four. Waiting processors are serviced in the order in which they appear

at the slot. Other instruction control provides address incrementing and keeps the

word count.

The Central Memory starting address must be entered in A before a Read instruction

is executed. A Load dm (20) instruction may be used for this. For a one word transfer,

the d portion of the Read (60) instruction specifies the following:

d = peripheral address (0000-00778) of first 12-bit word; remaining words

go to d + 1, d + 2, etc.

For a block transfer, d and m of the read (61) instruction specify the following:

(d) = number of Central Memory words to be transferred; reduced by one

for each word transferred.

m = peripheral starting address; increased by one to provide locations for

successive words. (A) is increased by one to locate consecutive Central

Memory words.

Write Central Memory

The 62 and 63 instructions assemble 12-bit peripheral words into 60-bit words and

write them in Central Memory. Peripheral words are assembled in a write pyramid

and delivered from there to Central. Memory. As in Read Central Memory, the pyramid

is a part of the slot and is time-shared by up to four processors. Write pyramid

action is similar to Read pyramid action except for the assembly.

*Refer to Central Memory Access Priority (Appendix F) for exceptions.

4-33 Rev K

The starting address in Central Memory is entered in A before the Write instruction

is executed. For a one word transfer, the d portion of the Write (62) instruction

specifies the following:

d = peripheral address (0000-00778) of first 12-bit word; remaining words

are taken from d + 1, d + 2, etc.

For block transfer, d and m of the Write (63) instruction specify the following:

(d) = number of Central Memory words to be transferred; reduced by one

for each word transferred.

m = peripheral starting address; increased by one to locate each successive

peripheral word. (A) is increased by one to provide consecutive Central

Memory locations.

Access to the Central Processor

The Peripheral and Control Processors use two instructions to communicate with the

Central Processor. One instruction starts a program running in the Central Processor

and the other instruction monitors the progress of the program.

Exchange Jump

The 260 instruction (described previously) starts a program running in the Central

Processor or interrupts a current program and starts a new program running. In

either case, the Central Processor is directed to a Central Memory file of 16 words

which stores information about the new program to be executed (see Exchange Jump

section). The 18-bit starting address of this file must be entered in A before the Ex-

change Jump instruction is executed. The Central Processor replaces the file with

similar but current information from the interrupted program. A later Exchange Jump

instruction referencing this file returns the interrupted program to the Central Pro-

cessor for completion. This exchange feature permits the Peripheral Processor to

time-share the Central Processor.

Rev K 4-34

Read Program Address

The 27 instruction (described previously) transfers the content of the Central Processor

P register into a peripheral A register. The peripheral program tests the A register

content to determine the condition of the Central Processor. If A # 0, the Central Pro-

cessor is running a program, may have come to a normal (instruction) stop, or may

have stopped due to an out-of-bounds error (unselected). (Refer to Exit Mode section,

page 3-11.) If A = 0, the Central Processor has stopped due to a selected Exit mode

error; the reference address for the Central Processor program is then examined to

determine which error condition exists. A Stop instruction (008) in the upper six bits of

the reference address signals a stop; the next lower six bits define the nature of the exit

(see Exchange Jump section, page 3-9).

Input and Output

There are 12 instructions to direct activity on the I/O channels. These instructions se-

lect a unit of external equipment and transfer data to or from the equipment. The instruc-

tions also determine whether a channel or external equipment is available and ready to

transfer data. The preparatory steps insure that the data transfer is carried out in an

orderly fashion.

Each external equipment has a set of external function codes which are usedby the pro-

cessors to establish modes of operation and to start or stop data transfer. Also, the

devices are capable of detecting certain errors (e.g., parity error) and provide an in-

dication of these errors to the controlling processor. The external error conditions can

be read into a processor for interpretation and further action. Details of mode selec-

tion and error flags in external devices such as card readers and magnetic tape systems

are presented in the 6000 Series Peripheral Equipment Reference manual.

Data Channels

Each channel has a 12-bit bi-directional data register and two control flags which indi-

cate:

• The channel is active or inactive

• The channel register is full or empty

The 64 and 65 instructions determine the state of the channel, and the 66 and 67 instruc-

tions determine the state of the register. The flags provide housekeeping information

for the processors so that channels can be monitored and processed in an orderly way.

The flags also provide control for the I/O operation.

4-35 Rev. A

Word Rate: Each processor is serviced by the slot once every major cycle. This sets

the maximum word rate on a channel at one word each 1000 ns, a 1 megacycle word

rate. Up to 10 processors can be communicating with I/O equipment over separate

channels at this rate since each processor is regularly serviced at major cycle intervals.

Channel Active/Inactive Flag: A channel is made active by a Function (76, 77) instruc-

tion or an Activate Channel (74) instruction.

The Function instruction selects a mode of operation in the external equipment. The

instruction places a 12-bit function word in the channel register and activates the channel.

The external equipment accepts the function word, and its response to the processor

clears the register and drops the channel active flag. The latter action produces the

channel inactive flag.

The activate channel instruction prepares a channelfor data transfer. Subsequent input

or output instructions transfer the data. A disconnect channel instruction after data

transfer is complete returns the channel to the inactive state.

Register Full/Empty Flag: A register is full when it contains a function or data word

for an external equipment or contains a word receivedfrom an external equipment. The

register is empty when it is cleared. The flags are turned on or off as the register

changes state.

On data output, the processor places a word in the Channel register and sets the full flag.

The external device accepts the word, clears the register, and sets the empty flag. The

empty flag and channel active flag signal the processor to send another word to the reg-

ister to repeat the sequence.

On input, the external device places a word in the register and sets the full flag. The

processor stores the word, clears the register, and sets the empty flag. The empty

flag and channel active flag signal the external device to deliver another word.

Rev. D 4-36

Data Input

Several instructions are necessary to transfer data from external equipment into a pro-

cessor. The instructions prepare the channel and equipment for the transfer and then

start the transfer. Some external equipment, when once started, send a series of words

(record) spaced at equal time intervals and then stops automatically between records.

Magnetic tape equipment is an example of this type of transfer. The processor can read

all or a part of the record and then disconnect the channel to end the operation. The

latter step makes the channel inactive. Other equipment, such as the display console,

can send one word (or character) and then stop. The input instructions allow the input

transfer to vary from one word to the capacity of the processor.

An input transfer may be accomplished in the following way:

1) Determine if the channel is inactive. A Jump to m on channel d

Inactive (65) instruction does this. Here, m can be a function

instruction to select Read mode or determine the status of the equipment.

2) Determine if the equipment is ready. A Function m on Channel d (77)

instruction followed by an Activate channel d (74) followed by an Input to A

from Channel d (70) instruction loads A with the status response of the

desired equipment. Here, m is a status request code, and the status response

in A can be tested to determine the course of action.

3) Disconnect Channel d (75); this avoids hanging up the processor.

4) Select Read mode in the equipment. A Function m on Channel d (77)

instruction or Function (A) on Channel d (76) instruction will send a code

word to the desired device to prepare it for data transfer.

5) Enter the number of words to be transferred in A. A Load d (14) or Load

(d) (30) instruction will accomplish this.

6) Activate the channel. An Activate Channel d (74) instruction sets the

channel active flag and prepares for the impending data transfer.

7) Start input data transfer. An Input (A) Words to m on Channel d (71)

instruction or an Input to A from Channel d (70) instruction starts data

transfer. The 71 instruction transfers one word or up to the capacity

of the processor memory. The 70 instruction transfers one word only.

4-37 Rev. F

8) Disconnect the channel. A Disconnect Channel d (75) instruction makes

the channel inactive and stops the flow of input information.

The design of some external_ equipment requires timing considerations in issuing function,

activate, and input instructions. The timing consideration may be based on motion in the

equipment, i. e. , the equipment must attain a given speedbefore sending data (e. g. , mag-

netic tape). In general, timing considerations can be resolved by issuing the necessary

instructions without an intervening time gap. The external equipment literature lists

timing considerations to be taken into account.

Data Output

The data output operation is similar to data input in that the channel and equipment

must be ready before the data transfer is started by an output instruction.

An output transfer may be accomplished in the following way:

1) Determine if the channel is inactive. A Jump to m on Channel d

Inactive (65) instruction does this. Here, m can be a function instruction

to select Write mode or determine the status of the equipment.

2) Determine if the equipment is ready. A Function m on Channel d (77)

followed by an Activate channel d (74) followed by an Input to A from Channel

d (70) instruction loads A with the status response of the desired equipment.

Here, m is a status request code, and the status response in A can be

tested to determine the course of action.

3) Disconnect Channel d (75); this avoids hanging up the processor.

4) Select Write mode in the equipment. A Function m on Channel d (77)

instruction or Function (A) on Channel d (76) instruction will send a code

word to the desired device to prepare it for data transfer.

5) Enter the number of, words to be transferred in A. A Load d (14) or Load d

(30) instruction will accomplish this.

6) Activate the channel. An Activate Channel d (74) instruction signals an

active channel and prepares for the impending data transfer.

7) Start data transfer. An Output (A) Words from m on Channel d (73) instruction

or an Output from A on Channel d (72) instruction starts data transfer. The

Rev. F 4-38

73 instruction can transfer one or more words while the 72 instruction

transfers only one word.

8) Test for channel empty. A Jump to m if Channel d Full (66) instruction

where m = current address, provides this test. The instruction exits to

itself until the channel is empty. When the channel is empty, the processor

goes on to the next instruction which generally disconnects the channel. The

instruction acts to idle the program briefly to insure successful transfer of

the last output word to the recording device.

9) Disconnect the channel. A Disconnect Channel d (75) instruction makes

the channel inactive. Data flow in this case terminates automatically when

the correct number of words is sent out.

Instruction timing considerations, as in a data input operation, are a function of the ex-

ternal device.

Real-Time Clock

The real-time clock runs continuously; its period is 4096 cycles (4. 096 ms). The clock

may be sampled by any Peripheral and Control Processor with an Input to A (70) instruc-
tion from channel 148 . The clock is advanced by the storage sequence control and can-
not be cleared or preset.

4-39 Rev. F

5. SYSTEM INTERRUPT

INTRODUCTION

Essentially, detecting and handling interruptible conditions involves both hardware

and software. This section describes hardware provisions for detecting and handling

interrupt. The salient features of an operating system for implementing interrupt

handling are described in the operating system reference manual.

HARDWARE PROVISIONS FOR INTERRUPT

Exchange Jump

Within a Peripheral Processor, execution of an Exchange Jump instruction initiates

hardware action in the Central Processor to interrupt the current Central Processor

program and substitute a program, the parameters of which are defined in the Exchange

Jump package. Note that the Exchange Jump is also used to start the Central Processor

from a Stop condition. (Refer to the Exchange Jump section).
1

Channel and Equipment Status

Within the Peripheral Processors, hardware flags indicate the state of various

conditions in the data channels, e. g. , Full/Empty, and Active/Inactive. External

equipments are capable of detecting certain errors (e. g., parity error) and hold

status information reflecting their operating conditions (e. g., Ready, End of File, etc.)

