
60471200

@3CONTROL DATA

CYBER CROSS SYSTEM

VERSION 1

BUILD UTILITIES

REFERENCE MANUAL

cnc® OPERATING SYSTEMS:

NOS 2

NOS/BE 1

60471200

@3CONTROL DATA

CYBER CROSS SYSTEM

VERSION 1

BUILD UTILITIES

REFERENCE MANUAL

CDC® OPERATING SYSTEMS:

NOS 2

NOS/BE 1

Revision

A (04/76)

B (06/76)

C (11/77)

D (08/79)

(11 (02/80)

*1‘) (10/80)

0 (11/22/82)

REVISION LETTERS 1, O, Q, AND X ARE NOT USED

©COPYRIGHT CONTROL DATA CORPORATION
1930, 1932 SUNNYVALE, CALIFORNIA 94088-3492

All Rights Reserved
Printed in the United States of America

1976, 1977,

ii

REVISION RECORD

Description

Manual released.

Manual Update (ECO 06420).

Corrections on pages 3-2 and 3-11.

Manual revised to incorporate CYBER Cross NOS R6.

Manual revised to change above references from R6 to R5.

Manual revised to incorporate on—line console removal and all PSRS to level 528. Manual
title changed from CYBER Cross System, Version 1 Link Editor and Library Maintenance
Programs Reference Manual. This revision obsoletes all previous editions.

Manual revised at PSR level 580 to reflect release of CYBER Cross System Version 1.2,
which runs under NOS Version 2.1 Release 6.1. The description of the AUTOLINK and EXPAND
utilities has been removed from this manual and placed in the Communications Control

Program Internal Maintenance Specification.

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. O. Box 3492

or use Comment Sheet in the back of this manual

60471200 G

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Front Cover —

Title Page —

11 G
iii/iv G
v G
vi G
vii G
viii G
ix G
1-1 G
1-2 G
2-1 thru 2-6 G
3-1 thru 3~l1 G
4-1 thru 4-11 G
A—1 F
A-2 G
8-1 thru 3-? G
C-1 thru C-4 G
D-1 thru D~3 G
E-1 F
E-2 F
F-1 thru F—4 G
6-1 G
H-1 thru H~7 G
Index-1 thru ~3 G
Comment Sheet/Mailer G
Back Cover

60471200 G iii/iv

PREFACE

This manual was formerly called the CYBER Cross
Link Edit/Library Maintenance Reference Manual.
Under its new form and title, this manual describes
three CYBER Cross System build utilities that aid
in generating load files for a CONTROL DATA® 255x
Network Processor Unit (NPU). These load files
contain the on-line system for a network processing
unit. The load files are of two types:

A Communications Control Program (CCP) used as
a part of a NOS Network

A Communications Control INTERCOM (CCI) used as
a part of a NOS/BE Network

The utilities are run on a CDC® CYBER host:
either the CYBER 180 Computer Systems; the CYBER
l7D Computer Systems; the CYBER. 70 Computer
Systems; or the 6000 Computer Systems under either
the NOS 2 operating system or the NOS/BE operating
system. The reader is assumed to be familiar with
the command structure of these operating systems.

The utilities descried in this manual are:

The library maintenance utility (MPLIB) used
with CCI, which allows the user to generate a
new library of object code modules. While this
utility could be used with CCP, the current
installation procedures do not use it.

The link utility (MPLINK), which assigns space
for modules and links modules together. This

utility produces a memory image load module
file that can later be converted to a load
file. The utility is used with both CCP and
CCI.

The edit utility (MPEDIT), which allows the
user to initialize values in the memory image

The memory image load module file that is produced
for an NPU by MPLINK and MPEDIT is composed of

object code modules that were initially generated
by one of three CYBER Cross programs:

The CYBER Cross PASCAL compiler

The CYBER Cross macro assembler

The CYBER Cross micro assembler

Therefore, to fully use the capabilities of the

utilities, the reader of this manual should be
familiar with:

The installation procedures using a N05 or
NOS/BE operating system

The CYBER Cross version of the PASCAL compiler

The CYBER Cross macro assembler and micro
assembler

The NOS 2 and NOS/BE manual abstracts are pocket-
sized manuals containing brief descriptions of the
contents and intended audience of all manuals for
NOS 2 and NOS/BE and their product sets. The manual
abstracts can help a particular user determine the
manuals that are of greatest interest.

The Software Publications Release History can help
a user determine which revision level of software
documentation corresponds to the Programming Sys-
tems Report (PSR) level of installed site software.

Related material is contained in the publications
listed below. These publications are listed alpha-
betically within groupings that indicate relative

load module. The utility is used with both CCP importance to readers of this manual. Applicable
and CCI. operating systems are also indicated.

The following manuals are of primary interest:

Publication
Publication Number NOS l NOS 2 NOS/BE l

CYBER Cross System Macro Assembler
Reference Manual 96836500 X X X

CYBER Cross System Micro Assembler
Reference Manual 96836400 X X X

Network Products
NAM Version 1 Network Definition

Language Reference Manual 60480000 X X

NOS Version 2 Installation Handbook 60459320 X

NOS/BE Version 1 Installation Handbook 60494300 X

60471200 G vo

Publication
Publication Number NOS 1 NOS 2 NOS/BE 1

NOS Version 2 Reference Set,
Volue 3, System Comands 60459680 X

NOS/BE Version 1 Reference Manual 60493800 X

NOS Version 2 System Maintenance
Reference Manual 60459300 X

The following manuals are of secondary interest:

Publication
Publication Number NQ§_£ N9§_£ NOS/BE 1

CCP Internal Maintenance Specification 60490029 X X

NOS Version 2 Diagnostic Index 60459390 X

NOS/BE Version 1 Diagnostic Index 60456490 X

NOS Version 2 Manual Abstracts 60485500 X

NOS/BE Version 1 Manual Abstracts 84000470 X

Software Publications Release History 60481000 X X X

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

. vi 60471200 G

CONTENTS

NOTATIONS

1. INTRODUCTION

Library Maintenance Utility (MPLIB)
Link Utility (MPLINK)
Edit Utility (MPEDIT)
Inputs to the Utilities

General Comand Format for the Utilities
General Data Format Input to the Utilities

Outputs From the Utilities

2. LIBRARY MAINTENANCE UTILITY

Introduction
MPLIB Inputs

MPLIB Directives File
MPLIB Object Code File
MPLIB Old Library File

MPLIB Output Files
New Library File
Library Listings

Executing MPLIB
MPLIB Directives

*ALL - Adds All the Object Code File

Programs to the New Library
*PUT — Adds Programs to the Library

From the Object Code File
*DEL - Deletes Programs From the Library
*SUP — Suppresses Copying Programs From

the Object Code File to the Library
*LST — Lists a Library
*END — Ends the Library Building Operation

MPLIB Error Messages

3. LINK UTILITY

Introduction
NPU Addressing

Page Addressing Mode
Absolute Addressing Mode

Specifying a Memory Address
Address Functions

Abbreviating Address Specification
Address Assignment

MPLINK Input Files
MPLINK Directives File
MPLINK Object Code Input File

MPLINK Output Files
Memory Image Load Module File (ABSOLMT)
Symbol Table File (SYMTAB)
MPLINK Listings

Executing MPLINK
MPLINK Directives

MPLINK Directive Parameters
Names
Overlay Identifiers

Memory Addresses

60471200 G

ix

f'\?lT7I\>f\7l\1l\>l\2l\3l\7l\>

I

u1|\>r\.au-p—->->-r-»«>—-

‘T"."‘f""“’

II

I

J-\bJUJUJI\>r\3l\>r—-o—-r—-I

III

\J\l\l\l\l\l\J'|U‘|J>-55wwwuwwuvfwuwwwwwwI
I

Summary of MPLINK Directives
*L - Specifies Modules to be Linked
*RL - Specifies Modules to be Reverse

Linked
*CB - Defines Linking Boundary
*LL - Defines a Lower Limit for
Linked Modules

*UL - Defines an Upper Limit for
Linked Modules

*SYSID - Identifies the System Load
File

*0VLY - Specifies Overlay Areas and
the Modules in an Overlay

*ENT — Defines Entry Points
*SYN — Defines External Synonyms
*COR - Defines NPU Memory Size
*LIB - Specifies Library File
*VE - Equates a Variable to an

Expression
*DSTK — Allocates a Stack Area for
Recursive/Reentrant PASCAL Programs

*DVAR — Allocates a Dynamic Variable
Area for PASCAL Programs

*COM — Defines a Blank Common Area
for Macro Assembler Programs

*DAT — Defines the Labeled Common Area
*DMP — Generates the Memory Image Load
Module File Hexadecimal Listing

*END — Ends MTLINK Directive Input
File

MTLINK Error Messages

4. EDIT UTILITY

Introduction
MTEDIT Inputs
MWEDIT Outputs
Executing MPEDIT
MPEDIT Statement Format
MPEDIT Syntax

Keywords
Reserved Words
Local Symbols
External Symbols
Literals
Address Functions

/START — Field Start Address Function

/LENGTH - Field Length Address
Function

/ENTRY - Entry Point Address Function

/VFD - Variable Field Definition
Address Function

MTEDIT Expressions
Operand Expressions
Address Expressions

MPEDIT Program Structure
Constant Declaration Part
Variable Declaration Part

Array Declaration Part
Assignment Section

Local Assignment Statement
Address Assignment Statement

hat»: I \J'\l

3-‘ I >—4

|

||

99J-‘J-\LaJLaJLa3f\>I\J>—I>—D—I-—-

I

1

J‘-‘.£|>J-\L\J-‘J-\-5|-‘£‘4-‘J-‘J-‘J-‘-L‘

J-‘J> || U15-‘

I

I
I

\l\lO"O‘O"O‘O‘U'|k■U'|U'|

vii O

FOR Assignment Statement
Composite Assignment Statement
Empty Assignment Statement

Comments

Requesting a Trace Operation
Requesting the SYMTAB Listing
Requesting the Initialized Load Module

File Listing
Requesting the Optional Form of the

Initialized Load Module File
MWEDIT Diagnostics and Error Messages

APPENDIXES

Character Set
Diagnostic Messages
Glossary
Memory Image Load Module File Format
Optional Memory Image Load Module

File Format
NU(')W>

F Relocatable Object Code File Format
G Link Utility Examples
H Edit Utility Examples

INDEX

0 viii

FIGURES

l l Producing a CCP Downline Load File
2 1 Format of an MPLIB Library File
2 2 Sample MTLIB Library Listing
3-1 Page Register Selection
3 2 MPLINK Procedural Flow
3 3 Sample MPLINK (Partial) Memory Map

Sorted by Module Name 3-5
3-6 Sample MPLINK Memory Map Sorted by

Entry Name (Partial) 3-6
4-1 MWEDIT Program Format 4-2
4-2 MPEDIT Program Flow 4-3
4-3 Examples of MPEDIT Constant, Variable,

and Array Declarations 4-7
4-4 Methods of Packing an NPU Array 4-8
4-5 Partial MPEDIT Trace Listing 4-9
4-6 Partial MPEDIT SYMTAB Listing (Sorted

by Entry Name) 4-10

TABLES

2-1 Summary of MPLIB Directives 2-5
3-1 Summary of Address Function Keywords 3-2
3-2 Summary of MTLINK Directives 3-8

60471200 G

NOTATIONS

Throughout this manual, the following conventions
are used to present statement formats, command
formats, request formats, operator type-ins, and

diagnostic messages:

UPPERCASE Uppercase letters indicate words,
acronyms, keywords, or mnemonics

required by the network software as
input to it, or produced as output.

lowercase Lowercase letters identify vari-
ables for which values are supplied
by a console operator, a programmer
using batch input, or by the system
itself.

... Ellipses indicate omitted entities
that repeat the form and function

60471200 G

of the last entity given. In PASCAL

statements, ellipses are indicated
by...).

[] Square brackets enclose entities
that are optional. If omission of
an entity causes the use of a de-
fault value, the default is noted.

{ } Braces enclose entities from which
one must be chosen.

All numbers are given. in decimal notation unless
otherwise specified. Hexadecimal numbers in text
are indicated by a subscript 16; for instance,

CO0016, Hexadecimal parameters in commands re-

quire the display code designator, the dollar sign
($); for example, $C000.

ix

INTRODUCTION 1

This manual describes the utility programs used to
build the memory image load module file and to
maintain the object code library file for 255x
Network Processor Unit (NPU) on—line programs.
These utilities are used with the standard Com-
munications Control Program (CCP) or Communications
Control Intercom (CCI) installation procedures
described in the NOS and NOS/BE Installation Hand-
books. The utilities are called and executed
automatically from those installation procedures.
The utilities are:

A library maintenance utility (MPLIB) used only
with CCI

A link utility (MPLINK) used with both CCP and
CCI

An edit utility (MPEDIT) used with both CCP and
CCI

All the utilities execute on a CYBER host computer
operating under either NOS or NOS/BE.

