60499500

(GB) CONTROL DATA

NETWORK PRODUCTS

NETWORK ACCESS METHOD
VERSION 1

HOST APPLICATION PROGRAMMING
REFERENCE MANUAL

cDC® OPERATING SYSTEM:
NOS 2

REVISION RECORD

Revision

(12/01/76)
(04/01/77)
(07/01/77)
(04/28/78)

OO w >

(08/15/78)
(12/18/78)
(01/15/79)
(08/10/79)

== IR]

&

(12/11/79)
K (04/18/80)

L (10/31/80)

M (05/29/81)

N (02/26/82)

P (01/14/83)

R (09/30/83)

S (09/19/84)

T (09/30/85)

U (12/16/85)
Vv (07/31/86)

W (04/23/87)

Description

Original Release. PSR level 439.

Revised to PSR level 446 for technical corrections.

Revised to PSR level 452 for technical corrections.

Completely revised for NAM Version l.1 release at PSR level 472 to include support of
remote and foreign NPUs, asynchronous and HASP TIPs, virtual terminals, IAF, and TVF.

Revised at PSR level 477 for technical corrections.

Revised at PSR level 485 for technical corrections.

Revised at PSR level 485 for additional technical corrections.

Revised to reflect release of NAM Version 1.2. Included are descriptions of the binary
debug log file and postprocessor, special editing support, and QTRM.

Revised to reflect addition of connection duplexing, upline block truncation, block
header break markers, QTRM connection switching, and various technical corrections.

Revised at PSR level 517 to reflect the addition of 714 printer support, and various
technical corrections.

Revised at PSR level 528 to reflect the addition of QIRM support of application—to-
application connections, the user-interrupt capability, and various technical
corrections.

Revised for NAM Version 1.3 release at PSR level 541 to include 2780/3780 terminal
support, changes to supervisory messages, PRU interface, and various techaical
corrections. ,

Revised at PSR level 559 to reflect release of NAM Version 1.4, which supports NOS
Version 2.0 and includes the disable flag parameter on the LST/HDX/R supervisory
message and miscellaneous technical corrections.

Revised at PSR level 580 to reflect release of NAM Version 1.5 and CCP Version 3.5, which
run only under the NOS Version 2 operating system. This manual, which was previously
known as the NAM Reference Manual, is no longer applicable to products operating under
NOS 1. 1It has been reorganized to document information needed by a general networks
user, who must consider NAM as well as CCP when writing a network application. This is
a complete reprint.

Revised at PSR level 596 to reflect release of NAM Version 1.6 and CCP Version 3.6,
supporting multiple-host networks. This is a complete reprint.

Revised at PSR level 617 to reflect release of NAM Version 1.7 and CCP Version 3.7 to
document support of a 3270 bisynchronous terminal class and miscellaneous technical
corrections.

Revised at PSR level 642 to reflect release of NAM Version 1.8 and CCP Version 3.8. This
manual was previously known as the NAM Version 1/CCP Version 3 Host Application
Programming Reference Manual. Miscellaneous technical changes are included.

Revised at PSR level 647 to reflect release of NAM Version 1.8, CCP Version 3.8, and
CDCNET Version 1.0. Miscellaneous technical corrections are included.

Revised at PSR level 664 to reflect release of NAM Version 1.8, CCP Version 3.8, and
CDCNET Version l.1. Miscellaneous technical corrections are included.

Revised at PSR level 678 to reflect release of NAM Version 1.8, CCP Version 3.8, and

CDCNET Version 1.2.

REVISION LETTERS I, O, Q, AND X ARE NOT USED

©COPYRIGHT CONTROL DATA CORPORATION
1976, 1977, 1978, 1979, 1980, 1981,
1982, 1983, 1984, 1985, 1986, 1987

All Rights Reserved

Printed in the United States of America

1i

Miscellaenous technical corrections are included.

Address comments concerning this manual to:
CONTROL DATA CORPORATION
Technology and Publications Division
P. 0. BOX 3492
SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this manual

60499500 W

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revision Page Revision

Front Cover - 3-29 v 6-17 R
Title Page - 3-30 v 7-1 thru 7-15 R
ii W 3-30.1 v 7-16 T
iii/iv W 3-30.2 v 7-17 thru 7-24 R
v \' 3-31 v 7-25 T
vi U 3-32 thru 3-44 T 7-26 thru 7-38 R
vii/viii \Y 3-45 v 8-1 R
ix thru xii v 3-46 v 8-2 thru 8-12 v
xiii/xiv v 3-47 thru 3-50 T 8-13 W
XV T 3-51 thru 3-53 v 8-14 thru 8-34 \
1-1 R 3-54 thru 3-57 T 8-34.1 v
1-2 thru 1-6 U 3-58 v 8-34.2 v
1-7 v 3-59 v 8-34,3/8-34.4 v
1-8 v 3-60 U 8-35 thru 8-66 T
1-8.1 U 3-61 W A-1 thru A-3 R
1-8.2 U 3-62 thru 3-68 v A-4 S
1-9 thru 1-14 T 3-68.1 thru 3-68.6 v A-5 thru A-19 R
2-1 U 3-69 thru 3-79 U A-20 thru A-23 S
2-2 R 3-30 \Y A-24 thru A-32 T
2-3 R 3-81 U A-33 thru A-36 R
2-4 T 4-1 R A-37 T
2-5 R 4-2 R A-38 T
2-6 T 4-3 W A-39 S
2-7 R 4=4 w A-40 thru A-46 R
2-8 T 4-4,1/4-4.2 w A=47 S
2-9 R 4=5 thru 4-10 \' A=48 R
2-10 U 4-10.1 v B~-1 w
2-11 T 4~10.2 Y B-2 w
2~12 thru 2-14 S 4-11 thru 4-15 T B-2.1/B-2,2 \
2-15 thru 2-18 U 4-16 v B-3 T
2-19 v 4-17 thru 4-19 T B-4 T
2-20 U 5-1 R B-~5 v
2-21 S 5=2 \ B-6 v
2-22 thru 2-25 T 5-3 W B-7 thru B-9 T
2-26 W 5-4 R C-1 thru C-13 i
2-27 T 5-5 R D-1 v
2-28 W 5-6 T D-2 \')
2-29 T 5-7 thru 5-11 R Index=-1 thru -6 \
2-30 thru 2-33 w 5-12 T Comment Sheet/Mailer W
2-34 Y 5-13 R Back Cover -
2-35 U 5-14 T

2=-36 thru 2-39 T 5-15 T

3-1) 5-16 R ’
3-2 thru 3-6 v 5-17 T

3-7 thru 3-10 U 6-1 T

3-11 \' 6-2 \

3-12 v 6-3 T

3-12.1/3-12.2) 6—4 T

3-13 thru 3-16 T 6-5 S

3-17 v 6-6 S

3-18 thru 3-21 T 6-7 R

3-22 \ 6-8 R

3-23 W 6-9 T

3-24 W 6-10 W

3-25 T 6-11 R

3-26 v 6-12 A

3-27 W 6~13 thru 6-15 R

3-28 W 6-16 v

60499500 W . 1ii/3v

PREFACE

“

This manual supplies reference information to
Network Access Method (NAM) Version 1.8, Communi-
cations Control Program (CCP) Version 3.8, and
CDCNET Version 1.2 wusers, typically either pro—
grammers or analysts who are writing a network
application or who would like to learn more about
how the various portions of the network fit
together.

This manual describes how application programs
interface to the computer network. The NAM 1/CCP 3
Terminal Interface reference manual describes how
the terminal user gains access to these applica-
tions. Also, this manual familiarizes the reader
with the network processing unit (NPU) and the
Communications Control Program (CCP). Knowledge of
the NPU and CCP, however, is not necessary to write
an application program.

NAM operates under coantrol of the NOS 2 operating
system for the CONTROL DATA® CYBER 180 Computer
Systems; CYBER 170 Computer Systems; CDC® CYBER 70
Computer System models 71, 72, 73, and 74; and 6000
Computer Systems.

NAM is the subset of the host computer software
that provides communication between an application
program in the host computer and other applica-
tion programs or devices accessing the network”s
resources.

The Communications Control Program is software that
resides in a 255x series network processing unit
that allows a device to access the host computer
over communications.lines.

CDCNET is the collection of compatible hardware and
software products offered by CDC to interconnect
computer resources into distributed communications
networks.

The following manuals are of primary interest:

Publication

CDCNET Conceptual Overview Manual

CDCNET Configuration and Site Administration Guide

CDCNET Reference Manual

CDCNET Systems Programmer”s Reference Manual

Volume 1, Base System Software

AUDIENCE FOR THIS MANUAL

This manual is directed at a programmer or analyst
who is familiar with subsystem applications pro—
gramming, compiler and assembler prugramming
conventions, terminal communication protocols,
other network software products, and the program—
ming requirements of supported devices.

ORGANIZATION

Section 1 introduces the NAM, CCP, and CDCNET soft—
ware. Section 2 describes the protocols governing
information exchanged for communication between NAM
and -each application program, and between appli-
cation programs and their connections. Section 3
describes the synchronous and asynchronous super—
visory messages wused by application programs.
Section 4 describes the language and internal
interfaces required by an application program.
Section 5 discusses the application interface pro-
gram statements used by NAM to access the network
and to send and receive messages. Section 6 dis—

‘cusses the structure and execution of an applica—

tion program job as a batch or system origin type
file. Section 7 contains a FORTRAN program using
AIP; section 8 describes QTRM.

RELATED PUBLICATIONS

Related material is contained in the publications
listed below. Other manuals wmay be needed, such as
the hardware, firmware, or emulator software refer—
ence manual for. the devices serviced by a given
program. Also, communication standards and device
operating literature can be useful.

The NOS System Information Manual 1is an online
manual that includes brief descriptions of all NOS

and NOS product manuals. To access this manual,
log in to NOS and enter the command EXPLAIN.

Publication
Number

60461540
60461550

60460590

60462410

CDCNET Systems Programmer”s Reference Manual Volume 2,

Network Management Entities and Layer

Interfaces

60462420

CDCNET Systems Programmer”s Reference Manual Volume 3,

Network Protocols

60499500 V

60462430

The following

Publication

CDCNET Systems Programmer”s Reference Manual Volume 4,

Terminal Interface Programs

CDCNET Terminal Interface Usage Manual

Network Products

Network Access Method Version 1
Network Definition Language
Reference Manual

Network Products
Network Access Method Version 1/

Communications Control Program Version 3
Terminal Interfaces Reference Manual

NOS Version 2 Reference Set, Volume 1
Introduction to Iateractive Usage

NOS Version 2 Reference Set, Volume 3

System Commands

NOS Version 2 Reference Set, Volume 4

Program Interface

manuals are of secondary ianterest:

Communications Control Program Version 3

Diagnostic Handbook

COMPASS Version 3
Reference Manual

COBOL

Version 5

Reference Manual

CYBER
Build

CYBER
Macro

CYBER
Micro

CYBER

Cross System Version 1
Utilities Reference Manual

Cross System Version 1
Assembler Reference Manual

Cross System Version 1
Assembler Reference Manual

Cross System Version 1

PASCAL Reference Manual

FORTRAN Version 5
Reference Manual

Hardware Performance Analyzer (HPA)

User Reference Manual

Message Control System Version 1
Reference Manual

NOS Version 2
Diagnostic Index

NOS Version 2
Installation Handbook

NOS Version 2
Administration Handbook

NOS Versiom 2
Operations Handbook

Publication

60462440

60461530

650480000

60480600

60459660

60459680

60459690

Publication

Number

60471500

60492600

60497100

60471200

96836500

96836400

96836100

60481300

60459460

60480300

60459390

60459320

60459840

60459310

60499500 U

60499500 V

Publication

NOS Version 2
Analysis Handbook

Network Products
Remote Batch Facility Version 1
Reference Manual

TAF Version 1
Reference Manual

2551-1, 2551-2, 2552-2 Network Processor
Unit Hardware Reference Manual

2560 Series Synchronous Communications
Line Adapter Hardware Maintenance Manual

2561 Series Asynchronous Communications
Line Adapter Hardware Maintenance Manual

2563 Series SDLC Line Adapter
Hardware Maintenance Manual

Publication
Number

60459300

60499600

60459500

60472800

74700700

74700900

74873290

Sites within the United States can order CDC manuals from Control
Data Corporation, Literature and Distribution Services, 308 North

Dale Street, St. Paul, Minnesota 55103.

Other sites can order CDC manuals by contacting the local country

sales office.

This product 1is intended
described in this document.

use only as

Control Data can—

not be responsible for the proper functioning
of undescribed features or parameters.

If you have access to SOLVER, the CDC online facility for reporting problems, you

can use it to submit comments about this manual.

When SOLVER prompts you for a

product identifier for your report, please specify NAS.

vii/viii

CONTENTS

NOTATIONS

1. NETWORK PRODUCTS: AN OVERVIEW
Computer Network
Communications Network
Services Network
Software Components of the Network
Network Access Method
Peripheral Interface Program
Network Interface Program
Application Interface Program
Queued Terminal Record Manager
Network Definition Language Processor
Network Supervisor
Communication Supervisor
Network Validation Facility
Network Utilities
Network Dump Analyzer
Load File Generator
Debug Log File Processor
Hardware Performance Analyzer
NAM Application Programs
CDC CYBER Cross System Software
Network Processing Unit and Communications
Control Program
Network Processing Unit
Communications Control Program
Base System Software
Svstem Autostart Module
Service Module
Host Interface Program
Terminal Interface Program
Link Interface Program
Block Interface Program
In-Line and On-Line Diagnostics
NPU Console Debugging Aids
Performance and Statistics Programs
Device Interfaces and CDCNET
Base System Software
Layer Software
Interface Software and Gateways
Network Management Software
Device Interfaces
The Packet Switching Network (PSN)
NAM Concepts
Virtual Terminals
Logical Connections
Owning Consoles
Network Access Method Operation
Application Program Concepts
Connection Processing Flow
Supported Terminals

2. INFORMATION PROTOCOLS

Information Flow
Structure Protocols
Physical Protocols and Network Blocks
Logical Protocol and Physical Blocks
Network Data Blocks
Transmission Blocks
Interactive Terminal Input Concepts
Line Mode Operation

60499500 V

—
i
—

._.._...._.._.._._,,.........._._.._.._.._.,_.T._......_.
] L T O T USRURRL
NNNNNOOOOIUL U UUNNDND N -

USSR .

r—i—‘HHH'—P—‘P—'D—-P‘F—F—TP‘P—-D‘P—‘)—‘P—iD‘F—F—HF—'
= = O WO O 00 G0 00 0o 0O 0O 0o 0O 00 OO OO GO 0O 00 OO O O o
.
RN RONR RN RN - - -

<

.

.

(=]

—
t
—_
—

1-11
1-11
1-14

N
i
—

1 [
P N e

NNNNIT)NNN

Block Mode Operation
Physical and Logical Lines
End-of-Line Indicators

Multiple Logical Lines in One Message

End-of-Block Indicators
Interactive Terminal Output Concepts
Batch Device Data
Application~to-Application Input and

Output Concepts
Information Identification Protocols
Application Program Message Types
Application Block Types
Block Buffer Areas

Block Header Area

Block Text Area
Connection Identifiers

Application Connection Number

Application List Number

Data Message Content and Sequence Protocols
Interactive Virtual Terminal Data
Line Turnaround Convention
Interactive Virtual Terminal Exchange
Modes
Normalized Mode Operation
Upline Character Sets and Editing
Modes

Downline Character Sets

Page Width and Page Length

Format Effectors

Transparent Mode Operation
Application-to—-Application

Connection Data

Application Character Types
Character Byte Content

Block Header Content

Supervisory Message Content and Sequence
Protocols

Asynchronous Messages

Synchronous Messages

Block Header Content

3. SUPERVISORY MESSAGES

Message Mnemonics
Message Sequences
Managing Logical Connections
Connecting Devices to Applications
Connecting Applications to Applications
Monitoring Connections
Terminating Connections
Managing Connection Lists
Controlling List Polling
Controlling List Duplexing
Controlling Data Flow
Monitoring Downline Data
Controlling or Bypassing Upline and
Downline Data
Discarding Upline and Downline Data
on Application~to—Application
Connections
Discarding Downline Data on
Device-to—-Application Connections
Discarding Upline and Downline
Data on a Device-to-
Application Connection

2-4
2=5
2=5
2-5
2-6
2-7
2-7

2-7
2-7
2-7
2~7
2~8
2-8
2~-8
2=9
2-9
2=9
2=1
2-1
2=1

2-1
2=-1

2-1
2-1
2-1
2=-1
2-1

2-2
2=2
2=-2
2=2

2-2
2-3
2=3
2-3

3-1
3-1
3-5
3-5
3-1
3-2
3-3
3-3
3-3
3-3
3-3
3-3

3-4

3-4

3-4

3-4

0
[¢]
1

1
1

2
4
4
4
9

3
3
5
5

5
6
6
6

6
9
0.1
1
1
2
5
6

2

2
3

3

ix

Bypassing Downline Data on an
Application~to-Application
Connection

Terminal Use of User Interrupts for
Priority Data
Controlling Upline Block Content
Converting and Repacking Data
Repacking Synchronous Supervisory
Message Blocks

Exchanging Transparent Data With Devices :

Truncating Upline Blocks
Managing CCP Device Characteristics
Changing CCP Device Characteristics
Effects of Changing Terminal Class
on CDCNET
Requesting CCP Device Characteristics
Changing CDCNET Terminal Characteristics
Converting Attributes
Requesting CDCNET Terminal
Characteristics
Host Operator Commands
Host Operator Interface
Host Shutdown
Error Reporting

4. USER PROGRAM INTERFACE DESCRIPTIONS

Language Interfaces
Parameter List and Calling Sequence
Requirements
Predefined Symbolic Names
Predefied Symbolic Values
COMPASS Assembler Language
Application Interface Program
Macro Call Formats
Field Access Utilities
Compiler-Level Languages
Application Interface Program
Subroutine Call Formats
Field Access Utilities
Queued Terminal Record Manager
Utilities
Internal Interfaces
Application Interface Program and
Network Interface Program Communication
Worklist Processing
Parallel Mode Operation
Other Software Communication

5. APPLICATION INTERFACE PROGRAM
CALL STATEMENTS

Syntax
Network Access Statements
Connecting to Network (NETON)
Disconnecting From Network (NETOFF)
Network Block Input/Output Statements
Specific Connections
Inputing to Single Buffer (NETGET)
Inputing to Fragmented Buffer
Array (NETGETF)
OQutputing From Single Buffer
(NETPUT)
Outputing From Fragmented Buffer
Array (NETPUTF)
Connections on Lists
Inputing to Single Buffer (NETGETL)
Inputing to Fragmented Buffer
Array (NETGTFL)

3-45

3-46
3-47
3-47

3-49
3-50
3-50
3-51
3-53

3-63
3-63
3-65
3-68.1

3-68.4
3-69
3-73
3-78
3-79

4=2
4-11
4-12

4-12
4-12

4-14
4-16

4-16
4-16
4-17
4-17

5-1
5-1
5-1
5-4
5-4
5-4
5-4

5-8
5-10
5-10

5-12

Processing Control Statements

Suspending Processing (NETWAIT) 5-14
Controlling Parallel Mode (NETSETP) 5-15
Checking Completion of Worklist
Processing (NETCHEK) 5-16
Initiating Special AIP Functions
(NETFUNC) 5-17
6. CHARACTERISTICS OF AN APPLICATION PROGRAM 6-1
NOS System Control Point Facility 6-1
Batch Job Structure 6-1
Commands 6-2
Job Identification 6-3
Program Content ‘ 6-3
Program Execution Through IAF 6-3
Types of Application Programs 6-4
Disabled 6-5
Unique Identifier 6-5
Privileged -5
Request Startable ()
Have More Than One Copy (on any One Host) 6-b6
Restricted or General Access -6
Mandatory or Primary 6-6
Debugging Application Programs 6-6
Fatal Errors 6-6
Debugging Methods 6-6
Debug Log File and Associated
Utilities 6-6
Statistical File and Associated
Utilities 6-15
Dependencies for Program Use 6-16
Memory Requirements 6-17
7. SAMPLE FORTRAN PROGRAM 7-1
Configuration Requirements 7-1
Job Command Portion 7-1
Program Portion 7-1
Program Output 7-1
8. QUEUED TERMINAL RECORD MANAGER 8-1
Network Information Table 8-1
Subroutines 8-26
Initiating Network Access (QTOPEN) 8-26
Command to QTRM (QTCMD) 8-27
Notification of Break Indicator
Mark (cc=1) 8-27
Notification of User/Application
Interrupts (cc=2) 8-27
Notification of Inactive Connections
(ce=3) 8-27
Support of NAM K-display (cc=4) 8-28
Notification of lnitial Connection
Requests (cec=5) 5—28
Store Address in Parm—addr Field
(ce=6) 8-28
Automatic Processing of User
Breaks (ce=7) 8-28
Selective Polling of Connections
for Data (cc=8) 8~-28
Application Processing of NETON
Rejects (cc=9) 8-28
Application Processing of ERR/LGL
Supervisory Messages (cc=10) 8-29
Sending Data (QTPUT) 8-29
60499500 V

5-14

Obtaining Data or Connection
Status (QTGET)
Sending a Synchronous Supervisory
Message (QITIP)
Linking an Application to Another
Application (QTLINK)
Ending a Single Connection (QTENDT)
Loaning a Single Connection (QTLEND)
Issue Supervisory Messages (QTSUP)
Send Supervisory Message (smc=0)
Send Flow Control Break (smc=1)
Change Input Character Set (smc=2)
Truncate Data (smc=3)
Send Application Interrupt (smc=4)
Change to Full-Duplex List
Processing (smc=5)
Change to Half-Duplex List
Processing (smc=6)
Turn List Processing Off (smc=7)
Turn List Processing On (smc=8)
Send K-display Message (smc=9)
Log NAM Dayfile Message (smc=10)
Alert Host Operator (smc=11)
Log Operator Entries (smc=12)
Change Inactivity Timer (smc=13)
Ending Communication With the
Network (QTCLOSE)

Output Formatting and Editing

Format Effectors
Display-Code Output Editing

Output Queuing Using QTRM
Debugging QTRM Application Programs

Turning Logging of Network Traffic
On/0ff (QTDBG)

Releasing Network Debug Log File (QTREL)

Flush AIP Debug Log File on Abnormal
Termination (QTSETF)

Enter Message Into the Debug Log File.
(QTLOG)

Perform Binary Dump of Application
(QTDMB)

Turning Logging of AIP Statistics
On/0ff (QTSTC)

Enter Statistical Message Into the
AIP Statistical File (QTLGS)

Sample Program

APPENDIXES

(o]

Character Data Input, Output, and
Central Memory Representation

Diagnostic Messages

Glossary

Application Program Call Statement
Summary

INDEX

FIGURES

1-1
1-2

1-2.

1-3

1-4

Overview of a CDC Network
The Interfaces Between the Host and
CCP Network Product Elements
1 The Interfaces Between the Host and
CDCNET Network Product Elements

The Relationship Between the Parts of
the Communications Control Program

Typical Connections in the Network

60499500 V

8-30
8-31

8-31
8-32
8-33
8-34
8-34
8-34
8-34
8-34.1
8-34.1

8-34.1

8-34.1
8-34,1
8-34.2
8-34,2
8-34,2
8-34.2
8-34.2
8~34.2

8-34.3
8-35
8-35
8-35
8-36
8-36

8-38
8-38

8-39

8-39

A-1
B-1
c-1

2-7

Network Access Method Components

Typical Application Program
Processing Flow

Physical and Logical Information
Structures

Block Reassembly Points

Application-to-Application Connection
Data Exchanges

Application Block Header Content for
Upline Network Data Blocks

Application Block Header Content for
Downline Network Data Blocks

Supervisory Message General Conteut,
Asynchronous Messages and
Synchronous Messages of Application
Character Type 2

Supervisory Message General Content,
Synchronous Messages of Application
Character Type 3

Application Block Header Content for
Upline Supervisory Messages

Application Block Header Content for
Downline Supervisory Messages

Supervisory Message Mnemonic
Structure

Device-to~Application Connection
Supervisory Message Sequences

Connection-Request (CON/REQ/R)
Supervisory Message Format,
Device—to—-Application Connections

Connection-Accepted (CON/REQ/N)
Supervisory Message Format,
All Connection Types

Connection-Rejected (CON/REQ/A)
Supervisory Message Format,
All Connection Types

Initialized-Connection (FC/INIT/R)
Supervisory Message Format

Connection-Initialized (FC/INIT/N)
Supervisory Message Format

Connection-Broken (CON/CB/R)
Supervisory Message Format

End-Connection (CON/END/R)
Supervisory Message Format

Connection-Ended (CON/END/N)
Supervisory Message Format

Application—to-Application Connection
Supervisory Message Sequences

Request—Application—Connection
(CON/ACRQ/R) Supervisory Message
Format

Application-Connection-Reject
(CON/ACRQ/A) Supervisory Message
Format

Connection-Request (CON/REQ/R) Super-—
visory Message Format, Application-—
to—Application Connections

Connection Monitoring Message
Sequences

Inactive-Connection (FC/INACT/R)
Supervisory Message Format

Set-Timer (DC/STMR/R) Supervisory
Message Format

Connection Termination Message
Sequences

Connection List Polling Control
Message Sequences

Connection List Duplexing Message
Sequences

Turn-List-Processing=Off (LST/OFF/R)
Supervisory Message Format

2-33

2=-35

2-37

2-39

3-13

3-15

3-15

3-16

3-17

3-18

3-19

3-20

3-30.1

3-30.2

3-32

3-32

3-33

xi

3-25

3-26

3-27

xii

Turn-List-Processing-On (LST/ON/R)
Supervisory Message Format

Change-Connection-List (LST/SWH/R)
Supervisory Message Format

Turn—-On—-Hal f-Duplex-List-Processing
(LST/HDX/R) Supervisory Message
Format

Turn—On—-Full-Duplex-List-Processing
(LST/FDX/R) Supervisory Message
Format

Block—-Delivered (FC/ACK/R) Super-
visory Message Format

Block—=Not-Delivered (FC/NAK/R)
Supervisory Message Format

Application-to—-Application Connection
Break and Reset Message Sequence

Break (FC/BRK/R) Supervisory Message
Format

Reset (FC/RST/R) Supervisory Message
Format

Terminal User—Caused Break Sequence

User-Interrupt (INTR/USR/R) Super—
visory Message Format

Break-Indication-Marker (BI/MARK/R)
Supervisory Message Format

Application-Interrupt—-Response
(INTR/RSP/R) Supervisory Message
Format

Resume-Qutput-Marker (RO/MARK/R)
Supervisory Message Format

Application-Interrupt (INTR/APP/R)
Supervisory Message Format

Application-Interrupt-Response
(INTR/RSP/R) Supervisory Message
Format

Terminate~Out put-Marker (TO/MARK/R)
Supervisory Message Format

Device Connection Break and Reset
Message Sequence

Downline Data Flow Control Super-
visory Message Sequences

User-Interrupt-Request (INTR/USR/R)
Supervisory Message Format for
Priority Data

User Interrupt for Priority Data
Supervisory Message Sequence

Change—-Input—Character-Type
Supervisory Message Sequence

Change~Input-Character-Type
(DC/CICT/R) Supervisory Message
Format

Block Truncation Supervisory Message
Sequence

Block Truncation (DC/TRU/R) Super-
visory Message Format

Device Characteristics Redefinition
Supervisory Message Sequences

Device-Characteristics~Redefined
(TCH/TCHAR/R) Supervisory Message
Format

Define-Device~Characteristics
(CTRL/DEF/R) Supervisory Message
Format

Define-Multiple-Device-Characteristics
(CTRL/CHAR/R) Supervisory Message
Format

Define-Multiple-Device-Characteristics
Abnormal Response (CTRL/CHAR/A)
Supervisory Message Format

Mul tiple-Device-Characteristics=
Defined (CTRL/CHAR/N) Supervisory
Message Format

Request—Device-Characteristics
(CTRL/RTC/R) Supervisory Message
Format

3-44
3-44
3-45

3-45

3-46
3-46

3-47

3-55

3-53

3-54

3-55

3-56

3-57

3-57.1

3-57.2

3-57.3

3-58

3-59

360

3-61

3-62

3-63

3-64

3-65

3-66

3-07

3-68

3-69

3-70

3-71

3-72

3-73

3-74

3-75

3-706

3-77

3-78

Request-Device-Characteristics
Abnormal Response (CTRL/RTC/A)
Supervisory Message Format

Device-Characteristics~Definition
(CTRL/TCD/R) Supervisory Message
Format

Define-CDCNET-Terminal-Characteristics
(CTRL/CTD/R) Supervisory Message
Format

Define-CDCNET-Terminal-Characteristics
Abnormal Response (CTRL/CTD/A)
Supervisory Message Format

Define-CDCNET-Terminal-Characteristics
(CTRL/CTD/N) Supervisory Message
Format

Request-CDCNET-Terminal-
Characteristies (CTRL/RCC/R)
Supervisory Message Format

Request-CDCNET-Terminal-
Characteristics Abnormal Response
(CTRL/RCC/A) Supervisory Message
Format

CDCNET-Terminal-Characteristics—
Definitions (CTRL/CCD/R) Super—
visory Message Format

Host Operator Command Supervisory
Message Sequences

Host Operator Request—to-Activate-
Debug-Code (HOP/DB/R) Supervisory
Message Format

Host Operator Request—to-Turn-Off-
Debug-Code (HOP/DE/R) Supervisory
Message Format

Host Operator Request—to-Dump-Field-
Length (HOP/DU/R) Supervisory
Message Format

Host Operator Request—to-Turn—AIP-
Traffic-Logging—-On (HOP/TRACE/R)
Supervisory Message Format

Host Operator Request—to-Turn-AlP-
Traffic-Logging-0ff (HOP/NOTR/R)
Supervisory Message Format

Host Operator Request—to-Release-
Debug-Log-File (HOP/REL/R) Super-
visory Message Format

Host Operator Request-to-Restart—
Statistics~Gathering (HOP/RS/R)
Supervisory Message Format

Host Operator Alert (HOP/ALT/R)
Supervisory Message Format

Host Operator Break (HOP/BRK/R)
Supervisory Message Format

Host Operator Command (HOP/CMD/R)
Supervisory Message Format

Host Dayfile (HOP/DAY/R) Supervisory
Message Format

Network Dayfile (HOP/LG/R) Super-—
visory Message Format

Host Operator K-Display Data
(HOP/DIS/R) Supervisory Message
Format

Host Operator End Display (HOP/END/R)
Supervisory Message Format

Host Operator Ignore (HOP/IG/R)
Supervisory Message Format

Host Operator Page (HOP/PAGE/R)
Supervisory Message Format

Host Operator START (HOP/START/R)
Supervisory Message Format

Host Shutdown Supervisory Message
Sequences

Host=Shutdown (SHUT/INSD/R) Super-
visory Message Format

Logical-Error Supervisory Message
Sequence

3-o4

3-05

3-06

3-67

3-07

3-608.5

3-68.5

3-08. 6

3-69

3-70

3-70

3=70

3-73

3-74

3-74

3-75

375

3=79

3-79

60499500 V

Logical-Error (ERR/LGL/R) Supervisory
Message Format

NFETCH Macro Call Format

NSTORE Macro Call Format

NFETCH Integer Function FORTRAN
Call Format

NSTORE Subroutine FORTRAN Call Format

QTRM Interface Level Analogy

NETON Statement FORTRAN Call Format

Supervisory Status Word Format

NETON Statement FORTRAN Example

NETOFF Statement FORTRAN Call Format

NETGET Statement FORTRAN Call Format

NETGET Statement FORTRAN 5 Examples

NETGETF Statement FORTRAN Call Format

NETGETF Statement Text Area Address
Array

NETGETF Statement FORTRAN 5 Examples

NETPUT Statement FORTRAN Call Format

NETPUT Statement FORTRAN 5 Example

NETPUTF Statement FORTRAN Call Format

NETPUTF Statement Text Area Address
Array

NETPUTF Statement FORTRAN 5 Example

NETGETL Statement FORTRAN Call Format

NETGETL Statement FORTRAN 5 Example

NETGTFL Statement FORTRAN Call Format

NETGTFL Statement Text Area Address
Array

NETIGTFL Statement FORTRAN 5 Example

NETWAIT Statement FORTRAN Call Format

NETWAIT Statement FORTRAN 5 Examples

NETSETP Statement FORTRAN Call Format

NETSETP and NETCHEK Statement
FORTRAN 5 Examples

NETCHEK Statement FORTRAN Call Format

NETFUNC Statement FORTRAN Call Format

Typical Job Structure for System
Input

Interactive Program Execution
Procedure Example

NETDBG Utility FORTRAN Call Statement
Format

NETREL Utility FORTRAN Call Statement
Format

NETSETF Utility FORTRAN Call Statement
Format

NETLOG Utility FORTRAN Call Statement
Format

NETDMB Utility FORTRAN Call Statement
Format

DLFP Command General Format

DLFP Command Examples

DLFP Directive Keyword Format

DLFP Directive Examples

General Format of DLFP Output

NETSTC Utility FORTRAN Call Statement
Format

NETLGS Utility FORTRAN Call Statement
Format

General Format of One Period Listing
in Statistical File

Command Portion of RMV3 Job

Program Portion of RMV3

60499500 V

[UL

ooocooocoocloooocooocoo
O ~NOoO R WK

Possible Dialogs Supported by Sample
FORTRAN Program
Debug log File Listing tor Sample
FORTRAN Program
Statistical File Listing for Sample
FORTRAN Program
Network Information Table Format
QTOPEN Statement COBOL Call Format
QICMD Statement COBOL Call Format
QTPUT Statement COBOL Call Format
QTGET Statement COBOL Call Format
QTLINK Statement COBOL Call Format
QTENDT Statement COBOL Call Format
QTLEND Statement COBOL Call Format
QISUP Statement COBOL Call Format
QTCLOSE Statement COBOL Call Format
Algorithm for Output Buffering
Using QTRM

8-12 (QTDBG Statement COBOL Call Format

8-13 QTREL Statement COBOL Call Format

8-14 QTSETF Statement COBOL Call Format

8-15 QTLOG Statement COBOL Call Format

8-16 QTDMB Statement COBOL Call Format

8-17 QTSTC Statement COBOL Call Format

8-18 QTLGS Statement COBOL Call Format

8-19 Sample Program ECHO-RMV2 Source
Listing

8-20 ECHO-RMV2 Job Commands

8-21 Debug Log File Listing for ECHO-RMVZ

8-22 Statistics File Listing for ECHO-RMV-2

8-23 ECHO-RMV2 Sample Dialog

TABLES

1-1 Device Types

1-2 Supported Terminal Classes

2-1 Default Message Delimiter and
Transmission Keys

2-2 CCP Format Effector Operations for
Asynchronous and X.25 Consoles

2-3 CCP Format Effector Operations for
Synchronous Consoles

2-4 Embedded Format Control Operations
for Consoles

2-5 Character Exchanges With Connections

3-1 Legal Supervisory Messages

3-2 Valid CCP Field Numbers and Field
Values

3-3 CDCNET Attribute Changes Associated
With All Terminal Class Changes

34 CDCNET Attribute Setting Changes
Associated With Specified
Terminal Classes

3-5 Valid CDCNET Attribute Numbers and
Attribute Values for Asynchronous
Terminals

3-0 CCP Field Number to CDCNET Attribute
Number Mapping

4-1 Reserved Symbols

4=2 AIP Internal Procedures

4-3 AIP Internal Tables and Blocks

2-15
2-20
2=21
2-26
3-1

3-5Y

3-03

3-68

3-68. 2
4-3
4-18
4-19

xiii/xiv

NOTATIONS

Throughout this manual, the following conventions
are used in the presentation of statement formats,
operator type—ins, and diagnostic messages:

UPPERCASE

lowercase

{1}

input parameter

return parameter

60499500 T

Uppercase letters indicate
acronyms, words, or mne-
monics either required by
the network software as
input, or produced as out-
put.

Lowercase letters identify
variables for which values
are supplied by the NAM or
terminal user, or by the
network software as output.

Ellipsis indicates that
omitted entities repeat the

form and function of the
entity last given.

Square brackets enclose
entities that are optional;
if omission of any entity
causes the use of a default
entity, the default is
underlined.

Braces enclose entities from
which one must be chosen.

This term identifies an AIP
call statement parameter for
which values are supplied
to AIP by the programmer.

This term identifies an AIP
call statement parameter
for which variables are
supplied to AIP by the pro-
grammer and in which values
are placed by AIP.

{et> The <ct> symbol represents
the network control char-
acter defined for the ter-
minal. This character must
be the first character of
the command entered.

LF The LF symbol represents a
one-line vertical reposi-
tioning of the cursor or
output mechanism. LF also
designates a character or
character code associated
with such a 1line feed
operation.

(:) A circle around a character
represents a character key
that 1is pressed in con-
junction with a control
key (CTL, CNTRL, CONTRL,
CONTROL, or equivalent).

The boxed cr symbol repre-
sents the terminal key that
causes message transmission;
usually, this key causes a
carriage return operation.
Transmission keys are
described in more detail in
section 2.

Unless otherwise specified, all references to num-
bers are to decimal values, all references to bytes
are to 8-bit bytes, and all references to characters
are to 7-bit ASCII-coded characters. Fields
defined as unused should not be assumed to contain
zeros.

Xv

NETWORK PRODUCTS: AN OVERVIEW : 1

This section introduces the Control Data Corporation
CYBER 170 network products, their relationships to
each other, and their significance to the data com-
munications user. Network products is a group of
programs and hardware that provides communications
services to geographically dispersed users.

As shown in figure 1-1, a CDC network consists of a
computer network, a communications network, and a
services network.

COMPUTER NETWORK

The computer network includes host computer systems
packet—switching mnetworks (PSNs), terminals, and
the host software associated with network communi-
cations.

Each component of the computer unetwork provides
input, output, coantrol, or storage resources to the
services and communications network. The primary
host communication software is called the Network
Access Method (NAM).

Services
Network

Applications

Applications

/' Computer

\
Network NAM NAM
| Hosts |

Communications
Network

Terminals

e
cre
rrr
rre
e
il

Users

Figure 1-1. Overview of a CDC Network

60499500 R

1-1

COMMUNICATIONS NETWORK

The communications network includes unetwork proc-

essing units (NPUs) and the connecting communication
lines needed to transport blocks of data between

host computers and terminals. The primary CDC
-software in an NPU is called the Communications
Control Program (CCP).

The size and complexity of a communications network
varies from a simple network with one local (front-
end) NPU, or a network with one local NPU and one
or more remote NPUs, to a more complex network with
multiple local NPUs and multiple remote NPUs.
Attached to these NPUs are terminal devices, such
as entry/display statioms.

Because the communications network minimizes termi-
nal type dependency and removes many of the terminal
switching operations from the host, the host can
process data more efficiently.

SERVICES NETWORK

The services network consists of the network appli-
cation programs in each host computer and the users
of those programs. Each application program gives
the terminal user or another application a specific
data processing capability.

SOFTWARE COMPONENTS OF
THE NETWORK

Figures 1-2 and 1-2.1 show the interfaces between
the elements of the network. The left part of each
figure shows the network host software elements,
which are the software elements located in the CDC
CYBER 170 host computer.

The middle section of figure 1-2 shows the Com-
munications Control Program (CCP), which is the
software element located in the network processing
unit. As shown in the right portion, CCP commun-—
icates with the terminals while the Network Access
Method (NAM) communicates with application programs.

The network host software is collectively called
the Network Access Method or NAM. NAM is used in
several contexts throughout this manual and in the
other network products documentation. NAM can refer
to the interface between application programs and
the communications network; to the programs that
implement that interface, including the Applications
Interface Program (AIP), the Network Interface
Program (NIP), and the Peripheral Interface Program
(PIP); or to the product NAM, which also includes
the Network Supervisor (NS), the Communications
Supervisor (CS), and the Network Validation Facility
(NVF).

In figures 1-2 and 1-2.1, NAM refers to the set of
programs that implement the interface between the

application programs and communications network.

Network host software, shown in the left part of
figure 1-2, includes:

Network Access Method

Network Definition Language Processor

1-2

Network -Supervisor (CCP networks only)
Communications Supervisor

Network Validation Facility

Network utilities

Network Access Method application programs
CYBER Cross System (CCP networks only)

CDCNET network software, shown in the left part of
figure 1-2.1, includes:

Network Access Method

Network Definition Language Processor
Network Validation Facility

Network Access Method Utilities

Network Utilities

NETWORK ACCESS METHOD

The Network Access Method is the primary network
host software. NAM interfaces between applications
in the same host or between applications and the
Communications Control Program in an NPU or CDCNET
Device Interfaces (DIs).

Because the connections among NPUs or DIs can be-
come extremely complex, the Network Access Method
acts as an interface between host computer software
at one end of the network and the terminals at the
other end.

A simple frout—end configuration appears the same
through the Network Access Method as a more complex
linkage system; message routing by the host com—
puter is performed in the same maaner for both
configurations. The physical and logical configu-
ration of the elements involved in Network Access
Method operation is described in the Network Defi-
nition Language reference manual (listed 1in the
preface).

The host computer executes CDC-written or site-
written service programs called application programs
that are connected to the network via the Network
Access Method (NAM). An application program can
communicate with other application programs or
service terminals connected to the network. All
connections to the network are established by a
portion of the network software called the Network
Validation Facility, and the flow of data and proc-—
essing along them is controlled through NAM.

NAM incorporates the following features:

[It is equally suitable for application programs
written in COMPASS or high-—level languages, such
as FORTRAN.

° It imposes no data structures on an application
program.

. It provides a way to handle unpredictable
events, such as terminal operator interrupts.

. It provides complete isolation of network com-
munications from the operating system.

60499500 U

S3IUSWS|T 19NPOJd NJOMIBN d)J PUB ISOH 9yl U3BMIaE SOTBLUIIUT BYL

"¢-1 3JnbL4

—

JeuLwday

—]

S o
S 3

a4
2ad
34

-

<

sjeutwday

+
_
_
!
_
I
[
_
_
_
_
_
_
_
I
_
_

ko

SdIL

dI8

v_._o____..uoz

]
uoL393uu0)

WAS | dIH

dd)

wesbodd 1043U0)
SUOLleDLUNWWO)

3 xcmq_dewmog

e T

dId

dIN

aJemijos

ISOH YJOM1aN

o1t

sa13
-stielg

9t4

607
6ngaq

2

("~ oLy)

-eptiep

2T

1Unoday

ade}
aseaay

e eaceensnasncerspe] d47d
VdH
---------‘
sayLy4
RS d1aN
eotulide
PR
‘tt-‘
vaN
ECARY | ‘-----‘-
ndN
e N P I T TR

sAS SS0J) ¥3EAD

1-3

60499500 U

S3USWAYT 3IONPOJd YJOMIIN LINDIGD PUB 3ISOH 3Ul USIMIIE SIOBJJIIUT 9yl "L °2-| aunbiy

(2144

sa1}
-stieas

60499500 U

a1ty

607 I BGE L
bngaq

C

(" uotl

.|

Teuteial -eptiep
aJenm | Kem 3 JoR 33N —
iy | -340s |-23e9 : R
< § o] SdIL uot39auuoy dIN] SONTTTTTTtteeBsl ydM
— L@%ml_ ISCH 3 U7 LNU*QOJ d1d LMW«I__W -unnn.uunnn-nﬁn--‘
_ 8984483UT _]

ERIVEY WYN ",
swedjule

aLd

- T § -

uotitutiag | gygN

sjeuLwsal) 3J4BM110G ISOH YJOM3aN

13NJQD

1-4

. It supports distinct classes of terminals by
normalizing data formats and optionally per-
forming code conversion. Eighteen classes are
defined by CDC; additional classes can be de—-
fined by sites that provide their own supporting
software.

. It permits an application program to support
clusters of real terminal devices as Lf the
devices were separately addressable logical

entities called virtual terminals. Virtual
terminals are described at the end of this
section.

Basic services provided by NAM include:

. NAM establishes message paths (logical con-
nections) between an application program and
terminals or between two applications (provided
both parties have the correct network access
security permissions).

L) NAM breaks logical counnections when asked to by
the application program or the terminal, or when
network conditions make it necessary (for ex-
ample, when a network shutdown occurs).

° After logical connections have heen established,
NAM passes incoming messages to the application,
and accepts and forwards outgoing messages from
the application.

. NAM queues incoming messages until the appli-
cation program requests them. This allows the
application to service its counections with
terminals and other applications in any desired
order.

. NAM provides the application program with its
own set of protocols, making knowledge of de—
tailed network protocols unnecessary.

. For incoming traffic, NAM allows the application
program to group terminals with similar or re-

lated processing needs.

[NAM queues outgoing messages to regulate data
flow through the network.

. NAM detects inactivity on any interactive data
path and reports the condition to the appli-
cation program.

. NAM resolves resource coantention among appli-

cation programs.

An installation option is available to log message
traffic for application program debugging. A second
installation option permits the logging of appli-
cation program and message traffic statistics.
NAM consists of four major modules:

Peripheral Interface Program

Network Interface Program

Application Interface Program

Queued Terminal Record Manager

60499500 U

Peripheral Interface Program

The Peripheral Interface Program (PIP) is a periph-
eral processor unit program that intecfaces the
ceatral processor executed routines of NAM to the
channel-connected local NPUs or CDCNET Mainframe
Device Ianterfaces.

PIP moves blocks of data between the central memory
buffers of NAM and the NPU or DI and reads and
writes disk files used by batch devices or for file
transfer. PIP also can detect when a local NPU
needs initializing. If the NPU cannot start its
own loading, PIP requests the network supervisor to
load the bootstrap program into the NPU.

Network Interface Program

The Network Interface Program (NIP) executes as a
system control point. NIP coordinates the use of
the communications unetwork by all application pro-
grams, buffers data between the application programs
and the network, and manages the logical connec-
tions,

Fach application program caan have several counec—
tions; each connection is associated with a terminal
device or with another application program. NIP
translates between network addresses and the more
convenient logical addresses that represent the
connection to the application. NIP also establishes
new connections as they are requested and terminates
connections that are no longer needed or that have
failed.

An application can request NAM to coanvert the data
on a logical connection from the network format.
Such conversions detecrmine the format and encoding
of characters seen by. the application.

Application Interface Program

The Application Interface Program (AIP) is a set of
subprograms and buffers that resides in the appli-
cation program”s field length and provides an
interface to NIP and the network. This manual is
primarily concerned with the use of AIP.

AIP statements are provided so that the application
program can counect to and disconnect from the net-
worka. AIP statemeats also control information
exchange between the application program and NAM
buffers. This information can be data, or it can
be supervisory messages that coordinate the appli-
cation”s execution with events that have occurred
in the network. NAM might pass a supervisory mes—
sage to inform the application of a new connection
that is requesting service, or that a failure has
occurred. In the same way, the application program
uses supervisory messages to communicate with NAM
and the network elements.

Queved Terminal Record Manager

The Queued Terminal Record Manager (QTRM) is a set
of subprograms that resides in the application pro-
gram”s field length and provides a high level pro-
cedural interface to the network. This package
permits indirect use of a subset of AIP”s features

1-5

by programs with unsophisticated communications
requirements. This utility permits programs to
have a communications interface functionally similar
to their mass storage interface. QTRM is discussed
in section 8 of this book.

NETWORK DEFINITION LANGUAGE
PROCESSOR

Before the network software can route data through
the network and interface to operators for super-
vision, the definition of the network configuation
must first be communicated to the software. The
Network Definition Language (NDL) is used to de-
scribe this configuration. The Network Definition
Language processor (NDLP), a batch utility, trans-
lates this configuration and prepares a network
configuration file (NCF) and a local configuration
file (LCF).

The NCF contains configuration information required
by the network.

The LCF contains host information required by the
Network Validation Facility, such as automatic login
parameters and application information. The LCF
allows the network validation facility to validate
and connect terminals to applications or appli-
cations to applications.

The NDL is described in the Network Definition
Language reference manual listed in the preface.

NETWORK SUPERVISOR

The Network Supervisor (NS) executes as a NAM
application. It 1interfaces between the NPUs and
CCP program files in the host. NS loads an NPU on
request with the appropriate copy of the Communi-
cations Control Program from the host”s network
load file (NLF). NS also saves NPU dumps in the
host”s network dump file (NDF)., The load and dump
files are shown in figure 1-2.

The host operator can obtain status information for
NPU loading or dumping operations involving the
copy of NS in the operator”s host. More than one
host can run a copy of NS; so that NS can load NPUs
which are not accessible from a specific host.

COMMUNICATION SUPERVISOR

The Communication Supervisor (CS) program.executes
as a NAM application. It can communicate with the
network operators (NOP). CS allows a network
operator at a terminal (an NPU operator or a diag-
nostic operator [DOP]) or at a host console (a host
operator [HOP]) to obtain and change the status of
network elements under its supervision, to communi-
cate with users at terminals, and to run diagnos-
tics. CS also responds to requests for network
configuration data from an NPU.

CS can run in one or more hosts. It also assists
the NPUs by providing them with terminal configura-
tion information from the network configuration
file.

NETWORK VALIDATION FACILITY

The Network Validation Facility (NVF) also executes
as a NAM application. It validates the terminal
user”s access to the host and an application pro-
gram”s access to the computer network. NVF also
maintains and reports application status to the
host operator (HOP). As figure 1-2 shows, the NOS
validation file and the local configuration file
(LCF) supply validation information to NVF.

NVF verifies such terminal user information as
family name, user name, and password. Before a
terminal user can access an application program,
successful login wmust occur. When login 1s
successfully completed, the Network Validation
Facility causes NAM to notify the application
program identified in the login sequence that a
terminal requests connection.

The Network Validation Facility also performs
switching between application programs. NVF causes
terminal disconnection processing when disconnection
is appropriate. .

The Network Validatioun Facility controls application
program and terminal access to the network, as
follows:

° An application program wishing to communicate
with terminals requests access to the network.
This request is passed by NAM to the NVF for
validation. (NVF also performs similar vali-
dation of terminal requests for host dccess.)
Once NVF has determined that an application
program or terminal is allowed to use the host”s
resources, it makes calls to NAM that create
the logical connectioan for the transfer of data
between the application program and the network.
NVF also requests NAM to modify or delete these
connections when terminal users request to com-
municate with other application programs or
leave the network.

° When an application program no longer desires
to use the network, it calls another NAM pro-
cedure. This request also is passed to NVF,
which causes NAM to delete all connections used
for the application program - just as it does
for a terminal or terminal device leaving the
network.

NETWORK UTILITIES

Four utility programs either are included with or
used by network host products:

The Network Dump Analyzer (NDA)
The Load File Generator (LFG)
The Debug Log File Processor (DLFP)

The Hardware Performance Analyzer (HPA)

Network Dump Analyzer

The network dump analyzer (NDA) produces a formatted
printout from NPU dump tiles created by the Network
Supervisor. The site analyst can use these dumps

60499500 U

to help analyze CCP software or NPU hardware fail-
ures. The network dump analyzer uses the network
dump file (NDF), which is shown in figure 1-2, as
input.

You can find more information about the network
dump analyzer in the NOS Version 2 Analysis
Handbook listed in the preface.

Load File Generator

The load file generator (LFG) reformats CCP program
files produced by the CDC CYBER Cross System”s link
and edit programs into a single random access file
used by the Network Supervisor to load NPUs. This
file is the network load file (NLF), which is one
of the NPU files shown in figure 1-2.

You can find more information about the load file
generator in the NOS Installation Handbook 1listed
in the preface.

Debug Log File Processor

The debug log file processor (DLFP) converts the
debug log file generated by the Application Inter—
face Program into a printable report. The program-
mer can selectively list logged information through
DLFP directives.

You can find more information about the debug log
file processor in section 6 of this manual.

Hardware Performance Analyzer

A fourth utility program, the hardware performance
analyzer (HPA), is part of the NOS operating system.
This utility program produces reports from infor-
mation on the account and error log dayfiles.
Network products software makes statistical, error,
and alarm message entries into these dayfiles.

You can find more information about the hardware
performance analyzer in the HPA reference manual
listed in the preface.

NAM APPLICATION PROGRAMS

The host computer executes CDC—written or site-
written service programs called application programs
that are connected to the network through NAM. An
application program can communicate with other
application programs or terminals connected to the
network.

The CDC-provided NAM application programs are:

Interactive Facility (IAF), which allows you to
create files and to create or execute programs
from a device without using card readers or line
printers. IAF is described in Volumes 1 and 3
of the NOS 2 Reference Set.

Remote Batch Facility (RBF), which permits you
to enter a job file from a remote card reader
and to receive job output at a remote batch
device. RBF is described in the Remote Batch
Facility reference manual.

60499500 Vv

Transaction Facility (TAF), which permits you
to implement on-~line transaction processing
under NOS by writing programs to be used by
terminals. TAF is described in the TAF
reference manual.

Terminal Verification Facility (TVF), which
provides tests you can use to verify that an
interactive console 1is sending and receiving
data correctly. TVF is discussed in the Ter-
minal Interfaces reference manual.

Message Control System (MCS), which allows you
to queue, route, and journal messages between
COBOL programs and terminals. MCS is described
in the Message Control System reference manual.

Queue File Transfer Facility (QIF), which
allows you to transfer queue files between
hosts. The use of this feature is described in
the NOS Version 2 Reference Set, Volume 3.

Permanent File Transfer Facility (PTF), which
allows you to transfer permanent files between
waits. The use of this feature is “documented
in the NOS Version 2 Reference Set, Volume 3.

Printer Support Utility (PSU), which provides
you with the ability to print NOS queue files
on a Centronics Linewriter 400 or 600 printer
using asynchronous connections to the network.
Volume 3 of the NOS Reference Set describes how
users route files to such printers. The NOS
Operations Handbook describes how operators
maintain and monitor such printers.

NOS/VE Interactive Facility (VEIAF), which
allows you to create files and execute jobs on
NOS/VE. All of the NOS/VE ' manuals comprise
VEIAF documentation.

Interactive Transfer Facility (ITF), which
allows you to connect to the CYBER 200 computer
systems. ITF is described in the VSOS
documentation.

CDC CYBER CROSS SYSTEM SOFTWARE

The CDC CYBER Cross System software allows you to
install, modify, and maintain the CCP software. It
is composed of these programs:

PASCAL, which 1s a compiler patterned after
ALGOL-60. By using PASCAL, you can define tasks
in statements that are processed by the compiler
to yield a variable number of actual program
instructions.

Formatter, which reformats PASCAL output into
an object code format compatible with the com—
munications processor macro assembler output

Macro Assembler, which assembles communications
processor macro memory source programs and
produces relocatable binary output. The source
programs are written with symbolic wmachine,
pseudo, and macro instructions.

Micro Assembler, which provides the language
needed to write a micro memory program. This
assembler translates symbolic source program
instructions into object machine instructions.

1-7

Link Editor, which accepts object program mod-
ules and generates a memory image, suitable for
executing in the 255x NPU.

Autolink utility, which simplifies program
assignment and maximizes the amount of space
assigned to handling buffers.

Expand utility, which includes several hardware
and software variables used to define a CCP load
file for a given NPU configuration.

See the preface for manuals that contain more
information on the CDC CYBER Cross System.

NETWORK PROCESSING UNIT
AND COMMUNICATIONS
CONTROL PROGRAM

This subsection discusses the following network
products, which are part of the communications
network and allow a terminal to access the host
computer over communication lines:

The 255x series network processing unit (NPU),

which connects a host to a terminal

The Communications Control Program (CCP), which
is the software in the NPU ’

The middle portion of figure 1~2 shows the communi-
cations network.

NETWORK PROCESSING UNIT

An NPU handles front—end or remote data communica-
tions for the CDC CYBER 170 host. The Communica-
tions Control Program resides within the NPU.

To understand CCP, you must have a basic under—
standing of the hardware on which CCP runs. Refer

to the hardware manuals listed in the preface for a
description of the hardware components of the NPU.

COMMUNICATIONS CONTROL PROGRAM
The Communications Control Program, which is the
igftware that executes in the 255x NPUs, consists
Base system software
System autostart module program (SAM-P)
Service module (SVM)
Host Interface Program (HIP)
Terminal Interface Programs (TIPs)
Link Interface Program (LIP)
Block Interface Program (BIP)
In-line and on—line diagnostics
NPU console debugging aids

Performance and statistics programs

Figure 1-3 shows how the major parts of CCP relate
to each other.

Base System
Software

Host

ORo)

Cassette
Unit

Terminals

Figure 1-3. The Relationship Between the Parts of the Communications Control Program

60499500 V

Base System Software

The base system software executes programs, allo-
cates buffers, handles interrupts, and supports
timing and data structures. It includes:

A system monitor, which controls the allocation
of resources for the communications processor

Timing services, which run those programs or
functions that are executed either periodically
or following a specific time lapse for the
processor

A multiplex subsystem, which interfaces with
the 255x multiplexing hardware and performs
character-by-character processing of tasks

Interrupt handler, which controls the transi-
tion of the communications processor between
different program interrupt levels

Initialization, which prepares the network for
on-line operation

Structure services, which build and maintain
internal tables used for routing data

Buffer maintenance, which dynamically allocates
memory in multiple buffer sizes for efficient
memory use

Worklist services, which provide logic for 255x
interprogram communication through the use of
worklists

Standard subroutines, which provide support
routines to handle arithmetic conversion, main-
tain page registers, and do miscellaneous tasks

System Avutostart Module

The system autostart module- is an .optional set of
hardware and software that begins the loading of
other CCP software from a host,

Service Module

The service module (SVM) includes network control
functions and interface programs that provide a
common link to other elements of the communications
network. These programs:

Process commands from the host, called service
messages

Control line and terminal configuration

Report and respond to regulation and supervision
changes

Host Interface Program

The Host Interface Program (HIP) provides the soft-
ware that links the host and a local NPU over a
channel. The HIP drives the CDC CYBER channel
coupler, transfers data, checks for errors, and
monitors for host failure and recovery.

60499500 U

Terminal Interface Program

The Terminal Interface Program (TIP) is a modular
program that provides protocol support and the con-
trol needed to interchange data between a terminal
and other elements of CCP.

The TIP transforms application program data between
its virtual terminal format and the format required
by the transmission protocol and physical charac-
teristics of the real terminals. CDC provides TIPs
for these transmission protocols: ’

] Asynchronous communication lines

° Synchronous communication lines for wode 4
terminals

e Bisynchronous communication lines for terminals
emulating the IBM HASP protocol

e X.25 packet and 1link level interfaces to a
packet-switching network (PSN) via high-level
data link control (HDLC) synchronous lines

[Bisynchronous communications lines for terminals
emulating the IBM 2780/3780 protocol

[} 3270 Bisynchronous communications (BSC) oper-
ating as multipoint data links

Eighteen classes of real terminals using these
protocols are supported. Each terminal class has
certain physical characteristics associated with
it. These associated characteristics are determined
by a terminal chosen as the archetype for the class,
but can be changed by either the application pro-
gram or the terminal operator. The terminal class
initially used for a given real terminal is deter-
mined by the way the terminal is configured in the
network configuration file; the network configura-
tion file can also be used to change the character-
istics initially associated with the terminal from
those of the archetype terminal. The association
of characteristics with a terminal is referred to
in networks documentatiou as terminal definition or
TERMDEF.

The terminal classes and archetype terminals for
each class are listed at the end of this section.

This 1list includes only elements supported by te—
leased versions of standard CDC network software.

Sites can add site-written Terminal Interface Pro-
grams to extend CDC support to additional transmis-
sion protocols and terminal classes. This manual
is concerned only with the transmission protocols
and terminal classes supported by CDC. Information
in this manual is valid for sites using extensions
to CCP only to the extent that those modifications
emulate the CDC-supported release version of CCP.

Link Interface Program

The Link Interface Program (LIP) transfers infor-
mation over a trunk between NPUs.

Block Interface Program

The Block Interface Program (BIP) routes blocks of
data, processes service messages, and processes the
network block protocol.

1-8.1

In-Line and On-Line Diagnostics

In-line and on-line diagnostics, which are produced
for the NPU, enable a NOP to isolate communications
line problems. Alarm, CE error, and statistics
service messages are the types of in-line diag-
nostiecs. In-line diagnostics are generated auto-
matically. On-1line diagnostics must be requested
from the NOP console.

NPU Console Debugging Aids

Debug aids provide test utilities for debugging
programs, taking memory snapshots, and dumping the
NPU during CCP program development or system
failures.

Performance and Statistics Programs

These programs gather statistics on NPU and indi-
vidual line performance, and periodically dispatch
these statistics to the Communications Supervisor.

DEVICE INTERFACES AND CDCNET

Small communications processors called device
interfaces (DIs) constitute the hardware portion of
CDCNET.

The CDCNET network software consists of the
following components:

Base system software
Layer software
Interface software and gateways

Network management software

BASE SYSTEM SOFTWARE

The base system software performs two major tasks:

Initializes the operation of the device
interface (DI)

Maintains the operational environment of the DI
by serving as its executive routine, by
detecting and reporting DI malfunctioms, and by
managing the DI”s onboard diagnostics

You can find more information on the CDCNET base
system software in the CDCNET Systems Programmer”s
Reference Manual, Volume 1, Base System Software.

LAYER SOFTWARE

CDCNET layer software enables applications
software, end users, terminals or workstations, and
host computers to exchange information through a
compatible set of protocols and interfaces.

1-8.2

You can find more information on the CDCNET layer
software by in the CDCNET Systems Programmer”s
Reference Manual, Volume 2, Network Management
Entities and Layer Interfaces.

INTERFACE SOFTWARE AND GATEWAYS

CDCNET interface software and gateways consist of
various software packages that enable CDCNET DIs
and hosts that accomodate. Control Data Network
Architecture (CDNA) to communicate with other
hosts, mnetworks, and terminals/workstations which
do not support CDNA.

You can find more information on the CDCNET
interface software and gateways in Volume 2,
Network Management Entities and Layer Interfaces
and Volume 3, Network Protocols of the CDCNET
Systems Programmer”s Reference Manual.

NETWORK MANAGEMENT SOFTWARE

CDCNET network management software performs daily
and periodic tasks related to the administration,
maintenance, and operation of the communications
network.

You can find more information on the CDCNET network
management sof tware in the CDCNET Systems
Programmer”s Reference Manual, Volume 2, Network
Management Entities and Layer Interfaces.

DEVICE INTERFACES

Each DI supporting terminal connections contains a
Terminal Interface Program that performs functiouns
similar to those of a CCP TIP. CDCNET TIPs do not
use the terminal class concept.

Because CDCNET distributes wajor communicatious
functions throughout a network, DIs perform
different functions depending on their particular
network task:

Mainframe DI (MDI) that lets you connect a host
CYBER computer system to a local-area network.

Terminal DI (TDI) that lets you connect user
terminals and workstations to a local area
network.,

Network DI (NDI) that lets you connect one
CDCNET local area network to other networks.

CDC also offers a mainframe/terminal DI (MTI) that
lets you connect user terminals/workstations to a
CYBER host without requiring that they be tied into
a local area network.

You can find further information on CDCNET network
device interfaces in the CDCNET Reference Manual.

60499500 U

THE PACKET SWITCHING
NETWORK (PSN)

The packet switching network (PSN) is a value added
network you may subscribe to either from a CDC or a
foreign vendor who supports the X.25 CCITT recom-
mendation (1980). Such networks are alternately
referred to as public data networks (PDNs).

NAM CONCEPTS

NAM is used by both application programs and por-—
tions of the network software. The features of NAM
permit programs to be written for the following
types of communication applications:

e Time-sharing communication services. A single
program provides this service when it interacts
with each terminal during a given time period.
The CDC-written Interactive Facility dis an
example of this type of application program.

. Transaction communication services. A single
program provides this service when it creates a
multi-threading interface for many terminals
using many task routines. Each terminal can
interact with many tasks or programs through
queues maintained by the program providing the
transaction service. The CDC-written Trans-
action Facility is an example of this type of
application program.

. Teleprocessing communication services. A
single program provides this service when it
interacts with many terminals to perform a
single teleprocessing task for each. No task
queues are required. The CDC-written Terminal
Verification Facility is an example of this
type of application program.

VIRTUAL TERMINALS

The virtual terminal concept simplifies the proce-
dure an application program must perform to service
a terminal.

Device types are used in a request for connection
from a terminal to an application (see section 3
for a discussion of connection processing). Device
types currently defined are listed in table 1-1.

Every terminal device 1is either an interactive
‘device (capable of both imput and output) or a
batch device (capable of either input or output).
Because this is true of all physical terminals,
cettain functions of each terminal device type can
be abstracted and treated in a similar manner for
all terminals with devices of that type. These
common functions constitute a virtual terminal.
All references to terminals in this manual are to
virtual terminals, unless otherwise specified.

The interactive virtual terminal concept makes it
unnecessary for an application programmer to provide
separate procedures to support differing implemen-
tations of one function on a variety of real ter-
minals.

Any console or site-defined device (any device with
a device type of 0 or 12) can be serviced as an
interactive wvirtual terminal. An interactive
virtual terminal has an input and output device

60499500 T

TABLE 1-1. DEVICE TYPES

Device Type Terminal Device Defined

0 Console (interactive device)

lT Card reader (passive device)

ZT Line printer, impact printer
or nonimpact printer (passive
device)

3T Card punch (passive device)

4T Plotter (passive device)

5 Another application program in

the same host

6 Another application program in
a different host
7 thru 11 Reserved for CDC use

12 Site~defined device

TReserved for RBF use.

which sends and receives logical lines of ASCIL
characters. These logical lines are transformed
into or from physical lines of characters of the
code set appropriate for the real terminal. This
transformation 1is performed for the application
program by the Communications Control Program of
the network processing unit servicing the real
terminal.

Real terminals can perform a wide variety of
functions, but not all terminals can perform the
same functions. The functions performed by an
interactive virtual terminal are restricted to the
subset of terminal functions that is common to all
real interactive terminals. This restriction
ensures efficient virtual terminal operation when
the corresponding real terminal has the fewest
capabilities.

When the application program must support functions
for a real terminal that are not available through
the interactive virtual terminal interface, the
application program can:

. Embed control characters in the output text or
scan for control characters in the input text.
The application program must allow for control
characters significant to or transformed by the
network software in this instance.

. Transfer data to and from the terminal in
transparent mode. In transparent mode, all
transformations are inhibited and the appli-
cation program has direct access to and re-
sponsibility for support of all real terminal
functions. Transparent wmode can be selected
separately for input and output to the same
virtual terminal.

Control characters and transparent mode are discus-
sed in detail in section 2.

Logical lines that exceed the physical line length
of the real terminal are folded into two or more
physical lines on output to the terminal, The
spacing of output lines can also be controlled with
optional format effectors, described in section 2.
Optional paging of output is possible, to avoid
overwriting previous output until the previous out-
put is acknowledged by the terminal operator.

LOGICAL CONNECTIONS

Just as the virtual terminal concept simplifies
terminal servicing, the logical connection concept
simplifies terminal addressing. In the network,
when data passes between a virtual terminal and an
application program, a message path or logical con-—
nection exists between the two. Conceptually, this
is equivalent to the connection between two tele-—
phones used in a conversation. After a real termi-
nal has gained network access, NAM 1logically con-
nects each virtual terminal portion of it to one,
and only one, application program at a time, al-
though the virtual terminal can be switched from
application to application as needed.

An application program, however, can be connected
simultaneously to many virtual terminals. It is
connected to each one by a separate and distinct
logical connection, The application program

identifies a particular terminal by specifying the
logical connection between itself and the terminal.
This is possible because a one-to-one association
exists between the connection and the terminal.
From the application programmer”s point of view, it
is convenient to talk of connection x (literally,
message path x) when it would be more precise to
say the virtual terminal at the other end of con-
nection x.