Channel and equipment status information may be examined by instructions in the

Peripheral Processors. The Input/Output section describes these instructions. For

detailed status information on external devices such as magnetic tape units and card

readers, refer to literature associated with these devices.

5-1 Rev K

Exit Mode

Central Processor hardware provides for three types of error halt conditions (Exit mode):

• Address out of range (i.e., out of bounds)

• Operand out of range (i. e. , exponent overflow)

• Indefinite result

Detecting the occurrence of one or more of these conditions is accomplished by the

hardware and causes an error halt. Note that halting on any of these conditions is

selectable;selection is performed by setting appropriate flags in the Exit mode portion

of the Exchange Jump package. (Refer to Exit Mode, page 3-11.)

Rev. A 5-2

6. MANUAL CONTROL

INTRODUCTION

Manual control operation is provided through 1) the dead start panel and 2) the console!

keyboard. The Dead Start circuit is a means of manually entering a 12-word program

(normally a load routine) to start operation. The console keyboard provides for the

manual entry of data or instructions under program control.

DEAD START

The dead start panel* (Figure 6-1) contains a 12 x 12 matrix of toggle switches, a

MODE switch to select. SWEEP, LOAD, or DUMP, a DEAD START switch, and a

CEJ/MEJ and a PPU-A switch. The panel also contains memory margin switches

which are used for maintenance checks. The three modes of operation (Load, Sweep,

Dump) selectable via the dead start panel are described below.

Load Mode

To initially load programs and data into the computer system, the MODE switch is

placed in the LOAD position. The matrix of toggle switches is set to a 12-word (or

less) program (switch up = "1", switch down = "0"). The program set in the switch

matrix is normally a load routine used to load a larger program from an input device

such as a disk file or magnetic tape unit.

The DEAD START switch is turned on momentarily, then off. Turning on the DEAD

START switch initiates the following operations:

1) Assigns processors 0-11
8

to corresponding data channels.

2) Sends a Master Clear to all I/O channels. A Master Clear removes all

equipment selections except the dead start panel, and sets all channels to

the Active and Empty condition (ready for input).

*See Appendix E for Dead Start operation in 64XX-7, 64XX-8, and 64XX-9 Systems.
**CEJ/MEJ and PPU-A switches are for 6700 only or those systems which have the

applicable Standard Options.

6-1 Rev K

3) Sets all processors to the Input (71) instruction.

4) Clears the P register and sets the A register to 100008 in all processors.

5) Transmits a zero word followed by the 12 words from the toggle switches into

memory locations 0000 - 00148 of peripheral processor 0, and then disconnects

data channel 0 causing word 00158 of peripheral processor 0 to be zeroed and

causing peripheral processor 0 to start execution with the instruction at loca-

tion 0001.

After the switch matrix program is read from the dead start panel, the panel is auto-

matically disconnected. Processor 0 reads location 0000, adds one to its content, and

begins executing the program at address 0001. The other processors are still set to the

Input (71) instruction and may receive data from processor 0 via their assigned channels.

Sweep Mode

Placing the MODE switch in the SWEEP position and momentarily turning on the DEAD

START switch results in the following:

1) Sets all processors to instruction 50X.

2) Clears all processor P registers to zero.

The translation of the 50X instruction in each processor causes each processor to sweep

through its memory, reading and restoring the contents of each location, without execut-

ing instructions. Sweep mode is a maintenance tool useful in checking the operation of

memory logic.

Dump Mode

Placing the MODE switch in the DUMP position and momentarily turning on the DEAD

START switch initiates the following operations:

1) Assigns processors 0-118 to corresponding data channels.

2) Sends a Master Clear to all I/O channels except channel 0.

3) Holds channel 0 to Active and Empty.

4) Sets all processors to the Output (73) instruction.

5) Clears the P register and sets the A register to 100008 in all processors.

Rev. F 6-2

NOTE

CEJ/MEJ and PPU-A switches are for 6700 only or
its equivalent.

DEAD START PROGRAM

0001

e
4

e
*

2 2

*
27 2 2

0

0002
0

0003 # # 4 * 0

0004 # # # 4 * * *

0005 # # # #

0005 # 4 * * * *

0007 # * * *

* * *

ooti 4 * * 4 * A *

0012 # # 4 * * 4

0013 # 4 A

0014 4 * * * * 0 4

e 2 20 21 2

4 *

4 *

4 4

*

4

*

4

0

4

* * * *

* 4 *

®® * 4

* 4 4 *

0 * * *

4 A 4

* * *

*

*

4

4

4

*

ENABLE NIGN NMN SWEEP ON 0-11 (II DISABLE 0 NORMAL NORMAL (it LOAD # LOW LOW DUMP OFF 20-31
CEJ/MEJ CENTRAL PERIPHERAL MODE MEMORY MEMORY DEAD PPU-A START

Figure 6-1. Dead Start Panel

6-3 Rev K

Each of the processors senses the Active and Empty condition of its assigned channel

and outputs the content of its memory address zero. Each of the I/O channels is then

set to Full (except channel 0), and the processors wait for an Empty signal. Each

processor advances its P register by one and reduces the content of its A register by

one (to 7776
8

). At this point, the processors waiting for an Empty signal are hung up

and cannot proceed.

Channel 0 (assigned to processor 0) is held to Empty by the DUMP position. Processor

0, therefore, proceeds through the 73 instruction until the contents of A are reduced

to one. Processor 0 has now dumped its entire memory content on channel 0 (although

no I/O device was selected to receive it). Execution then starts with the instruction

at the location specified by the contents of location 0000 plus one; it is now free to

execute a dump program which must have been previously stored in its memory

(location 0000 must have been previously set to the starting address minus one).

CONSOLE

The display console (Figure 6-2) consists of two cathode ray tube displays and a key-

board for manual entry of data. A typical System may have several display consoles

for controlling independent programs simultaneously.

Keyboard Input

The console may be selected for input to allow manual entry of data or instructions

to the computer. The first part of an operating system program may select keyboard

input to allow the programmer to manually select a routine from the operating system.

Data entered via the keyboard may be displayed on one of the display tubes if desired.

Assembly and display of keyboard entries is done by a routine in the operating system.

Display

The console may be selected to display (Figure 6-3) in either the Character or Dot mode.

In the Character mode, two alphanumeric characters may be displayed for each 12-bit

Rev K 6-4

word sent from a processor. Character sizes are:

Small 64 characters/line

Medium 32 characters/line

Large 16 characters/line

In Dot mode, a pattern of dots (graph, figures, etc.) may be displayed. Each dot is lo-

cated by two 12-bit words: a vertical coordinate and a horizontal coordinate.

A display program must repeat a display periodically in order to maintain persistence

on the display tube.

Figure 6-2. Display Console

6-5 Rev. F

Figure 6 -3. Sample Display

Rev. A 6-6

Appendix A

AUGMENTED I/O BUFFER AND CONTROL
(6416)

. ."

CONTROL DATA 6416

AUGMENTED I/O BUFFER AND CONTROL

The CONTROL DATA 6416 Augmented I/O Buffer and Control unit is a large-scale,

solid state device for communication with the Central Processor of 6400, 6500, 6600,

and 6700 Computer Systems.

DESCRIPTION

The 6416 is comprised of ten Peripheral and Control Processors and a Central

Memory. A summary of characteristics for the 6416 is tabulated below.

PERIPHERAL AND CONTROL PROCESSORS

• 10 identical processors

Each processor has a 4096 word magnetic core memory (12-bit)

Random access, coincident current

Major cycle = 1000 ns; Minor cycle = 100 ns

• 12 input/output channels

All channels common to all processors

Maximum transfer rate per channel - one word/major cycle

All channels may be active simultaneously

All channels 12-bit bidirectional

• Real-time clock (period = 4096 major cycles)

• Instructions

Logical

Branch

Add/ Subtract

Input/Output

Central Memory Access

Extended Core Storage Access

• Average instruction execution time = two major cycles

• Indirect addressing

• Indexed addressing

A-1 Rev K

CENTRAL MEMORY

• 16, 384 words (60-bit)

• Memory organized into four logically independent banks of 4096 words with

corresponding multiphasing of banks

• Random-access, coincident-current, magnetic core

• One major cycle for read-write

• Maximum memory reference rate to all banks; four addresses/major cycle

• Maximum rate of data flow to/from memory; four words/major cycle

The 6416 has no Central Processor; otherwise, it is identical to the 6400, 6500, 6600,

and 6700 Computer Systems. The following discussion assumes use of the 6416 in a

typical 6400, 6600, or 6700 system; the 6416 can also be used in a 6500 system.

Furthermore, it is a computer capable of operating alone.

SYSTEMS CONFIGURATIONS

The 6416, in typical systems configurations, provides an extremely useful and power-

ful system expansion. For installations with multiple on-line users, the 6416 provides

additional data channels facilitating additional external equipments. The ten Peripheral

and Control Processors, each capable of independently executing programs, and the

16,384 word 60-bit Central Memory significantly increase the multiprogramming and

batch job processing capabilities of the 6400, 6500, 6600, and 6700 Computer Systems.

A typical configuration diagrammed in Figure A-1 illustrates the orientation of a

6416 with a 6400, 6600; or 6700 Computer System. The 6416 is attached to the 6400,

6600, or 6700 system via one of the Peripheral Processor Data Channels.

The 6682/6683 Satellite Coupler accepts and relays control signals and data to provide

smooth information flow throughout the system.

In this configuration, the 6416 may be thought of as a batching terminal, where batch

jobs may enter the system, be assembled, and placed in the 16K distributive memory.

Access to the 6400 or 6600/6700 Central Processor for job execution is then under

operating system control.

Rev K A-2

CENTRAL
PROCESSOR

I
60 BITS

4'

CENTRAL MEMORY

60 BITS

41

PERIPHERAL PROCESSORS (10)

L

A

. V 1 A

.

1

A
12

BITS

DATA CHANNELS
(12)

6400 OR 6600/6700 SYSTEM

1

1
...1

r
1

MEMORY (16 K)

60 BITS

1

7

ne 12
IBITS

PERIPHERAL PROCESSORS (10)

I
AA

VV

AAAAAt

/ V VVV V 41

IA

V 6682/ 6682/
6683 6683

I DATA CHANNELS

L (12) i
64 16

Figure A-1. Typical Configuration: 6416 with 6400 or 6600/6700 System

Another possible systems configuration (Figure A-2) incorporates Extended Core

Storage between the 6400 or 6600/6700 Central Memory and the 6416 16K memory.

This configuration implies a hierarchy of memories as follows:

1) Extended Core Storage as a system Central Memory

2) 6400 or 6600/6700 Central Memory as a system Central Processor memory

3) 6416 16K memory as a distributive memory

6416 INSTRUCTIONS

Within the 6416, Peripheral Processor instructions are identical to those of the 6400,

6500 and 6600/6700 systems with two exceptions. These are the Read Extended Core

Coupler Status instruction (27, RCS) and the Extended Core Transfer'instruction (26,

ECT). The instructions are described in the ECS Reference Manual.