Figure 1-1 shows the logical flow of the utilities
in producing a downline load file for a CCP system.

LIBRARY MAINTENANCE

UTILITY (MPLIB)

This utility uses object code either from a previous
library or from one of the CYBER Cross compilers or
assemblers to generate a new library file. The

library consists of object code which includes a

directory to all the modules on the libraries.

LINK UTILITY (MPLINK)

MPLINK assigns space and links together all the
modules that are to be a part of the load file.
Each module is assigned an execution space on a

memory image load module file, which, after initial
values are assigned, can be converted to the load
file for the NPU.

EDIT UTILITY (MPEDIT)

After MPLINK generates a memory image load module
file {ABSOLMP) and a symbol table file (SYMTAB),
the edit utility initializes values in selected
variables. The variables to be initialized and the
initialization values are specified by an MPEDIT

program that uses a PASCAL~like syntax.

INPUTS TO THE UTILITIES

There are two types of inputs to the utilities:

Directives files. These directives are arranged
into a batch input file.

Other files. The most important of these files

consist of object code modules that are built
into the onaline CCP or CCI system.

60471200 G

GENERAL COMMAND FORMAT FOR THE

UTILITIES

Directives are used as the comand inputs to the
utilities. The general form of any directive is a
command identifier (keyword) followed by a set of

parameters:

KEYWORD,paraml,param2,.,.,paramn

Parameters are separated by commas. Parameters

usually specify either values (such as the size of
NPU memory) or files (such as an application pro~
gram name).

GENERAL DATA FORMAT INPUT TO THE

UTILITIES

The data inputs to the utilities are modules in

object code format that are generated by the CYBER
Cross PASCAL compiler, by the CYBER Cross macro

assembler, or by the CYBER Cross micro assembler.
When used, the object code modules can be:

Separate files newly produced from one of the
assemblers or compilers

Separate files read from magnetic tape or mass

storage

Selected records read from a program library

OUTPUTS FROM THE UTILITIES

When used with NOS installation techniques, the

principal output from the link and edit utilities
is an initialized memory image load module on mass

storage in the host computer. This load module can

then be converted by the Load File Generator (LFG)
into a downline loaded and formatted file.

A similar use of the link and edit utilities oper~
ating under NOS/BE produces an initialized memory

image load module on mass storage in the host com~

puter. This load module can be converted into a

downline loaded and formatted file.

Optional outputs from various utilities include
load maps, listings of all modules, and diagnostic
reports.

The principal output from the library maintenance

utility is a new, indexed library of the selected

on-line NPU modules in object code format. All

program libraries are held on the CYBER host's mass

storage. Object code modules selected from any
library are used to build a new load file for the
on~line CCI system. The library maintenance utility
could be used to build a new CCP library.

Another output of the library maintenance program
is a listing of the programs on the library, to~

gether with information about these programs.

MPLIB OLD OBJECT CODE
DIRECTIVES LIBRARY MODULES
FILE FILE FILE

MPLINK NEH OBJECT CODE MODULES
DIRECTIVES LIBRARY FILE FROM CYBER CROSS
FILE FILE ASSEMBLER OR PASCAL

COMPILER

(OPTIONAL)

NONINITIALIZED
MEMORY IMAGE MPEDIT SYMBOL TABLE
LOAD MODULE
FILE (ABSOLMP)

DIRECTIVES FILE FILE (SYMTAB)

OTHER LOAD
MODULE TYPE
FILES (OVERLAYS
MUX LEVEL CODE)

INITIALIZES
VALUES IN LOAD
MODULE FILE

INITIALIZED
MEMORY IMAGE
LOAD MODULE
FILE

NOS
LOAD FILE
GENERATOR

CCP LOAD FILE
READY FOR
DOHNLINE LOADING
IN THE NPU

Figure 1-1. Producing a CCP DownLine Load File

60471200 G

LIBRARY MAINTENANCE UTILITY

II--I-CIIIIII-IIIIIIIII-IIIIIIIIIII-IIIII-I-I--IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII-IIIIII-I-I-

INTRODUCTION

The library maintenance program (MPLIB) can be used
with the Communications Control Program (CCP) or
the Comunications Control INTERCOM (CCI) but
currently is used only with CCI. The utility uses
a set of directives operating on a set of object
code files to generate a new library. MPLIB uses
two files:

An object code file. This file contains the
object code for modules that are to be added to
the new library or that are to replace existing
object code modules of the same names which are
already on the old library. This file is re-
quired. If there is no old library, the modules
on the object code file create a library.

The old library file. Although this file is
optional, it is usually present.

The user has the option of ordering listings of the
new and/or the old libraries.

MPLIB INPUTS

The library maintenance utility requires two files:

A directives file

The object code file that contains the modules
used to generate the library

If a library has already been built, MPLIB also

requires the old library file.

Several calling parameters are associated with the

library maintenance utility. These parameters are
discussed in the Executing MPLIB subsection.

MPLIB DIRECTIVES FILE

This file contains the directives in the order of
execution. The directives:

Cause modules to be selected for the library or
deleted from an existing library

Allow the operator to order a listing of the
new and/or the old library

Terminate the library maintenance operation

The default name of this file is INPUT.

60471200 G

MPLIB OBJECT CODE FILE

This file contains the object code of modules that:

Build a new library for the first time

Replace existing modules of the same name on
the old library (the new library contains these
modules)

The relocatable object code format of these modules
is given in appendix F. Object programs that

replace old programs of the same name are added to
the new library at the same relative position as
the replaced module. New object code programs that
were not on the previous library are added to the
end of the new library in the order in which they
occur on the object file. MPLIB adds a directory
record to this file.

The default name of this file is LGO.

MPLIB OLD LIBRARY FILE

This file was created by a previous run of MPLIB.
Once a library file has been created, it cannot be
modified by MPLIB. A library file is modified by
creating a new file.

The format of a library file is shown in figure 2-1.
The first record of the file consists of the file
name and the library directory. Each program in
the library has an entry in the directory. Follow-

ing this is the object code of each program. Each

program is contained in a single record; the records

appear in the same sequence as their entries in the

directory.

The default name of this file is OLDLIB.

MPLIB OUTPUT FILES

MPLIB produces two output files: the new library
file and an optional listing of the new and the old

library file.

NEW LIBRARY FILE

The new library file has the same format as the old

library file. However, it contains additional
modules and substituted modules (as specified by
the directives) and lacks modules that the direc-

tives have deleted.

The default name of the new library is NEWLIB.

2-1

2|

LIBRARY FILE FO■9lAT
FORMAT OF PROGRAM NAME
AND ENTRY POINT RE®R0

FORMAT OF OBJECT PROGRAM INFORMATION
(!N THE PROGRAH RAMS AND ENTRY POW? RECORD)

8

“Jim '"°°"”‘ “ calm IMAGES).
5 ll

END OF HLE

Figure 2-1.

LIBRARY LISTINGS

The optional new and old library listings are
requested by an MPEDIT directive. If the directive
is used, the listing file is sent to the output
file. The user can order printed copies of the
file using the techniques described in the NOS/BE
reference manual.

A library listing consists of program names, pro-
gram lengths, and program entry points for each of
the programs on the library. A sample listing is
shown in figure 2-2.

If both the new and the old library listings are
ordered, the old library is the first part of the
output file and the new library is the second part.

EXECUTING MPLIB

The utility is executed by attaching the MPLIB
permanent file and then using the name call state-
ment (see the NOS/BE reference manual).

Five parameters, which specify files, are asso-
ciated with the MPLIB name call statement. The
format of the statement is:

MTLIBI,1fnl,lfn2,lfn3,lfn4,lfn5.]

where:

lfnl is the object code input file name (de-
fault name is LGO)

lfn2 is the input directives file name (default
name is INPUT)

2-2

VDTE: AN OBJECT PKXRAM IS DIE
LOGOCAL necoao, WITH A
IAXIRM 5025 OF 41
SIXTY-BIT @RDS (III OIJECT

0

-
~~==~«

IEND-OF-TABLE UORDI

_____ an 53 n 41 as an 2:: vs ¢
ouecr rnosnm 1 mronwmou , g‘ d :3 d as as 0 rnoonm

moon»: name AND LENGTH
5.3,, ,,o,,,., “mom oven races»: 2 mromnnou

O
. II o

sun or necono
'

2 OIJECT moon»: sxz: «mam
Jomcv rnocnm n Iuronuanou

" END-OF-TABLE mono‘
ou■cnnoenm‘ :

so as 29 23 17 n 5 o

u =1
«

l=*l==l==1~=-l°sI=-JI
I‘””°‘ "‘°°"°
| no as an 23 11 u 5 o

“'1 rommuosousctrnocnua
41

o
I:IIc2lc3loSl:5l$lOOJECT moon»: 2 K"- ouscr amp «use 1 mm; _

' no smv-on wows) : ,
; ouscv cum mm; 2 o o
I «no on an on arr. etc.) o -

euoornecono
I _ an as 2: 2: n n 5 o

I C
l

n 0 cl .2 (‘.3 cl es en

3 ouecr cum «no: 5 own
I KTESI 1. XRD I QKTAINS THE SIX-CHARACTER
J NAIIE AND THE LENGTH OF THE PROGRAM

004 ILIIT EROS.
2. $30 2 £lTAl!$ THE LHOGTN OF THE
1lECT PROGRAM IN I)llT WORDS

3. ENDS 3 TNRU n OUITAIN TDCE SIX-
DIAH$TER NAMES OF ENT■Y FONTS
IN THE HTOGRAM. VOTE TNAT A
Pll■lh■ MAY HAVE P00 ENTRY POINTS.

Format of an HPLIB Library Fil.e

lfn3 is the output listing file name (default
name is OUTPUT)

lfnh is the old library file name (default name
is OLDLIB)

lfn5 is the name of the new library file created

by the MPLIB run (default name is NEWLIB)

The parameters are positional. Therefore, if a

parameter is omitted, its delimiting commas must be
retained. If a call uses all default parameters,
all commas are omitted. Such a default call is
terminated with a period to indicate the lack of

delimiting coxmnas.

Example 1:

MFLIB.

This call uses an object code file, LGO (lfnl),
which is operated on by the directives file, INPUT

(lfn2), to produce a new library, NEWLIB (lfn5),
from an old library, LGO (lfnls). It outputs any
listings to the library file OUTPUT (lfn3).

Example 2:

MPLIB, , ,0L‘DOBJ ,NEWOBJ.

This call uses default parameters for the object,
directives, and listing files. However, it names
the new and old libraries.

This call uses an object code file, LGO (lfnl),
which is operated on by the directives file, INPUT

(1fn2), to produce a new library, NEWOBJ (lfn5),
from an old library, OLDOBJ (lfnlx). It outputs any
listings to the listing file, OUTPUT (lfn3).

60471200 G

HPLIB Directives

*ALL.

*LST,NEU.
*END.

NEH LIBRARY

PROGRAM

ZEROX

BEGINX

PBINTR

JUMPS

ADDRES

PBLNOO

PBLN01

PBLN02

PBLN03

PBLN06

PBLN08

PBGETC

PBPUTC

PBCALL

PNSTOR

PBFILE

PILMT

PBAMAS

PBLMAS

PBOMAS

PBSMAS

PBBEXI

PBAEXI

PBSETP

PBCLRP

LENGTH ENTRY POINTS

0040 ZEROX

000B BEGINX

0040 PBINTR

0010 JUMPS

001A CIBADD
CCPLEV
CCPCYC
ADDRLC
ADDRES
CCPVER
ADDRSU

0029 PBLNOO

001F PBLN01

001F PBLN02

001F PBLN03

002D PBLN06

001F PBLN08

0008 PBGETC

0007 PBPUTC

0008 PBCALL

0022 PNSTOR

0028 PBDF
PBBF

003C PILMT

0012 PBAMAS

000D PBLMAS

OOCE PBOMAS

000C PSBMAS

000B PBBEXI

000E PBAEXI

0022 PBSETP

000C PBCLRP

PBPSNI

PBPUTP

PBGETP

PBSTPM

UNLOCK

GULOCK

PBRTCD

QENTRY

QEXIT

BUFMAI

LISTSR

PBSTOP

PBSLJ

PTTPIN

PBSCLA

MODMST

ASMUSE

HSPRUI

HSZPRU

HSPRUT

HSPMGS

COPY ALL OF L60

0013

0017

0011

0013

000F

0011

DDCB

0048

001E

0076

0028

001C

000?

002A

002F

00CE

000C

00CF

000C

PBPSHI

PBPLTP

PBGETP

PBSTPM

UNLOCK

QULOCK

PBRTCD

QENYRY

QEXIT

PBRELC
PBREL1
PBGET1
PBRELZ

PBLSGE
PBLSPU

PBSTOP

PBSLJ

PTTPIN

PBSCLA

MILT8
MILT9
MILTO
MILT4
MILT1
MILT3
MILT6
HILTA

HDCD9
HINSPT
HTERM2

HZISPT

HXTPT
HNTTPT
H1ATPT
HZPTPT

INSTA7 01A?