An application program can also form a logical
connection with one or more other applications and,
in fact, can have several connections with another
application program simultaneously, using separate
and distinct logical connections. A logical con-
nection can, therefore, refer to either a terminal
or to another application. This manual uses the
term connection to cover both possibilities.
Typical logical connections in the network are shown
in figure 1-4.

OWNING CONSOLES

Passive devices are serviced on separate logical
connections from their corresponding interactive
consoles., Because of this, a mechanism is needed
to associate a passive device with the console that
enters controlling information for it. The mecha-
nism used is the owning console concept.

Host Computer 1 Host Computer 2
Application Application Application
Program Program Program
A C
connection connection connection connection connection connection
3 1 2 1 2
connection
2
Network
Access
Network Access Method Method
Data Communications
Network
Device | Device
a b
Terminal Terminal

Figure 1-4. Typical Connections in the Network

60499500 T

When a passive device is defined in the network
configuration file, an interactive console 1is
identified as the owning console of the passive
device. The method used identifies the console by
its terminal name, as defined for the console in
the network configuration file. An application
program receives the name of the owning console as
a parameter in the passive device”s connection
request, along with the terminal name of the pas-
sive device. The application program also receives
the terminal name of the console as part of the
console”s connection request, and can therefore
associate the two devices.

NETWORK ACCESS METHOD
OPERATION

Figure 1-5 shows the components of NAM as it is
discussed in this manual. All of the area enclosed
by the dotted lines comprises the Network Access
Method.

As NAM receives data from the network terminals or
application programs, the data is buffered in NAM~s
buffers. (See section 4.) Application programs
use calls to ATP procedures to request and transmit
this data.

Inbound data from an interactive virtual terminal
or another application is placed, unmodified, in
NIP”s central memory buffers by PIP. These buffers
form an input queue associated with the logical
connection that originated the data. Data is
removed from this input queue when application pro-
gram AIP statements request input from the logical
connection, The data can be translated and con-
verted by NIP from ASCIT to display code if the
application program has requested such conversion;
transparent data, as described in section 2, is

neither edited nor translated. NIP places the-

translated or transparent data in a data buffer
within the application program”™s field length.
This data buffer is established and maintained by
the application program.

Output for an interactive virtual terminal or
another application is handled in the reverse
manner. The application program calls an AIP pro-
cedure to send data on a logical connection. The
data is transferred from the program”s field length
to an output queue within NIP“s field length. From
there, it is placed in one of PIP"s output buffers,
according to its priority as a supervisory message,
low priority data, or high priority data, and to
its destination. Code conversion and translation,
if necessary, is done by PIP.

The files shown in figure 1-5 are maintained by
code independent of NAM, Named files in the figure
are discussed briefly in various portions of this
manual.

APPLICATION PROGRAM CONCEPTS

NAM requires an application program to reside at a
separate operating system control point. This

60499500 T

program contains calls to the AIP routines listed
in appendix D and described in sections 5 and 7.
These calls can be direct, or indirect through the
Queued Terminal Record Manager.

An application program begins accessing the network
by calling NETON. It transmits data through the
network by calling NETPUT or NETPUTF. It receives
data through the network by calling NETGET, NETGETL,
NETGETF, or NETGTFL.

An application program must contain buffers for
transmitted or received data. These buffers can be
either unified or fragmented central memory areas.
One buffer can be used for all logical connections,
or many unified buffers or fragments of a buffer
can be used for each logical connection.

An application program sends instructions to the
network software and receives operational infor-
mation from the network software through supervisory
messages, as described in section 3, It must
contain procedures to formulate or process these
messages.

An application program can contain procedures that
optimize its use of central memory and the control
processor. AIP routines can make the program avail-
able for rollout when the program has no data to
process (NETIWAIT), or allow the program to perform
non network processing while waiting for completion
of a network processing task (NETSETP and NETCHEK).

An application program can compile statistics about
its functioning (NETSTC) that can be examined for
application tuning. It can also cause trace dumps
of its network traffic (NETDBG), The trace file
generated can be dynamically disposed for storage,
processing (NETREL), and application debugging.

An application program must contain a call to NETOFF
to terminate its access to the network. Application
programs using the optional code controlled by
NETDBG or NETSTC must also dispose of the local
files created by this code. (See section 6.)

CONNECTION PROCESSING FLOW

The functions performed by NAM and other software
described previously in this section can best be
summarized by tracing the job processing involved
for a single terminal and a single site-written
application program. Figure 1-6 is a generalized
version of this processing flow. Time elapses in
the figure from top to bottom. Program processing
begins from the left, terminal actions begin from
the right. Dotted lines separate functions for
each entity. When the boxes formed by solid or
dotted 1lines are aligned, the functions of the
entities involved are related. Actions for a batch
device (a passive device) differ from those shown
for an interactive terminal; the first two and last
three terminal actions are performed internally by
the Network Validation Facility for batch devices
based upon login information supplied for the
device”s owning console.

|

0!
NCTF1d File

te—»1 Transaction

| Application
| Interface

and Task Facility] Program
@tf—se/ |
i
|
|
NOS VALIDUs Network lkpphcation Network
and Local Validation 1 Inter face Access
Configuration Facility | Program Method
I
o I
|
N1]
Application User-written IApprcation
Program Application | Interface
Files Program 1 Program
v 1
|
|
Terminal fApplication
Verification] Interface
Facility | Program
|
i
cosoL 5 Message | Application
Program Control] Interface
Message SystemT 1 Program
Queues \
|
1
|
PLATO rApDL ication
PLATO Network | Interface
Lessons Interface | Program
|
I
|
User-written } Queued 1 Application
Application | Terminal Interface
Program | Record | Program
- | Manager |
|

TPrwxleged application programs; see Section 6

-
—
. ————

| 1
Network | Application]
Load and — Netuqu t | Interface 1
Dump Supervisor | Program i
it = '
| |
//,__—-__‘\\ I |
| I
N] i
Network] Applacation |
Configuration }—— Communicationsl Interface |
File SupervisorT 1 Program |
N~ I I
| 1
| I
| 1
Permanent l Application |
File le—s] Interactive | Interface |
System Facilityf | Program |
___) f :
l 1
I |
! |
3
Operating Remote i Application |
System Queue [w—m Batch Interface |
and Permanent g FacihtyT ! Program | CI)ata .
Files ommuni-
___) \\\§ i Network Peripheral 1 cations
\§\\l [e— Interface Interface |e—d—
—— Program Program Network
I ~—— o Net
] = -~ Terminals
NOS

Figure 1-5.

Network Access Method Components

MO)4 BuLSS820ud wedboud uoLiedL1ddy JedLdA] *9-| 3unbLy
SOy wodJy o:L.%mU
-€ leuiwia} [et— sjuLad
430-603) Jo 133uuoastq W3 1sAs
" ——— —— — butjeduado
swedbBoud » T » —-]) pue
uoLjledl dde |g g—— ———— IS0y wody L sajeuLwJday
Yyo1iLmsg uoL3123uu0d weJbodyg
. -SLp 404 R ——— N ——
leuLwaal
ananb Jo we Jboud
yditmsg uotLiedtydde NJOMISU WOJ4
we 6o ud — 108uuodsiLq [“€ -« 193UU09S LQ
uoLiedLjdde
wo.y == = ———
123Uu03sLq jeuLwsay JeuLwJdal
PLETVIVIRINN (] 129uu0os g
: ' — | —]
P >
ndaino swedboud o
8AL1oBUBIUT]] uoL3iediydde i -
AQ paJisap
- ——— e —— $t II2SVY = —— - — e3ep $S32044
woJdy 3Indut -
ndut > » » auLldn jo > -
aAL1IBJdIUT UCLSJBAUO)
weboud [. < - sabessauw
L o
uoLjedLjdde AJOsLAdadns
eiep papos 03 weuiboud uolLl} eLA 3}sanbad
-AeydsLp puss Jeutwdal |eg -edL)dde 03 uoL 329uuod
weJdboud sweJsboud 398UU0) jeuLwasy $S9204d
uolL3eodL)dde uotiestLjdde yoiLmsg
3s3nbay SL 1128V T T T T T I T T
03} 3ndino +
—] ' auLjumop jo >
UOLSJaAUO) S$sadoe aJaem1jos
||I||I.ml...| < - < Jasn FRILEED
uL-6o7 - alepLiep [e31 JJomM3su
> » NdN (3soy) = >] '+ ——— — e 03 323UU0)
pusa-3juoJd} Joy ss900e wedboud - e juajulL -
IIJSY wouy pue J8ALJp 3INdINO uotjealjdde ol jutod =
0} UOLSJ8AU0) /induL se sioy ajeptriep [*€ 1043UC2J93U]
jeutwasy weubodd dId dIN JAN dIv weJboud
90e4 491Ul uoLlesL)ddy
JeuLwday

1-13

60499500 T

SUPPORTED TERMINALS

The network software, and therefore an application
program, can service any real terminal compatible
with one of the terminal classes listed in table
1-2. Each terminal class is identified by its
terminal class number, described in section 3 under
Managing Logical Connections. All terminal classes
are supported by the interactive virtual terminal
interface. When a mnemonic appears in table 1-2,
it indicates the archetype terminal supported for
the given terminal class and device type.

The archetype mnemonics are not used by the appli-
cation program in any form; the archetypes are
described in more detail in the Network Definition
Language reference manual, where they are identified
by the same mnemonics. (See the preface.)

Site-modified versions of the network software can
service terminals in terminal classes other than
those listed. This manual applies only to support
of the terminal classes defined by CDC. Content of
this manual can be valid for site-defined terminal
classes; CDC is not responsible for deviations from
this manual attributable to support of site-defined
terminal classes.

TABLE 1-2. SUPPORTED TERMINAL CLASSES
) Terminal Device and Archetype Terminal MnemonicT
Line Protocol Class
Console Card Reader Line Printer Card Punch Plotter
Asynchronous 1 M33
or X.25 PADTT
2 713
3 721
RN 2741
5 M40
6 H2000
7 X3.648
8 T4014
HASP 9 HASP HASP HASP HASP HASP
Bisynchronousit (post—print) (post—print) (post-print) (post-print) (post-print)
14 HASP HASP HASP HASP HASP
(pre-print) (pre—-print) (pre-print) (pre-print) (pre—-print)
Mode 4 10 2000T 200UT 200U0T
Synchronous
11 714X 714X
12 711
13 714 714
15 734 2000T 200UT
2780/3780 16 2780 2780 2780 2780
BisynchronousTT
17 3780 3780 3780 3780
3270 18 3270 3270
Bisynchronous
TA blank indicates the device type is not supported for the terminal class.
TTPoint—to—point configurations only. Multidrop configurations are not supported.
11tx.25 PAD does not support terminal class 4.
$Terminal such as VI100 that follows ANSI standard X3.64.

60499500 T

INFORMATION PROTOCOLS 2

m

This section describes the protocols governing
information exchanged for communication between the
Network Access Method (NAM) and each application
program, and between application programs and their
connections. This section applies only to connec~
tions through NPUs. Information regarding connec-
tions through CDCNET can be found in the CDCNET
Terminal Interface Usage manual. The first portion
of this section defines the terms and concepts
needed to understand the description of information
content in the remainder of this section.

You should remember that parts of the network soft-
ware are written as application programs and also
use these protocols. Some of the features and
options discussed in this and subsequent sections,
therefore, do not necessarily apply to site-written
application programs; such information is indicated
where it is described.

INFORMATION FLOW

Information flow in the network is defined from the
viewpoint of the host computer. Information coming
to the host is said to be traveling upline; infor-
mation moving away from the host 1s said to be
traveling downline.

Information flow within a host computer is defined
from the viewpoint of a network application program.
Information coming to the application is said to be
traveling upline; information moving away from the
application is said to be traveling downline.

STRUCTURE PROTOCOLS

The network software uses structure protocols of
two types:

A logical protocol based on the concept of a
message

A physical protocol based on various definitions
of a block of data

The conditions that create a logical message and the
conventions governing the. subdivision of messages
are influenced by the physical structure protocols
the network uses. The events involved in actually
creating a message are described 1later in this
section under the headings Interactive Terminal
Input Concepts and Interactive Terminal Output
Concepts.

Structure protocols for CDCNET networks are de-—

. scribed in the CDCNET. Terminal ‘Interface Usage
Manual.

PHYSICAL PROTOCOLS AND NETWORK BLOCKS

Information exchanged with the network is either:

Data of no significance to the network software

60499500 U

Control information of significance only to the
network software

Exchanges of control information and data between
application programs, the network software, and a
terminal user occur in logical messages comprising
one or more physical network blocks. A network
block is a physical subdivision of a logical entity.

A network block is a grouping of information with
known and controllable boundary conditions, such as
length, completeness of the unit of communication,
and so forth. Other network documentation refers
to network blocks as network data blocks; this man-
ual uses the term data block only when referring to
network blocks that do not contain control infor-
mation.

Information exchanges between network processing
units and host computers or between application
programs use this physical structure protocol.
Such exchanges occur in single network blocks.

Information exchanges between network processing
units use a different physical structure protocol.
Such exchanges occur in sets of character and con-
trol bytes called frames. The relationship of a
frame to a mnetwork block is not significant to an
application programmer; frames are anot discussed in
this section.

Information exchanges between network processing

-units and terminal devices use a third physical

structure protocol. Such exchanges occur in sets
of character and control bytes called transmission
blocks.

Information exchanged between a network processing
unit and a public data network use packets as the
physical structure protocol. When the application
communicates with a terminal or other CDC host
applications, the relationship of a packet to a
network block 1s not significant to an application
programmer. Therefore, this relationship is not
discussed in this section.

However,. the relationship of a packet to a network
block may be significant if the application is com—
municating with a foreign host”s application. The
mapping of network blocks into the X.25 protocol is
discussed in.'the Communications Control Program
Internal Maintenance Specifications.

LOGICAL PROTOCOL AND PHYSICAL BLOCKS

Upline and downline information within the host and
NPUs is always grouped into physical network blocks.
Network data blocks are grouped into logical mes-
sages. Messages exchanged between an NPU and a
device can also be grouped into physical trans—
mission blocks of one or more logical messages.
Figure 2-1 shows these concepts.

Physical Network Blocks

Network Network
Block Block

Network Network
Block Block

~«—100 characters —s - 68 characters—

Logical Messages

-—100 characters —s —9 characters—

Message 1 Message 2 ———m -«— Message 3—=
Network Network Network Network
Block Block Block Block

——100 characters —s

68 characters—

Terminal Transmission Block (BLock Mode Operation Input)

-—100 characters —m -9 characters—

Transmission Block

Message 1 Message 2 ——» —— Message 3—=
Network Network Network Network
Block Block Block Block

100 characters —m - 68 characters-—»

—--100 characters —= -9 characters—s

Figure 2-1. Physical and Logical Information Structures

Network blocks are restructured into other types of
blocks at points of entrance and exit from the net-
work processing units. Figure 2-2 shows these
points as circles.

Network Data Blocks

A network data block is a collection of character
bytes, analogous to a clause in English., It is a
partially independent unit of information and might
need to be used with other blocks to form a message.

A network data block can contain all or part of a
message. Whether a message must be divided into
several network data blocks is determined by the
size of a network data block.

Upline and Downline Block Sizes

CDC-defined interactive devices have network data
block sizes that are multiples of 100 character
bytes for wupline data and of varying sizes for
downline data. The last block of an upline message
need not contain a multiple of 100 characters.

2-2

Application-to—-application connections have upline
and downline blocks of varying sizes. The wupline
block size seen by one application is the downline
block size used by the other application.

CDC-defined batch devices have network data block
sizes that are multiples of 64 central memory
words. Each such block is one mass storage physi-
cal record unit (PRU) of a file.

The network administrator establishes the appro-
priate size of upline and downline network data
blocks for each terminal device or application-to-
application connection when the network configura-
tion file is created. Sizes are usually chosen to
fit a single message into a single network data
block, or to optimize use of available network
storage, or to satisfy some other administrative
criterion. The administrator also establishes the
correct size for a terminal transmission block in
the network configuration file.

The initial size of an upline network data block is
established by the site administrator (using the
UBZ parameter of an NDL statement) when he or she
defines the device or application connection that

60499500 R

HOST
NETWORK BLOCKS
FRONT-END
NPU
NETWORK BLOCKS
£
\V
TRUNK —3»- FRAMES
Ay
REMOTE N
NPU
NETWORK BLOCKS
L
J
COMMUNICATION TERMINAL
LINE ——— TRANSMISSION
BLOCKS
OR
X.25 PROTOCOL
PACKETS
TERMINAL
DEVICE

Figure 2-2. BlLock Reassembly Points

produces the block. Once a size is established for
a connection, that size determines the maximum num—
ber of characters an application program can receive
as a single network data block. When an upline
message is too long to fit into a single network
data block, the NPU divides it into as many network
data blocks as necessary before delivery to the
application program.

Application-to~application data is not split into
smaller blocks before upline delivery if the data
crosses a trunk line between two host nodes or if
it is passed between two programs in the same host.
Such data does not pass through the NPU software
that prepares all other upline blocks.

The initial size of a downline network data block
is established by the site administrator (using the
DBZ parameter of an NDL statement) when he or she
defines the device or application connection that
receives the block. The established size is a
recommended maximum for the number of characters an

60499500 R

application program should send in a single network
block. The actual maximum size of a downline net-—
work block is chosen by the application program
sending the block. NAM imposes an absolute maximum
size, however; this absolute maximum is described
later in this section under the heading Block Buffer
Areas. .

The maximum length used for each network data block
to or from a device can be independent of the ter-
minal’s transmission block size. For example, a
mode 4 console cannot accept a transmission block
containing more than a specified number of char-
acters. An application program could divide a mul-
tiple line display transmitted to the console of
such a terminal iato network blocks smaller than
the buffer space of the specific terminal. However,
the application program does not need to divide its
network blocks. The network software reconstructs
any of the program’s network data blocks longer
than the terminal’s buffer space into several ter-
minal transmission blocks of the correct size.

An application program is advised of the upline and
downline network data .block sizes and terminal
transmission block size defined when logical con-
nection to a device occurs. Your application pro-
gram can change the established upline block size
using control information called a field number/
field value pair; this process is described in sec-
tion 3. Your application program cannot change the
established downline block size but can ignore it.
Ignoring a recommended value can cause resource
problems for the network software, particularly in
the NPUs.

The upline block size is enforced by the network
software, which subdivides terminal transmission
blocks input from a device into network data blocks
of that size or smaller. The upline block size
defines the largest block that NAM will deliver to
the application program from a device.

The downline block sizes defined are advisory
values. That is, an application program can accept
the size specified for a given logical connection
when the connection is made, or ignore that speci-
fication and choose its own value for maximum block
size. If an application program transmits blocks
larger than the downline block size, the network
software does not subdivide them until it creates
transmission blocks for the terminal.

The downline terminal transmission block size is
also enforced by the -network software. Your appli-
cation program can change the established trans-—
mission block size using a field number/field value
pair, as described in section 3.

Application programs should use the downline block
sizes defined whenever possible. 1If the size of an
upline or downline network data block is not appro-
priate for the type of data being exchanged with a
connection, device, you should discuss the situation
with the network administrator who configures the
devices being serviced. The Network Definition
Language reference manual 1listed in the preface
contains guidelines for choosing upline and downline
network data block sizes and for selecting terminal
transmission block sizes.

2-3

Block Limits

Temporary network block storage (queuing) occurs
for upline and downline traffic at several points
in the network. The network adminstrator controls
the storage space required by controlling the net-
work data block size and the number of blocks queued
in each direction.

The number of blocks queued depends on several
Network Definition Language (NDL) statement param-
eters. One of those parameters, the ABL parameter,
establishes the application block limit. Another
NDL statement parameter, the UBL parameter, estab-
lishes the upline block limit. The upline block
limit determines the number of upline blocks NAM
queues for your program before rejecting further
input.

The application block 1limit is another device or
application connection configuration parameter
received by an application program (as the abl
field value) when logical connection occurs. Your
application program cannot send more than that
number of downline blocks for queuing within the
network. The use of the application block limit is
described in section 3 as part of the data flow
control description.

Transmission Blocks

Terminals send or receive data in physical groupings
of character bytes; these groupings are called
transmission blocks. The size of a downline trans-
mission block for a specific device is also estab-
lished by the network administrator (using the XBZ
parameter of an NDL statement). The wvalue used
might be dictated by hardware requirements.

Transmission blocks exchanged with X.25 devices are
called packets and have different size and protocol
content requirements than transmission blocks
exchanged directly with a terminal. The network
administrator can control some of the character-
istics of packets.

During upline transmissions from a device, the NPU
reassembles the terminal”s transmission block into
network blocks. Each transmission block from a
CDC-defined batch device can contain part of a
single message, all of a single message, or several
messages. Each transmission block from a CDC-
defined console device can contain all of a single
message, or several messages.

During downline transmissions, the NPU resassembles
network blocks into terminal transmission blocks.
This conversion is done so that the application
program need not be concerned that output is
delivered in appropriately sized transmission
blocks when the terminal cannot process blocks
larger than a maximum size. Each transmission
block can contain part of a single message or all
of a single message; downline transmission blocks
do not contain more than one message.

2-4

INTERACTIVE TERMINAL INPUT
CONCEPTS

An interactive device can send or receive data in
two modes:

Normalized mode
Transparent mode

The significance of these data modes is described
later in this section wunder Interactive Virtual
Terminal Data. The following discussion does not
apply to transparent mode data.

In normalized mode, an interactive device transmits
logical lines of data. Each logical line is analo-
gous to an English sentence. It is a complete unit
of information.

The device can transmit these lines one at a time,
or in sets. It therefore can use one of two pos-—
sible transmission modes.

If the device can transmit only one character or
one logical line in each transmission block, it is
operating in line mode. If the device can transmit
more than one logical line in a transmission block,
it is operating in block mode.

HASP, 2780/3780, and 3270 devices (terminal classes
9, 14, 16, 17, and 18) always operate in line
mode, Mode 4 devices (terminal eclasses 10 through
13 and 15) always operate in block mode. Only
devices 1in terminal classes 1 through 3 and 5
through 8 can operate in both modes.

Line Mode Operation

From a terminal wuser”s viewpoint, transmitting a
single logical line at a time is a buffered 1line
mode form of input. Buffered line mode allows the
user to select either character-by-character or
line-by-line transmission (some devices have
switches to select either option) without distinc-
tion. Each logical line is terminated by an end-
of-line indicator; this indicator might also trans-
mit the 1line from the terminal, if the terminal
buffers lines of input. Each logical line becomes
a separate network message when the NPU receives it,

When the NPU is told that an interactive device is
operating in line mode, the NPU performs line turn-—
around for it. When a message is sent upline in
this mode, the NPU begins to send any downline data
available for the device. That 1is, output is
allowed after each logical line of input. (Refer
to the KB option for the IN command, described in
section 3.)

Block Mode Operation

Some devices can transmit many logical lines in a
single tramnsmission block. (The terminal user
sometimes can select or override this condition with
a BLOCK or BATCH mode switch on the device.) Such
devices are called block mode terminals. Mode 4
devices, for example, are always treated as block
mode devices.

60499500 T

Block mode terminals group logical 1lines in the
terminal wuntil the transmission key 1is pressed;
these groups reach the network software as a single
transmission block. The network software forwards
each message to the application program as a sepa-
rate transmission; the effect resembles typeahead
entries from line mode terminals.

Each logical 1line within the input transmission
block ends with an end-of-line indicator. Each
transmission block is terminated by an end-of-block
indicator.

Whether each logical line in a transmission block
becomes a separate message or each transmission
block becomes a single message is initially deter-
mined by the network administrator through the
device definition 1in the network configuration
file. Your application program or the terminal
user can change that mode (refer to the EL and EB
options of the EB command, described in section 3).

When the NPU is told an interactive device is oper-
ating in block mode, the NPU does not perform line
turnaround for it until all of its current trans-
mission block is received. When the terminal is
serviced in this mode, the NPU holds all downline
data available for the device until it detects the
end-of-block indicator. That is, output is allowed
after each logical line of input only if each logi-
cal line of input is transmitted in a separate
block. (Refer to the BK and PT options for the IN
command, described in section 3.)

A terminal might have a block transmission key that
does not generate the end-of-block indicator. When
the block transmission key generates the end-of-line
indicator, the terminal is operating in line mode,
and logical lines are transmitted from the terminal
as separate messages.

When the transmission key does not generate either
the currently defined end-of-line iundicator or the
currently defined end-of-block indicator, the ter-
minal user must be aware of the distinction. If
possible, the user should change the end-of-block
indicator to the code actually sent by the key. If
not possible, if the code sent by the key cannot be
determined, or if the key does not generate a code,
then the user must enter an indicator as the last
data character before pressing the transmission
key. These possible conditions exist:

If the transmission key is pressed immediately
after pressing the key that generates an end-
of-line indicator, a message is generated. This
result 1is the same as if the device was opera-
ting in line mode and the key generating an
end-of-line indicator had been pressed, or as
if the key generating an end-of-block indicator
had been pressed.

If the transmission key is pressed immediately
after pressing the key that generates an end-
of-block indicator, a message 1is generated.
This result is the same as if the device was
operating in line mode and the key generating
an end-of-line indicator had been pressed, or
as if the transmission key had generated an
end-of-block indicator.

60499500 R

If the transmission key is pressed without
pressing an end-of-line key or end-of-block key
as the last prior activity, an incomplete mes-
sage exists. The Terminal Interface Program
(TIP) generates an upline network data block if
enough information was received. 1If a downline
block is available for the device, the data
remains queued while the TIP waits for comple-
tion of the dinput transmission block. This
situation exists until the terminal user enters
more data, ending with either an end-of-line or
an end-of-block indicator.

Physical and Logical Lines

A logical line of input can contain one or more
physical lines; a physical line ends when vertical
repositioning of the cursor or carriage occurs. If
the device recognizes a linefeed operation distinct
from a carriage return operation, a physical line
ends when a linefeed is entered. If no distinction
exists between vertical and horizontal reposition-—
ing, a physical line is identical to a logical line.

A physical line of input is relevant to the network
software only when a backspace character 1is proc-
essed. Terminal wusers cannot backspace across
physical 1line boundaries to delete characters in
physical lines other than the current one.

A logical line of input always ends when an inter-
active device transmits an end-of-line or end=-of-
block indicator. An upline message is normally
transmitted to the host as soon as a logical line
ends.

End-of-Line Indicators

The eund-of-line indicator is initially established
by the network administrator when he or she defines
the device in the network configuration file. The
indicator is either a specific code, a code
sequence, or a specific condition associated with
use of a certain key or set of keys by the terminal
operator. The default keys for generating an end-
of-line indicator are shown in table 2-1.

Your application program or the terminal user can
change this indicator (refer to the EL command
options, described in section 3). The NPU normally
discards any end-of-line iundicator character code
when it detects the end of a logical line.

Multiple Logical Lines in One Message

For wupline data from an interactive device, the
network administrator can configure the device so
that the NPU ignores the character or event that
normally causes it to transmit a message as soon as
a logical 1line ends. Instead, he or she can make
the NPU use a different character or event to trig-
ger transmission to the host. Your application
program or the terminal user can also make this
change (refer to the EB option of the EL command,
described in section 3).

2-5

TABLE 2-1.

DEFAULT MESSAGE DELIMITER AND TRANSMISSION KEYS

Character or
Terminal Archetype . . Block Mode
Class Terminal End-of-Line Key L1n§ M9de Transmission Key
Transmission Key
1 Teletype Model 30 RETURN RETURN CTRL and D
series
2 CDC 713, 722-10, RETURN or RETURN or SEND or
751, 752, 756 CARRIAGE RETURN CARRIAGE RETURN CONTROL and D
3 CDC 721 NEXT NEXT NEXT
4 IBM 2741 RETURN RETURN None
5 Teletype Model 40-2 RETURN RETURN SEND
6 Hazeltine 2000 CR CR SHIFT and XMIT
or CIRL and D
7 DEC VT 100 or CARRIAGE CARRIAGE CTRL and D
CDC 722-30 RETURN RETURN
8 Tektronix 4014 RETURN RETURN CTRL and D
1 thru 3 X.25 packet assembly/ Same as above Packet CTRL and D
5 thru 8 disassembly (PAD) transmission
console device key
9 HASP (postprint) Variable Variable None
10 CDC 200 User Terminal RETURN None SEND
11 CDC 714-30 NEW LINE None ETX
12 CDC 711 NEW LINE None ETX
13 CDC 714-10/20 NEW LINE None ETX
14 HASP (preprint) Variable Variable None
15 CDC 734 NEW LINE None SEND
16 IBM 2780 End of card End of card None
17 IBM 3780 End of card End of card None
18 IBM 3270 ENTER None None
19 thru Reserved for CDC use
27
28 thru Site-defined Unknown Unknown Unknown
31

This option allows the terminal user to pack many
logical lines into one upline network block. Each
line includes the end-of-line indicator as a data
character that terminates it. This is a form of
line mode, because the host receives only one
message. From the terminal user”s viewpoint, one
message is many logical lines.

End-of-Block Indicators

The end-of-block indicator is initially established
for the device by the network administrator when he

2-6

or she defines the device in the network configura-
tion file. The indicator is either a specific code,
a code sequence, or a specific condition associated
with use of a certain key or set of keys by the
terminal operator.

The default keys for generating an end-of-block
indicator are shown in table 2-1. In X.25 packet-
switching networks, the packet transmission condi-
tion is always the end-of-block indicator.

When the device is not operating in block mode, the
end-of-block indicator has the same effect as an

end-of-line indicator.

60499500 T

Your application program or the terminal user can
change the end-of-block indicator (refer to the EB
command, described in section 3). This indicator
normally is discarded when the last message from the
device is sent upline.

INTERACTIVE TERMINAL OUTPUT
CONCEPTS

A downline message can contain no logical lines (an
empty block or a transparent mode block) or many
logical lines of output. Each logical line can
contain many physical lines of output.

A logical line of output ends when the application
program embeds a code or set of bytes for that
purpose in the message, or when the block containing
the line ends. A downline message ends when an
application program indicates that condition.

Because downline messages can always contain more
than one logical 1line, an interactive device can
always receive the output equivalent of a multiple-
message block mode input transmission. The appli-
cation program can group logical lines as necessary
to achieve that effect.

If a message fits into a downline network data
block, the block becomes a single-block message.
If one downline message cannot be fit-into a single
network data block, the application program can
split it into as many blocks as necessary. An
application program generally sends a single
message (consisting of as many logical lines as

necessary) as the response to one input message
from an interactive device.

BATCH DEVICE DATA

Batch devices can be serviced as site-defined device
types through the interactive virtual terminal
interface described later in this section. A sep-
arate set of interface protocols also exists for
batch devices serviced by CDC-written Terminal
Interface Programs and application programs.

These programs require large amounts of data to be
exchanged between a host computer’s mass storage
devices and CDC-defined batch devices. Such batch
data is therefore assembled into messages of omne or
more network data blocks. Each network data block
contains one or more mass storage physical record
units (PRUs). Because only the CDC-written Remote
Batch Facility can use ‘the special interface for
CDC-defined batch devices, the remainder of this
manual does not discuss the requirements this
interface imposes on batch data or batch device
support.

APPLICATION-TO-APPLICATION INPUT
AND OUTPUT CONCEPTS

Application programs within the same host exchange
data by transferring the contents of 60-bit central
memory words between control points. A program can
create a connection to itself and exchange data on
that connection.

60499500 R

Application programs in differeat hosts exchange
data by transferring the contents of 8~bit bytes
through the network, as if the data were sent to or
received from an interactive virtual terminal.

Application programs can exchange data only in
transparent mode. Upline and downline messages are
not subdivided into logical lines. Embedded codes
are not used to terminate lines or network data
blocks within the messages.

INFORMATION IDENTIFICATION
PROTOCOLS

CDC network host software uses four general con-
ventions for identifying network blocks. These
conventions iundicate the following things to the
application program sending or receiving the block:

The kind of message of which the block is a
part; this is called the message type.

The kind of information within the block; this
is called the application block type.

The areas of host central memory containing the
block and containing information describing the
block; these are called the block buffer areas.

The source or destination of the block; these
connection identifiers are called the applica-
tion connection number and the application list
number.

The following subsections describe these conven-
tions.

APPLICATION PROGRAM MESSAGE TYPES

An application program message is a complete logical
unit of information, comprising one or more physical
network blocks. A message can be a line of data to
or from a teletypewriter, a mass storage file, a
service request to NAM, or a screen of information
for a cathode ray tube.

There are two kinds of application messages, data
and supervisory. Data messages convey information
of significance only to a device user or to another
application program. Data messages can consist of
more than one network data block.

Supervisory messages convey information of signifi-
cance only to the network software. Supervisory
messages consist of only one network block.

Supervisory messages are used by an application
program to control data messages between itself and
logical connections.

APPLICATION BLOCK TYPES

The network block is the basic unit of information
exchange for the application program. There are
several types of network blocks that an application
program can exchange. Each type has an identifying
application block type number assigned to it. The
following types exist:

Null blocks, which are dummy input blocks indi-
cating the absence of any data or supervisory
information. These blocks have an application
block type number of O.

Blocks containing portions of data messages, but
not terminating -those messages. These blocks
have an application block type number of 1; such
blocks are called BLK blocks in other network
documentation.

Blocks that terminate data messages. These
blocks can include physically empty blocks when
such blocks convey logical information. Blocks
that terminate data messages have an application
block type number of 2; such blocks are called
MSG blocks in other network documentation.

Blocks constituting supervisory messages. These
blocks have an application block type number of
3; such blocks include the information in blocks
called CMD, BACK, BRK, ICMD, ICMDR, and other
acronyms in some network documentation.

Blocks containing portions of qualified data
messages, but not terminating those messages.
These blocks have an application block type
number of 6; such blocks are called QBLK blocks
in other network documentation.

Blocks that terminate qualified data messages.
These blocks can include physically empty
blocks when such blocks convey logical
information. Blocks that terminate qualified
data messages have an application block type
number of 7; such blocks are called QMSG blocks
in other network documentation.

Qualified data can be used only on application-to-
application connections. Such data has no special
significance to the CDC network software. Quali-
fied data is intended for application programs in
order for such programs to communicate control
information among themselves that is outside the
data stream but synchronous with it. For example,
user identification information (qualified data)
placed before data in transferring files.

Blocks with an application block type of 6 or 7
cannot be sent or received on the logical
connection between blocks with an application block
type of 1 or 2. Qualified data can only be sent or
received after an wunqualified message ends or
before an unqualified message begins.

BLOCK BUFFER AREAS

All network blocks are exchanged between the appli-
cation program and the network software using two
kinds of buffers:

The block header area

The block text area

Block Header Area

Block header areas each contain a 60-bit word
describing the contents of a corresponding text
area. This block header word accompanies the block
in the corresponding block text area during the
exchange between the application program and NAM.

For downline blocks, the application program creates
the block header and NAM interprets it. For upline
blocks, NAM creates the block header and the appli-
cation program interprets it.

Because the contents of the header word depend on
the contents of the text area, the header word for-
mats are described in this manual after the text
area content protocols are described. To simplify
the header area descriptioms, they are presented in
four separate formats:

For upline network data blocks
For downline network data blocks
For upline supervisory message blocks

For downline supervisory message blocks

Block Text Area

A block text area is separately addressed from its
header area and need not be contiguous to it. The
text ,area contains the single network block
described by the header word in the header area.

Text areas can be of varying length, as necessary
to accommodate various block lengths. The text area
has a maximum length expressed as a whole number of
central memory words. Text areas can be up to 410
central memory words long.

The length of the text area used by the application
program is described to the network by the applica-
tion program. The text area length must be calcu-
lated from the maximum length of the blocks it will
contain.

Block length is distinect from text area length.
The length of a block depends on the type and use
of the block,

Null blocks have zero length and do not require any
central memory words for their text area. Other
block types have lengths expressed in character byte
units, although the bytes need not actually contain
characters.

Blocks are always a whole number of character units
long but do not have to be a whole number of central
memory words long. Not all words in the text area
used for a given block need to be filled with
meaningful information.

Supervisory message blocks are 1 through 410 words
long. Data blocks have lengths of zero up to the
maximum number of characters that can fit in the
maximum text area of 410 words, or 2043 characters,
whichever occurs first.

60499500 T

Downline messages containing more characters than
the text area can hold must be divided into several
network data blocks. Each such block must fit into
the text area. Each of these blocks should also
meet the network block size requirement and must be
transmitted separately.

Upline data blocks can be truncated to fit into the
existing text area. Alternatively, the application
program can use a large text area for large blocks
and a small text area for small blocks.

CONNECTION IDENTIFIERS

Two parameters identify and control the routing of
messages:

The application connection number
The application list number

Both parameters are used in AIP calls that fetch
incoming network data blocks. The application con-
nection number is used in the block header words of
outgoing blocks.

Application Connection Number

The application connection number is a 12-bit inte-
ger used to address a particular logical connection.
The connection number can be used as an index into
a control structure (for example, the number of a
connection could be the ordinal of a corresponding
device table) or used in any other manner the
application chooses.

These connection numbers are assigned serially by
NAM for each application program. Numbers that
become available because of disconnections are
reassigned to subsequent connections.

A connection number of zero indicates the control
connection on which asynchronous supervisory mes-
sages are sent and received. (See Supervisory Mes-
sage Content and Sequence Protocols, later inm this
section.)

Application List Number

NAM permits an application program to group connec-
tions with similar processing requirements into
numbered 1lists. This is an efficiency feature,
relieving the application of the need to specify
individual connections each time upline block proc-
essing 1is required. Instead, when a request is
made for a block from a connection on a list, any
device or application program connections with empty
input queues are automatically skipped and a block
from the first nonempty queue is returned. A single
null block is returned when none of the connections
on the list have any input queued.

This feature can be used in many kinds of 1list
structures. For example:

An application program must process input from

devices with large -network block sizes (such as
interactive graphics terminals in a specific

60499500 R

terminal class) differently than input from
devices with small block sizes. This processing
occurs in different portions of the program
code; therefore, the application program assigns
the devices using large blocks to list 1 and
the devices using small blocks to list 2.

An application program treats all devices the
same and must process blocks from them on an
equal basis. Accordingly, it assigns them all
to the same list.

An application program services terminals in
four geographical areas; each must be treated
separately because of wvarying state laws.
Accordingly, they are assigned to 1lists 1
through 4.

An application program services devices that
should be treated the same, but with the fol-
lowing complication: when the application has
received a block from a particular terminal, it
must perform some time-consuming function that
prevents it from immediately processing another
block from the same terminal. Accordingly, the
application places all comnnections on list 1 and
issues an input request on list 1. When a block
for connection x is returned, it temporarily
inhibits receipt of data on connection x before
it issues the next input request. When it can
accept another data block from the terminal
using logical connection x, the application
program sends a supervisory message to reverse
the effect of the temporary inhibition.

The parameter used for this kind of processing is
called the application list number. The application
list aumber is an integer from O through 63 speci-
fied by the application program when it accepts a
connection. NAM links message input (upline) queues
of all connections that have been assigned the same
list number. An application program can request
blocks from these linked queues in rotation (with-
out specifying individual connectiouns) by including
the assigned application list number in a NETGETL
or NETGTFL statement (described in section 5).

Each list number identifies one connectiom list. A
connection list can be viewed as a table of connec-
tion numbers. These connection numbers are entered
in the table in the order in which the application
program assigns the connections to the list. When
the list is scanned for input from a connection,
the connections are examined in the order in which
they are entered in the table.

The application program explicitly assigns the list
number to each logical connection when the connec-
tion is established. The logical connection cor-
responding to application connection number zero
already exists when the application is connected to
the network. For this reason, application connec—
tion number zero is automatically assigned to
application list number zero without program inter-
vention.

The application program does not have to maintain
any tables associating connection numbers and list
numbers. The application program need not use list
processing at all.

DATA MESSAGE CONTENT AND
SEQUENCE PROTOCOLS

Data blocks consist of 1 through 410 60-bit words
or 1 through 2043 8-bit or 12-bit bytes., The
fields within these blocks convey information to or
from the terminal user. Data blocks have associ~
ated block header words. These header words convey
information to the network software concerning the
contents of the corresponding text area buffer.

Data blocks are sent and received through the
Application Interface Program routines described in
section 5. The application program fetches data
messages one block at a time. When the connection
queue is empty, a null block with an application
block type of zero is returned.

The network software provides a mechanism - for the
application program to determine when data blocks
are queued. When a call to an AIP routine is
completed, a supervisory status word at a location
defined by the application program is updated to
indicate whether any data blocks are queued. As
long as the application program continues to make
calls to AIP routines, it can test the supervisory
status word periodically (instead of attempting to
fetch null blocks from all application connection
numbers). The supervisory status word and the use
of NETWAIT are described in section 5.

The protocols for data message text and the use of
the text area buffer depend on whether the logical
connection is with another application program, an
interactive virtual terminal device, or a passive
batch device. Blocks exchanged with other applica-
tion programs .in the same host have the fewest
requirements and most flexible structure. Blocks
exchanged with CDC-defined batch devices using the
special batch device protocol have the most re-
quirements and the least flexible structure.

Requirements for blocks exchanged with other appli-
cation programs in the same host are covered in the
figures later in this section, and in section 3.
Blocks exchanged between application programs are
groups of binary character bytes with no parity,
equivalent to transparent mode data. Such blocks
can use the eighth bit of an 8-bit byte as data and
need not have the transparent mode bit set in their
block header; see the decriptions of transparent
mode and block header word content later in this
section.

The requirements for exchanging blocks with inter—
active virtual terminal devices are described
below. Requirements for blocks exchanged with
batch devices through the special batch device
interface are not described because that interface
is available only to CDC~written software,

Data message content and sequence protocols for
CDCNET networks are described in the CDCNET Ter-
minal Interface Usage Manual.

INTERACTIVE VIRTUAL TERMINAL DATA

An interactive virtual terminal can be either a
CDC-defined console device or a site~defined
device. An interactive virtual terminal can send
and receive data in two modes: normalized mode and
transparent mode. The format and content of data
in these modes is described later in this sub-
section. The characteristics of an interactive

2-10

virtual terminal depeand on which data exchange mode
is currently used.

In normalized mode, the characteristics of an
interactive virtual terminal are as follows:

Input and output can occur simultaneously.

A page of output has infinite (no physical)
width; logical 14nes are divided automatically
as needed to fit the physical line restrictious
of the device.

A page of output has infinite (no physical)
length; sets of logical lines are divided auto-
matically as needed to fit the physical
restrictions of the device page.

A logical line of output cannot be longer than
a single network block; a single message can
contain an infinite number of logical lines.

Characters are either 7-bit ASCII codes using
zero parity (bit 7, the eighth bit, is always
zero in wupline data and ignored in downline
data), or 6-bit display codes with no parity.

logical 1lines of input are terminated by a
changeable character or condition; this ter—
minator 1is the end-of-line or end-of-block
indicator described earlier in this section.
The input terminator 1is not part of the data
seen by an application program unless the
full-ASCII feature is used (this is explained
later in this subsection and in section 3 where
the FA command is described).

logical lines of output are terminated by an
ASCII unit separator character code (US, repre-
sented by the hexadecimal value 1F) or the end
of a zero-byte terminated record. The applica-
tion program places this terminator in the data.

No cursor positioning actions are required to
acknowledge receipt of input, and no timing
adjustments need to be made at the end of phys—
ical output lines.

Logical lines <can be divided into physical
lines by embedding optional format control
characters in downline blocks.

In transparent mode, the characteristics of an
interactive virtual terminal are as follows:

Input and output can occur simultaneously.

A page of output has infinite (no physical)
width.

A page of output has infinite (no physical)
length.

Characters are either 7-bit codes using zero
parity (bit 7, the eighth bir, is always zero
in upline data and ignored in downline data),
or codes of a terminal-dependent code set with
terminal-dependent parity.

Messages of input are terminated by a change—-
able character or condition; this terminator is
one of the message or mode delimiters described
later in this section. The mode delimiter is
not part of the data seen by an application
program.

60499500 U

Messages of output are terminated by a condition
or event chosen by an application program (each
network block is separately designated as
transparent or normalized when sent).

Cursor positioning actions might be required,
and timing adjustments might need to be made at
the end of physical output lines.

Line Turnaround Convention

The interactive virtual terminal concept imposes
some conventions on the content and sequencing of
blocks exchanged with an 1interactive device. The
primary coanvention of block sequencing involves the
direction and time of block transmission.

The application program can service an interactive
device on a connection as if the device always
operates in a full-duplex mode. That is, input and
output can occur independently; the terminal user
can enter several logical lines at once (an opera-
tion called typeahead), without waiting for a
response to each line.,

Application program input and output need not
alternate. However, some devices cannot actually
operate that way. To prevent a loss of synchroni-
zation between input and output at such devices, a
line turnaround convention exists. This convention
consists of the following events.

After a block of type 2 (the end of a message) is
sent to a device, no more blocks should be sent
downline until at least one block is input from the
same device. An application program therefore
should never send the last block of a message down-
line until it is ready to wait for input.

A network data block of type 2 has special signifi-
cance to the network software during output to an
interactive device. When such a block is the last
block of the output stream, the network software:

Unlocks the keyboard of an interactive device
being serviced as terminal class 4 (an IBM
2741).

Sends an X-ON code to start an automatic paper
tape input mechanism, if one has been defined
as the input mechanism for the device. Paper
tape operation is explained in more detail in
section 3 where the IN and OP commands are
described.

Starts polling devices in terminal classes 10
through 13 and 15 (mode 4 consoles), and
terminal class 18 (3270 consoles).

If the terminal is a half-duplex device, such as a
2741 or a paper tape reader/punch, it must enter
input before the network software will deliver
additional output messages. Other devices are not
subject to this restriction.

60499500 T

The requirement for an input block after a block of
type 2 1is output can be satisfied in several ways
by terminal operators. An empty input line can be
entered and will reach the application program as a
block of type 2 but containing nothing. A line
containing data can be entered and will reach the
application program as one or more network data
blocks.

Devices can interrupt output by entering input.
When this occurs, the network software stops the
output until the terminal user completes the input
(using an end-of-line or end-of-block indicator).
Output then resumes at the next character of the
current physical and logical line.

INTERACTIVE VIRTUAL TERMINAL
EXCHANGE MODES

The conventions of block content depend on the mode
in which the block is exchanged. There are two
possible exchange modes, normalized mode and trans-—
parent mode. The latter is referred to in other
documentation as binary mode. This manual wuses
transparent mode to indicate exchange of a block
that is not in normalized mode.

Normalized Mode Operation

The interactive virtual terminal interface assembles
message character streams into upline network data
blocks from terminal transmission blocks., Tt dis-
assembles character streams from downline network
data blocks, reassembling them into terminal trans-
mission blocks.

The assembly operation is controlled by the termi-
nation of logical lines. The disassembly operation
can be controlled by the termination of messages.
The disassembly operation can also be modified by
format control characters embedded in each block,
and by the page width defined for the device (refer
to the PW command in section 3).

End of Logical Lines in Input

Logical lines reach an application program as one
or more network data blocks. Logical lines usually
end when a message ends and do not contain the
character or code sequence defined as the end-of-
line or end-of-block key.

However, two special cases exist. Logical lines do
contain the end-of-line or end-of-block codes when
the device is operating in full-ASCII editing mode
(described later in this section). Logical lines
also contain the end-of-line code when the end-of-
line key is changed to be the default end-of-block
key for the device (see the EB option of the EL
command described in section 3). In the latter
case, the transmission block becomes a message, and
the logical lines within it have no effect on con-
struction or type of network data blocks.

Logical and Physical Lines in Output

The application program does not need to equate a
logical line of output to a complete message nor
does it need to create a separate network block for
each physical line of output. A single logical line
can contain many complete physical lines. A single
block can contain many complete logical lines, and
a message can be one or many such blocks. A phys~—
ical or logical lime cannot, however, be continued
from one block to another.

Logical lines within downline blocks are ended by
an end-of-line indicator. Unlike the end-of-line
indicators used in upline blocks, downline blocks
always contain codes for the end-of-line function;
the codes used downline are always the same and
usually differ from the codes wused upline. The
downline end-of-line indicator varies according to
the application character type of the block; appli-
cation character types are described later in this
section. Bytes used to store indicators must be
included when determining the number of characters
comprising a downline block.

The end-of-line indicator in 60-bit character bytes
(application character type 1) is determined by the
programs exchanging the block. No predefined end-
of~line indicator exists for that application char-
acter type.

The end-of-line indicator in blocks using 8-bit
characters in 8-bit or 12-bit bytes (application
character types 2 or 3) is determined by whether the
block is sent in normalized mode or transparent
mode (described later in this section). In trans-—
parent mode, no end-of-line indicator exists. In
normalized mode, the end-of-line indicator is the
ASCII unit separator character US.

The end-of-line indicator in blocks wusing 6-bit
character bytes (application character type 4) is
12 to 66 bits of zero; these bits are right-
justified to fill the 1last central memory word
involved. This convention makes each logical line
the equivalent of a zero-byte terminated logical
record.

The 6-bit option requires a right-justified 12-bit
byte in.at least one central memory word. On com-—
puters using the 64-character set, the colon is
represented in 6-bit display code by six zero bits.
On such systems, if the application needs to send
colons to the terminal console in 6-bit display
code, care must be taken to make sure that a string
of colons is not interpreted as an end-of-line
indicator. A colon preceding the end-of-line indi-
cator is considered as part of the indicator and not
as a colon when it occupies one of the two right-
most character positions in the next-to-last central
memory word of the block or any of the eight left-
most positions in the last word of the block.

All predefined end-of-line indicators embedded
within a block are discarded by the network soft-
ware and produce no characters on the console output
device. The network software can perform carriage
or cursor repositioning when an end-of-line indica-
tor 1is encountered; this operation is described
later in this section under Format Effectors.

2~-12

Upline Character Sets and Editing Modes

The network protocol permits entry from a device of
codes less than or equal to 8 bits per character;
however, a normalized mode character always reaches
an application program as one of the 128 ASCII
characters defined in appendix A. Receipt of an
entered character by the application program depends
on the editing functions performed by the TIP,
Three editing modes exist for the TIP when it proc-—
esses normalized data:

Complete interactive virtual terminal editing
mode

Special editing mode

Full-ASCII mode

Devices always begin a connection with the network
in normalized mode. The initial upline editing mode
is established for each device when the device is
connected to the host. This mode 1is complete
editing. The application program or the terminal
user can change that mode wusing the SE or FA
commands, described in sectiomn 3.

Complete Editing

During complete editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL)
0A (the ASCII character LF)
7F (the ASCII character DEL)

The backspace character code currently defined
for the device (see the BS command'in section 3)

The end-of-line character currently defined for
the device (see the EL command in section 3)

The end-of-block character currently defined
for the device (see the EB command in section 3)

The following hexadecimal character codes cannot be
received, if entered at certain points in a message:

02 (the ASCII character STX), if entered as the
first character of a message

11 (the ASCII character DCl) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3)

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output coatrol for the device
(see the Y option of the OC command in section
3).

60499500 S

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
input mechanism is known to be a paper tape
reader (see the PT option of the IN command in
section 3)

The wuser-break-l1 and user-break-2 character
codes currently defined for the terminal, if
entered as the only character in a message (see
the Bl and B2 commands in section 3)

The abort-output-block character code currently
defined for the terminal, if entered as the
only character in a message (see the AB command
in section 3)

The network control character currently defined
for the terminal when it follows an end-of-line
or end-of-block character or when it is used
for such purposes as page turning (see the CT
command and the Y option of the PG command in
section 3)

The currently defined cancel input character is
always received at the end of the logical line it
cancels. This character is not data.

Special Editing

Special editing takes precedence over complete
editing. Special editing cannot occur if the ter-
minal operates in block mode.

When special editing occurs, linefeed codes and the
currently defined backspace code are forwarded to
the application program as data. The network soft-
ware sends appropriate responses to the device when
it receives these codes.

During special editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL)

7F (the ASCII character DEL)

The end-of-line character currently defined for
the device (see the EL command in section 3)

The end-of-block character currently defined
for the device (see the EB command in section 3)

The following hexadecimal character codes cannot be
received, if entered at certain points in a message:

11 (the ASCII character DCl) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section

3)

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output control for the device

(see the Y option of the OC command in section
3).

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
input mechanism is known to be a paper tape
reader (see the PT option of the IN command in
section 3)

60499500 S

02 (the ASCII character STX), if entered as the
first character of a message

The wuser—break-1 and wuser-break-2 character
codes currently defined for the terminal, if
entered as the only character in a message (see
the Bl and B2 commands in section 3)

The abort-output-block character code currently
defined for the terminal, if entered as the only
character in a message (see the AB command in
section 3)

The network control character currently defined
for the terminal when it follows an end-of-line
or end-of-block character or when it 1is used
for such purposes as page turning (see the CT
command and the Y option of the PG command in
section 3)

The currently defined cancel input character is

always received at the end of the logical line it
cancels. This character is not data.

Full-ASCIT Editing

Full-ASCII editing takes precedence over special
editing or complete editing. When full-ASCII edit-
ing occurs, almost all codes are forwarded to the
application program as data. The network software
does not perform actions at the terminal when it
receives the codes for backspace, abort-output-
block, cancel input message, user-break-l, or user-
break-2. These codes- and the end-of-line and end-
of-block indicator codes are sent upline as data.

During full-ASCII editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL) if it occurs after
the end-of-line or end-of-block indicator

OA (the ASCII character LF) if it occurs after
the end-of-line or end-of-block indicator

7F (the ASCII character DEL) if it occurs after
the end-of-line-or end-of-block indicator

The network control character currently defined
for the terminal if it occurs after the end-of-
line or end-of-block indicator or when it is
used for such purposes as page turning (see the
CT command and the Y option of the PG command
in section 3)

The following: hexadecimal character codes cannot be
received if entered at certain points in a message:

11 (the ASCII character DCl) if it follows an
end-of~line or end-of-block indicator and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3)

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block indicator and the
TIP is supporting output control for the device
(see the Y option of the OC command in section

3

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block indicator and is
explicitly supporting paper tape input from the
device (see the PT option of the IN command in
section 3).

The currently defined cancel input character is
always received as the last character of the logical
line it ended. This character is data.

Downline Character Sets

The network protocol permits transmission from a
network application program of any character code
less than or equal to 8 bits., 1If the application
program uses one of the application character types
that permits transmitting an 8-bit code (application
character types 2 and 3), it cannot use the upper
(eighth) bit for data unless it is transmitting in
transparent mode.

In normalized mode, the application program can only
use the 128 ASCII characters defined in appendix
A. If the application program transmits a 7-bit
ASCII code, it cannot use the upper (eighth) bit
for parity; the network ignores the eighth bit in
downline normalized mode data.

Receipt of a transmitted character by the device
depends on the editing functions and character
transformations performed by the TIP, In addition
to character codes altered during the translation
and substitution operations described elsewhere in
this section and in appendix A, the hexadecimal
character code 1F (the ASCII character US used as a
downline block end-of-line indicator) cannot be
received by a device when the application program
transmits a block in normalized mode.

Page Width and Page Length

The application program receives an indication of
the page width and page length in effect for a
device when connection with the device first occurs.
The application program or the terminal user can
change the page width and page length in effect for
a device. '

The Terminal Interface Program uses the page length
defined for the device to format physical lines
into physical pages or screens of output. The Ter-
minal Interface Program uses the page width value
to transform logical lines of downline data into
physical lines of output. ’

For console devices defined as having hardcopy out-
put mechanisms (see the PR option of the OP command
in section 3), a logical line of downline data con-—
taining more characters than the page width value
permits is divided into singly spaced physical
lines. These physical lines are equal to or shorter
than the page width in effect and are displayed
successively.

For all console devices, the page width is used as
part of the line-counting algorithm to determine
the page length. Each logical line is examined to
determine how many multiples of the page width (how
many physical lines) it contains. Each complete or
partial multiple counts as one line when the TIP
determines the page length.

Line counting begins at the beginning of each down-
line message. The line counter is reset to zero
each time the page length of the -terminal 1is
reached, each time any input occurs, or when page
turning occurs during page waiting operation. Refer
to the PG, PW, and PL commands in section 3.

The physical 1line width of the device might be
smaller than the page width defined for the device.
When this happens, the effect of sending a logical
line of downline data containing more characters
than the physical line width permits depends on the
terminal hardware.

Format Effectors

An application program can control the presentation
of the characters within a data block by indicating
that the block contains format effectors. If the
application program chooses to do this, the first
character of each logical line within the block
becomes a format effector. Format effector charac—
ters cause predefined formatting operations when
the block is delivered to the device. The network
software discards these characters after interpre-
tation; therefore, these characters do not appear
on the interactive terminal output device.

You must 1include format effector characters when
determining the number of characters comprising the
block. Format effector characters are excluded from
page width calculatious.

Tables 2-2 and 2-3 describe the predefined opera-
tions produced by each format effector character of
each terminal class. The Terminal Interface Program
performs the predefined format effector operation
by inserting the codes for the characters indicated
in the tables in place of the discarded format
effector character code. The inserted terminal
codes are those of characters in the ASCI1 set
described in appendix A, with the exception that NL
indicates the terminal-defined new-line code
sequence.

Numbers preceding codes indicate the number of times
the codes are repeated in the inserted sequence.
Each line output to a console in terminal classes 9
through 18 1leaves the cursor positioned at the
beginning of the next physical line. Processing of
the next line takes this into account.

The format effector characters for clear screen and
home cursor operations (* and 1) receive special
treatment by the Terminal Interface Program when it
is performing a page wait function for the terminal.
(See the PG command in section 3.) If these char-
acters are encountered when the TIP has output only
part of a page, the TIP pauses for terminal operator
acknowledgment of the partial page. When acknowl-
edgment occurs, the format effector functions are
performed and output continues automatically. This
pause occurs without application program action or
knowledge.

If the application program does not indicate the
existence of format effectors, the first character
of each 1logical 1line does not act as a format
effector. These characters are output normally but
are preceded by the character codes necessary to
space one line before output. These default line-
spacing codes are the ones substituted when a blank
is used as a format effector.

60499500 s

TABLE 2-2.

CCP FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES

Code SubstitutedTon
. . Does Output Output Mechanism
Terminal| Format . . Is Infinite Page
P
Class Effector General Physical Operation Length Declared? Follow Previous .
Input Display or P T
Printer aper fape
1 blank Space 1 line before output. Does not matter | Yes CR CR
No CR, LF CR, LF
0 Space 2 lines before output. Does not matter | Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
N Space 3 lines before output. Does not matter | Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF
+ Position to start of current Does not matter Yes or No CR CR
line before output.
* Position to top of form or Yes Yes CR, 5LF CR, 5SLF
home cursor before output. No CR, 6LF CR, 6LF
No Yes or No Calculated by TIP
1 Position to top of form or Yes Yes CR, LF CR, 5LF
home cursor and clear screen No CR, 6LF CR, 6LF
before output.
No Yes or No Calculated by TIP
, Do not change position before | Does not matter Yes or No None None
output.
. Space 1 line after output. Does not matter | Yes or No CR,LF CR,LF,
DC3,
3NUL
/ Position to start of current Does not matter Yes or No CR CR,
line after output. DC3,
3NUL
Any other| Space 1 line before output. Does not matter Yes CR CR
ASCIT No CR, LF CR, LF
character
2 blank Space 1 line before output. Does not matter | Yes CR CR
No CR, LF CR, LF
0 Space 2 lines before output. Does not matter Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. Does not matter Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF
+ Position to start of current Does not matter Yes or No CR CR
line before output.
* Position to top of form or Does not matter | Yes or No EM EM
home cursor before output.
1 Position to top of form or Does not matter Yes or No EM, CAN EM, CAN
home cursor and clear screen
before output; delay 100
milliseconds before further
output.
, Do not change position before | Does not matter Yes or No None None
output.
60499500 U 2-15

TABLE 2-2, CCP FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)
Code Substituted on
P Does Output Output Mechanism
I P i
Terminal| Format General Physical Operation Is Infinite Page Follow Previous
Class Effector Length Declared? .
Input Display or P T
Printer aper lape

. Space | line after output. Does not matter Yes or No CR, LF CR, LF
DC3,
3NUL

/ Position to start of current Does not matter Yes or No CR CR,

line after output, DC3,
3NUL
Any other | Space 1 line before output. Does not matter | Yes CR CR
ASCIIL No CR, LF CR, LF
character
3 blank Space 1 line before output. Does not matter | Yes CR CR
No CR, LF CR, LF
0 Space 2 lines before output. Does not matter Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. Does not matter Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF

+ Position to start of current Does not matter | Yes or No CR CR

line before output.

* Position to top of form or Does not matter | Yes or No EM FF

home cursor before output.

1 Position to top of- form or Does not matter | Yes or No EM, FF FF

home cursor and clear screen
before output.

R Do not change position before | Does mot matter Yes or No None None

output.

. Space 1 line after output. Does not matter | Yes or No CR, LF CR, LF
DC3,
3NUL

/ Position to start of current Does not matter Yes or No CR CR,

line after output. DC3,
3NUL
Any other | Space 1 line before output. Does not matter Yes CR CR
ASCII No CR, LF CR, LF
character
AN blank Space 1 line before output. Does not matter | Yes None N/A
No NL
0 Space 2 lines before output. Does not matter |Yes NL N/A
No 2NL
- Space 3 lines before output. Does not matter Yes 2NL N/A
No 3NL
+ Position to start of current Does not matter Yes or No nBS N/A
line before output. ’ n is calculated by
TIP from current
position
2-16 60499500

TABLE 2-2.

CCP FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)

Code Substituted on
. A Does Output Output Mechanism
Terminal Format . . Is Infinite Page pu P
Class Effector General Physical Operation Length Declared? Follow Previous .
Input Display or Pa T
Printer per tape
* Position to top of form or Yes Yes SNL N/A
home cursor before output. No 6NL
No Yes or No nNL N/A
n is calculated by
TIP from current
position
1 Position to top of form or Yes Yes SNL N/A
home cursor and clear screen No 6NL
before output.
No Yes or No nNL N/A
a is calculated by
TIP from current
position

N Do not change position before | Does not matter Yes or No None None

output.

. Space 1 line after output. Does not matter | Yes or No NL NL

/ Position to start of current Does not matter Yes or No nBS nBS

line after output. n is calculated by
TIP from current
position
Any other | Space 1 line before output. Does not matter | Yes None None
ASCII No NL NL
character
5 blank Space 1 line before output. Does not matter |Yes None None
No LF LF
0 Space 2 lines before output. |Does not matter | Yes LF LF
No 2LF 2LF
- Space 3 lines before output. Does not matter |Yes 2LF 2LF
No 3LF 3LF

+ Positlon to start of current Does not matter Yes or No ESC, G ESC, G

line before output.

* Position to top of form or Does not matter |Yes or No ESC, H ESC, H

home cursor before output.

1 Position to top of form or Does not matter |Yes or No ESC, R ESC, R

home cursor and clear screen
before output.

s Do not change position before | Does not matter |Yes or No None None

output.

. Space 1 line after output. Does not matter |Yes or No LF LF,
DC3,
3NUL

/ Position to start of current Does not matter Yes or No ESC, G ESC, G,

line after output. oCc3,
3NUL
Any other | Space 1 line before output. Does not matter |Yes None None
ASCIIL No LF LF
character
60499500 U 2-17

TABLE 2-2. CCP FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)
Code Substituted on
Terminal Format . . Is Infinite Page Does OUtp?t Output Mechanisnf
General Physical Operation Follow Previous
Class Effector Length Declared? .
Input Display or P r Tape
Printer ape P
6 blank Space 1 line before output. Does not matter | Yes or No CR CR
0 Space 2 lines before output. Does not matter | Yes CR CR
No 2CR 2CR
- Space 3 lines before output. Does not matter | Yes 2CR 2CR
No 3CR 3CR

+ Position to start of current Does not matter Yes or No None None
line before output. '

bl Position to top of form or Does not matter Yes or No bC2 DC2
home cursor before output.

1 Position to top of form or Does not matter | Yes or No FS FS
home cursor and clear screen
before output.

s Do not change position before| Does not matter | Yes or No None None
output.

. Space 1 line after output. Does not matter Yes or No CR CR,

. DC3,
3NUL

/ Position to start of current Does not matter Yes or No ‘None DC3,
line after output. 3NUL

Any other | Space 1 line before output. Does not matter Yes or No CR CR
ASCII
character
7 blank Space 1 line before output. Does not matter | Yes CR CR
No CR,LF CR, LF
0 Space 2 lines before output. Does not matter | Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. Does not matter | Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF

+ Position to start of current Does not matter Yes or No CR CR
line before output.

* Position to top of form or Does not matter | Yes or No ESC,[,H ESC,[,H
home cursor before output.

1 Position to top of form or Does not matter | Yes or No ESC,[,H, EsC,[,H,
home cursor and clear screen ESC,[,J ESC,(,J
before output.

, Do not change position before | Does not matter Yes or No None None
output.

. Space 1 line after output. Does not matter Yes or No CR, LF CR, LF
DC3,
3NUL

/ Position to start of current . | Does not matter | Yes or No CR CR,
line after output. DC3,

3NUL
Any other | Space 1 line before output. Does not matter | Yes CR CR
ASCII No CR, LF CR, LF
character
2-18 60499500 U

TABLE 2-2.

CCP FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)

Code SubstitutedTpn
. Does Output Output Mechanism
Terminal| F t
ermina orma General Physical Operation Is Infinite Page Follow Previous
Class Effector Length Declared? .
- Input Display or P T
Printer aper tape
8 blank Space 1 line before output. Does not matter |Yes CR CR
No CR, LF CR, LF
0 Space 2 lines before output, Does not matter Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. Does not matter |Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF
+ Position to start of current Does not matter |Yes or No CR CR
line before output.
/
* Position to top of form or Does not matter |Yes or No ESC, FF ESC, FF
home cursor before output.
1 Position to top of form or Does not matter |Yes or No ESC, FF ESC, FF
home cursor and clear screen
before output; delay 1 second
before further output.
, Do not change position before | Does not matter |Yes or No None None
output.
N Space 1 line after output. Does not matter Yes or No CR, LF CR, LF,
DC3,
3NUL
/ Position to start of current Does not matter Yes or No CR CR,
line after output. DC3,
3NUL
Any other |Space 1 line before output. Does not matter |Yes CR CR
ASCII No CR, LF CR, LF
character
TPaper tape column does not apply to X.25 devices.
TTX.25 devices cannot belong to terminal class 4.
The application program sets a field in the downline nize the user—-break-l and user—break-2 char-

block”s header word to indicate whether the block
contaings format effectors. - This indication, how-
ever, has no effect on the use of format control
characters within logical lines of the block. Table
2-4 1lists the code substitutions performed for
embedded control characters during output to a
device in each terminal class. This table uses the
same character representation convention as tables
2-2 aund 2-3, with the following exceptions: the
hexadecimal terminal codes are shown for multiple
ASCII character sequences or for non—ASCII character
sequences.

Transparent Mode Operation

Blocks exchanged between an application program and
a console device in transparent mode do not use most
of the features of the interactive virtual terminal
interface:

No 1input editing occurs except, by option, the
Asynchronous, Mode 4, and X.25 TIPs can recog-

60499500 Vv

acter codes currently defined for the terminal,
if entered as the ounly character in a message
(see the Bl and B2 commands described in
section 3).

No code conversion occurse.

No format effector transformations are performed
for downline blocks.

No page width operations are performed to pre-
serve physical line boundaries.