A-3 Rev K

r

CENTRAL
PROCESSOR

SYSTEM
CENTRAL PROCESSOR 60 BITS MEMORY MEMORY \

DISTRIBUTIVE
MEMORY

CENTRAL MEMORY
60 BITS

60 BITS

Jf

PERIPHERAL

it A A A

V V

DATA CHANNELS

L (12)

Rev K

EXTENDED
CORE

STORAGE

60 BITS
MEMORY (16K)

60 BITS

PROCESSORS (10) PERIPHERAL PROCESSORS (10)

A A AA I A A A
12 2 1 11 1 6682/

6683
6682/
6683

V V BITSI
,
I

V
1*

1

L
DATA CHANNELS

(12)

6400 OR 6600/6700 SYSTEM 6416

Figure A-2. Typical Configuration with Extended Core Storage

A- 4

Within the Extended Core Coupler, status bit 17 is dynamic; bits 16 and 15 are cleared

each time an Extended Core Storage transfer is initiated.

26 ECT d Extended Core Transfer

26

II

O

6 5 0
1 \ I

OPERATION d
CODE

(12 bits)

Execution of the Extended Core Transfer instruction initiates memory operations by

transmitting an 18-bit address, "n", from the Peripheral Processor A register to the

6416 16K memory, Address "n" holds a word, the format of which is as follows:

X0 A0 K

59 36 35 18 17 0

STARTING ADDRESS IN STARTING ADDRESS IN
EXTENDED CORE STORAGE 16 K MEMORY

WORD COUNT

The "d" portion of this instruction specifies the storage operation to be performed:

If "j" = 0, Read "K" words from Extended Core Storage into 16K memory.

If "j" = 1, Write "K" words from 16K memory into Extended Core Storage.

NOTE

If this instruction is executed without Extended Core
Storage in the system configuration, it acts as a Pass
(Do-Nothing) instruction.

Note that addresses contained in the word at address "n" are absolute addresses. Oper-

ating systems may require relocation (adding RA to an address) and Field Length test-

ing, e.g., is "address +RA'' > FL? (The Exchange Jump package contains RA and FL

values for Central Memory and for Extended Core Storage.) The 6416 has no hardware

for automatic relocation and Field Length testing; it is therefore incumbent upon the

program to perform these functions whenever required by an operating system.

A- 5 Rev. D

Appendix B

INSTRUCTION EXECUTION TIMES

I

D

INSTRUCTION EXECUTION TIMES

The execution times for Central and Peripheral and Control Processor instructions

are given in the following paragraphs. Factors which influence instruction execution

time and hence program running time are also given.

CENTRAL PROCESSOR (6600/6700 SYSTEM)

The execution time of Central Processor instructions is given in minor cycles, and

instructions are grouped under the functional unit (6600/6700) which executes the in-

struction. Time is counted from the time the unit has both input operands to when the

instruction result is available in the specified result register. Central Memory access

time is not considered in those increment instructions which result in memory

references to read operands or store results.

The following paragraphs give some general statements about Central Processor

instruction execution and summarize the statements into a list which may be used

as a guide to efficient use of the Central Processor functional units.

Central Processor programs are written in the conventional manner and are stored

in Central Memory under direction of a Peripheral and Control Processor. After an

Exchange Jump start by a Peripheral and Control Processor program, Central

Processor instructions are sent automatically, and in the original sequence, to the

instruction stack, which holds up to 32 instructions.

Instructions are read from the stack one at a time and issued to the functional units

for execution. A scoreboard reservation system in Central Processor control keeps

a current log of which units are busy (reserved) and which operating registers are

reserved for results of computation in functional units.

Each unit executes several instructions, but only one at a time. Some branch instruc-

tions require two units, but the second unit receives its direction from the branch unit.

B-1 Rev K

The instruction issue rate may vary from a theoretical maximum rate of one instruction

every minor cycle (sustained issuing at this rate may not be possible because of unit and

Central Memory conflict) and resulting parallel operation of many units to a slow issue

rate and serial operation of units. The latter results when successive operations de-

pend on results of previous steps. Thus, program running time can be decreased by

efficient use of the many units. Instructions which are not dependent on previous steps

may be arranged or nested in areas of the program where they may be executed during

operation time of other units. Effectively, this eliminates dead spots in the program

and steps up the instruction issue rate.

The following steps summarize instruction issuing and execution:

1) An instruction is issued to a functional unit when

• the specified functional unit is not reserved

• the specified result register is not reserved for a previous result.

2) Instructions are issued to functional units at minor cycle intervals when no

reservation conflicts (see above) are present.

3) Instruction execution starts in a functional unit when both operands are

available (execution is delayed when an operand(s) is a result of a previous

step which is not complete.

4) No delay occurs between the end of a first unit and the start of a second unit

which is waiting for the results of the first.

5) No instructions are issued after a Branch instruction until the Branch

instruction has been executed. The Branch Unit uses

• an Increment Unit to form the go to k Bi and go to k if Bi . .
instructions, or

• the Long Add unit to perform the go to k if Xj . . . instructions

in the execution of a Branch instruction. The time spent in the Long

Add or Increment Units is part of the total branch time.

6) Read Central Memory access time is computed from the end of Increment

Unit time to the time operand is available in X operand register. Minimum

time is 500 ns, assuming no Central Memory bank conflict.

CENTRAL PROCESSOR (6400 AND 6500 SYSThMS)

Central Processors in the 6400 and 6500 systems have unified Arithmetic units, rather

Rev. D B-2

than separate functional units as in the 6600 system. Instructions in these Central Pro-

cessors, therefore, are executed in sequential fashion with little concurrency.

All execution times for instructions listed in Table B-1 include readying the next instruc-

tion for execution. For the Return Jump instruction and the Jump instructions (in which

the jump condition is met), Table B-1 lists times which include obtaining the new instruc-

tion word from storage and readying it for execution. Times listed, then, are complete

times except for possible additional time due to hardware limitations or memory bank

conflicts. Factors which may add to the stated times in Table B-1 are summarized be-

low:

P

1) Reading the next instruction word of a program from Central Memory (termed

an RNI - Read Next Instruction) is in part concurrent with instruction execution.

The RNI is initiated between execution of the first and second instructions of the

instruction word being processed. Initiating the RNI operation requires 2 minor

cycles; the remainder of the RNI time is in time parallel with the execution of

the remaining instructions in the instruction word. (Refer to Figure B-1.)

I 2 3

INITIATE
RNI

200 NSEC Cf

I

I

EXECUTION OF
INSTRUCTIONS

2 AND 3

RNI
MINIMUM OF

800 NSEC

I

 TOTAL RNI TIME

Figure B-l. RNI Timing Example

In the example diagrammed in Figure B-1, execution of instruction 2 is de-

layed 2 minor cycles until RNI initiation is complete.

In calculating execution times for a program, add 2 minor cycles to each in-

struction word in a program to cover the RNI initiation time. Exceptions to

B-3 Rev. D

this rule are the Return Jump and the Jump instructions (in which the jump condition is

met) when these occupy the upper position of the instruction word. Since the stated times

for these instructions in Table B-linclude the time required to read up the new instruc-

tion word at the jump address, no additional time is required.

Example:

P

K

JUMP TO K (MET) PASS PASS

ADD I ADD 2 LOAD STORE

Instruction

Jump

Add 1

RNI Initiation

Add 2

Load

Store

Time Required

13 Minor Cycles

5 Minor Cycles

2 Minor Cycles

5 Minor Cycles

12 Minor Cycles

10 Minor Cycles

Total Time Required = 47 Minor Cycles

2) After RNI has been initiated (between the first and second instructions of the

instruction word), a minimum of 8 minor cycles elapse before the next instruc-

tion word is available for execution. If the total time required by instructions

in the lower order positions of the word is less than 8 minor cycles, allow a

minimum of 8 minor cycles, regardless of the execution times stated in Table

B-1.

Example:

P

(PH- I

Rev. B

JUMP TO K (NOT MET) PASS PASS

B-4

Instruction Time Required

Jump (not met) 5 Minor Cycles

RNI Initiation 2 Minor Cycles

Pass = 31 . 6, but RNI
Minimum 8 Minor Cycles Pass = 3

Minimum time before
instruction word at
P + 1 is available for
execution = 15 Minor Cycles

3) The Return Jump instruction, all Jump instructions in which the jump condition

is met, and Load/Store Memory instructions always require additional time

when located in the second instruction position of an instruction word. This

additional time is caused by hardware limitations and is not due to memory

bank conflicts.

Instruction

Additional Time Required
If Used As Second Instruction
in Word

a) Jumps (02 - 07) in which
the jump condition is met 1 Minor Cycle

b) Return Jump (010) 2 Minor Cycles

c) Load/Store (5X instructions
with i 0) 2 Minor Cycles

4) An additional 3 minor cycles due to bank conflict are required if the second in-

struction of a word references the memory bank in which (P)+1 is located.

5) A Store (not Load) as the first instruction of a word can cause a bank conflict

with (P)+1. If this occurs, 3 minor cycles are added to the execution time.

Summary of guidelines for efficient coding in the 6400 and 6500 Central Processors:

o Always attempt to place Jump instructions in the upper parcel

of the instruction word. In most cases, this avoids both the

additional time for RNI (2 mimr cycles) and the possibility of a

memory bank conflict with (P) + 1.

• Where possible, place Load/Store instructions in the lower order

two parcels to avoid lengthening execution times as outlined above.

B-5 Rev. D

CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES

Central Processor instruction execution times are tabulated in Table B-1 (6500

times are for each Central Processor). Instructions are tabulated according to the

functional units in which they are executed; this functional unit designation, of course,

does not apply to the 6400 and 6500 systems. Their Central Processors have unified

arithmetic sections. Instruction execution times are listed in minor cycles.

TABLE B-1. INSTRUCTION EXECUTION TIMES: CENTRAL PROCESSOR

Octal
Code BRANCH UNIT

6400
6500

6600/
6700

00 STOP - -
010 RETURN JUMP to K 21 13
011 READ EXTENDED CORE STORAGE ** **

012 WRITE EXTENDED CORE STORAGE ** **

02 GO TO K + Bi t 13 14
030 GO TO K if Xj = zero 13 9*
031 GO TO K if Xj # zero 13 9*

032 GO TO K if Xj = positive 13 9*

033 GO TO K if Xj = negative 13 9*

034 GO TO K if Xj is in range ti- 13 9*

035 GO TO K if Xj is out of range ---:- 13 9*
036 GO TO K if Xj is definite 13 9*

037 GO TO K if Xj is indefinite 13 9*

04 GO TO K if Bi = Bj t 13 8*
05 GO TO K if Bi 1 Bj t 13 8*
06 GO TO K if Bi > Bj t 13 8*
07 GO TO K if Bi < Bj 1- .13 8*

t GO TO K + Bi and GO TO K if Bi
- - - tests made in Increment Unit

tt GO TO K if Xj - - - tests made in
Long Add Unit

*Add 6 minor cycles to branch time for **Execution times for Extended Core
a branch to an instruction which is out Storage operations are dependent
of the stack (no memory conflict con- upon several factors; refer to Ex-
sidered); add 2 minor cycles to branch tended Core Storage Reference
time for a no branch condition in the Manual for timing information.
stack. Add 5 minor cycles to branch

4c**Jumps in which the jump condition
time for a no branch condition out of
the stack,

is not met require 5 minor cycles.