TPST78 01C1

SCFLIB
SCFLIB
SCFLIB

BIV020
BIV040
BIV050
BIC230
BIC250
BIC400
BIC410
BICk20
BIC430
BINTXT
BIN005
BIN110
BIN140
BIN180
BIN440
BISTID
BISTBI
BISTRS
BISTRC

BIX100
BIX1k0
BIC100
3IC210
BIY350
BICLAS
BIDCDN
BIOVER
BIBUTH
BIYERM
BIC200
3IN230
BIN250
BIT100
BIX130
BIX150
BIX160
BIX170
BIX180
BIX190
3IX200
BIX210
BIX240
BIX250
BIX300
BIX320
BIX350
BIX440
BIX450
BIERRO
BIT001
BID009

B27TPT
837TPT

NAKHMS BSCMSG 002D ACKOMS

60471200 C

Figure 2-2. Sample MPLIB Library Listing (Sheet 1 of 2)

PBCOMP 001F PBCOMP ACKHMS ACK1MS
EOTBMS

PBRDPG 0010 PBRDPG INPST7 021D BISTAR HACKBM
BIDISC TTDBMS
BIENTR DISCBM
BIB010 ENQBMS

NAKBMS
PDEXIT 004C PDEXIT PNTMLD 0098 PNTMLD

PDSTTR 0282 PDSTTR PNCNTL 0056 PNCNTL

PDTERM 0011 PDTERM PNLCR 0026 PNLCR

OLDIAG 048F OLDIAG PNSTAT 002F PNSTAT

OLDMUX 0012 OLDMUX PN1LNS 0077 PN1LNS

PTMSQU 003A PTMSQU PNZLNS 005C PNZLNS

PTMSCA 007D PTMSCA PNLNST 0037 PNLNST

PTDELM 0048 PTDELM PN1TML 009F PN1TML

PTTYMU 0007 PTTYMU PNTMLS 009A PNTMLS

PTTYTI 054F PTTYTI PNBRDC 0138 PNBRDC

PTTYTC 000E PTTYTC PN1BRD 00E7 PN1BRD

PNAHAI 001F PNAHAI PNOVLO 011B PNOVLO

PNRTN 000A PNRTN PNOVLD 0089 PNOVLD

PNSMBA 0056 PNSMBA PNOVLT 001A PNOVLT

PNLNBA 004D PNLNBA PNFRCE 0027 PNFRCE

PNRVRS 0021 PNRVRS PNPSTA 00A2 PNPSTA

PNTOOO 0037 PNTOOO PNDSTA 0129 PNDSTA

PNQREL 0035 PNQREL PNSMGE 0125 PNSMGE

PNGTCB 004C PNGTCB QDEBUG 0021 QDEBUG

PNTCBS 0066 PNTCBS PBCLR 0028 PBCLR

PNDLTC 009F PNDTLC PBDISP 006B PBDISP

PNDISC 0009 PNDISC PBLOAD 004A PBLOAD

PNSMTR 000A PNSMTR PBILL 0007 PBILL

PNSMHL 0171 PNSMNL PBHALT 01C1 PBHALT

PNSMDI 00E4 PNSMDI PBMON 0063 PBMON

PNCONF 0294 PNCONF TOTIME 0011 TOTIME

PNLNCH 01AE PNLNCH TOSTAR 0003 TOSTAR

PNTMLC 02EC PNTMLC TOSTOP 0008 TOSTOP

PNDELE 00D9 PNDELE PIDTBL 0081 PIDTBL

PNENAB 006F PNENAB MAIN$ 0018 MAIN$

PNDISA 0105 PNDISA

PNLINE 00F5 PNLINE

Figure 2--2. Sample MPLIB Library Listing (Sheet 2 of 2)

60471200 G

MPHB DIRECTNES

I There are six MPLIB directives. Four of them choose
the programs that form the new library. One of
them selects the optional listings. One of them
terminates the directives list. Except for the
terminating statement, the directives can occur
in any order. Table 2-1 summarizes the MPLIB
directives.

TABLE 2-1. SUMMARY OF MPLIB DIRECTIVES

Name Function

*ALL Adds all the programs on the object code
file to the new library file.

*PUT Adds selected progams to the new library
file. Also replaces old library file
programs with object code file programs
of the same name.

*DEL Suppresses copying of specified programs
from the old library file to the new
library file.

*SUP Suppresses copying of specified programs
from the object code file to the new
library file. Used only with the *ALL
directive.

*LST Requests a listing of either the new
library or the old library.

*END Terminates the directives file and ends
the library building operation.

A11 directives begin with an asterisk (*); any
directive can be terminated with an optional period.
The general form of an MPEDIT directive is:

*DIRECTlVENAME[,parameter.]

I All directives begin in position 1.

If there are no directives in the directive file,
the old library is copied to the new library with-
out alteration.

*ALL - ADDS ALL THE OBJECT CODE HLE

PROGRAMS TO THE NEW LIBRARY

The *ALL directive causes MPLIB to copy all the
programs on the object code file to the new library
file. It is used to create a new library for the
first time. It can also be used for adding a set
of new modules (such as a terminal interface pro-
gram) to an existing library.

The format of the directive is:

*ALL[.]

*PUT — ADDS PROGRAMS TO THE LIBRARY

FROM THE OBJECT CODE FILE

The directive is used to select programs for inclu-
sion in the new library. It is also used to replace
programs on the old library file with programs of

60&7l2OO G

the same names from the object code file. The
utility can be used in the latter manner to update
a program library.

The *PUT directive can add either a single program
or a sequence of programs from the object code file
to the new library file.

The single program format of the directive is:

*PUT,mod{.}

where mod is the program name. It starts with a
letter. If the name exceeds six characters (letters
or numbers), MPLIB discards the seventh and follow-

ing characters. The names on the old library are
no longer than six characters.

If a program is replaced with a new version of the
program, the new program has the same place in the
new library index and in the library file.

The series program format of the directive is:

*PUT,mod1-od2[.1

where modl is the name of the first program in the

object code sequence, and mod2 is the name of the
last program in the sequence. Names are truncated
to six characters as necessary. If the programmer
wishes to replace a series of programs on the old
program library, the names of all programs in the

sequence must be identical to the new names. This
form of the directive is particularly useful for

adding new applications to a library, or replacing
applications where the modular structure of the

application has not changed.

A dollar sign ($) symbol can be substituted for the
name of the first or last program on the object
code file.

*DEl — DELETES PROGRAMS FROM

THE LIBRARY

The *DEL directive suppresses copying the specified
program or programs from the old library to the new

library.

The single program deletion format is:

*DEL,mod[.}

where mod is the program name. If the name exceeds
six characters, MPLIB discards the seventh and

following characters.

The series program deletion format is:

*DEL,modl~mod2[.1

where modl is the first of the programs to be
deleted during copying, and mod2 is the last pro-
gram to be deleted in the sequence. All programs
on the library index between (and including) the
named programs are deleted. (A listing of the old

library can be produced by a *LST directive to find
the order of programs on the library.)

A dollar sign ($) symbol can be substituted for the
name of the first or last program on the library
file.

*SUP - SUPPRESSES COPYING PROGRAMS

FROM THE OBJECT CODE FILE TO THE LIBRARY

The *SUP directive is used only with the *ALL
directive. It allows the user to suppress copying
of the specified program or programs from the

object code file to the new library.

The single program suppression format is:

*SUP,mod[.]

where mod is the program name. If the name exceeds
six characters, MPLIB discards the seventh and
following characters.

The series program suppression format is:

*SUP,modl—mod2[.]

where modl is the first of the programs to be
deleted during coping, and mod2 is the last program
to be deleted in the sequence. All programs on the

object code file between (and including) the named

programs are deleted.

A dollar ($) symbol can be substituted for the name
of the first or last program on the object code
file.

*LST — LISTS A LIBRARY

The *LST directive is used to request either a

listing of the new library or a listing of the old
library.

The format for the old library listing is:

*LST,OLD[.]

The format for the new library listing is:

*LST,NEW[.]

If both listings are requested, the old library
occurs first on the output file.

*END - ENDS THE LIBRARY BUILDING

OPERATION

The *END directive terminates the directives file.
The format of the directive is: I

*END[.]

MPLIB ERROR MESSAGES

Library maintenance utility error messages are

listed in table B-l of appendix B. The signifi-
cance of the message and the action that should be

taken when the message appears are also given in

that table.

60471200 G

LINK UTILITY

INTRODUCTION

The link utility (MPLINK) uses an input directives
file and an input object code file to generate two

outputs (see figure 1-1 in section 1):

A memory image load module file consisting of

object code modules. The local file name (lfn)
for this file is ABSOLMP. The file's modules
are located in memory image order; that is,
they have the absolute addresses they would
have if they loaded into a Network Processing
Unit (NPU). Initializable variables have the
same values that they have on the object code
input file. These variables are initialized
later to selected values by the edit utility.

A symbol table (lfn = SYMTAB) consisting of the
module names and entry points.

The edit utility uses both these files plus its own
input directives to generate an initialized version
of the memory image load module file. This load
module can then be used to generate the downline
load files used by the host to load a Communica-
tions Control Program (CCP) or a Communications
Control Intercom (CCI) system into an NPU.

If standard CCP installation procedures are used,
this program is generated by the build procedures
from the release tapes; its use is generally in-
visible to the system installer (see the N05 and
NOS/BE Installation Handbooks).

The MPLINK input directives file can be:

User-supplied

Generated by SCF procedures during a standard
CCI installation

The link utility supplies special output listings
including memory maps, symbol lists, input direc-

tives, and a hexadecimal listing of the memory
image file.

NPU ADDRESSING

MPLINK assigns each module to an execution area in
main memory, in extended memory, or in an overlay
area of main memory. To uniquely address 128K

(131072) words, an 18-bit address is provided (only
17 bits of the address are used). However, when

paging registers are used, an ll-bit address will

locate any word on a 2K (2048) word physical page.
The remaining seven high-order bits are used to

designate the logical page. Note that both CC? and
CO1 use an SK (8196) word logical page.

60471200 G

The NPU has two addressing modes: paged and
absolute. In either mode, the operating system
calculates a 16-bit address for each memory ref-
erence.

In the absolute mode, the 16-bit value is the
effective address in the range 0000 to FFFF16.

In the page address mode, the page registers
are used to achieve an effective 18-bit memory
address in the range 0000 to 3FFFF16 (only
the range 0000 to IFFF16 is used).

PAGE ADDRESSING MODE

In page addressing mode, the NPU memory is sub-
divided into physical pages, each of which is 2K
words long. The location of a word within a page
requires an 11-bit address (range 000 to 7FF16)
and is called the page displacement. Page dis-

placement is the least significant bits of an NPU
address.

Each page is assigned a unique identification
(range 00 to TFI6) called the page number. The

page number uses the most significant bits of an
NPU address.

Fage displacement taken together with. page number

gives an l8-bit addressing capability.

During page addressing mode, a page number is

associated with one of the 32 hardware paging
registers (range 00 to lF16). This association

requires five bits of the address and is handled by
an MPLINK directive that associates the page numbers
with the page registers. Page register selection

(five bits) together with page displacement (11
bits) gives the normal 16 bits of memory address

referencing.

There are two sets of 32-page registers. Either
set (0 or l) can be active at any one time. The

set being used is selected by the executing pro-
gram. Figure 3-1 correlates the 18-bit address to

page register and page displacement.

MPLINK. assumes that all memory address specifica-
tions are in the page addressing mode. Therefore,
each addressing specification has four distinct

components:

Page displacement

Fage number

Page register

Page register set

3|

PAGE nsonsren pomrs TO A
K

'5 W
15811’ ADDRESS REFERENCE VALUE

SPECIFIC REGISTER DEPENDENT

CURRENTLY IN EFFECT.
PAGE DISPLACEMENT I I I I I I I I 1

_Jupon wmcn REGISTER set us

I

PAGE “E°'sTE"

PAGE REGISTER
ET 0REGS

0 PAGE NUMBER
w——-

1 PAGE NUMBER _-__

I O
O C

31 PAGE NUMBE R

17
r.._...,.__._...........__._....J

|..._..—.——.-

"D[PAGE NUMBER I

PAG£ REG3STER
REG SET 1

0 PAGE NUMBER

1 FAG E NUMBER

I O
I I
O O

31 PAGE NUMBER

I3vB|T EFFECTIVE ADDRESS
10

PAGE DISPLACEMENT

Figure 3-1. Page Register Setection

ABSOLUTE ADDRESSING MODE

The link and edit utilities do not support an
absolute addressing mode directly. However, the
default mode causes MPLINK to generate a program
that effectively is an absolute addressing mode.
In this case, address assignments are made entirely
from page register set 0.