Page waiting occurs only at the end of a down-—
line message.

Transparent wmode operation is separately selected
for input and output. Either the terminal operator
or the application program can start transparent
mode input, using the IN command described in sec—
tion 3. Only the application program can start
transparent mode output and enable the TIPs to
recognize the user—-break character.

TABLE 2-3. CCP FORMAT EFFECTOR OPERATIONS FOR SYNCHRONOUS CONSOLES

Terminal Class Format Effector

General Physical Operationf

Before OutputTT After OutputTT
9 and 14 0 Space 1 line. Space 1 line.
- Space 2 lines., Space 1 line,
Any other ASCII character$ None. Space 1 line.
10 thrd 13, 15, blank None. Space 1 line.
and 18
0 Space 1 line, Space 1 line.
- Space 2 lines. Space 1 line.
+ None. Space 1 line.
* Position to top of form Space 1 line.
or home cursor.fTT
1 Position to top of form Space 1 line.
or home cursor and c¢lear
screen.
. None. Space 1 line.
/ None. Space 1 line.
Any other ASCII character$ None. ' Space 1 line,
16 and 17 Any ASCII character§ Before the first line of Space 1 line,

the message, generate
the prefix text

***CONSOLE MESSAGE
Before the subsequent Space 1 line.

lines of the message,
do nothing.

(left) margin of the next line.

§Sent to the terminal.

TNo direct correspondence to code substituted on output device can be made. Code used for
implementation depends on placement of message blocks within a transmission.

ttafter each input and output line, the Terminal Interface Program returns the cursor to the beginning

T111f these format effectors appear anywhere in a data block other than in the first or last line of the
data block, the TIP can perform a page-wait operation before the format effector operation.

Data blocks input in transparent mode have a field
set in their associated header word to indicate this
condition. Output blocks require the same field to
be set.

Transparent mode data can occupy up to 8 bits of an
8-bit byte, representing up to 256 distinct char—
acter codes of device instructions. Codes longer
than 8 bits cannot be exchanged; data packed in
12-bit bytes by an application program or a termi-
nal device is truncated to 8 bits by the network
software.

HASP terminals (terminal classes 9 and 14) and
bisynchronous terminals (terminal classes 16 and 17)

2-20

cannot transmit or receive such blocks. All other
terminals can, although mode 4 terminals and 3270
terminals (terminal classes 10 through 13 and 15)
require the special treatment described below.

During transparent mode operation, the application
program is responsible for all data formatting and
terminal control. For mode 4 terminals, this means
that the Terminal Interface Program does not blank-
fill the current line and unlock the keyboard before
input can be performed but does add or remove the
line transmission portion of the protocol envelope
to or from all message text exchanged with the ter—
minal.

60499500 U

TABLE 2-4,

EMBEDDED FORMAT CONTROL OPERATIONS FOR CONSOLES

Terminal Class

v

!
Format Control

General Physical Operation

Code Substituted on Output Mechanism

before next character output.

Character
]
1 thru 3 LF Space 1 line before next char- LF
7 and 8 ! acter output.
<
|
CR Position to start of current CR
line before next character
! L output.
|
4 : LF Space 1 line before next char- LF
acter output,
CR Position to start of nmext line NL
before next character output.
5 LF Space | line before next char- ESC, B
acter output.
CR Position to start of current ESC, G
line before next character
; output.
;
6 LF Space 1 line before next char- None
acter output.
CR Position to start of current CR
line before next character
output.
9, 14, . LF Space 1 line before next char- None
and 18 i acter output.
CR Position to start of next line None
before next character output.
10 thru | LF Space 1 line before next char- None
13 and acter output.
15 :
. CR Position to start of next line 1B, 41 (ASCII); 31, 41 (Externmal BCD)
line before next character
output.
i
|
16 LF Space 1 line before next char- None
acter output.
i CR Position to start of next line 10, 1F
before next character output.
17 LF Space 1 line before next char- None
acter output.
i CR Position to start of next line 10, 1E

60499500 S

2-21

Two mutually exclusive forms of transparent mode
input can be selected. The network administrator
can make this selection when the device is defined
in the network configuration file, or the applica-
tion program or the terminal operator can make it
while the device is. active. The two forms are:

Single message
Multiple message (analogous to block mode

operation)

Single-Message Input

For single-message input, one or more transparent
mode input delimiters are specified, using the DL
command options described in section 3. For
single-message input, when a message ends, trans-
parent mode input ends. Transparent mode messages
need not be equivalent to normalized mode logical
lines.

Single-message transparent mode input ends when the
Terminal Interface Program encounters one of the
mode delimiter conditions. The delimiter condi-
tions are:

Occurrence of a specific character code in the
input

Occurrence of a specific number of character
bytes in the input

Occurrence of a 200- to 400-millisecond timeout
in the input ’

Multiple-Message Input

For multiple-message input, the application program
or the terminal user defines one or two input
message-forwarding signals (equivalent to a normal-
ized mode end-of-line indicator) and one or two
transparent mode input delimiters. Each message
ends at a message-forwarding signal; the last mes-—
sage ends when transparent input mode ends. The
message-forwarding signal and mode delimiters wmay
be modified as described under Changing Device
Characteristics in section 3.

The possible message—forwarding signals are:

Occurrence of a specific character code in the
input

Occurrence of a specific number of character
bytes in the input

The transparent mode delimiters are:

Two consecutive occurrences of a specific char-
acter code (the message-forwarding signal)

A sequence of two character codes (a message-
forwarding code followed by a transparent mode

delimiter code)

Occurrence of a 200- to 400-millisecond timeout
in the input

2-22

3270 Downline Data

The application constructs a screen-full of
protected/unprotected fields and supplies all the
desired attribute characters and screen—buffer—
addresses for the fields. The TIP is responsible
for preceding the block of output by SYNC-
characters, start-of-text, and escape-char, and
attaches ETX,CRC,PAD at the end. The TIP also
translates all downline data from ASCII to EBCDIC
and performs SYNC-fill.

A typical start of a field would be:

SBA set-buffer—~address x711° all in ASCII
BAl buffer—address-1

BA2 buf fer-address-2

ATT attribute-char

where the attribute-character determines the char-
acteristics of the field:

- protected

- unprotected
- intensified

- numeric shift

The application is also expected to insert the
cursor at a desired location.

Once transparent output is delivered to a 3270
terminal, the TIP assumes transparent input until a
non-transparent downline block is delivered to the
terminal.

To protect the integrity of the protocol, the TIP
replaces certain downline characters by NULLs. The
characters replaced are:

SOH, STX, ETX, EOT, ENQ, ACK, NAK,, SYNC

3270 Upline Data

Once transparent output is delivered, the TIP sends
to the host all modified, unprotected fields
received from the terminal including the SBA and
buffer-address-chars (2) of each field. The
terminal does not send the attribute characters
back to the TIP.

If the incoming text is larger than one trans—
mission block (256 characters), the TIP will send

BLK/BLK/.../MSG

so that the application can reproduce a full screen.

Upline Message Blocks

A transparent mode input block is assembled each
time the network block size is reached or the Ter-
minal Interface Program encounters a message-
forwarding signal. The 1last block in the last
message is assembled when the delimiter condition
is encountered. 1If the message-forwarding signal
is a specific character code, the TIP removes that
code from the character stream before assembling
the last block.

60499500 T

In transparent mode, the concept of a logical line
is not meaningful to the network software. Both the
end-of-line and end-of-block indicators are data
within a transparent message. These indicators
have no significance to the network software.

Transparent Mode Output

Transparent mode output data can be divided
arbitrarily into blocks and messages, provided the
restrictions on network block size are met. A
transparent mode downline block ends when the last
character it contains is transferred to the network
(defined by the tle field in the block header,
described later in this section).

If the TIP is performing page-wait operations for
the terminal during transparent mwmode operation,
output stops to wait for terminal operator acknowl-
edgment at the end of each message. The automatic
input feature can be used with the last block of a
transparent mode output message.

Parity Processing

Actual terminal codes are right-justified with zero
fill within the 8-bit character portion of the
input or output byte. The codes contained in the
input or output bytes depend on the parity option
declared for the terminal.

The actual terminal code parity bit can be used for
meaningful code only if no parity or ignore parity
is declared. Otherwise, the parity bit 1is zero in
input blocks and set by the Terminal Interface
Program on output.

For example:

If the terminal uses a 7-bit code such as ASCITI,
with the eighth bit as a parity bit, the set-
ting of the eighth bit is determined by the
parity option selected for the terminal. If
zero parity is declared, the eighth bit is
always zero on input and output. If odd or even
parity is declared, the eighth bit varies on
input and output to satisfy the character parity
requirement. If no parity or ignore parity is
declared, the eighth bit is treated as part of
the character data and is not changed during
input or output.

If the terminal uses a 6-bit code, with the
seventh bit as a parity bit, the setting of the
seventh bit is determined by the parity option
selected for the terminal. If zero parity is
declared, the seventh bit is always zero on
input and output. If odd or even parity is
declared, the seventh bit varies on input and
output to satisfy the character parity re-
quirement. If no parity or ignore parity is
declared, the seventh bit is treated as part of
the character data and is not changed during
input or output.

60499500 T

APPLICATION-TO-APPLICATION
CONNECTION DATA

Because application-to—application connection data
is always exchanged in transparent mode, programs
can exchange character data in bytes of any size.
The program at both ends of the connection must
interpret the data using the same byte size.

Programs within the same host can exchange 7-bit or
8-bit character data in one of three ways:

Exchange pairs of 60-bit bytes, each containing
fifteen 8-bit data bytes

Exchange 8-bit data bytes packed as 8-bit bytes

Exchange 8-bit data bytes packed within 12-bit
bytes

Each of these options corresponds to an application
character type, as described in the next subsection.
Programs 1in different hosts need not use the same
application character type.

Programs can exchange 6-bit character data in one
of two ways:

If both programs are in the same host, they can
exchange 60-bit bytes, each containing 6-bit
(or 6/12-bit) data bytes.

They can exchange sets of fifteen 8-bit bytes,
corresponding to two central memory words per
set (twenty 6-bit characters).

Figure 2-3 illustrates these possibilities. The
parity bit (bit 7 of an 8-bit byte) is not altered
during transmission through the network and can
always be used as data.

APPLICATION CHARACTER TYPES

Blocks always contain character bytes. These char-
acter bytes can be of. several lengths and can be
packed within bytes of several sizes. Each permit-
ted combination of character byte length and packing
byte size 1s called an.application character type.
There are several application character types sup-
ported by the released version of the software:

One 60-bit character byte per 60-bit word
One 8-bit character byte per 8-bit byte
One 8-bit character byte per 12-bit byte

One 6-bit display code character byte per 6-bit
byte

Blocks transmitted through -a network processing
unit always consist of 8-bit characters in 8-bit
bytes. An application program can use blocks of
this application character type, or have NAM convert
blocks to or from it so that the application pro-
gram can use one of the remaining valid application
character types. Block conversion consists of byte
mapping and character code conversion.

2-23

7-Bit or 8-Bit Data

Word 1 Word 2
M \/\A
60-bit bytes . B : : :
Byte 1 Byte 2

8-bit bytes

. ” © © © E FE B B B B
12-bit bytes ¢¢ ¢¢ .ZZ 4¢ ¢¢ ZZ ZZ .gé 4¢ ¢%
_ . v v v v U v v v
6-Bit or 6/12-Bit Data
Word 1 Word 2
M
60-bit bytes L O
Byte 1 Byte 2
. . R R]
8-bit bytes
LEGEND: : Character syte boundary 222 Unused space
ZZ

Network data byte boundary

For

2-24

Figure 2-3.

a downline network data block, NAM:

Performs no mapping or character code conversion
on 60-bit character bytes. :

Performs no mapping or character code conversion
on 8-bit characters in 8-bit bytes; the parity
setting of the receiving device might cause the
upper or eighth bit (bit 7) of the byte to be
set.

Performs no character code conversion on 12-bit
bytes but maps the 8-bit character to an 8-bit
byte by discarding the leftmost four bits of
the 12; the parity setting of the receiving
device might cause the upper or eighth bit (bit
7) of the byte to be set.

For

Application—-to-Application Connection Data Exchanges

Maps 6-bit characters to 8-bit characters by
translating the former as 6-bit display .code
and substituting the corresponding hexadecimal
code from the 128-character ASCII set.

an upline network data block, NAM:

Performs no mapping or character code conversion
on 60-bit character bytes.

Performs no mapping or character conversion on
8-bit characters in 8-bit bytes; the parity
setting of the seunding device might cause the
upper or eighth bit (bit 7) of the byte to be
set if the data is sent in transparent mode.

60499500 T

Performs character mapping but no code conver-
sion by right-justifying 8-bit characters in
12-bit bytes with zero fill; the parity setting

of the sending device might cause the upper or .

eighth bit (bit 7) of the byte to be set if the
data is sent in transparent mode.

Maps and converts 8-bit characters to 6-bit
characters by translating all ASCII control
characters to display coded blanks, and trans-
lating all hexadecimal ASCII character codes
between 60 and 7F to the display code equiva-
lents of the hexadecimal ASCII character codes
40 to 5F. All other 7-bit ASCII codes are
translated to the display codes equivalent to
the CDC 63-character or 64-character subset of
the ASCII character set (refer to appendix A).

Because conversion and mapping between 6-bit and 8-
bit characters involves a time-consuming character-
by-character replacement of the block”s data, use
of a 6-bit display coded application character type
is not recommended and 1is vrestricted to blocks
exchanged with interactive devices. For efficiency,
8-bit byte characters are recommended for blocks
exchanged with devices or other application programs
through the interactive virtual terminal interface.

The application character type of an input block is
determined by the character type associated with
the logical counnection. This association first
occurs when the connection is established. You can
change the association as necessary while the con-
nection exists. The application character type of
a specific input block is always indicated by a
field in its associated block header word.

The application character type of an output block
is determined solely by a field in its associated
block header area. Input and output. blocks trans-
mitted over the same logical connection can there-
fore have different application character types.

CHARACTER BYTE CONTENT

Blocks containing 8-bit characters can be exchanged
with an interactive device in normalized mode or in
transparent mode. Blocks exchanged in normalized
mode always contain 7-bit character codes from the
ASCII character set, with the eighth bit set to
zero. Blocks exchanged in transparent mode can
contain 256 character codes from any character set
used by a terminal, with the setting of the eighth
bit determined by the parity processing selected
for the device. Normalized mode exchanges are the
initial mode. Blocks exchanged in transparent mode
are identified by a field in their associated block
header word.

Blocks exchanged with another application program
are always exchanged in transparent mode. Trans-
parent mode is the initial and only exchange mode
for such connections. Such blocks need not have
-transparent mode use identified by a field in their
associated block header word.

The legal combinations of character types, modes,
and uses are summarized in table 2-5. The mecha-
nisms for declaring character types and exchange
modes are described in the Block Header Content
portion of this section and in section 3,

60499500 T

BLOCK HEADER CONTENT

The content of the block header word associated
with a data block depends on whether the application
program is sending or receiving the block. The
requirements for all header words associated with
upline data blocks are described in figure 2-4,
The requirements for all header words associated
with downline data blocks are described in
figure 2-5.

SUPERVISORY MESSAGE CONTENT
AND SEQUENCE PROTOCOLS

Supervisory message blocks consist of 1 to 410 60-
bit words or 1 to 2043 12-bit bytes. The fields
within these blocks convey information and instruc-—
tions to the network software, in a manner similar
to the character bytes of a data message block.
Supervisory messages are sent and received through
the same application program routines as are used
for data blocks. (See sections 4 and 5.) Supervi-
sory messages have associated block header words,
just as data blocks do. These header words counvey
information to the network software concerning the
contents of the corresponding text area buffer.

Supervisory messages have the general formats shown
in figures 2-6 and 2-7. A specific message contains
a fixed combination of four fields and can include
additional parameters. The individual messages
supported by the network software are described in
section 3. The fields are described below in the
order of their use, rather than in the order of
their occurrence within a supervisory message.

The first of the four fields common to all supervi-
sory messages is the primary function code. The
primary function code is used to group supervisory
messages into related functions and determine their
routing within the network software.

Functions routed between NAM and the application
program are represented in figures 2-6 and 2-7 by
mnemonics. These mnemonics are defined in paren-
theses after the- corresponding function 1in the
following list:

Connection data flow control (FC)

Error reporting (ERR)

Device control (CTRL)

Connection lisé management (LST)
Connection characteristic definition (DC)
Interrupt request (INTR)

Connection control (CON)

Terminal characteristic definition (TCH)
Network shutdown (SHUT)

Host operator commands (HOP)

Terminate output (TO)‘

Break indication (BI)

Resume output (RO)

2-25

TABLE 2-5.

CHARACTER EXCHANGES WITH CONNECTIONS

Application ACT Field Exchange Mode Connection Code Set
Character Type Value Used Type (Character Set)
60-bit characters 1 Transparent Application-to—-application Binary (None)
in 60-bit bytes within the same host
8-bit characters 2 Normalized Application-to-device - 7-bit ASCII (128 ASCII)
in 8-bit byte (consoles)
8-bit characters 2 Transparent Application—-to—device Any 6-, 7-, or 8-bit
in 8-bit bytes (consoles) (Unknown)
8-bit characters 2 Transparent Application—to—-application Binary (None)
in 8-bit bytes
8-bit characters 3 Normalized Application-to—-device 7-bit ASCII (128 ASCII)
in 12-bit bytes (consoles)
8-bit characters 3 Transparent Application-to-device Any 6-, 7-, or 8-bit
in 12-bit bytes (consoles) (Unknown)
8-bit characters 3 Transparent Application-to-application Binary (None)
in 12-bit bytes
6-bit characters 4 Normalized Application-to-device 6-bit display code to/from
in 6-bit bytes (consoles) 7-bit ASCII (64-character
subset of ASCII)
59 53 41 23 19 16 0
ijrlt Irixijcip
ha abt acn res act|blefr |elpjale tlc
ulsfu |s|th|f
ha Symbotié header area address, specified as the Location to receive the application block

header in a call to NETGET, NETGETL, NETGETF, or NETGTFL (see section 5).

abt Application block type of the associated network data block. This field can have the
values:

=0 indicates a null block. (No block is queued or none can be delivered from
the Logical connection polled.)

=1 indicates that the associated block is one of several blocks comprising a
single message, but is not the last such block.

=2 indicates that the associated block is either the last or only one
comprising the message.

=6 indicates that the associated block is one of several blocks comprising a
single qualified data message, but is not the Last such block.

=7 indicates that the associated block is either the last or only one

comprising a qualified data message.

acn

Values of 3 through 5 and 8 through 63 are not valid for data blocks on input. You can
access this field with the reserved symbol ABHABT (see section 4).

Application connection number of the logical connection from which the associated block
was sent. This field can have the values 1 < minacn < acn < maxacn < 4095, where the
values minacn and maxacn are parameters in the NETON statement (see section 5). You can
access this field with the reserved symbol ABHADR (see section 4).

2-26

Figure 2-4.

Application Block Header Content for Upline Network Data Blocks (Sheet 1 of 4)

60499500 W

act

ibu

Application character type used to encode the accompanying block. This field can contain
the values:

=1 60-bit transparent characters, packed one per central memory word; this
character type can be used only for application-to-apptication connections
Wwithin the same host.

=2 8-bit characters, packed 7.5 per central memory. word; this character type
is recommended for transparent mode or normalized mode data on device-to-
application connections and for application-to-application connections
between hosts.

=3 8-bit characters, right-justified in 12-bit bytes with zero fill, packed 5
per central memory word; this character type can be used for transparent
mode or normalized mode data on device-to-application connections and for
application—to—application connections.

=4 6-bit display code characters (see table A-1 in appendix A), packed 10 per
central memory word. This value can be used only for device-to-application
connections in normalized mode when the block is exchanged with a site-
defined device or a CDC-defined console device.

=5 thru Reserved for CDC use; not currently recognized.

11
=12 Reserved for installation use; usage and content are unrestricted and
thru 15 undefined (the released version of the software does not recognize these

values).

The value contained in the act field is the value assigned to the connection by the
application program for input, either in the connection-accepted supervisory message (ict
field) or in the most recent change-input-character-type supervisory message (see section
3). You can access this field with the reserved symbol ABHACT (see section 4).

Input-block-undeljverable bit. When ibu has a value of 1, the block associated with
this block header has not been delivered to the application program; ibu is 1 when the
block:

° Is lLarger than the maximum text Length (tlmax parameter) declared by the application
program in its NETGET, NETGETL, NETGETF, or NETGTFL call and the program has not
requested that input data be truncated (see the truncate-input asynchronous
supervisory message described in section 3). The block header contains the actual
Length of the queued block in its tlc field, given in character units specified by
the act field. The block remains queued until the application program takes one
of the following actions:

Uses the change-input-character-type asynchronous supervisory message
described in section 3 to compress the characters into fewer central memory
words by using a different application character type to pack them more
densely.

Uses the input-truncation asynchronous supervisory message described in
section 3 to delete enough characters so that the remainder fit into the
existing text area.

Uses a longer text area.

The application program then must use another NETGET, NETGETL, NETGETF, or NETGTFL
call to obtain the block.

60499500 T

Figure 2-4. Application Btock Header Content for Upline Network Data Blocks (Sheet 2 of &)

2-27

[Contains transparent mode data from a connection using an act value of 4. The
block header contains the actual length of the queued block in its tlc field

(given in 8=hit bytes) and has an xpt value of 1 (see xpt field description).
The application program can:

Change the input character type for the connection to a value of 2 or 3,
using the change—-input-character-type asynchronous supervisory message
described in section 3, then use a NETGET, NETGETL, NETGETF, or NETGTFL

call to obtain the block.

Use the change-input—-character—type asynchronous supervisory message with a
set nxp bit as described in section 3; this discards the queued block and
all subsequent blocks of transparent data from the connection.

) Is queued on a connection between application programs within the same host and the
act value specified by your application does not match the act value specified by
the other application in its NETPUT call for the block. The application program can:

Change the input character type for the connection using the change-input-
character—type asynchronous supervisory message described in section 3,
then use a NETGET, NETGETL, NETGETF, or NETGTFL call to obtain the block.

You can access this field with the reserved symbol ABHIBU (see section 4).
res Reserved for CDC use.

tru Truncated data bit. When tru 1is 1, the block associated with this block header has been
truncated to fit into the text area used. When tru is 0, the block has not been
truncated. The tru bit cannot be 1 unless the application program has issued the data
truncation control asynchronous supervisory message described in section 3 and that
message affects transmissions on this connection. When truncation occurs, the tlc field
contains the maximum number of complete transferred character bytes of the block. You can
access the tru field with the reserved symbol ABHTRU (see section 4).

xpt Transparent mode bit, indicating whether the accompanying block contains transparent mode
data. If your program chooses not to receive transparent mode input when it accepts a
connection or changes the input character type of the connection (nxp field, described in
section 3), an xpt value of 1 is received in a block with an abt of O (an empty block)
and indicates that one or more transparent mode blocks were discarded by the network
software.

If your program can receive transparent mode input, the interpretation of the value this
field contains depends on the act value used, as follows:

act=1, xpt should be ignored.
act=2, if the data is from a site-defined device or a CDC-defined console device:
xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations were performed; 7-bit characters are from the
128-character ASCII set (see appendix A).
xpt=1 indicates transparent mode data for which no transformations were
performed; all eight bit positions might be used to form 256
characters, but the application program must correctly interpret the
v format of such data.

act=2, - if the data is from an application program:

xpt=0 indicates that the sending application program did not use an xpt
value of 1 in its block header for the accompanying block.

xpt=1 indicates that the sending application program wused an xpt value of
1 in its block header for the accompanying block.

Figure 2-4. Application Block Header Content for Upline Network Data Blocks (Sheet 3 of 4)

2-28 60499500

can

pef

tle

act=3, if the data is from a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations were performed; 7-bit characters are from the
128-character ASCII set (see appendix A).

xpt=1 indicates transparent mode data for which no transformations were
performed; all eight bit positions in the character portion of the
character byte might be used to form 256 characters, but the
application program, must correctly interpret the format of such data.

act=3, if the data is from an application program:

xpt=0 indicates that the sending application programT did not use an xpt
value of 1 in its block header for the accompanying block.

xpt=1 indicates that the sending application programT used an xpt value of
1 in its block header for the accompanying block.

act=4, if the data is from a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations were performed; 6-bit characters are from the 6-bit
display code set (see table A-1 in appendix A).

xpt=1 indicates that the ibu bit is also set; the tlc field contains the
actual block length in 8-bit characters (not in 6-bit characters).
Transparent mode is not supported for act=4; a change-input-
character-type supervisory message must be issued before the block
can be received (see section 3).

You can access this field with the reserved symbol ABHXPT (see section &4).

Cancel-input bit. When- can 1is 1, the terminal operator used the cancel-input key
defined for the device or the break condition key (see BR command in section 3) to end the
text in the associated block. The associated block always has an abt of 2, and the data
is always from a console device. The cancel-input request also applies to any blocks with
an abt value of 1 that preceded this block; all blocks in the same message should be
discarded. You can access this field with the reserved symbol ABHCAN (see section 4).

Parity error flag bit. When pef is 1, the associated block contains a parity error in
one or more of its characters. You can access this field with the reserved symbol ABHBIT
(see section 4).

Text length of the associated block, in character units specified by the act field. The
equivalent length in- central memory words can be computed as follows:

act=1, tlc is the number of central memory words the block requires.

act=2, the number.-'of central memory words the block requires is tlc divided by
7.5, rounded upward to an integer.

act=3, the number of central memory words the block requires is -tlc divided by
5, rounded upward to an integer.

act=4, the number of central memory words the block ‘requires is tlc divided by
10, rounded upward to an integer.

act=5 tlc is undefined.
thru
15

You can access this field with the reserved symbol ABHTLC (see section 4).

TThe xpt value will always be set to 0 in the upline network block if the data passes through a
packet switching network. Therefore, to get consistent results, it is strongly suggested that xpt=0
be used on all application-to-application connections.

Figure 2-4. Application Block-Header Content for Upline Network Data Blocks (Sheet 4 of 4)

60499500 T

59 53 41 23 19 1514131211 9

ninfx|nir
ha abt acn abn act{0 {c|fiple|e tlc
p tip|s
ha Symbolic header area address, specified as the application block header's Location in a
call to NETPUT or NETPUTF (see section 5).
abt Application block type of the accompanying network data block. This field can contain the
values:
=1, indicates that the accompanying block is one of several blocks comprising a
single message, but is not the last such block.
=2, indicates that the accompanying block is either the lLast or only one
comprising a message.
=6 indicates that the associated block is one of several blocks comprising a
single qualified data message, but is not the lLast such block.
=7 indicates that the associated block is eitﬁer the Llast or only one

comprising a qualified data message.

Values of 0, 3 through 5, and 8 through 53 are not valid for data blocks on output. You
can access this field with the reserved symbol ABHABT (see section 4).

acn Application connection number of the Logical connection to which the accompanying block
should be sent. This field can contain the values 1 < minacn < acn < maxacn < 4095, where
the values minacn and maxacn are parameters in the NETON statement (see section 5.) You
can access this field with the reserved symbol ABHADR (see section 4).

abn Application block number assigned to the block being sent. This field is an 18-bit
integer that identifies the block when the network software's processing of the block
returns certain supervisory messages (see section 3). You define the block number; it can
be:

A sequencing number
The block's central memory address
The block's mass storage address (physical record unit)
An index value for a block control array or table
An external label
You can access this field with the reserved symbol ABHABN (see section 4).

act Application character type used to encode the accompanying block. This field can contain
the values:

=1, 60-bit transparent characters, packed one per central memory word; this
character type can be used only for application-to—application connections
within the same host.

=2, 8-bit characters, packed 7.5 per central memory word; this character type
is recommended for transparent mode data or normalized mode data on
device-to application connections or for application-to application
connections between hosts.

=3, 8-bit characters, right-justified in 12-bit bytes, packed 5 per central
memory word; this character type can be used for transparent mode or
normal ized mode data on device-to-application connections, or for
application-to-application connections.

Figure 2-5. Application Block Header Content for Downline Network Data Blocks (Sheet 1 of 3)

2-30 60499500 W

ncp

nfe

xpt

=4, 6-bit display code characters (see table A-1 in appendix A), packed 10 per
central memory word. This value can be used only for normalized mode data

on application-to-terminal connections when the block is exchanged with a
site-defined device or a CDC-defined console device.

=5 thru Reserved for CDC use; not currently recognized.

"
=12 Reserved for installation use; usage and content are unrestricted and
thru 15 undefined (the released version of the software does not recognize these

values).
You can access this field with the reserved symbol ABHACT (see section 4).

No~cursor-positioning bit, indicating whether cursor positioning is to be disabled for tha
input operation that immediately follows this output block. If ncp is 1, no cursor
positioning is to be performed for the next input operation; if ncp is 0, cursor
positioning can be performed for the next operation. This bit is ignored for blocks sent
on application-to-application connections and for blocks with an abt of 1 on
device-to-application connections. You can access this field with the reserved symbol
ABHNCP (see section 4).

No-format-effector bit, indicating whether the accompanying block contains format
effectors. If nfe 1is 1, there are no format effectors in the block; if nfe s 0, the
block contains format effectors requiring removal and interpretation. The nfe field
applies only to normalized mode data exchanged with a site-defined device or a CDC-defined
console device. You can access this field with the reserved symbol ABHNFE (see section 4).

Transparent mode bit, indicating whether the accompanying block contains transparent mode
data. The value used in this field depends on the act value used, as follows:

act=1, xpt value does not determine data translation and can be 1 or 0. A value
of 0 is recommended.

act=2, if the .data is for a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations should be performed; 7-bit characters are from the
128-character ASCII set (see appendix A).

xpt=1 indicates transparent mode data for which no transformations are to
be performed; all eight bit positions can be used to form 256
characters (if parity of none is used), but such data must be
correctly formatted for terminal output.

act=2, if the data is for an application program, .-xpt does not affect data
translation and can be 1 or 0. For data passing through a public data
network, the receiving application will always see xpt=0. Therefore, it
js strongly recommended that a value of xpt=0 be used by the sender.

act=3, if the data is for a site-defined device or a CDC-defined console device:

xpt=0 indicates normalized mode data for which interactive virtual terminal
transformations should be performed; 7-bit characters are from the
128-character ASCII set (see appendix A).

xpt=1 indicates transparent mode data for which no transformations are
performed; all eight bit positions in the character portion of the
character byte can be used to form 256 characters (if parity of none
is used), but such data must be correctly formatted for terminal
output.

act=3, if the data is for an application program, xpt does not affect data
translation and can be 1 or 0. For data passing through a public data
network, the receiving application will always see xpt=0. Therefore, it
is strongly recommended that a value of xpt=0 be used by the sender.

act=4, xpt value does not determine data translation and can be 1 or 0. A value
of 0 is recommended.

Figure 2-5. Application Block Header Content for Downline Network Data Blocks (Sheet 2 of 3)

60499500 W

2-31

nep
ABHNEP (see section 4).

res Reserved for CDC use. Reserved fields contain zero.

tlc

act= xpt is not defined.
other

You can access this field with the reserved symbol ABHXPT (see section 4).

No~echoplexing bit, indicating whether the next logical line of nontransparent input data
should not be echoplexed. If nep 1is 1 and the NPU is echoing characters back to the
terminal (Y value of EP command, described in NAM Version 1/CCP Version 3 Terminal
Interfaces reference manual), the NPU does not echo the next logical Line from the
console. If nep 1is 0 and the NPU is echoing characters (Y value of EP command), the NPU
does echo the next logical Line of input. This bit is ignored for blocks sent on
application-to—application connections and- for blocks with an abt of 1 on
device-to-application connections. You can access this field with the reserved symbol

Text Llength of the associated block, in character units specified by the act value. The
value to use in the tlc field can be computed as follows:

act=1, tlc is the number of central memory words occupied by the block.

central memory word.

times 10.

act=5 tlc is not defined.
thru 15

act=2, tlc is the number of complete central memory words occupied by the block
times 7.5, plus the number of complete character bytes used in any
remaining central memory word, rounded upward to an integer.

act=3, tlc is the number of complete central memory words occupied by the block

times 5, plus the number of 12-bit character bytes used in any remaining

act=4, tlc is the number of complete central memory words occupied by the block

The character count used as the text length must include any format effectors and
end-of-line indicator bytes contained in the block. You can access this field with the
reserved symbol ABHTLC (see section 4).

Figure 2-5. Application Block Header Content for Downline Network Data Blocks (Sheet 3 of 3)

The precise function of a message within a primary
function grouping is indicated by its secondary
function code, forming the fourth common field. The
mnemonic symbols used to identify these secondary
function codes are related to the use of the mes—
sages. Mnemonics for these codes also appear in
figures 2-6 and 2-7 and in parentheses after the
secondary functions in the following list:

Request for logical connection (REQ)
End of connection (END)

Connection broken (CB)

Application—to—application connection request
(ACRQ)

Internal shutdown (INSD)
Inactive connection (INACT)
No acknowledgment (NAK)

Acknowledgment (ACK)

Reset (RST)

Break (BRK)

Logical problem (LGL)

Initialization (INIT)

Mark point in data (MARK)

Switch connection between lists (SWH)
Turn connection list processiang off (OFF)
Turn connection list processing on (ON)

Turn half-duplex operation on for connection on
a list (HDX)

Turn full-duplex operation on for connection on
a list (FDX)

Begin truncating iaput on a connection (TRU)
Application interrupt request (APP)

User interrupt.request (USR)

60499500 W

Interrupt response (RSP) Define single terminal characteristic (DEF)

Change input character type (CICT) Define multiple terminal characteristics (TCD)
Report of changed terminal characteristics Downline CCP terminal multiple characteristics
(TCHAR) definition (CHAR)
Request terminal characteristics (RTC) Define CDCNET terminal characteristics (CID)
59 51 49 43 0
ta word ofc elrl ofc p t
1 blb arameters
=~ . ~
ta word
n Parameters
ta Symbolic text area address, specified in a NETGET, NETGETF, NETGETL, or NETGTFL call as

the location to receive an upline supervisory message or specified in a NETPUT or NETPUTF
call as the location from which to send a downline supervisory message (see section 5).

pfc Primary function code. Field mnemonics are used throughout this manual in specific
message formats. Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the primary function code are
used- throughout this manual within mnemonics identifying specific messages. The mnemonics
and their unpacked (right-justified) numerical equivalents are:

Reserved
Field Mnemonic Symbotic Mmemonic Octal _Hexadecimal Decimal
bit BI 312 CA 202
con CON 143 63 099
ctrl’ CTRL 301 1 193
dc DC 302 c2 194
err ERR 204 84 132
fc FC 203 83 13
hop HOP 320 00 208
intr INTR 200 80 128
Lst LST 300 c0 192
rot RO 313 8 203
shut SHUT 102 42 066
tch TCH 144 64 100
tof T0 304 Cb 196

Primary function codes 00 through EQO hexadecimal are reserved for CDC use. Hexadecimal
codes E1 through EF are for installation use and have no predefined meanings or reserved
symbols. You can access the pfc field with the reserved symbol PFC (see section 4).

eb Error bit. When set to 1, eb indicates the occurrence of an error (an abnormal response
to a previous supervisory message); when set to 0, eb indicates a normal response. The
eb field always contains 0 when a supervisory message is not a response to a prior
message. You can access this field with the reserved symbol EB (see section 4).

rb Response bit. When set to 1, rb indicates a normal response to a previous supervisory
message; rb is always 0 in a supervisory message that is not a response to a previous
message. You can access this field with the reserved symbol RB (see section 4).

sfc Secondary function code. Field mnemonics are used throughout this manual in specific
message formats. Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the secondary function code
are used throughout this manual within mnemonics identifying specific messages. The sfc
mmemonics and their unpacked (right-justified) numerical equivalents are:

Figure 2-6. Supervisory Message General Content, Asynchronous Messages
and Synchronous Messages of Application Character Type 2 (Sheet 1 of 2)

60499500 W 2-33 |}

parameters

Related Reserved
Field Mnemonic Symbolic pfc Symbolic Mnemonic Octal Hexadecimal Decimal
req CON REQ 00 00 00
acrq CON ACRQ 02 02 02
cb CON c8 05 05 0s
end CON END 06 06 06
ccd CTRL cco 14 0oc 12
ctd¥ CTRL cTD 02 02 02
deff CTRL DEF 04 04 04
charf CTRL CHAR 10 08 08
rect CTRL RCC 13 08 1
rtet CTRL RTC 1 09 09
tedt CTRL TCD 12 0A 10
cict DC cICcT 00 00 00
stmr DC STMR 02 02 02
tru DC TRU 01 01 01
Lgl ERR LGL 01 01 01
brk FC BRK 00 00 00
rst FC RST 01 01 01
ack FC ACK 02 02 02
nak FC NAK 03 03 03
inact FC INACT 04 04 04
init FC INIT 07 o7 07
brk HOP BRK 00 00 00
cmd HOP CMD 01 01 01
trace HOP TRACE 02 02 02
du HOP DU 03 03 03
ig HOP 16 04 04 04
start HOP START- 05 05 05
endd HoP ENDD 06 06 06
notr HOP NOTR 07 o7 07
rs HOP RS 10 08 08
dis HOP DIS 11 09 - 09
lg HOP LG 12 0A 10
alt HOP ALT 13 08 "
page HOP PAGE 14 oc 12
rel HOP REL 15 0o 13
db HOP DB 16 0E 14
de HOP DE 17 OF 15
day HOP DAY 20 10 16
usr INTR USR 00 00 00
rsp INTR RSP 01 01 01
app INTR APP 02 02 02
off LST OFF 00 00 00
on LST ON o)} 01 01
swh LST SWH 02 02 02
fdx LST FDX 03 03 03
hdx LST HDX 04 04 04
insd SHUT INSD 06 06 06
tchar TCH TCHAR 00 00 00
mark T0 or MARK 00 00 00
BI or
RO
You can access the field with the reserved symbol SFC (see section 4).

sfc

These parameters can extend into words 2 through n; n < 410.
the descriptions of the specific messages in section 3.

fsynchronous supervisory message fields.

Parameters are defined in

2-34

Figure 2-6.

Supervisory Message General Content, Asynchronous Messages
and Synchronous Messages of Application Character Type 2 (Sheet 2 of 2)

4,1,-'3\

60499500 v

ta word

ta word

ta

pfc

eb

rb

sfc

parameters

59 55 47 43 M 35 0

0 pfc 0 blo sfc Parameters

Q
Q

Parameters

Symbolic text area address, specified in a NETGET, NETGETF, NETGETL, or NETGTFL call as the
location to receive an upline supervisory message or specified in a NETPUT or NETPUTF call
as the location from which to send a downline supervisory message (see section 5).

Primary function code. Field mnemonics are used throughout this manual in specific message
formats. Reserved symbols corresponding to the field mnemonics can be used to access
message fields (see section 4). Reserved symbols for the primary function code are used
throughout this manual within mnemonics identifying specific messages. The mnemonics and
their unpacked (right-justified) numerical equivalents are:

Reserved
Field Mnemonic Symbolic Mmemonic Octal Hexadecimal Decimal

bi BI 312 CA 202
ctrl CTRL 301 c1 193
ro RO 313 c8 203
to T0 304 C4 196

Primary function codes 90 through E0D hexadecimal are reserved for CDC use. Hexadecimal
codes E1 through €F are for installation use and have no predefined '‘meanings or reserved
symbols. You can access the pfc field with the reserved symbol PFC (see section 4).

Error bit. When set to 1, eb indicates the occurrence of an error (an abnormal response
to a previous supervisory message); when set to 0, eb indicates a normal response. The
eb field always contains 0 when a supervisory message is .not a response to a prior
message. You can access this field with the reserved symbol EB (see section 4).

_ Response bit. When set to 1, rb indicates a normal response to a previous supervisory

message; rb is always 0 in a supervisory message that is not a response to a previous
message. You can access this field with the reserved symbol R3 (see section 4).

Secondary function code. Field mnemonics are used throughout this manual in specific
message formats. -Reserved symbols corresponding to the field mnemonics can be used to
access message fields (see section 4). Reserved symbols for the secondary function code
are used throughout this manual within mnemonics identifying specific messages. The sfc
mmemonics and their unpacked (right-justified) numerical equivalents are:

Related Reserved
Field Mnemonic Symbolic pfc Symbolic Mnemonic Octal Hexadecimal Decimat

ctd CTRL cTD 02 02 02
def CTRL DEF 04 04 04
char CTRL CHAR 10 08 08
rtc CTRL RTC 11 09 09
ted CTRL TCO 12 0A 10
mark TO or MARK a0 00 00

BI or

RO

You can access the sfc field with the reserved symbol SFC (see section 4).

These parameters can-extend into words 2 through n; n < 410. Parameters are defined in
the descriptions of the specific messages in section 3.

60499500 U

Figure 2=-7. Supervisory Message General Content, Synchronous
Messages of Application Character Type 3

The second and third common fields are used to
indicate whether the function was performed or not.
By convention, these fields are called the error

and response bits. The error bit is usually set to
indicate the message recipient”s refusal to perform
the function; the response bit is set to indicate
the recipient”s normal completion of the function.

Together, the four common fields define one super-
visory message. Supervisory messages can be grouped
into two classes of sequencing protocol:

Asynchronous (the largest class)

Synchronous

ASYNCHRONOUS MESSAGES

Asynchronous supervisory messages are sent or
received separately from the stream of data message
blocks between an application program and a logical
connection. Their receipt or the need to send them
cannot be predicted from the generalized 1logic
required for data block processing. Such messages
are said to be asynchronous to the data block
stream.

All asynchronous messages are sent or received on a
special logical connection with the preassigned
application connection number of zero. The network
software preassigns this application connection
number to connection list zero.

All asynchronous supervisory messages are actually
sent to or received from software resident in the
host computer, although they may be reformatted by
this software for communication with software out-
side of the host. These messages conform to the
requirements of application~to-application connec-
tions. Asynchronous supervisory messages therefore
use an application character type of one. All
supervisory messages are assigned the nonzero
application block type of three.

Asynchronous supervisory messages are processed
with the same AIP routines used by an application
program to process data message blocks on logical
connections other than application connection number
zero. Asynchronous supervisory messages are queued
on their special connection until fetched by the
application program.

The application program fetches supervisory messages
one message at a time. When the connection queue
is empty, a null block with an application block
type of zero is returned.

The network software provides a4 mechanism for the
application program to determine when asynchronous
supervisory messages are queued on application con-
nection number zero. When a call to an AIP routine
is completed, a supervisory status word at a loca-
tion defined by the application program is updated
to indicate whether any asynchronous supervisory
messages are queued. As long as the application
program continues to make calls to AIP routines, it
can test the supervisory status word periodically
(instead of attempting to fetch null blocks from
application connection number zero). The supervi-
sory status word and the wuse of NETWAIT are
described in sectiomn 5.

SYNCHRONOUS MESSAGES

Synchronous supervisory messages are sent or
received embedded in the stream of data message
blocks between an application program and a logical
connection. Their receipt or the need to send them
is determined by the generalized logic required for
data block processing. Such messages are said to
be synchronous with the data block stream.

All synchronous messages are sent or received on
the logical connection to which they apply. This
logical connection cannot be application connection
number zero.

All synchronous supervisory messages are actually
sent to or received from network software outside
of the host computer. Because the application pro-
gram processes these messages as network blocks
sent to or received from terminals, the messages
conform to the requirements of application-to—
terminal connections. Synchronous supervisory mes-—
sages use an application character type of two or
three; your program specifies which is used when it
accepts the connection to the terminal.

Synchronous supervisory messages are processed with
the same AIP routines used by an application pro-
gram to process other blocks on logical connections.
Synchronous supervisory messages are queued on
their connections until fetched by the application
program. Because the application program must dis-
tinguish between data or null blocks and synchronous
supervisory message blocks, supervisory messages
are assigned the application block type of three.

The network software provides a mechanism for the
application program to determine when synchronous
supervisory messages or data blocks are queued on a
logical connection. When a call to the AIP routine
NETWAIT is completed, a supervisory status word at
a location definmed by the application program is
updated to indicate whether any synchronous super-—
visory message or data blocks are queued. The
application program can test the supervisory status
word periodically, instead of attempting to fetch
null blocks from all application connection num—
bers. The supervisory status word and the use of
NETWAIT are described in section 5.

Synchronous supervisory messages are subject to the
same application block limit as data messages and
are similarly acknowledged. This process is
described in section 3.

BLOCK HEADER CONTENT

The content of the block header word associated
with a supervisory message depends on whether the
message 1is asynchronous or synchronous, and on
whether it is being sent or received. The require-
ments for asynchronous and synchronous messages are
described in the preceding subsection. The
requirements for all header words associated with
incoming supervisory messages are described in
figure 2-8. - The requirements for all header words
associated with outgoing supervisory messages are
described in figure 2-9.

60499500 T

ha

ha

abt

adr

act

59 53 41 23 19 16 1 0

Reserved for
abt adr use by cDC act |bPO

=

res tic

Symbolic header area address, specified as the location to receive the application block
header in a call to NETGET, NETGETF, NETGETL, or NETGTFL (see section 5).

Application block type of the associated message hlock. This field can contain the values:

=N, indicates a null hlock. (No message is queued or can be delivered from the
Logical connection polled.)

=3, indicates that the accompanying block is a supervisory message hlock.

Values of 1, 2, and 4 through 63 are not valid for supervisory messages on input. You can
access this field with the reserved symhol ABHABT (see section 4).

Application connection number of the logical connection from which the message block
comes. This field can have the values:

=0, for asynchronous supervisory messages from the host portion of the network
software.
=acn, for synchronous supervisory messages from the Terminal Interface Program

servicing the logical connection with the indicated nonzero application
connection number.

You can access this field with the reserved symbol ABHADR (see section 4).

Application character type used to encode the accompanying message block. The value
appearing in this field depends on the type of supervisory message involved and on the
act value you chose (the sct field described in section 3) for synchronous supervisory
messages on this connection; this field can contain the values:

=1, an asynchronous supervisory message packed in 60-bit words. Must he used
for supervisory messages with an adr value of 0.

=2, a synchronous supervisory message packed in 8-bit characters, 7.5
characters per central memory word (the recommended value).

=3, a synchronous supervisory message packed in 8-bit- characters, S characters
per central memory word.

Because the fields within supervisory messages are groups of bits within central memory
words (rather than characters in a character string), the act field of a supervisory
message does not indicate that character mapping occurred. You can access this field with
the reserved symbol ABHACT (see section &),

Input-block-undeliverable bit. When ibu s 1, the hlock associated with this block
header has not been delivered to the application program. The block is larger than the
maximum text length (tlmax parameter) declared by the application program in its NETGET,
NETGETF, NETGETL, or NETGTFL call and remains queued until:

A NETGET, NETGETL, NETGETF, or NETGTFL call occurs for the connection and specifies
an adequate text length (see section 5).

A truncate-input asynchronous supervisory message (see section 3) is issued for the
connection and a NETGET, NETGETL, NETGETF, or NETGTFL call occurs for the connection
(see section S). This action resolves the problem only for synchronous superyisory
messages.

A block header with an 1ibu value of 1 contains the actual length of the gueued block in
its tlc field, given in character units specified by the act field. You can access
this field with the reserved symbol ABHIBU (see section 4).

Figure 2-8. Application Block Header Content for Upline Supervisory Messages (Sheet 1 of 2)

60499500 T

2-37

tru Truncated data bit. When tru 1is 1, the synchronous supervisory message block associated
with this block header has bheen truncated to fit into the text area used. Asynchronous
supervisory messages are never truncated. This bit contains a meaningful value only after
the application program has issued the data truncation control asynchronous supervisory
message described in section 3 and only if that message affects transmissions on this
connection. When truncation occurs, the block header for the truncated block contains the
maximum number of complete transferred character bytes in its tlc field. VYou can access
this field with the reserved symbol ABHTRU (see section 4&).

res Reserved for CDC use. Reserved fields contain zero.
tlc Text Length of the associated block, in character units specified by the act field, as
follows:

act=1, tlc is the number of central memory words occupnied by the block.
act=2, tlec is the number of 8~bit bytes containing meaningful message fields.
act=3, tlc is the number of 12-bit bytes containing meaningful message fields.

You can access this field with the reserved symhol ABHTLC (see section 4).

Figure 2-8, Application Block Header Content for Upline Supervisory Messages (Sheet 2 of 2)

2-38 60499500 T

ha

ha

abt

adr

abn

act

59 53 41 23 19 1 0

abt adr abn act 0 tlc

Symbol ic header area address, specified as the application block header's location in a
call to NETPUT or NETPUTF (see section 5).

Application block type; abt is 3 for all supervisory messages. You can access this field
with the reserved symbol ABHABT (see section 4).

Application connection number of the Logical connection to which the message block should
be sent. This field can contain the values:

=0, for asynchronous supervisory messages addressed to the host portion of the
network software.

=acn, for synchronous supervisory messages addressed to the Terminal Interface
Program servicing the Logical connection with the indicated nonzero
application connection number.

You can access this field with the reserved symbol ABHADR (see section 4).

Application block number assigned to the message block being sent. This field is an
18-bit integer that identifies a synchronous supervisory message block when the network
software's processing of the block returns a block-delivered or block-not-delivered
supervisory message. This field is generally ignored for asynchronous supervisory

) messages. If the message is a request for connection with another application program,

that application program will receive this integer as part of the request; see the
CON/ACRQ/R supervisory message description in section 3.. You define the block number; it

can be:

A sequencing number

The block's central memory address

The block's mass storage address (physical record unit)

An index value for a block control array or table

An external label
You can access this field with the reserved symbol ABHABN -(see section 4).
Application character type used to encode the accompanying message block. The value
declared for this field depends on the type of supervisory message involved; this field
can have the values:

=, an asynchronous supervisory message packed in 60-bit transparent character
bytes, one character per central memory word.

=2, . a synchronous supervisory message packed in 8-bit character bytes, 7.5
bytes per central memory word; the recommended value.

=3, a synchronous supervisory message packed in 8-bit characters within 12-bit
' bytes, 5 bytes per central memory word.

You can access this field with the reserved symbol ABHACT (see section 4).

Text ‘Length of the accompanying block, in character units specified by the act field, as
follows:

act=1, tlc is the number of central memory words occupied by the block.
act=2, tlc is the number of 8-bit bytes containing meaningful message fields.
act=3, tlc is the number of 12-bit bytes containing meaningful message fields.

You can access this field with the reserved symbol ABHTLC (see section 4).

60499500 T

Figure 2-9. Application Block Header Content for Downline Supervisory Messages

SUPERVISORY MESSAGES

This section describes all synchronous and asyn-
chronous supervisory messages that are legal for
application program communication with uetwork
software. These messages are described in the con-
text of their use.

MESSAGE MNEMONICS

Figure 2-6 in section 2 shows the general format of
a supervisory message. Note that this information
is in the text area of the message and must be
accompanied by an application block header as
described in section 2. A supervisory message is
identified by the contents of its primary function
code field, error bit, response bit, and secondary
function code field. This allows a supervisory
message to be described by a mnemonic of the form
shown in figure 3-1. Although many combinations of
valid field values are possible, ounly certain com-
binations are permitted. Table 3-1 1lists these
legal messages alphabetically by mnemonic.

MESSAGE SEQUENCES

Supervisory messages are always used in stereotyped
sequences of one or more messages. Related messages
(messages distinguished by the use of the error or
response bits) are always part of multiple-message
sequences. The messages described in the following
subsections are discussed in the context of their
normal sequences. Each sequence is illustrated with
a figure that shows the sender and recipient of the
messages in the sequence, and the direction of
transmission of each message (arrows).

Message sequences include the following:
Managing logical connections
Managing connection lists

Controlling data flow

pfc

sfc

sm

pfc/sfc/sm

The reserved symbolic mnemonic for the
contents of the primary function code
field; this mnemonic can be any of those
Listed in figure 2-6 in section 2.

The reserved symbolic mnemonic of the
contents of the secondary function code
field; this mnemonic can be any of those
listed in figure 2-6 in section 2,
provided the secondary function code is
Legal for the primary function code used.

A letter indicating the combined settings
of the error and response bits; this

Letter can be:

R Indicating an initial request
supervisory message (bit setting 00)

N Indicating a normal response
supervisory message (bit setting 01)

A Indicating an abnormal response
supervisory message (bit setting 10)

Figure 3-1. Supervisory Message

Mnemonic Structure

Converting blocks

Truacating blocks

Managing terminal characteristics

Host operator communication

Host shutdown

Error reporting

TABLE 3-1. LEGAL SUPERVISORY MESSAGES

Figure Number
Message Block Header . .
Mnemonic Message Meaning Type Fields Defining
Message
BI/MARK/R Break-indication-marker request Upline synchronous acn # 0 3-32
act = 2,3
tle = 2
CON/ACRQ/A Rejection of application-to- Upline asynchronous acn = 0 3-13
application connection request act = 1
tle = 2
CON/ACRQ/R Application-to—-application Downline asynchronous acn = 0 3-12
connection request act =1
tlec = 2
60499500 U 3-1

TABLE 3-1. LEGAL SUPERVISORY MESSAGES (Contd)

Figure Number
Message . Block Header .
Mnemonic Message Meaning Type Fields Defining
Message
CON/CB/R Connection broken Upline asynchronous acn = 0 3-8
act = 1
tle = 1
CON/END/N All connection processing Upline asynchronous acn = 3-10
completed act = 1
tle = 1
CON/END/R End all connection processing Downline asynchronous acn = 0 3-9
act = 1
tle > 2
CON/REQ/A Connection rejected Downline asynchronous acn = 0 3-5
act =1
tle = 1
CON/REQ/N Connection accepted Downline asynchronous acn = 0 3-4
act =1
tle =1
CON/REQ/R Connection ‘requested Upline asynchronous acn = 0 3-3, 3-14
act =1
tle > 6
CTRL/CCD/R CDCNET multiple device char- Upline synchronous acn # 0 3-57.3
acteristics definitions act = 2, 3
tle > 2
CTRL/CHAR/A No CCP device characteristics Upline synchronous acn # 0 3-50
changed act = 2, 3
tle = 4
CTRL/CHAR/N Multiple CCP device character-— Upline synchronous acn # 0 3-51
istics defined act = 2, 3
tlc = 2
CTRL/CHAR/R Define multiple CCP device Downline synchronous acn # 0 3-49
characteristics act = 2, 3
tle > 2
CTRL/CTD/A No CDCNET device characteristics Upline synchronous acn = 0 3-56
changed act = 2, 3
tle = 5
CTRL/CTD/N CDCNET multiple device character- Upline synchronous acn =0 3-55
istics defined act = 2, 3
tle = 2
CTRL/CTD/R Define CDCNET multiple device Downline synchronous acn = 0 3-57
characteristics act = 2, 3
tlc > 2
CTRL/DEF/R Redefine device characteristic Downline synchronous acn # 0 3-48
act = 2, 3
tle > 2
CTRL/RCC/A No CDCNET multiple device char-— Upline synchronous acn # 0 3-57.2
acteristics definitions returned act = 2, 3
tle > 2
CTRL/RCC/R Request CDCNET multiple device Downline synchronous acn # 0 3-57.1
characteristics definitions act = 2, 3
tle > 2

60499500 V

TABLE 3-1.

LEGAL SUPERVISORY MESSAGES (Contd)

60499500 V

Figure Number
Message . Block Header .
Mnemomic Message Meaning Type Fields Defining
Message
CTRL/RTC/A Bad value in request device Upline synchronous acn # 0 3-53
characteristics supervisory act =2, 3
message tle = 4
CTRL/RTC/R Request current value of device Downline synchronous acn # 0 3-52
characteristics act = 2, 3
tlec > 2
CTRL/TCD/R Device characteristics Upline synchronous acn # 0 3-54
definitions act = 2, 3
tle > 2
DC/CICT/R Change application character type Downline asynchronous acn = 0 3-43
of connection input act = 1
tle = 1
DC/STMR/R Set inactivity timer Downline asynchronous acn = 0 3-16.1
act =1
tle =1
DC/TRU/R Truncate upline block Downline asynchronous- acn = 3-45
act =1
tle =1
ERR/LGL/R Logical error Upline asynchronous acn = 0 3-79
act =1
tlc > 3
FC/ACK/R Output block delivered Upline asynchronous acn = 0 3-25
act =1
tle = 1
FC/BRK/R Connection processing interrupted Upline asynchronous acn.= 0 3-28
by break act = 1
tle = 1
FC/INACT/R Connection inactive Upline asynchronous acn = 3-16
act =1
tle = 1
FC/INIT/N Application ready for connection Downline asynchronous acn = 0 3-7
processing (connection initial- act =1
ized) tle =1
FC/INIT/R NAM ready for connection process-— Upline asynchronous acn =0 3-6
ing (connection initialized) act = 1-
tle =1
FC/NAK/R Output block not delivered Upline asynchronous acn = 0 3-26
,act =1
tle = 1
FC/RST/R Reset connection Downline asynchronous acn =-0 3-29
act =1
tle =1
HOP/ALT/R Operator alert Downline asynchronous acn = 0 3-66
act =1
tle = 1
HOP/BRK/R Operator break Upline asynchronous acn = 0 3-67
act =1 ,
, tle = 1

3-3

TABLE 3-1. LEGAL SUPERVISORY MESSAGES (Contd)

Message M M) T Block Header Fi%“;? N“mber
Mnemonic essage Meaning ype Fields etining
Message

HOP/CMD/R Operator command Upline. asynchronous acn = 0 3-68
act =1
tle = 2-6

HOP/DAY/R Dayfile command Downline asynchronous acn =0 3-69
act =1
tle =1

HOP/DB/R Activate debug code Upline asynchronous acn = 0 3-59
act =1
tle = 1

HOP/DE/R Turn off debug code Upline asynchronous acn = 0 3-60
act =1
tle = 1

HOP/DIS/R K-display data Downline asynchronous acn = 0 3-71
act =1
tlc = 2-210

HOP/DU/R Dump field length Upline asynchronous. - acn = 3-61

. act = 1

tle =1

HOP/END/R Operator- and display Upline asynchronous acn =0 3-72
act = 1.
tle = 1

HOP/IG/R Operator ignore Upline asynchronous acn = 0 3-73
act =1
tle = 1

HOP/LG/R Network dayfile - Downline asynchronous - acn = 0 3-70
act =1
tlc = 2-9

HOP/NOTR/R Turn off AIP tracing Upline asynchronous acn = 0 . 3-63

’ act = 1

tle =1

HOP/PAGE/R Operator page Upline asynchronous acn = 0 3-74
act =1
tlec =1

HOP/REL/R Release debug log file Upline asynchronous acn = 0 3-64
act =1
tle =1

HOP/RS/R Restart statistics gathering Upline asynchronous acn = 0 3-65
act =1
tle = 1

HOP/START/R Operator start Upline asynchronous acn = 0 3-75
act =1
tle =1

HOP/TRACE/R Turn on AIP tracing Upline asynchronous acn = 0 3-62
act =1
tle = 1

INTR/APP/R Application interrupt request Downline asynchronous acn = 0 3-35
act =1
tle =1

60499500 Vv

TABLE 3-1. LEGAL SUPERVISORY MESSAGES (Contd)
Figure Number
Message : Block Header L s
Mnemonic Message Meaning Type Fields Defining
Message
INTR/RSP/R Interrupt response Downline or upline acn = 0 3-33, 3-36
asynchronous act =1
tle =1
INTR/USR/R User interrupt or user interrupt Upline asynchronous acn = 0 3-31, 3-40
request act = 1
tle =1
LST/FDX/R Turn on full duplex operation for Downline asynchronous acn = 0 3-24
connections in list act = 1
tle = 1
LST/HDX/R Turn on half duplex operation for Downline asynchronous acn = 0 3-23
connections in list ’ act =1
tle = 1
LST/OFF/R Turn list processing for coanec— Downline asynchronous acn = 0 3-20
tion off act = 1
tle =1
LST/OFF/R Turn list processing for Downline asynchronous acn = 0 3-20
connection off act = 1
tle =1
LST/ON/R Turn list processing for Downline asynchronous acn = 0 3-21
connection on act = 1
tle = 1
LST/SWH/R Switch application list number of Downline asynchronous acn = 0 3-22
connection ' act = 1
tle = 1
RO/MARK/R Resume output marker Downline synchronous acn # 0 3-34
act = 2,3
tlc = 2
SHUT/INSD/R Network shut-down in progress Upline asynchronous acn = 0 3-77
act =1
tle = 1
. TCH/TCHAR/R Device characteristics rede- Upline asynchronous .acn = 0 3-47
fined act = 1
tle = 1
TO/MARK/R Terminate output marker - Downline synchronous acn # 0 3-37
act = 2, 3
tle = 2

"MANAGING LOGICAL
CONNECTIONS

Five messages are used in connection management.
These are the CON/ACRQ, CON/REQ; CON/CB, CON/END,
and FC/INIT. These messages as well as examples of
how they are used in connecting devices to appli-
cations, applications to applications, and later
terminating these connections are discussed in this
subsection.

60499500 V

CONNECTING DEVICES TO APPLICATIONS

After an application program has completed a NETON
call, connection-request supervisory messages are
sent "to the application on behalf of each device
seeking: connection. Request by-request, the appli-
cation must decide whether to accept or reject the
requested connection. Rejection might be neces-
sary, for .example, when the application program
receives a. connection request for a card reader and

it does not support batch devices. To respond to a
connection-request—message, the application must
return one of two similar messages, indicating that
the application 1is either rejecting or accepting
the connection request. -Figure 3-2 shows the common
message sequences in the connection establishment
process.

In this figure, arrows indicate the direction of
transmission of each message. The general term
Network Access Method (NAM) indicates the network
host software sending or receiving the message,
regardless of the software module actually involved.

An application program cannot initiate a connection
to a terminal. The connection-request supervisory
message shown in figure 3-3 can only be an incoming
asynchronous message. The application program™s
first action in processing a device—to—application
connection sequence is to issue the asynchronous
connection-accepted supervisory ‘message shown in
figure 3-4, or the counnection-rejected message shown
in figure 3-5.

The CONNET flag is defined in the CON/REQ/R super—
visory message and indicates whether the terminal-

to—application connection is through CCP or
CDCNET. This flag is set by NAM when NAM creates
and returus the connection-request supervisory
message to the application program requesting the
connection to the device.

If the application program accepts the connection
(assuming that no change has occurred in the status
of the requesting terminal), the network software
informs the application program that the connection
is ready for data transmission. This is done by
sending the asynchronous initialized-connection
message shown in figure 3-6 upline to the applica-
tion program. If conditions have not changed and
the application program can still setrvice the con—
nection, it vresponds by issuing the connection—
initialized message shown in figure 3-7. Data
transmission on the logical connection can then
begin. After the network software receives the
connection-initialized message, the application
program can send output to console devices or wait
for input from them. An application program cannot
send or receive any supervisory messages or data
blocks on a coannection until connection initial-
ization processing has been completed.

Application

<l
-

Application

-

Application

-

Yy

-

could not be completed.

Message
CON/REQ/R
CON/REQ/N
FC/INIT/R

FC/INIT/N

The application program can now send and receive messages over the logical connection.

Message
CON/REQ/R

CON/REQ/A

The application program has rejected the ‘logical connection.

Message
CON/REQ/R

CON/REQ/N
CON/CB/R
CON/END/R

CON/END/N

Although the application program was willing to accept it, the logical connection

Figure 3-2. Device-to-Application Connection Supervisory Message Sequences

3-6

60499500 V

ta

ahmt

ahds

aawc

atwd

ta

con

req

res

5958 54 5251 49 47 45 43 41 39 35 31 29 25 23 2120 1716 12 75 3 0

r
con 0|2 | req res acn abl sdt dt tc |resji| ord
c
tname 0 pw ol
c
o
n h
ownert O|n|stL dba
' e W
t
Lstat res ubz xbz . res
Logfam famord
Logname usrind
ala a
h h h r
res ahpt m r d e ahtl ahsl ahcm ahec ahlp ahcp
t p b
i
al|lala a
hlh |h h
d | f c i ahsc res ahdt ahdf ahcc ahms
s |c |s s
res See NOS Administration Handbook
alaja a
t t]t t
P rlp attt t | atis res accd N acmd
alolx c
r
awsi

Symbolic address of the application program's text area receiving this asynchronous super=-
visory message.

Primary function code 6314. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the vglue of reserved symbol CON.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described 'in. section 4. Its value is defined as the value of the reserved symbol REQ.

Reserved by CDC.

60499500 U

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
Device~to-Application Connections (Sheet 1 of 7)

3-7

acn Application connection number assigned to this Log1caL connection, if the connection is estab-
Lished; 1 < minacn < acn £ maxacn < 4095, where minacn and maxacn are minimum and maximum
values established by the . appL1catwon program in its NETON call, (See section 5.) You can
access this field with the reserved symbol CONACN, as described in section 4.

. abl Application block Limit, specifying the maximum number of data or synchronous supervisory
message blocks the program can have outstanding (unacknowledged as dalivered by the network
software) on this connection at any time. This value is 2stablished for the device involved
in the togical connection when the device is described in the network configuration file.
This field has the range 1 < abl < 7. You can access this field with the reserved symbol
CONABL, as described in section 4.

sdt Subdevice type.
If dt=1 or 12 through 15 (card reader or a site-defined device), this field can have the
values:
0 029 punch patterns are the default for each job deck
1 026 punch patterns are the default for each job deck
2 Reserved for CDC use
thru
1"
12 Reserved for installation use
thru ’
15
If dt=2 or 12 through 15 (Line printer or a site—-defined device), this field can have the
values:
0 S4-character ASCII print train
1 b4-character BCD (CDC scientific) print train
2 95-character ASCII ‘print train
3 Reserved for CDC use
thru
1"
12 Reserved for installation use
thru
15
If dt=4 or 12 through 15 (plotter or a sits-defined device), this field can have the values:
0 Instructions must be packed in 6-bit bytes
1 Instructions must be packed in 8-bit dytes
2 Reserved for CDC use
thru
1"
12 Reserved for installation use
thru
15
Figure 3-3. Connection-Request (CON/RE@/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 2 of 7)
3-8 60499500

dt

te

Device type of the terminal device. This field can have the values:

0 Console (interactive terminal)

1 Card reader; your program should reject connections with this device type
2 Line printer; your program should reject connections with this device type
3 Card punch; your program should reject connections with this device type
4 Plotter; your program should reject connections with this device type

S Reserved for CDC use

thru

1

12 Reserved for installation use

thru

15

Devices with a device type of zero can be serviced as interactive virtual terminals. Devices
with device types of 1 through & must be serviced as batch devices. You can access this
field with the reserved symbol CONDT, as described in section 4. Applications other than RBF

are only allowed to do input/output on batch devices if the devices are of types 0 or 12
through 15.

Terminal class assigned to the terminal either in the network configuration file or by the
terminal operator. -The terminal class determines the parameters and ranges valid for redefi-
nition of the device. The device is serviced by the TIP according to the attributes asso-
ciated with the terminal class. These attributes are discussed in the Terminal Interfaces
reference manual. The terminal class field can have the values:

0 Reserved for CDC use.

1 Archetype terminal for the class is a Teletype Corporation Model 30 Series.

2 Archetype terminal for the class is a CDC 713-10, 722-10, 751-1, 752, or 756.

3 Archetype terminal for the class is a CDC 721.

4 . Archetype terminal for the class is an IBM 2741.

5 Archetype terminal for the class is a Teletype Corporation Model 40-2.

6 Archetype terminal for the class is a Hazeltine 2000, operating as a tele-
typewriter.

7 Archetype terminal for the class is a DEC VT100 (ANSI X3.64 standard).

8 - Archetype terminal for the class is a Tektronix 4000 Series, operating as a tele-
typewriter.