Rev K B-6

TABLE B-1, (Conti d)

Octal
Code

BOOLEAN UNIT 6400
6500

6600/
6700

10 TRANSMIT Xj to Xi 5 3
11 LOGICAL PRODUCT of Xj and Xk to Xi 5 3
12 LOGICAL SUM of Xj and Xk to Xi 5 3
13 LOGICAL DIFFERENCE of Xj and Xk to Xi 5 3
14 TRANSMIT Xk COMP. to Xi* 5 3
15 LOGICAL PRODUCT of Xj and Xk COMP. to Xi 5 3
16 LOGICAL SUM of Xj and Xk COMP. to Xi 5 3
17 LOGICAL DIFFERENCE of Xj and Xk COMP. to Xi 5 3

Octal SHIFT UNIT 6400 6600/
Code 6500 6700

20 SHIFT Xi LEFT jk places 6 3
21 SHIFT Xi RIGHT jk places 6 3
22 SHIFT Xk NOMINALLY LEFT Bj places to Xi 6 3
23 SHIFT Xk NOMINALLY RIGHT Bj places to Xi 6 3
24 NORMALIZE Xk in Xi and Bj 7 4
25 ROUND AND NORMALIZE Xk in Xi and Bj 7 4
26 UNPACK Xk to Xi and Bj 7 3
27 PACK Xi from Xk and Bj 7 3
43 FORM jk MASK in Xi 6 3

Octal ADD UNIT 6400 6600/
Code 6500 6700

30 FLOATING SUM of Xj and Xk to Xi 11 4
31 FLOATING DIFFERENCE of Xj and Xk to Xi 11 4
32 FLOATING DP SUM of Xj and Xk to Xi* 11 4
33 FLOATING DP DIFFERENCE of Xj and Xk to Xi 11 4
34 ROUND FLOATING SUM of Xj and Xk to Xi 11 4
35 ROUND FLOATING DIFFERENCE of Xj and Xk to Xi 11 4

Octal LONG ADD UNIT 6400 6600/
Code 6500 6700

36 INTEGER SUM of Xj and Xk to Xi 6 3
37 INTEGER DIFFERENCE of Xj and Xk to Xi 6 3

Octal MULTIPLY UNIT** 6400 6600/
Code 6500 6700

40 FLOATING PRODUCT of Xj and Xk to Xi 57 10
41 ROUND FLOATING PRODUCT of Xj and Xk to Xi 57 10
42 FLOATING DP PRODUCT of Xj and Xk to Xi 57 10

*Comp. = Complement; DP = Double Precision
4":cDuplexed units - instruction goes to free unit

B-7 Rev K

TABLE B-1. (Cont'd)

Octal
Code DIVIDE UNIT

6400
6500

6600/
6700

44 FLOATING DIVIDE Xj by Xk to Xi 57 29
45 ROUND FLOATING DIVIDE Xj by Xk to Xi 57 29
47 SUM of 1's in Xk to Xi 68 8

46 PASS 3 1

Octal
Code INCREMENT UNIT*

6400
6500

6600/
6700

50 SUM of Aj and K to Ai ** 3***
51 SUM of Bj and K to Ai ** 3
52 SUM of Xj and K to Ai ** 3
53 SUM of Xj and Bk to Ai ** 3
54 SUM of Aj and Bk to Ai ** 3
55 DIFFERENCE of Aj and Bk to Ai ** 3
56 SUM of Bj and Bk to Ai ** 3
57 DIFFERENCE of Bj and Bk to Ai ** 3

60 SUM of Aj and K to Bi 5 3
61 SUM of Bj and K to Bi 5 3
62 SUM of Xj and K to Bi 5 3
63 SUM of Xj and Bk to Bi 5 3
64 SUM of Aj and Bk to Bi 5 3
65 DIFFERENCE of Aj and Bk to Bi 5 3
66 SUM of Bj and Bk to Bi 5 3
67 DIFFERENCE of Bj and Bk to Bi 5 3

70 SUM of Aj and K to Xi 6 3
71 SUM of Bj and K to Xi 6 3
72 SUM of Xj and K to Xi 6 3
73 SUM of Xj and Bk to Xi 6 3
74 SUM of Aj and Bk to Xi 6 3
75 DIFFERENCE of Aj and Bk to Xi 6 3
76 SUM of Bj and Bk to Xi 6 3
77 DIFFERENCE of Bj and Bk to Xi 6 3

*Duplexed units - instruction goes to free unit

**When: i = 0 the execution time is 6 minor cycles
i = 1-5 the execution time is 12 minor cycles
i = 6 or 7 the execution time is 10 minor cycles

***50-57 "A" register reserved for 3 minor cycles.

When "i" = 1-5 then Xi register reserved for 8 minor cycles.
When "i" = 6-7 then Xi register reserved for 9 minor cycles.

Rev K B-8

6600/6700 CENTRAL PROCESSOR TIMING NOTES

1. The times given in Table B-1 are computational times - the time needed

after the execution start until the result is computed and ready to be stored

into the result register.

2. The functional units are not freed until one minor cycle after the result has

been stored into the result register.

3. A result register value may be used as an operand to another instruction as

soon as the result has been stored into the register (same minor cycle). This

result register will not be freed to be used as a result register of another

instruction until one cycle after the result has been stored into that register

(no trunk priority considered).

I

4. An instruction is issued to a functional unit if:

a) The word containing the instruction is in the stack and the U registers,

b) The functional unit(s) needed are free, and

c) The result register(s) needed are free (note Table B-2 and B-3).

If these three conditions are not met, a first order conflict exists and all

further instruction issues are held until they are satisfied. Each issued

15-bit instruction requires one minor cycle before the next instruction is

available for issue. Each issued 30-bit instruction requires two minor cycles

before the next instruction is available for issue.

5. Execution within a functional unit does not start until the operands are

available (note Table B-3). The two operands required are fetched from the

registers at the same time (one operand is not loaded while the unit waits for

a second operand).

6. In instructions 02-07, where more than one functional unit is used, the

instruction is not issued until both functional units involved are free.

7. Times given for instructions 01-07 and 50-57 do not consider any memory

conflict conditions.

B-9 Rev K

8. In instructions 50-57, if i = 1, 2 . . . 5 (load from memory instructions), the

Xi register value is not available until 8 minor cycles after the start of the

instruction execution (assuming no memory conflicts). When two load instruc-

tions begin execution one minor cycle apart, one extra minor cycle is required

for execution of the later instruction. Therefore, the second executed instruc-

tion would require 9 cycles for the load, 5 cycles for the Increment Unit, and

4 cycles for the A register.

9. In instructions 50-57, if i = 6 or 7 (store to memory instructions), the Xi

register is not available for a result register until 10 minor cycles after the

instruction begins execution (assuming no memory conflicts).

10. When executing sequential instructions, the minimum time is one word of

instructions every 8 cycles for instructions out of stack and every 4 cycles

for instructions in stack. The time of issue of the last parcel of an instruc-

tion word to the time of issue of the first parcel of the next instruction word,

while executing sequential instructions out of stack is 4 cycles, and 1 cycle

for those in stack. If the last instruction in an instruction word is a 30-bit

instruction, a minimum of 5 cycles (out of stack) and 2 cycles (in stack) are

required from the time of issue to a functional unit of this instruction to the

time of issue at the first instruction in the next word. An instruction word

is parcelled as illustrated below.

PARCEL 0 PARCEL 1 PARCEL 2 PARCEL 3

59 45 44 30 29 15 14 0

1 1 . When a branch out of the stack is taken, 15 minor cycles are normally

required for a 03ijk instruction and 14 minor cycles are normally required

for other branch instructions (considering no memory conflict). The latter

timing is from the start of branch instruction execution to the point when the

instruction at the branch address is ready for issue to a functional unit.

12. Nine cycles are required for 03ijk instructions when the branch is taken

within the stack. The next sequential word is recognized as within the stack.

Rev K B- 1 0

13. Eight cycles are required for 04ijk to 07ijk instructions when the branch is

taken within the stack. The next sequential word is recognized as within the

stack.

14. Eleven cycles are required for 03ijk instructions when the branch is not

taken (time from branch execution to issue of next instruction) if in the stack

or if falling through to the same word. Out of the stack fall-through to the

next word takes 14 cycles.

15. Ten cycles are required for 04ijk to 07ijk instructions when the branch is

not taken (time from branch execution to issue of next instruction) if in the

stack or if falling through to the same word. Out of the stack fall-through to

the next word takes 13 cycles.

16. The BO register is handled as any other Bi register for timing purposes

(i. e. , BO will hold up execution of an instruction if it is a result register of

a previous noncompleted instruction, etc.).

17. Neither Increment Unit may be involved in a load operation if a store

operation is to be issued, and neither Increment Unit may be involved in a

store operation if a load operation or a store operation is to be issued. The

sequential loading of instruction words does not affect the load/store conditions

of the Increment Units. Increments of AO are considered neither loads nor

stores.

18. The operand registers are available to more than one functional unit in the

same minor cycles if the units are in different groups.

Group 1 Group 2 Group 3

Boolean Shift Increment 1

Divide Floating Add Increment 2

Multiply 1 Long Add

Multiply 2

19. The time needed for a functional unit to operate on indefinite, out-of-range,

or zero values is the same as for normal, in-range values (i. e. , no gain or

loss in execution time due to a unit recognizing an indefinite operand and

setting an indefinite result).

B-11 Rev K

20. An Index Jump instruction (02) will always destroy the stack. If an unconditional

jump back in the stack is desired, a 0400K instruction may be used (to save

memory access time for instructions).

21. A Return Jump instruction (01) will always destroy the stack.

22. After a result has been computed by a functional unit, the result register is

checked to see if it is still needed as an operand register for a previously

issued instruction. This is done so that a result will not overlay an operand

to a previously issued instruction.

23. In cases of bank conflict, unaccepted addresses get a chance at access every

three minor cycles. If the address can then be accessed, the memory opera-

tion proceeds. If the bank is still busy, the address circulates in the hopper,

while access is permitted for any other source requesting access.

TABLE B-2. FUNCTIONAL UNIT DATA TRUNK ASSIGNMENTS AND PRIORITY

FUNCTIONAL UNIT RESULT (i) OPERAND (j) OPERAND (k)

Trunk Priority Trunk Priority Trunk Priority

Group 1: Shift 3 (X) 1 1 2 2 2

4 (B)

Add 3 2 1 1 2 1

Long Add 3 3 1 3 2 3

Group 2: Boolean 7 1 5 4 6 4

Divide 7 2 5 1 6 1

Multiply 1 7 3 5 2 6 2

Multiply 2 7 4 5 3 6 3

Group 3: Increment 1 10 1 8 1 9 1

Increment 2 10 2 8 2 9 2

*The Shift Unit is sometimes required to store two results at one time: one into an
X register and one into a B register.