In default mode, the page register contents are the
same as the page register numbers; that is, page
register 0 has a zero value, page register 1 has a
1 value, etc. The resulting address resolution
provides the same addresses that would be generated
if absolute addressing mode was used.

SPECIFYING A MEMORY ADDRESS

The memory address is specified in three parts:

Number
of Bits Address Part

18 An effective address consisting of
a page number plus page displacement

5 Page register

1 Page register set

The format of the address is:

effective addresszpage register:register set

Note that address parts are separated by colons.
Each part is a numerical value in one of seven
formats:

A decimal constant. This is preceded by a sign
if necessary. Examples: 10, -734.

A positive hexadecimal constant. This is pre-
ceded by a dollar sign (S). Examples: $2000,
$4FAC.

A linked module name.

An entry point name.

An overlay area name.

A local variable name.

An address function.

A. previously linked module name with an explicit
address assignment, a defined entry point name, a
defined overlay area name, a defined local variable

name, or an address function can be used as any
part of the specified address. The effective
address associated with any of these names repre-
sents the numerical address value.

Address Functions

MPLINK provides five functions that can be used
with an operand or an address expression to gen-
erate a part of an address. The functions are

requested by means of keywords. If this method is

used, specification must have the following format:

/keyword(name)

where keyword is a reserved word used by the link
utility for a specific operation, and name identi-
fies a module, an entry point, or an overlay.
Table 3-1 summarizes the allowable keywords.

TABLE 3-1. SUMARY OF ADDRES3 FUNCTION KEYWORDS

Keyword Value Returned by the Function

PGDISP 11-bit page displacement

PGNUM 7-bit page number

PGREG 5-bit page register

PGSET 1-bit page register set

OVID Last two characters of the overlay
name in which the overlay module
resides

60471200 G

For example:

/PGNUM(PNSMWL)

Returns the 7-bit number of the page used
by the service module (PNSMWL).

Address functions can be used only if the module,
entry point, or overlay has been explicitly named
and the assignment of the address related to the
name has preceded the reference.

Examples of a full address specification are:

$l3B75:$A:l

The 18-bit effective address is composed of
a page number = 2716, and a page displace-
ment of 37516.

Page register 10 is to be used.

Page register set 1 is to be used.

MODA: /Pcnscmons) :1

The 18-bit effective address is taken from
the starting execution address of MODA.

The page register where MODB is located is
to be used.

Page register set 1 is to be used.

$lA45:/PGREG(MODA):/PGSET(MODB)

The l8-bit effective address is composed of
a page number (3) and a page displacement
of 04516 .

The page register where MODA is located is
to be used.

The page register set where MODB is located
is to be used.

Abbreviuling Address Specification

It is not always necessary to specify the second

(page register) and third (page register set) parts
of the memory address. If only the first part of
the address is specified (either as a constant or
an address function), the page register is equal to
the page number portion of the effective address
(upper seven hits), and the page register set is
assumed to be the same as in the previous memory
address specification. For example:

$42lF:8:O

$42lF:8

$42lF::O

$42lF

All specify the same address: the page displace-
ment is 21F16, the page number is 8, the page
register is 8, and the page register set is O.

Addresses are specified similarly if an address
function is used. For example, MODA is equivalent
to MODA:PGREG(MODA):PGSET(MODA).

60471200 G

ADDRESS ASSIGNMENT

MLINK maintains an internal location counter for
the four-component memory address. The location
counter (which is used to assign space within the
memory image file) is initially set to zero. The
components are updated automatically as the memory
image file is generated. Specifying a memory
address within a link or overlay directive is the
only method used by the link or edit utilities to
explicitly assign an address.

As 16-bit words of a module's object code are moved
into the memory image load module file (possibly
with address resolution), the words are assigned
consecutive memory addresses. If assigning the
next address causes a memory page overflow con-
dition, the internal location counter is adjusted
to the first word (displacement = O) of the next
consecutive page. At the same time, the page
register value is incremented by one.

Note that memory page overflow is not an error
condition unless the resultant page register value
is greater than 31 or the page number is greater
than 127.

Unless MWLINK is given a specific load address for
linking a module, the memory address assigned to a
module is the next available memory address held in
the internal location counter.

An area of memory that is designated as an overlay
area can have several different module groupings
for the area. Such a module grouping is called an
overlay. On-line CCP or CCI execution of these
different groupings occurs at different times.

Each overlay has a unique, two-letter identifier.
If the user does not specify the identifier, MTLINK

assigns the next alphabetic character in sequence
(range AA through Z2) when the next overlay is
built. The binary equivalent of the identifier
is returned to the user with each OVID keyword
assignment.

The first overlay module of an overlay group is

assigned the memory address at the start of the

overlay area. Subsequent overlay modules of the
same group are assigned space directly following
the previously linked overlay module. MPLINK

assigns overlay modules in this fashion until the
next *L directive with an explicitly declared
address occurs (the *L directive declares the
overlay name). The user must explicitly declare
all overlays using this directive.

MPLINK INPUT FILES

The user must supply MPLINK with two input files:
one file contains directives, the other file con-
tains object code modules. The user has the option
of supplying a library file in addition to, or

instead of, the object code module file. The MPLINK
procedural flow is shown in figure 3-Z. Examples
of the use of MPLINK are given in appendix G.

Z3

OBJECT
CODE
MODULES

;__2

V

MPLINK
DIRECTIVES

MPLINK

MEMORY IMAGE
LOAD MODULE SYMTAB
HLE(NON— mvMB0L
INITIALIZEDI TABLE)
IABSOLMPI

OLD LIBRARY
(OPTIONAL)

 LISTING

1

MEMORY IMAGE
LOAD MODULE
FILE
HEXADECIMAL

MEMORY MAP
SORTED BY
MODULE NAME

INPUT
DIRECTIVES

MEMORY MAP
SORTED BY
ADDRESS

ENTRY POINTS
SORTED BY
ENTRY NAME

ENTRY POINTS
SORTED BY
ADDRESS OR
VALUE

Figure 3-2.

MPLINK DIRECTIVES FILE

This file can be generated by one of the following:

CCP or CCI: The user can generate his own file
of input directives using the MPLINK directives
described later in this section.

CCI: The installer uses the SCF procedures
with the standard installation processes.

In all cases, the directive file is the first input
file presented to MPLINK.

MPLINK OBJECT CODE INPUT FILE

The required input file contains the object code
modules to be included in the build.

These modules in this file were previously put in
this form by a CYBER Cross assembler or compiler
(macro assembler, micro assembler, or PASCAL com-

piler). See the appropriate CYBER Cross Language
Reference Manual. The format of this relocatable

object code is given in appendix F.

Optionally, in CCI, the input modules file can be a

library file version of the modules in object code.
This file was previously produced by MPLIB. The

library file is always presented to MPLINK as the

NEWLIB file. The library is used by MPLINK to

resolve all unsatisfied external references.

3-4

MPLINK Procedural FLou

Note that any object code file must be rewound

prior to delivery to MPLINK; MPLINK does not rewind
the files automatically.

MPLINK OUTPUT FILES

Three types of output files are produced by MPLINK:

Memory image load module file (ABSOLMP)

System table (SYSTAB)

Listings

MEMORY IMAGE LOAD MODULE FILE

(ABSOLMP)

The file contains all the object code modules speci-
fied by the MPLINK directives. In this absolute

memory image file:

All modules are assigned to a specific execu-
tion address.

All modules

register.

are assigned to a selected page

All relocatable addresses converted to

absolute addresses.
are

All external references are resolved.

All overlay modules are grouped in specified
overlay areas.

60471200 G

SYMBOL TABLE FILE (SYMTAB)

The SYMTAB file contains the entire set of entry
symbols and module names defined by MPLINK. Each
entry has a value (either a memory address, a dis-

placement, or a constant), a field start location,
and a field length.

MPLINK LISTINGS

MPLINK automatically produces five listings; a
sixth listing can be produced at the user's option.
The listings are:

A copy of the input directives file.

A module memory map sorted by module name. A
sample partial listing is shown in figure 3-3.

A module memory map sorted by module address.

An entry symbol list sorted by entry name. A

sample partial listing is shown in figure 3-4.

An entry symbol list sorted by address.

A hexadecimal list of the memory image load
file (optional).
directive.

This is requested by the *DM?

CYBER MINI CROSS SYSTEM ' LINK EDITOR -

MODULE MEMORY MAP - SORTED BY MODULE NAME

MODULE *ADDRESS* *MODULE* *ADDRESS* *MODULE* *ADDRES$* *MODULE* *ADDRESS*

AACAPL 493C PBCOMP 53C1 PBPOP0 7A7D PINIT FBAF
AAEAPL 48FC PBCOPY 57EE PBPROP 7A55 PINHIN F724
AAEBCD 48FC PBDELE 653E PBPSHI 53F1 PIPROT F67F
AASBAP 4A3C PBDLTX 58CB PBPUTP 5403 PISIZC F6D5
AASCST 48BC PBDNAB 76D7 PBPUTY 5878 PITMRS FE05
AASTAP 49FC PBFILE 5325 PBQBLK 4E4F PIHLIN FBF8
ABAPLA 493C PBFMAD 7F84 PBQ1BL 4E78 PLCBIN 1605C:Z05C
ACAPLA 4C3C PBFMAH 6235 PBRDPG 53ED PLIOST 16ZCO:2ZCO
ADDRFS 0150 PBFRNC 7A94 PBRTCD 5466 PLIPML 1621A:ZZ1A
AEAPLA 487C PBGETP 5422 PBSCLA 7297 PLIPTC 16006:Z0O6
AFBCDA 4AFC PBHALT 8096 PBSETP 5393 PLIP 162F2:22F2
ASCF26 1539C:339C PBHDRB 76FF PBSLJ 4EDB PLREAD 16ODD:20DD
ASCE29 1535C:335C PBIIPO 7758 PBSMAS 5368 PLTKOP 16000:2000
ASTDAS 4A7C PBILL 808F PBSTOP 5578 PMCDRV 6CDE
ASYERR 11729:3729 PBINSE 657D PBSTPM 5433 PMCOIN 6C59
ASYLEM 47B1 PBINTP 76CB PBSTRI 579F PMMLFH 6470
ASYMSG 47A8 PBINTR 0100 PBSULE 76C0 PMTISE 7664
ATAPLA 497C PBIOPO 7956 PBTICK 6813 PMHOLP 72C6
A1Z8EB 153DC:33DC PBLCPB 5732 PBTIMA 69A2 PNAHAI 2198
A7T06P 4CBC PBLCBT 6AZ1 PBTIMO 6805 PNBMPS 6C37
BEGINX F671 PBLLEN 6B8F PBTMRS 6751 PNBRDC 38FE
BUFMAI 54DA PBLLRM 68D0 PBTOAD 64OF PNCECN 4448
CLEANU 16221:2Z21 PBLMAS 5350 PBTOAH 6320 PNCEFI 42AE
EBCA12 1551C:351C PBLNKD 7C01 PBTODE 6956 PNCNTL 372E
E26ASC 1549C:349C PBLNKU 7BA5 PBTOQU 6833 PNCONF 1S902:3902
E29ASC 1541C:341C PBLN00 1F9B PBTOSR 68DD PNDELE 2F7D
FCSRCB 1S59C:859C PBLN01 1FC4 PBTNLE 4E36 PNDEQU 61D4
GLOBL$ ODAD PBLN02 52C8 PBUPAB 76D4 PNDIRA 6OAF
HASPMS 853E PBLNO3 SZE7 PBUPDA 66F3 PNDIRD 6134
HSPTCB 155BE:3SBE PBLNO4 5699 PBXFER 5988 PNDISA 311B
HSR4IP 85CA PBLN06 4CFC PB100M 652F PNDISC 2458
HSR4IT 14F6B:2F6B PBLN07 56A5 PB16AD 69E9 PNDLTC Z346
HSR4TP 1SOF4:30F4 PBLN08 S306 PB18AD 598D PNENAB 3077
IC 16010:201D PBLN09 S681 PB18BI SAZA PNFRCE 3F9A
ISPOLD 1F5B PBLN10 568D PB18C0 5AD8 PNGTCB 2294
JUMPS 0140 PBLN11 56c9 PGDSTA 4EE2 PNLCR 3760
LIPSMA 843C PBLN12 56D5 PGHALT 17D47:3D47 PNLINE 32CA
LISTSR 5550 PBLN13 56E1 PGIVTC 15E5C:3E5C PNLLCN 265C
MAIN$ F659 PNLN14 56ED PGSNIT 5184 PNLLIN 7ADA
MODMST 5582 PNLN15 56F9 PIAPPS FC77 PNLLLI 7E66
PBADJU 5C7C PBLOAD 8045 PIBUF1 FBZZ PNLLLO 7ECB
PBAEXI 5385 PBLOST 76F5 PIBUF2 FF98 PNLLRC 7DEE