9 Archetype ‘terminal for the class is a HASP (post=print) protocol multileaving
workstation.

10 Archetype terminal for the class is a CDC 200 User Terminal.

1" - Archetype terminal for the class is a CDC 714-30.

12 Archetype terminal for the class is a CDC 711-10.

13 Archetype -terminal for the class is a CDC 714-10/20.

14 Archetype terminal for the class is a HASP (pre-print) protocol multileaving work-
station.

15 Archetype terminal for the class is a CDC 734.

16 Archetype terminal for the class is an IBM.2780.

60499500 U

Figure 3-3. Connection—-Request (CON/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 3 of 7)

ric

ord

tname

pw

ptl

ownert

17 Archetype terminal for the class is an IBM 3780.

18 Archetype terminal for the class is an IBM 3270.

19 Reserved for CDC use.

thru

27

28 Reserved for installation use.

thru

31
You can access this field with the reserved symbol CONT, .as described in section 4.
Restricted interactive capability (for consoles only). This field can have the values:

0 Terminal has unrestricted interactive capability.

1 Terminal has restricted interactive capability.
Applications should Limit the amount of interactive dialog with a terminal that has
restricted interactive capability. Such terminals (for example a 2780 or 3780) in which the
console is emulated by a card reader and line printer are not truly interactive. You can

access this field with the reserved symbol CONR, as described in section 4.

Device ordinal, indicating a unique device when more than one device with the same device
type is part of the same terminal. This field can have the value:

0 ALl interactive consoles
1 Batch devices

thru

7

The device ordinal is assigned to the device when the device is defined in the network con-
figuration file. You can access this field with the reserved symbol CONORD, as described in
section 4.

Terminal device name, assigned to the device in the network configuration file. This name is
one to seven 6-bit display code letters and digits, left—justified with blank fill; the first
character is always alphabetic. The terminal device name is the element name used by the net-
work operator to identify the device. You can access this field with the reserved symbol
CONTNM, as described in section 4. .

If the device is a console, this field specifies the maximum number of characters in a
physical Line of input or output, 0 or 20 < pw < 255. If the device is a batch card reader
or card punch, this field specifies the maximum number of characters in an input or output
record. If the device is a batch line printer, this field specifies the maximum number of
characters in a line of output, 50 < pw < 255. 1If the device is a plotter, this field
specifies the maximum number of character bytes of plotter information in a record of
output. Page width of consoles is discussed in the Terminal Interfaces reference manual.
You can access this field with the reserved symbol CONPW, as described in section 4. The pw
value can be assigned in the network configuration file or the user can set console pw from
the terminal. Default value depends on terminal class.

Page length of a device, specifying the number of physical lines that constitute a page. The
page length is assigned to the terminal either in the network configuration file or by the
terminal operator; page length is one of the attributes associated with the terminal class by
the TIP, and is discussed in the Terminal Interfaces reference manual. This field can have
the values 0 or 8 < plL < 255 for interactive consoles, but is always 60 for batch devices.
You can access this field with the reserved symbol CONPL, as described in section 4.

Terminal device name of the owning console {(for batch devices only). For batch devices, this
field contains one to seven 6-bit display code characters, left-justified with blank fill;
for console devices, this field is zero. You can access this field with the reserved symbol
CONOWNR, as described in section 4.

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 4 of 7)

60499500

connet

sl

dbz

hw

Lstat

ubz

xbz

Log fam

famord

Network type flag indicating the type of network for the connection. This field can have the
values:

0 The device is connected to CCP.
1 The device is connected to CDCNET.

You can access this field with the reserved symbol CONNET, as described in section 4.

Access level of the communications line in use. Access to information or resources requiring
a security level higher than this value should be prohibited. This value is the AL parameter
from the NDL statement defining the communication Lline used by the terminal. This field can
have the values 0 < sl < 7. You can access this field with the reserved symbol CONSL, as
described in section 4.

Block size in characters for any downline block from the application to NAM. The downline
block size is assigned to the device in the network configuration file and is a function of
line speed, device type, and terminal class as described in the Network Definition Language
reference manual. This field can have the values 1 L dbz < 2043. The values are advisory
only. You can access this field with the reserved symbol CONDBZ, as described in section 4.

The hardwired Line indicator. A 0 (zero) indicates that the device is not hardwired; a 1
indicates that the device is hardwired.

Loaned connection status. This is a reason code which is set as the result of a terminal
connection being loaned to a secondary application. This field can have the values:

0 Normat connection request.

8 Loan request from primary to secondary application.
9 Reserved for CDC use.

thru

15

16 User is not validated for secondary application.

17 Secondary application issued NETOFF with the Loan connection: outstanding.
18 Secondary application failed.

19 Reserved for CDC use.

20 Secondary application terminated the connection.

21 Secondary application refused the connection.

22 Secondary application not available.

23 Secondary application connection Limit reached.

You can access this field with the reserved symbol CONLOAN, ‘as described in section 4.

Upline block size .(in multiples -of 100 characters) for a console device. Upline block size
(in PRUs) of a batch device. Console connections with an upline block size of 0O send blocks
of 100 characters or blocks created when a Linefeed is entered from the console. You can
access this field with the reserved symbol CONUBZ, as described in section 4.

Transmission block size (in characters) of the device. This is the number of characters in
an output transmission block that CCP sends to the terminal. You can access this field with
the reserved symbol CONXBZ, as described in section 4. -

The NOS family name supplied by the terminal operator during login or by the Local.configu-
ration file as an automatic login parameter. This family name is one to seven 6-bit display

code letters and digits, left-justified with blank fill. You can access this field with the
reserved symbol CONFAM, as described in section 4.

The NOS family ordinal corresponding to the logfam field contents. You can access this field
with the reserved symbol CONFO, as described in section 4.

60499500 v

Figure 3-3. Connection-Request (CON/REQ/R) Supervisory Message Format,
. Device-to-Application Connections (Sheet 5 of 7)

3-11

Logname

usrind

ahmt

ahpt

ahmti

ahrp

ahdb

ahtl

ahsl

ahem

ahec

ahlp

ahcp

ahds

ahdsi

ahfc

ahcs

ahis

ahsc
ahdt

ahdf

ahcc

ahms

The NOS user name supplied by the terminal operator during login. This user name is one to
seven 6-bit display code letters, digits, or asterisks, left-justified with blank fill. You
can access this field with the reserved symbol CONUSE, as described in section 4.

The NOS user index corresponding to the logname field contents. You can access this field
with the reserved symbol CONUI, as described in section 4.

User validation control word defined in the NOS validation file. You can access this word

with the reserved symbol CONAHMT, as described in section 4. The NOS Administration Handbook
section on the MODVAL command explains the use of the fields in this word.

Index value of allowed units plotted per file for the connec¢tion's user name. See NOS MODVAL
PT parameter.

Index value of allowed magnetic tapes for the connection's user name. See NOS MODVAL MT
parameter. .

Index value of allowed removable packs for the connection's user name. See NOS MODVAL RP
parameter.

Index value of allowed deferred batch jobs for the connection's user name. See NOS MODVAL DB
parameter.

Index value of central processor time Limit per job step for the connection's user name. See
NOS MODVAL TL parameter. .

Index value of system resource unit Limit for the connection's user name. See NOS MODVAL JL
parameter.

Index value of allowed central memory field length for the connection's user name. See NOS
MODVAL CM parameter.

Index value of allowed extended central storage field length for the connection's user name.
See NOS MODVAL EC parameter.

Index value of allowed.lines printed per filte for the connection's user name. See NOS MODVAL
LP parameter.

Index value of allowed cards punched per file for the connection's user name. See NOS MODVAL
CP parameter. ' -

User validation control word defined in the NOS validation file. You can access this word
with the reserved symbol CONAHDS, as described in section 4. The NOS Administration Handbook
section on the MODVAL command explains the use of the fields in. this word.

Index value of allowed direct access file size for the connection's .user name. See NOS
MODVAL DS parameter.

Index value of alLowed maximum number of permanent files in catalog for the connection's user
name. See NOS MODVAL FC parameter.

Index value of allowed maximum total indirect access file storage space for the connection's
user name. See NOS MODVAL CS parameter.

Index value of allowed indirect access file size for the connection's user name. See NOS
MODVAL IS parameter.

Allowed security count for the connection's user name. See NOS MODVAL SC parameter.
Allowed number of detached jobs for the connection's user name. See NOS MODVAL DT parameter.

Allowed number of calls per job to the COMPASS MSG macro for dayfile entries under the
connection's user name. See NOS MODVAL DF parameter.

Allowed number of NOS commands per job for the connection's user name. See NOS MODVAL CC
parameter.

Allowed number of mass storage physical record units per job for the connection's user name.
See NOS MODVAL MS parameter.

Figure 3-3. Connection—-Request (CON/REQ/R) Supervisory Message Format,
Device-to-Application Connections (Sheet 6 of 7)

60499500 v

aawc User validation control word defined in the NOS validation file. You can access this field
with the reserved symbol CONAAWC as described in section 4. The NOS Administration Handbook
section on the MODVAL command (AW parameter) explains the use of the fields in this word.
This word contains permission bits for the connection's user name. A set bit indicates that
the user name is allowed that permission.
atwd (atpa) User validation control word defined in the NOS validation file. You can access this word
with the reserved symbol CONATWD, as described in section 4. The NOS Administration Handbook
section on the MODVAL command explains the use of the fields in this word.
atpar Terminal parity associated with the connection's user name (0 means that PA command is
assumed to require value of E; 1 means that PA command is assumed to require value of 0).
See NOS MODVAL PA parameter.
atro Number of idle characters associated with the connection's user name. See NOS MODVAL RO
parameter.
atpx Transmission mode (0 means that EP command is assumed to require value of N; 1 means that EP
command is assumed to require value of Y). See NOS MODVAL PX parameter.
attt Terminal type associated with the connection's user name. See NOS MODVAL TT parameter. One
of the following:
Bit Type
52 Teletypewriter compatible terminal, using ASCII codes
51 Block mode terminal, using ASCII codes
S0 CbC-713-compatible terminal
49 and 48 Reserved for CDC use
attc Character set associated with the connection's user name (0 means the NOS NORMAL mode 6-bit
display code.set is assumed to bhe used in permanent files accessed through the Interactive
Facility; 1 means the NOS ASCII mode 6/12-bit display code set is assumed to be used in
permanent files accessed through the Interactive Facility). See NOS MODVAL TC parameter.
atis Initial Interactive Facility subsystem associated with the connection's user name. See NOS
MODVAL IS parameter. One of the following:
8it Subsystem
46 BASIC
45 BATCH
44 EXECUTE
43 FORTRAN
42 FTNTS
If no bit is set, the NULL subsystem is used; if all bits are set, the ACCESS subsystem is
used.
accd Date user name was created, in the format yymmdd.
acmd Date user name permissions were last changed, in the format yymmdd.
awsi The user validation control word. It is defined in the NOS validation file.
Figure 3-3. Connection-Request (CON/REQ/R)-Supervisory Méssage Format,
Device-to-Application Connections (Sheet 7 of 7)
60499500 U 3-12.1/3-12.2

59 51 49 43 35 23 M1 9 5 0

nis
ta con 011 req res acn res x fc lact| aln
pit
ta Symbolic address of the application program's text area from which this asynchronous super-
supervisory message is sent.
con Primary function code 6344 you can access this field with the reserved symbol PFC, as

described in section 4. 1Its value is defined as the value of the reserved symbol CON.

req Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol REQ.

res Reserved by CDC. Reserved fields contain zero.

acn Application connection number assigned by the network software to this end of the Logical con-
nection being established. The value placed in this field must be the value used in the
CON/REQ/R message to which this message is a response. You can access this field with the
reserved symbol CONACN, as described in section 4.

nxp No transparent input allowed flag. This field can have the values:
0 Deliver network data blocks when the xpt field in the accompanying block header
word is 1
1 Discard network data blocks when the xpt field in the accompanying block header
word is 1

The change-input-character-type supervisory message, described later in this section, permits
an application to change to or from allowing transparent mode terminal device input. If
transparent input is not -allowed any transparent input from a terminal device destined for
the application will be discarded. You can access this field with the reserved symbol DCNXP,
as described in section 4.

sct Synchronous supervisory message input character type. This field can have the values:
0 Application character type 2 should be used
1 Application character type 3 should be used

Indicates the input character type required by the application program for synchronous super-
visory messages. The change-input-character-type supervisory message, described later in
this section, allows an application to change the input character type of synchronous super-
visory messages. You can access this field with the reserved symbol DCSCT, as described in
section 4.

Figure 3~4. Connection-Accepted (CON/REQ/N) Supervisory Message Format,
ALL Connection Types (Sheet 1 of 2)

60499500 T . 3-13

act Application input character type, specifying the form of character byte packing that the
application program requires for input data blocks from the logical connection. This field
can have the values:

0 Reserved for CDC use.

1 60-bit words. Can be used for application-to-application connections within a
host. Cannot be used for terminal—to-application connections.

2 8-bit characters in 8-bit bytes, packed 7.5 bytes per central memory word; if the
input is not transparent mode, the ASCII character set described in table A-2 is
used.

3 8-bit characters in 12-bit bytes, packed 5 bytes per central memory word, right-

justified with zero fill within each byte; if the input is not transparent mode,
the ASCII character set described in table A-2 is used.

4 6-bit display coded characters in 6-bit bytes, packed 10 characters per central
memory word; the characters used are the ASCII set of CDC characters described in
table A-1. Cannot be used for application-to-application connections or connec—
tions with batch devices.

5 Reserved for CDC use.
thru
11

12 Reserved for site-defined use.
thru
255

The act value declared applies only to input on the connection and can be changed by a
DC/CICT/R supervisory message at any time during the existence of this logical connection.
You can access this field with the reserved symbol CONACT, as described in section 4.

aln Application List number assigned by the application program to this logical connection;
0 < aln % 63. You can access this field with the reserved symbol CONALN, as described in
section 4.

Figure 3-4. Connection-Accepted (CON/REQ/N) Supervisory Message Format,
ALL Connection Types (Sheet 2 of 2)

3-14 60499500 T

ta

ta

con

req

rc

acn

res

59 51 49 43 35 23 0

con 1] 0 req rc acn res

Symbolic address of the application program's text area from which this asynchronous super-—
visory message is sent.

Primary function code 6314. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol REQ.

Reason code, specifying the reason the application program is refusing to complete the connec-
tion. This field is ignored. You can access this field with the reserved symbol RC, as
described in section 4.

Application connection number assigned by the network software to this end of the Llogical con-
nection being rejected.. The value placed in this field must be the value used in the
CON/REQ/R message to which this message is a response. -Upon receipt of this message, the net-
work software can reuse this application connection number for a different logical connection
with the same program. You can access this field with the reserved symbol CONACN, as
described in section 4.

Reserved by CDC. Reserved fields contain zero.

Figure 3-5. Connection-Rejected (CON/REQ/A) Supervisory Message Format, AlL Connection Types

ta

ta

fc

init

res

-acn

59 51 49 43 35 23 0

fc 01 0] init res acn res

Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

Primary function code 8344, You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 7. You can access this field with the reserved symbol SFC, as
defined in section 4. Its value is defined as the value of the reserved symbol INIT.

Reserved by CDC.

Application connection number assigned by the network: software to the program end of tbe Llogi~
cal connection that has been initialized. This value is the same as that used in previous
CON/REQ/R and CON/REQ/N messages. You can access this field with the reserved symbol FCACN,
as described in section 4.

60499500 T

Figure 3-6. Initialized-Connection (FC/INIT/R) Supervisory Message Format

3-15

59 51 49 43 35 23 0
ta fc 011 init res acn res
ta Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.
fc Primary function code 8314, You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol FC.

init Secondary function code 7. You can access this field with the reserved symbol SFC, as
defined in section 4. Its value is defined as the value of the reserved symbol INIT.

res Reserved by CDC. Reserved fields contain zero.

acn Application connection number assigned by the network software to the program end of the logi-
cal connection that has been initialized.
used in the FC/INIT/R message to which this message is a response. You can access this field
with the reserved symbol FCACN, as described in section 4.

This value placed in this field must be the value

Figure 3-7. Connection-Initialized (FC/INIT/N) Supervisory Message Format

If the application program rejects the connection,
no further action by the program or the network
software occurs. If the application program accepts
the connection but the network software cannot ini-
tialize the connection, the asynchronous connecétion—
broken supervisory message shown in figure 3-8 is
sent to the application program. This connection-
broken message requires the application program to
respond by issuing an end-connection asynchronous
message, as shown in figure 3-9, The network soft-
ware finishes this sequence by responding with the
connection-ended asynchronous supervisory message
shown in figure 3-10.

If the application program does not follow these
message sequences, a logical-error asynchronous
supervisory message is issued to the program. This
message is discussed at the end of this section.

CONNECTING APPLICATIONS TO
APPLICATIONS

When one application program needs to be connected
to another, the first application program sends a
supervisory message request to the network software,
asking for establishment of a logical connection.
Unlike device-to-application connections, the net-
work software permits more than one logical connec-—
tion to exist between two application programs.

The only requirements for such connections are that

3-16

both programs be running, have completed NETON calls
(as described in section 5), and are not already
connected to the maximum number of application pro-
grams permitted.

Figure 3-11 shows the most common message sequences
in the process of establishing a connection between

two applications.

In this figure, arrows indicate the direction of
transmission of each message. The general term
Network Access Method (NAM) indicates the network
host software sending or receiving the message,
regardless of the software module actually involved.

All three sequences begin when the first application
program issues the asynchronous supervisory message
shown in figure 3-12. This request—application-
connection message causes the network software
either to issue the asynchronous application-
connection-reject message shown in figure 3-13, or
to use a message sequence similar to that used for
device-to-application connections. If the latter
occurs, both application programs receive the form
of the asynchronous connection-request supervisory
message with the form shown in figure 3-14. Both
programs may accept the connection by issuing the
connection-accepted asynchronous supervisory
message shown in figure 3-4. 1If so, then both must
exchange the initialized-connection and connection-
initialized messages of figures 3-6 and 3-7 with the
network software before any data can be transmitted
on the logical connection.

60499500 T

ta

ta

con

cb

rc

acn

res

59 51 49 43 35 23 0

con |00 cb rc acn res L

Symbolic address of the application program's text area receiving this asynchronous super=
visory message.

Primary function code 6314- You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

Secondary function code 5. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CB.

Reason code, specifying the cause of the broken connection. This field can have the values:
0 Reserved for CDC use.

1 Communication has been lost with the element at the other end of the logical
connection. If the element is an application program, it failed, was shutdown, or
ended the connection. If the element is a device, the line disconnected or the
device failed. Also, the NOP could have disabled the communication line, logical
link, trunk, or terminal device associated with the connection.

2 The network software could not complete establishment of the connection because
the CON/REQ/N supervisory message contains an invalid parameter.

3 The secondary application aborted the loaned connection by specifying ABORT as the
next application.

4 Reserved for CDC use.

thru

8

9 User ‘requested the connection be broken (consoles only).
10 Passive device followed the owning console:

1" Operator disabled the element.

12 Hardware failure.

13 PSN issued a clear or a restart on the logical channel.
14 Batch application-to-application data discarded.

15 Reserved for CDC use.

thru

255

You can access this field with the reserved symbol RC, as described-in section 4.

Application connection number assigned by the network software to the program gnd of the
logical connection being broken. This number is always one for which the application program
has previously received a CON/REQ/R message. You can access this field with the reserved
symbol CONACN, as described in section 4.

Reserved by CDC.

Loan indicator, indicating this was a loaned connection. -

You can access this field with the reserved symbol CONLOAN, as described in section 4.

60499500 Vv

Figure 3~8. Connection-Broken (CON/CB/R) Supervisory Message Format

59 51 49 43 35 23 17 0

ta con |0] 0} end 0 acn res L

aname res

Optional (data for secondary application or next application)’
(0-52 central memory words)

ta Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

con Primary function code 6314. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CON.

end Secondary function code 6. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ENDD.

acn Application connection number assigned by the network software to this end of the lLogical con-
nection being terminated. The value placed in this field must be the value used in the
CON/REQ/R message beginning this message sequence. Upon receipt of this message, the network
software issues a response message and can reuse this application connection number for a
different Logical connection with the same program. You can access this field with the
reserved symbol CONACN, as described in section 4.

res Reserved by CDC. Reserved fields contain zero.

L Loan indicator. This flag is set when the application program requests that the connection
be loaned to a secondary application. 1In this case, aname specifies the name of the
secondary appltication. Also, the Loaning application can append up to 52 central memory
words of data which will be passed to the secondary application. You can access this field
with the reserved symbol CONLOAN, as described in section 4.

aname Name of next application, one to seven 6-bit display coded characters consisting of Letters
or digits only with a Leading alphabetic character, left-justified and blank filled within
the field. This field is 0 for application-to-application connections. For device-to-
application connections, this field can contain the following:

0 The network software alone determines the next application program that the
device is connected to, or disconnects the device if that is an appropriate
action. For a secondary application, the connection will be returned to the
primary application.

NVF NVF reinitiates the login sequence appropriate for the device or disconnects
command the device from the host. The following commands are valid:

BYE or Causes the device to be disconnected from the host.

LOGOUT

HELLO Reinitiates login for the device. If dialog is possible and

or required, the login prompting sequence begins.

LOGIN
Valid The device at the other end of the lLogical connection is switched (without NVF
appli- prompting dialog) to connection with the indicated application, if possible.
cation The name placed in the field must be the element name used to define the
name referenced application program in the validation file (VALIDUs). For the

secondary application, this connection will be automatically returned to the
primary application.

ABORT For the secondary application, the loaned connection will be terminated and will not be
returned to the primary application. The user will be prompted for another application
name. This parameter is ignored for the.primary application.

Figure 3-9. End-Connection (CON/END/R) Supervisory Message Format

3-18 60499500 T

59 51 49 43 35 23 0

ta con 0|1 end rc acn res L

ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

con Primary function code 6314, You can access this field with the reserved symbol PFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol CON.

end Secondary function code 6. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ENDD.

rc Lending return code. This field can have the values:
0 Normal lending confirmation.

1 No- loan occurred. This value occurs when a secondary application tried to lLoan a
Loaned connection.

2 The application program tried to loan an application-to-application connection. The
connection will be terminated normally.

You can access this field with the reserved symbol CONLOAN, as described in section 4.

acn Application connection number assigned by the network software to the program end of the logi-
cal connection that has been terminated by the CON/END/R message to which this message is a
response. After issuing this message, the network software can reassign this application con-
nection number to another logical connection with the same program. You can access this
field with the reserved symbol CONACN, as described in section 4.

res Reserved by CDC.

L If 1, this CON/END/N supervisory message is for a lLoaned connection. You can access this
field with the reserved symbol CONLOAN, as described in section 4.

Figure 3-10. Connection-Ended (CON/END/N) Supervisory Message Format

60499500 T 3-19

Application 1 NAM Application 2 Message

> CON/ACRQ/R

> CON/REQ/R

- CON/REQ/R
- CON/REQ/N
> CON/REQ/N

» FC/INIT/R

-€ FC/INIT/R
- FC/INIT/N
_—) FC/INIT/N

The requested logical connection is established and enabled for input and output.

Application 1 NAM Application 2 Message

—_— = _ CON/ACRQ/R
D CON/ACRQ/A

Application program 2 is not available. The logical connection is not established.

Application 1 NAM Application 2 Message

—_—— CON/ACRQ/R

P CON/REQ/R

- CON/REQ/R

- - CON/REQ/A

> CON/REQ/N
- CON/CB/R

» CON/END/R

- CON/END/N

Application program 2 rejects the Logical connection.

3-20

Figure 3-11. Application-to-Application Connection Supervisory Message Sequences

60499500 T

5958 55 52 49 47 43 39 35 31 27 23 - 17 15 7 0

ta con 010] acrq 0 Lid
name1 name2
1 0 dbl dbz abl 0 ubl ubz res
res res WS dpls facn cudl res
res
res
facl fac
fact fac
prid
udata (0-124 octets)

ta Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

con Primary function code 631?. You can access this field with the reserved symbol PFC, as
described in section 4. ts value is defined as the value of reserved symbol CON.

acrq Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ACRQ.

Lid Logical Identifier. It is optional but at least one of the parameters LID or NAME2 must be
specified for interhost connections.

If a Logical identifier is specified, then that LID should have been previously specified in
the LIDCMid file. .(See NOS Installation Handbook.) 1If a LID is specified and NAMEZ2 is not
specified, then a physical identifier (PID) that is lLinked to NAM at the time of issuing the
CON/ACRQ message is used as NAMEZ2 in the QUTCALL search.

If both LID and a NAME2 parameters are specified, then NAMEZ2 is -assumed to be a PID, and must
have been previously specified as a Legal PID for the LID in the LIDCMid file, and the PID
must be Llinked to NAM at the time of issuing a CON/ACRQ message.

Note: For NAM to be able to detect that a PID is linked to NAM, the PID must have been
previously used as a PID=xxx parameter in an OUTCALL statement in the LCF previously created
by NDLP.

You can access this field with the reserved symbol CONALID, as described in section 4.

name’ Outcall Identifier, 1 to 7 6-bit display code letters or digits (the first must be a letter),
left-justified and blank-filled. This parameter is used to uniquely identify the appropriate
OUTCALL definition that establishes a connection to another application.

You can access this field with the reserved symbol CONANM, as described in section 4.

Figure 3-12. Request-Application-Connection (CON/ACRQ/R) Supervisory Message Format (Sheet 1 of 3)

60499500 T 3-21

name2

al

dbl

dbz

abl

ubl

ubz

WS

Outcall identifier. This parameter is optional (see LID parameter) and must be 1 to 3
display code letters or digits, left-justified and blank-filled. When this parameter is
explicitly specified in the CON/ACRQ message, or implied by the by the LID; together with
NAME1, ‘it is used to select the appropriate outcall definition from the collection of OUTCALL
definitions previously specified by the Network Definition Language OUTCALL statement during
the creation of the local configuration file (LCF). The combination of NAME1 and NAME2
(implicit or explicit) must appear as NAME1 and NAMEZ2 or PID on an OUTCALL statement. For
intra-host connections, both the LID and the PID can be zero. If the application supplies
its own outcall block, the explicit or implicit PID must have appeared on a PID parameter in
the OUTCALL statement of a previously created LCF. You can access this field with the
reserved symbol CONANM2, as described in section 4.

Priority flag. When al = 0, this indicates that priority is not set. When al = 1, this
indicates that priority is set. The al parameter is an application supplied OUTCALL
parameter. An application can supply its own OUTCALL parameters if it is a privileged
application (SSJ= entry point, or a non-zero SSID). This parameter does not need to appear
in the OUTCALL statement in the LCF. You can access this field with the reserved. symbol
CONAPRI, as described in section 4.

Downline block limit, specifying the number of downline blocks that can be outstanding
between the host computer (NAM) and the other end of this Llogical connection. The value
chosen determines how many blocks of data the NPU queues from the total number of outstanding
blocks (ABL parameter value) of the size specified by the dbz. This parameter is optional
and has a range of 1 < dbl < 7). The dbl parameter is an application supplied OUTCALL
parameter. An application can supply its own OUTCALL parameters if it is a privileged
application (SSJ= entry point, or a non-zero SSID). This parameter does not need to appear
in the OUTCALL statement in the LCF. You can access this field with the reserved symbol
CONADBL, as described in section 4.

Downline block size, specifying the recommended maximum number of 8-bit character bytes in
any network data block sent on the connection. This field can have values 0 < dbz < 20,
where 0 and 1 both indicate 100-byte blocks. The dbz parameter is an application supplied
OUTCALL parameter. An application can supply its own OUTCALL parameters if it is a
privileged application (SSJ= entry point, or a non-zero SSID). This parameter does not need
to appear in the OUTCALL statement in the LCF. You can access this field with the reserved
symbol CONADBZ, as described in section 4. :

Application block Llimit, specifying the maximum number of data or synchronous supervisory
message blocks the program can have outstanding (unacknowledged as delivered by the network
software) on this connection at any one time. This field has the range 1 < abl < 7. The abl
parameter is an application supplied OUTCALL parameter. An application can supply its own
OUTCALL parameters if it is a privileged application (SSJ= entry point, or a non-zero SSID).
This parameter ‘does not need to appear in the OUTCALL statement in the LCF. You can access
this field with the reserved symbol CONAABL, as described in section 4.

Upline block Limit, specifing the maximum number (1 < ubl < 31) of blocks that the NPU can
have outstanding (unacknowledged) to the calling host. This parameter applies only to X.25
connections. The ubl parameter is an application supplied OUTCALL parameter. An application
can supply its own OUTCALL parameters if it is a privileged application (SSJ= entry point, or
a non-zero SSID). This parameter does not need to appear in the OUTCALL statement in the
LCF. You can access:this field with the reserved symbol CONAUBL, as described in section 4.

Upline block size, specifying the maximum number (1 < upz < 2000) of bytes that the NPU can
send to the calling host in a block. This parameter applies only to X.25 connections. The
ubz parameter is an application supplied OUTCALL parameter. An application can supply its
own OUTCALL parameters if it is a privileged application (S§SJ= entry point, or a non-zero
SSID). This parameter does not need to appear in the OUTCALL statement in the LCF. You can
access this field with the reserved symbol CONAUBZ, as described in section 4.

Send window size used by CCP for this connection. This parameter specifies the decimal
number (1 < ws < 7) of outstanding packets allowed for the X.25 connection. This parameter
applies only to X.25 network application-to-application connections and is ignored on other
application-to-application connections. The ws parameter is an application supplied OUTCALL
parameter. An application can supply its own OUTCALL parameters if it is a privileged
application (SSJ= entry point, or a non-zero SSID). This parameter does not need to appear
in the OUTCALL statement in the LCF. You can access this field with the reserved symbol
CONAWS, as described in section 4.

Figure 3-12. Request-Application-Connection (CON/ACRQ/R) Supervisory Message Format (Sheet 2 of 3)

60499500 v

dpls

facn

cudl

facl

fac

prid

udata

" parameter is an application supplied OUTCALL parameter. An application can supply its own

Send data packet.Length, specifying the maximum number of data octets (8-bit bytes) an X.25
packet can contain. This parameter applies only to X.25 network application-to-application
connections and is ignored on other application-tuo-application connections. The dpls

OUTCALL parameters if it is a privileged application (SSJ= entry point, or a non-zero SSID).
This parameter does not need to appear in the OUTCALL statement in the LCF. You can access
this field with the reserved symbol CONDPLS, as described in section 4.

Number of facility groups. This parameter applies only to X.25 network
application=to-application connections. The facn parameter is an application supplied
OUTCALL parameter. An application can supply its own OUTCALL parameters if it is a
privileged application (SSJ= entry point, or a non-zero S$SID). In this case, the facn
parameter does not need to appear in the OUTCALL statement in the LCF. You can access this
field with the reserved symbol CONFACN, as described in section 4.

Length of user data (in octets). The cudl parameter is an application supplied OUTCALL
parameter. An application can supply its own OUTCALL parameters if it is a privileged
application (SSJ= entry point, or a non-zero SSID). This parameter does not need to appear
in the OUTCALL statement in the LCF. You can access this field with the reserved symbol
CONAUDL, as described in section 4.

Facility code length, specifying the length of a facility field within the central memory
word. This parameter applies only to X.25 network application-to—application connections.

The facl parameter is an application supplied OUTCALL parameter. An application can supply
its own OUTCALL parameters if it is a privileged application (SSJ= entry point, or a non-zero
SSID). This parameter does not need to appear in the OUTCALL statement in the LCF.

Facility code, specifying the facility code for a facility field. This parameter applies
only to X.25 network application-to-application connections. The fac parameter is an
application supplied OUTCALL parameter. An application can supply its own OUTCALL parameters
if it is a privileged application (SSJ= entry point, or a non-zero SSID). This parameter
does not need to appear in the OUTCALL statement in the LCF.

The protocol identification. This parameter tells the PSN or remote node of a direct X.25
Link how call user data is to be used. This parameter applies only to X.25 network
apptication-to-application connections and must be 1 to 8 hexadecimal digits, left-justified,
and zero-filled. If CUDL # O, only the first 6 hexadecimal digits are passed to the X.25
network, and the Last two hexadecimal digits are zeroed. The prid parameter is an
application supplied OUTCALL parameter. An application can supply its own OUTCALL parameters
if it is a privileged application (SSJ= entry point, or a non-zero SSID). This parameter
does not need to appear in the OUTCALL statement in the LCF.

Call user data. If the destination host is a NOS system running network products, the first
12T octets must be of the form sss dd aaaaaaa, where:

<
SSS - is the 3 character ASCII equivalent of the-SNODE (sendng node number) value,
right-justified, zero filled.

dd is the 2 character ASCII equivalent of the DHOST (destination host number)
value, right-justified, zero filled.

aaaaaaa is the 7 character ASCII equivalent of the called application's application
name, left-justified, blank filled.

The remainder of the udata field (0-112 octets) is passed to the called application as user
data.

The called host/application (if accessed through an X.25 network) must be able to support the
Fast Select Facility, if more than 12 octets of information are specified.

Note: For applications accessing foreign hosts through an X.25 network, the 4 octets of the
PRID field and the (up to) 124 octets of the UDATA field are combined into the (up to) 128
octets of used data as defined by the CCITT recommendation for X.25 networks.

You cannot access this field with NFETCH.

tAn octet is 8 bits of information.

Figure 3-12. Request-Application-Connection (CON/ACRQ/R) Supervisory Message Format (Sheet 3 of 3)

60499500 W

3-23

ta

ta

con

acrq

rc

59 51 49 43 35 17 0

con 110 acrq rc abn reserved

namel name2

Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

Primary function code 6344. You can access this field with the reserved symbol PFC, as
described in section 4. 1Its value is defined as the value of reserved symbol CON.

Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol ACRQ.

Reason code, specifying the cause for rejecting the connection request. The field is
actually made up of two 4 bit subfields, rcl and rc2. The rc1 field comprises bits 40
through 43 and the rc2 field comprises bits 36 through 39.

The rc2 field is used so that the application can determine what action to take when it
receives a CON/ACRQ/A message and it provides some general information about the source of
the troubte. This field can have the following values:

1 = Critical error in call request detected by source host (only LID/PID/NDL
configuration changes or application code changes can solve the problem).

2 = Critical error in call request detected by destination host.

3 = Source host temporarily cannot make the connection (resources are currently not
available, but they might become available without operator intervention).

4 = Destination host temporarily cannot make the connection.

5 = Source host cannot make the connection for an indefinite period of time (resources
can be made available by operator interveation such as enabling a LID/PID, network
alement, or bringing up a system or subsystem).

6 = Destination host cannot make the connection for an indefinite period of time.

Thus if rc2 = 1 or 2, the application should not try establishing the connection again; it
should notify the user and/or host operator that the connection is not possible.

If rc2 3 or 4, then the application can retry the CON/ACRQ message after a short time, and
if rc2 = 5 or 6, then it can retry the CON/ACRQ after a longer time.

The rc1 field is used in combination with the rc2 field to uniquely identify the exact source
of the trouble, so that the user/operator can take the appropriate action to fix the
problem. The full 8-bit reason code field can therefore have the following values:

2 = Network error detected by destination host. Contact system analyst at destination
host. .

4 = Connection number conflict between source and destination host. Retry connection
request.

17 = Invalid L;p/PID combination was specified. Correct LID/PID in OUTCALL block.

18

Called application is not defined in system record (CONTNAP) at destination host.
Contact system analyst.

19 = Network Validation Facility (NVF) temporarily cannot process connection request.
Retry later.

20 = Called application cannot accept any more connections and another copy of the
application cannot be started up. Retry later.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet 1 of 4)

3-24

60499500

22 = Calted application is not running and cannot be started automatically. Request
that host operator start up called application.

33 = Calling application is not privileged (it is not allowed to issue OUTCALL).

Contact network administrator to make the application a privileged application in
the LCF.

34 = OUTCALL block has facility parameters more than 4 octets long. Correct the OUTCALL
block.

35 = NAM temporarily cannot complete the connection request because the link to the
destination host is not available. Retry later.

37 = Specified PID is valid but is currently not available. Retry Llater.

38 = Called application is disabled. Request that host operator enable the application.

49 = Application specified its own OUTCALL parameters but there was no corresponding
OUTCALL entry in the LCF for the same PID. Correct the OUTCALL parameters in the
CON/ACRQ/A.

50 = OUTCALL block had user parameters more than 124 octets Long. Correct the OUTCALL
block.

53 = Source host is not allowing any new connections because it is in idle or disabled
state. Retry later.

54 = Destination host is not allowing any new connections because it is in idle or
disabled state. Retry later.

65 = Application specified its own OUTCALL parameters but there was no matching OUTCALL
entry in the LCF. Correct the OUTCALL parameters in the CON/ACRQ/R.

66 = Destination host could not find a matching INCALL block in its LCF. Correct the
OUTCALL parameters in the CON/ACRQ/R.

81 = Calling application has already reached its maximum number of allowed connections.
Retry after at lLeast one connection ends.

82 = Name of application specified in CON/ACRQ/R is invalid. Correct the name.

97 = Retry Limit has been reached for calling application. No more application-to-
application connection requests (CON/ACRQ/R) should be issued. The reason codes
for the previous CON/ACRQ/A should be analyzed.

98 = Destination host could not find a matching INCALL block in the LCF with a matching
facility code. Correct the facility code in the OUTCALL block of the CON/ACRQ/R.

100 = Network Validation Facility (NVF) in the destination host is not avaitable. Retry
Later.

114 = Application requested Fast select but matching INCALL block in LCF at the
destination host-does not have Fast select specified. Correct the OUTCALL block of
the CON/ACRQ/R to not select Fast select.

129 = No X25 TIP in NPU at source host. Contact system analyst to rebuild CCP with X25

TIP.

130 = Error in incoming call packet header. Contact system analyst about possible PSN
problem,

132 = Unknown packet from remote; the packet received is not a call accepted or call

connected. This is assumed to be caused by a call collision. Retry later.

133 = No available logical channel at source host; active number of SVCs are greater than
enabled SVCs. Contact the network administrator about enabling additional SVCs.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet.2 of 4)

60499500 T 3-25

134

145

146

147

148

149

161

162

163

164

165
166
178

180

182

194

195

196

198

210

213

214
225

226

No available logical channel at destination host; active number of SVCs are greater
than enabled SVCs. Contact the network administrator at the destination host to
enable some more SVCs.

X25 subTIP not available in NPU at source host and/or no application-to-application
virtual circuits defined. Contact network administrator for rebuilding CCP, and/or
modifying the NCF.

X25 subTIP not available in NPU at destination host and/or no application-to- i
application virtual circuits defined. Contact network administrator at destination
site for rebuilding CCP, and/or modifying the NCF.

NPU at source host temporarily has no buffer space to support the connection.
Retry Llater. :

NPU at destination host temporarily has no buffer space to support the connection.
Retry later.

X.25 packet level unable to locate title for port number 0 in the Network Products
Gateway, or for a non-zero port number in the X.25 Gateway.

Problem detected by X.25 network at local host. X.25 network CCC=13. Local
procedure error. Clear problem with X.25 network administration.

Remote host not known. Correct DD field in UDATA in OUTCALL entry in the LCF or in
the CON/ACRQ/R message.

No connection available; all SVCs (outside Llines) have been used. Retry later.

Problem detected by X.25. network at destination host. X.25 network CCC=1. Number
at destination host is busy. Retry later.

X.25 Line is down at source host. Retry Later.
X.25 Lline is down at destination host. Retry later.

Unknown subTIP connection; the PRID field is not CO (PAD) or C1 (A-A). Fix the
PRID field in the OUTCALL entry in the LCF or in the CON/ACRQ/R message.

Problem detected by X.25 network. X.25 network CCC=5. X.25 network congestion.
Retry Llater.

CCP cannot complete the connection because the lLink at the destination host is not
enabled. The network administrator should be contacted to enable the logical link.

Problem detected by X.25 network. X.25 network CCC=3. Invalid facility request.
Change the facility specification in the OUTCALL of CON/ACRQ/R.

Connection number conflict between source host and source NPU. Retry later.
No connection number available in NPU at destination host. Retry later.

Problem detected by X.25 network. X.25 network CCC=15. PPOA out of order. Retry
Later.

Problem detected by X.25 network. X.25 network CCC=21. Incompatible destination.
Clear the problem with the X.25 network administration.

CCP cannot complete the connection because the Link at the source host is not
enabled. The network operator should be contacted to enable the logical Link.

Remote host not available. Retry later.

Invalid port number in OUTCALL block. Correct port number in OUTCALL block of
CON/ACRQ/R.

Problem detected by X.25 network. X.25 network CCC=19. Reverse charging not
subscribed to. Change OUTCALL portion of CON/ACRQ/R to not request reverse
charging.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet 3 of 4)

3-26

60499500

abn

reser

‘name1

name2

230 = Problem detected by X.25 network. X.25 network CCC=9. Destination host out of
order. Wait until destination comes back up; then retry.

242 = Problem detected by X.25 network. X.25 network CCC=29. Fast select not subscribed

to. Change OUTCALL portion of CON/ACRQ/R to not use fast select.
You can access this field with the reserved symbol RC, as described in section 4.

Application block number. This field contains the abn of the previous CON/ACRQ/R message if
there was one; otherwise, this field contains a zero. You can access this field with the
reserved symbol CONAABN, as described in section 4.

ved Reserved by CDC.

Outcall identifier, 1 to 7 6-bit display code letters or digits (the first must be a letter),
left-justified and blank-filled. This parameter is used to uniquely identify the appropriate
OUTCALL definition that establishes a connection to another application. You can access this
field with the reserved symbol CONANM, as described in section 4.

Outcall identifier, 1 to 3 display code Letters or digits, left-justified and blank-filled.
This parameter is optional (see the LID parameter). When explicitly specified in the
CON/ACRQ message, or when implied by the LID together with NAME1; it is used to select the
appropriate OUTCALL definition from the collection of outcall definitions previously
specified by the Network Definition Language OUTCALL statement during the creation of the
local configuration file (LCF). The combination of NAME1 and NAME2 (implicit or explicit)
must appear as NAME1 and NAMEZ2 or PID on an OUTCALL statement. For intra-host connections,
both the LID and the PID can be zero.

If the application supplies its own outcall block, then the explicit or implicit PID must
have appeared on a PID parameter in the OUTCALL statement of a previously created LCF.

You can access this field with the reserved symbol CONANM2, as described in section 4.

Figure 3-13. Application-Connection-Reject (CON/ACRQ/A) Supervisory Message Format (Sheet & of 4)

ta

ta

con

req

res

59 51 49 43 35 31 23 20 1716 12 3 0

con 0{0 req res acn abl res dt res

app shost

res abn res dbz 0

res ubz res cudl

udata (0-112 octets)

Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

Primary function code 6314. You can access this field with--the reserved symbol PFC, as
described in section 4. Its value is defined as the value of reserved symbol CON.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol REQ.

Reserved by CDC. Reserved fields contain zero.

Figure 3-14. Connection—-Request (CON/REQ/R) Supervisory Message Format,
Application-to-Application Connections (Sheet 1 of 2)

60499500 W 3-27

acn

abl

dt

I app

shost

abn

dbz

ubz

cudl

udata

Application connection number assigned to this Logical connection; 1 < minacn < acn < maxacn
< 4095, where minacn and maxacn are minimum and maximum values establYshed.by The application
program in its NETON call. (See section 5.) You can access this field with the reserved
symbol CONACN, as described in section 4.

Application block Limit, specifying the maximum number of data or synchronous supervisory
message blocks the program can have outstanding (unacknowledged as delivered by-the network
software) on this connection at any time. This value is established when the connection is
described in the Local configuration file. If your application program initiated the
connection request, this value comes from the ABL parameter of the NDL OUTCALL statement used
by your program; if another application program initiated the connection request, the initial
value comes from the ABL parameter of the NDL INCALL statement used by that program. This
value is also supplied from the ab1 in the CON/ACRQ if the application supplies its own
OUTCALL parameters. This field has the range 1 < abl < 7. You can access this field with
the reserved symbol CONABL, as described in section 4.

Device type of the connection. This field can have the values: .
5 Application-to~application connection within the same host
6 Application—-to-application connection between two hosts
You can access this field with the reserved symbol CONDT, as described in section 4.

Application name. This field contains the application name of the other application program
for intrahost application-to~application connections; otherwise, this field contains zero.

Source host identifier. This field contains the node number of the host in which the other
application program runs if this CON/REQ/R is received by the called application. The value
is in 6-bit display code characters, teft-justified with blank fill. The calling application
receives a CON/REQ/R with the name2 field of the previous CON/ACRQ/R message or the name2
value of the corresponding OUTCALL parameter block.

Application block number. This field contains the abn value assigned by your application
program to the CON/ACRQ/R supervisory message if your program initiated the connection
request; otherwise, this field contains a zero. You can access this field with the reserved
symbol CONABN, as described in section 4.

Downline block size. The recommended maximum number of 8-bit character bytes in any network
data block sent on the connection. If your application program initiated the connection
request, this value comes from the DBZ parameter of the NDL OUTCALL statement used by your
program; if another application program initiated the connection request, the initial value
comes from the DBZ parameter of the NDL INCALL statement used by that program. This field
can have the values 1 < dbz < 2043. You can access this field with the reserved symbol
CONDBZ, as described in section 4.

Upline block size. The number of 8-bit bhytes (in multiples of 100) the network will deliver
in each upline network data block on the connection. If your application program initiated
the connection reguest, this value comes from the UBZ parameter of the NDL OUTCALL statement
used by your program. If another application program initiated the connection request, the
initial value comes from the UBZ parameter of the NDL INCALL statement used by that program.
This field can have the values 0 < ubz < 20, where 0 and 1 both indicate 100-byte blocks. If
ubl is not specified, the default value of 2 is used. You can access this field with the
reserved symbol CONUBZ, as described in section 4.

The call for the user's data length expressed in the number of octets. This field is set to
zero if there is no call user data.

You can access this field with the reserved symbol CONUDL, as described in section 4.

Optional call user data. This is the call user data specified by the calling application in
the CON/ACRQ/R supervisory message from a NOS host; or, it is the 13tn through 128th octets
of call user data an X.25 network. Allows applications to send a small amount of data to
each other without actually establishing a connection via the fast select facility on an X.25
network. .

You cannot access this field with NFETCH.

3-28

Figure 3=14. Connection-Request (CON/REQ/R) Supervisory Message Format,
Application-to-Application Connections (Sheet 2 of 2)

60499500

Neither application program can send or receive any
supervisory messages or data blocks on a connection
until connection initialization processing has been
completed.

If either program cannot complete or service the
logical connection, it can reject the connection
request by issuing the asynchronous connection-
rejected message described in figure 3-5. When
this occurs, the other application program must
exchange the connection~broken, end-connection, and
connection-ended asynchronous supervisory messages
with the network software. No further action is
required by the rejecting application program.

If either application program does not follow the
message sequences shown in figure 3-15, a logical-
error asynchronous supervisory message is issued.
This message 1is discussed at the end of this
section.

A logical connection established between two appli-
cation programs does not necessarily have the same
application counection number for both applications.
The network software assigns the application con-
nection number to each end of the logical connection
independently. The application connection number
is unique within all connections of each application
program; for example, the same logical connection
can have an acn parameter of 2 for- application
program A (which accepted one previous connection)
but an acn parameter of 4 for application program B
(which accepted three previous connections).

Privileged applications can specify OUTCALL param-
eters 1in optional words 2-10 of the CON/ACRQ/R
sequence. This allows the applications to have

more control over an outgoing call request. The
application specifies a complete OUITCALL block
except for the NDL-supplied SNODE, DNODE, PORT, and
DIE address parameters. NAM obtains these param—
eter values from the first OUTCALL statement defined
in the LCF that has a matching NAME2 (PID).

MONITORING CONNECTIONS

As soon as a logical connection is completely
initialized by the network software and an appli-
cation program, the network software starts an
inactivity timer. If no data traffic occurs on the
connection within the inactivity time interval, the
network software informs the application program of
the condition by sending it an inactive-connection
(FC/INACT/R) supervisory message (shown in figure
3-15). The inactivity timer is then restarted.

Each time a network data block or a synchronous
supervisory message is transmitted on the logical
connection, the inactivity timer is restarted.
Each time the inactivity timer expires, the network
software sends another inactive-connection super—
visory message to the application program.

The inactivity time interval can be specified by
the application program or can default to the value
specified by the INACT parameter in the NIP control
statement. If the INACT parameter was not speci-
fied in the NIP control statement, the network
software uses a default inactivity time interval of
10 minutes. The application program specifies the
inactivity time interval by sending NAM the set—
timer supervisory message (also shown in figure
3-15).

Application NAM

-l
-

application program.

'

No activity has occurred on the connection for the time interval specified by the INACT
parameter from the NIP control statement, for 10 minutes (if the the INACT parameter was
not specified on the NIP control statement), or for the time interval specified by the
application program in a set-timer (DC/STMR/R) supervisory message sent to NAM by the

The network software resets the inactivity timer to send an inactive-connection
(FC/INACT/R) supervisory message -to the application program when the time interval
specified in the set-timer (DC/STMR/R) supervisory message elapses and no activity has
occurred on the connection. If the time interval specified in the set-timer supervisory
message is zero, the inactivity timer is deactivated and the network software stops
sending inactive-connection supervisory messages to the application program.

Message
FC/INACT/R

DC/STMR/R

Figure 3-15. -Connection Monitoring Message Sequences.

60499500 V

3-29

The connection monitoring sequence coasists of the
asynchronous inactive—connection (FC/INACT/R)
supervisory message shown in figure 3-16 and the
asynchronous set—timer (DC/STMR/R) supervisory
message shown in figure 3-16.1. The inactive-
connection supervisory message 1is only advisory.
No response is required from the application pro-
gram. The network software restarts the inactivity
timer as soon as the inactive-connection super-
visory message 1is 1issued. The application-
specified-time-interval flag in the inactive-
connection supervisory message indicates whether
the supervisory message was triggered by a normal
network inactivity timeout or by an application-
program-specified timeout.

The set—timer supervisory message can be issued by
the application program as often as necessary.
Each time the network software receives the super—
visory message, it restarts the inactivity-timer to

permanent—timer flag in the supervisory message to
the appropriate value. If the inactivity time
interval change is a one-time change, the inactivity
timer 1is reset to the normal network timeout-
interval when the timer is restarted due to either
the timer expiring or data traftic occurring on the
connection. If the inactivity time interval change
is a permanent change, all future inactivity-—
timeouts are based on this application-program-
specified-time-interval.

The application program can also use the set—timer
supervisory message to direct the network software
to stop reporting an inactive connection. This is
done by specifying a time interval of zero secouds
and setting the permanent-timer flag to one. The
network software stops sending inactive—connection
supervisory messages for the connection specified
in the set—timer supervisory message. There is no

expire at the end of the specified time period. response to the set—timer supervisory message
unless the connection number is invalid. In this
The application program can designate whether the case, a logical-error (ERR/LGL/R) supervisory
specified inactivity time interval is a one-time message 1is returned. If the specified time
change or a permanent change to the inactivity interval is 0 and the permanent—time—interval flag
timeout period. This 1is done by setting the is not set, the supervisory message is ignored.
59 51 49 43 35 23 0
a
ta fc 010} inact res acn res t
f
ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.
fc Primary function code 8394. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.
inact Secondary function code 4. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol INACT.
res Reserved by CDC.
acn Application connection number assigned by the network software to the program end of the
logical connection reported as inactive. The value in this field is always nonzero and is
the value used in a CON/REQ/R supervisory message processed by the application program. You
can access this field with the reserved symbol FCACN, as described in section 4.
atf Application-specified-time-interval flag. This field can have the values:
0 Supervisory message triggered by the expiration of a network software time interval.
1 Supervisory message triggered by expiration of an application-specified=time~interval
(from a DC/STMR/R supervisory message).
You can access this field with the reserved symbol FCATF, as described in section 4.
Figure 3-16. Inactive-Connection (FC/INACT/R) Supervisory Message Format
3-30 60499500 V

59 51 49 43 35

23 12 1 0

ta dc 0]0 stmr res

acn

time

supervisory message.

dc Primary function code C216,
described in section 4.

stmr Secondary function code 02.

described in section 4.

res Reserved by CDC.

acn Application connection number.

p Permanent-time-interval flag.

only.

time

ta Symbolic address of the application program's text area receiving this asynchronous
You can access this
Its value is defined as

You can access this
Its value is defined as

Reserved fields should contain
A This is assigned
of the Llogical connection for which the application wants the inactivity timer set.
value used in this field can be either zero or the value used in a CON/REQ/R message
processed by the application program. This field can have the following values:

=0 The inactivity timer is reset to the specified value for all connections.

#0 The specified connection has its inactivity timer reset.
You can access this field with the reserved symbol DCACN, as described in section &4.

This field can have the values:

0 The inactivity timer is reset to the application-specified value for this one-time

1 The inactivity timer is permanently changed to the application-specified value.
You can access this field with the reserved symbol DCPERMT, as described in section 4.

Inactivity~time~interval, in seconds, for triggering the FC/INACT/R supervisory message.
You can access this field with the reserved symbol DCTIME, as described in section 4.

field with the reserved symbol PFC, as
the value of the reserved symbol DC.

field with the reserved symbol SFC, as
the value of the reserved symbol STMR.

zZero.

by the network software to the program end
The

Figure 3-16.1

TERMINATING CONNECTIONS

A logical connection can be terminated any time
after establishment of it begins. This disconnec-
tion can be initiated by an application program or
by the network software. These two possibilities
have separate corresponding supervisory message
sequences, as shown in figure 3-17.

Logical connection termination is initiated by the
network whenever such conditions as hardware fail-
ure, a dialup line being disconnected without a
formal logout by a terminal operator, and failure
of another (connected) application program occur.
The general case of this is shown by the second
message sequence in the figure, a sequence already
encountered as part of the connection establishment
sequences discussed earlier in this section.

The sequence begins when the network software sends
the connection-broken message of figure 3-8 to the
application program. The network software discards
any network data blocks or synchronous supervisory
messages sent by the application program on the

60499500 V

Set-Timer (DC/STMR/R) Supervisory Message Format

connection between the time this asynchronous
supervisory message is queued and the time it is
processed by the application program. When the
application program receives this message, it can
still fetch any upline blocks queued on the logical
connection. As soon as it has fetched all out-
standing blocks, the application program must issue
an end-connection message of the form shown in
figure 3-9. The network software responds with the
asynchronous connection-ended message described in
figure 3-10. The application ‘connection number of
the terminated logical connection then becones
available for use with another logical connection.

Application—initiated termination of a logical con-
nection occurs whenever the application program
processes a terminal operator”s request to end con-
nection, or in any other situation where the appli-
cation program has finished exchanging blocks over
the logical connection. The message sequence is the
first one shown in figure 3-17, This sequence
begins when the application program issues an asyn—
chronous end-connection supervisory message.:

3-30.1

Application NAM Message
? o CON/END /R
- CON/END /N

The logical connection is terminated by the
application program. The application connection
number can be reassigned to another Logical con-
nection by the network software.

A_gg_(ication NAM Message
- CON/CB/R

The logical connection is terminated by the net-
work. The application program can salvage data
in transit by fetching any blocks queued.

> CON/END/R

- CON/END/N

The application connection number can be
reassigned to another logical connection by the
network software.

Figure 3-17. Connection Termination
Message Sequences

The format of the end-connection message is
described in figure 3-9. This message permits the
application program to influence connection switch-
ing or disconnection processing performed for the
device after it is disconnected from the applica—
tion program. The effects of this end-connection
message vary according to the aname field contents
and whether the device is a batch or interactive
console device.

When a zero aname parameter is used, a console
device is prompted for the name of the next program
the device should be connected to, unless the user
is allowed access only to the disconnected applica—
tion program. In this instance, the device”s log-
ical connection is processed by NVF as if an aname
value of BYE or LOGOUT was specified.

3-30.2

When a valid application name is used in the aname
field, a console connection is disposed of in one
of three ways. If the specified application
program is available and the login user name of the
console is allowed access to 1it, the console
connection is switched directly to the new appli-
cation program. This switch is performed - without
dialog between NVF and a console operator. The
network software performs the switch by sending a
connection—request supervisory message for the
console to the specified application program.

If the specified application program is not avail-
able or the login user name does not permit the
terminal to access that program, the console con-
nection is not switched. In this case, a console
is informed of the condition with the message
APPLICATION NOT PRESENT or USER ACCESS NOT POSSIBLE
- CONTACT NETWORK ADMIN. The terminal operator is
then prompted for another application program name,
unless the console was configured for a full auto-
matic login procedure and the user name in that
procedure validates for access only to the discon—
nected application program. In this instance, all
of the terminal”s ended 1logical connections are
processed by NVF as if an aname value of BYE or
LOGOUT was specified.

The connection is loaned to the specified appli-
cation program if:

the specified application program is available,

the login user name has permission to access
it, and

the loan bit in the CON/END/R supervisory
message is set.

The application connection number (ACN) of this
loaned connection is reserved. The lending connec—
tion application program is the primary application
and the receiving connection application is the
secondary application. The 1loaned connection is
returned to the primary application when the
secondary application returns it, fails, or tries
to loan a loaned connection. Upon returning the
connection, the reserved connection number in the
primary application will be reused and, if the
primary application 1is not available, the connec-
tion is automatically switched to NVF for the next
application prompt.

60499500 V

When an NVF command is used in the aname field,
disconnection processing depends on the command
used and whether the device is a batch or inter-
active ome. The HELLO or LOGIN command causes NVF
to initiate a manual login dialog with an inter-
active device. The BYE or LOGOUT command causes
NVF to disconnect a console device from the host.

When your program ends a connection with a passive
device (a batch device of device types 1 through
4), any aname value you supply is ignored. NVF
disposes of the passive device connection in the
same manner as it does the device”s owning console
connection. That is:

If your program already disconnected the owning
console for the device, NVF attempts to counect
the device to the same program as the owning
console; if the owning console is disconnected
from the host, NVF disconnects the passive
device as well.

If your program has not already disconnected
the owning console for the device, NVF attempts
to reconnect the device to your program. IE
your program rejects the reconnection, NVF
keeps the device connected to itself until your
program disconnects the owning console for the
device.

On dialup lines, consoles without connections to
hosts are assigned to a disconnection queue. When
all consoles on the dialup line are assigned to the
discounection queue, a timer for the 1line is
started. When the timer for the line expires, the
dialup line is physically disconnected. This dis-
connection causes physical disconnection of all
devices on the line, including any passive devices
still connected to an application program (the
connection is broken from the application pro—
gram™s viewpoint). The network software effectively
hangs up the telephone, but the devices can be
reconnected after a new dial-in procedure.

On hardwired lines, no disconnection occurs when
all interactive devices on the line are timed out.
Because the 1line 1is not disconnected in this
instance, passive devices still comnected to appli—
cation programs remain connected to those programs.

While a console is queued for disconnection, any
terminal operator keyboard entry removes all the
devices of that terminal from the disconnection
queue and reconnects them to NVF for a new manual
login procedure. The data entered is discarded by
the network software and therefore can be anything
the operator wishes.

MANAGING CONNECTION LISTS

There are five asynchronous supervisory message
sequences used for connection list managemeunt. Each
sequence consists of one message, issued by the
application program.

60499500 V

Three of these sequences, as shown in figure 3-18,
control 1list polling and 1list assignment. The
other sequences, shown in figure 3-19, control the
duplexing mode used during list processing.

CONTROLLING LIST POLLING

Connection list polling control consists of enabling
or disabling the fetching of input blocks from a
single logical connection when the 1list that the
connection is assigned to is polled. All connec—
tions are initially enabled for list processing
without application program action. Each time the
application program polls the list number that it
has associated with a specific connection, blocks
queued from that connection can be returned to the
program.

1f the program requires the 1list to be polled
without returning any blocks queued from the
connection, the asynchronous supervisory message
shown in figure 3-20 causes the next poll of the
list to exclude the comnection. This turn—-list-
processing~off message effectively disables list
processing for the connection. This message is not
acknowledged by the network software and remains in
effect until canceled by the asynchronous turn-list-
processing-on message shown in figure 3-21.

The turn-list-processing-on message is issued by
the application program to enable list processing
and input for a specific connection. This message
causes the next poll of the list number associated
with the indicated connection to include the con-
nection”s data block queue. The network software
does not acknowledge this message. 1f the message
is 1issued when 1list processing already has been
enabled for the coanection, no error occurs. fThe
message remains in effect until canceled by a turu—
list—-processing-off supervisory message.

Enabling list processing for a logical connection
does not cause a- queued block to be returned from
that connection the next..time the connection”s list
is polled. Connections on a list are searched in a
loop starting with. the connection following the
connection from which data was 1last obtained.
Disabled connections are skipped during the polling
process; enabled connections and connections in
half-duplex mode for which no output has been sent
are included in the polling process.

The list number associated with a specific connec-—
tion is determined by the application program when
it accepts the logical connection. 7This list num—
ber can be changed while the connection exists by
issuing the change-connection-list supervisory mes-
sage shown in figure 3-22. The network software
does not acknowledge this asynchronous message, but
the change is effective at the time of the next
poll of the new list number. After the change-
connection-list message is issued by the application
program, polls of the old list number cannot return
blocks queued from the affected connection.

=
>
=

Application Message

v |

LST/OFF/R

When the list number associated with the affect-
ed logical connection is next polled by the
application program, no blocks will be returned
from the connection.

2
>
=

Application Message

v |

LST/ON/R

When the List number associated with the affect-
ed logical connection is next polled by the
application program, blocks might be returned
from the connection.

Application NAM Message

> LST/SWH/R

When the new List number associated with the
affected logical connection is next polled by

the application program, blocks might be
returned from the connection.

Figure 3-18. Connection List Polling Control
Message Seqguences

Application NAM Message
> LST/FDX/R

wWhen the list number associated with the
affected Logical connection is next polled by
the application program, blocks can be returned
from the affected logical connection regardless

of the previous types of blocks output on the
connection.

Application NAM Message

> . LST/HDX/R

When the List number associated with the
affected logical connection is next polled by
the application program, blocks of application
block type 1 or a single block of block type 2
are returned from the affected connection only
if a block of block type 2 or a LST/ON/R
message has been sent downline on the
connection since the last upline block of block
type 2 was delivered to the program. In
effect, message input to the program is
disabled until message output is complete.

Figure 3-19. Connection List Duplexing
Message Sequences

3-32

Polling of connection lists is performed through
application calls to the AIP routines NETGETL and

NETGTFL. These.routines are described in section 5.

CONTROLLING LIST DUPLEXING

Upline and downline transmissions on logical con-
nections usually occur in a full-duplex mode. In
full duplex mode, the number and occurrence of com—
plete upline message blocks is not related in any
way to the number or occurrence of downline message
blocks. Message input and output is loglcally
independent and can become unsynchronized.

The 1list processing feature of NAM can be used in
conjunction with a set of asynchronous supervisory
messages to avoid loss of input and output synchro-
nization on a logical connection. These messages
can be used to switch the connection to and from a
half duplex mode of input and output. '

In half duplex mode, delivery of an upline block of
block type 2 or 7 turns off additional 1list proc-
essing for the connection until a downline block of
block type 2 or 7 or a LST/ON/R message is sent on
the same connection. In effect, application program
input obtained through NETGETL or NETGTFL calls must
alternate with output for the connection, because
no other sequence of input and output is possible
using those calls.

An application program begins network access with
its AIP list processing code automatically enabled
for full-duplex operation of all logical connec-
tions. The program can change a single connection
to half-duplex operation at any time during network
access by issuing the asynchronous supervisory mes-
sage shown in figure 3-23, with the appropriate
application connection number included in the acn
field. Alternatively, the program can change all
existing and any future connections by issuing the
same supervisory message with an acn field value of
zero., There is no response to either form of this
message.

When half-duplex operation begins for a connection,
the connection is initially enabled or disabled for
list processing, depending on the setting of the
reserved symbol LSTDIS in the LST/HDX/R supervisory
message shown in figure 3-23. TIf LSTDIS is set to
zero, then the connection is initially enabled for
list processing via NETGETL or NETGTFL calls. When
such a call returns a block of application block
type 2 or 7 (identifying the last block of an upline
message), NETGETL or NETGTFL calls disable the con-
nection for subsequent list processing.

Use of the turn—-on-half-duplex-list-processing
message has no effect on use of the turn-list-
processing—off or turn-list-processing—on messages.

The effects of the latter messages take precedence
over the mode of duplexing operation in effect for
a given connection. In addition, the turn-list-—
processing—on message enables the connection for
input, even if no output has been sent.

60499500 T

59 51 49 43 35 23 0

ta Lst 0] 0| off res acn res

ta Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Lst Primary function code CO14. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol LST.

off Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reverse symbol OFF.

res Reserved by CDC. Reserved fields contain zero.

acn Application connection number assigned by the network software to the program end of the lLogi~-
cal connection for which list processing is being disabled. The value used in this field
must be the value used in a CON/REQ/R message processed by the application program. You can
access this field with the reserved symbol LSTACN, as described in section 4.

Figure 3-20. Turn-List—Processing-0ff (LST/OFF/R) Supervisory Message Format

59 51 49 43 35 23 0)
ta Lst |00 on res acn res
ta Symbolic address of the application program's text area from which this asynchronous super-

visory message is sent.

Lst Primary function code €014 Yoy can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol LST.

on Secondary function code 1. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol ON.

res Reserved by CDC. Reserved fields contain zero.

acn Application connection number assigned-by the network software to the program end of the Llogi-
cal connection for which List processing is being enabled. The value used in this field must
- be the value used in a CON/REQ/R message processed by the application program.. You can
access this field with the reserved symbol - LSTACN, as described in section &. .

Figure.3-21. Turn-List~Processing-On (LST/ON/R) Supervisory Message Format

60499500 T 3-33

59 51 49 43 35 23 5 0

ta Lst [0]0}] swh res acn res nualn

ta Symbolic address of the application program’s text area from which this asynchronous super-
visory message is sent. -

st Primary function code €044, You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol LST.

swh Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol SWH.

res Reserved by CDC. Reserved fields contain zero.

acn Application connection number assigned by the network software to the program end of the logi-
cal -connection being switched to a new connection Llist. The value used in this field must be
the value used in a CON/REQ/R message processed by the application program. You can access
this field with the reserved symbol LSTACN, as described in section 4.

nuatn The number of the new connection List to which the Logical connection is reassigned; 0 <
nualn < 63. You can access this field with the reserved symbol LSTALN, as described in
section 4.

Figure 3-22, Change-Connection-List (LST/SWH/R) Supervisory Message Format

59 51 49 43 35 23 . 0
d
ta tst (0] 0| hdx res acn res]
s
ta Application program text area from which this asynchronous supervisory message is sent.
Lst Primary funtion code C0q4. You can access this field with the reserved symbol PFC, as

described in section 4. 1Its value is defined as the value of the reserved symbol LST.

hdx Secondary function code 4. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol HDX.

res Reserved by CDC. Reserved fields contain zero.

acn Application connection number assigned by the network software to the program end of the logi-
cal connection for which half-duplex list processing is being enabled. The value used in
this field can be either zero or the value used in a CON/REQ/R message processed by the
application program. If acn is.zero, all connections are enabled; if acn is nonzero, the
specific connection is enabled. You can access this field with the reserved symbol LSTACN,
as described in section 4.

dis Disable flag. Set the value of this flag either to 1 if the connection is to be initially
disabled for normal Llist processing or to 0 if the connection is to be initially enabled for
List processing. You can access this field with the reserved symbol LSTDIS, as described in
section 4.