Rev K B-12

TABLE B-3. 6600/6700 REGISTER RESERVATION CONTROL

INSTRUCTION
XBA RESULT

REGISTER (ISSUE)
Q OPERAND

REGISTER (EXECUTION)

Branch Unit
02ijK - Bi & Bj
03ijK - Xi &Xj
04ijK - Bi & Bj

Boolean Unit
10ijk - 17ijk Xi Xj &Xk

Shift Unit
20ijk - 23ijk Xi Bj &Xk
24ijk - 26ijk Xi & Bj Bj & Xk
27ijk•& 43ijk Xi Bj 8, Xk

Add Unit (Floating)
30ijk - 35ijk Xi Xj &Xk

Long Add (Integer)
36ijk - 37ijk Xi Xj &Xk

Multiply (2 Units)
40ijk - 42ijk Xi Xj &Xk

Divide Unit
44ijk - 47ijk Xi Xj & Xk

Increment (2 Units)
50ijK Ai & Xi * Aj & Bk **
51ijK Ai &Xi * Bj & Bk **
52ijK Ai &Xi * Xj & Bk **
53ijk Ai &Xi * Xj & Bk
54ijk & 55ijk Ai &Xi * Aj & Bk
56ijk &57ijk Ai &Xi * Bj & Bk
60ijK Bi Aj & Bk **
61ijK Bi Bj & Bk **
62ijK Bi Xj & Bk **
63ijk Bi Xj & Bk
64ijk & 65ijk Bi Aj & Bk
66ijk & 67ijk Bi Bj & Bk
70ijK Xi Aj & Bk **
71ijK Xi Bj & Bk **
72ijK Xi Xj & Bk **
73ijk Xi Xj & Bk
74ijk & 75ijk Xi Aj & Bk
76ijk &77ijk Xi Bj• & Bk

* The Xi register is considered only when i = 1, 2. . .7.
** k here refers to the high order 3 bits of 18-bit address field.

B-13 Rev K

PERIPHERAL AND CONTROL PROCESSOR

The execution time of Peripheral and Control Processor instructions is influenced by

the following factors:

o Number of memory references - indirect addressing and indexed

addressing require an extra memory reference. Instructions in

24-bit format require an extra reference to read m.

• Number of words to be transferred - in I/O instructions and in

references to Central Memory the execution times vary with the

number of words to be transferred. The maximum theoretical

rate of flow is one word/major cycle. I/O word rates depend

upon the speed of external equipments which are normally much

slower than the computer.

• References to Central Memory may be delayed if there is conflict

with Central Processor memory requests.

• Following an Exchange Jump instruction, no memory references

(nor other Exchange Jump instructions) may be made until the

Central Processor has completed the Exchange Jump.

TABLE B-4. PERIPHERAL AND CONTROL PROCESSOR

INSTRUCTION EXECUTION TIMES

OCTAL
CODE NAME

TIME
(MAJOR
CYCLES)

00 Pass 1

01 Long jump to m + (d) 2-3
02 Return jump to m + (d) 3-4
03 Unconditional jump d 1
04 Zero jump d 1
05 Nonzero jump d 1
06 Plus jump d 1
07 Minus jump d 1
10 Shift d 1
11 Logical difference d 1
12 Logical product d 1
13 Selective clear d 1
14 Load d 1

*Note that the shorter time is taken in certain instructions
when d = 0.

Rev. B B-14

TABLE B-4. (Conti d)

OCTAL
CODE NAME

TIME*
(MAJOR
CYCLES)

15 Load complement d 1
16 Add d 1
17 Subtract d 1

20 Load dm 2
21 Add dm 2
22 Logical product dm 2
23 Logical difference dm 2
24 Pass 1
25 Pass 1
260 Exchange jump 1**
27 Read program address 1

30 Load (d) 2
31 Add (d) 2
32 Subtract (d) 2
33 Logical difference (d) 2
34 Store (d) 2
35 Replace add (d) 3
36 Replace add one (d) 3
37 Replace subtract one (d) 3

40 Load ((d)) 3
41 Add ((d)) 3
42 Subtract ((d)) 3
43 Logical difference ((d)) 3
44 Store ((d)) 3
45 Replace add ((d)) 4
46 Replace add one ((d)) 4
47 Replace subtract one ((d)) 4

50 Load (m + ((d)) 3-4
51 Add (m + (d)) 3-4
52 Subtract (m + (d)) 3-4
53 Logical difference (m + (d)) 3-4
54 Store (m + (d)) 3-4

*Note that the shorter time is taken in certain instructions
when d = 0.

**Though the execution time for this instruction in the Peripheral
and Control Processor is only 1 major cycle, a minimum of 2
major cycles is required to complete the Exchange operation in
Central Memory. Thus, Central Memory honors no requests
for access for a minimum of 2 major cycles during an Exchange
Jump.

B-15 Rev. B

TABLE B-4.. (Cont, d)

OCTAL
CODE NAME

TIME*
(MAJOR
CYCLES)

55 Replace add (m + (d)) 4-5
56 Replace add one (m + (d)) 4-5
57 Replace subtract one (m + (d)) 4-5

60 Central read from (A) to d min. 6
61 Central read (d) words 5 plus

from (A) to m 5/word
62 Central write to (A) from d min. 6
63 Central write (d) words 5 plus

to (A) from m 5 /word
64 Jump to m if channel d active 2
65 Jump to m if channel d inactive 2
66 Jump to m if channel d full 2
67 Jump to m if channel d empty 2

70 Input to A from channel d 2
71 Input (A) words to m 4 plus

from channel d 1 /word
72 Output from A on channel d 2
73 Output (A) words from m 4 plus

on channel d 1 /word
74 Activate channel d 2
75 Disconnect channel d 2
76 Function (A) on channel d 2
77 Function m on channel d 2

*Note that the shorter time is taken in certain instructions
when d = 0.

Rev. B B-16

Appendix C

NON-STANDARD FLOATING
POINT ARITHMETIC

.1

.J

~~11

NON-STANDARD FLOATING POINT ARITHMETIC

The following is a tabulation of operations (Add, Subtract, Multiply, Divide)using various

combinations of operands to supplement Table 3-3 (page 3-13). The key to operands and

results used in the table is as follows:

KEY:

OPERANDS RESULTS

+0 = 0000 X. . . X 0 = 0000 0...0

-0 = 7777 X. . .X IND = 1777 0...0

+c0 = 3777 X...X + co . 3777 0...0

- c0 = 4000 X. ..X -co = 4000 0. . .0

+IND = 1777 X.. .X

-IND = 6000 X...X

W

N

=

=

Any word except ± co

Any word except ± co

, ±IND

, ±IND, or ±0

ADD

Xi=Xj+Xk

(Instructions 30, 32, 34)

Xk

w + co - CO ±IND

Xj

W

cO +

- co

±IND

- +co

+c0

IND

- co

IND

- c0

IND

IND

IND

IND

SUB TRAC T

Xi=Xj-Xk

(Instructions 31, 33, 35)

Xk

W + co - co ±IND

Xj

W

+c0

- co

±IND

-

+c0

- c0

IND

- co

IND

- c0

IND

+c0

+c0

IND

IND

IND

IND

IND

IND

C-1 Rev. D

MULTIPLY

Xi=Xj *Xk

(Instructions 40, 41, 42)

Xk

+N - N +0 - 0 + co - c0 ±IND

+N - - 0 0 + 03 - c0 IND

- N - 0 0 - c0 + c0 IND

+0 0 0 IND IND IND

Xj - 0 0 IND IND IND

+ co + co - co IND

- c0 + c0 IND

±IND IND

DIVIDE

Xi=Xj)(lc

(Instructions 44, 45)

Xk

+N - N +0 - 0 + co - c0 ±IND

Xj

+N

- N

+0

- 0

+ co

- Co

±IND

-

-

0

0

+ CO

- CO

IND

-

-

0

0

- CO

+ co

IND

+ co

- co

IND

IND

+ OD

- CO

IND

- CO

+ c0

IND

IND

- co

+c0

IND

0

0

0

0

IND

IND

IND

0

0

0

0

IND

IND

IND

IND

IND

IND

IND

IND

IND

IND

Rev. A C -2

Appendix D

COMPASS MNEMONICS

ASCENT MNEMONICS

Each operation is defined by listing the mnemonic, each subfield, the octal representa-

tion of the operation, and the instruction length in bits. Instructions are listed in

order of octal operation value. An entry is given for each permissible variable field

format. In the operation field and variable field subfield notations, the following

symbology is used:

Xi, Xj, Xk X register symbols. The number of the register is
placed in the i, j, or k portion.

Ai, Aj, Ak A register symbols

Bi, Bj, Bk B register symbols

K address expression (18 bits)

n absolute address (6 bits)