PBAMAS 1FED PBMAX 577F PIDTBL 868F PNLLRE 7D39
PBBEXI 5377 PBMEMB 5705 PIFR1 F99A PNLLSN 7D58

PBBFAV 5C05 PBMIN 575F PIGETA F8A4 PNLLST 3644

PBCALL 1F8D PBMLIA 5077 PIINIT FC37 PNLLTC 7FOC

PBCLKI 6514 PBMON 8085 PILCBS F849 PNLNBA 4148

PBCLRP 5385 PBOMAS 535D PILINI FD63 PNLNCN 27E2

PBCLR 801D PBPAGE 592B PILMT F6E8 PNLNST 391E

PBCOIN 6C8E PBPIPO 774D PIMLIA FE97 PNOVLD 4000

Figure 3-3. SampLe MPLINK (PartiaL) Memory Map Sorted by Module Name

60471200 G

*ENTRY**R/A**ADDRESS/VALUE**BIT S/L‘

AACAPL
AACDAD
AACDPT
AACORR
AAEAPL
AAEBCD
AANREA
AAOUTP
AAREAD
AASBAP
AASTAP
ABAPLA
ACAPL
ACARTO
ACAUTO
ACCAPL
ACCASE
ACCORR
ACDELH
ACEAPL
ACEBCD
ACELL
ACEPL
ACKHSG
ACKPTP
ACLIH2
ACLIH1
ACPBLI
ACPR05
ACPCLR
ACPEVE
ACPICS
ACPTOH
ACPLR1
ACPOBL
ACPOMA
ACPONS
ACPRHA
ACRITT
ADDRES
ADDRLC
ADDRSU
ADEADT
ADST1
ADST2
AEABLS
AEAPL
AEASCI
AEATTN
AEATT1 XIX■■x)))Z”X>>)>>”>)>))>)>Z”>>>))>X)>)xXXX>>>Xl■■>)N

LEGEND:

ENTRY

R/A

ADDRESS/VALUE

BIT S/L

CYBER MINI CROSS SYSTEM - LINK EDITOR '

ENTRY SYMBOL LIST - SORTED BY ENTRY NAME

493C AEAUT1 R 4648
0000 AEAUT2 R 464E
0000 AEAUT3 R 4654
48BC AEBLS R 4534
48FC AECHR1 R 4669
4BFC AECIN1 R 46DA
0007 AECIN2 R 46DC
0003 AECIN3 R 46E7
0004 AECIN4 R 46E9
4A3C AECKHD R 45AB
49FC AECODI R 46C0
498C AECODZ R 46A0

116FD:36ED AECSE R 116D7:36D7
0C78 AECSLL R 475F
0001 AECSL1 R 477A
0004 AECSLZ R 477C

118B7:3687 AEEIN1 R 46F5
0003 AEE!N2 R 46F7
0002 AEEIN3 R 4702
0002 AEEIN4 R 4704
0001 AEELL R 4505
0000 AEELT1 R 45CE
0001 AEELT3 R 45E0
858E AEEPL R 45F1
1068 AEEPT1 R 4SFB
0000 AEESL1 R 4780
0A00 AEESL2 R 4782
0001 AEINPT R 4583
0002 AEIN1 R 458C
000C AEIIBT R 455F
0000 AESEDI R 4730
0050 AESLL R 4570
0060 AES110 R 4658
1COD AES150 R 4668
0058 AES151 R 4662
006C AES300 R 4674
0043 AES301 R 467A
0010 AEXBLS R 4635
000A AEXDLM R 463A
0150 AEXDTA R 462A
015F AEXPTO R 462F
0160 AEXSOI R 4604
0014 AE4XDL R 47A7
0001 AE4XIN R 4792
0002 AIDLEY A 0003
474A AIDLE A 0001

117D9:3709 AINPLB A 000E
46A7 AINPSB A 0000
4769 AISPT1 R 4405
4775 AISPT6 R 452A

Name of the entry symboL.
the stash (I) is omitted.

Entry type; R=reLocatabLe, A=absoLute, L=LocaL.

Address of the entry or its value.
the fiLe.
above 64K, two addresses appear as shown:

*ENTRY**R/A**ADDRESS/VALUE**BIT S/Li

truezpaged.

*ENTRY**R/A**ADDRESS/VALUE**BIT S/L*

AISP4C
AI$P4E
ALARM1
ALARH2
ALARM}
ALCAPL
ALCORA
ALEAPL
ALEBCD
ASASCI
ASAUTO
ASCE26
ASCE29
ASCINT
ASDISC
ASSLL
ASSOL
ASXPT
ASXSOI
ASYNCE
AS2741
ATAPLA
ATELL
ATEPL
ATPDI2
ATPDXS
ATPD16
ATPDIB
ATPPR1
ATPPR4
AUCAPL
AUCORA
AUEAPL
AUEBCD
AVASCE
AVASCP
AVB7T0
AVCNTR
AVCORE
AVCORR
AVCRLF
AVCRHS
AVEBCD
AVEBCE
AVEOLS
AVEOLT
AVEOTH
AVEOTP
AVINTA
AVIS4C

true address Of 1000016 and a page address of 200016.

FieLd start position/fieLd Length.
position, bit 15 is the Leftmost bit, bit 0 is the rightmost.
have a range 0-F16,

xxxxxnzzxxzzxzxzxxmzwmxxxm)>m>x>>>>>xxx>>xxmx>)>mm

It is up to six Letters and numbers Long.

If address is 64K (65,536) or Less, true address appears.

4512
44FA
0001
0002
0003
4C7C
4ABC
4BBC
483C
0022
0018

1539C:339C
1535C:335C

176C
0003
0004
0001
0002
0005
153A
0020
497C
0000
0000

1131B:331B
1133F:333F
11363:3363
1138713337
112D3:32D3
112F2:32F2

4C3C
4A7C
487C
4AFC

11729:3729
1E5D
1E74
1E3D

1173A:373A
1E5E
1E52
1E50
1E5F

1174A:374A
1E29
1E2D
47AB
1E53
1E60
1ES4

Addresses are a dispLacement from the first word of
If address is

For exampLe, 10000:2000 has a

Both of these vaLues are given in bits.
Both start and Length

If a LocaL entry,

‘[1! ‘IN

For start

Figure 3-4. Sampte MPLINK Memory Map Sorted by Entry Name (PartiaL)

60471200 G

EXECUTING MPLINK

MPLINK is executed by attaching the MPLINK permanent
file (local file name is MPLINK), and then execut-
ing the file name call statement MPLINK.

Four optional parameters are available with the
MPLINK file name call statement:

MPLlNK[D=infi1e ,R=outfi1e,CSET=cset ,x-1]

where:

D is the logical file that presents the input
directives to MPLINK (default name is INPUT).

R is the logical file that receives the list-
ings (default name is OUTPUT).

CSET is the host display code set to be used.

CSET=63 selects the CDC 63~character display
code set (this is the default value).

CSET=64 selects the CDC 64-character display
code set.

Xsl aborts the job if errors occur. If X=l is
omitted (default action) the job will not abort
if errors occur.

Appendix G gives examples of executing MPLINK.

MPLINK DIRECTIVES

All MWLINK processing is controlled by the MPLINK
directives entered in the input directives file.
The general format of a directive is: .

*dirname,
paraml,...,parami[paramj...paramn] comment

where:

An asterisk (*) indicates the beginning of an
MPLINK directive.

dirname is the name of the directive.

paraml is a parameter.

The first parameter is separated from the directive
name by a comma. Additional parameters are sepa-
rated from one another by comas. Some parameters
are optional; optional parameters are enclosed in
brackets [,param}. Parameter types are discussed
below. Specific parameters are defined in the
descriptions of individual directives. A period
(.) terminates the command portion of the MPLINK
directive. Cements start after the period and
include all characters until the *, which starts
the next directive.

60471200 G

MPLINK DIRECTIVE PARAMETERS

An MPLINK parameter is either:

A name of:

A module

An entry point in a module

A synonym equating an entry point to an
external

The system being built

An overlay area

A local variable

An overlay identifier

A memory address

Names

A parameter name must begin with a letter. It can
contain any number of following letters or numbers;
however, MPLINK uses only the first six charac-
ters. Therefore, all unique names must differ in
their first six characters. Identical names lead
to an MPLINK error.

For the purpose of parameter names, the dollar sign
($) is considered to be a number.

Overlay Identifiers

An overlay identifier always consists of two
letters. If an identifier is not assigned in a
directive statement, MLINK generates its own

overlay identifiers.

Memory Addresses

The allowable forms of memory addressing were
discussed earlier in this section.

SUMMARY OF MPLINK DIRECTIVES

Table 3-2 is an alphabetical summary of the MPLINK
directives. Detailed descriptions of the MPLINK
directives follow.

*L - Specifies Modules to be Linked

This directive links modules. The standard form of
the link directive is:

*L,mod,addr.

TABLE 3-2. SUMARY OF MPLINK DIRECTIVES

Name Function

*CB Defines the upper boundary for

linking programs.

*COM Defines the blank common area used by
macroassembler modules.

*COR Defines the size of the combined main
and extended NPU memories.

*DAT Defines a common data area for PASCAL

global variables.

*DMP Produces the hexadecimal listing of
the memory image load file.

*DSTK Defines a stack area to be used for
PASCAL reentrant/recursive procedures.

*DVAR Defines a dynamic variable area for
use with PASCAL variables.

*END Last statement of the input
directives file; ends the file.

*ENT Associates a memory address with an

entry point name.

*L Links one or more modules, or links
all the unlinked modules on a library
file.

*LIB Defines the library file used to
resolve unsatisfied externals.

*LL Specifies a lower limit memory
address; modules cannot be located
below this address.

*0VLY Identifies and establishes the limits
of an overlay area.

*RL Links reverse-loaded modules with
the module ending address specified
in the directive.

*SYN Equates an arbitrary name with an

entry point name or a defined module
name.

*SYSID Specifies the name for the build.

*UL Specifies an upper limit memory
address; modules cannot be located
above this address.

*VE Assigns a variable expression value
to a local variable.

This form causes MPLINK to locate object code

module mod at starting address addr. As it is

located, other linking operations also occur:

addresses are made absolute and externals are

resolved.

There are five alternate ways of writing a link

directive:

3-8

*L,mod.

Links the object code module (mod) starting
at the word following the last word of the
module most recently linked by MPLINK. Note
that if trailing parameters are omitted,
their delimiting commas can also be omitted.

*L,,addr.

Links all object code modules in the object
code input file except those which are

expressly linked by other *L directives.
The modules are linked in the order in

which they occur on the input object code
File. The first module encountered starts

linking at the specified address (addr).
Note that the delimiting commas for the
omitted mod parameter must be retained.

*L,modl-mod2,addr.

Links all the modules starting with modl

extending through mod2 on the object code

input file. The first module (modl) is
located at the specified address. The
other modules are located in order follow-

ing that module. If either modl or mod2
cannot be located, an error occurs.

*L,modl-mod2.

Same as the previous form, except modl is

located at the address following the last
word of the module previously linked.

*L.

Links all object code modules in the in-

put object code file except those which
are expressly linked by other linking

(*L,parameters, or *RL) directives. The
modules are linked in the order in which

they occur on the input object code file.

The first module encountered starts at the

word following the last word of the module

most recently linked.

*RL - Specifies Modules to be

Reverse Linked

The reverse linking directive locates a module so

that the last word of the module is placed in the

specified address. There are two alternate forms
for the directive:

*RL,mod,addr.

Links the module so that the last word is

placed in addr.

*RL,modl-mod2,addr.

Links a series of modules on the object
code input file, starting with modl and

extending through mod2. The last word of

mod2 is located at addr. The module ahead
of mod2 is linked next, with its last word

immediately preceding the first word of
mod2. Other modules are linked similarly
until all modules in the sequence (includ-

ing modl) are linked. If either modl or

mod2 cannot be found on the object code

input file, an error occurs.

60471200 G

*CB - Defines Linking Boundary

This boundary directive prohibits linking programs
above the specified address. The format of the
directive is:

*CB,addr.

More than one *CB directive can be used in the
directives file. If a second (or subsequent)
*CB,addr is used, the second address becomes the
new boundary value. If a *CB,0 directive is used,
the boundary is removed.

Programs that are prevented from being linked by
the *CB,addr directive are subsequently linked by
the link all (*L) directive unless an *L has already
been used or there is no *L directive in the input
directives file. In either of these cases, the
unlinked modules are linked following the last

program linking.

*l.|. - Defines a Lower Limit for

Linked Modules

This directive prohibits any module from being
located below a given address in memory. If a
module's starting address is less than the speci-
fied address, processing is halted and a fatal
error message is generated. The format of the
directive is:

*LL,addr.

Since *LL is positional (that is, it applies only
to linking directives that follow it in the direc-
tives file), more than one *LL directive can be
included in the file. In this case, if *LL,addr2
follows *LL,addrl, the specified lower threshold is

changed to addr2 for the remaining directives. To
cancel a lower limit, the user enters the directive:

*LL,0.