Figure 3-23. Turn-On-Half-Duplex-List-Processing (LST/HDX/R) Supervisory Message Format

3-34 60499500 T

An application program can change a single connec~
tion back to full-duplex operation at any time
during network access by issuing the asynchronous
supervisory message shown in figure 3-24, with the
appropriate application connection number included
in the acn field. Alternatively, the program can
change all existing and any future connections by
issuing the same supervisory message with an acn
field value of zero. There is no response to either
form of this message.

When full-duplex operation begins for a connection,
the connection is initially enabled for 1list proc—
essing via NETGETL or NETGTFL calls, The connection
remains enabled until disabled by the previously
described turn-list-processing-off supervisory mes-
sage. Upline delivery of a data block of applica-
tion block type 2 or 7 has no relationship to down-
line transmission of a block of the same block type.

Use of the turn-on—-full-duplex-list-processing mes-
sage has no effect on use of the turn-list-
processing-off or turn-list-processing-on mes-
sages. The effects of the latter messages take
precedence over the mode of duplexing operation in
effect for a given connection. 1If a given connec-
tion has been disabled for any list processing by a
turn-list-processing~off message, it remains dis-
abled after full-duplex operation is turned on for
the connection.

If either of the list duplexing control messages is
issued for a connection already operating in the
requested duplexing mode, the extra message is
ignored. TIf the acn field specified within either
message identifies a nonexistent logical connec-—
tion, a logical-error supervisory message is sent
to the application program and the requested change
in duplexing operation does not occur.-

If either of the 1ist duplexing control messages is
issued with an acn field value of zero, the duplex-
ing mode of application connection zero remains
unchanged. The asynchronous supervisory message
connection is always enabled for full-duplex opera-
tion on application list zero.

CONTROLLING DATA FLOW

Data to and from console connections has its flow
controlled at both ends of those connections.
Whenever possible, this control is imposed volun-
tarily by the application program. Conditions out-
side the network, however, can interfere with data
flow. TFlow control 1s therefore also imposed by the
network software in reaction to external conditions.
When the 1latter occurs, the application program
must compensate for the effect on data flow.

Because the application program is not directly
involved in the data exchange on batch device con-
nections, the remaining paragraphs in this sub-
section do not- apply to application—~to-batch device
connections,

Downline flow control is logically separated from
upline flow control. This separates flow control
into an input function and an output function.

Downline flow control 1s implemented through block
delivery monitoring mechanisms. These mechanisns
involve exchanges of asynchronous supervisory mes-
sages, and the application program”s adherence to
data block transmission conventions,

Upline flow is controlled by synchronous supervisory
messages and .by the application program”s adherence

to data block transmission conventions.

as described in section 4.

59 51 49 43 35 23 0
ta Lst |0|0] fdx res acn res
ta Application program text area from which this asynchronous supervisory message is sent.
Lst Primary function code €014 vyou can access this field with the reserved symbol PFC, as

described in section 4. 1Its value is defined as the value of the reserved symbol LST.

fdx Secondary function code 3. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol FbX.

res Reserved by CDC. Reserved fields contain zero.

acn Apptication connection number assigned by the network software to ‘the program end of the Logi-
cal connection for which full-duplex Llist processing is being enabled. The value used in
this field can be either zero or the value used in a CON/REQ/R message processed by the
application program. If acn is zero, all connections are enabled; if acn is nonzero, the
specified ‘connection is enabled. You can access this field with the reserved symbol LSTACN,

Figure .3-24. Tunn—On-FuLl-DupLex-List-ﬁrocessing (LST/FDX/R) Supervisory Message Format

60499500 T

MONITORING DOWNLINE DATA

An application program can send downline blocks
along a particular connection much faster than they
can be output at a device or delivered to another
application. Since NAM and CCP must save these
extra blocks until they are processed by the other
end of the connection, the extra blocks can cause
NAM and CCP to have storage problems. On the other
hand, the same application program might be sending
blocks along another connection at such a slow rate
that the other end of the connection is wunder—
occupied. Network software provides a set of con-
ventions that allow the application to control the
flow of data between itself and its connectioms for
increased efficiency in such cases.

A block limit is established for each logical con-
nection; this parameter indicates how many blocks
of data or synchronous supervisory messages an
application program can have outstanding on the
logical connection at any instant. This block limit
is the abl field value included in the connection
request supervisory message. As blocks queue for
delivery to the device or application, a block-
delivered asynchronous supervisory message (figure
3-25) 1is returned to the application. If the
application program”s output exceeds the value of
the ©block 1limit, a 1logical-error asynchronous
supervisory message is returned to the application,
together with the reason for the error, and the
last block is discarded by NAM.

The block-delivered supervisory message is used to
manage flow control; however, receipt of a block-
delivered supervisory message does not in all cases
guarantee that the data block has reached its des-
tination. If the communication line, for example,
fails before a block is completely output on a
terminal device, the application program might
still receive a block-delivered message.

If the application program”s output does not exceed
the block limit, but for some reason a block is
lost or unaccounted for, a block-not-delivered
asynchronous supervisory message (figure "3-26) is
returned to the application. Neither the block-
delivered message nor the block-not-delivered mes-
sage requires the application program to issue a
response or acknowledgment message to NAM.

This protocol allows the application to control
downline data flow, as follows:

Define two arrays, K and M.

When a connection i is accepted, set K(i)=0 and
M(i)=block limit.

Whenever a block-delivered message 1is received

for application connection number i, set K(i)=
KR(i)-1.

When a break supervisory message is received
for an application—to-application conmection,

set K(i)=0.

When a user-break caused user—interrupt super-—
visory message 1is received for a device-to-
application connection, do not set K(i)=0;
block-delivered messages make this unnecessary.

As long as K(i) is less than M(i), set K(i)=
K(i)+1 and output one block on connection i.

The break and user-break caused user-interrupt
supervisory messages included in this strategy
affect downline traffic on a logical connection.
(The break message also affects upline traffic.)
Such messages are sent to the application program
whenever a network condition requires downline
transmission on the connection to be interrupted.

59 51 49 43 35

res Reserved by CDC.

section 4.

23 5 0
ta fc 0]0| ack res acn abn res |
ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.
fc Primary function code 8316. You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol FC.

ack Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol ACK.

acn Application connection number assigned by the network software to the program end of the logi-
cal connection on which the block was delivered. This value is always nonzero and is the acn
value used by the program in the application block header sent with the delivered block. You
can access this field with the reserved symbol FCACN, as described in section 4.

abn Application block number assigned by the application program to the delivered block. This

value is the abn value used by the program in the application block header sent with the
delivered block. You can access this field with the reserved symbol FCABN, as described in

Figure 3-25. Block-Delivered (FC/ACK/R) Supervisory Message Format

3-36

60499500 T

59 51 49 43 35

23 5 0

ta fc 010} nak rc acn

abn res

visory message.

0 Reserved for CDC use.

2 Reserved for CDC use.
thru
255

res Reserved by (DC.

ta Symbolic address of the application program's text area receiving this asynchronous super-

fc Primary function code 8314, You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

nak Secondary function code 3. You can access this field with the reserved symbol PFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol NAK.

rc Reason code explaining why the block was not delivered. This field can have the values:

1 Network software error caused no acknowledgment to be received by NAM from the
network for the block. Either the block itself or its acknowledgment was lost.
The block can be retransmitted but will be delivered out of sequence with
subsequently transmitted blocks and possibly duplicated.

You can access this field with the reserved symbol RC, as described in section 4.

acn Application connection number assigned by the network software to the program end of the Logi-
cal connection on which the block was lost.
value used by the program in the application block header sent with the Lost block. You can
access this field with the reserved symbol FCACN, as described in section 4.

This value is always nonzero and is the acn

abn Application block number assigned by the application program to the lost block. This value
is the abn value used by the program in the application block header sent with the lost
block. You can access this field with the reserved symbol FCABN, as described in section 4.

Figure 3-26. Block-Not-Delivered (FC/NAK/R) Supervisory Message Format

The NPU relies on the application program to decide
when traffic can be resumed. Two sequences of
events are possible when such interruptions occur.
The sequence that occurs depends on whether the
connection involved is with another application
program or with a terminal device.

For application-to-application connections, the
following happens (see figure 3-27):

1. Blocks sent downline. by your application pro-
gram but not yet delivered to the other appli-
cation are discarded.

2. Blocks sent upline to your application program
but not yet delivered from the other application
program are discarded.

3. An asynchronous break supervisory message
(figure 3-28) is sent to your application
program. If the connection uses an X.25 com-
munication line, the side of the X.25 network
originating the break 1is indicated by a reason
code in the message.

4., Your application program resets its flow control

algorithm, as described previously in this sub-
section,

60499500 T

5. Your application program issues an asynchronous
reset supervisory message, as shown in figure
3-29, as a response to the break message. Until
the reset message is sent, no upline or downline
data can be exchanged on the connection. NAM
sends no response to your reset message.

6. Normal downline (and upline) traffic can now
resume., The first block sent or received on
the connection that is not a null block marks
the point in traffic where data flow was inter-
rupted.

For device-to-application connections, the following
happens (see figure 3-30):

1. -Blocks sent downline by your application program
but not yet delivered to the device are dis-
carded. Discarded blocks are acknowledged as
delivered by NAM.

2, NAM sends an asynchronous user-interrupt super-

visory message with a reason code indicating a
user—caused break (figure 3-31) to your appli-
cation program.

3. NAM queues a synchronous break-indication-marker
Application NAM Message supervisory message (figure 3-32) after any data
— - —_— blocks not yet delivered to your application
- FC/BRK/R program.
4., Your application program issues an asynchronous
The network software discards all unacknowt- i"te"“?t‘response supervisory message, as
edged blocks queued for delivery to the other shown in figure 3-33, as a response to the
application. user—-interrupt message. Until this ' response
message 1is sent, additional wuser-interrupt
> FC/RST/R conditions involving the device are ignored.
NAM sends no response to your user—interrupt-
The application program can now resume communi- response message.
cation with the other application.
5. Your application program processes all pending
input on that connection by issuing NETGET or
Figure 3-27. Application-to-Application NETGETF calls (section 5) wuntil the break-
Connection Break and Reset indication-marker message 1is received. The
Message Sequence disposition of received data blocks is up to
your application program.
59 51 49 43 35 23 0
ta fc 010} brk rc acn reserved
ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.
fc Primary function code 831¢4. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.
brk Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol BRK.
rc Reason code, explaining the cause of the break condition. This field is nonzero in upline
messages for X.25 connections only. This field can contain the values:
1 Reserved for CDC use.
thru
4
5 A data communications equipment (DCE) break indicator (reset indication packet)
occurred for the X.25 communication lLine used by the connection.
6 A data terminal equipment (DTE) break indicator (reset indication packet)
occurred for the X.25 communication Line used by the connection.
8 Reserved for CDC use.
thru
191
192 Reserved for site-defined use.
thru
255
You can access this field with the reserved symbol FCRBR, as described in section 4.
acn Application connection number assigned by the network software to the program end of the logi-
cal connection on which the break occurred. This field always contains a nonzero value
previously used by the application program in an FC/INIT/N message and must be used by the
application program in a subsequent FC/RST/R message before data transmission on the
connection is again possible. You can access this field with the reserved symbol FCACN, as
described in section 4.
reserved Reserved for CDC. Reserved fields must be equal to zero.

Figure 3-28.

3-38

Break (FC/BRK/R) Supervisory Message Format

60499500 T

ta

ta
fc
rst

acn

59 51 49 43 35 23 0

fc 0{0! rst reserved acn reserved

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code 8314. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol FC.

Secondary function code 1. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol RST.

Application connection number assigned by the network software to the program end of the Logi-
cal connection to be reset. This value is always nonzero and must be the acn value received
by the application program in a previous FC/BRK/R message. You can access this field with

the reserved symbol FCACN, as described in section 4.

Figure 3-29. Reset (FC/RST/R) Supervisory Message Format

Application NAM Message Connection
-€ INTR/USR/R- Zero

The network software acknowledges and discards all blocks queued for delivery to the
device. Your application program can request queued input from NAM but cannot receive
another INTR/USR/R affecting this connection.

The program requests all queued input from NAM. The network software continues to
discard and acknowledge downline blocks.

-€ BI/MARK/R Nonzero
= INTR/RSP/R Zero
— > RO/MARK/R Nonzero

Your application program can now resume output to the device. NAM stops discarding
downl ine blocks.

60499500 T

Figure 3-30. Terminal User-Caused Break Sequence

3-39

59 51 49 43 35 23 0

ta intr {0] 0] usr rc -acn res

ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message or from which this message is sent.

intr Primary function code 8044, You can access this field with the reserved symbol PFC, as
described in section 4. The value of this field is defined as the value of reserved symbol
INTR.

usr Secondary function code 00. You can access this field with the reserved symbol SFC, as

described in section 4. 1Its value is defined as the value of the reserved symbol USR.

rc Reason code, explaining the cause of the interrupt condition. This field can contain the
values: .
0 Valid on application-to-application connections only; no predefined meaning.
thru
2
3 On device-to-application connections, the terminal operator used the key or

entered the character defined for the device as generating a user-break-1
condition; discard all blocks received until a BI/MARK/R synchronous supervisory
message is received. On application-to—application connections, no predefined
meaning.

4 On device-to-application connections, the terminal operator entered the character
defined for the device as generating .a user-break-2 condition; discard all blocks
received until a BI/MARK/R synchronous supervisory message is received. On
application-to-application connections, no predefined meaning.

5 On device-to-application connections, refer to figure 3-39. On
thru application—to—application connections, no predefined meaning.
255
acn Application connection number assigned by the network software for the connection sending the

user—interrupt request. You can access this field with the reserved symbol INTRACN, as
described in section &.

res Reserved by CDC.

Figure 3-31. User-Interrupt (INTR/USR/R) Supervisory Message Format

3-40 60499500 T

ta

ta

ta
bi
mark

res

59 51 49 43 0

bi 0101 mark res act=2

59 55 47 43 M 35 0

0 bi 0 |00 |mark res act=3

Symbolic address of the application program's text area receiving this synchronous super-
visory message.

Primary function code CAqg, You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol BI.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
.described in section 4. Its value is defined as the value of the reserved symbol MARK.

Reserved by CDC.

Figure 3-32., Break-Indication-Marker (BI/MARK/R) Supervisory Message Format

ta

ta

intr

rsp

acn

res

59 51 49 43 35 23 0

intr |0] 0] rsp 0 acn res

Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.

Primary function code 8044, vYou can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol INTR.

Secondary function code 01. You can access this field with the reserved symbol SFC, as
defined in section 4. Its value is defined -as the value of the reserved symbol RSP.

Application connection number assigned by the network software for the connection on which
the user—-interrupt-response supervisory message was sent. The value placed in this field
must be the device connection value used in the INTR/USR/R message to which this message is
a response. You can access this field with the reserved symbol INTRACN, as described in
section 4.

Reserved by CDC. Reserved fields contain zero.

60499500 T

Figure 3-33. -Application-Interrupt—-Response (INTR/RSP/R) Supervisory Message Format

3-41

6. Your application program issues a synchronous
resume—-output-marker supervisory message (figure
3-34), as a response to the break-indication-
marker message. Until this message is sent,
downline data sent on the connection is dis-

carded by the network. NAM sends no response

to your resume-output-marker message. Normal -

downline traffic can now resume.

If your application program does not complete one
of these sequences properly, it receives an asyn-

chronous logical-error supervisory message., The
logical-error message is described at the end of
section 3.

The user-interrupt message reflects suspension of
downline traffic only. Upline traffic (input) on

the connection is not affected.

CONTROLLING OR BYPASSING
UPLINE AND DOWNLINE DATA

Several asynchronous supervisory messages allow your
application program to:

Control the flow of upline and downline data to
both ends of an application-to-application con-
nection.

Control the flow of downline data on a device-
to-application connection.

Bypass data blocks or synchronous supervisory
messages on an application—-to-application con-
nection; this allows your application program
to control the flow of downline data on an
application-to~application connection if both
programs recognize a method of doing so.

The sequences and forms of the messages used depend
on whether the connection is with another applica-

Discarding Upline and Downline Data on
Application-to-Application Connections

Your program can discard all upline and downliane
data queued between itself and another application
program by sending the asynchronous break super-
visory message shown in figure 3-28. NAM does not
send a response for this message to your program.

The rest of the steps shown in figure 3-27 then
occur:

1. Blocks sent downline by each application program
but not yet delivered to the other application

are discarded.

2. Blocks seat upline to each application program
but not yet delivered from the other application
program are discarded.

3. An asynchronous break supervisory message
(figure 3-28) is sent to the other application
program,

4, TFach application program resets its flow con-
trol algorithm, as described previously under
Monitoring Downline Data,

5. The other (receiving) application program issues
an asynchronous reset supervisory message, as
shown in figure 3-29. Until the reset message
is sent, no wupline or downline data can be
exchanged on the connection. NAM sends no
response to either reset message.

6. Normal downline and upline traffic can now
resume, The first block seat or received on
the connection that is not a null block marks
the point in traffic where data flow was inter-

tion program or with a terminal device. rupted.
59 51 49 43 0
ta ro 0{ 0| mark. res act=2
59 55 47 43 41 35 0
ta 0 ro 0 j010 | mark res act=3
ta Symbolic address of the application program's text area from which this.synchronous super-
visory message is sent.
ro Primary function code (Bqg. You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol RO.

mark Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol MARK.

res Reserved by CDC. Reserved fields contain zero.

Figure 3-34. Resume-Output-Marker (RO/MARK/R) Supervisory Message Format

3-42

60499500 T

Discarding Downline Data on
Device-to-Application Connections

Your program can discard all downline data queued
between itself and a terminal device by sending the
asynchronous application-interrupt supervisory mes-

sage shown in figure 3-35, using a parm field value
of 2. -

The first set of steps shown in figure 3-36 then
occurs:

l. The network begins discarding downline blocks
queued for delivery to the device. Upline
blocks queued for delivery to your application
program are not affected.

If your application program issues another
application-interrupt message before receiving an
interrupt-response message, 1t receives an asyn-
chronous 1logical-error supervisory message. The
logical-error message 1is described at the end of
section 3,

Discarding Upline and Downline Data on
a Device-to-Application Connection

Your application program can discard all upline and
downline data queued between itself and a terminal

device by sending the asyunchronous break
supervisory message shown in figure 3-28,

2. Your application program sends a synchronous The set of steps shown in figure 3-38 then occur:
terminate-output-marker supervisory message, as
described in figure 3-37. This message indi- 1. Blocks sent downline but not yet delivered to
cates to the network software the place in the the terminal device are discarded.
downline data flow where it should stop dis-
carding blocks. 2. Blocks queued upline for the application
program are discarded. Any partial upline
3. The network sends your application program an input that had been entered at the terminal
asynchronous interrupt-response supervisory device is also discarded. Data that comes in
message (figure 3-33). Until this message is from the terminal after the procesing of an
received, your program cannot send another FC/BRK/R message will go upline.
application-interrupt message affecting the
same connection, 3. Your application program should reset its flow
control algorithm, as described previously
4, Normal downline data traffic can now resume. under Monitoring Downline Data.
59 51 49 43 35 23 . 0
ta intr O |O] app parm acn 0

INTRACN, as described in section 4.

ta Symbolic address of the application program's text area from which this asynchronous super-
visory message is sent.
intr Primary function code 8014. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol INTR.
app Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol APP.
parm Application-interrupt 8-bit value. Can be one of the following:
0 Valid on application-to—application connections only; no predefined meaning.
and
1
2 On device-to-application connections, discard all blocks received until a
TO/MARK/R synchronous supervisory message is received. On
application-to-application connections, no predefined meaning.
3 Valid on application-to—application connections only; no predefined meaning.
thru
255
You can access this field with the reserved symbol INTRCHR, as described~in section &.
--acn Application connection number assigned by the network software for the connection on which

the application interrupt is requested.

You can access this field with the reserved symbol

Figure 3-35.

60499500 T

Application-Interrupt (INTR/APP/R) Supervisory Message Format

ta

ta
intr
rsp

acn

res

59 51 49 43 35 23 ’ 0

intr {00} rsp 0 acn res

Symbolic address of the application program's text area from which this asynchronous super-—
visory message is sent or into which it is received.

Primary function code 8014, vYou can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol INTR.

Secondary function code 01. You can access this field with the reserved symbol SFC, as
defined in section 4. Its value is defined as the value of the reserved symbol RSP.

Application connection number assigned by the network software for the connection on which
the user-interrupt-response supervisory message was sent. The value placed in this field
must be the device connection value used in the INTR/USR/R message to which this message is
a response. You can access this field with the reserved symbol INTRACN, as described in
section 4.

Reserved by CDC. Reserved fields contain zero.

Figure 3-36. Application-Interrupt-Response (INTR/RSP/R) Supervisory Message Format

ta

ta

ta

to

mark

res

59 51 49 43 0

to 0]0] mark res act=2

59 55 47 43 41 35 0

0 to 0 0}0}mark res ‘ act=3

Symbolic address of the application program's text area from which this synchronous super-
visory message is sent. ’

Primary function code C4q4. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol TO.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol MARK.

Reserved by CDC.

3-44

Figure 3-37. Terminate-Output-Marker (TO/MARK/R) Supervisory Message Format

60499500 T

Application NAM Message
> FC/BRK/R

The network software discards all downline
blocks queued for the terminal device, all
upline blocks queued for delivery to the
application program, and any partial input.
ALl downline data following the break message
are also discarded.

-« FC/RST/R

The application program can now resume
" communication with the terminal device.

Figure 3-38. Device Connection Break and
Reset Message Sequence

4. The network sends your application program an
asynchronous reset supervisory message, as
shown in figure 3-29, Until the reset message
is received, no downline data should be sent on
the connection. Such downline data will be
discarded by NAM until it queues the reset

message for your application program.

5. Normal downline and upline traffic can now
resume,

Bypassing Downline Data on an
Application-to-Application Connection

Your program can bypass all downline data queued
between itself and another application by sending
the asynchronous application-interrupt supervisory
message shown in figure 3-35, using any parm field
value. NAM does not send a response for this
message to your program.

The second set of steps shown in figure 3-39 then
occurs:

1. The network does not discard any blocks queued
for delivery to the other application program.
Upline blocks from the other program queued for
delivery to your application program are not
affected. Neither program”s flow control
algorithm is affected.

2, The network sends the other application program
an asynchronous user—interrupt supervisory
message (figure 3-31), containing a reason code
equal to the parm value your program sent in
its application-interrupt message.

3. The other application program sends the network
an asynchronous application—interrupt-response
supervisory message (figure 3-33). If the
other program recognizes the reason code as
indicating the need to discard your program”s
downline (the other program”s upline). data
blocks, it will begin to do so.

Application NAM Message Connection
- INTR/APP/R Zero

The network acknowledges and discards all blocks queued for delivery to the device.
Your application program can request queued input from NAM but cannot send another
INTR/APP/R affecting this connection.

' TO/MARK/R Nonzero

- INTR/RSP/R Zero

Your application program can now resume output to the device. NAM stops discarding
downl ine blocks.

Application 1 NAM Application 2 Message Connection
! ot INTR/APP/R Zero
—» - INTR/USR/R lero

The other application program discards all blocks delivered to it, if that is an
appropriate action for an interrupt.

-- Nonzero

o marker

Your application program can now resume normal output. The other program stops
discarding your downline blocks.

-€ INTR/RSP/R lero

- INTR/RSP/R lero

Figure 3-39, Downline Data Flow Control Supervisory Message Sequences

60499500 V

3-45

If your program does not use the application-
interrupt message as a method of discarding data,
the following step does not apply:

4. Both programs now must recognize some marker in
your program”s downline data to indicate the
point in the process where the other program
should stop discarding blocks. The synchronous
* terminate~output-marker supervisory message, as
described in figure 3-36, can be wused. NAM
sends no response to this message and does not
interpret it.

5. The other application program issues an
application—interrupt-response asynchronous
supervisory message (figure 3-33).

6. The network sends your application program an
asynchronous application-interrupt-response
supervisory message (figure 3-33), Until this
message 1is received, your program cannot send
another application—interrupt message affecting
the same connection.

7. Your program can now resume normal downline
traffic.

TERMINAL USE OF USER INTERRUPTS
FOR PRIORITY DATA

The terminal operator can send a message to the
application that bypasses regular upline data by
entering a user—-interrupt priority data sequence.
The operator enters the sequence by entering the
TIP command control character (defined by the CT
command) and an alphabetic character. NAM generates
the user-interrupt-request supervisory message,
INTR/USR/R (illustrated in figure 3-40) and sends
it to the application.

The application program responds with the
application-interrupt-response supervisory message
(illustrated in figure 3-36) after receiving the
INTR/USR/R message if the application supports user
interrupts. If the application does not support
priority data user interrupts, it. can ignore the
INTR/USR/R message and issues no respouse. Figure
3-41 illustrates the flow of messages.. Until the
response 1is sent, the user cannot. enter another
interrupt sequence.

Application NAM Message
- INTR/USR/R

NAM delivers the user=interrupt ASCII char-
acter to the application in an asynchronous
supervisory message on acn=0.

Supervisory programs and applications that do
not support the user—interrupt-request message

need take no further action.

- INTR/RSP/R

The application that supports user interrupt
requests must respond with an application=
interrupt-response supervisory message on
acn=0,

Figure 3-41. User Interrupt for Priority
Data Supervisory Message Sequence

If the application program supports priority data
user interrupts, predefined meanings can be given
to the ASCII characters available as interrupt
characters. Only the characters A through Z and a
through 2z can be used.

in section &.

described in section 4.

res Reserved by CDC.

59 51 49 43 35 23 0
ta intr |0]0] usr char acn res

ta Symbolic address of the application program’'s text area receiving this asynchronous super-
visory message.

intr Primary function code 8044, You can access this field with the reserved symbol PFC, as
described in section 4. The value of this field is defined as the value of reserved symbol
INTR.

usr Secondary function code 00. You can access this field with the reserved symbol SFC, as

described in section 4. Its value is defined as the value of the reserved symbol USR.
char User—interrupt character. This 8-bit field contains one of the 7-bit ASCII codes for letters

shown in table A-2. You can access this field with the reserved symbol INTRCHR, as described

acn Application connection number assigned by the network software for the connection sending the
user—interrupt request. You can access this field with the reserved symbol INTRACN, as

Figure 3-40. User-Interrupt-Request (INTR/USR/R) Supervisory Message Format for Priority Data

3-46

60499500 V

CONTROLLING UPLINE BLOCK
CONTENT

Several asynchronous supervisory messages allow you
to control the content of upline blocks. (Downline
block content is controlled directly by your program
and indirectly by the values your program places in
the accompanying application block header.) Using
supervisory messages, your program can:

Convert character codes in unreceived wupline
network data blocks to 6-bit display code or
cancel such conversion

Change character byte packing in unreceived
upline network data hlocks

Change byte packing in unreceived synchronous
supervisory message bhlocks

Discard unreceived transparent mode data from a
device or cancel that discarding operation

Truncate unreceived upline blocks

The following subsections describe these supervisory
messages .

CONVERTING AND REPACKING DATA

Data exchanged on an 1interactive device-to-
application connection is converted to and from
display code or ASCIT character codes at the
discretion of the application program. This
conversion also includes packing and unpacking of
data character codes from bytes of different sizes.
NAM coaverts data in a given block according to the
application character type associated with the
block.

Data sent downline by an application program for
output at an 1interactive device or to another
application has an application character type
associated with it on a block-by-block basis. When
the application program needs to change the conver-
sion performed for downline data on a given con-
nection, it simply ‘changes the act field value used
in the block header of each data block., The effects
of a given act field value declaration are described
in detail in section 2.

Upline data from a console device or another appli-
cation has an application character type- associated
with the logical connection on which the data blocks
are received, The application character type
associated with the connection is "assigned by the
application program when the logical connection is
first established. This assignment is part of-the
connection-accepted supervisory message.

60499500 T

When the application program needs to change the
conversion performed for wupline data on a given
connection, it <changes the act field value
associated with the logical connection by issuing
the asynchronous change-input-character-type super-—
visory message. This message can be issued at any
time the logical connection exists, after the
application program has issued the FC/INIT/N mes-
sage for the connection. As shown in figure 3-42,
there is no response to the change-input-
character-type message, but the message takes
effect immediately.

Application NAM Message
- DC/CICT/R

The next input request for this logical con-
nection returns blocks in bytes of the new
character type.-

Figure 3-42. Change-Input-Character-
Type Supervisory Message Sequence

The change-input-character-type message has the
format shown in figure 3~43., The act field values
described in the figure are explained in more
detail in section 2, Note that transparent mode
upline data cannot be correctly received when an
application character type other than 2 or 3 is
associated with the logical conmnection.

The conversion change requested by the change-input-
character~type message affects the next block
fetched by the application program. For example,
the application program might have been receiving
blocks of 7-bit ASCII code characters, packed in
12-bit bytes (an act value of 3); the application
program now needs to receive blocks of 6~bit display
code characters, packed in 6-bit bytes (an act value
of 4)., The program sends a change-input-character—
type message, . specifying an act value of 4; the
next block received from that logical connection is
6-bit display code characters, packed in 6-bit
bytes.

If the requested application character type is not
valid for the connection specified, a logical-error
supervisory message is sent to the application pro-
gram, and the application character type associated
with the logical connection is unchanged. Other-
wise, receipt of the -change-input-character-type
message is not acknowledged.

' 3-47

59 51 49 43 35 23 75 0

nis
ta dc 0 [0] cict res acn res x|c| act
plt
ta Symbolic address of the application program's text-area from which this asynchronous super-
visory message is sent.
dc Primary function code C244. You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol DC.

cict Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CICT.

res Reserved by CDC. Reserved fields contain zero.

acn Application connection number assigned by the network software to this end of the logical
connection when it was established. The value placed in this field must be the value
associated with an existing connection and used in the FC/INIT/N supervisory message that
completed initialization of the connection. You can access this field with the reserved
symbol DCACN, as described in section 4.

nxp No-transparent-input flag. This field can have the values:
0 Deliver network data blocks with the xpt bit set in the associated block header
1 Do not deliver network data blocks with the xpt bit set in the associated block

header
You can access this field with the reserved symbol DCNXP, as described in section 4.

sct Application character type in which the application program expects to receive synchronous
supervisory messages. This field can have the values:

0 Deliver supervisory messages in application character type 2
1 Deliver supervisory messages in application character type 3

You can access this field with the reserved symbol DCSCT, as described in section 4.

Figure 3-43. Change-Input-Character-Type (DC/CICT/R) Supervisory Message Format (Sheet 1 of 2)

3-48 60499500 T

A-2 is used.

5 Reserved for CDC use.
thru
"

thru
15

act Appticatjon character type, specifying the form of character byte packing that the
application program requires for all future input data blocks from the Logical connection.
The valge declared replaces the value previously declared by the application program for this
connection in a CON/REQ/N or DC/CICT/R message. This field can have the values:

0 Reserved for CDC use.

or

1

2 8-bit characters in 8-bit bytes, packed 7.5 -characters per central memory word;

if the input is not transparent mode, the ASCII character set described in table

3 8Tbit ?har?cters in 12-bit bytes, packed 5 characters per central memory word,
right-justified with zero fill within each byte; if the input is not transparent
mode, the. ASCII character set described in table A-2 is used.

4 6-bit display code characters in 6-bit bytes, packed 10 characters per central
memory word; the characters used are the ASCII set of CDC characters described in
table A-1. This applies to terminal-to-application connections only.

12 Reserved for installation use.

The act value declared applies only to input on the connection and can be changed by another
DC/CICT/R_mes;age at any time during the existence of this logical connection.” You can
access this field with the reserved symbol CONACT, as described in section 4.

Figure 3-43. Change~Input-Character-Type (DC/CICT/R) Supervisory Message Format (Sheet 2 of 2)

REPACKING SYNCHRONOUS SUPERVISORY
MESSAGE BLOCKS

Synchronous supervisory message block fields are
packed in either 8-bit or 12-bit bytes, at the
discretion of the application program. NAM packs
or unpacks fields in a given synchronous supervisory
message block according to the application character
type associated with the block (downline) or with
the connection (upline).

Synchronous supervisory messages sent downline by
an application program have an application character
type associated with them on a block-by-block basis.
When the application program needs to change the
packing performed for blocks on a- given connection,
it simply changes the act field value used in the
block header of each synchronous supervisory mes-
sage, The effects of a given act field value
declaration are described in detail in section 2,

An upline synchronous supervisory message block has
an application character type -associated with the
connection on which- the block is received. The
application character type associated with the
connection is assigned by the application program
as the sct field value when the connection is first
established. This assignment 1is part of the
connection—accepted supervisory message and 1is
separate from the assignment made' for data blocks
received on the connection.

60499500 T

When the application program needs to change the
packing performed for upline synchronous supervisory
messages on a given connection, it changes the sct
field value associated with the connection by
issuing the asynchronous change-input-character—type
supervisory message. This message can be issued at
any time the logical connection exists, after the
application program has issued the FC/INIT/N message
for the connection. As shown in figure 3-42, there
is no response to the change-input-character-type
supervisory message, but the message takes effect
immediately.

The change-input—-character—type message has the
format shown ~in figure 3-43. The application
character types selected with the sct field values
are described in more detail in section 2.

The repacking change requested by the change-input-
character—-type message affects the next block
fetched by the application program. For example,
the application program might have been receiving
synchronous supervisory messages with fields packed
in 12-bit bytes (using an application character
type of 3); the application program now needs to
receive synchronous supervisory message blocks with
fields stored in 8-bit bytes (using an application
character type of 2). The program sends a change-
input-character-type message, specifying an sct
field value of 0; the next synchronous supervisory
message block received on that logical connection
is packed in 8-bit bytes.

3-49

EXCHANGING TRANSPARENT DATA WITH
DEVICES

Transparent data is exchanged with a terminal device
at the discretion of the application program. NAM
transfers transparent data blocks according to the
transparent data flag associated with the block.

Network data blocks sent downline by an application
program have a transparent data flag associated
with them on a block-by-block basis. When the
application program needs to change from or to
transparent mode output on a given connection, it
simply changes the xpt field value used in the
application block header of each downline data
block. The effects of a given xpt field value are
described in detail in section 2.

Upline network data blocks also have a transparent
data flag associated with them on a block-by-block
basis, Each connection has a no-transparent-data
flag assoclated with that connection. This flag
‘indicates whether the application wants to receive
transparent data or wants NAM to discard such data.
The no transparent-data flag setting associated
with the connection is assigned by the application
program as the nxp field value when the connection
is first established. This assignment is part of
the connection-accepted supervisory message.

When the application program needs to change the
value of the no-transparent-data flag for a given
connection, it issues the change-input-character-
type synchronous supervisory message, This message
can be issued at any time the logical connection
exists, after the application program has issued
the FC/INIT/N message for the connection. As shown
in figure 3-42, there is no response to the change-
input-character-type message, but the message takes
effect immediately.

The change-input-character-type message has the
format shown in figure 3-43, The effects of the
nxp field values used in the message are described
in section 2, where the application block header
fields are described.

The transparent data exchange change requested by
the change~input-character-type message affects the
next upline block and all subsequent blocks queued
for the application program. For example, the
application program might have been receiving
transparent blocks for an interactive console when
the program contains no code to process those
blocks; it needs to prevent receipt of any more
transparent blocks while that connection exists.
The program sends a change-input—~character-type
message, specifying an nxp field value of 1; the
next (and any subsequent) block from that terminal
device is discarded if it is in transparent mode,
even if that block completes the current message.

3-50

The setting of the no-transparent-input flag does
not cause data blocks on application-to-application
connections to be discarded, unless the sending
application program sets the xpt field value of the
associated block header to 1.

TRUNCATING UPLINE BLOCKS

Blocks received upline by an application program
from a terminal or from another application can be
truncated to fit the text area buffer provided by
your application. This truncation allows - the
application to obtain at 1least part of a block
longer than the text area instead of receiving an
input-block-undeliverable reply (ibu bit set in the
block header). An asynchronous supervisory message
can be used to inform NAM that the application
wants to have a block truncated on a particular
connection or .to have blocks truncated on all
existing and future connections. As 1indicated in
figure 3-44, the effect of this supervisory message
cannot be reversed, and there is no response.

Application NAM Message
' DC/TRU/R

The next upline block delivered for this
‘logical connection or all connections
(depending on whether a nonzero acn is
specified in the DC/TRU/R) will be truncated
if necessary.

Figure 3~44. Block Truncation
Supervisory Message Sequence

When a block 1is truncated, the tru bit in the
application block header is set, and the tlc field
in the block header is set to the size of the
portion of the block received (instead of being set
to the full size of the block).

This block truncation supervisory message (figure
3-45) can be issued at any time after completion of
a NETON call. This message affects all messages on
the connection, including synchronous supervisory
messages. If acn=0 is specified, the application
has to call NETOFF and NETON again to not receive
truncated data blocks.

If the acn field specified within the message
identifies a nonexistent logical connection, a
logical—-error supervisory message is sent to the
application and data truncation does not occur. If
more than one data truncation message affecting a
connection is 1issued, the extra messages are
ignored,

60499500 T

described in section 4.

tru Secondary function code 0116-
described in section 4.

res Reserved by CDC.
acn Application connection number.

will be on for that connection only.
DCACN, as described in section 4.

59 51 49 43 35 23 0
ta dc 0 0] tru res acn res
ta Application program text area from which this asynchronous supervisory message is sent.
de Primary function code €244 you can access this field with the reserved symbol PFC, as

Its value is defined as the value of the reserved symbol DC.

You can access this field with the reserved symbol SFC, as
Its value is defined as the value of the reserved symbol TRU.

Reserved fields contain zero.

If zero, all existing and future connections other than
connection zero will have truncation control on.
You can access this field with the reserved symbol

If acn is not zero, truncation control

Figure 3-45.

MANAGING CCP DEVICE
CHARACTERISTICS

Devices serviced as interactive virtual terminals
have many characteristics that can affect the way
in which they send or output data. The network
software can use varying numbers of these charac—
teristics, depending on the terminal class of the
device and sometimes on the protocol used by the
device.

The following characteristics can be known and used
through the network software when servicing an
asynchronous device in terminal classes 1 through
8, or any device in terminal classes 28 through 31:

Character used to discard a block of output
Whether the break key should be interpreted as
a cancel input and user break 1 command (does
not apply to terminal class 4)

Backspace character used to edit a line of data

Characters used as user break 1 and user break
2 commands

Enable recognition of the wuser-break-l1 and
user—~break-2 characters while in transparent
input mode -

Number of idle characters needed after a car-
riage return or a line feed

Character used to cancel an input line

Cursor positioning needed at the end of a
physcial 1line or block (does not apply to
terminal class 4)

Network control character used

Delimiters of single-message transparent input
(does not apply to terminal class 4)

Delimiters of multiple-message transparent input
(does not apply to terminal class 4)

60499500 V

Block Truncation (DC/TRU/R) Supervisory Message Format

Number of milliseconds delay needed after a
carriage return or a line feed

Whether solicited input mode is to be in effect
(application program must send the last block
of a message to a device or input is discarded)

Character used at the end of a logical input
line or of an input block (does not apply to

terminal class 4)

Echoplex mode (does not apply to terminal class
4)

Whether full-ASCII or special editing mode is
in use

Whether the device supports input or output flow
control characters. (does not apply to terminal
class 4)

Whether the device is using paper tape, a key-
board, block mode, or transparent mode during
input (does not apply to terminal class 4)
Whether the device is wusing a display, a
printer, or paper tape during output (paper
tape does not apply to terminal class 4)

The parity processing required during input and
output (does not apply to terminal class 4)

What the page width and page length are
Whether page waiting occurs

Whether unsolicited messages from the unetwork
operator can be delivered

What the terminal class is

Whether the communication line is serviced in
full-duplex mode (does not apply to terminal
class 4)

What the upline blocking factor is

What the transmission block size is

The following characteristics can be known and used
through the network software when servicing an X.25
device in terminal classes 1 through 3 or 5 through
8: -

Whether the break key should be interpreted as
a user break 1 command

Backspace character used to edit a line of data

Characters used as user break 1 and user break
2 commands

Enable recognition of the wuser-break-1 and
user—-break—-2 characters while in transparent

input mode

Number of idle characters needed after a car
riage return or a line feed

Number of milliéeconds delay needed after a
carriage return or line feed

Character used to cancel an input line

Cursor positioning needed at the end of a
physical line or block

Network control character used

Whether solicited input mode is to be in effect
Delimiters of single-message transparent input
Delimiters of multiple-message transparent input

Character used at the end of a logical input
line or of an input block

Whether full-ASCII or special editing mode is
in use

Echoplex mode

Whether the device supports input or output
flow control characters

Whether the device 1is wusing a display, a
printer, or paper tape during output

The parity processing required during output
What the page width and page length are
Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is

Whether the communication line is serviced in

full-duplex mode (does not apply to terminal

class 4)

What the upline blocking factor is

What the transmission block size is
The following characteristics can be known and used
through the network software when servicing a CDC
mode 4 device in terminal classes 10 through 13 or

15:

Characters used as user break 1 and user break
2 commands

3-52

Enable recognition of the user-break-l and
user—-break-2 characters while 1in transparent
input mode

Character used to cancel an input line

Network control character used

Delimiters of single-message transparent input

Delimiters of multiple-message traunspareat input

Character used at the end of a logical input
line or of an input block :

Whether solicited input mode is to be in effect
Whether full-ASCIT editing mode. is in use

Whether the device 1is wusing block mode or
transparent mode during input

What the page width and page length are
Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is
What the upline blocking factor is

What the terminal transmission block size is

The following characteristics can be known and used
through the network software when servicing a HASP
device in terminal classes 9 or 14:

Characters used as user break 1 and user break
2 commands

Character used to cancel an input line
Network control character used
Whether solicited input mode is to be in etfect

Character used at the end of a logical input
line

What the page width and page length are
Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is
What the upline blocking factor is

What the terminal traasmission block size is

The following characteristics can be known and used
by the network software when servicing a 2780 or
3780 device in terminal classes 16 or 17:

Network control character used
What the page width and page length are
Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

60499500 V

What the terminal class is
What the upline blocking factor is

What the terminal transmission block size is

The following characteristics can be known and used
through the network software when servicing a 3270
device in terminal class 18:

Characters used as user break 1 and user break
2 commands

Character used to cancel an input line
Network control character used

Character used at the end of a logical inmput
line

Whether solicited inpljc mode is to be in effect
What the page width and page length are
Whether page waiting occurs

Whether unsolicited messages from the network
operator can be delivered

What the terminal class is
What the upline blocking factor is

What the terminal transmission block size is

Your application program can determine these
characteristics or change them by using the super—
visory messages described in the next subsections.
Information on the use of these characteristics
appears in the NAM 1/CCP 3 Terminal Interfaces
reference manual listed in the preface.

CHANGING CCP DEVICE
CHARACTERISTICS

The process of configuring a terminal cousists of
defining a number of device characteristics that
the network software should use in communication
with a terminal. Some device characteristics can
be given default values by the Communications
Control Program (CCP), while others can be provided
by the Network Definition Language (NDL) and the
site administrator.

Once a device 1is configured (or defined), sub—
sequent changes to the device definition can be
made via terminal definition commands from the
terminal operator, or via supervisory messages from
the application program to which the device is
connected.

This subsection describes the supervisory messages
that the application can use to change the settings
of device characteristics. The supervisory message
used to find out the current values of device
characteristics 1is described in the following sub-
section, Requesting Device Characteristics. Ter-
minal definition commands are described in the NAM
1/CCP 3 Terminal Interfaces reference manual listed
in the preface.

60499500 V

Figure 3-46 shows the most probable message
sequences involved 1in changing terminal character—
istics.

The application program is advised of the terminal
definition command entry explicitly only when the
command changes one of three device characteristics:

Terminal class {(value describing the physical
attributes of a group of similar terminals)

Page width (value describing the number of
characters in each physical line of output)

Page length (value describing the number of
physical lines output per page)

The wupline device-characteristics—redefined super—
visory message 1is an asynchronous one, with the
format shown in figure 3-47. This message is sent
to the application by NAM whenever NAM is notified
that one of the three device characteristics has
been redefined by a terminal user or by the applica—
tion program. The effect of the terminal definition
command causing this message is immediate, and no
response is required from the application program.

There are two different formats for changing
terminal characteristics. Regardless of the format
used, terminal class should only be changed before
other changes are made. A change in terminal class
resets many other characteristics.

The define-device-characteristics supervisory
message (figure 3-48) specifies terminal charac-
teristic commands as a string of ASCII characters.
If there is an error in one of the commands, the
TIP stops processing the message, no indication is
sent to. the application, and any commands prior to
the error are .processed. There is no response to
this message. The define-device~characteristics
supervisory .message is not supported by CDCNET.

The define-multiple~device-characteristics message
is described in figure 3-49. This message specifies
a string of pairs of 8-bit anumbers starting after
the secondary fuunction code field and extending for
as many 8-bit bytes as necessary. The application
stores an 8-bit field number (FN) in the first of a
pair of bytes and a field value (FV) in the second
byte of the pair. Each FN represents a particular
device characteristic corresponding to a terminal
definition command or command parameter, and the
corresponding FV represents the value the applica—
tion program wishes to assign to that character—
istic. The application program needs to specify
only the FN/FV pairs for the characteristic it wants
to change. If one of the FN/FV pairs contains an
incorrect value, no characteristics are changed and
the application program receives the abnormal
response message shown in figure 3-50. Figure 3-51
shows the normal response to the define-multiple-
device—characteristics supervisory message.

Valid combinations of FN/FV pairs are defined in
table 3-2. Field numbers are listed in hexadecimal,
with octal equivalents in parentheses. Field values
are listed only in hexadecimal.

The define-device-characteristics and define-
multiple-device <characteristics supervisory mes—
sages sent downline by the application program are
removed from the output stream by the TIP and acted
on directly. The terminal operator is not advised
of their occurrence in the output stream.

Application NAM Message

The terminal operator enters the TC, PW, or PL commands to the Terminal Interface
Program.

- TCH/TCHAR/R

The next block sent to the device or from the device is affected by any constraints
imposed under the new device page width, page length, or terminal class.

Application NAM TIP Message

The application program changes a device characteristic other than page width, page
Llength, or terminal class.

CTRL/DEF/R

The next block sent to the device or sent from the device is affected by any constraints
imposed under the new device characteristic.

Application NAM TIP Message

The application program changes page width, page length, or terminal class.

ol CTRL/DEF/R

- TCH/TCHAR/R

The next block sent to the device or sent from the device is affected by any constraints
imposed under the new page width, page lLength, or terminal class.

Application NAM Message

The application sends a define-multiple-device-characteristics message to NAM in order
to redefine several of the device characteristics with a single message. The message
is properly formatted and the new characteristics take effect immediately. NAM replies
with a define-device-characteristics normal response.

- CTRL/CHAR/R
-€ CTRL/CHAR/N
Application NAM Message

The application sends a define-device~characteristics message to NAM, but one of the
FN/FV pairs is bad. The changes do not take effect, and a define-device-
characteristics abnormal response is sent to the application.

o CTRL/CHAR/R

- CTRL/CHAR/A

Figure 3-46. Device Characteristics Redefinition Supervisory Message Sequences

60499500

ta

ta

tch

tchar

res

acn

tclass

59 51 49 43 35 23 15 7 0

tch |0 |0 tchar res acn tclass pw pl

Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

Primary function code 6414, You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol TCH.

Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol TCHAR.

Reserved by CDC. Reserved fields contain zero.

Application connection number assigned by the network software to this end of the logical con-
nection for which the change occurred. This field always contains a value previously used by

the application program in an FC/INIT/N message. You can access this field with the reserved

symbol CONACN, as described in section 4.

The terminal class currently associated with the real device by the TIP servicing it. The
terminal class determines the parameters and ranges valid for redefinition of the device. The
device is serviced by the TIP according to the attributes associated with the terminal class
(see text). The tclass field can contain the values:

0 Reserved for CDC use.
1 Archetype terminal for the class is a Teletype Corporation Model 30 Series.
2 Archetype terminal for the class is a CDC 713-10, 722-10, 751-1, 752, 756.
3 Archetype terminal for the class is a CDC 721.
4 Archetype terminal for the class is an IBM 2741.
5 Archetype terminal for the class is a Teletype Corporation Model 40-2.
[Archetype terminal for the class is a Hazeltine 2000, operating as a
teletypewriter.
7 Archetype terminal for the class is a VT100 (ANSI X3.64).
8 Archetype terminal for the class is a Tektronix 4000 Series, operating as a
teletypewriter. ’
9 Archetype terminal for the class is a HASP (post-print) protocol multileaving
workstation.
10 Archetype terminal for the class is a CDC 200 User Terminal.
11 Archetype terminal for the class is a CDC 714-30.
12 Archetype terminal for the class is a CDC 711-10.
13 Archetype terminal for the class is a CDC 714-10/20.
14 Archetype terminal for the class is a HASP (pre-print) protocol multileaving work-
station.
15 Archetype terminal for the class is a CDC 734,
16 Archetype terminal for the class is an IBM 2780.
17 Archetype terminal for the class is an IBM 3780.
18 Archetype terminal for the class is an IBM 3270.

60499500 T

Figure 3-47. Device-Characteristics—Redefined (TCH/TCHAR/R) Supervisory
Message Format (Sheet 1 of 2)

3-55

pw

pl

If

device, then the value in either the pw or plL fields (or both) has usually changed.

te

then all attributes associated with the device have been changed to the default attributes
the new terminal class; the values in the pw and pl fields might have changed from those
previously associated with the real device.
symbol TCHTCL, as described in section 4.

The most recently declared page width of the console device, specifying the number of
characters in a physical Lline of output.
255.

The most recently declared page lLength of the console device, specifying the number of
physical Lines that constitute a page.
You can access this field with the reserved symbol TCHPL, as described in section 4.

19
thru
27

Reserved for CDC use.

28 Site-defined terminal class.

thru
31

the terminal class value received has not changed from that previously associated with the
If the
rminal class value received has changed from that previously associated with the device,
for

You can access this field with the reserved

This field can contain the values 0 or 20 < pw £
You can access this field with the reserved symbol TCHPW, as described in secton 4.

This field can contain the values 0 or 8 < pl < 255.

Figure 3-47. Device-Characteristics-Redefined (TCH/TCHAR/R) Supervisory

Message Format (Sheet 2 of 2)

ta

ctri

def

char

res

ta

ta +7

ta

ta + 21

i

59

51 49 43 35 27 19 1

ctrt def charl char2 char3 char4 char5 | char6 act=2

Q

Q

char111 char112 res

59

55 47 43 41 35 3 23 19 1

ctrt def chari char2 char3 act=3

Q

Q

char109 char110 char111 char112 res

Symbol ic address of the application program's text area from which this synchronous

S

P

described in section 4.

Secondary function code 4. You can access this field with the reserved symbol SFC, as
described in section 4.

Up to 112 7-bit ASCII characters of one.or more commands consisting of the network control

c
v
t
m

Reserved by CDC.

upervisory message is sent.
rimary function code Cl44. Yoy can access this field with the reserved symbol PFC, as
Its value is defined as the reserved symbol CTRL.

Its value is defined as the value of the reserved symbol DEFF.

haracter, characteristic mnemonic, and its desired setting. The characteristic and its
alue are separated by an equals sign. Multiple characteristics can be changed by separating
he commands with the network control character. See the Terminal Interfaces reference
anual for the possible commands that can be sent.

Reserved fields contain zero.

3-56

Figure 3-48. Define-Device~Characteristics (CTRL/DEF/R) Supervisory Message Format

60499500 T

59 51 49 43 35 27 19 1 © 3 0

ta ctrl 0|0] char fny fvq fny fvo fvz fvg act=2

1
@

ta+7 fnge fvgg res
59 S5 47 43 41 35 31 23 19 1M1 7 . 0
ta 0 ctri 0 |0}0jchar] O fnq 0 fvq 0 fny act=3
~ x
ta + 21 0 fss 0 fvss| O fnsg 0 fvsg res
ta Symbolic address of the application program text area from which this synchronous supervisory
message is sent.
ctri Primary function code C1y4. You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol CTRL.

char : Secondary function code 8. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CHAR.

fn; The 8-bit field number of the parameter to be changed.

fvi The 8-bit field value for the parameter.
Up to 56 field number and field value pairs can be specified in a single message. Valid
field numbers and values are defined in table 3-2.

res Reserved by CDC. Reserved fields contain zero.

Figure 3-49. Define-Multiple-Device-Characteristics (CTRL/CHAR/R) Supervisory Message Format

60499500 T 3-57

59 51 49 43 35 27
ta ctrt {1 |0 chaf fn rc res act=2
59 55 47 43 41 35 31 23 19 1
ta 0 ctri 0 |1|0|char] O fn 0 rc res act=
ta Symbolic address of the application program text area receiving this synchronous supervisory
message.
ctrt Primary function code C116; You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.
char Secondary function code 8. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol CHAR.
fn Field number causing the abnormal response.
rc Reason code for error. This field can have the values:
0 Reserved for CDC use.
1 Out of range value for command or parameter
2 Duplicate character definition
3 Invalid command or parameter value for terminal class to which device belongs
4 Invalid terminal class change
5 Invalid command or parameter for terminal class to which device belongs
6 thru Reserved for CDC use
255
res Reserved by CDC.
Figure 3-50. Define-Multiple-Device-Characteristics Abnormal Response
(CTRL/CHAR/A) Supervisory Message Format
59 51 49 43
ta ctrl {0 |1 char res act=2
59 55 47 43 41 35
ta 0 ctrl 0 | 0]1]|char res act=3
ta Symbol?c address of the application program's text area receiving this synchronous
supervisory message.
ctrt Primary function code €114, You can access this field with the reserved symbol PFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol CTRL.
char Secondary function code 8. You can access this field with the reserved symbol SFC, as
_described in section 4. Its value is defined as the value of the reserved symbol CHAR.
res Reserved by CDC.
Figure 3-51. Multiple-Device-Characteristics-Defined (CTRL/CHAR/N) Supervisory Message Format
3-58 60499500

TABLE 3-2.

VALID CCP FIELD NUMBERS AND FIELD VALUES

=

60499500 V

. Field Usable for Field
Command (Mnemonic) Number Terminal Value Field Value Content Meaning
(Octal) Classes (:) Range
Abort block (AB) 29 (51) 1 thru 8, thru 7E (:) Numerical value for character
28 thru 31
(9 thru 18)
Blocking factor (BF) 19 (31) 1 thru 8, 10 thru thru 20 Multiple of 100 characters
13, 15, 18 that constitute an upline
(9, 14, 16, block
17) :
Break as user break 1 33 (63) 1 thru 3, or 1 Yes (1), no (0)
(BR) 5 thru 8,
28 thru 31
(4, 9 thru 18)
Backspace character 27 (47) 1 thru 8, thru 7E (:) Numerical value for character
(BS) 28 thru 31
(9 thru 18)
User break 1 character 2A (52) 1 thru 15, 18, thru 7E (:) Numerical value for character
(Bl) 28 thru 31
(16, 17)
User-break-2 character 2B (53) 1 thru 15, 18, thru 7E (:) Numerical value for character
(B2) 28 thru 31 :
(16, 17)
Enable transparent 95 (225) 1 thru 8, - or 1 Yes (1), no (0)
user break commands 10 thru 13, 15
Carriage return idle 2C (54) 1 thru 8, thru 7F Number to insert
count (CI) 28 thru 31
(9 thru 18)
2E (56) 1 thru 8, TIP should calculate number
28 thru 31
(9 thru 18)
Cancel character (CN) 26 (46) 1 thru 15, 18, thru 7E (:) Numerical value for character
28 thru 31
(16, 17)
Cursor positioning 47 (107) 1 thru 3, or 1 Yes (1), no (0)
(cp) 5 thru 8,
28 thru 31
(4, 9 thru 18)
Network control 28 (50) 1 thru 18, thru 7E (:) Numerical value for character
character (CT) 28 thru 31
Single message 38 (70) 1 thru 8, or 1 Character specified (1), not
transparent input 28 thru 31 specified (0)
delimiters (DL) (9 thru 18)
Message and mode 39 (71) 1 thru 3, thru OF Character count (upper byte)
delimiter 5 thru 8,
28 thru 31
(9 thru 18)
-Message and mode 3A (72) 1 thru 3, thru FF Character count (lower byte)
delimiter 5 thru 8,
28 thru 31
(9 thru 18)
Message and mode 3B (73) 1 thru 8, 10 thru FF (:) Numerical value for character
delimiter thru 13, 15, 18,
28 thru 31
(9, 14, 16, 17)

3-59

TABLE 3-2, VALID CCP FIELD NUMBERS AND FIELD VALUES (Contd)
Field Usable for Field
Command (Mnemonic) Number Terminal Value Field Value Conteat Meaning
(Octal) Classes (:) Range
Message and mode 3C (74) 1 thru 3, 5 thru or 1 Timeout (1), no timeout (0)
delimiter 8, 28 thru 31
(9 thru 18)
Mode type 46 (106) 1 thru 8, 10 Single message (0)
. thru 13, 15, 18,
28 thru 31
"End-of-block character 40 (100) 1 thru 3, 5 thru thru FF (:) Numerical value for character
(EB) 8, 10 thru 13,
15, 18, 28 thru
31
Use default 41 (101) 1 thru 3, 5 thru or 2 (:) End~of-line (1), end-of-block
terminator 8, 10 thru 13, (2)
15, 18, 28 thru
31
End-of-block cursor [42 (102) 1 thru 3, 5 thru thru 3 (5) No (0), CR (1), LF (2), CR
positioning response 8, 10 thru 13, and LF (3)
15, 18, 28 thru
31 (9, 14, 16,
17, 18)
End-of-line character 3D (75) 1 thru 3, 5 thru thru 7F (:) Numerical value for character
(EL) 8, 10 thru 13,
15, 18, 28 thru 31
Use default 3E (76) 1 thru 3, 5 thru or 2 End-of-line (1), end-of-block
terminator 8, 10 thru 13, (2)
15, 18, 28 thru
31
End-of-line cursor 3F (77) 1 thru 3, 5 thru thru 3 (:) No (0), CR (1), LF (2), CR
-positioning response 8, 10 thru 13 and LF (3)
15, 28 thru 31
(9, 14, 16, 17,
18)
Echoplex mode (EP) 31 (61) 1 thru 3, or 1 Yes (1), no (0)
5 thru 8,
28 thru 31
(4, 9 thru 18)
Full ASCII input (FA) 37 (67) 1 thru 8, 10 or 1 Yes (1), no (0) ‘
thru 13, 15,
16, 17, 18,
28 thru 31
Input control (IC) 43 (103) 1 thru 3, or 1 Yes (1), no (0)
5 thru 8,
28 thru 31
(4, 9 thru 18)
Input device (IN) 34 (64) 1 thru 8, 10 or 1 Transparent input (1), not
thru 13, 15, transparent (0)
28 thru 31
35 (65) 1 thru 8, thru 2 (5) Reyboard (0), paper tape (1),
block mode (2)

3-60

28 thru 31

60499500 U

TABLE 3-2.

VALID CCP FIELD NUMBERS

AND FIELD VALUES (Contd)

60499500 W

Field Usable for Field
Command (Mnemonic) Numbe r Terminal Value Field Value Content Meaning
(Octal) Classes (:) Range
Line feed idle count 2D (55) 1 thru 8, 0 thru 7F Number to insert
(LI) 28 thru 31
(9 thru 18)
2F (57) 1 thru 8, 1 TIP should calculate number
28 thru 31
(9 thru 18)
Lockout unsolicited 20 (40) 1 thru 15, 18, Oor 1l Yes (1), no (0)
messages (LK) 28 thru 31
(16)
Output control (0C) 44 (104) 1 thru 3, 0 or 1 Yes (1), no (0)
5 thru 8,
28 thru 31
(4, 9 thru 18)
Output device (OP) 36 (66) 1 thru 8, 0 thru 2 (:) Printer (0), display (1),
28 thru 31 paper tape (2)
(9 thru 18)
Parity processing (PA) 32 (62) 1 thru 3, 5 thru 0 thru 4 Zero (0), odd (1), even (2),
8, 28 thru 31 none (3), ignore (4)
Page waiting (PG) 25 (45) 1 thru 8, 10 0orl Yes (1), no (0)
thru 13, 15, 18,
28 thru 31
(9, 14, 16, 17)
Page length (PL) 24 (44) 1 thru 18, 0, 8 thru FF (:) Number of physical lines
28 thru 31
Page width (PW) 23 (43) 1 thru 18, 0, 20 thru FF Number of characters
28 thru 31
Site-defined use 5A thru 63 | I thru 18, 0 thru FF (%) Site-defined
(132 thru 28 thru 31
143)
Special editing mode 30 (60) 1 thru 8, Oorl Yes (1), no (0)
(SE) 28 thru 31
(9 thru 18)
Terminal class (TC) 22 (42) 1 thru 10, 01 thru OF (:) ‘Number of new class
28 thru 31
Multiple-message (:) 38 (70) 1 thru 8, Oorl Character specified (1), not
transparent 28 thru 31 specified (0)
delimiters (XL) (9 thru 18)
Message delimiter 39 (71) 1 thru 3, 5 thru 0 thru F Character count (upper byte)
8, 28 thru 31
(9 thru 18)
Message delimiter 3A (72) 1 thru 3, 5 thru 0 thru FF Character count (lower byte) -
8, 28 thru 31
(9 thru 18)
Message delimiter 3B (73) 1 thru 8, 10 0 thru FF (:) Numerical value for character
thru 13, 15, 18,
28 thru 31
9, 14, 16)

3-61

CECECNC)

® O

Not all values are legal for all terminal classes.

TABLE 3-2. VALID CCP FIELD NUMBERS AND FIELD VALUES (Contd)
Field Usable for Field
Command (Mnemonic) Number Terminal Value Field Value Content Meaning
(Octal) Classes (:) Range
Mode delimiter 3C (74) 1 thru 3, 5 thru or 1 Timeout (1), no timeout (0)
8, 28 thru 31
(9 thru 18)
Message de- 92 (222) 1 thru 3, or 1 Forward on timeout (1),
limiter 5 thru 8, do not forward on
28 thru 31, timeout (0)
(9 thru 18)
Mode delimiter 45 (105) 1 thru 8,\ thru FF (:) Numerical value for character
28 thru 31
(9 thru 18)
Mode type 46 (106) 1 thru 8, 10, 13, Multiple-message (1)
15, 28 thru 31
Full duplex {(none) 57 (127) 1 thru 3, or 1 Yes (1), no (0)
5 thru 8,
28 thru 31
(4, 9 thru 18)
Terminal transmission 1E (36) 1 thru 18, (:) thru 7 Number of characters (upper
block size (none) 28 thru 31 byte)
1F (37) 1 thru 18, (:) thru FF Number of characters (lower
28 thru 31 byte)
Set terminal 70 (160) 1 thru 8, or 1 Yes (1), no (0)
in solicited 10 thru 13,
input mode 15, 18, 28
thru 31
Carriage 93 (223) 1 thru 8, thru FA Idle delay in increments
return idle 28 thru 31, of 4 milliseconds
delay (9 thru 18)
Linefeed idle 94 (224) 1 thru 8, thru FA Idle delay in increments
delay 28 thru 31, of 4 milliseconds
(9 thru 18)
Notes:

No error occurs if an fN/FV pair is issued for a terminal class shown in parentheses. .

Ignored for CDC-defined X.25 packet éssembly/disassembly (PAD) terminals.

Any hexadecimal value except 00 thru 02, 20, 30 thru 39, 3D, 41 thru 5A, 61 thru 7A, or 7F.

If the value of one of the fields for tﬁis command is changed, you need to ensure that the others
are set to known values if they could affect your application.

specified. However, any fields not specified contain their previously recorded setting which
could produce undesirable results.

All of the fields need not be

Not allowed for CDC-defined X.25 packet assembly/disassembly (PAD) terminals. For terminal class
(TC) changes, refer to Effects of Changing Terminal Class on CDCNET, in this section.

3-62

60499500 V

EFFECTS OF CHANGING TERMINAL
CLASS ON CDCNET

Changing terminal class affects many of the CDCNET
attributes. There are changes to the attribute
settings that are associated with all terminal
class changes. These changes are shown in table
3-3. There are also changes to the attribute
settings that are associated only with specified

terminal classes. These changes are shown in table
3-4,

REQUESTING CCP DEVICE
CHARACTERISTICS

The request—device-characteristics supervisory
message (figure 3-52) is issued by an- application
program on console or site—-defined device connec—
tions to learn the current value of the device
characteristics. The application program specifies
a string of pairs of 8-bit numbers starting after
the secondary function code field and extending for
as many 8-bit bytes as necessary. The application
stores a field number (FN) in the first half (8
bits) of the 8-bit pair and reserves the second
half (8 bits) for a field value (FV). Each FN
represents a particular characteristic. The network

TABLE 3-3. CDCNET ATTRIBUTE CHANGES
ASSOCIATED WITH ALL TERMINAL CLASS CHANGES
CDCNET Setting CDCNET Setting

Attribute Change Attribute Change
BKA 0 P EVEN
CFC TRUE PCF FALSE
CLC CAN SA SEND
E FALSE SBC FALSE
ELC CR SND FALSE
ELP LFS oM TERMINATE
EPC LF TFC CR
EPP CRS TIM TERMINATE
HP NO TML 2043
NCC % ™ NONE

corresponding FV byte.
byte by the application is ignored and overwritteua.
The application program needs to specity only the

FNs for the characteristics it

is

Any value placed in the FV

interested in.

If the string contains an incorrect FN, no device

characteristics are
receives the
figure 3-53.

abnormal

returned and
response message

application
shown in

For a list of legal FNs and the cor-

returns the value of the characteristic in the responding range of possible FVs, see table 3-2,
TABLE 3-4. CDCNET ATTRIBUTE SETTING CHANGES ASSOCIATED WITH SPECIFIED TERMINAL CLASSES

CDCNET Terminal Classes

Attribute 1 9 3 5 6 7 8
BC BS BS BS none BS BS BS
crD T 2 0 0 1 0 0 0
CRS CR CR CR ESC G CR CR CR
FFD na na na na na na 999ms
FFS 6 EM/ FF ESC R FS ESC[H ESC

LFs CAN ESC[J FF
FL YES NO NO NO NO NO NO
LFDt 1 0 0 3 3 0 0
LFS LF LF LF ESC B 0 LF LF
PL 0 24 30 24 27 24 35
P 72 80 80 80 74 80 74
tMillisecond value is dependent on linespeed.

60499500 V

3-63

59 51 49 43 35 27 19 1" 0
ta ctrl |0 {0 rtc fnq fvq fnp fvp ees
ta Symbolic address of the application program's text area from which this synchronous super=
visory message is sent.
ctri Primary function code C194. You can access this field with the reserved symbol PFC, as * .
described in section 4. Its value is defined as the value of the reserved symbol CTRL.. .
rtc Secondary function code 9. You can access this field with the reserved symbol SFC, as.
described in section 4. Its value is defined as the value of the reserved symbol RTC.
fny The hexadecimal field number of the desired parameter. Valid values are defined in table 3-2.
fv; Space for the hexadecimal field value of the desired parameter; can be 0.
Figure 3-52. Request-Device-Characteristics (CTRL/RTC/R) Supervisory Message Format
59 51 49 43 35 27 0
ta ctrl |1 |0] rtc fn rc res
ta Symbolic address of the application program's text area receiving this synchronous
supervisory message.
ctrl Primary function code Cl144. You can access this field with the reserved symbol PFC, as
described in se;tion 4, 1Its value is defined as the value of the reserved symbol CTRL.
rtc Secondary function code 9. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol RTC.
fn First field number in the string found to be erroneous by the network software. In case of
several bad field numbers, only the first bad one will be diagnosed.
rc Reason code for error. This field can have the value:
0 Reserved for CDC use
thru
4
5 Invalid field number value
) Reserved for CDC use
thru
255
res Reserved by CDC.