Length Mnemonic Variable Field Octal

30 PS 0000 000000

30 RJ K 0100 K

30 REC Bj, K 011j K

30 WEC Bj, K 012j K

60 XJ 0130 000000
46000 46000

30 JP K 0200 K

30 JP Bj + K 020j K

30 ZR Xj, K 030j K

30 NZ Xj, K 031j K

30 PL Xj, K 032j K

30 NG Xj, K 033j K

30 IR Xj, K 034j K

30 OR Xj, K 035j K

30 DF Xj, K 036j K

30 ID Xj, K 037j K

30 ZR K 0400 K

30 EQ K 0400 K

30 EQ Bi, K 04i0 K

30 ZR Bi, K 04i0 K

D-1 Rev K

I

Rev K

Length Mnemonic Variable Field Octal

30 EQ Bi, Bj, K 041j K

30 NZ Bi, K 0510 K

30 NE Bi, K 0510 K

30 NE Bi, Bj, K 05ij K

30 PL Bi, K 0610 K

30 GE Bi, K 0610 K

30 GE Bi, Bj, K 06ij K

30 LE Bj, K 060j K

30 LE Bj, Bi, K 06ij K

30 NG Bi, K 0710 K

30 LT Bi, K 0710 K

30 LT Bi, Bj, K 07ij K

30 GT Bj, K 070j K

30 GT Bj, Bi, K 07ij K

15 BXi Xj l0ijj

15 BXi Xj * Xk llijk

15 BXi Xj + Xk 12ijk

15 BXi Xj - Xk 13ijk

15 BXi -Xk 14ikk

15, BXi -Xk * Xj 15ijk

15 BXi -Xk + Xj 16ijk

15 BXi -Xk - Xj 17ijk

15 LX1 n 20i n

15 AXi n 21i n

15 LX1 Bj, Xk, or Xk, Bj 22ijk

15 AXi Bj, Xk or Xk, Bj 23ijk

15 NXi Xk 2410k

15 NXi Bj, Xk or Xk, Bj 24ijk

15 ZXi Xk 2510k

15 ZXi Bj, Xk or Xk, Bj 25ijk

15 UXi Xk 2610k

15 UXi Bj, Xk or Xk, Bj 26ijk

15 PM. Bj, Xk or Xk, Bj 27ijk

15 FXi Xj + Xk 30ijk

15 FXi Xj - Xk 31ijk

D-2

Length Mnemonic Variable Field Octal

15 DXi Xj + Xk 32ijk

15 DXi Xj - Xk 33ijk

15 RXi Xj + Xk 34ijk

15 RXi Xj - Xk 35ijk

15 IXi Xj + Xk 36ijk

15 IXi Xj - Xk 37ijk

15 FXi Xj * Xk 401jk

15 RXi Xj * Xk 4lijk

15 DXi Xj * Xk 42ijk

15 MXi n 43i n

15 FXi Xj /Xk 44ijk

15 RXi Xj /Xk 45ijk

15 NO 46000

15 CXi Xk 47ikk

30 SAi Aj + K 501j K

30 SAi K 5110 K

30 SAi Bj + K 51ij K

30 SAi Xj + K 52ij K

15 SAi Xj 531j0

15 SAi Xj + Bk or Bk + Xj 53ijk

15 SAi Aj 541j0

15 SAi Aj + Bk or Bk + Aj 54ijk

15 SAi Aj - Bk or -Bk + Aj 55ijk

15 SAi Bj 561j0

15 SAi Bj + Bk 56ijk

15 SAi -Bk 5710k

15 SAi Bj - Bk or -Bk + Bj 57ijk

30 SBi Aj + K 60ij K

30 SBi K 6110 K

30 SBi Bj + K 611j K

30 SBi Xj + K 62ij K

15 SBi Xj 631j0

15 SBi Xj + Bk or Bk + Xj 63ijk

15 SBi Aj 641j0

15 SBi Aj + Bk or Bk + Aj 64ijk

D-3 Rev K

Length Mnemonic Variable Field Octal

15 SBi Aj - Bk or -Bk + Aj 65ijk

15 SBi Bj 66ij0

15 SBi Bj + Bk 66ijk

15 SBi -Bk 67i0k

15 SBi Bj - Bk or - Bk + Bj 67ijk

30 SXi Aj + K 70ij K

30 SXi K 71i0 K

30 SXi Bj + K 71ij K

30 SXi Xj + K 72ij K

15 SXi Xj 73ij0

15 SXi Xj + Bk or Bk + Xj 73ijk

15 SXi Aj 74ij0

15 SXi Aj + Bk or Bk + Aj 74ijk

15 SXi Aj - Bk or -Bk + Aj 75ijk

15 SXi Bj 76ij0

15 SXi Bj + Bk 76ijk

15 SXi -Bk 77 i0k

15 SXi Bj - Bk or -Bk + Bj 77ijk

Rev. H D-4

PERIPHERAL PROCESSOR MNEMONICS t

Machine Instruction Octal Value

PSN 0000

LJM M, d 01 dd MMMM

RJM M, d 02dd MMMM

UJN r 03rr

ZJN r 04rr

NJN r 05rr

PJN r 06rr

MJN r 07rr

SHN d lOdd

LMN d 11dd

LPN d 12dd

SCN d 13dd

LDN d 14dd

LCN d 15dd

ADN d 16dd

SBN d 17dd

LDC C 20CC CCCC

ADC C 21CC CCCC

LPC C 22CC CCCC

LMC C 23CC CCCC

PSN 2400

PSN 2 500

EXN d 260x

MXN d 261x

RPN d 270d

LDD d 30dd

ADD d 31dd

SBD d 32dd

LMD d 33dd

STD d 34dd

RAD d 35dd

AOD d 36dd

SOD d 37dd

tNotations: M = 12-bit address value, C = 18-bit address value, d = 6-bit index value,
r = value between -31 and +31

D-5 Rev K

Machine Instruction Octal Value

LDI d 40dd

ADI d 41dd

SBI d 42dd

LMI d 43dd

STI d 44dd

RAI d 45dd

AOI d 46dd

SOI d 47dd

LDM M, d 50dd MMMM

ADM M, d 51dd MMMM

SBM M, d 52dd MMMM

LMM M, d 53dd MMMM

STM M, d 54dd MMMM

RAM M, d 55dd MMMM

AOM M, d 56dd MMMM

SOM M, d 57dd MMMM

CRD d 60dd

CRM M, d 61dd MMMM

CWD d 62dd

CWM M, d 63dd MMMM

AJM M, d 64dd MMMM

IJM M, d 65dd MMMM

FJM M, d 66dd MMMM

EJM M, d 67dd MMMM

IAN d 70dd

IAM M, d 71dd MMMM

OAN d 72dd

OAM M, d 73dd MMMM

ACN d 74dd

DCN d 75dd

FAN d 76dd

FNC M, d 77dd MMMM

Rev. F D-6

Appendix E

CONTROL DATA 6415-7, 6415-8 AND 6415-9

CENTRAL COMPUTER SYSTEMS

CONTROL DATA 64XX-7, 64XX-8 and 64XX-9

DESCRIPTION

The Control Data® 64XX-7, 64XX-8, and 64XX-9* are three versions of the 6400

Computer System that are available with the following system configuration:

64XX-9 - Central Computer with ECS Coupler, nine PPU's, and eleven data

channels.

64XX-8 - Central Computer with ECS Coupler, eight PPU's, and ten data

channels.

64XX-7' - Central Computer with ECS Coupler, seven PPU's, and nine data

channels.

The PPU's and Data Channels removed for each system described above are illustrated

by Table E-1.

TABLE E-1. REMOVED PPU's AND DATA CHANNELS

SYSTEM PPU I S REMOVED DATA CHANNELS REMOVED

64XX- 7

6 4XX- 8

6 4XX - 9

5

6

6

7

7

7 5

6

6

7

7

7

DATA. CHANNEL STATUS

The Data Channels removed remain INACTIVE and EMPTY, and cannot be activated.

PERIPHERAL PROCESSING UNIT STATUS

The PPU's removed are referenced normally on Dead Start but exit from a 712 instruc-

tion during the first trip, when the INACTIVE condition is sensed on the.corresponding

Data Channel. The program address 00018 is then sent to the removed PPU's memory,

and all sevens are "read". The PPU then attempts to function Channel 77.

*These computers are available with memory sizes of 32K, 49K, 65K, 98K and 131K.

E-1 Rev K

APPENDIX F

CENTRAL EXCHANGE JUMP (CEJ) AND MONITOR EXCHANGE JUMP (MEJ)

CENTRAL MEMORY ACCESS PRIORITY (CMAP)

;

-

1

CENTRAL EXCHANGE JUMP (CEJ) AND MONITOR EXCHANGE JUMP (MEJ)

In CONTROL DATA 6000 Series Computer Systems, system functions are normally

handled by the Monitor located in a Peripheral and Control Processor. The Computer

Systems are equipped with certain hardware capabilities to effectively implement

Monitor activities in the Central Processor. Since the Central Processor can reference

Extended Core Storage directly for service routines, programs and data, a Central

Processor Monitor program to handle these and other functions is faster and more

efficient than a Monitor residing in a Peripheral and Control Processor.

The hardware elements which provide the essential capabilities for implementing a

Central Processor Monitor are described in the ensuing paragraphs.

MONITOR ADDRESS REGISTER

Contained in the Exchange Jump package (bits 36-53 of location "n+6") is an 18-bit

Monitor Address. Just as other Central Processor operational registers are loaded

during an Exchange operation, so is the Monitor Address register loaded with the

18-bit Monitor Address. This Monitor Address is the starting address of the Exchange

package for an ensuing Central Exchange Jump instruction (except when the Monitor

Flag bit is set; refer to the instruction description).

MONITOR FLAG BIT

The Central Processor has, in the Central Memory control section of the system,
a Monitor Flag bit. A. Master Clear (Dead Start) clears the Monitor Flag bit. Any

action thereafter on this bit is via the Monitor Exchange or the Central Exchange Jump

instructions. (There is no instruction with which to sample the status of this bit directly
and/or independently of these instructions.) The operation of this Monitor Flag bit is

described under the instruction descriptions.

F-1 Rev K

MONITOR AND CENTRAL EXCHANGE JUMP INSTRUCTIONS

Two instructions exist for Central Processor monitor implementation:

one executable by the Peripheral Processors; the other executable by the Central

Processor. These instructions are as detailed below.

Peripheral Processors

261 MXN Monitor Exchange Jump (12 bits)

7
F d . A

11 5 3 2 1

Not Used

0

(Dual CP Bit)

This instruction, typically used to initiate Central Processor Monitor activity, is a

conditional exchange jump to the Central Processor. If the Monitor Flag bit is clear,

this instruction sets the flag and initiates the exchange. If the Monitor Flag bit is set,

this instruction acts as a Pass instruction. The starting address for this exchange is

the 18-bit address held in the Peripheral Processor A register. (The Peripheral

Processor program must have loaded A with an appropriate address prior to executing

this instruction.) Note that this starting address is an absolute address. In the 6500

and 6700 this instruction is either 2610 (CPU-0) or 2611 (CPU-1).

Central Processor

013 XJ jK Central Exchange Jump (60 bits)

fmi j K Not Used

60 51 50 48 47 30 29

This instruction unconditionally exchange jumps the Central Processor, regardless

of the state of the Monitor Flag bit. Instruction action differs, however, depending

on whether the Monitor Flag bit is set or clear. Operation is as follows:

a) Monitor Flag bit clear. The starting address for the exchange is taken from

the 18-bit. Monitor Address register. Note that this starting address is an

absolute address. During the exchange, the Monitor Flag bit is set.

Rev K F-2

b) Monitor Flag bit set. The starting address for the exchange is the 18-bit

result formed by adding K to the contents of register Bj. Note that this

starting address is an absolute address. During the exchange, the Monitor

Flag bit is cleared.

Table 1 summarizes the operational differences between the normal Exchange Jump

instruction (260) and the Monitor and Central Exchange Jumps (261 and 013).

TABLE 1-1. EXCHANGE INSTRUCTION DIFFERENCES

INSTRUCTION
CONDITIONAL /

UNCONDITIONAL
OPERATIONAL DIFFERENCES

Effect on
Monitor Flag Bit

Location of Starting
Address for Exchange

260 (Normal Peri-
pheral Processor

Unconditional No effect on Flag Peripheral Processor
A Register

Exchange Jump)

261 (Peripheral Pro- Conditional Sets Flag Peripheral Processor
cessor Monitor (occurs only if A Register
Exchange Jump) Monitor Flag

bit is clear;
Passes if Flag is
set)

013 (Central Ex-
change Jump) with

Unconditional Sets Flag Central Processor
Monitor Address

Monitor Flag Bit
clear

Register

013 (Central Ex-
change Jump) with

Unconditional Clears Flag Address formed by
K+(Bj)

Monitor Flag Bit
set

F-3 Rev K

PROGRAMMING NOTES

1) The Exchange package is precisely as described under Access to Central

Memory in Section 4, with the single exception that bits 36-53 of location

"n+6" hold a Monitor Address. Note that any exchange (260, 261, or 013) to

that package will load the contents of location "n+6" into the Monitor Address

register (other operational registers are similarly loaded). Thus, any

ensuing 013 instruction using the contents of the Monitor Address register

as a starting address uses those contents as loaded.

2) The Exchange packages for entering the Central Processor Monitor should

usually have the Reference Address (RA) equal to 000000 and the Field Length

(FL) equal to Central Memory size.