*Ul. -» Defines an Upper Limit for

linked Modules

This directive prohibits any part of any module
from being located above a given address in memory.
If a module's ending address is greater than the

specified address, processing is halted and a fatal
error message is generated. The format of the
directive is:

*UL,addr.

Since *UL is positional (that is, it applies only
to linking directives that follow it in the direc-
tives file), more than one UL directive can be
included in the file. In this case, if *UL,addr2
follows *UL,addrl, the specified upper limit is

changed to addr2 for the remaining directives.
To cancel an upper limit, the user enters the
directive:

*UL,O.

60471200 G

*SYSlD - Identifies the System
Loud File

This directive establishes a user-supplied name for
the load file. The system name and the optional
text are placed in the memory resident header
record of the load file.

The format of the directive is:

*SYSlD,nameI,text].

If the SYSID is not specified in a directive, the
load file will not have a memory resident header
record. In such a case, if an *L directive in-
cludes a module with the name LOADER, that module
is placed at the head of the load file.

The optional text is any string of letters or
numbers up to a total of 48 characters.

*OV|.Y - Specifies Overlay Areas

and the Modules in an Overlay

This directive has two purposes:

It defines the limits of an overlay area.

It specifies the modules that are to be a part
of the overlay. An overlay consists of all
modules defined by *L directives which follow
one overlay directive and which precede the
next overlay directive or the *END directive.

The format of the *OVLY directive is:

*OVLY,name,ovlyid,addrb,addre.

where name is the overlay name (note that the

overlay name is six letters or numbers and has the
attributes of a defined entry point); ovlyid is the
two-letter overlay identifier; addrb is the begin-
ning address of the overlay area; and addre is the

ending address of the overlay area.

In using the *0VLY directive, the user should
observe these rules:

A memory image load module file can have no
more than ten overlay areas.

An *L directive that specifies the overlay area

name as its starting address designates its
first module as the start of that overlay.

Overlay areas cannot overlap.

*ENT - Defines Entry Points

This directive assigns a four-component memory
address to a user-assigned name. The name is used
to resolve like-named external references. The
name must not be the same as an entry point in an

already linked module.

The format of the directive is:

*ENT,name,addr.

*SYN - Defines External Synonyms

This directive equates an arbitrary name to a
declared entry point name or defined module name.
The equated name is to be used for resolving exter-
nal references.

The format of the directive is:

*SYN,name1,name2.

where namel is the name of a declared entry point
or a defined module; and name2 is the name to be
associated with namel. At every occurrence of
namel in the object code, name2 is substituted.

*COR - Defines NPU Memory Size

This directive defines the size of the NPU memory
for which the load file is being generated. The
format of the directive is:

*COR,addr.

where addr specifies one of the four legal CCP or
CCI memory sizes. These are:

SFFFF 65536 words

$13FFF 81920 words

$l7FFF 93302 words

SIFFFF 131072 words

If addr is omitted, a default value of SFFFF is
used. This is equivalent to an address speci-
fication of $FFFF:$1F:O; that is, FFFF16 is the
last address of memory, memory page 31 holds that
address, and address register set 0 is used for
that range of addresses.

*LlB - Specifies Library File

This directive specifies the library file that
MPLINK uses to resolve unsatisfied externals during
the linking process. The format of the directive
is:

*LIB.

The library file is always presented to MPLINK with
the local file name of NEWLIB.

*VE - Equates a Variable to an

Expression

This directive assigns the value of the specified
expression to the named variable. The format of
the directive is:

*VE,nam:=exp.

where nam creates a local variable of that name;
exp can have any of the following formats:

naml

constant

I 3-10

naml+constant

nam1+nam2

naml-constant

naml-nam2

naml and nam2 can be local variables or entry
points that are absolute or have been previously
made absolute.

*DSTK — Allocates a Stack Area for

Recursive/Reentrant PASCAL Programs

This directive allocates the area that is used by
all reentrant and recursive PASCAL programs to save
processing parameters when a call is made to a

program that has not completely finished processing.
The format of the directive is:

*DSTK,addrb,addre.

where addrb is the starting address of the area and
addre is the ending address.

The programmer can choose a starting address in any
part of main memory that is not to be used for
other purposes (buffers, programs, globals, or
other reserved areas).

*DVAR - Allocates a Dynamic
Variable Area for PASCAL Programs

This directive allocates the dynamic variable area
used by all PASCAL programs. The area is accessed

by the PASCAL standard procedure NEW. NEW is a
variable space allocation routine; it automatically
allocates space for a variable based on the type of
variable (see the CYBER Cross System PASCAL Compiler
Reference Manual).

The format of the directive is:

*DVAR,addrb,addre.

where addrb is the starting address of the area and
addre is the ending address.

The programmer can choose a starting address in any
part of main memory that is not to be used for
other purposes (buffers, programs, globals, or
other reserved areas).

*COM - Defines a Blank Common

Area for Macro Assembler Programs

This directive allocates a blank comon area that
is referenced by macro assembler modules. The
format of the directive is:

*COM,addrb,addre.

where addrb is the starting address of the area and
addre is the ending address.

60471200 G

*DAT - Defines the labeled

Common Area

This directive defines the labeled common area.
PASCAL global variables are assigned to this area,
and macro assembler programs can reference this
area. The format of the directive is:

*DAT,addrb,addre.

where addrh is the starting address of the area and
addre is the ending address.

The programmer can choose a starting address in any
part of main memory that is not to be used for
other purposes (buffers, programs, globals, or
other reserved areas).

PASCAL global variables are defined in an object
code module named GLOBLS. The appearance of GLOBLS
in an *L directive takes precedence over a *DAT
directive.

*DMP - Generates the Memory Image
Load Module File Hexadecimal Listing

This directive causes MPLINK to generate an output
file consisting of a hexadecimal dump of the memory

60471200 G

image load module file. The listing is sent to the
file named OUTPUT. The format of the directive is:

*DMP.

*END - Ends MPl.lNK Directive

Input File

This directive ends the MPLINK input directives
file. It also specifies the address of the first
instruction to be executed after the load file is
downline-loaded into the NPU. The format of the
directive is:

*END,addr.

where addr is a hexadecimal number or an entry
point name. The default for address is location 0.

MPLINK ERROR MESSAGES

If an error occurs during an MPLINK run, an error
message is delivered to the output file. The
messages are preceded by a leading-up arrow. If
the error is a recognized syntax error, the up-
arrow is followed by the character that was being
processed when the error occurred. Table B~2 in

appendix B lists the MPLINK utility error mes~

sages, the significance of the message, and the
action that the user should take in response to the

message.

EDIT UTILITY

INTRODUCTION

The edit utility is used to initialize values in

specified variables of the Communications Control
Program (CCP) or the Communications Control INTERCOM
(CCI) modules which have been made absolute.

The MPEDIT utility requires three inputs:

The noninitialized memory image load module
file (APSOLMP) output of MPLINK. This is the
file to be initialized.

The symbol table file (SYMTAB) output of MPLINK.
This is used to locate the modules to be ini-
tialized.

The MPEDIT directives that control the initial-
ization. This extensive file of directives is
called an MEDIT program. throughout this sec-
tion. The program is similar in format to a
CYBER Cross PASCAL program; that is, it consists
of a declaration/definition part followed by a

group of executed statements. The user should
be familiar with PASCAL compiler requirements
and syntax (see the CYBER Cross System PASCAL

Compiler Reference Manual).

If a standard CCP or CCI build procedure is used,
the MPEDIT program is available from the CCP or CCI

program library. The program is generated by the
build procedures frm the release tapes (see figure
1-1 in section 1).

The output of MPEDIT is an initialized version of
the memory image load module file. This file can
be converted to a downline-load file for an NPU.

MPEDIT also supplies several optional output list-

ings.

The MPEDIT utility section contains the following
subsections:

A description of the input files required

A description of the output files: the required
memory image load module file, and the optional
listings

The method of executing the MPEDIT program

The structure of the MPEDIT program

Error message discussion

Addressing for the MPEDIT utility follows the rules

specified in the MPLINK utility section.

MPEDIT INPUTS

MPEDIT requires two files produced by MPLINK:

The memory image load module file (ABSOLMP).
The file structure is shown in appendix D.

60471200 G

The symbol table file (SYMTAB). This file
contains every entry symbol defined during
MPLINK, together with the symbol's absolute
location in the memory image file.

MPEDIT also requires the MPEDIT program. The

syntax of this program is described in detail in
the remainder of this section. A sample of parts
of an MPEDIT program is given in appendix H.

MPEDIT OUTPUTS

The MPEDIT utility produces two standard outputs:

A memory image load module file with the speci-
fied variables initialized.

NOTE

A variable can take the form of a
declared constant, a variable, or a
field within an array. Fields in

arrays are restricted to 16 bits
(one contiguous NPU word) in length.

A listing of the MPEDIT input program. Any
syntax errors encountered in this program are
indicated on this listing.

Four optional outputs are also supplied:

A specially formatted memory image load module

file, tailored for downline loading on an NPU.
The format of this load file is given in appen-
dix E. This is not the downline-load file for

CCP or CCI, but is a required input to generate
that file. That load file itself is generated
by the CCP or CCI installation procedures.

A trace listing of the MPEDIT assignments that
were made.

A listing of the symbol table (SYMTAB), which
includes local symbols that were introduced

during the MPEDIT phase.

A hexadecimal listing of the memory image load
module.

EXECUTING MPEDIT

MPEDIT is executed by attaching the MPEDIT permanent
file and then executing the name call statement
MPEDIT (see the appropriate NOS or NOS/BE reference

manual).

These optional parameters are available with the
MPEDIT call statement:

MPEDIT[D=infile,R=outfile,CSET=cset,X=l]

4|

where:

D is the local file which presents the input
directives to MPEDIT. The default is INPUT.

R is the local file that receives the list-

ings. The default is OUTPUT.

CSET is the host display code set to be used.
CSET=63 selects the CDC 63-character display
code set; this is the default value. CSET=64
selects the CDC 64-character display code set.

X=l aborts the job if errors occur. If X=1 is

omitted, the default action is not to abort the

job, despite errors.

N Appendix H shows examples of executing MPEDIT.

Note that the user must rewind the ABSOLMP and
SYMTAB files before entering this utility; MPEDIT
does not rewind the files before using them.

MPEDIT STATEMENT FORMAT

MPEDIT statements are similar to PASCAL statements
(see the CYBER Cross Compiler Reference Manual)
with some restrictions and extensions. A typical
extension allows an expression on the left side of
a VALUE statement. The evaluated expression speci-
fies the address that receives the assigned value.
Comments are permitted as in PASCAL statements.

Appendix H shows selected sections of an MPEDIT

program.

As in a PASCAL program, the MPEDIT utility has two
parts, which occur in the order given:

A definition/declaration section

An assignment (initialization) section

The utility ends with a terminator.

The sections of the MPEDIT utility are shown in

figure 4-1. The MPEDIT flow is shown in figure 4-2.

The definition/declaration section consists of
three parts, which must occur in the order given:

A constant definition part

A variable definition part

An array definition part

The assignment section consists of one or more

composite statements. One composite assignment
statement is required for the memory resident

portion of CCP or CCI; one additional composite
assignment statement is required for each overlay
to be edited. If overlay statements are present,

they must precede the memory resident statement.
The memory resident statement must be present even
if it is an empty statement (empty statements are
defined later).

PROGRAM STRUCTURE

CONST (1)
Constant Definition Part

VAR (1)
Variable Dectaration Part

ARRAY (1)
Array Declaration Part

OVERLAY overlay identifier (2)
BEGIN

Assignment Section
END;

BEGIN (3)
Assignment Section

END.

(1) Optional.

(2) 0ptionaL composite statement; can be
repeated for every overlay that requires
editing up to the maximum number defined
for the Link edit.

(3) Required composite statement; Memory
Resident Partition.

Figure 4-1. MPEDIT Program Format

The MPEDIT terminator is a period (.) immediately
following the END statement of the memory resident

assignment statement.

MPEDIT SYNTAX

The MPEDIT utility uses the following syntax ele-
ments:

Keywords that designate the part of the program
or operation to be performed by the assignment
section

Reserved symbols used to order the optional
outputs

Local symbols used for equating constants

locally, or specifying a local variable

External symbols in MPEDIT that always have an

array attribute

Literals

Address functions

Expressions

60471200 G

MPLINK
WED” MEMORY IMAGE §}’:{f§’L

'N"'-‘T
PEOGRAM LOAD MODULE nu: “LE5
(couwmosr FILE ‘SYMTAB,(Aasouvm

V

wsorr

17 .