Figure 3~53. Request-Device-Characteristics Abnormal Response (CTRL/RTC/A) Supervisory Message Format

3-64

60499500 V

The response to a request-device-characteristics
supervisory message is a device~characteristics
definition message (figure 3-54). This message can
be received only on console or site-defined device
connections. The NPU generates a string of pairs
of 8-bit numbers starting after the secondary func-—
tion code field and extending for as many 8-bit
bytes as necessary. The first 8-bits of the l6-bit
pair is one of the field numbers specified in the
request—device-characteristics supervisory mes-—
sage. The second 8-bits of the 16-bit pair is the
current value of the particular characteristic the
FN represents. For a list of valid FNs aund the
associated valid range of FVs, see table 3-2,

CHANGING CDCNET TERMINAL
CHARACTERISTICS

The CONNET flag is defined in the CON/REQ/R super-
visory message and indicates whether the terminal-
to-application connection 1is through CCP or
CDCNET. This flag is set by NAM when NAM creates
and returns the connection-request supervisory
message to the application program requesting the
connection to the device.

In a CDCNET network, attributes are operating
characteristics of either the terminal or the con-~

only data on that connection, but changing a ter-
minal attribute affects all connections with the
terminal.

The define-CDCNET-terminal-characteristics super-—
visory message is described in figure 3-55. This
message specifies a string of 8-bit bytes beginning
after the secondary function code field and extend-
ing for as many 8-bit bytes as necessary. The
application program stores an attribute number (AN)
in the rightmost 7 bits of the first byte. The
leftmost bit of the 8-bit byte 1is used by the
application program to indicate the contents of the
byte following the AN byte. If the leftmost bit of
the AN byte *is 1, the 8-bit byte following the AN
byte contains the length of the attribute value
(AV) field. The length bit is followed by the
attribute value field. If the leftmost bit of the
AN byte is 0, the corresponding attribute value is
stored in the byte following the AN byte (there is
no length byte). Following the AV field are more

AN/AV fields for as many bytes as necessary to
contain all the characteristics that are being
changed.

Each AN represents a particular terminal character-
istic (or attribute) that corresponds to a terminal
definition parameter. The corresponding AV repre-
sents the value the application program wishes to
assign to the characteristic (or attribute).

nection. Changing a connection attribute affects
59 51 49 43 35 27 19 11 0
ta ctrt |0 10 ted fnq fvq fny fvp aes

ta Symbolic address of the application program's text area receiving this synchronous supervisory
message.

ctrl Primary function code Cly4. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

ted Secondary function code OA44, vYou can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol TCD.

fni The hexadecimal field number of the characteristic parameter. Valid.values are defined in
table 3-2.

fvi -.The hexadecimal field value of the characteristic parameter. Valid values are defined in table
3-2.

Figure 3~54. . Device-Characteristics-Definition (CTRL/TCD/R) Supervisory Message Format

60499500 Vv

3-65

ta
ta+n
ta
ta+n

ta

ctrl

ctd

an.i

av

)

)}

59 51 49 43 35 27 19 1" 3 0
ctri 0(0 ctd anq avq any avp ang avy act=2
ang, avy “ee
59 55 47 43 41 35 31 23 19 11 7 0
0 ctri 0 0]0] ctd 0 anq 0 avq an act=3
ang 0 av 0 | anpyq 0 avee cee

Symbolic address of the application program text area from which this synchronous supervisory
message is sent.

Primary function code C1q4.
described in section 4.

Secondary function code 02.
described in section 4.

The 8-bit attribute number of the parameter to be changed.

You can access this field with the reserved symbol PFC, as
Its value is defined as the value of the reserved symbol CTRL.

You can access this field with the reserved symbol SFC, as
Its value is defined as the value of the reserved symbol CTD.

When the uppermost bit of the AN

field is set, it indicates that the next 8-bit field contains the number of AVs following
this AV count field; otherwise, the next field will be a single 8-bit field which is the
value of the AV.

The 8-bit attribute value of the parameter to be changed, or, if the immediately preceding
field is an AN with the uppermost bit set, the number of AVs that follow.

The formats are:

Single Octet Value

I 0 ' Attribute Number | Attribute Valugg] ane
N o S mm—— e —————

Octet 1 Octet 2

Multiple Octet Value

I 1 I Attribute Number I n = number of AVs
_/—'\/—\/
Octet 2

Octet 1 -

[Attribute Value Octet 1 I aes I Attribute Value Octet n
Y

Octet 3 Octet™n + 2

Valid attribute numbers and values are defined in table 3-5.

Figure 3-55.

3-66

Define=CDCNET-Terminal-Characteristics (CTRL/CTD/R) Supervisory Message Format

60499500

The application program needs to specify only the supervisory message shown in figure 3-56. Figure

AN/AV pairs for the characteristics it wants to 3-57 shows the normal response to the define-
change. If one of the AN/AV pairs contains an CDCNET-terminal-characteristics supervisory message.
incorrect value, no characteristics change and the
application program receives the abnormal response Valid combinations of AN/AV pairs are defined in
table 3-5. .
59 51 49 43 35 27 19 ’ 3
ta ctrl |1 10 ctd rc an av res act=2
59 55 47 43 41 35 31 23 19 1 7 0
ta 0 ctrl 9 110 | ctd 0] rc 0 an 0 av act=3
ta Symbolic address of the application program text area receiving this synchronous supervisory
message.
ctrl Primary function Fode C11?, You can access this field with the reserved symbol PFC, as
described in section 4. ts value is defined as the value of the reserved symbol CTRL.

ctd Secondary function code 02. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is defined as the value of the reserved symbol CTD.

re Reason code for the error. This field can have the values:
0 Attempt to change an unknown attribute; no attributes were changed
1 Attempt to change a known attribute to an invalid value; no attributes were changed
2 Attribute length out of range; no attributes were changed
3 Character definition values in conflict; no attributes were changed
an Attribute number causing the abnormal response.
av Attribute value causing the abnormal response.
res Reserved by CDC.

Figure 3-56. Define-CDCNET-Terminal-Characteristics Abnormal Response (CTRL/CTD/A)
Supervisory Message Format

59 51 49 43 3 0
ta ctrt a1 ctd res act=2
59 55 47 43 M 35 0
ta 0 ctrl 0 o1 ctd res act=3
ta Symbolic address of the application program's text area receiving this synchronous

supervisory message.

ctri Primary function code Clq44. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

ctd Secondary function code 02. You can access this field with the reserved symbol SFC, as
- described in section 4. Its value is defined as the value of the reserved.symbol CTD.

res Reserved by CDC.

Figure 3-57. Define-CDCNET-Terminal-Characteristics (CTRL/CTD/N) Supervisory Message Format

60499500 V 3-67

TABLE 3-5. VALID CDCNET ATYTRIBUTE NUMBERS AND ATTRIBUTE VALUES FOR ASYNCHRONOUS TERMINALS
Command (Mnemonic) Attribute Attribute éttribute Va}ue
Number(Octal) Value Range Content Meaning
Attention character (AC) 46 (106) 1 8-bit byte Character
Attention character 0A (12) 0 thru 9 Action codes
action (ACA)
Backspace character (BC) 44 (104) 1 3-bit byte Character
Preak key action (BKA) 0B (13) 0 thru 9 Action codes for break key
Begin line character (BLC) 43 (103) 1 8-bit byte Character
Character flo& control (CFC) 56 (126) 0orl No (0), yes (1)
Cancel line character (CLC) 41 (101) 1 8-bit byte Character
Carriage return delay (CRD) 51 (121) 0 thru 1000 Delay in milliseconds
Carriage return sequence’ (CRS) 4p (115)F 0 thru 2 8-bit bytes Any 0 thru 2 characters
Code seﬁ (CS) 58 (130) 0, 1, or 2 ASCIT (0), BPAPL (1), TPAPL (2)
Echoplex (E) 54 (132) 0or 1 Off (0), on (1)
End line character (ELC) 42 (102) 1 8-bit byte Character
End line positioning (ELP) 54 (124) 0 thru 3 None (0), CRS (1), LFS (2),
CRSLFS (3)
End output sequence (EOS) 4¢ (114)T 0 thru 4 8-bit bytes Any 0O thru 4 characters
End page action (EPA) 50 (120) ‘0 or 1 No (0), yes (1)
End partial character (EPC) 45 (105) 1 8-bit byte Character
End partial position (EPP) 55 (125) 0 thru 3 ‘ None (0), CRS (1), LFS (2),
CRSLFS (3)
Form feed delay (FFD) 53 (123) 0 thru 3000 Delay in milliseconds
Form feed sequence (FFS) 4F (117)T . O thru 7 8-bit bytes Any 0O thru 7 characters
Fold line (FL) 4B (113) 0Oorl No (0), yes (1)
Hold page (HP) 49 (111) 0Oor 1 No (0), yes (1)
Hold page over (HPO) 4A (112) Oorl No (0), yes (1)
Input block size (IBS) 0C (14) 80 thru 2000 Block size for input
Input editing mode (IEM) 2 (2) 0Oorl Normal (0), traunsparent (1)
Input output mode (IOM) 1 (1) 0, 1, or 2 Unsolicited (0), solicited (1),
full duplex (2)
Line feed delay (LFD) 52 (1225 0 thru 1000 Delay in milliseconds
Line feed sequence (LFS) 4E (116)7T 0 thru 2 8-bit bytes Any 0 thru 2 characters
Network command character 40 (100) 1 8-bit byte Character
(NCC) .
Parity (P) 59 (131) Zero (U), mark (1), even (2),

3-68

.0 thru 4

odd (3), none (4)

60499500 V

TABLE 3-5. VALID CDCNET ATTRIBUTE NUMBERS AND ATTRIBUTE VALUES FOR ASYNCHRONOUS TERMINALS (Contd)

) , Attribute Attribute Attribute Value

C

ommand (Mnemonic) Number (Octal) Value Range Content Meaning
Partial character forwarding 9 (11) Oorl No (0), yes (1)
(PCF)
Page length (PL) 47 (107) 0, 2 thru 255 Number of physical lines
Page width (PW) 48 (110) 0, 10 thru 255 Number of characters
Status action (SA) 5B (133) 0, 1, or 2 Send (0), nold (1), discard (2)
Store backspace character 0E (16) 0Oorl No (0), yes (1)
(SBC)
Store nuls dels (SND) 0D (15) 0or 1l No (0), yes (1)
Transparent character mode 3 OT 1 thru 4 8-bit bytes None (0), terminate (1), forward
(TCM) (2), forward and terminate (3)
Transparent forward character 4 (4)T 1 thru 4 8-bit bytes 1 thru 4 characters
(TFC)
Transparent length mode (TLM) 7 (7) 0 thru 3 None (0), terminate (1), forward

(2), forward exact (3)
Terminal model (TM) 57 (127)T 1 thru 25 8-bit Terminal model identifier
bytes

Transparent message length 8 (10) 1 thru 7FFF Number of transparent characters
(TML) to forward
Transparent terminate 5 (5)1 1 thru 4 8-bit bytes 1 thru 4 characters
character (TIC)
Transparent timeout mode (TTM) 6 ()T 0 thru 2 None (0), terminate (1),

forward (2)

TThe AN of these attributes has its uppermost bit set to indicate that the next 8-bit field is an AV count
field followed by as many AVs as indicated in the count field.

CONVERTING ATTRIBUTES

Table 3-6 shows the mappings between FN/FV pairs

and the corresponding CDCNET attributes.

When an application program
terminal characteristics for transparency,

60499500 V

defines

multiple
FNs 56,

57, 58, 59, 60,
together to insure proper results.
to CDCNET attributes is a complex

of these FNs

69, 70, and 146 should be sent
The conversion

process. There are subtle differences between the

CCP and CDCNET transparent input features.

If your

applications are having problems with transparent
input, review table 3-6. carefully.

3-68.1

TABLE 3-6. CCP FIELD NUMBER TO CDCNET ATTRIBUTE NUMBEK MAPPING

CCP Field Numb CDCNET
e umber < ;
Field Name Field Value CDCNET Changes Attribute Number
Dec. | Hex. | Oct. i Dec. | Hex. | Oct.
25 19 31 BF 0 PCF=TRUE 9 9 11
i 1 PCF=FALSE, IBS=100
PCF=FALSE, IBS=200
30 1E 36 XBZ1 all . none none
"31 1F 37 XBZ2 all none none
32 20 40 LK 0 SA=SEND 91 58 133
1 SA=DISCARD
33 21 41 HD all none none
34 |22 |42 TC all O 87 |57 |1e7
35 23 43 PW n PW=n 72 48 110
36 24 44 PL . n PL=n 71 47 107
37 25 45 PG 0 HP=FALSE 73 49 111
1 HP=TRUE -
38 26 46 CN char CLC=char 65 41 101
39 27 47 BS) char BC=char 58 44 lu4
40 28 50 CT char NCC=char 64 40 100
41 29 51 AB all 10one none
42 2A 52 Bl all none none
43 2B 53 B2 all none none
44 2C 54 Cc1 n CRD=n*linespeed factor [° 81 51 121
45 2D 55 LI n) LFD=n*1linespeed factor 82 52 122
46 2E 56 CA all none none
47 2F 57 LA all none none
48 30 60 SE 0 SBC=FALSE, EPC=LF 14 OE 16
1 SBC=TRUE, EPC=NUL,
CLC=NUL
49 31 61 EP 0 E=FALSE 90 5A 132
1 £=TRUE
50 32 62 PA 0 P=ZERO 89 59 131
1 P=0DD
2 P=EVEN
3 P=NONE
4 P=NONE
51 33 63 BR 0 BKA=0 11 UB 13
1 BKA=1
52 34 64 XPT 0 IEM=NORMAL Z 2 2
1 IEM=TRANSPARENT
53 35 65 IN . all none none

3-68.2 60499500 V

TABLE 3-6.

CCP FIELD NUMBER TO CDCNET ATTRIBUTE NUMBER MAPPING (Contd)

CCP Field Number N _CDCNET
Field Name Field Value CDCNET Changes ttribute Number
Dec. | Hex. | Oct.
Dec. | Hex. | Oct.
54 36 66 op 0 FL=FALSE 75 4B 113
1 FL=TRUE
2 none
55 37 67 FA 0 EPC=LF, SBC=FALSE, 69 45 105
SND=FALSE
1 EPC=NUL, SBC=TRUE,
SND=TRUE
56 38 70 DL or XL 0 TCM=NONE 3 3 3
1 when FN 70=0 TCM=TERMINATE
1 when FN 70=1 TCM=FORWARD_IERMINATE
57 39 71 DL or XL Not specified & FN 58 TLM=NONE 7 7 7
is not specified
Specified & FN 58 is TML=value of FN 58 +
specified 256*(value of FN 57)
58 3A 72 DL or XL Not specified & FN 57 TLM=NONE 7 7 /
is not specified
Specified & FN 57 is TML=value of FN 58 +
specified 256*(value of FN 57)
59 3B 73 DL or XL Specified TFC=value of FN 59 4 4 4
Specified as CR & TFC=(04,¢,841¢)
terminal parity=
IGNORE
60 3C 74 DL or XL 0 TTM=NONE [} b]
1 & FN 70 or FN 146=0 TTM=TERMINATE
1 & FN 70 & FN 146=] TTM=FORWARD
61 3D 75 EL char ELC=char 06 42 102
62 3E 76 ELO all none none
63 3F 77 CPEL 0 ELP=NONE 84 54 124
1 ELP=CRS
2 ELP=LFS
3 ELP=CRSLFS
64 40 100 EB all none none
65 41 101 EBO all none none
66 42 102 CPEB all none none
67 43 103 IC 0 CFC=FALSE 86 56 126
1 CFC=TRUE
68 44 104 ocC 0 CFC=FALSE 86 56 126
1 CFC=TRUE
69 45 105 ‘XL Specified TTC=value of FN 69 5 5 5
Specified as CR & TIC=(0414,84]1¢)
terminal parity=
IGNORE
70 46 106 DL or XL 0 TLM=TERMINATE 7 7 7
1 & FN 59'1is TTC=TFC
specified but not
FN 69 ' ¢
1 & TML=1 TLM=FORWARD
1 & TML=1 TLM=FORWARD EXACT
60499500 V 3-68.3

TABLE 3-6. CCP FIELD NUMBER TO CDCNET ATTRIBUTE NUMBER MAPPING (Contd)

CCP Field Numb CDCNET
e umber
Field Name - Field Value CDCNET Changes Attribute Number
Dec. | Hex. | Oct. Dec. | Hex. | oct.
71 |47 |107 cp 0 ELP=NONE, EPP=NONE 84 |54 |124
1 ELP=LFS, EPP=CRS
87 |s7 |127 FDLX 0 TOM=SOLICITED 1 1 1
1 10M=FULLDUPLEX
102 66 146 PP char EOS=char 76 4C 114
112 |70 | 160 NTA 0 IOM=UNSOLICITED 1| 1
1 IOM=SOLICITED
147 |93 |223 CRI n CRD=n%4 gt |st. 121
148 | 94 | 224 IFI n LED=n*4 82 |s2 Ji22

(:) See section on Effects of Changing Terminal Class on CDCNET.

REQUESTING CDCNET TERMINAL
CHARACTERISTICS

The request—CDCNET-terminal-characteristics super—
visory message (figure 3-57.1) is issued by an
application program to learn the current values of
either connection or terminal attributes. The
application program specifies a string of 8-bit
numbers starting after the secondary function code
field and extending for as many 8-bit bytes as
necessary. The application program stores an
attribute number (AN) in each byte. Each AN repre-
sents a particular characteristic. The application
program needs to specify only the ANs for the
characteristics it is interested in. If the string
contains an incorrect AN, no characteristics are
returned and the application program receives the
abnormal response message shown in figure 3-57.2.
Valid AN values are listed in table 3-5.

The response to a request—~CDCNET-terminal—-
characteristics supervisory message is the CDCNET-
terminal-characteristics—definitions supervisory

3-68.4

message shown in figure 3-57.3. This wmessage
contains a string of 8-bit bytes starting after the
secondary function code field and extending for as
many 8-bit bytes as necessary. The first 8-bit
byte contains one of the attribute numbers speci-
fied in the request—-CDCNET-terminal-characteristics
supervisory message. The attribute number is- in
the rightmost 7 bits of the 8-bit byte. The left-
most bit of the 8-bit AN byte is used to indicate
whether the attribute value which the AN represents
is contained in the following byte. 1f the leftmost
bit of the AN byte is 1, the 8-bit byte following
the AN byte is the length of the attribute value
(AV) field. The length byte is followed by the
attribute value field. If the leftmost bit of the
AN byte is O, the corresponding attribute value is
in the next byte. More AN/AV fields follow the AV
field for as many bytes as necessary to return all
the attribute values requested. 7The AN/AV pairs in
the CDCNET-terminal-characteristics—definitions
supervisory message are not in the order speci-
fied in the request—-CDCNET-terminal-characteristics
supervisory message. The response message may
contain duplicate AN/AV pairs.

‘

60499500 V

59 51 49 43 35 27 19 " 30

ta ctrl |0 |0 | rcc an an an an an an act=2
H an an an an an an an |
59 55 47 43 41 35 31 23 19 1" 7 0
ta 0 ctrl 0 |0]0|rcc 0 an 0 an 0 an act=3
f an an an an an |
ta Symbolic address of the application program text area receiving this synchronous super-

visory message.

ctrl Primary function code C11?. You can access this field with the reserved symbol PFC, as
described in section 4. . Its value is defined as the value of the reserved symbol CTRL.

rcc Secondary function code 0Bq4. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value dis defined as the value of the reserved symbol RCC.

an The 7-bit attribute number of the desired parameter. Valid values are defined in table 3-5.

Figure 3-57.1 Request-CDCNET-Terminal-Characteristics (CTRL/RCC/R) Supervisory Message Format

59 51 49 43 35 0
ta ctrl 110 rcc an res act=2
59 55 47 43 41 35 31 23 0
ta 0 ctrl 0 |0}0|rcc 0 an res act=3
ta Symbolic address of the application program text area receiving this synchronous super-

visory message.

ctrt Primary function code C144. You can access this field with the reserved symbol,PFC, as
described in section 4. Its value is defined as the value of the reserved symbol CTRL.

rcc Secondary function code 0By4. You can access this field with the reserved symbol SFC,. as
..described in section 4. Its value is defined as the value of the reserved symbol RCC.

an Attribute number that was invalid.

res Reserved for CDC.

Figure 3-57.2 Request-CDCNET-Terminal-Characteristics Abnormal
Response (CTRL/RCC/A) Supervisory Message Format

60499500 Vv 3-68.5

ta

ced

an;

av

59 51 49 43 35 27 19 11 3 0
ta ctrl 0|0 ccd anq avq _any . avp ang avg act=2
= A
ta+n an, avy aae
59 S5 47 43 41 35 31 23 19 1" 0
ta 0 ctrl 0 00| ccd 0 anq 0 avq 0 anp act=3
ta+n 0 ang 0 avy 0 |angyq 0 aVnet .

ctrl

Symbolic address of the application program text area from which this synchronous supervisory
message is sent.

You can.éccess this field with the reserved symbol PFC, as
Its value is defined as the value of the reserved symbol CTRL.

Primary function code C144.
described in section 4.

Secondary function code 0Cq4.
described in section 4.

You can access this field with the reserved symbol SFC, as
Its value is defined as the value of the reserved symbol CCD.

The 8-bit attribute number of the parameter to be changed. When the uppermost bit of the AN
field is set, it indicates that the next 8-bit field contains the number of AVs following

this AV count field; otherwise, the next field will be a single 8-bit field which is the
value of the AV.

The 8-bit attribute value of the parameter to be changed, or, if the immediately preceding
field is an AN with the uppermost bit set, the number of AVs that follow.

The formats are:

Single Octet Value

| 0 I Attribute Number] Attribute Value | ves
N —

~"
Octet 1 Octet 2

Multiple Octet Value

l 1 I Attribute Number [n=
ﬁ\
Octet 1

number of AVs]

—~
Octet 2

[Attribute Value Octet 1 l . I Attribute Value Octet n
N o N

~\" ~"
Octet 3 Octet n + 2

Valid attribute numbers and values are defined in table 3-5.

3-68.6

Figure 3-57.3 CDCNET-Terminal~Characteristics-Definitions (CTRL/CCD/R) Supervisory Message Format

60499500 V

HOST OPERATOR COMMANDS

The host operator can send commands to an applica-
tion program through the system console K-display.
There are seven commands an application program
might receive. Each command is delivered to the
application program as a separate asynchronous
supervisory message, as shown in figure 3-58.

The host operator request-to—activate-debug-code
supervisory message (figure 3-59) is sent from NAM
to the application program when the operator enters
the K-display command:

K.DB=appname

The application should begin using any in-line
debug code you have included. Activating in-line
debug code can change the application program”s
abort conditions or error case handling or both.

There is no response to the request-to—activate-
debug-code message.

The host operator request-to-turn-off-debug~code
supervisory message shown in figure 3-60 is sent
from NAM to the application program when the
operator enters the K-display command:

K.DE=appname

The application should turn off any in-line debug
code you have included. There is no response to
the request—to-turn—-off-debug-code message.

The host operator request-to-dump-field-length
supervisory message (figure 3-61) is sent from NAM
to the application program when the operator enters

“the K-display command:

K.DU=appnamé

Application

-

Application

-¢

The program should begin using any debug code it contains.

-

The program can stop using any debug code it contains.

Application

The program should dump its field Length and any extended central storage.

-

Application

-

The program should begin using its debug log file.

Application

-

The program can stop using its debug Log file.

Application

-

This program should release its debug log file for postprocessing.

The program- should reinitialize and restart Logging of all of its statistics.

Message

HOP /DB/R

Message

HOP /DE/R

Message -

HOP /DU/R

Message
HOP/TRACE/R

Message

HOP/NOTR/R

Message

HOP/REL/R

Message
HOP/RS/R

Figure 3-58, Host Operator Command Supervisory Message Sequences

60499500 U

3-69

59 51 49 43 , 0

ta hop |0]0 db res
ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.
hop ~Primary function code DO4g- You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.
db Secondary function code 0E14. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is the value of the reserved symbol DB.
res Reserved by CDC.
Figure 3-59. Host Operator Reguest-to-Activate-Debug-Code (HOP/DB/R) Supervisory Message Format
59 51 49 43 . . 0
ta hop 0 |0 de res
ta Symbolic address of the application program's text area receiving this asynchronous super=
visory message.
hop Primary function code DOyg. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.
de Secondary function OFq¢. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is the value of the reserved symbol DE.
res Reserved by CDC.
Figure 3-60. Host Operator Request~to-Turn-0ff-Debug-Code (HOP/DE/R) Supervisory Message Format
59 51 49 43 0
ta hop |0 |O du res
ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.
hop Primary function code DOqg- You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.
du Secondary function code 3. You can access this ?ield‘uith the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol DU.
res Reserved by CDC.

Figure 3-61. Host Operator Request-to-Dump-Field-Length (HOP/DU/R) Supervisory Message Format

3-70

60499500

The application should dump its field length. The
application can call NETDMB to dump its field length
onto the ATP dump file ZZZZDMB (see section 6).

There is no response to the request-to~dump-field-
length message.

The host operator request-to-turn-AIP-traffic-
logging-on supervisory message (figure 3-62) is
sent from NAM to the application program when the
operator enters the K~display command:

K. LB=appname
The application program should call NETDBG to turn

ATP logging on and begin logging of network traffic
on the debug log file. (See section 6.) Note that

the application program must be loaded with NETIOD
for the AIP logging to occur. There is no response
to the request—to-turn—AIP-traffic-logging-on
message.

The host operator request~to~turn—AIP-traffic-
logging-off supervisory message (figure 3-63) is
sent from NAM to the application program when the
operator enters the K-display command:

K. LE=appname

The application program should call NETDBG to turn

AIP logging off and stop logging network traffic in
its debug log file. (See section 6.) There is no
response to the request—to-turn-AIP-traffic-logging-
off supervisory message.

59 51 49 43 0
ta hop {0 |0 | trace res
ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.
hop Primary function code D044. You can access this field with the reserved symbol PFC, as
described in section 4. 1Its value is the value of the reserved symbol HOP.
trace Secondary function code 2. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol TRACE.
res Reserved by CDC.
Figure 3-52. Host Operator Request-to-Turn-AIP-Traffic-Logging-On
(HOP/TRACE/R) Supervisory Message Format
59 51 49 43 0
ta hop |0 {0]| notr res
ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.
hop Primary function code DOq4. You can access this field with- the reserved symbol PFC, as
described in-section 4. Its value is the value of the reserved symbol HOP.
notr Secondary function code 7. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is the value of the reserved symbol NOTR.
res Reserved by CDC.

Figure 3-63. Host Operator Request-to-Turn-AIP-Traffic-Logging-0ff
: (HOP/NOTR/R) Supervisory Message Format

60499500 U

3-71

The host operator request-to-release-debug-log-file
supervisory message (figure 3-64) is sent from NAM
to the application program when the operator enters
the K-display command:

K. LR=appname

The application program should call NETREL to
release the debug log file. To ensure proper
processing of the debug log file, the application
program must have issued a prior NETREL call as
described in section 6. There is no response to
the request—to~release-debug-log-file supervisory
message.

The host operator request-to-restart-statistics—
gathering supervisory message (figure 3-65) is sent
from NAM to the application program when the opera-
tor enters the K-display command:

K.RS=appname

The application program should flush its statistics
counters, reset them to zero, and restart statistics
gathering. For this supervisory message to be
useful the application program should do at least
one of the following:

Restart AIP statistics gathering by calling
NETSTC (described in section 6) to turn AIP

e statistics gathering off or back on.

Restart any other statistical information
internal to the application program that can be
used to tune the particular application. The
application program can write such statistical
information oanto the AIP statistical file
ZZZZZSN by calling NETLGS (see section 6).

There 1is no response to the request—to-restart—
statistics—~gathering message.

59 51 49 43 0
ta hop |0 |O| rel res

ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

hop Primaéy function code D0qq. You can access this field with the reserved symbol PFC, as
described in section 4. 1Its value is the value of the reserved symbol HOP.

rel Secondary function code OD44. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol REL.

res Reserved by CDC.

Figure 3-64. Host Operator Request-to-Release-Debug-Log-File (HOP/REL/R) Supervisory Message Format

59 51 49 43 0
ta hop |0 |O rs res

ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

hop Primary function code D04¢4. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

rs Secondary function code 8. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol RS.

res Reserved by CDC.

Figure 3-65. Host Operator Request—to-Restart-Statistics—Gathering
(HOP/RS/R) Supervisory Message Format

3-72

60499500 U

HOST OPERATOR INTERFACE

Network applications can communicate with the host
operator through the NAM K-display. This requires
the application to be validated to use the NAM
K-display. This is dome by specifying the KDSP
parameter in the APPL statement for the application
in the local configuration file (see the Network
Definition Language reference manual).

Communication is done through the following
supervisory messages:

HOP Alert Supervisory
Message (HOP/ALT)

Application —~—-=> NAM

HOP Break Supervisory
Message (HOP/BRK)

Application <{--- NAM
HOP Command Supervisory Application <{--- NAM
Message (HOP/CMD)

HOP Dayfile Supervisory Application —--> NAM
Message (HOP/DAY)

HOP Display Supervisory Application —~-=-> NAM
Message (HOP/DIS)

HOP End Supervisory
Message (HOP/END)

Application <{-—— NAM

HOP ignore Supervisory
Message (HOP/IG)

Application <--- NAM

HOP Log Supervisory Application —-—-> NAM

Message (HOP/LG)
HOP Page Supervisory Application <-—-- NAM
Message (HOP/PAGE)

HOP Start Supervisory
Message (HOP/START)

Application <{-—-- NAM

Initially, the application is not assigned the NAM
K-display. In this state, the application can
receive the HOP/IG supervisory message. This
occurs when the host. operator informs the applica-
tion that he no longer wishes to be informed of any
alert conditions from this application. The appli-
cation can also receive the HOP/START supervisory
message. This occurs when the host operator
assigns the K-display to this application. If the

K-display is not assigned to the application, but
the application needs to alert the host operator
about an error condition, then the application
should send the HOP/ALT supervisory message (unless
the application has previously received a HOP/IG
supervisory message, in which case the HOP/ALT
supervisory message is discarded by NAM).

When the K-display is assigned to the application,
the application should immediately respond with a
HOP/DIS supervisory message to send data to the NAM
K-display. Host operator entries are passed to the
application through the HOP/CMD supervisory mes—
sage. The application and the host operator can
thus communicate with each other through the
HOP/DIS and the HOP/CMD supervisory messages. If
the host operator is no longer interested in seeing
information that he requested, the host operator
can type the break key in which case NAM sends a
HOP/BRK supervisory message to inform the applica-
tion. The application should then discontinue
sending more data to the K-display and wait for the
next operator command.

Since the K-display ianterface does not provide any
paging capability, the application is responsible
for all paging. The HOP/PAGE supervisory message
allows the host operator to inform the application
when he wants paging turned on or off or when he
wants to see the next page of data.

When the host operator is no longer interested in
communicating with the application, he terminates
the K-display assignment to the application. When
this occurs, the application receives a HOP/END
supervisory-message.

Whether the K-display is assigned to the
application or uwot, the application that is
validated for the NAM K-display can send messages
to NAM"s dayfile at any time. This is done by
sending a HOP/LG supervisory message.

The host operator alert supervisory message (figure
3-66) is sent from the application to NIP when the
application needs to provide the operator with
information. If the application is not in ignored
status, NIP adds the application name to the
K-display alert line. If the application is in
ignored status, NIP rejects the supervisory message
and sends a host operator ignore supervisory
(HOP/IG) message. There 1s no response to this
message.

59 51 49 43 0
ta hop |0 |0O]| alt res

ta Symbolic address of the application program"s text area receiving this asynchronous super-
visory message.

hop Primary function code DOqg. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

alt Secondary function code B. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is the value of the reserved symbol ALT.

res Reserved by CDC. Reserved fields contain zero.

Figure 3-66. Host Operator Alert (HOP/ALT/R) Supervisory Message Format

60499500 U

The host operator break supervisory message (figure
3-67) 1is sent from NIP to the application program
when the operator enters the break character at the
console. If NIP was rejecting operator entries
because the application has not yet responded to
the previous operator entry, the application sends
a HOP/DIS supervisory message to NIP with the
input-allowed flag set and input is allowed again.

The host operator command supervisory message
(figure 3-68) is sent from NIP to the application
when the operator enters a command on the K-display
and the K-display is assigned to the application.
This supervisory message contains the operator
entry. The application must respond with a host
operator K-display supervisory message before NIP
allows any other operator entries except *, /, +,
or -.

The operating system records all K-display entries
made by the .host operator into the NAM and system
dayfiles. Tf a network application program that is
communicating with the host operator does not want
this to occur, the application program can send the
host dayfile supervisory message (figure 3-69) rto
NIP with the dayfiling flag set to terminate
recording of K-display entries. If the .K-display
is not assigned to the application program when
this supervisory message is sent, NIP ignores the
supervisory message. There is no response to this
message.

The network dayfile message supervisory message
(figure 3-70) is sent from the application to NIP
when the application wants to write a message into
NIP“s job dayfile. There is no response to this
message. The application program must be validated
for K-display use in order for NIP to accept this
supervisory message.

59 51 49 43 0
ta hop |0 |0 | brk res

ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

hop Primary function code D044 You can access this field with the reserved symbol PFC, as
described in section 4. 1Its value is the value of the reserved symbol HOP.

brk Secondary function code 0. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is the value of the reserved symbol BRK.

res Reserved by CDC. Reserved fields contain zero.

Figure 3-67. Host Operator Break (HOP/BRK/R) Supervisory Message Format
59 51 49 43 17 0
ta hop |0 |0]| cmd res dtl
message

ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

hop Primary function code DOqgq. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

cmd Secondary function code 1. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol CMD.

res Reserved by CDC. Reserved fields contain zero.

dtlL Character length of the operator typein. You can access this field with the reserved
symbol DTL, as described in section 4.

message Operator input in display code, left-justified, and binary zero filled.

Figure 3-68. Host Operator Command (HOP/CMD/R) Supervisory Message Format

3-74

60499500 U

59 51 49 43 0
ta hop |0 {0 day res f
ta Symbolic address of the application program's text area receiving this asynchronous supervisory
message.
hop Primary function code D0q4g- You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.
day Secondary function code 104¢- You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol DAY.
res Reserved by CDC. Reserved fields contain zero.
f Flag indicating whether K-display entries made by the host operator are recorded in the NAM and
system dayfiles. This field has the following values:
0 Turns off the dayfiling of K~display entries
1 Turns on the dayfiling of K-display entries
Figure 3-69. Host Dayfile (HOP/DAY/R) Supervisory Message Format
59 51 49 43 0
ta hop |0 |O lg res
text
ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.
hop Primary function code DOq4. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.
lg Secondary function code Aqg. You can access this field with the reserved symbol SFC, as
described. in section 4. Its value is the value of the reserved symbol LG.
res Reserved by CDC. Reserved fields contain zero.
text Text of the dayfile message, 1- to 8-words in display code, right-justified and terminated

with at least 12 bits of zero.

Figure 3-70.

The K-display supervisory message (figure 3-71) is
sent from the application to NIP when the applica-
tion has the K-display assigned to it and has data
to send to the operator. NIP maintains a 32 1line
buffer for the application. Data messages sent by
the application are always added to the bottom of
the 32 1line buffer. Older data messages are
scrolled up until they disappear off the top of the
screen. To clear the entire buffer, the applica—
tion must send 32 lines. If the application does
not have the K-display buffer assigned to it, NIP
ignores the supervisory message. There 1is no
response to the message.

60499500 U

Network Dayfile (HOP/LG/R) Supervisory Message Format

The host operator end display supervisory message

(figure 3-72) is sent by NIP to inform the
application that the K-display is uno longer
assigned to it. There 1is no response to this
message.

The host operator ignore supervisory message

(figure 3-73) is sent from NIP to the application
when the operator informs NAM that he no longer
wishes to be informed about the application”s
requests for K-display service. If the application
should send a HOP/ALT/U supervisory message to NIP

anyway, NIP rejects it and sends another HOP/IG/U
supervisory message to the_ application. There is
no response to this message.

3-75

59 51 49 43 10
ta hop |0 |0} dis res s i
data message
res
ta Symbolic address of the application program's text area receiving this asynchronous super:r
visory message.
hop Primary function code D0Oq4. You can access this field with the reserved symbol PFC, as
s described in section 4. Its value is the value of the reserved symbol HOP. .
dis Secondary function code 9. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol DIS.
res Reserved by CDC. Reserved fields contain zero.
s Screen flag indicating which screen the display message is on. This field can have the
following values:
0 Indicates the display message is on the lLeft screen.
1 Indicates the display message is on the right screen.
i Input allowed flag. This flag is set to 1 by the application when it is ready for further
input from the host operator. NIP will reject all input from the host operator until a
HOP/DIS supervisory message is sent with the flag set.
data The data to be displayed on the K-display. This message must be in display code and can
message contain up to page length lines. Each Line can contain a maximum of 60 characters and must
be terminated by 1 to 5 zero bytes. The page length is specified on the HOP/START message
for both the teft and right screens of the K-display.
Figure 3-71. Host Operator K-Display Data (HOP/DIS/R)
Supervisory Message Format
59 51 49 43 17]}
ta hop |0 |0| end res abn
ta Symbolic address of the application program s text area receiving this asynchronous super-—
visory message.
hop Primary function code DO44. You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.
end Secondary function code 6. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol END.
res Reserved by CDC. Reserved fields contain zero.
abn Application block number from the application block header of the Last HOP/DIS/U supervisory
message displayed by NIP.
Figure 3-72. Host Operator End Display (HOP/END/R)
Supervisory Message Format
3-76 60499500

59 51 49 43 0
ta hop |0 |0] ig res

ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.

hop Primary function code D04, You can access this field with the reserved symbol PFC, as
described in section 4. Its value is the value of the reserved symbol HOP.

ig Secondary function code 4. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the value of the reserved symbol IG.

res Reserved by CDC. Reserved fields contain zero.

Figure 3-73. Host Operator Ignore (HOP/IG/R) Supervisory Message Format

The host operator page supervisory'message (figure
3-74) 1is sent from NIP to the application when the
operator enters either of the characters + or - at
the console.

The host operator start supervisory message (figure
3-75) is sent from NIP to the application when the
operator assigns the K-display to the applicatioan.
The application is then allowed to send messages
via the HOP/DIS/C wmessage to NAM”s K-display.
There is no response to this message.

29 0

59 51 49 43 35
ta hop |0 |0] page res pc res

ta Symbolic address of the -application program's text area receiving this asynchronous super-
visory message.

hop Primary function code D044. You can access this field with the reserved symbol PFC, as
described in section 4. 1Its value is the value of the reserved symbol HOP.

page Secondary function code C14. You can access this field with the reserved symbol SFC, as
described in section 4. 1Its value is the value of the reserved symbol PAGE.

res Reserved by CDC. Reserved fields contain zero.

pc Page character (+ or -) specified in display code.

Figure 3-74. Host Operator-Page (HOP/PAGE/R) Supervisory Message Format

60499500 U

3-77

59 51 49 43 23 11 0
ta hop |0 |0 |start res Lsize rsize
ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.
hop Primary function code DOq4. You can access this field with the reserved symbol PFC, as

described in section 4. Its value is the value of the reserved symbol HOP.

start Secondary function code 5. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is the.value of the reserved symbol START.

res Reserved by CDC. Reserved fields contain zero.
Lsize Page length of the left screen.
rsize Page length of the right screen.

Figure 3-75. Host Operator Start (HOP/START/R) Supervisory Message Format

HOST SHUTDOWN

Conditions sometimes require the host operator to
terminate network operations or to abort the appli-
cation program. The host operator can shut down
the entire data communications network or portions
of the network, element by element, including
executing application programs.

The operator has two shutdown optioas available.
The operator can select an idle-down option that
permits gradual termination of operations, usually
as a normal part of network service. The operator
can also select a disable option; this option
requests immediate termination of application pro—
gram operations and can either follow selection of
the idle-down option or be independently selected.

The type of shutdown determines the shutdown proc—
essing that should be performed by the application
program. Figure 3-76 illustrates the three asyn-
chronous supervisory message sequences that can
occur during shutdown operations. The first
sequence begins when an idle~down option is selec-
ted; the application program receives an advisory
shut-down message, shuts down 1its connections
gracefully,and terminates network access without
additional network or host operator action. The
second sequence begins when a disable option is
selected; the application program receives a mam
datory shut-down message and should not attempt to
terminate connections gracefully. The third
sequence is a hybrid of the first two; if insuffi-
cient time elapses between selection of an idle-
down option and selection of a disable option, the
application program can terminate some of its con—
nections gracefully, but not all of them.

The Network Access Method does not attempt to force
the termination of applications that do not call
NETOFF in response to an idle-down or disable
request. Normal termination of network operations,
however, depends on correct application behavior.
Applications that do not eventually call NETOFF
after receiving an idle or disable request must be
dropped by the host operator. This then permits
normal termination of the network software.

Figure 3-77 shows the two forms of the host-shutdown

supervisory message. The application program does
not issue a response to this supervisory message.

3-78

Application Nam Messége
-€ SHUT/INSD/R
(idle-down)

. o CON/END/R

-€ CON/END /N

The application program fetches all queued
upline blocks from all terminals or other appli-
cation programs, then ends all connections prior
to a shutdown of the network.

The application program can then disconnect from
the network with a call to the AIP routine
NETOFF. (See section 5.)

Application NAM Message
- SHUT/INSD/R
(disable)

The application program must perform an imme-
diate call to NETOFF to avoid being aborted by
system console operator commands during the
network shutdown in progress.

Application NAM Message
- SHUT/INSD/R
(idle-down)

> ’ CON/END/R

-t CON/END /N
- SHUT/INSD/R

(disable)

The application program fetches as many queued
upline blocks as possible and ends as many
connections as possible prior to shutdown of the
network, then issues its NETOFF call immediately
after receipt of the second shutdown message.

Figure 3-76. Host Shutdown Supervisory
Message Sequences

60499500

59 51 49 43 0
ta shut |0 |0 insd res i
ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message.
shut Primary function code 4294, You can access this field with the reserved symbol PFC, as
described in section 4. Its value is defined as the value of the reserved symbol SHUT.
insd Secondary function code 6. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol INSD.
res Reserved by CDC.
i Indicator for type of shutdown message. This field can have the values:
0 This is a normal (warning) message of a pending network shutdown. The network

software will not permit any more logical connections to be established, but the
application program can inform existing connections of the shutdown, fetch queued
input data“ from all connections, and voluntarily end all connections before
issuing a NETOFF call. (See section 5.)
1 Network shutdown is beginning. The application cannot send or receive blocks on
any existing connection and no more logical connections can be established. The
application program must issue a NETOFF call immediately without ending any
existing connections. (See section 5.)

You can access this field with the reserved symbol SHUTF as described in section 4.

Figure 3-77. Host-Shutdown (SHUT/INSD/R) Supervisory Message Format

ERROR REPORTING

The primary mechanism used by the network software
to indicate logic errors to an application program
is an asynchronous supervisory message. In all
cases, the message sequence for this mechanism con-
sists of a single message (figure 3-78). The mes—
sage used in this sequence is the logical-error
supervisory message, shown in figure 3-79. The
application program does not send a response to
this supervisory message.

Application NAM Message
- ERR/LGL/R

Figure 3-78. Logical-Error Supervisory
Message Sequence

As indicated by the reason codes included in the
message, many conditions are considered to be
logical errors by ..the- network software. The
simpler conditions are completely defined within
the figure; more details-are described here.

The rc field value of 1 is received when:

On an application~to-application connection,
the application connection specified an
application character type of 4 either in the
application block header or in a change-input-
character—-type supervisory message.

For a supervisory message the application

specified an application character type other
than 1, 2, or 3 in the application block header.

60499500 U

On an application-to-device connection, an
application character type other than 2, 3, or
4 was used 1n a downline block header or 1in a
change=~input—character—type supervisory message.

The rc field value of 4 is received when:

The application connection number iavolved is
out-of-range for the application program and
therefore nonexistent. Connection numbers uot
yet assigned to the application program, or
greater than maxacn, are out of range.

Application connection number O 1s specified
in a change-connection-1list or turn-list-
processing-off supervisory message.

The rc field value of 5 is received when the
application program 1is not using a flow control
monitoring mechanism, such as that described
earlier 1in this section. The downline block
causing the block 1limit to be exceeded 1s
discarded. The application program should not
transmit any more downline blocks wuntil it has
received at 1least one block-delivered message
upline.

The rc field value of 6 1is received when the
network software attempts to protect itself from
application program flaws in supervisory message
processing logic. -A partial limit imposed on the
number of logical errors permitted for an appli-
cation program prevents the application program
from deadlocking the network in such cases. This
limit applies only to logical-error messages queued
for the application program. The limit keeps the

3-79

program from committing large numbers of errors in
downline transmissions without periodically
fetching asynchronous supervisory messages sent
upline to identify the errors. The 1limit is
implemented as follows:

Each time the network software sends an asyn—
chronous logical-error message to the applica-
tion program, a limit counter for the program
is incremented by one.

Each time the application program fetches all

queued asynchronous supervisory messages it has .

outstanding, the 1limit counter for the program
is reset to zero.

When the limit counter for the program reaches
100, a logical-error message with the rc field
value of 6 is queued for the program. Until
the application program fetches all queued
asynchronous supervisory messages it has out-—
standing, any downline transmission by the
program that causes a logical-error message
condition 1is discarded by the network software
without being processed.

When the 1imit counter reaches 100, additional
asynchronous supervisory messages might already be
buffered by AIP. 1In this case, the maximum number
that must be fetched to clear the counter may be as
high as 121.

central memory words.

transmissions.

by the application program.
CON/ACRQ/A supervisory messages are ignored.

59 51 49 43 35 0
ta err |0]0] gl rc res’
firstwrd
ta Symbolic address of the application program's text area receiving this asynchronous super-
visory message. ’ .
err Primary function code 8444. You can access this field with the reserved symbol PFC, as

described in section 4. Its value is defined as the value of the reserved symbol ERR.

Lgl Secondary function code 1. You can access this field with the reserved symbol SFC, as
described in section 4. Its value is defined as the value of the reserved symbol LGL.

rc Reason code identifying the cause of the message. This field can contain the values:

1 An invalid act value was specified in the block header of a downline data block
or in a DC/CICT/R message.

2 An invalid tlc was encountered; either the value in the block header of a
downline block was greater than 2043, or the length of the block exceeded 410

3 An invalid abt value was specified in the block header of a downline block.
The value was not 1, 2, 3, 6, or 7.

4 An invalid acn value was encountered in the block header of a downline data block,
in a synchronous supervisory message, or in an asynchronous supervisory message.

5 The application block Limit of the connection has been exceeded for downline

6 A total of 100 ERR/LGL/R and/or CON/ACRQ/A supervisory messages have been queued
for the application program and have not been picked up by the application
program. No more ERR/LGL/R or CON/ACRQ/A supervisory messages can be queued for
the application program until all asynchronous supervisory messages are fetched

ALL downline messages which cause ERR/LGL/R or

7 An invalid or illogical asynchronous supervisory message was encountered; either
the combined primary and secondary function codes of the message are not a valid
value, or the message is not permitted as part of supervisory message sequences
currently in progress with the application program, or a synchronous 'supervisory
message- was sent on connection 0.

Figure 3-79. Logical-Error (ERR/LGL/R) Supervisory Message Format (Sheet 1 of 2)

3-80

60499500 V

8 A fragmented input or output error has occurred; a call to NETPUTF, NETGETF, or
NETGTFL causes this supervisory message when the block involved in the call con=
tains more than 40 fragments, contains a fragment of more than 63 words, or the
total block Length in words is inconsistent with the call's tlmax parameter or
the block header's tlc value.

9 Either a block of type 6 or 7 was sent on a device-to-application connection, a
block of type 1 or 2 was sent after a block of type 6, or a block of type 6 or 7
was sent after a block of type 1.

10 An invalid tlc was encountered; in this case, the value of the tlc specified was
less than the minimum size required for the supervisory message.

12 An application is not allowed to send data blocks on a connection it has
established with a passive device of device types 1 through 4.

13 Reserved by CDC for network software use.
thru
15

16 Reserved for the NAM subsystem.
thru
256

You can access this field with the reserved symbol RC, as described in section 4.
res Reserved by CDC.

abherr Application block header word associated with the supervisory message that caused the
ERR/LGL/R message. This field contains a non-zero word unless the rc value is 7. You can
access this field with the reserved symbol ERRABH, as described in section 4.

firstwrd The first 60 bits of the supervisory message causing the ERR/LGL/R message are placed in this
field if the network software can supply the information. This field contains a non-zero
word unless the rc value is 7. You can access this field with the reserved symbol ERRMSG, as
described in section 4.

Figure 3-79. Logical-Error (ERR/LGL/R) Supervisory Message Format (Sheet 2 of 2)

60499500 U 3-81

USER PROGRAM INTERFACE DESCRIPTIONS 4

“

This section describes the language interface
requirements of an application program, the inter-
facing utilities available to a program, and those
aspects of network software internal interfacing
that affect program use of certain Network Access
Method (NAM) features. However, this manual does
not attempt to describe all network software inter-—
faces. Portions of the network software that exe-
cute as application programs use supervisory mes-
sages that are either not discussed in this manual
or else that are modified from the format presented
in this manual. This section treats only those
areas of interface that are properly used by an
installation-written application program.

LANGUAGE INTERFACES

Application program use of the Application Interface
Program (AIP) is essentially independent of the
language used to code the application program.
Parameter 1list and calling sequence requirements
are the same for COMPASS assembler language and
compiler—-level languages. The residence of the AIP
routines, the form of the calling sequences, and
the utilities available to the application program
differ for COMPASS and compiler-level languages.

PARAMETER LIST AND CALLING
SEQUENCE REQUIREMENTS

The AIP statements and interfacing utilities use
FORTRAN-style calling sequences and parameter lists;
that is, a parameter list contains one 60-bit word
per parameter. The address of this parameter list
is passed to the appropriate routine in register Al.
Linkage with the statement within the application
program is performed by executing a return jump
instruction (RJ) to the entry point. To provide
compact object code, traceback information is not
generated, and the parameter list need not be fol-
lowed by a word of zeros.

Because the statement parameters are passed by
address .(called by reference), the NAM programmer
should be careful about substituting values when
defining the parameters. Those parameters identi-
fied as return parameters should not be specified
as constants or expressions in the call statement.
Such specifications can produce unpredictable errors
in program code. This restriction is compatible
with normal FORTRAN programming practices.

Return parameters are normally defined by variable
names, array names, array element names, or similar
symbolic addresses. Since the terminology for such
entities varies according to the programming lan-
guage used, this manual uses the term symbolic
address for all such possibilities. Unless other-
wise stated, numeric absolute or relative addresses
are not used in call statements.

60499500 R

Those parameters identified as input parameters can
be defined by constants, expressions that can be
evaluated to produce constants, or symbolic
addresses (as defined above). Input parameters are
usually defined by constants or expressions; this
manual uses the term value for all such possibil-
ities.

All AIP statement parameters used by a COBOL program
must be described in the Data Division as level 0l
data entries, or data entries at other levels when
the entries are left-justified to word boundaries.
COBOL 5 programs that access fields within param-
eters must also describe the fields in the Data
Division as COMP-4 numeric data entries to manipu-
late values within the fields as 6-bit entities.
Direct field access and AIP use is difficult using
COBOL; COMPASS macros or FORTRAN subroutines are
sometimes necessary to set up parameters before AIP
calls or to unpack them after AIP calls.

All direct calls from a COBOL program to AIP must
be coded as calls to FORTRAN-X subroutines. Refer
to section 5. Indirect use of AIP by a COBOL pro-
gram is also possible; refer to the Queued Terminal
Record Manager description later in this section.

The AIP statement calling sequence does not permit
recursive calls.

PREDEFINED SYMBOLIC NAMES

The fields in NAM supervisory messages of appli-
cation character types 1 and 2 have been assigned
symbolic names so that they can be identified to
the utilities .described later in this section.
These names are display-coded Hollerith characters
and are listed and defined in table 4-1. The
capitalized symbol appears as it should be used in
calls to NFETCH or NSTORE. The symbols are arranged
alphabetically within the table.

Each symbol -consists of the characters identifying
its field within a message, combined with characters
identifying the specific message or group of mes-—
sages. For example:

All primary function code fields can be accessed
through the symbol -PFC.

All fields in messages with the primary func-
tion code mnemonic CON begin with CON; the
application list number field in such messages
is therefore CONALN.

All fields in the application block header word
can be accessed through symbols beginning with
ABH.

Some symbols are restricted to use in certain con-
texts. For example, the FORTRAN 5 call:

IVAL=NFETCH(O,L"CONEND")

returns the primary and secondary code value for
the corresponding fields in a CON/END/R message;
however, the FORTRAN 5 call:

CALL NSTORE(SMTA,L"CONEND",IVAL)

causes an error message indicating that the symbol
CONEND is unrecognized. The symbol is unrecognized
because 1its context is incorrect. The correct
FORTRAN call to store the information is:

CALL NSTORE(SMTA,L"PFCSFC",IVAL)
or the call:
CALL NSTORE(SMTA,L"PFCSFC",L"CONEND")

There are no predefined names for the AIP statement
parameters described in section 5.

PREDEFINED SYMBOLIC VALUES

Some of the supervisory message fields with pre-
defined symbolic names have predefined values that
can be obtained through the utilities described
later in this section. Values for such names are
given in table 4-1, where the names are listed
alphabetically.

You can obtain the value assigned to a given sym-—
bolic name in the released version of the network
software by using a form of the NFETCH utilities.
The NFETCH utilities comprise a macro that can be
called by a COMPASS program, and a similar subrou-
tine that can be called by a program written in a
high-level language.

Be careful in using names with predefined values;
in some instances, a name and corresponding value
have been assigned to a group of fields. Choosing
a wrong name in a utility call can fill more fields
than the programmer intends. The NAM programmer
should become familiar with all of the predefined
symbolic names before using the interfacing utili-
ties.

COMPASS ASSEMBLER LANGUAGE

Application programs coded in COMPASS wuse AIP
statements that make macro calls. These AIP macros
reside in the system text library NETTEXT.

Packing and unpacking supervisory message blocks in
a COMPASS program is easily accomplished using the
interfacing wutilities NFETCH' and NSTORE. These
field access utilities also reside in the system
text library NETTEXT. An application program using
either utility must first contain calls to SST and
NETMAC, ,

Application Interface Program Macro
Call Formats

For those AIP statement calls with parameters, three
forms of the COMPASS macro call are possible:

[label] macro-name parameters

This is the format of the standard call,
which produces the full calling sequence.

[labell] macro-name {LIST=labe12 - }
LIST=register name

When this format is used, macro expansion
assumes that the proper calling parameter
block is located at the address specified
by the LIST value, loads this address into
register Al, and performs the call to the
AIP procedure.

label2 macro-name parameters, LIST

When this format is used, macro expansion
produces a parameter block in place but
does not generate the call to the AIP pro-
cedure; the address of the statement using
this form is the address used in the second
form.

Use the first form when making a straightforward
call to the AIP procedures. Use the second form
once the parameter list has been created elsewhere
with the third form. The second and third forms
save space whgn procedures are used several times.

Example 1:
NETPUT IHA,ITA

This statement is a direct call to execute the
NETPUT macro with the two symbolic address param-
eters shown.

Example 2:
PUT1 NETPUT IHA,ITA,LIST

This statement expands the NETPUT macro and creates
the indicated parameter 1list at symbolic address
PUT1 but does not execute NETPUT.

Example 3:
NETPUT LIST=PUT1

This statement actually executes the NETPUT macro
with the parameters in the list expanded at location
PUTI1.

If a macro call is issued with an error, the COMPASS
assembler flags the error and provides an explana-
tion during assembly of the macro. A complete
listing of the assembly error messages from AIP-
related macros is provided in appendix B.

A summary of all the macro call formats available
appears in appendix D.

60499500 R

TABLE 4-1. RESERVED SYMBOLS

Predefined
Symbol Entity Defined by Symbol Integer Value

ABHABN Application block number field in application block header for all upline or None
downline blocks

ABHABT Application block type field in application block header for all upline or None
downline blocks

ABHACT Application character type field in application block header for all upline None
or downline blocks

ABHADR Process number address field in application block header for supervisor pro-— None
gram upline or downline blocks (system use only). Application connection
number field in application block header for all application program upline
or downline blocks.

ABHBIT Parity error flag bit in application block header for upline (input) blocks. None
Auto-input mode flag bit in application block header for downline (output)
blocks.

ABHCAN Cancel previous blocks bit in application block header for upline (input) None
blocks. Punch banner.(lace) card bit in application block header for down-
line (output) blocks.

ABHIBU Input block undeliverable bit in application block header for upline (input) None
blocks

ABHNCP No cursor positioning flag bit in application block header for downline None
(output) blocks.

ABHNEP No echoplex flag bit in application block header for downline (output) None
blocks.

ABHNFE No format effectors flag bit in application block header for downline (out- None
put) blocks

ABHTLC Text-length—in-character-units field in application block header for all None
aupline or downline blocks

ABHTRU Truncation occurred bit in the application block header for upline (iaput) None
data or supervisory message blocks

ABHWORD Application block header word for all upline or downline blocks None

ABHXPT Transparent mode transmission bit in application block header for all upline None
or downline blocks

ACCON Application character type of CON supervisory messages, for use in applica- 1
tion block header

ACCTRL Application character type of CIRL supervisory messages, for use in applica- 2
tion block header

ACDBG Application character type of DBG supervisory messages, for use in applica- 1
tion block header

ACDC Application character type of DC supervisory messages, for use in applica— 1
tion block header

ACERR Application character type of ERR supervisory messages, for use in applica- 1
tion block header

ACFC Application character type of FC supervisory messages, for use in applica- 1
tion block header

ACHOP Application character type of HOP supervisory messages, for use in applica- 1
tion block header -

ACIFC Application character type of IFC supervisory messages, for use in applica- 1

60499500 W

tion block header

4-3

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol Ir}::z‘gizﬁi “}:‘;ue
ACINTR Application character type of INTR supervisory messages, for use in applica—- 1
tion block header
ACK Secondary function code field for FC/ACK/R 2
+ ACLST Application character type of LST supervisory messages, for use in applica- 1
tion block header
ACRQ Secondary function code field for CON/ACRQ messages 2
ACSET Application character type of SET sgpervisory messages, for use in applica- 1
tion block header
ACSHUT Application character type of SHUT supervisory messages, for use in applica- 1
tion block header
ACTCH Application character type of TCH supervisory messages, fof use in applica- 1
tion block header
ALT Secondary function code field in HOP/ALT/R B
APP Secondary function code field for INTR/APP/R 2
BIL Primary function code field for BI/MARK/R CA16
BIMARK Primary and secondary function code fields for BI/MARK/R, including EB and CA00~16
RB fields as zero
BRK Secondary function code field for FC/BRK/R and HOP/BRK/R 0
CB Secondary function code field for CON/CB/R 5
CCD Secondary function code field for CON/CCD/R 0C; ¢
CHAR Secondary function code field for CTRL/CHAR/R 816
CICT Secondary function code field for DC/CICT/R 0
CMD Secondary function code field in HOP/CMD/R 1
CON Primary function code field for connection management (CON) supervisory messages 6316
CONAABL Application block limit field in CON/ACRQ/R None
CONABN Application block number fieldhof CON/REQ/R W:ﬁone ’
CONAABN Application block number field of CON/ACRQ/R None.
CONAAWC User validation control word in CON/REQ/R None
CONABL Application biock 1imit field in CON/REQ/R None
CONABN Application block number field of CON/ACRQ/R None
CONABZ Block size in connection management (CON) supervisory messages None
CONACN Application connection number field in connection m;nagement (CON) None
supervisory messages
CONACR Primary and secondary function code fields for CON/ACRQ/R, including EB and RB 630216
fields as zero
CONACRA Primary and secondary functioﬁ code fields‘in CON/ACRQ/A including‘EB field 638216
set to !}
4= 60499500 W

TABLE 4-1. RESERVED SYMBOLS (Contd)

Predefiaed

Symbol Entity Defined by Symbol Integer Value
CONACT Application fnput character type field in CON/REQ/N None
CONADBL Downline block limit field in CON/ACRQ/R None
CONADBZ Downline block size field in CON/ACRQ/R None
CONAHDS User validation control word in CON/REQ/R None

60499500 W 4=4,1/6-4.2 I

TABLE 4-1. RESERVED SYMBOLS (Contd)

60499500 V

Symbol Entity Defined by Symbol Iii:::iisziue
CONAHMT User validation control word in CON/REQ/R None
CONAHWS User validation control word in CON/REQ/R None
CONALID Logical identifier field in CON/ACRQ/R None
CONALN Application list unumber field in CON/REQ/N None
CONANM Requesting application program name in CON/REQ/R None
CONANM2 NAME2 outcall identifier field in CON/ACRQ/R None
CONAPRI Priority flag field in CON/ACRQ/R None
CONATWD User validation control word in CON/REQ/R None
CONAUBL Upline block limit field in CON/ACRQ/R None
CONAUBZ Upline block size field in CON/ACRQ/R None
CONAUDL Length of call user data in CON/ACRQ/R None
CONAWS Send window size field in CON/ACRQ/R None
CONCB Primary and secondary function code fields for CON/CB/R, including EB and RB 630516

fields as zero
CONDBZ Downline block size in CON/REQ/R None
CONDPLS Send data packet length in CON/ACRQ/R None
CONDT Device type field in CON/REQ/R None
CONEND Primary and secondary function code fields in CON/END/R, including EB and RB 630616
fields as zero
CONENDN Primary and secondary code fields in CON/END/N including RB field set to 1 634616
CONFACN Number of facility groups in CON/ACRQ/R None
CONFAM Login family name field in CON/REQ/R None
CONFO Login family ordinal field in CON/REQ/R None
CONHID Host node field in CON/REQ/R None
CONICT Application input character type field in CON/REQ/N None
CONLOAN Loaned connection status field in CON/REQ/R, CON/CB/N, and CON/END/R None
CONNET Network type field in CON/REQ/R None
CONNXP No transparent data field in CON/REQ/N None
CONORD ‘Device ordinal field in CON/REQ/R None
CONOWNR Terminal name field in CON/REQ/R None
CONPAR First word of parameters in CON/REQ/R None
CONPL Page length field in CON/REQ/R None
CONPW Page width field in CON/REQ/R None
CONR Restricted interactive capability field in CON/REQ/R None
CONRAC Reason code field in CON/REQ/N and CON/REQ/A None

TABLE 4-1.- RESERVED SYMBOLS (Contd)

. : Predefined

Symbol Entity Defined by Symbol Integer Value

CONRCB Reason code field in CON/CB/R None

CONREQ .Primary and secondary function code fields in CON/REQ/R, including EB and RB 63001
fields as zero b

CONREQA Primary and secondary function code fields in CON/ACRQ/A including EB field B 63801,
set to 1 °

CONREQN Primary and secondary function code fields in CON/REQ/N including RB field 634016
set to 1

CONSCT Synchronous message type field in CON/REQ/R None

CONSDT Subdevice type field in CON/REQ/R None

CONSL Security limit field in CON/REQ/R None

CONT Terminal class field in CON/REQ/R None

CONTNM Terminal name field in CON/REQ/R None

CONUBZ Upline block size in CON/REQ/R None

CONUDL Length of call user data in CON/REQ/R None

CONUI User index field in CON/REQ/R None

CONUSE User name field in CON/REQ/R None

CONXBZ Transmission block size field in CON/REQ/R None

CTRCHAR Primary and secondary function code fields in CTRL/CHAR/R, including EB and RB C108lb
fields as zero

CTRCTD Primary and secondary function code fields in CTRL/CTD/R, including EB and RS Cll.)z16
fields as zero

CTRDEF Primary and secondary function code fields in CTRL/DEF/R, including EB and RB 010416
fields as zero

CTRL Primary functioun code field in terminal control (CTRL) supervisory messages 0116

CTRLCCD Primary and secondary function code fields for CTRL/CCD/R, including EB and RB ClOC16
fields as zero

CTRLRCC Primary and secondary function code fields for CTRL/RCC/R, including EB and RB ClOB16
fields as zero '

CTRRTC Primary and secondary function code fields for CTRL/RTC/R, including EB and RB C109lb
fields as zero

CTRTCD Primary and secondary function code fields in CTRL/CHAR/R, including EB and RB CIOA16
fields as zero

DAY Secondary function code field in HOP/DAY/R 10

DB Secondary function code field in HOP/DB/R Elg

DC Primary function code field in DC/CICT/R Czlb

DCACN Application connection number field in DC/CICT/R or DC/STMR/R None

DCACT Application character type field in DC/CICT/R None

DCCICT Primary and secondary function code fields in DC/CICT/R, iﬁcluding EB and RB CZOOlb
fields as zero

4=6 60499500 v

TABLE 4~1. RESERVED SYMBOLS (Contd)

60499500 Vv

Predefined

E

Symbol ntity Defined by Symbol Integer Value

DCNXP No transparent data field in DC/CICT/R None

DCPERMT Permanent timer change field in DC/STMR/R None

DCSCT Synchronous message character type field in DC/CICT/R None

DCSTMR Primary and secondary function code fields in DC/STMR/R, including EB and RB 020216
fields as zero

DCTIME Time field in DC/STMR/R None

DCTRU Primary and secondary function code fields in DC/TRU/R, including EB and RB CZOl16
fields as zero

DE Secondary function code field in HOP/DE/R F16

DEFF Secondary function code field in CTRL/DEF/R 4

DIS Secondary function code field in HOP/DIS/R 9

DU Secondary function code field in HOP/DU/R 3

EB Error bit in all supervisory messages None

ENDD Secondary function code field in CON/END/R and HOP/END/R 6

ERR Primary function code field in ERR/LGL/R 8416

ERRABH Application block header word in ERR/LGL/R None

ERRLG Reason code field in ERR/LGL/R None

ERRLGL Primary and secondary function code fields in ERR/LGL/R, including EB and RB 840116
fields as zero

ERRMSG First message text word in ERR/LGL/R None

FC Primary function code field in flow control (FC) supervisory messages 8316

FCACK Primary and secondary function code fields in FC/ACK/R, including EB and RB 830216
fields as zero

FCACN Application connection number field in flow control (FC) supervisory messages None

FCBRK Primary and secondary function code fields in FC/BRK/R, including EB and RB 8300,
fields as zero

FCINA Primary and secondary function code fields in FC/INACT/R, including EB and RB 830/016
fields as zero

FCINIT Primary and secondary function code fields in FC/INIT/R, including EB and RB 830716
fields as zero

FCINITN Primary and secondary function code fields in FC/INIT/N including RB field 834716
set to 1

FCNAK Primary and secondary function code fields in FC/NAK/R, including EB and RB 830316
fields as zero

FCRBR Reason code field in FC/BRK/R None

FCRST Primary and secondary function code fields in FC/RST/R, including EB and RB 830116
fields as zero .