3) Since the Monitor Flag bit cannot directly sampled, a program cannot directly

determine its state; hence, success in performing a Peripheral Processor

Monitor Exchange cannot readily be predicted. Further, program control

always is given to the next instruction, whether or not the Exchange is

honored. A method of determining whether the Monitor Exchange occurred is

as follows:

a) Set BO (bits 0-17 of location "n") in the Exchange package to 7777

b) Initiate the Monitor Exchange (261)

c) Read BO from the Exchange package in Central Memory. If the

Monitor Exchange was honored, BO in the Exchange package will

equal 000000. If the instruction passed, this location still holds

7777.

4) Different Exchange packages should be used for Central Processor exchanges

and Peripheral Processor exchanges. This aids software determination of

which of two jumps (Central or Monitor Exchange Jumps) was executed when

both were initiated at approximately the same time.

5) Simultaneous Exchange requests are resolved in favor of the Central Processor.

6) If either a 260 or 261 instruction is waiting to be honored when the Central

Processor issues an 013 K instruction, the 013 instruction is not executed

and the Peripheral Processor Exchange occurs. When control is returned

to the exchanged program (the interrupted program containing the 013jK

instruction), the 013jK instruction is re-issued and executed.

Rev K F-4

7) The state of the Monitor Flag bit has no effect on the operation of the normal

PP Exchange Junip (260); nor has this instruction any effect on the Flag.

ADDITIONAL PROGRAMMING NOTES FOR 6500 AND 6700

1. When one CPU is in monitor mode, a Monitor Exchange Jump to either CPU

will be aborted. Since the exchange was never started, the instruction is in

effect a pass.

2. When one CPU is in Monitor mode, a Central Exchange Jump from the second

CPU will hang until the first CPU's monitor flag is cleared.

3. If a regular exchange jump (2600) is executed with MEJ/CEJ instructions it

is possible to cause both Monitor Flags to set. This condition could cause

both CPU's to hang on CEJ instructions.

4. An ECS Transfer In Progress will block a Central Exchange Jump from

either CPU.

5. A Monitor Exchange Jump to a CPU that has an ECS Transfer In Progress is

allowed. A Monitor Exchange Jump to the other CPU, however, will be

aborted until the first CPU has completed the ECS transfer.

Items 4 and 5 above are consistent with the dual access concept of the 6500/6700

coupler, i. e., if one CPU is executing an ECS instruction, the other CPU is blocked

when doing any type of memory reference until the ECS transfer is complete. A

normal exchange jump to a CPU doing an ECS transfer will terminate the ECS trans-

fer and execute the exchange jump. A normal exchange jump to the other CPU will

be withheld until the ECS transfer is finished in the first CPU.

F-5 Rev K

CENTRAL MEMORY ACCESS PRIORITY (CMAP)

DESCRIPTION

Central Memory Access Priority (CMAP) provides a Peripheral Processor (PP)

which has been previously designated a Priority PP with the ability to interrupt ECS

transfers. CMAP also gives a PP, so designated, preference over non-priority PPs

in the execution of Central Read and Central Write instructions when ECS is inactive.

Priority status is assigned to a processor by setting bit (2
17

) of its A register. CMAP

is included with the 6700 and is available as a standard option for other 6000 Systems.

CMAP EFFECT ON ECS

Without CMAP, any PP requesting Central Memory interrupts an ECS transfer.

Because one PP request is honored for every ECS record, if several PP Central

Memory requests were to occur during an ECS transfer, they could reduce the trans-

fer rate significantly (A500K-ECS system by 75% and a 250K-ECS system by 50%; a

125K-ECS system would not be affected).

Besides a degraded transfer rate, a critically required PP request can experience

unreasonable delay, giving undesirable effects in the operation of various I/O drivers

and causing some jobs to run slower when ECS is active.

However, with CMAP, non-priority reads and writes are prevented from entering the

read and write pyramids while an ECS transfer is under way. Only priority requests

for Central Memory are enabled during an ECS transfer. Generally, only priority

requests are honored during an ECS TRANSFER but a few instances exist in which a

non-priority request is honored during an ECS transfer. These are described below.

It is possible to have non-priority reads or writes in progress at the time ECS becomes

active. Several non-priority writes could be trapped in the write pyramid or either

a non-priority read or a non-priority write could be hung up on the ECS coupler. A

read or write hung up in the coupler will be serviced during the ECS transfer.

Rev K F-6

Writes hung up in the write pyramid would not be serviced until the ECS transfer is

completed, or until a priority write comes up. Requests following these special cases

will be priority requests. One request (priority or non-priority) is honored per ECS

record.

The possibility also exists that a non-priority read or write could be in progress in

Central Memory Control at the time ECS becomes active. The existence of a request

in such a condition is allowed to interrupt ECS.

CMAP EFFECT ON PP READS AND WRITES WITH ECS INACTIVE

Priority Write

CMAP allows a PP to place a reservation for D1 during trip 620 or trip 633 of the

write instruction. This reservation is cleared during the 620 or 633 trip if D1 is

found available. The reservation keeps any non-priority write out of D1 and prevents

any non-priority read from setting Central Busy. The priority write, therefore,

should be serviced in a few major cycles (usec.).

Priority Read

CMAP allows a PP to place a reservation for C5 and Central Busy during the 612 trip

or the 600 trip of the read instruction. This reservation is cleared during the 612 or

600 trip if C 5 is empty and Central is not Busy. If it is not cleared, any non-priority

PP is prevented from setting Central Busy. The Priority read, therefore, should be

serviced within a few major cycles (usec.).

To provide the above capabilities, a change is required in the read pyramid.

Read Operation Before Modification

A Central Read instruction is normally executed when the following combination of

conditions occurs:

1. Central Busy FF is clear.

2. C5
(60-bit register) of the read pyramid is empty.

3. One additional register of the read pyramid (C1 - C4) is also empty, except

when doing a Block Read (61 instruction).

F-7 Rev K

Assume, for example, that PPO is doing a Block Read (61 instruction), PP1 is doing

a One Word Read (60 instruction), and PP2, PP3, PP4, and PF'5 are all doing Block

Reads. At a specific point in time, PPO is in C l , PP1 is in C2, PP2 is in C3, and

PP3 is in C4. PP4 cannot get into C 5 until one of the lower registers is empty, C5

is empty, and the Central Busy FF is clear. If PPO finds a conflict* during trip 617

of the Block Read instruction, the other PPs cannot advance until the next lower

pyramid register is empty. Using the above stated conditions, the PP at C
2

is execut-

ing a One Word Read and it must wait until PPO is finished. It should not have to wait

because it no longer requires Central Memory. Also, once PPO unloads C
1
, it has a

greater chance of re-entering C
5

before PP4 can. This means that One Word Read

instructions could be excessively delayed under some circumstances and that entrance

into the read pyramid is not a true random selection of all the PPs.

Read Operation After Modification

CMAP modifies the Read operations to provide all the PPs with an equal opportunity

for entry into the read pyramid. Using the conditions stated in Example A with PPO

in C
l

doing a Block Read, the possibility for conflict at trip 617 is eliminated. This

is accomplished by unconditionally unloading C
1

into the PP Memory whenever a

Block Read arrives at the 617 trip, regardless of the word count in Q. If the Block

Read is not complete and a Central Busy or C
5 conflict exists during the 617 trip, the

instruction is forced back to a 612 trip and an additional bit of K is set. This new bit

of K (termed a Flag bit) indicates to the Block Read that the forced 612 trip is not the

first iteration of the instruction. The status of the Flag bit causes the proper transfers

to take place during execution of the 612 portion of the instruction. The unconditional

unloading of C
1

eliminates the need for sensing an Empty condition in the next lower

register before advancing the trip count of the instruction. One Word Reads can thus

flow, without restriction, through the pyramid during disassembly. The Block Read

instructions function as before if no conflict is found at trip 617.

*Central Busy set or C
5

full; however in this example only a Central Busy condition
caused by a Central Processor request or an Exchange Jump would apply.

Rev K F-8

A register,
Central Processor, 3-6, 3-7
Peripheral Processor, 4-8

Absolute memory address, 2-3
Access to the Central Processor, 4-34
Adders, Peripheral and Control Processors, 4-4
Address,

absolute, 2-3
Central Memory, 2-1
modes, 4-6
program, 3-8
relative, 2-3
reference, 2-2

Arithmetic,
fixed point, 3-21
floating point, 3-15

Arithmetic unit, 3-1
Augmented Input/Output Buffer and Control, A-1

systems configuration, A-2, A-3
instructions, A-4

INDEX
output, 4-30, 4-38

B register, Central Processor, 3-6
Barrel, 4-4

registers, 4-8
Banks, Central Memory, 2-1
Block transfer, 4-2, 4-29, 4-30, 4-32, 4-33, 4-34
Branch instructions, 3-43

Central Memory, 1-2
access, 2-1, 4-32
address format, 2-1
characteristics, 1-6
map, 2-3
organization, 2-1
protection, 2-2
read, 4-32
write, 4-33

Central Processor, 1-1, 1-2
characteristics, 1-4
comparisons in 6000 Series, 3-1
Exchange Jump, 3-9
Exit mode, 3-11
fixed point arithmetic, 3-21
floating point arithmetic, 3-15
functional units, 3-4
instruction descriptions, 3-22
instruction execution times, B-6
instruction formats, 3-4
operating registers, 3-2, 3-6
organization, 3-1
programming, 3-3, 3-4
timing notes, B-9

Clock, see Real-Time Clock
Coefficient, 3-15, 3-16, 3-35
Concurrency, 1-2
Console, see Display Console

Data,
distributor, 2-2
input, 4-37
output, 4-38

Data Channels, 1-6, 4-35
active/inactive, 4-31, 4-36
full/empty, 4-28, 4-36
input, 4-29, 4-37

word rate, 4-36
Data Channel Converter, 1-3
Dead start panel, 6-1

photograph, 6-3
Disk System, 1-3
Display Console, 1-3, 6-1, 6-4

characteristics, 1-7
photograph, 6-5
sample display, photograph, 6-6

Dot mode, 6-4
Double precision, 3-16

Exchange Jump, 2-3, 3-3, 3-9, 3-51, 5-1
instruction, 4-34
package, 3-9

Exit mode, 3-11, 5-2
table, 3-13

Exponent, 3-15, 3-16, 3-35
Extended Core Storage, instructions, 3-46

Field Length, 2-3, 3-9, 3-47, 3-48
Fixed point arithmetic, 3-21, 3-22

instructions, 3-28
Flags, 4-2, 4-36
Floating point arithmetic, 3-15

converting integers to floating format, 3-19
instructions, 3-37
non-standard, C-1
overflow and underflow conditions, 3-19, 3-20

Functional units, Central Processor, 3-5

Hopper, 2-2

Indefinite forms, 3-17, 3-18, 3-19
see also Floating Point Arithmetic, non-

standard, C-1
Input/Output, 4-2, 4-25

channels, 4-2
see also Data Channels

data flow, 4-1
data input, 4-37
data output, 4-38

Interrupt, 5-1
hardware provisions, 5-1

Instructions, Central Processor,
Branch, 3-43, 3-44, 3-45
execution, 3-3
execution times, B-6
Extended Core Storage, 3-46
fixed point arithmetic, 3-21
floating point, 3-37, 3-38, 3-39, 3-40, 3-41, 3-42
formats, 3-4, 3-5
Increment, 3-24, 3-25, 3-26
Logical, 3-29, 3-30, 3-31, 3-32
Mask, 3-36
No Operation, 3-23
Normalize, 3-34
Notes on timing, B-9
Pack, 3-36
Program Stop, 3-23
Round and Normalize, 3-34
Shift, 3-32, 3-33