SPECIAL mm/xuzso
FORMAT MEMORY memo“ WAGE ?:i‘;°TLOAD IMAGE LOAD MODULE
MODULE nus “LE

WPUT MEMORY muse
o,REcm,Es mmauzeo A W
mm SYNTAX

rsuce svm“ LO 0 M0 LE
USYWGS

ERRORS)
FIUE
(HEXADECIMAL)

Figure 4-2. NPEDIT Program Flow

I KEYWORDS MPEDIT assigns specific address meanings to the
following reserved symbols:

The following keywords are reserved for MPEDIT
controls : /ENTRY

/LENGTH
ARRAY /PGDISP
BEGIN /PGNUM
CHAR /PGREG
CONST /PGSET
mv /START
D0 /VFD
END
FOR These symbols must be used only to perform the
MOD desired MPEDIT functions. The functions are dis-
OF cussed later in this section.
OVERLAY
T0
VAR LOCAL SYMBOLS

These control words have the same definitions in
the PASCAL compiler.

Local symbols are used to equate a constant in the
constant definition part of the program or to
declare a local variable.

A local symbol is defined by a slash (/) followed

by one to six letters and/or digits. The first

character must be a letter. The dollar sign (5) is

considered to be a digit. The following are valid
local symbols:

| RESERVED wonos

MPEDIT assigns specific output option request
meanings to the following reserved symbols:

/DMP$ /ABCDEF
/ESL$ /A6
/ NAM$ /MAINsa
/TRACE / I

60471200 G

A local symbol can have more than six letters or
digits. MPEDIT, however, truncates the symbol at
the seventh character and discards that character
and all that follow. The user cannot, therefore,
define two local symbols such as /ABCDEFG and

/ABCDEFH. MPEDIT treats both of these as /ABCDEF.

| EXTERNAL SYMBOLS

External symbols are used during array processing.
The symbols refer to arrays in the SYMTAB load file

produced by MPLINK. An external symbol consists of
one to six letters and/or digits. The first char-
acter must be a letter. The dollar sign ($) is
considered to be a digit. An external symbol can-
not be one of the keywords defined earlier. The

following are valid external symbols:

A36F
MAIN$
GLOBL$
UPTOPARAM (treated as UTOPAR)

An external symbol can have more than six letters
or digits. MPEDIT, however, truncates the symbol
at the seventh character and discards that char-
acter and all that follow. The user cannot, there-
fore, define two external symbols such as /ABCDEFG
and /ABCDEFH. MPEDIT treats both of these as
/ABCDEF.

External symbols can be qualified by other external

symbols. To do this, the user separates the exter-
nal symbols by a period. A single external symbol
can be progressively qualified by additional exter-
nal symbols, as shown in the examples:

A36F.FIELD

GLOBL$.RECORD.FIELD

where:

The first external symbol specifies a location
on the memory image file.

Intermediate external symbols (if any) specify
a displacement from the previous location (for
instance, the start of a record in the global
variables).

The final external symbol specifies a field as:

A displacement from the start of the pre-
vious external symbol

A start bit position for a field

A field length (in bits)

This method of qualification is identical to that
used in the PASCAL syntax.

UTERALS

A literal can be a decimal number (a sequence of
decimal digits), or a hexadecimal number (a sequence
of hexadecimal digits preceded by a S). Internally,
literals are represented as 16-bit quantities.
Larger quantities are illegal.

A-4

Signed literals are allowed (the leftmost bit is a
sign bit). A negative literal forces the comple-
ment of the 16-bit quantity. If a literal is

represented by less than 16 bits, the unused left
bits are packed with binary zeros. Examples of

legal literals are:

123

$147
-$F

ADDRESS FUNCTIONS

MPEDIT provides nine functions that can be used
within operand or address expressions to generate
an address. The functions are executed by a re-
served word in the form /xxxxx. Five of these
functions are also available with MPLINK (see
address functions in MPLINK):

/OVID
/PGDISP
/PGNUM
/PGREG
/PGSET

In addition, MPEDIT defines four more address
functions:

/ENTRY
/LENGTH
/START
/VFD

As in the MPLINK case, the function takes the
format:

/xxxxx(name)

/START - Field Start Address Function

The /START function has the format:

/START(external)

The function returns the start position in bits

(range 15 to O) of a field relative to the start of
a variable word. For example:

/START(FIELDX)

generates a bit position of 9 as the start of
FIELDX:

15 9 0

FIELDX

/ LENGTH - Field Length Address Function

The /LENGTH function has the format:

/LENGTH(external)

The function returns the value of the field length
(in bits) minus 1. A single bit field has a value
of zero; a full word field has a value of 15.
PASCAL fields cannot exceed word length, nor can a
field start in one word and overflow into the next.

60471200 G

1 I Example 1: The length of FIELDX in the example
above is requested with /LENGTH(FIELDX). The
address function would return a value of 10.

Example 2: The terminal class field (BSTCLASS)
start position and length in the base terminal
control block (TCB) descriptor table are found by
using the following MPEDIT statements:

DGTCBFDT[5].DDFSTRT :=/START(BSTCLASS);

DGTCBFDT[5].DDFLNTH :=/LENGTH(BSTCLASS);

/ENTRY — Entry Point Address Function

The /ENTRY function has the format:

/ENTRY(externa1)

This function accepts a module name as a parameter
and generates the address of the module's asso-
ciated entry point.

Example: The entry point and the page number of
the service module in CCP are located by using the

following MPEDIT statements that include address
functions:

BYWLCB [BOSMWL] .BYPRADDR :=/ENTRY(PNSWML);

BYWLCB [BOSMLI .BYPAGE :=/PGNUM(PNSWML);

/VFD - Variable Field Definition

Address Function

The format of the /VFD specification is:

/VFD(addr/disp,fldstrt,f1d1ngth)

where:

addr/disp defines the absolute address of the

:$::'holding
the field in the memory image load

fldstrt defines the start bit position of the
field within the word (range 15 to 0).

fldlngth defines the length of the field (in
bits) minus 1 (range 0 to 15).

The /VFD function uses three parameters (address/
displacement, field start, and field length) to

generate the location and length of a field in the

memory image load module file.

The address expression A, where A is an external,
is equivalent to the expression:

/VFD(A,/START(A) ,/LENGTH(A))

or more completely:

/VFD(A:PGREG(A):/PGSET(A),/START(A),/LENGTH(A))

60471200 G

MPEDIT EXPRESSIONS

Two types of expressions are used:

Operand expressions

Address expressions

Operund Expressions

An operand expression produces a single 16-bit
binary value. An expression is a valid combination
of:

Constants (which are interpreted as 16-bit
integers)

Local variables

Functions

Unqualified external symbols

These are joined together by arithmetic operators
(+, -, *, DIV, and MOD) and are grouped within

parentheses to specify the order in which the oper-
ations are to be performed. An evaluated external
symbol is represented by its address/displacement
value. Qualified address values can be accessed

using the address evaluation functions given in
MPLINK and MPEDIT, above.

In an operand expression, an external symbol cannot
be subscripted, even if it is declared in an array.
The NPU performs all arithmetic in one's complement
mode so that results are unique.

Examples of operand expressions are:

GLOBAL$

(/PGREG(MOD)+$F2l)DIV/START(GLOBL$)

Address Expressions

An address expression has one of two forms:

A /VFD address function call.

A single external symbol. The symbol can be

qualified. If this form is used, symbols that
are declared in arrays must be properly sub-

scripted; that is, the subscript expressions
must be operand expressions with values that
fall within the expected range.

Example 1:

A

This is an address expression unless A was
declared in an array. In that case, the
lack of subscripts indicates that it is an

operand expression. It could also be an

operand expression if its usage forced that

conclusion; that is, it is on the righthand
side of an assignment statement.

I Example 2:

M21
/VFD(MAIN$,0,0)

I Example 3:

ARRAY A[l...5,1...5] or 24;
c[1...1o] or CHAR;

VAR/I; /J

A[/l.(/START(Q)"2)*/J].B.C[3]'address
expression’

MPEDIT PROGRAM STRUCTURE

An MPEDIT program consists of four parts:

Constant declaration part

Variable declaration part

Array declaration part

Assignment section

The first three parts are optional, but the assign-
ment section is required.

CONSTANT DECLARATION PART

The first part of an MPEDIT program contains
constant declarations; this section is optional.
Constant declarations allow programmers to create

synonyms for literals. A local symbol defined as a
constant behaves as a true constant; its appearance
is legitimate wherever a literal is expected.

If a constant declaration part is present, it is
preceded by the keyword CONST. The complete list
of constant declarations must follow that word.

Each declaration has the following format:

/symbol=expression;

That is, the declaration consists of a local symbol,
an equals sign, and a literal, or a previously
defined constant. The declaration terminates with
a semicolon. Literal and previously defined con~
stants can be signed.

A constant value can be defined as an expression
that itself is a mixture of constants, previously
declared local constants, and entry symbols that

appear in SYMTAB.

I Examples are given in figure 4-3.

VARIABLE DECLARATION PART

The next part of an MPEDIT program contains variable
declarations. This section, also optional, allows

programmers to create local symbols for local vari~
ables. These symbols exist only during the MPEDIT

phase. All such variables are 16~bit quantities
that can be used in one's complement arithmetic.

4-6

If the variable declaration part is present, it is
preceded by the keyword VAR. That word is followed
by the complete list of local variable declarations.

Each declaration has the following format:

/symbol;

That is, the declaration consists of a local symbol
followed by a semicolon terminator.

Examples of variable declarations are given in
figure 4-3.

ARRAY DECLARATION PART

The next part of an MPEDIT program contains array
declarations. This section, also optional, allows
programmers to create external symbols as arrays so
that elements can be referenced by an index. Any
external symbol to be indexed must be declared as
an array.

If the array declaration part is present, it is
preceded by the keyword ARRAY. That word is fol-
lowed by the complete list of array declarations.

A declaration can have either of two formats:

name{index} OF number;

name[index] OF CHAR;

In each case, the name is an external symbol, the
index is a range of numbers in PASCAL notation

(number..number), and the declaration is terminated
with a semicolon. Note that number itself can be
an expression. If the CHAR format is used, the

array corresponds to a PASCAL packed array; that
is, there are two characters packed per NPU word.

Examples of array declarations are shown in figure
A-3.

ASSIGNMENT SECTION

There are two general types of assignment sections:
resident assignments and overlay assignments. All

overlay assignments must precede the resident

assignment section. The two types are identical
except that each overlay assignment section begins
with:

OVERLAY overlay identifier

An assignment section consists of a single composite
statement that is delimited by the keywords BEGIN
and END. The composite statement consists of zero
or more statements that direct the MPEDIT actions
to be performed. There are five types of assign-
ment statements:

Local

Address

FOR loop

Composite

Empty

60471200 G

CONSTANT DECLARATIONS

CONST
/raue = 1;
/MLE =0;
/COUPLER = $0000;
/PORT01 = $0100;
/ponroz = $0200;
/5051 = 1;
/B0516 = /3051;
/BFLCDO = /aurszorz - /J1LSTPAD;
/oarsze = /BECTLBK + (3*/SIZBECTLBK);

VARIABLE DECLARATIONS

VAR
/I
/13
/P
/IDTBL
/BZOHNER
/BZLNSPD
/BSCN
/BSPGHAIT

ARRAY DECLARATIONS

ARRAY

JZOPSBASE EBOCHHL..BODUMMY] OF 2;

DBPFCTBLE [1..DBLAST] OF 2;

CGTCBS [0..C4TCM1] OF /SIZTCB
VATCBAT E1..40] OF 3;

JGTESTABLE /FALSE../TRUE,/FALSE../TRUE,/FALSE../TRUE] OF 1;

NAMEN E1..2OJ or CHAR;

Constants as decimal numbers

Constants as hexadecimal numbers

Constants as previously defined constants

Constants as arithmetic expressions

General loop index
General use variable
Nork pointer for program
Table work pointer
Local variables

Sequence of elements defined by symbols;
numerically defined size

Sequence of elements defined by symbols;
constant defined size

Combination of both of the above
sequence of elements defined by
numbers; numerically defined size

Sequence of element sets defined by
symbols; numerically defined size

Sequence of elements defined by numbers;
elements packed two per NPU word.

Figure 4-3. Examples of MPEDIT Constant, Variabte, and Array DecLarations

Each statement (except the last) is terminated by a
semicolon.

An MPEDIT program must include an assignment section
for the memory resident programs, even if that
section consists of only one empty statement.

Selected portions of an assignment section for a
CCP MPEDIT program are given in appendix H.

Local Assignment Statement

A local assignment statement has the following
format:

local variab1e:=operand expression

where := is the assignment operator-

MPEDIT evaluates the operand expression to find the
value and places that value in the named local
variable. Examples of local address assignment
statements are:

60471200 G

VAR /I; /J; /K; /L;

/I:=/I+1; /J:=O; /K;=/LENGTH(X);
/L:=/VALUE(A.B)+C;

Address Assignment Statement

An address assignment statement has the format:

address expression:=operand expression

An address expression can take the form of an

operand expression (that is, the operand expression
can appear on the lefthand-side of the assignment

operator). In this case, a /VFD with full'W0rd

attributes is implied.