FCUTF User specified timeout field in FC/INACT/R None

4-7

TABLE 4-1. RESERVED SYMBOLS (Contd)

i Predefined
E
Symbol ntity Defined by Symbol Integer Value

FDX Secondary function code field in LST/FDX/R 3

HDX Secondary function code field in LST/HDX/R 4

HOP Primary function code field in host operator (HOP) supervisory messages DO16

HOPALT Primary and secondary function code fields in HOP/ALT/R, including EB and RB DOOB
fields as zero

HOPBN Application-block-number field in HOP/END/R None

HOPBRK . Primary and secondary function code fields in HOP/BRK/R, including EB and RB D000
fields as zero

HOPCMD Primary and secondary function code fields in HOP/CMD/R, including EB and RB D001
fields as zero

HOPDAY Primary and secondary function code fields in HOP/DAY/R, including EB and RB DO10
fields as zero

HOPDAYF Dayfiling-flag field in HOP/DAY/R None

HOPDB Primary and secondary function code fields in HOP/DB/R, including EB and RB I500E16
fields as zero

HOPDE Primary and secondary function code fields in HOP/DE/R, including EB and RB DOOF16
fields as zero

HOPDIS Primary and secondary function code fields in HOP/DIS/R, including EB and RB D009
fields as zero

HOPDTL Operator—command-length-in-display-code—units field in HOP/CMD/R None

HOPDU Primary and secondary function code fields in HOP/DU/R, including EB and RB D00316
fields as zero

HOPENDD Primary and secondary function code fields in HOP/END/R, including EB and RB D006
fields as zero

HOPI Input-allowed-flag field in HOP/DIS/R None

HOPIG Primary and secondary function code fields in HOP/IG/R, including EB and RB D004
fields as zero

HOPLG Primary and secondary function code fields in HOP/LG/R, including EB and RB DOOA
fields as zero

HOPLPL Left-screen-size-in-display—-code-units field in HOP/CMD/R None

HOPNOTR Primary and secondary function code fields in HOP/NOTR/R, including EB and RB D00716
fields as zero

HOPPAGE Primary and secondary function code fields in HOP/PAGE/R, including EB and RB DOOC
fields as zero

HOPPC Page—character field in HOP/PAGE/R None

HOPREL Primary and secondary function code fields in HOP/REL/R, including EB and RB DOOD16
fields as zero

HOPRPL Right-screen-size-in-display-code-units field in HOP/CMD/R None

HOPRS Primary and secondary function code fields in HOP/RS/R, including EB and RB D008,
fields as zero

HOPSCR Right-screen-data-flag field in HOP/DIS/R None

4-8 60499500

TABLE 4-1. RESERVED SYMBOLS (Contd)

60499500 V

Symbol Entity Defined by Symbol Iﬁi:g:ﬁix‘iue

HOPSTRT Primary and secondary function code fields in HOP/START/R, including EB and RB D005
fields as zero

HOPTRCE Primary and secondary function code fields in HOP/TRACE/R, including EB and RB DOOZ16
fields as zero

16 Secondary function code field in HOP/IG/R 4

INACT Secondary function code field in FC/INACT/R 4

INIT Secondary function code field in FC/INIT/R 7

INSD Secondary function code field in SHUT/INSD/R 6

INTR Primary function code field in user-interrupt (INTR) supervisory messages 8016

INTRACN Application connection number field in user—interrupt (INTR) supervisory None
messages

INTRAPP Primary and secondary function code fields ian INTR/APP/R, including EB and RB 8002lb
fields as zero

INTRCHR Field containing ASCII alphabetic character A through Z in typeahead priority None
data user—interrupt supervisory messages

INTRRSP Primary and secondary function code fields in INTR/RSP/R, including EB and 800116
RB fields as zero

INTRUSR Primary and secondary function code fields in INTR/USR/R, including EB and - 800016
RB fields as zero

LCONAC Length in 60-bit words of CON/ACRQ supervisory messages 2

LCONACA Length in 60 bit words of CON/ACRQ/A 2

LCONCB Length in 60-bit words of CON/CB/R 1

LCONEN Length in 60-bit words of CON/END/R 2

LCONENN Length in 60 bit words of CON/END/N 1

LCONREQ Length in 60~bit words of COI;J/REQ/R message 10 (4,)

LCORQR Length in 60-bit words of CON/REQ/N and CON/REQ/A 1

LCTRL Length in 60-bit words of terminal control (CTRL) supervisory messages 2

LDC Length in 60-bit words of DC/CICT/R 1

LERR Length in 60-bit words of ERR/LGL/R 3

LFC Length in 60~bit words of flow control (FC) supervisory messages (except FC/BRK) 1

LFCACK Length in 60-bit words of FC/ACR/R 1

LFCBRK Length in 60-bit words of FC/BRK/R 2

LFCINCT Length in 60-bit words of FC/INACT/R 1

LFCINIT Length in 60-bit words of FC/INIT/R 1

LFCINITN | Length in 60-bit words of FC/INIT/N 1

LFCNAK Length in 60-bit words of FC/NAK/R 1

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol xﬁiigifiﬁl‘ue

LFCRST Length in 60-bit words of FC/RST/R 1

LG Secondary function code field in HOP/LG/R Alﬁ

LGL Secondary function code field in ERR/LGL/R 1

LHOPAGE Length in 60-bit words of HOP/PAGE/R 1

LHOPALT Length in 60-bit words of HOP/ALT/R 1

LHOPBRK Length in 60-bit words of HOP/BRK/R 1

LHOPDAY Length in 60-bit words of HOP/DAY/R 1

LHOPDB Length in 60~bit words of HOP/DB/R 1

LHOPDE Length in 60-bit words of HOP/DE/R 1

LHOPDU Length in 60-bit words of HOP/DU/R 1

LHOPEND Length in 60-bit words of HOP/END/R 1

LHOPIG Length in 60-bit words of HOP/IG/R 1

LHOPNTR Length in 60-bit words of HOP/NOTR/R 1

LHOPREL Length in 60-bit words of HOP/REL/R I

LHOPRS Length in 60-bit words of HOP/RS/R 1

LHOPSTR Length in 60-bit words of HOP/START/R 1

LHOPTRA Length in 60-bit words of HOP/TRACE/R L

LINTR Length in 60-bit words of INTR/USR/R and INTR/RSP/R 1

LLST Length in 60-bit words of list management (LST) supervisory messages 1

LSHUT Length in 60-bit words of SHUT/INSD/R 1

LST Primary function code field in list management (LST) supervisory messages CO16

LSTACN Application connection number field in list management (LST) supervisory messages None

LSTALN Application list number field in list management (LST) supervisory messages None

LSTDIS Initial half duplex fiéld in LST/HDX/R ‘ None

LSTFDX Primary and secondary function code fields in LST/FDX/R, including EB and RB C00316
fields as zero

LSTHDX Primary and secondary function code fields in LST/HDX/R, including EB and RB C00416
fields as zero

LSTOFF Primary and secondary function code fields in LST/OFF/R, including EB and RB CO()O16
fields as zero

LSTON Primary and secondary function code fields in LST/ON/R, including EB and RB COUl16
fields as zero

LSTSWH Priﬁary and secondary function code fields in LST/SWH/R, including EB and RB COOZ16
fields as zero

LTCH Length in 60-bit words of TCH/TCHAR/R 1

4-10 60499500 V

TABLE 4-1. RESERVED SYMBOLS (Contd)

Predefined
Symbol Eatity Defined by Symbol Integer Value
MARK Secondary function code field in TO/MARK/R, BI/MARK/R, and RO/MARK/R 0
NAK Secondary function code fiéld in FC/NAK/R 3
NOTR Secondary function code field in HOP/NOTR/R 7
OFF Secondary function code field in LST/OFF/R 1
ONN Secondary function code field in LST/ON/R and PRU/ON supervisory messages 0
PAGE Secondary function code field in HOP/PAGE/R C
PFC Primary function code field in all supervisory messages None
PFCSFC Primary and secondary function code fields in all supervisory messages, including None
EB and RB fields
RB Response bit in all supervisory messages None
RC Reason code field in all supervisory messages None
RCC Secondary function code field in CTRL/RCC/R Bl6
REL Secondary function code field in HOP/REL/R D16
REQ Secondary function code field in CON/REQ messages 0
RO Primary function code field in RO/MARK/R CBlo
ROMARK Primary and secondary function code fields in RO/MARK/R, including EB and RB CBOO16
fields as zero
RS Secondary function code field in HOP/RS/R 816
RSP Secondary function code field in INTR/RSP/R 1
RST Secondary function code field in FC/RST/R 1
RTC Secondary function code in field in CTRL/RTC/R 916
SFC Secondary function code field in all supervisory messages None
SHUINS Primary and secondary function code fields in SHUT/INSD/R, including EB and RB 420616
fields as zero
SHUT Primary function code field in SHUT/INSD/R 42,0
SHUTF Shutdown type field in SHUT/INSD/R None
SPMSGO The corresponding word zero through nine of any supervisory message None
thru
SPMSG9
START Secondary function code field in HOP/START/R 5
STMR Secondary function code field in DC/STMR/R 02
SWH Secondary function code field in LST/SWH/R 2
TCD Secondary function code field in CTRL/TCD A16
TCH Primary function code field in TCH/TCHAR/R 6&16
60499500 V 4-10,1

TABLE 4-1. RESERVED SYMBOLS (Contd)

Symbol Entity Defined by Symbol Iz::g:iisziue
TCHACN Application connection number field in TCH/TCHAR/R None
TCHAR Secondary function code field in TCH/TCHAR/R 0
TCHPL Page length field in TCH/TCHAR/R None
TCHPW Page width field in TCH/TCHAR/R None
TCHTCH Primary and secondary function code fields in TCH/TCHAR/R, including EB and RB 640016

fields as zero
TCHTCL Terminal class field in TCH/TCHAR/R None
TO Primary function code field in TO/MARK/R C416
TOMARK Primary and secondary function code fields in TO/MARK/R, including EB and RB CAOO16
fields as zero
TRACE Secondary function code field in HOP/TRACE/R 2
USR Secondary function code field in INTR/USR/R 0

4-10.2 60499500 V

Field Access Utilities

Two additional wacros, NFETCH and NSTORE, are
provided to make message field definition and access
easier. Application programmers are urged to use

these macros as described below. Use of these

macros and their related predefined symbolic names
will simplify application program conversion under

future versions of the network software.

NFETCH Macro

A call to the NFETCH macro returns the contents of
a specific field within an array of one or more
words that comprise all or part of a supervisory
message block. The octal integer value returned by
the call is right-justified within the X or B
register specified in the call.

The format of the NFETCH macro call is given in
figure 4-1.

LOCATION I OPERATION I VARIABLE

[1abel] | NFETCH I array,field,Xj or Bj
label Optional address label of the macro call.

array The address of the first word of the array from

which the field value should be obtained. This
parameter can be:

An address label
The name of a register address
Zero

If zero is declared, any predefined value for the
indicated symbolic name is returned.

field The predefined symbolic name of the field for
which a value should be fetched from the array.
The possible contents of field are listed
alphabetically in table 4-1.

j The number of the X or B register which
should receive the value fetched from the
array. The value is right-justified in Xj or
Bj on return from the call. When a B
register is used, the field to be fetched must
be < 18 bits long.

Figure 4-~1. NFETCH Macro Call Format

Execution of NFETCH destroys the contents of regis-—
ters A5, X5, X6, and the X or B register specified
to receive the returned value. Execution of NFETCH
requires the application program to contain calls
to SST and NETMAC. Placing NETTEXT in the COMPASS

control statement defines the NFETCH macro and the
symbolic names used as the NFETCH field parameters.

As examples of NFETCH use, consider the following
operations.

60499500 T

Example 1:
NFETCH MYARRAY,PFC,X1

This statement places the value of the primary
function code field within MYARRAY into register Xl.
The primary function code field is identified by
the symbolic name PFC.

Example 2:
SX2 BUFFER
NFETCH X2,SFC,X3

These statements place the value of the secondary
function code field within BUFFER into register X3.
The secondary function code field is identified by
the symbolic name SFC, and the address label BUFFER
is supplied through register X2.

Example 3:
NFETCH ARRAY,EB, X3
NZ X3,ERROR

These statements place the value of the error bit
(EB) within ARRAY into register X3. 1If the value
in X3 is nonzero (if EB has a value of 1), a jump
to ERROR occurs,

Example 4:
NFETCH 0,CON, X1

This statement returns the predefined value 6316
in register Xl. The value returned is that of the
primary function code field of all connection-
request supervisory messages, as identified by the
predefined symbolic name CON.

If an NFETCH macro call is issued with an error,
the COMPASS assembler flags the error and provides

an explanation during assembly of the macro. A
complete 1listing of: the assembly error messages

from NFETCH is included in appendix B.

NSTORE Macro

A call to the NSTORE macro sets the contents of a
specific field within-an .array of one or more words
that comprise all or part of a supervisory message
block. The format of the NSTORE macro call is given
in figure 4-2.,

Execution of NSTORE destroys the contents of
registers A5, A6, X5, X6, X7, and any X or B regis-
ter specified in the- call. Execution of NSTORE
requires the application program to contain calls
to SST and NETMAC. Placing NETTEXT in the COMPASS
control statement defines the NSTORE macro and the
symbolic names used as the NSTORE field-parameters.

4-11

LOCATION OPERATION | VARIABLE

[label] NSTORE 1 array,field=value
label Optionai address label of the macro call.

array The address of the first word of the array into

which the field value should be placed. This
parameter can be declared as an address label
or the name of an address register.

field The predefined symbolic name of the field for
which a value should be stored in the array. The
possible contents of field are listed alphabetically
in table 4-1.

value The value to be stored in the identified field
within the array. This parameter can be:
A right-justified integer ‘
A right-justified, zero-filled character string

A symbolic name with a predefined value
(see table 4-1)

Bj or Xj, where j is the number of an X
or B register containing one of the first
two possibilities for value above.

Figure 4-2. NSTORE Macro Call Format

As examples of NSTORE use, consider the following
operations.

Example 1:
SX2 MYARRAY
NSTORE X2, PFC=CTRL

These statements store the value predefined for CTRL
in the primary function code field of MYARRAY. The
primary function code field is identified by the
symbolic name PFC, and the address label MYARRAY is
obtained through register X2.

Example 2:
NSTORE MYARRAY, PFC=CTRL

This statement performs the same operation shown in
example 1.

Example 3:
NSTORE MYARRAY, CONOWT=7RTERMABC

This statement stores the terminal name TERMABC in
the owning console terminal name field of MYARRAY.
The owning console terminal name field is identified
by the predefined symbolic name CONOWT.

If an NSTORE macro call is issued with an error, the
COMPASS assembler flags the error and provides an
explanation during assembly of the macro. Appendix
B contains a complete listing of the assembly error
messages from NSTORE.

4-12

COMPILER-LEVEL LANGUAGES

Application programs coded in compiler-level
languages such as FORTRAN use AIP statements that
make relocatable subroutine calls., Such statements
need not be declared as external routines. Entry
point references are satisfied by the CYBER loader;
the AIP routines are loaded from the local library
NETIO or NETIOD, which must be declared in an LDSET
or LIBRARY control statement.

READ, WRITE, and CONNEC are not employed when NAM
is used by a FORTRAN program for input and output
between the program and terminals. Terminals serv-
iced by an application program do not have logical
unit numbers.

ACCEPT and DISPLAY are not used when NAM is used by
a COBOL program for input and output between the
program and terminals. You can use these verbs in
COBOL programs that ‘use other network application
programs, such as the CDC-written Transaction
Facility (TAF), for network access.

Packing and unpacking supervisory message blocks in
a compiler-level program is easily accomplished
using the interfacing utilities NFETCH and NSTORE.
These field access utilities reside in local library
NETIO or NETIOD,

Programs written using compiler-level languages can
also use the AIP routines indirectly through the
utility package called the Queued Terminal Record
Manager (QTRM)., QTRM is described at the end of
this subsection and the use of QTRM is completely

defined in section 8. The subroutines comprising
QTRM reside in local 1library NETIO or NETIOD.

Application Interface Program Subroutine
Call Formats

Only one form of the AIP subroutine call is possible
in compiler-level language programs. This form is:

subroutine~name (parameters)

The syntax of this form is discussed in section 5.
A summary of all the calls available appears in
appendix D, The FORTRAN form of the subroutine
call format is the format used throughout this
manual when discussing the AIP routines.

Field Access Utilities

Two additional relocatable subroutines, NFETCH and
NSTORE, are provided to make message field defini-
tion and access easier. Use of these routines and
their related predefined symbolic names will
simplify application program conversion under future
versions of the network software. Because each call
to one of these routines causes a table scan, use
of the routines increases program execution time,
This increase can be minimized by setting up all
constants processed by calls to the routines with a
single set of calls at the beginning of the program.

60499500 T

MTCH Function

A call to the NFETCH function subprogram returns an
integer value for the contents of a specific field
within an array of one or more words that comprise
all or part of a supervisory message block. NFETCH
can be used anywhere in a program expression that
an operand can be used; figure 4-3 defines the
format for NFETCH as it is used in an assignment
statement.

[ivalue=] NFETCH(array,field)

ivalue= A return parameter; as input to the call, an
optional integer variable to receive the value
returned for the function.

array An input parameter, specifying the symbolic
address of the first word of the array from
which the field value can be obtained. This
parameter can be:

The array name
Zero

If zero is declared, any predefined value for the
indicated symbolic name is returned.

field An input parameter, specifying the predefined
symbolic name of the field for which a value
should be fetched from the array. The possible
contents of field are listed in table 4-1. This
parameter must be left-justified with zero fill.

Example 2:
The FORTRAN 5 statement:
M=NFETCH(0,L'"CON")

makes M the integer value 143g, equivalent to the
predefined value for the primary function code field

in all connectlion-request supervisory messages. The
primary function code field is identified by the
predefined symbolic name CON, left-justified with

zero fill in the call.,

Example 3:

The FORTRAN 5 statement:
IF(NFETCH(ARRAY,L"EB").EQ.1) CALL ERROR

causes a jump to ERROR if the value of the error
bit (EB) within ARRAY is 1.

NSTORE Subroutine

Figure 4-3. NFETCH Integer Function
FORTRAN Call Format

The size of the field involved in the NFETCH call
determines the format of the content value returned.

The field is read as an octal value and the value
returned is right-justified as either an integer or
a display code character string.

If either the field or array parameter is omitted
from the function statement, the application program

is aborted and a dayfile message is issued. (See
appendix B,)

As examples of NFETCH uses, consider the following
operations.

Example 1:
The FORTRAN 5 statement:
M=NFETCH(ARRAY,L"EB")
makes M equivalent to the value of the error bit.

The error bit 1is identified by the predefined sym—
bolic name EB, left-justified with zero fill in.the

call.

60499500 T

A call to the NSTORE subroutine sets the contents
of a specific field within an array of one or more
words that comprise all or part of a supervisory
message block. Figure 4-4 gives the FORTRAN format
of the NSTORE call statement,

CALL NSTORE(array,field,value)

array A return parameter; as input to the call, the
symbolic address of the first word of the array
into which the field value should be placed.
This parameter is normally the array name.

field An input parameter, specifying the predefined
symbolic name of the field for which a value
should be stored in the array. The possible
contents of field are listed alphabetically in
table 4-1. This parameter must be left-
justified with zero fill.

value An input parameter, specifying the value to be
stored in the identified field within the array.
This parameter can be:
A right-justified integer value

A right-justified, zero-filled Hollerith
. character string

A left-justified, zero-filled symbolic name
with a predefined value (see table 4-1).

Figure 4-4. NSTORE Subroutine
FORTRAN Call Format

4-13

Integer values stored by the NSTORE call are stored
as integers. Character strings are stored in dis-

play code form and symbolic names are converted to
octal equivalents of thelr predefined values when
stored. Only one field can be specified in each

call. A value can be stored in a field any time
after the array is declared.

If either the array, field, or value parameters are
not declared or are nonexistent, the application
program is aborted .and a dayfile message is issued.

(See appendix B.)

As examples of NSTORE use, consider the following
operations.

Example 1:

The FORTRAN 5 statement:
CALL NSTORE(ARRAY,L"PFC",L'CON'")

stores the predefined value for the primary function
code of all connection-request supervisory messages
in the primary function code field of ARRAY. The
primary function code value is identified by the

predefined symbolic name CON and the primary func-
tion code field by the predefined symbolic name PFC;

both names are left-justified with zero fill in the
call.

Example 2:
The FORTRAN 5 statement:

CALL NSTORE({ARRAY,L"CONOWT",R"TERMABC")

stores the display coded terminal name TERMABC in
the owning console terminal name field of ARRAY.

The owning console terminal name field is identified
by the predefined symbolic name CONOWT, left-—
justified with zero fill in the call.

Example 3:
The FORTRAN 5 statement:
CALL NSTORE(ARRAY,L"RB",1)

sets the response bit field in ARRAY to 1. The
response bit field is identified by the predefined
symbolic name RB, left—justified with zero fill in
the call.

Queved Terminal Record Manager Utilities

You can set up a teleprocessing service by inter-
facing an application program directly with ATIP
through the subroutine calls described in section
5. This interface requires manipulation of many
bit-oriented fields, as described in section 2, and
multiple operations to perform a single function,
as described in section 3. These protocol require—
ments can be quite complex, dwarfing the portion of
a program”s code that actually performs a teleproc-—
essing service when the service itself is very
simple.

4-14

A FORTRAN programmer can use AIP directly with only
minor inconvenience when shifting and masking are

required. The NFETCH and NSTORE routines permit a
COBOL programmer to bypass most of the shifting and
masking problems of direct AIP use, but some remain.
Shifting and masking is extremely difficult for a
COBOL programmer when NFETCH and NSTORE cannot be
used because COBOL constrains field access to fields
that are multiples of 6 bits. NFETCH, which is
coded as a function and not as assubroutine, is not
directly callable from a COBOL program because COBOL
does not support functions. To use NFETCH, a COBOL
programmer must write a subroutine in another
applications language.

The Queued .Terminal Record Manager (QTRM) utility
package allows compiler language users to remain
unaware of AIP protocol requirements. QTRM also
allows users of COBOL 5.2 (and later versions) to
create teleprocessing service programs using an
interface that is oriented to fields defined in
multiples of 6 bits.

QTRM is an indirect interface to the network; its
use is functionally analogous to directly calling
CYBER Record Manager., Using QTRM, an application

programmer can send messages to and receive messages
from a network of terminals as if the programmer
were reading and writing records or files in mass

storage. This parallelism is shown in figure 4-5.

QTRM is used through calls to the following sub-
routines:

QTOPEN, which 1s called once to establish
communication between the application program

and the network, A call to QTOPEN is analogous
to opening a mass storage file.

QTLINK, which 1is called to initiate an
application—to-application connection.

QTGET, which is called each time part or all of
a message is required from the network. A call

to QTGET is analogous to a single read operation
on a mass storage file.

QTPUT, which is called each time part or all of
a message is intended for the network. A call
to QTPUT is analogous to a single write oper-

ation on a mass storage file,

QTENDT, which is called to disconnect a single
terminal from communicating with the application
program.

QTCLOSE, which is called once to end communi-
cation between the application program and the
network. A call to QTCLOSE is analogous to

closing a mass storage file.

QITIP, which is called to deliver a synchronous
supervisory message to a specified connectiom.

QTLEND, which 1is called to loan a device
connection to another application program
residing in the same host.

QTSUP, which is called to create and/or deliver
asynchronous supervisory messages.

QTICMD, which is called to alter the way QIRM
executes.

60499500 T

Compiler Language
User Program

I

CYBER Record Manager

Queued Terminal Record Manager

Device
Driver

)

RMS
Controllers

Y

Network
Processing
Units

Figure 4-5. QTRM Interface Level Analogy

Additional QTRM subroutines are available to aid in
the debugging of new QTRM application programs.
They are:

QTDBG, which is called to turn on or off
logging of network traffic in the debug 1log

file.

QTREL, which is called to route a job to the
input queue to process the debug log file.

QTSETF, which is called to allow the debug log

file to be flushed if the application program
terminated abnormally.

QTLOG, which is called to write messages to the
debug log file.

QTDMB, which is called to perform a binary dump
of the application program.

The following QTRM subroutines aid in gathering
statistical data for the application program:

QTSTC, which is called to turn on or off AIP
statistics gathering in the AIP statistics file,

QTLGS, which is called to write the application

programs own statistical data. to the AIP
statistics file.

60499500 T

Operation of these procedures 1is monitored and
controlled through a - network information table,
analogous to a file information table. The network
information table contains 10 central memory words
of information about each device the application
program can potentially service, and 10 words of
global information about the state of the appli-
cation program”s communication with the network.

Application programs using .QTRM can use only those
features of AIP that are provided through the QTRM
procedure calls, Such application programs should
not also contain calls to AIP routines other than

NFETCH and NSTORE. QTRM performs the following
functions:

Assigns all active device connections to a
single connection list -and polls that 1list for
input on behalf of the application program

Performs all asynchronous supervisory message
exchanges required during application program

execution :

Provides the final logical line zero byte -term—
inator in downline blocks containing display
code characters

4-15

QTRM is a simplified alternative to AIP and there-
fore does not support all of the AIP features.
QTRM does not support the following features:

Parallel mode code execution, as provided
through NETSETP and NETCHEK calls

Fragmented buffer input and output, as provided
through NETGETF, NETPUTF, and NETGTFL calls

Application program connections with passive
(batch) devices

Multiple application connection lists

Section 8 contains a complete description of the
QTRM procedure calls and a sample program illus-
trating QTRM wuse by a COBOL programmer. QTRM
procedures are not discussed elsewhere because QTRM
use precludes direct use of the AIP routines docu—
mented by the remainder of this manual. '

INTERNAL INTERFACES

The information in the remainder of this section is
not needed to create a Network Access Method appli-
cation program. This information is provided as
background for application programmers using the
parallel mode processing feature of NAM, programmers
with a need for understanding communication among
the components of the network software, and pro-—
grammers needing to interpret a load map.

APPLICATION INTERFACE PROGRAM
AND NETWORK INTERFACE PROGRAM
COMMUNICATION

One copy of the Network Interface Program resides
at a control point and communicates with separate
copies of the Application Interface Program at each
control point containing an application program.
Communication between NIP and each copy of AIP
occurs through system coantrol point calls initiated
by AIP. The mechanism for this communication is a
fixed—length buffer of status bits, pointers, and
data that is called a worklist.

Worklist Processing

When an application program requests connection
with the network, its copy of AIP establishes a
long-term connection with NIP. The long-term con—
nection exists until the program requests discon-
nection from the network, or until NIP is informed
of the program”s failure or termination by the
operating system. While the long-term connection
exists, an additional short—term connection occurs
whenever AIP initiates a transfer of worklists be—
tween itself and NIP. The short-term connection
exists until NIP issues a system control point call
to end it.

The requests made by an application program to AIP
are either satisfied by AIP directly or collected
into the worklist contained within the AIP portion

of the application program”s field Llength. AIP
places entries in this worklist until one of the
following occurs, then initiates the short—term

- connection:

NETON or NETOFF is called by the application
program. (See section 5.)

The worklist is full.

Another entry cannot be made without causing
the worklist to overflow.

The application program calls a routine (NETGLT,
NETGETL, NETGETF, or NETGTFL) that obtains in-
put from the network”s data structures, other
than AIP queues. (See sectiomn 5.)

NETCHEK is called.

The application program issues a nonforced
NETWAIT call to make itself available for roll-
out or any input, and no supervisory messages
or daFa are queued for it. (See section 5,)

The application program issues a forced NEIWAIT
call. ’

The application program calls NETPUTF, wunless
the total message' text involved in the call is-
small enough to fit in the worklist.

This worklist is used to queue outgoing supervisory
or data messages, and to request a supervisory or
incoming (upline) data message. A second buffer
acts as a queue for incoming supervisory messages.
When ATP initiates the short-term counnection, it
checks to see whether its supervisory message buffer
is full; if not, AIP appends a request for supervi-
sory message input to the eand of the worklist and
passes the worklist to NIP, The period duriag
worklist processing is the only time when NIP can
read from or write into the field Length of AIP,
and then only when AIP initiates the action.

NIP processes the transferred worklist until all of
the entries are satisfied, then ends the short—term
connection. Worklist processing is suspended when:

The operating system rolls out the application
program.

NIP causes the application program to be rolled
out in response to the request of the program.
(See NETWAIT call, section 5.)

A worklist entry cannot be processed without
obtaining additional central memory, which is
not available.

Even if .- there are downline messages queued, no
worklist transfer occurs in these instances:

The application program calls a routine (NETGET,
NETGETF, NETGETL, or NETGTFL) to obtain asyn-—
chronous supervisory messages and AIP transfers
any queued messages to the application.

The application program issues a NETWAIT call

with a flag value of 0 and there are supervisory
messages or data available for the application.

60499500 V

Generally, an application program does not depend
on the status of worklist processing between its
corresponding AIP copy and NIP. Most programs can
adequately function when concerned only with text
area buffers and calls to AIP. However, the Net-
work Access Method does provide a mechanism that
allows an application program to monitor worklist
processing and execute code dependent on that proc-
essing. This mechanism is called parallel mode
operation.

Parallel Mode Operation

When an application program issues the call that
initiates the long-term connection, it identifies a
supervisory status word that is used by AIP as a
buffer for several flags. Among the supervisory
status word flags are worklist processing bits used
during parallel mode operations.

When an application program is not processing in
parallel mode (the normal, default condition), its
copy of AIP initiates the short-term connection
with a system control point call specifying that
recall is in effect. 1In this case, the program”s
copy of AIP does not regain control of the central
processor until all worklist entries are processed
by NIP and the short-term connection is ended.
Because the application program cannot regain the
central processor until its copy of AIP has regained
the central processor, the program cannot perform
any processing in the interim.

Parallel mode operation is usually beneficial only
when used on a dual CPU system, because NIP ordi-
narily has a higher priority than any application
program and gains control of the central processor
after a call is made to it. NIP retains control
until it completes processing of the worklist
request.

Processing in parallel mode is analagous to making
operating system calls without recall. An applica-
tion program enters parallel mode by issuing a call
to the AIP routine NETSETP, While in parallel mode,
anytime AIP initiates the short-term connection, it
does so without specifying recall. The application
program”s copy of AIP reacquires control of a cen-
tral processor as soon as the operating system”s
scheduling algorithm permits, and AIP returns con—
trol to the calling point of the application program
proper. As 1long as the short-term connection
exists, the application program can continue proc-
essing with the sole restriction that it cannot
issue calls to any AIP routines other than NETCHEK
or NETOFF.

Calls to NETCHEK cause AIP to indicate the current
status of worklist processing using a bit in the
supervisory status word. After each NETCHEK call,
the application program must check the supervisory
status word. As soon as the bit indicating com—
pletion of worklist processing is set, the program
is free to issue any AIP call. Parallel mode proc-
essing is ended by a second call to the AIP routine
NETSETP.

60499500 T

The worklist processing completion bit serves
several purposes in parallel mode operation. Calls
to NETCHEK cause this bit to be set when processing
of the previous request to AIP has been completed,
even when that request did not cause a worklist
entry or transfer. When a call to NETCHEK results
in the completion bit being set, the application
program can:

Safely reuse any header area and text area used
in its last AIP call

Assume that any worklist transfer involved in
the previous AIP function request resulted in
the updating of the other bits in the super-
visory status word

When a call to NETCHEK does not result in the
completion bit being set, the application program
should issue .additional NETCHEK calls before exe-
cuting any code dependent on either condition.

Calls to NETOFF end parallel. mode operation by end-
ing both the long-term and short-term connections
simultaneously.” NIP processes a worklist containing
a NETOFF call as if the worklist were transferred
while the application program was not processing in
parallel mode. Calls to NETCHEK are not necessary
to test completion of a NETOFF call.

OTHER SOFTWARE COMMUNICATION

A complete compiler or assembler 1listing for an
application program- contains symbols and entry
points not discussed in this manual. These symbols
and entry points are used internally for interfacing
between NIP, AIP, and the operating system. Table
4-2 1ists the names of internal procedure calls with
an outline of the function of each routine; these
calls should not be used directly by the application
program. In general, procedure names beginning with
the three characters NP$ are reserved for use by AIP
and should not be used by application programs.
Table 4-3 lists the tables and common blocks in-
volved in the processing of an application program”s
AIP statements.

The Communications Supervisor, Network Supervisor,
and Network Validation Facility interface with NAM
via the AIP procedure calls described in section 5.
These interfaces use special supervisory messages
not described in section 3. These special super-
visory messages cannot be used in another NAM
application program.

NAM interfaces with the network processing unit
software through the Peripheral Interface Program,
which uses an internal block protocol not described
in section 2. These blocks are compiled or inter-
preted by NIP,

4-17

TABLE 4-2, AIP INTERNAL PROCEDURES

Name Function

NP$CLK Used only when AIP is run with either the debugging or statistics option on; gets system clock
time.

NPSDATE Used only when AIP is run with either the debugging or statistics option on; gets current date.
NPS$SDBG Used only when AIP is run with the debugging option on; makes entries in the debug log file
(application program local file ZZZZZDN). These entries show results of calls to other AIP
routines by the program. (See section 6.)

NP$DMB Dumps field length to the application program local file ZZZZDMB.

NPSERR Issues error messages to the application program’s dayfile.

NPSGET Creates NETGET, NETGETL, NETGETF, or NETGTFL worklist entry to send to NIP.

NPS$GSM Refills AIP’s supervisory message buffer. (See Worklist Processing.)

NP$MSG Issues dayfile message to NIP’s dayfile.

NPSON Processes NETON call response from NIP.

NPSOSIF Issues system control point (SSC) RA+1 call.

NPSPUT Creates NETPUT worklist entry to send to NIP.

NPSPUTF Creates NETPUTF worklist entry to send to NIP.

NP$RCL Allows AIP to go into recall.

NPSREAD | Used only when AIP is run with the debugging option on; reads job record for NETREL call.
NPSRESP Processes worklist responses from NIP.

NPSROUT | Used only when AIP is run with the debugging option on; routes job to input queue for NETREL call.
NPSRTIM | Used only when AIP is run with the debugging option on; gets real time since deadstart.

NPSRWD Used only when AIP is run with the debugging option on; rewinds a file.

N

NPS$SEND Called when a worklist must be transferred to NIP.

NP$SLOF | Used only when AIP is run with the debugging option on; executes SETLOF macro for NETSETF call.
(See section 6.)

NPS$SN Used only when AIP is run with the statistics option omn; accumulates statistical data.

NPSSPRT Used only when AIP is run with the statistics option on; makes entries in the debug log file
(application program local file ZZZZZSN). (See section 6.)

NP$SYM Allows COMPASS users access to common symbol definitioms.

NPSTIM Used only when AIP is run with the statistics option on; gets CPU time.

NPS$UCV Used to update AIP control variables.

NPSUSI Used to update the S and I bits in the supervisory status word. (See section 5.)

NPSWRTO | Used only when AIP is run with the debugging option on; writes onme word in the debug log
file (application program local file ZZZZZDN). (See sectiomn 6.)

NPSWRIR | Used only when AIP is run with either the debugging or statistics option on; writes end-of-record
to the debug log file or statistics file. (See section 6.)

NT$WRTW | Used only when AIP is run with either the debugging or statistics option on; writes eantry to the
debug log file or statistics file. (See section 6.)

NPSXCDD Used only when AIP is run with the statistics option on; converts numbers to decimal form in
display code.

NPS$XFER | Transfers a worklist to NIP.

4-18 60499500 T

TABLE 4-3. AIP INTERNAL TABLES AND BLOCKS

Name Function

NP$DB Used only when AIP is run with the debugging option on; contains calling parameters for
debugging routine NP$DBG.

NPSGETS Controls variables used to process NETGET, NETGETL, NETGETF, and NETGIFL calls.

NPS$LOF Used only when AIP is run with the debugging option on; parameter block for SETLOF
macro. (See section 6.)

NP$MODE Used to keep track of the state the application is in.

NPSNWL Worklist for the application program.

NPSNWNC Used only when AIP is run with the debugging option on; aids in character conversion.

NP SONAM NETON entry for the debug log file.

NPSPUTS Controls variables used to process PUT calls.

NP$SMB ATP supervisory message buffer for the application program. This block is included in
the last 100g words of NP$NWL.

NP$STAT Used only when AIP is run with the debugging option on; contains statistics gathered by
NIP. (See section 6.)

NPSTAA Used to reference the text area array (TAA) in fragmented NETGETF and NETPUTF or NETGIFL
calls.

NPSZHDR Header entry for the debug log file (application program local file ZZZZZDN).

60499500 T 4-19

APPLICATION INTERFACE PROGRAM CALL STATEMENTS 5

This section describes the Application Interface
Program (AIP) statements used by a network appli-
cation program to access the network, control
network processing, and transmit and receive the
messages described in sections 2 and 3.

SYNTAX

Application Interface Program statements are used
in COMPASS programs, or in programs written in
high-level languages such as FORTRAN. In most
high-level languages, only positional parameters
can be used; AIP statements conform to this syntac-
tical requirement and, therefore, do not permit the
use of keywords. The interpretation attached to a
given parameter is determined solely by its location
within the string of parameters of each AIP state-
ment. All input parameters must be supplied; there
are no defaults.

The FORTRAN positional form is used throughout this
section to present AIP statements. Coding the
statements when they are used in other languages
requires few modifications. For example, in the
form of a COMPASS macro call, a sample NETGETL
statement has the form:

[label] NETGETL aln, ha, ta, tlmax

This converts to the FORTRAN subroutine syntax,
which is:

CALL NETGETL (alm, ha, ta, tlmax)

Use of LIST and label are discussed in section 4
where COMPASS interface requirements are given.

The FORTRAN subroutine syntax, in turn, converts to
the following COBOL syntax for the same statement:

ENTER FORTRAN-X NETGETL
USING aln, ha, ta, tlmax

The wmnemonic variables identifying each parameter
are defined in the statement descriptions, along
with any coding constraints imposed on them. Commas
delimit parameters in all languages; the signifi-
cance of blanks depends on the language used.
Unless otherwise specified, all values supplied for
parameters should be decimal integers.

General definitions of terms appearing in parameter
descriptions arve given in the glossary. More
detailed definitions and parameter constraints that
depend on the programming language used are given
in section 4 under the heading of Language Inter-
faces. Program structural considerations that
depend on command use are described in section 6
under the headings of Commands and Dependencies.

60499500 R

NETWORK ACCESS STATEMENTS

An application program uses two AIP statements to
begin and end access to the network’s resources.
The NETON statement must be used before the program
can use any other AIP statement except NETREL,
NSTORE, NFETCH, NETSETF, NETCHEK, NETSETP, or
NETOFF. The NETOFF statement must be used after
all AIP functions are completed to cause the AIP
portion of the application program to perform vital
housekeeping tasks; these tasks are associated with
debug log file, statistical file, and login proc-
essing by the network software.

CONNECTING TO NETWORK (NETON)

The NETION statement (figure 5-1) performs the
following functions:

Identifies the application program to the net-
work so that the Network Validation Facility
(NVF) can validate the right of the program to
access the network’s resources

Causes AIP to establish communication with NIP

Identifies a word to be used for communication
from AIP to the program, outside of the super-
visory message mechanism (figure 5-2)

Informs the network software of limitations on
the number of logical connections the program
can handle '

Causes AIP to begin debug log file and statis-
tical file compilation, if AIP contains code
permitting this (See section 6.)

An application program must successfully complete a
NETON call before it can use any AIP statement
other than NETOFF, NETCHEK, NETREL, NETSETF, or
NETSETP. If another AIP statement is used before a
NETON call 1is successfully completed, AIP aborts
the job and issues a message to the job’s dayfile.
The incorrectly placed call has no other effect.

An application program’s NETON statement is success-
fully validated by the Network Validation Facility
when the program name contained in the NETON call
appears in the system common deck COMINAP. TIf the
program is defined as a privileged application in
the local configuration file, it must meet the
requirements for such to be successfully validated.
(See section 6.)

If validation 1is not successful, the application
program is aborted. If validation 1is successful,
the program has access to the network as long as a
NETOFF statement is not issued and communication
with NIP continues.

CALL NETON (aname,nsup,status,minacn,maxacn)

aname

ABORT
ALL ITF
BYE LOGIN
cs LOGOUT
DOP MCS NLTERM
FTF MHF NOF
FTFS MLTF NS
HELLO NAM NUL
IAF NETFS NVF

INITMDI NETLS
NETOS
NETTU

NIP

PFU
PLATO
PSU
PTF
PTFI
PTFS

. QTF.
QTFI
QTFs

cause unpredictable errors.
nsup

shown in figure 5-2.

except NETSETP.

the application program.

status
status word.

0 NETON was successful.

netted on.

minacn

maxacn

(inclusive) are in use.

An input parameter, specifying in 6-bit display code the name of the application program, as
it is identified for log in and in the system OPL common deck COMTNAP.
seven alphabetic and numeric characters, but the first must be alphabetic.
must be left-justified, with blank fill.
Lletters NET to make Loader map interpretation easier.
‘names are reserved for internal networks use:

It is advisable to avoid names beginning with the

RBF
RMF
SCF
TAF
TCF
TVF

VEIAF

Use of some of these names causes the program job to be aborted; use of the remainder can

A return parameter; as input to the call, nsup is the symbolic address of the supervisory
status word for communication from AIP to the application program.
The upper bit of this word is relevant during parallel mode processing
only; this bit reports the status of worklist processing and is updated after each AIP call
Bits 56 and 55 are set when indicated in the figure to report
the data message and supervisory message queuing performed by AIP,
after any AIP call except NETDBG, NETLOG, NETREL, NETSETF, NETSETP, or NETSTC.
need not contain zeros at the time of the NETON call and should not be changed

A return parameter; as input to the call, status is the symbolic address of the NETON call
On return from the call (or when worklist processing is complete if the call
was made in parallel mode), the content of this word indicates the network software's

disposition of the application program's NETON attempt.

1 NETON was unsuccessful because NIP was not at a control point.

2 NETON was rejected because the maximum number of allowed applications has already

3 NETON was rejected because the application program has a status of disabled in the
Network Validation Facility tables.
Local configuration file has been changed or after the host operator has enabled it.

An input parameter, specifying the smallest application connection number the application
program can process; 9 < minacn < maxacn < 4095,
connections, beginning with the number specified for minacn.

An input parameter, specifying the largest applicaton connection number the application
program can process; 0 < minacn < maxacn < 4095.
complete any more connections to the program after all connections from minacn through maxacn

This can be one to
This.parameter

The following application program

This word has the format

the status of
are valid

This word

at any time by

These bits

The values of status can be:

The program must be rerun after its entry in the

The network software assigns acn values to
(See section 2.)

The network software does not attempt to

Figure 5-1.

If the program loses communication with NIP, it is
aborted by the operating system unless it 1is a
system control point job. System control point
jobs are not aborted. The program can reprieve
itself from such an abort by using the NOS REPRIEVE

NETON Statement FORTRAN Call Format

macro. The program should examine the last error
flag that was set for the job (by using the NOS
GETJCR macro) to determine the cause of the pro-
gram”s failure.

60499500 V

a Reserved for CDC use.

NETGTFL call.

59 57 555453 29 0
nsup clapn}i{s|d res mc
c AIP request and worklist processing completion bit. This bit is relevant only in parallel mode.

When any AIP routine other than NETSETP is entered and the AIP function is not completed, the bit
is set to zero. If the AIP function is completed, the bit is set to one, if a worklist transfer
was required. If the bit is zero, the program cannot call any AIP routines except NETCHEK or
NETOFF nor can it use the header area and text area of the last AIP call until the bit is set to
one. The bit is set to one by NETCHEK when the last AIP function is completed.

n NAM available bit. This bit is set to one upon return from a NETON call if NAM is available, and
zero if NAM is not available. The bit is also set to zero by AIP when AIP is informed by the
operating system that NAM is no longer available.

i Input=in-queue bit. This bit is set to one if NIP has either data messages or synchronous
supervisory messages queued for the application. The bit is valid after any AIP call except a
call to NETDBG, NETLOG, NETDMB, NETLGS, NETREL, NETSETF, NETSETP, or NETSTC. This bit is set to
zero when no data messages or synchronous supervisory messages remain queued for the program.

s Supervisory message in queue bit. This bit is set to one if asynchronous supervisory messages
are queued on application connection number O for this program. This bit is valid after any AIP
call except a call to NETDBG, NETDMB, NETLGS, NETLOG, NETREL, NETSETF, NETSETP, or NETSTC. The s
bit is set to zero when no asynchronous supervisory messages remain queued for the program.

d Data-deliverable bit. This bit is set to one if data messages are deliverable on ét least one of
the connection Lists of the application program and the application program issues a NETGETL or a

res Reserved for CDC. Reserved fields contain zero.
mc A count of the number of supervisory messages and network data blocks on the debug log file when

Library NETIOD is used. A NETON call (or a NETREL call with a nonzero Lfn parameter value)
resets the count to zero (described in section 6).

Figure 5-2. Supervisory Status Word Format

If the program failed because NAM failed, it should
issue a NETOFF call and successfully complete
another NETON call before issuing any further calls
to the AIP routines, The NETOFF call, used in this
case, causes AIP to perform internal housekeeping
functions and finish information transfer to the
debug log and statistical files; the second NETON
causes ATP to reinitialize internal tables and
reestablish communication with NIP. If a new copy
of NIP becomes available prior to the NETOFF call,
the second NETON call causes the NETOFF statement
to be ignored and program processing can be resumed
after new logical connections have been established.
Alternating NETON and NETOFF statement sequences in
parallel mode have unpredictable results.

The network software tracks an application program
and issues dayfile messages concerning the program
on the basis of the aname parameter used in the
program”s NETON call. The operating system, how-—
ever, 1s unaware of this name and issues dayfile
messages on the basis of the job name assigned to
the program according to the contents of the job”s
command portion, So that all dayfile messages
concerning the same program can be identified, you
should take the steps described in section 6.

Figure 5-3 contains a portion of a FORTRAN program
that correctly performs a NETON call. The program,

60499500 W

called RMV2, is identified by that name in COMTNAP
and in the 1local configuration file as a non-
privileged application., .RMV2 can process up to
three logical connections but requires connections
to be numbered beginning with 2. RMV2 uses the
integer word NSUP as a supervisory status word for
communication from AIP and tests for successful
completion of the NETON call through the integer
word NSTATUS,

COMMON NSUP,HA(2) ,TA(200,2)
[}

[]
NAME=4HRMV2
NSTATUS=0
MINACN=2
MAXACN=4
CALL NETON(NAME,NSUP,NSTATUS,MINACN,MAXACN)
IF (NSTATUS.NE.O) GO TO 999
[]
L
999 PRINT 998, NSTATUS
998 FORMAT('NSTATUS IS',I12)
STOP
[]
[]

Figure 5-3. NETON Statement FORTRAN Example

DISCONNECTING FROM NETWORK (NETOFF)

The NETOFF statement (figure 5-4) performs the
following functions:

Breaks AIP communication with NIP
Causes AIP to finish formatting and transferring
information for the debug log file and statis-

tical file, if these files are being compiled

Clears AIP internal tables so that the program
can issue another NETON call, if necessary

CALL NETOFF

Figure 5-4. NETOFF Statement FORTRAN
Call format

The NETOFF statement is used after all processing
of logical connection activities 1is finished and
the program is prepared to end connection with the
network., After the NETOFF call is completed, no
AIP statement other than NETON, NETREL, NSTORE,
NFETCH, NETDMB, and NETSETF can be used. The NETOFF
call breaks any logical connection still existing
between the application program and a device or
another application and prevents the network soft-
ware from attempting to establish any new connec-
tion. After the NETOFF statement is processed, the
application program continues to execute under
control of the operating system.

An application program should always issue a NETOFF
call before terminating. Otherwise, the network
software informs consoles or other application
programs with which connections exist that the
program has failed; passive device connections are
disposed of by the network software as if the
program had failed. Unless a NETOFF call is com—
pleted or NETREL is called, the debug log file
compiled during job execution cannot be correctly
disposed of. Unless a NETOFF call 1is completed,
the statistical file compiled during job execution
will not exist.

The NETOFF statement can also be used in a reprieval
situation. This use is described under Connecting
to Network (NETON).

NETWORK BLOCK INPUT/OUTPUT
STATEMENTS

Input and output on logical connections can be
handled through unified or fragmented buffers.
Input can be obtained from a connection either by
its individual connection number, or according to
its membership 1in a 1list of connections. AIP
statements permit an application program four
options for input or output from a specific con-
nection and two options for input from a connection
on a list.

SPECIFIC CONNECTIONS

The four options for specific connection input and
output are as follows:

Fetch input to a single, unified buffer (NETGET
statement)

Fetch input to an array of buffers (NEIGETF
statement)

Send output from a single, wunified buffer
(NETPUT statement)

Send output from an array of buffers (NETPUTF
statement)

Inputing to Single Buffer (NETGET)

You can use NETGET to obtain an asynchronous super-—
visory message from application connection number
0. You can also use NETGET to fetch synchronous
supervisory messages and network data blocks from
application connection numbers other than O.
Synchronous supervisory messages and network data
blocks are never queued on logical connection 0.

Each NETGET call transfers one data or supervisory
message block from the NIP queue for the connection
specified in the call. The NETGET call places the
block header in the application program’s block
header area and the network block in the application
program’s text area. The NETGET statement has the
format shown in figure 5-5.

CALL NETGET (acn,ha,ta,tlmax)

acn An_input parameter, specifying the application connection number of the logical connection from
which a block is requested. This parameter can have the values:
0 Transfer one asynchronous supervisory message.
minacn < Transfer one network data block or synchronous supervisory message from the

acn < maxacn logical connection with the indicated acn.

ha A return parameter; as input to the call, ha is the symbolic address of the application
program's header area. The header area always contains an updated application block header

after return from the call.

Figure 5-5. NETGET Statement FORTRAN Call Format (Sheet 1 of 2)

60499500 R

specified for input from the connection.

act=3 1

1A

ta A return parameter; as input to the call, the symbolic address of the first word of the buffer
-array constituting the text area for the application program. On return from the call, the
text area contains the requested block if a block was delivered to the application. The text
area identified by ta should be at least tlmax words long.

t tmax An input parameter, specifying the maximum Length in central memory words of a block the
application program can accept. The value declared for timax should be lLess than or equal to
the length of the text area identified in the same call; if tlmax is greater than the Length of
the text area, the block transfer resulting from the NETGET call might overwrite a portion of
the -program. The maximum value needed for tlmax is a function of the block size used by the
connection for input to the program and of the application character type the program has

The following ranges are valid:

act=1 1 < tlmax < 410 for 60-bit (one per word) transparent characters
act=2 1 < tlmax < 273 for 8-bit (7.5 per word) ASCII characters
timax < 410 for 8-bit (5 per word) ASCII characters
act=4 1 < tlmax < 205 for 6-bit (10 per word) display code characters
A tlmax value of O can be legally declared but results in an input-block-undeliverable

condition; that is, an application block header is returned with a set ibu field, even when an
empty block of application block type 2 is queued (a block with a tlc value of 0).

Figure 5-5. NETGET Statement FORTRAN Call Format (Sheet 2 of 2)

If no network block is available from the indicated
connection, AIP returns a null block; that is, AIP
places a header word with an application block type
of zero in the header area, and leaves the text
area unchanged from what it contained after any
previous transfer. '

The application program indicates the size of its
buffer in each NETGET call. If a network block
larger than this size is queued from the specified
connection, the network block remains queued. AIP
copies the header word of the block into the appli-
cation program’s block header area, sets the ibu
bit of the header to one to indicate the condition,
and places the actual length of the queued block in
the tlec field of the header. The application pro-
gram’s text area is unchanged from what it contained
after any previous transfer. To obtain the still-
queued network block, the program must issue another
NETGET call indicating a buffer size sufficient to
accommodate the queued block, or issue a DC/TRU/R
asynchronous supervisory message to have the data
truncated. (See section 3.) If block truncation
is in effect at the time of the NETGET call, then
the block is delivered with the tru bit set in the
header.

If the application program’s text area 1is larger
than the block transferred by the NETGET call, the
portion of the text area after the last word used
for the block remains unchanged from what it con-
tained after any previous transfer. If the trans-
ferred block does not completely fill the last word
used for it, all character positions in the last
word used are altered by the transfer. Only the
leftmost character positions of the last word
included in the block header word tlc field value
contain meaningful data.

Figure 5-6 contains two examples of NETGET use.

The first occurrence is in fetching asynchronous
connection-request supervisory messages. Fetching

60499500 R

[]
INTEGER TA(26) ,HA,TLMAX, OVTLMAX
DATA HA/Q0/,TA/20%0/,TLMAX/10/

.
NACN=0
1 CALL NETGET(NACN,HA,TA,TLMAX)
1F ((NSUP.AND.0'02000000000000000000") .EQ.Q)
160 TO 2
L}

0
GO TO 1
2 CONTINUE
°

L]
NACN=TERM(IACN)

3 CALL NETGET (NACN,HA,TA,TLMAX)
IF(NFETCH(HA,L"ABHABT") .EQ.0) GO TO 4
IF(NFETCH(HA,L"ABHIBU'") .EQ.1) GO TO 5

6 CONTINUE

.
L]
GO TO 3 .

5 OVTLMAX=NFETCH(HA,L"ABHTLC") /7.5
ATEMP=NFETCH (HA,L"ABHTLC") /7.5
IF (ATEMP .NE.OVTLMAX)OVTLMAX=0VTLMAX + 1
IF(OVTLMAX.GT.26) GO TO 9
CALL NETGET(NACN,HA,TA,OVTLMAX)

GO TO 6

4 CONTINUE

L]

]
9 STOP

Figure 5-6. NETGET Statement FORTRAN 5
Examples

5-5

continues until no asynchronous messages are
reported via the supervisory status word (test of
NSUP contents). The second appearance of NETGET is
in a loop polling for any messages queued on a
device connection; the polling loop continues until
a NETGET call returns a null block. The block
header word HA is tested after each call to detect
the null block, which has an application block type
(ABHABT) of zero. .

The value chosen for TLMAX in this example is
adequate for both a connection-request supervisory
message of thirteen 60-bit characters and for a
logical 1line of 72 teletypewriter characters, or
for a minimum-sized network block of 100 characters
from a longer logical 1line, with an application
character type of 2 used for input. The text area
array TA has a dimension of twice TLMAX words, in
case the test of ABHIBU fails and a block larger
than anticipated must be transferred (third NETGET
call).

Inputing to Fragmented Buffer Array (NETGETF)

You can use NETGETF to obtain an asynchronous
supervisory message from application connection
number O. You can also use NETGETF to fetch
synchronous supervisory messages and network data
blocks from application connection numbers other
than O. Synchronous supervisory messages and
network data blocks are never queued on logical
connection O.

Each NETGETF call transfers one data or supervisory
message block from the NIP queue for the connection
specified in the call. The NETGET call places the
block header 1in the application program’s block
header area. It divides the block into fragments
of whole central memory words and places each
fragment in a separately addressed application
program text area. The NETGETF statement has the
format shown in figure 5-7.

The text areas used are defined for AIP by the text
area address array identified in the NETGETF call.
This text area address array has the format given
in figure 5-8.

The application program indicates the total size of

its text area buffers in each NETGETF call through

fields in the text area address array. If a block
larger than this total size is queued from the
specified connection, the block remains queued.
AIP copies the header word of the block into the
application program’s header area, sets the ibu bit
of the header to one to indicate the condition, and
places the actual length of the queued block in the
tlc field of the header. The application program’s
text areas are unchanged from what they coatained
after any previous transfer. To obtain the still-
queued message block, the program must issue another
NETGETF call, indicating a total text area size
sufficient to accommodate the queued block, or it
must issue a DC/TRU/R supervisory message (see
section 3).

If the total size of the application program’s text
areas is larger than the block transferred by the

- NETGETF call, the portions of the text areas after

the last word used for the block remain unchanged
from what they contained after any previous trans-
fer. If the transferred block does not completely
fill the last word used for it, all character
positions in the last word used are altered by the
transfer. Only the leftmost character positioms of
the last word included in the block header word tlc
field value contain meaningful data.

If no message block is available from the indicated
logical connection, AIP returns a null block; that
is, a header word with an application block type of
zero is placed in the header area, and the text
areas remain unchanged from what they contained
after any previous transfer.

CALL NETGETF(acn,ha,na,taa)

minacn <
acn < maxacn

after return from the call.

format shown in figure 5-8.

acn An input parameter, specifying the application connection number of the logical connection
from which a block is requested. This parameter can have the values:

0 Transfer one asynchronous supervisory message.

Transfer one network data block or synchronous supervisory message from the
logical connection with the indicated acn.

ha A return parameter; as input to the call, ha is the symbolic address of the application
program's header area. The header area always contains an updated application block header

na An input parameter, specifying the number of fragments the block should be divided into. The
number used should be the same as the number of central memory word entries in the text area

address array identified by the taa parameter; if na is greater than the Length of the text
area address array, the block transfer resulting from the NETGETF call might overwrite a

portion of the program. Parameter na can have values 0 < na < 40.

taa An input parameter, specifying the symbolic address of the first word of the one-dimensional
array defining the application program's text areas. The array identified by taa has the

Figure 5-7. NETGETF Statement FORTRAN Call fFormat

5-6

60499500 T

59 39

30 18 0

taaq unused

ﬁze1

unused addressq

\I\;

taa unused

na

stzena

unused add ress,,

receive block fragment i.
contiguous central memory areas.

The sum of all na values for size; defines the size in central memory

The sum of all na values for size can be 0, but this

taa, The symbolic address of the beginning of the array used in the NETGETF call.

size; The Length in central memory words of block fragment i.
1 < size; < 63.
words of the largest block the call can transfer; this sum is the equivalent of the tlmax
parameter in the NETGET statement.
results in.an input-block-undeliverable condition; that is, an application block header 1s
returned with a set ibu field, even when an empty block of application block type 2 is
queued (a block with a tic value of Q).

address; The relative numeric address of the first word of the application program text area to

The text area addresses given in this field need not be for

This field can contain the values

Figure 5-8.

Figure 5-9 contains examples of NETGETF use. The
program uses the first NETGETF call to fetch a
block containing an entire screen of data, which
AIP fragments into 12 text areas containing one
60-character physical line each. The application
character type chosen for input from the logical
connection is 4. The program continues to fetch
full screen buffers of data until a null block is
encountered by the test of ABHABT. The text areas

used are 12 separately addressed 6-word arrays
(LINE1 through LINE12), which initially contain
blanks (DATA statements). The text area address

array (TAA), contains 12 corresponding words; each
word contains the relative address of a text area,
obtained with the LOCF function. Although the
array TAA has a dimension of 24, only the first 12
entries are expected to be used; therefore, a value
of 12 is assigned to NA in its DATA statement.
Only the first assignment statement constructing
TAA is shown; because each text area will contain
six words of ten 6-bit characters each, a size of 6
is declared in each TAA entry.

The second NETGETF call recovers a block not
delivered by the original call because the block was
larger than expected. This condition is detected
by the test of ABHIBU, as returned by the first
NETGETF call. The second call is issued with more
of the text area address array specified, so that
all 24 text areas potentially can be used.

Outputing From Single Buffer (NETPUT)

You can use NETPUT to send asynchronous supervisory
messages to application connection number 0. You
can also use NETPUT to send synchronous supervisory
messages and network data blocks to application
connection numbers other than O. Synchronous
supervisory messages and network data blocks are
never sent on logical connection O.

60499500 R

NETGETF Statement Text Area Address Array\

[]
[
DIMENSION LINE 1¢6),...,LINE24(6)
INTEGER HA,TAA(24) ,0VRFLNA,TERM(20)
DATA NA/12/,HA/0/,LINE1/6%L""/,...,LINE24L/6*L""/
[]
[]
TAA(1)=SHIFT(6,30).0R.LOCF(LINE1)
[]

[]
NACN=TERM(IACN)

1 CALL NETGETF (NACN,HA,NA,TAA)
IF(NFETCH(HA,L"ABHABT'") .£Q.0) GO TO 2
IF(NFETCH(HA,L"ABHIBU').EQ.1) GO TO 5

6 CONTINUE

[]
[]
GO TO 1

5 OVRFLNA=NFETCH(HA,L"ABHTLC') /60.0
ATEMP=NFETCH (HA,L"ABHTLC') /60.0
IF (ATEMP.NE.OVRFLNA)OVRFLNA=OVRFLNA + 1
IF(OVRFLNA.GT.24) GO TO 9
CALL NETGETF (NACN,HA,OVRFLNA,TAA)

GO TO 6

2 CONTINUE

[]

[]
9 sToP

Figure 5-9. NETGETF Statement
FORTRAN 5 Examples

Each NETPUT call requests AIP to form a block from
the information located in the application program’s
block header and text areas. The calling appli-
cation program must construct a complete block
header, as described in section 2. The text portion
of the block can be either a network data block, as

5-7

described in section 2, or a supervisory message
block, as described in section 3. The block formed
by AIP is sent to the logical connection specified
in the block header. The NETPUT statement has the
format shown in figure 5-10.

CALL NETPUT (ha,ta)

ha An input parameter, specifying the
symbolic address of the application
program's block header area. The block
header area must contain a valid block
header word.

ta An input parameter, specifying the
symbolic address of the application
program's text area. The text area must
contain a valid network data or super-
visory message block, correctly described
by the contents of the block header area.

Figure 5-10. NETPUT Statement
FORTRAN Call Format

To reduce data transfer overhead, downline data is
sometimes buffered by AIP within the application
program’s field length. Completion of a NETPUT
call therefore does not unecessarily mean that the
downline data has been transferred to the network.

When an application program is not operating in
parallel mode, return from a NETPUT call is equiv-
alent to completion of the call, and the application
program can reuse the header area and text area
specified in the call immediately. When an appli-
cation program 1is operating in parallel mode,
return from the call is not equivalent to completion
of the call. Completion of the call must be deter-—
mined through the supervisory status word bits. If
completion is not detected when these bits are
checked, completion must be forced through calls to
NETCHEK. The header area and text area cannot - be
reused safely until completion occurs. Otherwise,

AIP might transfer information on the wrong connec-:

tion or data other than what the application
intended to transfer as part of the block.

Actual transfer of downline data occurs any time
the application program makes an AIP call that
requires access to the network software’s data
structures. Any NETGET or NETGETF call causes
downline transfers when the call is not made on
connection number 0. Any NETWAIT call with a flag
value of one causes downline transfers. A NETGETL
or NETGTFL call causes downline transfers when the
call is not made on list number 0. Other AIP calls
do not necessarily cause immediate downline trans-
fers, and downline data buffered by AIP may remain
untransferred if the application program is swapped
out by the operating system. Downline data buf-
fered by AIP might also remain untransferred if the
application program schedules its own central
processor usage with the COMPASS macro RECALL,
instead of using calls to NETWAIT. To force the
transfer of downline data buffered in AIP, call
NETCHEK. (See Worklist Processing in section 4.)

Figure 5-11 contains an example of NETPUT use. The
program has fetched an asynchronous supervisory
message and determined that the message is a con-
nection request from a console. The header area
contains the connection-request block header.
Because asynchronous supervisory messages use an
application character type of one, the connection-
accepted message being created in the example
requires the first NSTORE call to place a 1 in the
tle field. The response message 1is only one
central memory word, viewed as a single character.
The next four lines of code modify the first word
of the connection-request message, contained in
text area TA. First, the NSTORE call sets the
response bit (RB). Next, the NSTORE call places a
list number in the connection-accepted message,
followed by an application character type of 4.
Six-bit display code characters are to be used for
input from this connection, an option that is legal
for consoles because they wuse the interactive
virtual terminal interface. Finally, the NETPUT
call sends the completed message on application
connection number O. The incoming block header
already contained this number, so the program did
not need to supply it while constructing the out-—
going block header.

L]
(]
CALL NSTORE(HA,L"ABHTLC",1)
CALL NSTORE(TA(1),2LRB,1)
CALL NSTORE(TA(1),L'"CONALN",TERM(1,8))
CALL NSTORE(TA(1) ,L"CONACT",4)
CALL NETPUT(HA,TA)
]
]

Figure 5-11. NETPUT Statement
FORTRAN 5 Example

Outputing From Fragmented Buffer
Array (NETPUTF)

You can use NETPUTF to send asynchronous supervisory
messages to application connection number 0. You
can also use NETPUTF to send synchronous supervisory
messages and network data blocks to application
connection numbers other than 0. Synchronous
supervisory messages and network data blocks are
never sent on logical connection 0.

Each NETPUTF call requests AIP to form a message
block from the information located in the appli-
cation program’s block header and scattered text
areas. The calling application program must con-—
struct a complete block header, as described in
section 2. The text portion of the block can be
either a network data block, as described in section
2, or a supervisory message block, as described in
section 3. The block formed by AIP is sent to the
logical connection specified in the block header.
The NETPUTF statement has the format shown in figure
5-12.

60499500 R

CALL NETPUTF(ha,na,taa)

ha An input parameter, specifying the
symbolic address of the application
program's block header area. The block
header area must contain a valid block
header word.

na An input parameter, specifying the number
of fragments the block is divided into.
The number used should be the same as the
number of central memory word entries in
the text area address array identified by
the taa parameter; if na is greater than
the length of the text area address array,
the block transferred by the NETPUTF call
might contain meaningless information
appended to the last meaningful fragment.
Parameter na can have the values 1 < na <
40. - T
taa An input parameter, specifying the
symbolic address of the first word of the
one-dimensional array defining the
application program's text areas. The
array identified by taa has the format
shown in figure 5-13.

Figure 5-12. NETPUTF Statement
FORTRAN Call Format

NAM assembles the text portion of the block trans-
ferred by the call from separately addressed text
areas scattered through the application program’s
field length. The addresses and sizes of these
text areas are supplied to AIP through a text area
address array specified in the NETPUTF call. (The
text area address array is shown in figure 5-13.)

The total size of all of the text areas identified
in the text area array should be greater than or

equal to the central memory word equivalent of the
number of characters specified in the block header.
If the block header declares the block to contain
fewer central memory words than all the text areas
contain, the portion of the text areas beyond the
size declared in the block header will not be
included in the transferred block.

To reduce data transfer overhead, downline data is
sometimes buffered by AIP within the application
program’s field length. Completion of a NETPUTIF
call therefore does not necessarily mean that the
downline data has been transferred to the network.

When an application program is not operating in
parallel mode, return from a NETPUTF call is
equivalent to completion of the call, and the

application program can reuse the header area and
text areas specified in the call immediately. When
an application program 1s operating in parallel
mode, return from the call is not equivalent to
completion of the call. Completion of the call
must be determined through the supervisory status
word bits. 1f completion 1is not detected when
these bits are checked, completion must be forced
through calls to NETCHEK. The header area and text
areas cannot be reused safely until completion
occurs. Otherwise, AIP might transfer information
on the wrong connection or data other than what the
application intended to transfer as part of the
block.

Actual transfer of downline data occurs any time
the application program makes an AIP call that
requires access to the network software’s data
structures. Any NETGET or NETIGETF call causes
downline transfers when the call is not made on
connection number O. Any NETWAIT call with a flag
value of one causes downline transfers. A NETGETL
or NETGTFL call causes downline transfers when the
call is not made on list number O. Other AIP calls
do not necessarily cause immediate downline trans-
fers, and downline data buffered by AIP might
remain untransferred if the application program is

59 39

30 18 0

taaq unused

sizeq

unused -addressq

‘r\,

taana unused

mzena

unused address

na

containing block fragment i.
contiguous central memory areas.