Index - 1 Rev. F

INDEX

Stack, 3-4, 3-10
Unpack, 3-35

Instructions, Peripheral and Control Processors,
access to Central Memory, 4-32, 4-33, 4-34
Arithmetic, 4-13, 4-14, 4-15, 4-16
Branch, 4-22, 4-23, 4-24
Central Processor and Central Memory, 4-24, 4-25

4-26, 4-27
Data Transmission, 4-11, 4-12, 4-13
execution times, B-14
formats, 4-6
input/output, 4-27, 4-28, 4-29, 4-30, 4-31, 4-32,

4-35
Logical, 4-16, 4-17, 4-18, 4-19
No Operation, 4-10
Replace, 4-19, 4-20, 4-21, 4-22
Shift, 4-16

Instruction execution times, B-1, B-9
Central Processor table, B-6
Peripheral and Control Processor table, B-14

Jump, see Branch

K register, Peripheral and Control Processor, 4-9
Keyboard input, 6-4

Magnetic tape transport, 1-3
Manual control, 6-1
Mass memory, see Extended Core Storage
Mnemonics,

Compass, D-1
Peripheral Processor, 4-10
Central Processor, 3-23

Mode,
Dot (system console), 6-4
Exit, 3-11

Modes, address (Peripheral Processor), 4-6

Normalizing, 3-16, 3-34

Operands,
examples of, 3-25
indefinite, 3-16
infinite, 3-16

Output, 4-38

P register,
Central Processor, 3-8
Peripheral and Control Processor, 4-9

Peripheral and Control Processors, 1-1, 1-2, 1-3
access to Central Memory, 4-32
adders, 4-4
address modes, 4-6
barrel, 4-4

Rev. F Index - 2

characteristics, 1-5
input/output, 4-35
input/output (I/O) channels, 4-2
instruction descriptions, 4-10
instruction formats, 4-6
organization, 4-1
programming, 4-4
real-time clock, 4-3, 4-39
registers, 4-8
slot, 4-4

Program Address register,
Central Processor, 3-8
Peripheral and Control Processor, 4-9

Programs, Central Processor, 3-3
Pyramid,

read, 4-5, 4-32
write, 4-5, 4-33

Q register, Peripheral and Control Processor, 4-9

Range definitions, 3-17
Range faults, 2-3
Real-time clock, 4-3, 4-39
Reference address, 2-2
Registers, Central Processor

address (A), 3-2, 3-6, 3-7, 3-9
increment (B), 3-2, 3-6, 3-7, 3-9
operand, 3-2, 3-6, 3-7, 3-9
Program Address (P), 3- 8

Registers, Peripheral and Control Processors,
arithmetic (A), 4-8
K register, 4-9
Program Address (ID), 4-9
Q register, 4-9

Relative memory address, 2-3
Reservation Control,

Register, B-13
Rounding, 3-16

Satellite Coupler, 1-3
Single precision, 3-16
Slot, 4-4
Status channel and equipment, 5-1

, 'Stops, Central Processor,
flow chart, 3-14
illegal packing (6400), 3-6

Stunt box, 2-1
System, computer,

characteristics summary, 1-4, 1-5, 1-6, 1-7
description, 1-1
hardware options, 1-8

Tags, 2-2

X register, Central Processor, 3-6, 3-7

COMMENT SHEET

MANUAL TITLE CONTROL DATA 6400/6500/6600/6700 COMPUTER SYSTEMS

Reference Manual

F
O

R
M

 C
A

2
3
1
 R

E
V

.I
-6

7

PUBLICATION NO 60100000 REVISION K

FROM: NAME'

BUSINESS
ADDRESS'

COMMENTS:
This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual.. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FOLD FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

8100 34TH AVENUE SOUTH

MINNEAPOLIS, MINNESOTA 55440

ATTN: TECHNICAL PUBLICATIONS DEPT.
PLANT TWO

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

FOLD FOLD

I
1

•
•
•'
•
•
•
•
•

•
•

•
•
•
•
•
•
•
•
•

INDEX TO PERIPHERAL AND CONTROL PROCESSOR INSTRUCTIONS

OCTAL
CODE

NINE-
MONIC

AD-
DRESS

NUMERICAL

NAME PAGE
NINE-
MONIC

OCTAL AD-
CODE DRESS

ALPHABETICAL

NAME PAGE

00 PSN Pass 4-10 ACN 74 d Activate channel d 4-31

01 LJM nod Long jump to m + (d) 4-24 ADC 21 don Add dm 4-15

02 RJM and Return jump to no + (d) 4-24 ADD 31 d Add (d) 4-14

03 UJN d Unconditional jump d 4-22 ADI 41 cl Add ((d)) 4-14

04 ZJN d Zero jump d 4-22 ADM 51 nod Add (no + (d)) 4-15

05 NJN d Nonzero jump d 4-23 ADN 16 Add d 4-13

06 PJN d Plus jump d 4-23 AJM 64 md Jump to no if channel d active 4-27

07 NUN d Minus jump d 4-23 AOD 36 Replace add one (d) 4-19

10 SHN d Shift d 4-16 A01 46 d Replace add one ((d)) 4-20

11 LMN d Logical difference d 4-16 AOM 56 md Replace add one (m (d)) 4-21

12 LPN d Logical product cl 4-17 CRD 60 Central read from (A) to d 4-25

13 SCN d Selective clear d 4-17 CRM 61 md Central read (d) words from (A) to m 4-25

14 LDN d Load cl 4-11 CWD 62 Central write to (A) from d 4-26

15 LCN d Load complement cl 4-11 CWM 63 nod Central write (d) words to (A) from m 4-27

16 ADN d Add d 4-13 DCN 75 d Disconnect channel d 4-31

17 SBN Subtract d 4-14 EJM 67 and Jump to m if channel d empty 4-28

20 LDC dm Load dm 4-12 E.XN 26 Exchange jump 4-24

21 ADC dm Add dm 4-15 FAN 76 Function (A) on channel d 4-32

22 LPC dm Logical product dm 4-18 FJM 66 and Jump to m if channel d full 4-28

23 LMC dm Logical difference dm 4-18 FhIC 77 and Function m on channel d 4-32

24 PSN Pass 4-10 LAM 71 and Input (A) words to m from channel d 4-29

25 P518 Pass 4-10 IAN 70 d Input to A from channel d 4-29

26 EXN Exchange jump 4-24 IJM 65 md Jump to m if channel d inactive 4-28

261, MXN Monitor Exchange jump F-2 LCN 15 cl Load complement d 4-11
27 RPN Read program address 4-25 LDC 20 dm Load dm 4-12

30 LDD Load (d) 4-11 LDD 30 Load (d) 4-11

31 ADD Add (d) 4-1-1 LDI 40 Load ((d)) 4-12

32 SBD Subtract (d) 4-14 LDM 50 and Load (m + (d)) 4-13

33 LIVID d Logical difference (d) 4-17 LDN 14 Load d 4-11

34 STD d Store (d) 4-11 LJNI 01 nod Long jump to m + (d) 4-24

35 RAD d Replace add (d) 4-19 LMC 23 dm Logical difference dm 4-19

36 AOD d Replace add one (d) 4-19 LMD 33 d Logical difference (d) 4-17
37 SOD d Replace subtract one (d) 4-20 LAB 43 d Logical difference ((d)) 4-10

40 LOS d Load ((d)) 4-12 LMM 53 md Logical difference (m + (d)) 4-19

41 ADI d Add ((d)) 4-14 LAIN 11 Logical difference d 4-16

42 SBI d Subtract ((d)) 4-15 LPC 22 dm Logical product dm 4-18

43 LMI Logical difference ((c1)) 4-18 LPN 12 d Logical product d 4-17

44 STI Store ((d)) 4-12 MJN 07 Minus jump d 4-23

45 RIO Replace add ((d)) 4-20 MXN 261, Monitor Exchange jump F-2

46 A01 d Replace add one ((d)) 4-20 NJN 05 Nonzero jump d 4-23

-17 SOI d Replace subtract one ((d)) 4-21 OAM 73 md Output (A) words from m on channel d 4-30

50 LDM• nod Load (m + (d)1 4-13 OAR 72 Output from A on channel d 4-30

51 ADM md Add (no + (d)) 4-15 PJN 06 Plus jump d 4-23

52 SBM and Subtract (m + (d)) 4-16 PSN 00 Pass 4-10

53 LMM and Logical difference (m + (d)) 4-19 PIN 24 Pass 4-10

54 STM md Store (m + (d)) 4-13 PSN 25 Pass 4-10

55 RAM and Replace add (m + (d)) 4-21 RAD 35 Replace add (d) 4-19

56 AOM an d Replace add one (m + (d)) 4-21 RAI 45 Replace add ((d)) 4-20

57 . SOM md Replace subtract one (no + (d)) 4-22 RAM 55 nod Replace add (m + (d)) 4-21

60 CRD Central read from (A) to d 4-25 R.TM 02 md Return jump to M + (d) 4-24

61 CHM and Central read (d) words from (A) to m 4-25 RPN 27 Read program address 4-25

62 CWD Central write to (A) from d 4-26 SBD 32 Subtract (d) 4-14

63 CWM md Central write (d) words to (A) from m 4-27 SRI 42 cl Subtract ((d)) 4-15

64 AJNI and Jump to m if channel d active 4-27 SBM 52 md Subtract (m + (d)) 4-16

65 IJM md Jump to rn if channel d inactive 4-25 SON 17 Subtract d 4-14

66 FJAI and Jump to m if channel d full 4-28 SCR 13 Selective clear d 4-17

67 EJM md •Jump to m If channel d empty 4-28 SHN 10 Shift d 4-16

70 IAN d Input to A from channel cl 4-29 SOD 37 Replace subtract one (di 4-20

71 LAM md Input (A) words to m from channel d 4-29 SOI 47 Replace subtract one ((cD) 4-21

72 OAN d Output from A on channel cl 4-30 SONI 57 and Replace subtract one (m + (dl) 4-22

73 OAM md Output (A) words from no on channel d 4-30 STD 34 Store (d) 4-11

74 ACE d Activate channel d 4-31 STI 44 Store ((4)) 4-12

75 DCN d Disconnect channel 4-31 STM 54 nod Store (m + (d)) 4-13

76 FAN d Function (A) on channel d 4-32 UJN 03 Unconditional jump d 4-22

77 ENC an d Function m on channel cl 4-32 ZJN 04 Zero jump d 4-22

, Included in 6700 or those Systems having the applicable Standard Options.

Rev K

•
•
•

•

•

•
•

1
•

CONTROL DATA
CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN. 55420
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

LITHO IN U.S.A.

•
•

•
•

•
•
•
•
•