This field can contain the values

The sum of all na values for size; defines the size in central memory

taay The symbolic address of the beginning of the array used in the NETPUTF call.

size; The Length in central memory words of block fragment i.
1 < size; < 63.
words of the block to transfer; this sum must be less than or equal to 410 central memory
words.

address; The numeric relative address of the first word of the application program text area

The text area addresses given in this field need not be for

Figure 5-13.

60499500 R

NETPUTF Statement Text Area Address Array

swapped out by the operating system. Downline data
buffered by AIP might also remain untransferred if
the application program schedules its own central
processor usage with the COMPASS macro RECALL,
instead of wusing calls to NETWAIT. To force the
transfer of downline data buffered in AIP, call
NETCHEK. (See Worklist Processing in section 4.)

Figure 5-14 contains an example of NETPUTF use.
The program sends a block containing an entire
screen of data to an interactive counsole. ATP
assembles the block from text areas containing one
logical (and physical) line each. The application
character type used for the block is 4. The pro-
gram uses 12 text areas of separately addressed
7-word arrays (OLINEl through OLINE12), containing
6-bit display code characters and 12-bit zero byte
terminators (DATA statements). The text area
address array, OTAA, contains 12 corresponding
words; each word contains the relative address of a
text area, obtained with the LOCF function. Because
the array OTAA has a dimension of 12, a value of 12
is assigned to ONA in its DATA statement. Only the
first assignment statement constructing OTAA is
shown. Because each text area contains seven words
of ten 6-bit characters each, a size of 7 is
declared in each OTAA entry.

CONNECTIONS ON LISTS

The two options for input from connections on lists
are as follows:

Fetch input to a single, unified buffer (NETGETL
statement)

Fetch input to an array of buffers (NETGTFL
statement)

Inputing to Single Buffer (NETGETL)

You can use NETGETL to obtain an asynchronous
supervisory message from applicatioan connection
number 0. Application connection number 0 is
always part of application list number 0. When a
NETGETL call specifying input from list 0 is
issued, any asynchronous supervisory messages
queued for the program are returned before list
scanning continues to other connection numbers on
list 0. Synchronous supervisory messages and net- -
work data blocks on connection numbers other than
zero can also. be obtained when their connection
numbers have been assigned to list O.

Each NETGETL call causes NAM to select (on a
rotating basis) one of the logical connections from
a specified list. NAM only chooses a connection
that has network data blocks queued and that has
not been turned off by a LST/OFF/R supervisory
message. One network data block is transferred
from the NIP queue of the selected counnection for
each call to NETGETL. The NETGETL call places the
block header in the application program’s header
area and the block body in the application’s text
area. Figure 5-15 shows the format of the NETGETL
statement.

Each NETGETL statement causes the counection list
to be scanned only once. Scanning begins with the
connection immediately following the connection
from which a block was previously transferred. The
first connection on the list 1is examined after the
last one on the list. Scanning ends when a con-
nection with a queued input block is found. If no
connection has a queued input block, scanning ends
with the connection preceding the one at which
scanning started.

[]
.
CALL NSTORE (HA,L'"ABHABT",2)

CALL NSTORE (HA,L"ABHABN",1)
CALL NSTORE(HA,L'ABHACT",4)
CALL NSTORE (HA,L'ABHNFE",1)

CALL NETPUTF (HA,ONA,OTAA)
.
L J

DIMENSION OLINE1(7),...,0LINE12(7)

INTEGER HA,OTAA(12) ,0NA, TERM(20)

DATA ONA/12/,HA/0/,OLINE1/"ABCDEFGHIJ", ..., L"12345678",0/,...,
1DATA OLINE12/"ABCDEFGHIJ",...,L"12345678",0/

OTAA(1)=SHIFT(6,30) .OR.LOCF(OLINE1)

CALL NSTORE(HA,L'"ABHADR" ,TERM(IACN)

CALL NSTORE(HA,L"ABHTLC",840)

Figure 5-14. NETPUTF Statement FORTRAN 5 Example

5-10

60499500 R

CALL NETGETL(aln,ha,ta,tlmax)

on the indicated Llist.

after return from the call.

specified for input from the connection.

act=2 1

IA

aln An input parameter, specifying the number of the connection List to be scanned for a queued
block. This parameter can have the values:

0 Obtain all asynchronous supervisory messages queued on application connection
number O first, then any data or synchronous supervisory message blocks queued
on other connections on list zero.

1 < aln <63 Obtain one data or synchronous supervisory message block from one connection

ha A return parameter; as input to the call, the symbolic address of the application program's
block header area. The header area always contains an updated application block header word

ta A return parameter; as input to the call, the symbolic address of the first word of the buffer
array constituting the text area for the application program. On return from the call, the text
area contains the requested block if a block was available and the text area was large enough.
The text area identified by ta should be at least tlmax words long.

t lmax An input parameter, specifying the maximum Length in central memory words of a block the
application program can accept. The value declared for tlmax should be Less than or egual to
the Length of the text area identified in the same call; if tlmax is greater than the length of
the text area, the block transfer resulting from the NETGETL catl might overwrite a portion of
the program. The maximum value needed for tlmax is a function of the block size used by the
connection for input to the program and of the application character type the program has

The following ranges are valid:

act=1 1 < tlmax < 410 for 60-bit (one per word) transparent characters
timax < 273 for 8-bit (7.5 per word) ASCII characters
act=3 1 < tilmax < 410 for 8~bit (5 per word) ASCII characters
act=4 1 < tilmax < 205 for 6-bit (10 per word) display code characters
A tlmax value of 0 can be legally declared but results in an input-block-undeliverable

condition; that is, an application block header is returned with an ibu value of 1, even when an
empty block of application block type 2 is queued (a block with a tlc value of 0).

Figure 5-15. NETGETL Statement FORTRAN Call Format

If data or supervisory message blocks are not
available from any connection on the list, a null
block is returned. A header word with an appli-
cation block type of zero is placed in the header
area, and the text area is wunchanged from its
content after the last block was obtained. Null
blocks are not returned from each connection.

The application program indicates the size of its
buffer in each NETGETL call. If a block larger
than this size is available for transfer, the block
remains queued, wunless data truncation has been
requested. AIP copies the header word of the block
into the application program’s block header area,
sets the ibu bit of the header to one to indicate
the condition, and places the actual length of the
queued block in the tlc field of the header. The
application program’s text area is unchanged from
what it contained after any previous transfer. To
obtain the still-queued block, the program must
issue a separate NETGET call, indicating a buffer
size sufficient to accommodate the queued block, or
it may request a truncated block using the DC/TRU/R
asynchronous supervisory message (see section 3).

60499500 R

The connection pointer within the list is incre-
mented regardless of whether a transfer occurs, so
the same connection is not 1involved in a second
NETGETL call.

If the application program’s text area is larger
than the.block transferred by the NETGETL call, the
portion of the text area after the last word used
for the block remains unchanged from what it con-
tained after any previous transfer. If the trans—
ferred block does not completely fill the last word
used for it, all character positions in the last
word used are altered by the transfer. Only the
leftmost character positions of the last word
included in the block header word tlc field value
contain meaningful data.

Figure 5-16 contains an example of NETGETL statement
use. The program has assigned all interactive con-
soles to list O when accepting connection with them
(code not shown). A NETGETL call 1is wused to
periodically poll 1list O for asynchronous super-
visory messages affecting new or existing connec-
tions, and for interactive input affecting passive

5-11

®
INTEGER TA(26),HA,TLMAX,OVTLMAX
DATA HA/0/,TA/26%0/,TLMAX/13/

[]

[
NALN=0
1 CALL NETGETL (NALN,HA,TA,TLMAX)
IF(NFETCH (HA,L"ABHABT") .EQ.0) GO TO 5
IF(NFETCH(HA ,L"ABHABT") .NE.3) GO TO &
CALL SMP(HA,TA,TLMAX)
GO TO 1 ,
& IF(NFETCH(HA,L"ABHIBU™) .EQ.1) GO TO 3
2 CONTINUE
[]

L J
GO T0 1
3 OVTLMAX=NFETCH(HA,L"ABHTLC")/7.5

ATEMP=NFETCH(HA ,L"ABHTLC') /7.5
IF (ATEMP .NE.OVTLMAX)OVTLMAX=0VTLMAX + 1
IF (OVTLMAX.GT.26) GO TO 9
NACN=NFETCH(HA L"ABHADR")
CALL NETGET(NACN,HA,TA, OVTLMAX)

L]

.
GO TO 1
5 CONTINUE
°
[

9 sTOP

Figure 5-16. NETGETL Statement
FORTRAN 5 Example

batch connections. The TLMAX value of 13 is
adequate for both supervisory messages of appli-
cation character type 1 and 72-character logical
lines or a minimum-sized network .block of 100
characters in ASCII (application character type 2)
from the interactive consoles. Each time list 0 is
polled by the NETGETL call, the block header area

HA is tested to determine the block type. If a
null block (ABHABT of 0) is found, polling ceases.
If a block type of 1 or 2 is found, the block is
processed (code not shown) and polling continues.
If a supervisory message (block type of 3) is found,
a subroutine called SMP is entered to process the
supervisory message and polling of list O continues.

The NETGET call recovers a block not delivered by
the original call because the block was larger than
expected. This condition is detected by the test
of ABHIBU, as returned by the NETGETL call. The -
NETGET call is issued with more of the text area
buffer available; OVTLMAX can be up to twice TLMAX
before the text area is completely filled.

Inputing to Fragmented Buffer
Array (NETGTFL)

You "can use NETGTFL to obtain an asynchronous
supervisory message from application connection
number O. Application connection number 0 is always
part of application list number 0. When a NETGTFL
call specifying input from list 0 is issued, any
asynchronous supervisory messages queued for the
program are returned before list scanning continues
to other connection numbers on list 0. Synchronous
supervisory messages and network data blocks on
connection numbers other than- zero can be obtained
when their connection numbers have been assigned to
list O.

Each NETGTFL call causes NAM to select (on a
rotating basis) one of the logical connections from
a specified list. NAM only chooses a connection
that has blocks queued and has not been turned off
by a supervisory message. One block is transferred
from the NIP queue of the selected connection for
each call to NETGTFL; the block header is placed in
the application program’s header area and the body
is placed in the application’s text areas. Figure
5-17 shows the format of the NETGTFL statement.

CALL NETGTFL(aln,ha,na,taa)

on the indicated Llist.

return from the call.

format shown in figure 5-18.

aln An input parameter, specifying the number of the connection List to be scanned for a queued
block. This parameter can have the values:

0 Obtain all asynchronous supervisory messages queued on application connection
number 0 first, then any data or synchronous supervisory message blocks queued
on other connections on Llist zero.

1 < aln < 63 Obtain one data or synchronous supervisory message block from one connection

ha A return parameter; as input to the call, the symbolic address of the application program's
block header area. The header area always contains an updated application block header after

na An input parameter, specifying the number of fragments the block should be divided into. The
number used should be the same as the number of central memory word entries in the text area
address array identified by the taa parameter; if na is greater than the Length of the text
area address array, the block transfer resulting from the NETGTFL call might overwrite a
portion of the program. Parameter na can have the values 0 < na <-40.

taa An input parameter, specifying the symbolic address of the first word of the one-dimensional
array defining the application program's text areas. The array identified by taa has the

Figure 5-17. NETGTFL Statement FORTRAN Call Format

60499500 T

Each NETGTFL statement causes the connection list
to be scanned only once. Scanning begins with the
connection immediately following the connection
from which a block was previously transferred. The
first connection on the list is examined after the
last one on the list. Scanning ends when a con-
nection with a queued input block is found. If no
connection has a queued input block, scanning ends
with the connection preceding the one at which
scanning started.

The text areas used are defined for AIP by the text
area address array, identified in the NETGTFL call.
This text area address array has the format shown
in figure 5-18.

The application program indicates the total size of
its text area buffers in each NETGTFL call through
fields in the text area address array. If a block
larger than this total size is queued from the
specified connection, the block remains queued,
unless truncation is in effect. (See section 3.)
ATIP copies the header word of the block into the
application program’s header area, sets the ibu bit
of the header to onme to indicate the condition, and
places the actual length of the queued block in the
tlc field of the header. The application program’s
text areas are unchanged from what they contained
after any previous transfer. To obtain the still-
queued block, the program must issue a separate
NETGETF call, indicating a buffer size sufficient
to accommodate the queued block. The program also

can request data truncation using the DC/TRU/R
asynchronous supervisory message. (See section
3.) The connection pointer within the 1list is

incremented regardless of whether a transfer occurs,

so the same connection is not involved in a second
NETGTFL call.

If the total size of the application program’s text
areas is larger than the block transferred by the
NETGTFL call, the portions of the text areas after
the last word used for the block remain unchanged
from what they contained after any previous trans—
fer. If the transferred block does not completely
f£fill the last word used for it, all character
positions in the last word are altered by the
transfer. Only the leftmost character positions of
the last word indicated by the block header word
tlc field value contain meaningful data.

If data or supervisory message blocks are not
available from any connection on the list, a null
block is returned. A header word with an appli-
cation block type of zero is placed in the header
area, and the text areas are unchanged from their
contents after the last block was obtained. Null
(empty) blocks are not returned from each connec—
tion.

Figure 5-19 contains an example of NETGIFL use.
The program previously assigned all 1interactive
consoles to list 0O when accepting connection with
them (code not shown). A NETGTFL call is used to
periodically poll 1list 0 for asynchronous super=-
visory messages affecting new or existing connec-—
tions, and for interactive -input affecting console
connections. If the poll is successful (does not
return a null block) and returns an asynchronous
supervisory message block, subroutine SMP is called
to process the message. If the poll returns a
network data block header but no block (test of
ABHIBU fails), a NETGETF call is issued with a
total text area buffer size larger than in the
original call; this NETGETF call should successfully
retrieve the queued block.

59 39 30 18 0
taa unused sizeq unused address4
‘\
[
[]
*®
taag, unused size, o unused address,,

t 581

51281

1 < size; < 63.

parameter in the -NETGETL statement.

queued (a block with a tlc value of

address;
receive block fragment i.
contiguous central memory areas.

The symbolic address of the beginning of the array used in the NETGTFL call.

The length in central memory words of block fragment i.
The sum of all na values for sizei defines the size in central memory
words of tTe largest block the call can transfer; this sum is the equivalent of the tlmax
The sum of all na values for size can be 0, but this
results in an input-block-undeliverable condition; that is, an application block header is
returned with the ibu field set, even when an empty block of application block type 2 1s

0.

H The numeric relative address of the first word of the application program text area to
The text area addresses given in this field need not be for

This field can contain the values

Figure 5-18.

60499500 R

NETGTFL Statement Text Area Address Array

5-13

L]
]

DIMENSION LINE1(6),...,LINE24(6)

INTEGER HA,TAA(24) ,0VRFLNA

DATA NA/12/,HA/0/,LINE1/6*L""/, ..., LINE24/6* """/
.

[
TAA(1)=SHIFT(6,30) .OR.LOCF(LINET)
(]

[]
NALN=0
1 CALL NETGTFL(NALN,HA,NA,TAA)
LF(NFETCH (HA,L"ABHABT™ .£Q.0) GO TO 5
IF(NFETCH(HA,L"ABHABT") .NE.3) GO TO &
CALL SMP (HA,NA,TAA)
G0 TO 1
4 IF(NFETCH(HA,L"ABHIBU") .EQ.1) GO TO 3
2 CONTINUE
]
[]
G0 TO 1
3 OVRFLNA=NFETCH(HA,L"ABHTLC") /60.0
ATEMP=NFETCH (HA,L"ABHTLC") /60.0
IF CATEMP.NE.OVRFLNA)OVRFLNA=OVRFLNA + 1
IF (OVRFLNA.GT.24) 60 TO 9
NACN=NFETCH(HA, L' ABHADR')
CALL NETGETF(NACN,HA,OVRFLNA,TAA)
G0 TO 2
5 CONTINUE
[]
[]
9 sToP

Figure 5-19. NETGTFL Statement
FORTRAN 5 Example

NAM fragments the block transferred by the NETGTFL
or NETGETF call into 12 (NA) or more (OVRFLNA) text
dreas (LINEl through LINE24), identified in the
24-entry text area address array (TAA). Each text
area 1is intended to hold one 60-character display
coded physical line from-a full page of input. NAM
places each 1line 1into six consecutive central
memory words., The calculation of OVRFLNA assumes
that an application character type of 4 is used for
input, but the size of the LINE]l text area is
adequate for both application character type &

lines and the application character type 1 words
used for asynchronous supervisory messages. The
FORTRAN function LOCF stores the address of each of
the text area arrays in TAA, and the TAA entry has
a corresponding length of 6; only the first TAA
assignment statement is shown.

PROCESSING CONTROL STATEMENTS

The processing control statements NETFUNC, NETWAIT,
NETSETP, and NETCHEK cause or reduce processing
delays to alter the application program”s effi-
ciency. These statements are used in conjunction
with the supervisory status word established by the
application program in its NETON statement.
NETWAIT and NETCHEK can be used by any application
program; NETSETP is used only * by programs
performing parallel mode processing, as described
in section 4. NETFUNC is used when the application
wants to be swapped out or when it issues a NETWAIT
call if there is no deliverable data on a NETGETL
or NETGTFL call.

SUSPENDING PROCESSING (NETWAIT)

The NETWAIT statement (figure 5-20) performs the
following functions:

.Allows an application program to have NAM
request the operating system rollout or
otherwise suspend the application program”s
processing R

Allows the application program to declare a
mandatory wait before processing resumes

Allows the application program to declare a
maximum time for processing suspension

Allows the application program to delay resump-
tion of processing until input is available or
deliverable through list processing for it on
any of its logical connections, or on
connection zero

Causes the supervisory status word (NETON nsup
parameter) for the program to be updated on
return from the NETWAIT call

CALL NETWAIT(time,flag)

parameter can have the values:

parameter is ignored.

time An input parameter, 1 < time < 4095, specifying the number of seconds for which the application
program should be suspended. If a value of zero is declared, a default value of one is used;
if a value greater than 4095 is declared, a default value of 4095 is used.

flag An input parameter, specif}ing the conditions under which processing should be resumed. This

0 Return from NETWAIT call (resume processing) when input is available from any connec-
tion, or when the period declared by the time parameter has elapsed. A minimum time
of 1 second is used if input is not available immediately. When a flag value of zero
is declared and input is available immediately, the value declared for the time

1 Do not return from NETWAIT call (resume processing) until the period declared by the
time parameter has elapsed, regardless of whether input is available from any
connection. Also forces buffer output to be- transmitted.

Figure 5-20. NETWAIT Statement FORTRAN Call Format

5-14

60499500 T

Calls to NETWAIT with nonzero flag values always
suspend processing when suspension is possible.
Calls to NETWAIT with =zero flag values suspend
processing only when no input is available.

If NETFUNC is called with function code 1, calls to
NETWAIT with zero flag values suspend processing 1f
there is no input available or when no data {is
deliverable on a NETGETL or NETGTFL call.

NETWAIT calls with a flag value of zero should ounly
be made after all outstanding asynchronous super-
visory messages have been fetched by the program.
A NETWAIT call with a flag value of zero made while
any asynchronous supervisory message remains queued
always results in immediate return to the program,
regardless of whether any other input is available.
Such calls represent unnecessary additional proc-
essing by AIP and the program and do not cause
transfer of worklists that are not completely filled
(effectively delaying output resulting from previous
calls to NETPUT or NETPUTF).

If NETWAIT is called while the program is operating
in parallel mode, parallel mode operation is
ignored, and the program is suspended. Parallel
mode operation is reinstated when return from the
NETWAIT call occurs. You should not issue a call
to NETWAIT when it would interrupt parallel mode
operation, unless a call to NETCHEK €first. returns
an indication that all worklist processing 1is
completed.

You should include NETWAIT calls in an application
program that repeatedly polls the network for input
(via NETGET, NETGETL, NETGETF, or NETGTFL calls).
If such programs omit frequent NETWAIT calls,
severe performance degradation can result; i1if you
perform on-line debugging of such application

programs, you should use small time limits for the ~

job while it is in the debugging phase.

You should use NETWAIT calls as part of the appli-
cation program”s mechanisms to control queuing.
For example, the application program must be sure
before each NETPUT or NETPUTF call that the call
will not cause the logical connection”s application
block 1limit to be exceeded. When the 1limit has
been reached, the application program should not
output another block until it has recelved a block-
delivered supervisory message for a block already
sent., Because repeated polling for supervisory
message input to obtain these acknowledgments can
degrade program performance, a NETWAIT call should
follow any NETPUT or NETPUTF call that might cause
the 1limit to be reached. The time value declared
in the NETWAIT call should be large enough to allow
a block-delivered supervisory message to be received
before another NETPUT or NETPUTF call occurs.

Similarly, an application program should never
enter parallel mode after a NETPUT call unless the
program first issues a NETWAIT call. Because AIP
does not transfer worklists partially filled by
NETPUT calls, the NETWAIT call is necessary to
force transfer of the worklist, (See Worklist
Processing in section 4.) TIf NETWAIT is not called,
the time between the NETSETP call and the first
NETCHEK call is not used for network processing.

Figure 5-21 contains examples of NETWAIT statement
use, The program sends a series of data message
blocks with NETPUT calls, issues a NETWAIT that
transfers the worklist and begins block trans-
mission, and then checks the supervisory status

60499500 T

MSK1=0'02000000000000000000"
°

[J
CALL NETPUT (HA,TA, TLMAX)
ITIME=1
IFLAG=1
CALL NETWAIT(ITIME,IFLAG)
IF (NSUP.AND.MSK1.EQ.MSK1) GO TO 1
ITIME=10
IFLAG=0
CALL NETWAIT(ITIME,IFLAG)
1 IACN=0
CALL NETGET(IACN,HA,TA,TLMAX)
CALL SMP (HA,TA,TLMAX)
o
[]

Figure 5-21. NETWAIT Statement
FORTRAN 5 Examples

word (NSUP). If no asynchronous supervisory mes-
sages are queued on return from the first NETWAIT
call, no block-delivered message can have been
received and the NSUP test fails. The program
issues a second NETWAIT call specifying delay until
input on any connection (including the asynchronous
supervisory message connection 0) is queued.

CONTROLLING PARALLEL MODE (NETSETP)

The NETSETP statement (figure 5-22) begins or ends
an application program”s parallel mode operation.
Parallel mode operation involves worklist process-
ing and is discussed in detail under both headings
in section 5. While 1in parallel mode, an appli-
cation program cannot use any AIP statements other
than NETOFF or NETCHEK until AIP processing com—
pletion has been indicated in the supervisory statur
word.

CALL NETSETP(option)

option An input parameter, specifying whether
parallel mode operation begins or ends
after the NETSETP call. This parameter
can have the values:

=0 Begin parallel mode operation.

#0 End parallel mode operation.
(This is the default value for
application program operation.)

Figure 5-22. NETSETP Statement
FORTRAN Call Format

The supervisory status word used during parallel
mode operation is defined by the nsup parameter in
the application program”s NETON statement. The bit
of the supervisory status word concerned with
parallel mode processing 1is updated only while ‘an
application program is operating in parallel mode.

When an application program is operating in parallel
mode, it should not alter the contents of the text
area used for a NETPUT or NETPUTF call immediately

after that call. The program can normally reuse

5-15

the area as soon as a call to NETWAIT, NETGET,
NETGETF, NETGETL, or NETGTFL is completed. The
text area used in a NETPUT or NETPUTF call should
not be altered until after worklist processing is
reported complete; nor should the NETON call status
word be tested until then.

A call to NETSETP ending parallel mode operation
should not be issued until a call to NETCHEK returns
an indication that all worklist processing is com-
pleted. AIP ignores calls to NETSETP that: attempt
to end parallel mode operation if the application
program is not operating in parallel mode. -

Figure 5-23 contains examples of NETSETP and NETCHEK
use. The program attempts to reduce the number of
worklist transfers between AIP and NIP to increase
its efficiency. It does this while servicing a
batch device on application connection number 2 and
transmitting to a console on application connection
number 3.

[
ITLMAX=410
IIACN=3
IBACN=2
10PT=0
CALL NETSETP(IOPT)
10 0099, 1=1,5,1
CALL NSTORE(IIHA(I),L"ABHADR",IIACN)
CALL NSTORE (IIHA(I),L"ABHABN'",I)
CALL NETPUT (IIHA(I), ITEXT(20%(I-1)))
88 ITEMP=NSUP.AND.SHIFT(1, 59)
IF(ITEMP.EQ.SHIFT(1, 59)) GO TO 99
CALL NETCHEK
G0 TO 88
99 CONTINUE
98 ITEMP=NSUP.AND.SHIFT(1, 55)
IF(ITEMP.EQ.SHIFT(1, 55)) GO TO 3
ITEMP=NSUP.AND.SHIFT(1, 56)
IF(ITEMP.EQ.SHIFT(1, 56)) GO TO 4
ITIME=?
IFLAG=1
CALL NETWAIT(ITIME,IFLAG)
60 TO 98
3 IACN=0
10PT=1
CALL NETSETP(IOPT)
CALL NETGET(IACN, IHA, ITA, ITLMAX)
[)

.

4 IOPT=0
CALL NETSETP(IOPT)

CALL NETGET(IIACN, IIHA(1), ITEXT(1), ITLMAX)

5 CALL NETCHEK
ITEMP=NSUP_.AND.SHIFT(1, 59
IFC(ITEMP.NE.SHIFT(1, 59)) GO TO 5

.
L]

6 CALL NETCHEK
ITEMP=NSUP.AND.SHIFT(1, 59)
IF(ITEMP.NE.SHIFT(1, 59)) GO TO 6

[]

[]
GO 70 10

Figure 5-23. NETSETP and NETCHEK Statement
FORTRAN 5 Examples

5-16

The program flow shown minimizes worklist transfers
by concentrating the console output, instead of
interleaving each output 1line with NETGET calls
that might cause worklist transfers by AIP for
worklists not completely filled. Parallel mode
does not expedite this efficiency, but requirements
for its use are illustrated in several parts of the
code.

When the program has sent downline all of the
blocks it intends to send to the console, it tests
for upline data or asynchronous supervisory mes-
sages. If neither is found, NETWAIT rolls the
program out for 7 seconds and suspends parallel
mode processing temporarily.

When asynchronous supervisory messages are found,
the program leaves parallel mode processing with a
nonzero IOPT parameter 1in another NETSETP call.
The program can then fetch the messages without
needing to test NSUP for completion of the NETGET
call.

When upline data is found, the program makes sure
it is in parallel mode with a zero IOPT parameter
in a NETSETP call. This call is ignored if it is
reached by a path that had already caused parallel
mode processing to begin. While in parallel mode,
the program fetches any queued input from the con-
sole. NETCHEK is called and tested for completion
after the NETGET call. After the attempt to fetch
data from the console is completed (the input dis-
posed of by code is not shown), a similar attempt
(not shown) is made to fetch data from the batch
device. When any batch data has been disposed of,
the program returns to its output loop for the
console (having presumably prepared the output
buffers first).

If a system control point job is operating in
parallel mode when it loses communication with NIP,
all further network input and ouput AIP calls are
ignored, but the program is not aborted. The
program should check the n bit in the supervisory
status word (see figure 5-2) after completion of
all network input and output calls to determine
whether or not it is still communicating with NIP.

If a system control point job is not operating in
parallel mode when it loses communication with NIP,
it is aborted when it makes the next AILP request.
The operating system aborts all nonsystem control
point jobs when NIP aborts, regardless of operating
mode.

CHECKING COMPLETION OF WORKLIST
PROCESSING (NETCHEK)

The application program uses the NETCHEK statement
(figure 5-24) to perform several functions. Each
call to NETCHEK:

Updates bit 59 of the supervisory status word
(identified by the nsup parameter used in the
NETON statement) on return from the call, when
the program is in parallel mode

Forces AIP to attempt transfer of its curreat
worklist to NIP if the transfer has not yet
occurred, if the program is running in either
parallel or nonparallel mode

60499500 R

CALL NETCHEK

Figure 5-24. NETCHEK Statement
FORTRAN Call Format

It 1s not necessary to call NETCHEK to cause work-
1list transfers. Worklist transfers occur normally
after all the requirements described in section 4
under Worklist Processing have been met. A NETCHEK
call causes an attempt to transfer a worklist in
situations that do not meet these criteria. This
operation is equivalent to a NETWAIT except that
processing is not suspended.

By checking the supervisory status word after each
NETCHEK call, the application program can determine
the most recent state of worklist processing and
determine whether additional AIP routine calls can
be 1issued., NETCHEK, NETOFF, and NETWAIT are the
only AIP statements that can be used while any
worklist processing operation is pending. A call
to NETSETP ending parallel mode operation should
not be issued until a call to NETCHEK returns an
indication that all worklist processing has been
completed.

If NETON is called during parallel mode operation,
NETCHEK should not be called until all worklist
processing is reported complete. The NETON call
status word does not contain meaningful information
until processing for the worklist containing the
NETON call is complete. NETCHEK should not be
called after a NETOFF call is issued in parallel

60499500 T

mode. A NETOFF call ends parallel mode operation
by making worklist processing completion status
impossible,

Worklist processing is described in section 4. The
supervisory status word is described under the
heading Connecting to Network at the beginning of
this section. Figure 5-23 contains examples of
NETCHEK use.

INITIATING SPECIAL AIP FUNCTIONS (NETFUNC)

The NETFUNC statement (figure 5-25), when called
with function code 1, indicates that the
application program wants to be swapped out when it
issues a NETWAIT call, if there is no deliverable
data on a NETGETL or NETGTFL call.

CALL NETFUNC(netfc,netpa)

netfc An input parameter, specifying that the
application program wants to be swapped
out when it issues a NETWAIT call if
there is no deliverable data on a
NETGETL or NETGTFL call. Only a value
of 1 is accepted. ALl other values
will be rejected.

netpa Reserved for CDC.

Figure 5-25. NETFUNC Statement FORTRAN
Call Format

5-17

CHARACTERISTICS OF AN APPLICATION PROGRAM

This section describes the structure and execution
of a Network Access Method (NAM) application pro-
gram.

NOTE

You cannot execute application pro-
grams as Transaction Facility tasks.

NOS SYSTEM CONTROL POINT
FACILITY

The NOS system control point facllity permits the
exchange of data between programs running at dif-
ferent control points. These programs are called:

System control point jobs when they are formally
defined as subsystems of the operating system

User control point jobs when they exchange data
with a system control point job

System control point jobs (subsystems) can make
privileged requests to the operating system and
execute with a very high priority. Network system
control point jobs such as the Network Interface
Program (NIP) usually reside in the operating system
library.

Application programs accessing the network execute
as system control point jobs or user control point
jobs using the system control point facility. Since
the code that implements this facility is embedded
in the Application Interface Program (AIP), it
remains transparent to the application program.
Certain aspects of system control point jobs and
user control point jobs, however, do affect appli-
cation program operation.

An application program cannot execute successfully
unless the CUCP bit is set in the access word
associated with the user name of its job. TIf the
program attempts to access the network and the CUCP
bit is not set, the program is aborted with the
dayfile messages ILLEGAL USER ACCESS and SYSTEM
ABORT, and no error exit processing occurs, Access
word bits are set through the MODVAL utility, as
described in the NOS Analysis Handbook.

While connection to the network exists, a network
application program always has a minimum system
activity count of one. If the application program
uses the control point manager system macro call
(GETACT), the minimum system activity count appears
in the SCA field of the c¢all., When a network
application program ends 1its connection with the
network by a NETOFF call, the system activity count
drops to zero., The GETACT macro is described in
volume 4 of the NOS reference set.

60499500 T

BATCH JOB STRUCTURE

A batch application program job using the Network
Access Method 1s structured 1like any other batch
job.

A job is a sequence of commands, optionally followed
by source programs, object programs, data, or
directives. A batch job begins with the job command
and ends with an end-of-information indicator. Jobs
can consist of either physical card decks or 1images
of card decks.

Application program jobs can enter the system in one
of two ways:

Batch jobs on cards are read in through card
readers at the central site. Batch jobs of
card images are read from a load tape under the
direction of the system console operator or the
direction of another job.

Remote batch jobs on cards are read in through
card readers at remote site terminals., Remote
batch job card images are transmitted to form a
file at the host computer. All remote batch
jobs reach the host computer facilities through
the Remote Batch Facility (RBF).

Batch jobs have the same structure no matter what
their origin. Remote batch jobs differ from central
site batch jobs in that output returns to the
terminal and that remote jobs are subject to the
limitations of the physical- equipment at the remote
site. The following information about job decks
applies to both card decks and card deck images.

The first card of the batch job deck 1is the job
command; the last card has a 6/7/8/9 multiple punch
in column 1. Cards with a 7/8/9 or 6/7/9 multiple
punch in column 1 divide the deck into a command
portion, program portion, and optional data portion.
When a job deck is created as card images from a
time-sharing terminal, the cEOR and cEOF entries
result in the logical equivalent of 7/8/9 and 6/7/9,
respectively. If the job deck is submitted from a
HASP or bisynchronous station through the Remote
Batch Facility, the /*EORnn and /*EOI cards result
in the logical equivalent of 7/8/9 and 6/7/8/9,
respectively. HASP or bisynchronous station card
readers and card punches support 7/8/9 cards but
not 6/7/8/9 cards; 200 User Terminal card readers
do mnot recognize either /*EORnn cards or /*EOI
cards.

Jobs in the system waiting to begin execution are
collectively known as the input queue. Each job
enters the system with the user job name specified
by the first command in the job deck. The operating
system changes this name, based on the job command
present, to distinguish it from all others in the
system.

Once a job enters central memory and begins execu-=
tion, the image of the job deck is known as a file
by the name of INPUT, During job execution, a file
with the name of OUTPUT is generated. When the job
completes execution, file OUTPUT becomes part of
the output queue. The output queue is the collec~
tive name for output files remaining in the system
when the jobs that generated them have completed
execution. As printers, punches, or remote -devices
become ready, the operating system or remote batch
software causes files from the output queue to be
physically output., Such files normally return to
the user with the system—generated name of the job
that created them.

COMMANDS

Commands are instructions to the operating system
or its loader. They are grouped together at the
beginning of a deck. Collectively, the commands
form a job stream.

Commands execute in the order in which they appear
in the job stream, unless that order is modified by
the operating system control language. Conse~-
quently, the order of the commands governs the order
of other sections in the deck.

The user 1is responsible for structuring the job
decks so that each command read from file INPUT

corresponds correctly with the. sections of the job
deck. The operating system handles each section of
the job deck only once, unless the job specifies
contrary handling.

The job command portion of an application program
job deck normally contains a USER command as its
second card. (See figure 6-1,) The user . name
specified in this command must have bit 11 (CUCP)
of its corresponding access word set, so that the
application program can successfully complete calls
to system control points. The NOS - Analysis
Handbook describes the mechanism for setting access
word bits. Some 1installations require a CHARGE
command following the user command.

Until the program is successfully compiled, the only
other required command is a compiler or assembler
execution command in the form described in the
appropriate reference manual for the product being
used. Figure 6-1 i1llustrates the use of the com—
piler execution command for FORTRAN 5, If the job
uses a compiler, a LIBRARY or LDSET command is
needed to satisfy externals from local libraries
NETIO or NETIOD, If the job uses COMPASS, the
COMPASS command must declare NETTEXT to satisfy AIP
externals and to define.- the symbolic names used for
the field access macro utilities NFETCH and NSTORE.
(See section 4.)

End-of-Information Card

Separator Card

Data Statements ——————3»

Separator Card -

>9(g

=

/

7

8

9 et

—_—
Program Statements, A

Including AIP Calls — e —— =

Separator Card ! ot

7
8
9

/ Lco.

LDSET(LIB=NETIOD)

Commands, ————————————»

(FTNS(LO=S/-A)

Including a Compiler
or Assembler Call

(CHARGE(0059,2934657)

__ / USER(APPL1,PASS,FAM1)

Job Command » / RMV3.

Figure 6-1. Typical Job Structure for System Input

60499500 Vv

JOB IDENTIFICATION

The network software identifies an application
program and issues dayfile messages concerning the
program on the basis of the aname parameter used in
the program”s NETON call. The operating system,
however, is unaware of this name and issues dayfile
messages on the basis of the job name assigned to
the program according to the contents of the job”s
command portion. To ensure that all dayfile mes-
sages concerning the application program can be
identified, you should take the following steps when
the program is run as a batch job:

Determine the method NOS will use to assign a
job name to the application program.

Determine the first four characters of that
name.,

Inform the host operator of the first characters
of the job name corresponding to the application
name,

Do not thereafter alter the portion of the job
commands that determines the job name.

Alternatively, you can use the NOS control point
manager macro GETIJN to determine the job name
assigned to the application program job during each
execution. For the host operator”s information,
this name can then be entered in the system dayfile
with a message indicating its application program
name equivalent., This operation can be performed
with the NOS system macro MESSAGE. GETJN and
MESSAGE are described in volume 4 of the NOS 2
reference set,

PROGRAM CONTENT

If the job contains commands to reprieve itself from
an abort (RERUN or RESTART), the program portion of
the job must issue a NETOFF and a new NETON call in
order to continue accessing the network through NAM.

When an application program is structured to use
overlays, the common blocks used by all AIP routines
must reside in the main (zero-level) overlay. The
operating system loader places the blocks in the
main overlay only if the application program makes
at least one call to an AIP routine other than
NETCHEK in the main overlay. At a minimum, the
NETON call must therefore be placed in the main
overlay of the program.

PROGRAM EXECUTION THROUGH IAF

Your application program can be executed from the
Interactive Facility in several ways:

- As a SUBMIT command file batch job

- As a ROUTE command file batch job

As an interactive job

As a detached interactive job (so your
terminal can log in to it)

The use of SUBMIT and ROUTE is described in volume
3 of the NOS reference set. SUBMIT and ROUTE
command file jobs have the same command content
requirements as other batch jobs,

Figure 6-2 shows the procedure for interactive
execution of the sample program RMV2 (chapter 8).
Detached interactive job programs have the same
program content requirements as batch job programs.

Your entries are underlined:

TTJOB DETACHED, JSN=AAEQ
JSN: AAFO, NAMIAF
RECOVERABLE JOB(S)
JSN UJN STATUS TIMEOUT

AAEQ AKLQ EXECUTING

/get ,rmv2 Get indirect access source file
/cobol5,i=rmv2,Ll0=0,b=zap Compile it
0716008 CcM, 2.327 cPs, 000000B ECS
/£tn5,i=rmv2 ,L0=0,b=za
6.5?3 CP SECONDS COMPILATION TIME.
/ldset , Lib=netiod Load it
LDR>? zap Execute it
%e Bypass the IAF input queue to find out if the job step was
- successful
JSN: AAEQ SYSTEM: BATCH SRU: 11.398
STATUS: NETON WITH NIN = 551
%d - Detach the running (rolled-out) application program

Figure 6-2. Interactive Program Execution Procedure Example (Sheet 1 of 2)

60499500 T

ENTER GO TO CONTINUE CURRENT JOB,
RELIST TO LIST RECOVERABLE JOBS,
OR DESIRED JSN: go

/bye ,rmv2

UN=xxxxxx LOG OFF 08.48.49

JSN=AAFO SRU-S= 1.009
CHARACTERS= 0.381KCHS

IAF CONNECT TIME 00.11.02

THIS IS RMVZ2 USING QTRM. ENTER SOMETHING
shutdown

BYE FOREVER!
SHUTDOWN COMING
RMV2 CONNECT TIME 00.02.01

JSN: AAGN, NAMIAF

RECOVERABLE JOB(S)
JSN UJN STATUS TIMEOUT

AAEQ@ AKLQ SCH ROLLED

ENTER GO TO CONTINUE CURRENT JOB,
RELIST TO LIST RECOVERABLE JOBS,
OR DESIRED JSN: aaeq

JSN: AAEQ SYSTEM: BATCH SRU 11.799
STATUS:

CHARACTER SET: NORMAL MODES: PROMPT ON
JOBS IN SYSTEM.
ACSC, T ,

/enquire,f
LOCAL FILE INFORMATION.

11.799UNTS.

INPUT* 1 IN.* EOR

RMV2 37 LO. EOR

INPUT TT.

ZZZZIDN 3 LO. EOR WRITE
ZZZZIsN 2 Lo. EOR WRITE
ZAP 27 Lo. EOF
OUTPUT TT.
TOTAL = 7

Startup a new job so you can switch applications

Use an IAF application switch command

Respond to RMV2 prompt with command that shuts it down -

Connection switch back to IAF is automatic

Recover the detached application program (has called NETOFF,
so this rollout is controlled by IAF)

Here are all the fijles NETIOD should create

FILENAME LENGTH/PRUS TYPE STATUS FS LEVEL

Figure 6-2. Interactive Program Execution Procedure Example (Sheet 2 of 2)

TYPES OF APPLICATION
PROGRAMS

All application programs should be specified in
‘COMTNAP. When an application is defined also in
the local configuration file it can be declared as
having one of the following attributes:

Disabled

Unique identifier

Privileged

Request startable

Have more than one copy on any one host

Access to an application program can also be con-
trolled. A program can be:

A restricted access or general access appli-
cation program

A mandatory or primary application program

These access types are separately established for
each connection with the program. The first type
is controlled through the user name associated with
the connection. The second type 1is controlled

through the terminal device name associated with

the connection.

60499500 T

DISABLED

A disabled application is configured in the network
but is not allowed to access the network until the
host operator enters an enable command to allow it
to be connected.

UNIQUE IDENTIFIER

A unique identifier application program requires
that dinteractive console wuser access to it be
restricted on the basis of the login parameters
used. Only one interactive console with a given
combination of family name and user name index can
be connected with a unique identifier application.
NVF rejects a terminal user”s request to be con~
nected with a unique identifier application if the
user logs in with a family name and user name index
combination used by a console that is already con-
nected with the application. NVF tells the terminal
user to try again later.

As an example, the Remote Batch Facility (RBF)
routes its output files on the basis of the family
and user names used when the terminal console logs
in. So that output will not be misrouted, RBF is
normally configured as a unique identifier appli-
cation program. Thus the family name and user name
index combinations of all consoles accessing the
program are guaranteed to be unique.

PRIVILEGED

Privileged application programs must have an SSJ=
entry point to access the network successfully.
They also often have the CSOJ bit set in the access
word associated with the user name for the job
executing the program code.

The CSOJ bit provides the program with system
origin type permission. Jobs with system origin
type permission can be executed by host operator
type—-in. Such jobs wusually reside wunder the
operating system user name in the operating system
permanent file catalog or are installed in the
operating system library.

Having system origin type permission does not mean
that these programs must have a system origin type
when executed; rather, a privileged application
program is capable of such execution.

Nonprivileged application programs can have any
origin type permission but do not -contain an SSJ=
entry point. Origin type permission for such
programs does not affect access to the network.

The primary reason for defining an application
program as privileged is to help ensure network
security. Nonprivileged application progams cannot
run with the application program name used for a
privileged application, even if the privileged
application program is not currently running.

Application programs usually become privileged when
they are installed in the system. An installed
application program 1is one that resides in the
operating system library. The procedure file used
to execute an installed application program must
have the CASF bit set in the access word associated
with the user name in the file. Jobs that attempt

60499500 s

to access installed application programs must also
have the CASF bit set in the access words associated
with their user names. This bit must be set for
access to the system library.

If a privileged application program with the CSOJ
bit set has not been installed in the system
library, it can be executed by a host operator
type~in that invokes its procedure file. The type-
in used has the form:

X.BEGIN(,anamep)

where the anamep parameter is ‘the name of the
procedure file. .The procedure file must be a
permanent file in the operating system permanent
file catalog (stored under the system user name and
user index). For the anamep value, you can use a
variant of either the program entry point name or
the program network application name (NETON state-
ment aname parameter), and all three identifiers
should be coordinated. CDC-written application
programs are invoked through procedure files for
which certain naming conventions have been adopted.
These conventions appear in the NOS Installation
Handbook, described in the preface. Similar
conventions could be adopted for site-written
application programs.

An installed privileged application program with
the CSOJ bit set can be executed by a host operator
type-in of the form:

X.anament.

where the anament parameter is the name of the
program (first entry point) installed in the
library. For the anament value, you can use a
variant of the program network application name
(NETON statement aname parameter).

A privileged application program with the CSOJ bit
set that is not installed can be executed by a
system console operator type—in that invokes an
installed procedure file. This type-in has the
form:

X.anamep.

where the anamep parameter is the name of the
procedure file installed in the system library.
For the anamep value you can use a variant of
either the program entry point or the program
network application name (NETON statement aname
parameter), and all three identifiers should be
coordinated. As described previously, the naming
conventions used by CDC for CDC-written application
programs should be used. as a guide for procedure
files invoking site-written application programs.

Privileged application programs with the CSOJ bit
set can be automatically started when the host”s
network software 1is started. This - process is
described in the NOS Administration reference
manual.

You should not define an application program as
privileged or install it in the system library
until the program has been thoroughly debugged.
Programs should be run with batch, remote batch, or
detached interactive job origin during the
debugging process.

6-5

REQUEST STARTABLE

Whenever the application is requested by a terminal
user (through the application name in the login
process), or by another application (by a CON/ACRQ
message), NVF attempts to start the application.

The file name equivalent to the name of the appli-
cation should be made available to NVF through the
NVF startup record. (See the NOS Installation
Handbook .)

HAVE MORE THAN ONE COPY
(ON ANY ONE HOST)

More than one copy of an application program is
allowed to be simultaneously connected to the net-
work, if so specified in the local configuration
file. If such an application is also request
startable, then NVF will start up a new copy of an
application whenever a connection request for the
application comes into the host, and all existing
copies already have their maximum number of
connections.,

RESTRICTED OR GENERAL ACCESS

Each user name in the host can be validated to
connect to one or any application in the network.
This validation is done through MODVAL, which is
described in the NOS Administration reference
manual,

MANDATORY OR PRIMARY

In the 1local configuration file, each terminal
console can be designated to have a mandatory or a
primary application assigned to it. If the appli-
cation is mandatory, the terminal cannot be logged
into any other application regardless of the user
name entered. If the application is primary, the
terminal will automatically be connected to the
application on the initial login unless an alternate
application name is entered during the login. For
subsequent connections, the network will prompt for
an application and, if a carriage return is entered,
the network will connect the terminal to the primary
application.

DEBUGGING APPLICATION
PROGRAMS

Application program job content partially depends
on the purpose of the job”s execution. If the job
is executed for debugging purposes, the debugging
method chosen for the program can affect the param—
eters specified in the job”s LDSET or LIBRARY
commnand and thereby affect the AIP code executed at
the program”s control point. This aspect of execu-
tion is discussed in the next subsection.

Successful execution of an application program
depends on several conditions beyond the scope of
the program™s code. The 1less obvious of these

dependencies are discussed later in this section;
these dependencies are primarily requirements for
proper configuration of the program and the ter-
minals it services.

FATAL ERRORS

Portions of the Network Access Method issue
diagnostic messages for all fatal errors. These
messages are described in appendix B.

The form used for AIP and QTRM diagnostics depends
on the library used to load the routines used during
execution. When NETIO is used in the LIBRARY or
LDSET command, a single diagnostic message with a
reason code is written to the program dayfile before
the program is aborted by a fatal error. When
NETIOD is used, the same diagnostic is issued, but
supplementary diagnostics can also be issued before
the program aborts.

DEBUGGING METHODS

Two methods are available for debugging the con-
nection servicing logic of an application program:

Supervisory and/or data message flow through
the program can be traced by optional AIP code;
this code creates a log file of such messages.

Statistical information on program execution
can be gathered for performance adjustment by
optional AIP code; this code creates a statis—
tics file of the program”s network use.

Debug Log File and Associated Utilities

The optional AIP code that creates the log file
gives an application program a means of recording
all exchanges between the program and the network.
The AIP utility routine NETDBG gives the program a
method of selecting exchanges that should be
recorded. A running count of the number of mes-—
sages copied to the debug log file is kept in the
supervisory status word (NETON nsup parameter).
This count enables the application to decide when
to call the AIP utility routine NETREL, which gives
an application program a way of releasing, saving,
or processing the current information in the debug
log file. The AIP utility routine NETSETF gives an
application program a way of requesting the opera-
ting system to flush the input/output buffer for the
debug log file automatically, if the application
terminates abnormally. The AIP wutility routine
NETLOG allows the application to enter messages into
the debug log file.

Whether or not the log file is created depends on
the system library used to satisfy the application
program”s externals. AIP code for the program can
be loaded from either NETIO or (if the installation
elects to install it) from NETIOD. When NETIOD is
used, all code needed to create the log file is
loaded; the options for logging both supervisory
messages and network data blocks are automatically

60499500 s

turned on initially. Because this code causes
additional processing overhead and central memory
requirements for the application program’s control
point, you might want to remove the code after the
program is completely debugged. You can remove the
code from the job without altering the application
program’s structure by loading the AIP code from
NETIO instead of NETIOD. When NETIO is used, the
only parts of the log file code loaded are
do-nothing versions of NETDBG, NETLOG, NETREL, and
NETSETF.

NETDBG Utility

When NETIOD is used, the log file is automatically
created without application program calls. You can
use calls to NETDBG to switch either or both options
for message logging off and back on throughout the
program.

NETDBG calls wuse the same syntax and calling
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-3 shows the NETDBG utility FORTRAN
call statement format. NETDBG can only be called
after NETON is called and before NETOFF is called.

Calls to NETDBG can occur in programs using either
NETIO or NETIOD. For example, when a NETDBG call
turns either or both supervisory message and net—
work data block logging on and a status is returned
indicating logging is not possible, no error occurs
and the option selection is ignored. When the
program contains a NETDBG call before NETON to turn
both logging options off and a status is returned

indicating logging is possible, a log file is still’

created to contain a record of the program’s NETON,
NETDBG, and NETOFF calls.

NETREL Utility

Log file creation begins when the application
program successfully completes its NETON call and
ends when NETOFF is issued. 1If the application has
not called NETSETF previously and the program
fails, the output buffer used for the log file is
not completely emptied into the file. In such a
case, the application should reprieve itself and
issue a NETOFF call, or a NETREL call, to flush the
input/output buffer.

NETREL calls wuse the same syntax and calling
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-4 shows the NETREL utility FORTRAN
call statement format. To use the NETREL utility,
an application must issue an initialization call to
NETREL with a nonzero first parameter. This call
must be issued before NETON and any NETSETF call in
order to set up the ZZZZZDN file correctly.

The first parameter on the NETREL call is the name
of a file containing a job command record. If the
file name supplied does not conform to the NOS
operating system file name format, NOS aborts the
job when AIP attempts to do input/output on the

file. NETREL reads up to 192 central memory words
of the named file, or until a logical end-of-record

is encountered.

The second parameter on the NETREL call gives the
maximum number of words in each message to be saved
in the ZZZZZDN file.

60499500 R

CALL NETDBG(dbugsup, dbugdat, avail)

dbugsup An input parameter that turns the
logging of supervisory messages on or
off. This parameter can have the

values:

=0

#0

Turn supervisory message
Logging on.

Turn supervisory message
Logging off.

When supervisory message logging is
turned on, all supervisory messages

(except

block-delivered messages)

exchanged on connection 0 between the

applicat

jon program and NAM are log-

ged. Logging occurs whenever a call
to NETGET, NETGETL, NETGETF, NETGTFL,

NETPUT,

or NETPUTF causes a message

transfer. This logging continues

until a call with a nonzero debugsup

parameter is-issued.

dbugdat * An input
Logging

parameter that turns the
of data messages on or off.

This parameter can have the values:

=0

#0

When net

Turn network data block
logging on.

Turn network data block
logging off.

work data block lLogging is

turned on, all network data blocks
exchanged on any connection between

the appl
Logged;
messages
regard L
for the

ication program and NAM are
block-delivered supervisory
(FC/ACK/R) are also logged,
ess of the value specified
dbugsup parameter. Logging

occurs whenever a call to NETGET,

NETGETL,
or NETPU

NETGETF, NETGTFL, NETPUT,
TF causes a block transfer.

This logging continues until a call

with a n
issued.

avail A return
whether
AIP was
loaded.
this par

onzero dbugdat parameter is

parameter that indicates
the logging code portion of
loaded when the program was
On return from the call,
ameter can have the values:

Loading occurred from NETIOD
and logging is possible.

Loading occurred from NETIO
and logging is not possible.

When a value of 1 is returned, speci-

fication
dbugdat
not caus

of 0 for either dbugsup or
has had no effect but does
e an error.

Figure 6-3. NE
Sta

TDBG Utility FORTRAN Call
tement Format

CALL NETREL(Lfn,msglth,nrewind)

Lfn An input parameter that names the
file containing the job record to be
copied to the ZZZZZDN file. This
parameter can have the values:

=0 The application program job
provides its own disposition
of the file ZZZZZDN. Only
the msglth parameter is proc-
essed by AIP.

#0 The named file contains a job
record to dispose of the file
ZZZZZDN. The value declared
for Lfn must be Left-justified
with zero fill, and can be one
to seven alphabetic or numeric
characters in any combination
permitted by the NOS operat-
ing system file name format.

msgtth An input parameter that gives the
maximum number of words of each mes-
sage to be saved on the ZZZZZIDN file;
O<msglth<410. The value is ignored
if msglth is O.

nrewind An input parameter that controls
whether AIP rewinds the job command
record file before the NETREL oper-
ation begins. This parameter can
have the values:

=0 File Lfn is rewound before
any operation is performed.

#0 File Lfn is not rewound be-
fore any operation is per-
formed.

If the value declared for Lfn is zero,
a value of zero for the rewind para-
meter is ignored.

Figure 6-4. NETREL Utility FORTRAN Call
Statement Format

The third parameter in the NETREL call determines
the position at which NETREL begins reading the
named file., The file can be rewound to the
beginning-of-information before reading begins, or
it can be read from its current position.

After copying the job command record file to the

debug log file, AIP writes an end-of-record level 0

to the debug log file before beginning to log mes—
sages. Each call to NETREL zeros the MC field in
the supervisory status word (NETON nsup parameter).
Subsequent calls to NETREL route ZZZZZDN to the
input queue, reinitialize the file environment
table and MC field in the supervisory status word,
and copy another job command record to a new
ZZZZZDN file.

If NETREL is not called and the application is
loaded with NETIOD, the debug log file exists as a
local file assigned to the application job. The
debug log file does not begin with a job command
record; therefore, at job termination it should be
treated (disposed of) as a normal local file.

NETSETF Utility

NETSETF calls use the same syntax and calling
sequences as other AIP calls. (See sections 4 and
5.) [Figure 6-5 shows the NETSETF utility FORTRAN
call statement format. NETSETF allows the input/
output buffer for the debug log file ZZZZZDN to be
flushed automatically, if the application terminates
abnormally. 1If the error flag code is greater than
23 octal (the COMPASS EREXIT mnemonic SPET), then
the debug log file is not flushed. See volume 4 of
the NOS reference set for a list of the values for
the error flag code. Flushing sets the flush bit
in the file environment table (FET) for the debug
log file and calls the NOS macro SETLOF.

CALL NETSETF (flush,fetadr)

flush An input parameter that flushes the
debug log file automatically upon
abnormal termination. The flush
parameter can have the following
values:

=0 the flush bit is set in the
FET and the FET address of
the debug log file is re-
turned in fetadr.

#0 the flush bit is set in the
FET and the SETLOF macro is
called. The FET address is
not returned.

fetadr A return parameter that is the FET
address of the debug log file re-
turned by NAM. If zero, either the
flush parameter was nonzero or NETIO
was loaded (in which case the flush
parameter makes no difference).

Figure 6-5. NETSETF Utility FORTRAN Call
Statement Format

The SETLOF macro provides NOS with a list of files
and FET addresses to be flushed on abnormal ter-
mination. The SETLOF macro can be called more than
once; each successive call overrides the previous
call with a new list of files.

Applications written in FORTRAN or COBOL should not
call NETSETF, because those compilers wuse CYBER
Record Manager, and CYBER Record Manager also calls
the NOS macro SETLOF. If you want the application
to call the SETLOF macro and include the debug log
file in the SETLOF macro list, the application can
first call NETSETF to get the FET address of the

60499500 R

debug log file. TIf NETSETF is not called and you
want an application to flush the debug log file on
abnormal termination, then the program must
reprieve itself and call NETOFF or NETREL. NETSETF
needs to be called only once and should be called
before NETON is called. NETREL does not clear the
flush bit in the FET when it reinitializes the FET.

NETLOG Utility

NETLOG calls use the same syntax and calling
sequences as other AIP calls. (See sections 4 and
5.) Figure 6-6 shows the NETLOG utility FORTRAN
call statement format. NETLOG allows an application
to enter messages into the debug log file. These
messages can be of any size, but large messages
degrade the performance of AIP. Messages are copied
to the debug log file unchanged. However, they are
truncated if the NETREL utility has previously been
called and if the message length exceeds the number
of central memory words specified as the maximum
message length in the NETREL call. The messages
can be either formatted or unformatted.

CALL NETLOG(address,size,format)

address An input parameter that gives the
address of the message to be written
to the debug log file.

size An input parameter that gives the
size in central memory words of the
message to be written to the debug
log file.

format An input parameter that determines
whether the message is formatted or
unformatted. This parameter can have
the values:

=0 The message is unformatted
and will be printed by DLFP
in octal, hexadecimal, 6-bit
display code characters, and
ASCII characters. -

=1 The message is formatted and
will be printed unchanged by
DLFP.

Figure 6-6. NETLOG Utility FORTRAN Call
Statement Format

Formatted messages are stored as 6-bit display code
characters with zero byte terminators. The first
character of the message is used:.as a carriage
control character for the line and is not printed.
Formatted messages longer than 136 characters
should be stored as separate zero—-byte-terminated
lines.

DLFP prints formatted messages unchanged. DLFP
prints unformatted messages the same way it prints
network message text (in octal, hexadecimal, display
code, and ASCII characters).

NETLOG cannot be called before NETON.

60499500 T

NETDMB Utility

NETDMB calls wuse the same syntax and calling
sequences as other AIP calls. (See sections 4 and
5.) TFigure 6-7 shows the NETDMB utility FORTRAN
call statement format. NETDMB allows an application
to dump its exchange package and central memory
field length into the local dump file 2ZZZZDMB. The
data is in binary format. The file ZZZZDMB must be
postprocessed by a binary dump interpreter to allow
selection of address range and formatting for print.
The dump formatting is done through DSDI, which is
described in the NOS 2 Analysis Handbook. A
logical end-of-record is written to the file
ZZZZDMB after each NETDMB call.

CALL NETDMB (dumpid,ecs)

dumpid An input parameter that is an octal
6-digit dump identifier number. The
dumpid parameter can have the values
0 < dumpid < 777777.

ecs An input parameter that determines
whether the associated extended
central storage is also dumped. This
parameter can have the values:

=0 Do not dump extended central
storage
#0 Dump the associated extended

central storage

Figure 6-7. NETDMB Utility FORTRAN Call
Statement Format

Debug Log File Postprocessor Utility

The debug log file is a binary compressed file; it
is written using NOS data transfer macros. You can
obtain a listing of this file by running the debug
log file postprocessor utility with the desired
options.

The debug log file postprocessor (DLFP) utility is
a program’that processes the debug log file genera-
ted by AIP. The general format of the DLFP command
is shown in figure 6-8. Examples of DLFP commands
are shown in figure 6-9.

The debug 1log file postprocessor automatically
rewinds the debug 1log file before postprocessing
begins. The application programmer needs to rewind
the file only when DLFP is not the first software
to access the file after program- execution com—
pletes.

The debug log file can be copied, made permanent,
or otherwise accessed before DLFP begins its post-
processing. Such operations, however, must not
alter the form of the file used for DLFP input.
You cannot copy portions of the file and success-—
fully run DLFP using the incomplete copy.

The job command format for DLFP is:
DLFP (pq 1921931941P5)

P; is any of the following parameters in any

order:

1=Lfnq Directives comprise the next
record on file Lfn1.

1=0 No directive input.

I omitted Directives on file INPUT.
L=Lfny List output on file Lfn,.

L omitted List output on file OUTPUT.

B=Lfng File tfng contains the debug log
file.

B8 omitted Debug log file is ZZZZIZDN.

D Discontinue processing current
directive record if there are
errors in it. Restart with next
directive record if any.

D omitted Do not ignore directive errors;
abort job.

N=Lfn, Create new debug log file Lfn,
with records selected from Lfng
or ZZZZZDN according to direc-
tives governing record selection
for the List output file. If
this option selected, no debug
log file data is written on the
List output file.

N omitted No new debug log file is
created.

File names must comply with the NOS product set
format.

DLFP reads the debug log
data from file TAPE. The
entire Log file is processed
and written to output. The
output goes to the OUTPUT
file.

DLFP (I=0,B=TAPE)

DLFP(D,L=SAVE) DLFP reads the debug log
data from file ZZZZZIDN.
DLFP reads the INPUT file
Looking for directives. If
the directives are not
correct, DLFP ignores them.
The output goes to file

SAVE.

DLFP aborts with the fatal
error message PARAMETER
FORMAT ERROR because there
is no file associated with
the B parameter. If the B
parameter is specified
correctly, DLFP reads file
DIR Looking for directives.
If the directives are not
correct, DLFP aborts.

DLFP(I=DIR,B)

Figure 6-8. DLFP Command General Format

The N option of the DLFP command provides a means
for creating a new debug log file that is a subset
of an existing debug log file. The new file can be
separately processed by a subsequent DLFP command
and separate DLFP directives.

An optional directive file can be submitted to the
DLFP to select special supervisory messages or net—
work data blocks for output. The directive file
can have zero or more directive records.

Each directive record is a Z type record, which can
contain one or more keywords starting in card image
column 1. Keywords allow you to select which
supervisory messages or network data blocks are
written to the output file. All keywords are
optional and can appear in any order. You can use
one or more blanks, or a comma followed by zero or
more blanks, to separate the keywords. You can use

6-10

Figure 6-9. DLFP Command Examples

leading blanks. Figure 6-10 shows the general for-
mat of DLFP directive keywords with examples of
them in figure 6-11.

Each directive record initiates an independent
search. An empty directive file or empty directive
record or I=0 causes all debug log file blocks to
be output. Directive records are copied to the
output listing file.

DLFP issues dayfile messages to inform users of
fatal errors or processing completion. Appendix B
lists all dayfile messages issued by DLFP. Errors
or informative messages can be writtento the output
file by DLFP. All messages except NO MESSAGES
FOUND are fatal errors and cause the job to be
aborted unless the D option was specified on the
DLFP command.

The general format of a log file listing is shown
in figure 6-12. (Section 7 includes a sample
output.) NETON and NETOFF calls are logged to
record the start and end of NAM interfacing; only
successful NETON calls are logged. Each AIP call
logged is followed by the octal relative address
(in parentheses) from which the call was made. The
NETON call 1log includes the parameter values
declared on the statement. The NETDBG call log
lists the value declared for dbugsup as OPT1 and
for dbugdat as OPT2. Calls that transfer super—
visory messages or blocks are logged with their
declared parameters, followed by the block header
contents and block text area contents. (All words
comprising a supervisory message are listed.) The
contents of each word are given in hexadecimal,
octal, 6-bit display code form, and ASCII-coded
form. Each block or message is numbered in the
order it was transferred.

60499500 W

KeyuordT Value
B

BD= yymmdd
BT= hhmmss
C

CN= n

DN=

E

ED= yymmdd
ET= hhmmss
LE= n

F

N

NM= n

P=

PF= hh

PS= hhxx

R

SM= n

SN=

T

Description

Specifies that only upline blocks with the flow control break flag bit (bit brk)
set in the application block header are output.

Specifies that only messages or blocks that were Logged on or after this date
are output. Messages or blocks before this date are not output. yy is the
rightmost two digits of the year, mm is the month, and dd is the day of the
month; 00<yy<99, 01<mm<12, 01<dd<31.

Specifies that only messages or blocks that were logged on or after this time
are output. Messages or blocks before this time are not output. If the debug
log file contains more than one day's traffic, messages or blocks beginning
after the first occurrence of this time will be output if BD is not specified.
hh is the hour, mm is the minute, and ss is the second; 00<hh<24, 00<mm<59,
00<ss<59. -~ - -

Specifies that only network data blocks with the cancel flag set in the appli-
cation block header are output.

Specifies that only synchronous and asynchronous supervisory messages and net-
work data blocks relating to connection number n are output; 1<n<255.

Reserved for CDC use.
Specifies that only supervisory messages with the error bit set are output.

Specifies that messages or blocks on or after this date are not to be output.
yy is the rightmost two digits of the year, mm is the month, and dd is the day
of the month; 00<yy<99, 01<mm<12, 01<dd<31.

Specifies that messages or blocks on or after this time are not to be output.

If the debug log file contains more than one day's traffic, searching terminates
after the first occurrence of this time if ED is not specified. hh is the hour,
mm is the minute, and ss is the second; 00<hh<24, 00<mm<59, 00<ss<59.

Specifies maximum Llength in central memory words of each message or block to be
output; 1<n<410 (default=10).

Specifies that only network data blocks with the no format effector bit set in
the application block header are output.

Specifies that only supervisory messages or network data blocks are output.
Messages generated by applications for the debug lLog file are ignored.

Specifies that only n messages or blocks are output; 0<1000000.

Specifies that only network data blocks with the parity-error bit or auto input
mode bit set in the application block header are output.

Specifies that only supervisory messages with the primary function code (PFC)
equal to hhyg are output. No check is made to determine whether hh is a legal
PFC value; 00<hhqg4<FF.

Specifies that only supervisory messages with PFC/SFC equal to hhxxqg are output.
No check is made to determine whether hh is a legal PFC value and xx is a legal
SFC value. 0000<hhqg<FFFF.

* Specifies that only supervisory messages with the response bit set are output.

» Specifies that no messages or blocks are.output until the nth message, which . -

satisfies all the other keyword options, is found; 0<n<1000000.
Reserved for CDC use.

Specifies that only upline messages or blocks with the data truncation flag bit
set in the application block header are output.

60499500 R

Figure 6-10. DOLFP Directive Keyword Format (Sheet 1 of 2)

Keyword T Value Description

u Specifies that only messages or blocks with the input block undeliverable bit
set in the application block header are output.

X Specifies that only messages or blocks with the transparent data bit set in the
application block header are output.

TThe same keyword can appear more than once in a directive record. If there is a value associated with
this keyword, the value in the last occurrence of the keyword is the one used for the search. Blanks
can precede or follow the = sign. If both PF and PS are-specified, the last one specified overrides the
first one specified. If there are errors in the directive record, the job is aborted unless the D option
was specified on the DLFP command. If the D option was .specified, the directive record in error is
ignored and processing restarts with the next directive record, if any. .If there are multiple errors in
a directive record, all errors are identified.

Figure 6-10. DLFP Directive Keyword Format (Sheet 2 of 2)

Example Explanation

R,E DLFP processes and outputs all supervisory messages that have both
the response and error bit set. There are currently no supervisory
messages that have both bits set.

BD=780229,BT=2401,ED=780228 DLFP does not process this 'directive record because it contains
errors. The first error is that February 29, 1978 is an invalid date.
The second error is that 2401 is an invalid time. Note that it was
not an error to have the ED date earlier than the BD date although no
messages would ever be processed because of it.

PF=ABC,SM=-1 ,LE=1F ,NM=10000000 DLFP does not process this directive record because it contains
errors. The first error is that ABC is not a two-character hexa-
decimal number. The second error is that - is not a lLegal character
to have in the directive record. The third error is that 1F is not a
decimal number. The fourth error is that the character string
NM=10000000 is greater ‘than 10 characters.

X,CN=15,SM=20 DLFP processes and outputs all network data blocks for connection
number 15 that have the transparent bit set, except for the first 19.

PS=8301,CN=5,PF=83 DLFP processes and