Semantically, MPEDIT evaluates the righthand-side
operand expression and replaces the value in the

memory image location specified on the lefthand
side with this new value.

If a 16-bit value is assigned to a smaller than
16-bit field, the higher order bits are truncated.

As mentioned above, an address assignment statement
can have an operand expression on the lefthand
side. For example:

/I+1:=O is interpreted as /VFD(/I+1,1S,15) :=0

MPEDIT is instructed to zero the full 16-bit word
that appears at location /1+1. Similarly, l:=0
would zero the full word at memory image location 1.

Example:

VAR/I;

/I:=0

This sets the local variable /I to zero. To zero
the word at memory location /I, the lefthand side
of the assignment must be forced to look like an

expression. This could be done in any of the
following three ways:

+/I:=0

(/I):=0

/VFD(fI,lS,l5):=O

FOR Assignment Statement

The format of the FOR assignment statement is:

FOR control variable:=initial operand expression
TO final operand expression
D0 statement

The FOR ... TO statement assigns values for the
control variable in increasing order. The control
variable must be a local variable.

The FOR assignment statement in MPEDIT is entirely
analogous to the FOR ... T0 statement in PASCAL.
The statement causes the indicated statement to be

repeated, while a progression of values is assigned
to a control variable.

in the following example, the FOR statement causes
MPEDIT to set 256 successive locations, beginning
at the external symbol GLOBL$, with the value of
the preceding memory location's address:

VAR /1

FOR /I:eGLOBL$
T0 GLOBL$+$FF
D0 (/I):=/I-1

A-8

Composite Assignment Statement

The format of the composite assignment statement is:

BEGIN
statement;
statement;

statement
END.

A composite statement is a sequence of statements
(which can include embedded composite statements)
that are to be executed in the order specified. A
composite statement is delimited by BEGIN and END.

A composite statement is interpreted syntactically
as a single statement. It is used to delimit the
entire assignment section. It is also useful for

specifying several statements that are to be acted
upon as a single statement.

The example in figure 4-A gives alternative ways of
packing an array.

METHOD 1

VAR /1;

ma }1 := 0 TO 49 no

BEGIN

/VFD(GLOBL$+/1,15,?) := $40;
/VFD(GLOBL$+/1,7,7) := /1

END;

METHOD 2

VAR /I; /J; /K;

ARRAY GLOBLS C0..99] OF CHAR;

s

/K := $49;

FOR /I := O to 49 D0

BEGIN
/J := 2*/I;
GLOBLS EN] := /K;
GLOBLS E/J+1J := /I

END;

This example packs an array of 50 NPU (16-bit)
words starting at location GLOBLS. Value $40
is placed in the Lpper half word, and the word
count (0 through 49) in the Lower half word.

Figure &—4. Methods of Packing an NPU Array

60471200 G

Empty Assignment Statement

The empty assignment statement is analogous to the
empty PASCAL statement. It contains no informa-
tion; it can be used anywhere that a statement is
appropriate. The empty statement exists so that a
syntax error is not generated if the user inad-
vertently enters a semicolon. This most frequently
occurs after the statement that preceded the END
statement in a composite statement.

COMMENTS

Coments can be introduced in any position within a
statement that does not violate a keyword or a
symbol. Comments are delimited at the beginning by
an ASCII underscore (this appears as a broken arrow
in display code) and at the end by an ASCII ques-
tion mark (this appears as a down-arrow in display
code). Any character can be used within a comment
except the delimiters.

REQUESTING A TRACE OPERATION

The pseudovariable /TRACE is used in MPEDIT to
request a trace listing. The trace listing pre-
sents the following information:

The address or field that is initialized

The value to be inserted into the field

The previous contents of the full I6-bit word
holding the field (the field can be all or only
a part of that word)

The current contents of the full 6-bit word
after the initializing value is inserted

The line number of the MPEDIT program that
caused initialization of the field

The format of the pseudovariable requesting a trace
listing is:

/TRACE:=x;

If the value for /TRACE is 2 or greater, the listing
is produced. If /TRACE is assigned a value of O or
1, the trace report for that /TRACE entry is not
produced. The default value for /TRACE is 2. The
pseudovariable can appear anywhere in the assignment
section; however, only those assignment statements
that appear after the trace request will be in~
cluded in the listing. For this reason it is
customary to define the pseudovariables at the
beginning of the assignment section.

A partial trace listing is shown in figure 4-5. l

REQUESTING THE SYMTAB LISTING

The pseudovariable /ESLS is used in MPEDIT to

request a listing of the symbol table (SYMTAB).
This report includes the local symbols. The report
is generated at the end of an MPEDIT run. The
format of the request is:

/ESL$:=x;

If the value of x is 2 or greater, the SYMTAB

listing is produced; if the value is 0 or 1, the

listing is suppressed. The default value for /ESL$
is O.

The request can appear anywhere in the assignment
section of the program. A sample partial SYMTAB

listing is shown. in figure 4-6. The listing was I
requested by the pseudovariable declaration:

/$ESL:=2;

CYHER NINT CROSS SYSTEM - LINK EDITOR -

TRACE tIS¥

#5 VFD(S0000Za $7» $71 8- 00003 0000 w 0000 11$ VFD($000Z0p S81 $0? ‘I 0000! i000 9 1000
Q5 VFDI$000O3o SF. SF! 1- 1A81I 0000 0 1A81 115 VFD(S00020a S7» 37] II 0040} 1000 n 10kD
53 vrotscoooh. SF; 33) II 0000; 0000 w 0000 117 VFD(ica021n SF: if) In 4963; 0000 a 6963
5§ VFD($0000ka SB: 82) II 000%! 0000 w 0800 122 VFD($C002hp SF: 33) II 00021 0000 I 2000
55 VFD($00005p 689 S0) 3- 00001 0800 O 0000 126 VFD(iC0028n 3F; S3) 1- 00013 0000 0 1000
56 VFDt$C000bo $7: $7) II 0001! 0000 0 0001 12? VFD(S00028o SB; $2) 8- 00003 1000 0 1000
58 VFO($CD00?o ‘F. 1F! II ?FFF8 0000 » 7FFF 128 VFD($C0028o $89 $0! II 0000; 1000 0 1000
63 VFD($00008o SF; 53) II 00063 0000 O 6000 129 VFD($COCZ39 $79 37! II 00#E§ 1000 0 104E
67 VFOiSO000C: SF: 33) II 00013 0000 n 1000 131 VFD($00029o $Fo SF) II 3135) 0000 0 3135
60 VFO(10000Co SB; 32) II 0000) 1000 0 1000 133 VFDI$O002Ao 5?; $F) 1- §C4D1 0000 h GCID
69 VFDI$0000Cn 389 50) II 000C) 1000 i 1000 135 VF0lSOO0ZBu 3F. 37) II 00205 0000 n 2000
70 VFD(S0000Cn $7; $7) :I ook■j 1000 0 1066 1#0 VFD($CO0ZCu 5F; S3) II 0005! 0000 w 5030
T2 VFD($00000r 5F: $F) II 42533 0000 0 #253 161 VFO($0002Cp $5; $2) II C000: 5000 0 5000
17 VFOI$00010a 3F: 53) In 0002) 0000 0 2000 142 VFD(SC002Cn $8; $0) II C000) 5000 A 5000
8! VFD(%00014o SF: 83! 1- 00003 0000 0 0000 153 ¥FD($0002Co ST; S?) 9- 00003 5000 o 5030
82 VFO(S00016p $8: 32! XI 0001) 0000 I 0200 lb■ VFO($000Z0: SF; CF) to case; 0000 o 0680
03 VFO¢S0001#p $8: $0) 1- 0000; 0200 9 0200 106 vFD(Sc002€a $7: $7! !I 00003 0000 I 0090
B0 VFO($000l4p $7; $79 3- 0000! 0200 h 0200 147 VFDI10002Fr $Fn IF) II B306] 0000 0 8803
95 VFD($00015p $Fo KF) II 5200] 0000 n 5200 152 VFD($GOC30p $F. $3) XI 0006: 0000 a 4000
87 VFDISO0D16n $7. $7) 1- 0000] 0000 0 0000 156 VFD($00036n ‘F. 33) II OOCF; 0000 w F003
06 VFD($00017p 5F; SF) In 5300; 0000 40 5300 103 VFD($(.003Fo ‘F1 13) II 00011 0500 I 100'.)
93 VFD($00O18n $Fo 53) II 0000] 0000 0 0000 164 VFOIIC5038: $3: V?) In 6000; 1000 0 10J0
95 vpp(sooo13, 35, 32) 1. 00023 0000 0 0900 165 vFn(sooo3a. 58. so) 1- 00003 loco » 1000
95 VFD!500018o S8» S0} :8 00003 OIOD 0 0900 166 VFOC$00038o $7: $7) 1- 0053: 1000 O 1053
96 VFO(S¢00l8v $79 S7) 1- 0000! “#00 0 0400 168 VFO(!00039r ‘F: SF} II ‘ISO! 0090 0 ‘IIU
97 vFD(SE0019g $Fo SF) 1- 53011 0000 0 5301 173 VFO(S0003Co SF: $3) II 0004! 0000 a 4000
99 VFD($CO01Ar S7; 37) II 00003 0000 0 0030 177 VFD(S00040u SF; 83) II 00oF: 0000 0 F000

[00 vFo(gooo1a, gr, spy In 5321) 0000 0 5321 186 VFD(8000hDo SF: SF) II 00003 1C01 n 0000
105 VFDISCO01Cp SF: $3) II OOOFI 0000 0 F000 157 VFDIS0006En SF: SF) II 00003 0800 0 0000
112 VFD(i0O020c IF: $3) II 0001] 0000 I 1000 183 VFDI$0006Fo !Fp $F) II 00001 IUFD 0 0000
113 VFD($€0020n $8: 52) II 00001 1000 a 1000

Figure 4-5. Partiat MPEDIT Trace Listing I

60471200 G 4-9

CYBER HINI cRoss SYSTEM - LINK EDITOR -

ENTRY SYMBOL LIST — SORTED av ENTRY NAME

*ENTRY**R/A**ADDRESS/VALUE*■BIT S/L* :ENTRv~~R/At~A00Ress/vALue~as1T S/L* ~aNrRv-«R/A~-A00REss/VALUE--arr s/La

AAcAPL R 493: A0sr2 A 0002 AIDLET A 0003
AAc0A0 A 0000 AeAaLs R 474A AIDLE A 0001
AAc0Pr A 0000 AEAPL R 11709:3709 AINPLB A 0002
AAcoRR R 48ac AeAscI R 46A7 AINPSB A 0000
AAEAPL R 48:: AEATTN R 4769 AISPY1 R 4405
AAEBCD R 48:c AEATT1 R 4775 AISPT6 R 452A
AANREA A 0007 AEAUT1 R 4648 A1sR4c R 4512
AAouTP A 0003 AEAUT2 R 464E A1sR4E R 44:A
AAREAD A 0004 AEAUT3 R 4654 ALARR1 A 0001
AASBAP R 4A3c AEBLS R 4504 ALARn2 A 0002
AASTAP R 49:c AECHR1 R 4660 ALARH3 A 0003
AaAPLA R 498c AECINI R 460A ALcARL R 4c7c
AcAPL R 116ED:36ED AECIN2 R 460c ALcoRA R 4Aac
AcART0 A 0078 AECIN3 R 46E? ALEAPL R 4eac
AcAuTo A 0001 AECIN4 R 46E9 ALEBCD R 4a3c
AccAPL A 0004 AECKHD R 45A8 AL: L 0002
ACCAPL L 0004 Aeco01 R 46c0 ANIL L 0000
AccAsE R 116e7:36a7 AECODZ R 46A0 ASASCI A 0022
AccoRR A 0003 AECSE R 11607:3607 ASAUTO A 0018
AccoRR L 0003 AcesLL R 475: ASCE26 R 1539c:339c
ACDELH A 0002 AECSL1 R 477A Asce29 R 1535c:335c
ACEAPL L 0002 AECSLZ R 477c ASCINT R 176c
ACEAPL A 0002 AEEIN1 R 46:5 As0Isc A 0003
ACEBCD A 0001 AEEIN2 R 46:7 AssLL A 0004
ACEBCD L 0001 AEEIN3 R 4702 AssoL A 0001
ACELL A 0000 AEEIN4 R 4704 ASXPT A 0002
ACEPL A 0001 AEELL R 45c5 Asxsol A 0005
ACKHSG R BSBE AEELT1 R 45c: ASYNCE R 153A
ACKPTR R 1068 AEELT3 R 4550 As2741 A 0020
ACLIH2 A 0000 AEEPL R 45:1 ATAPLA R 497c
AcL1n1 A 0A00 AEEPT1 R 45:8 ATELL A 0000 ::7
ACPBLI A 0001 AEESL1 R 4780 ATEPL A 0000 7:7
ACPBOB A 0002 AEESL2 R 4782 ATPDIZ R 1131a:331e
AcPcLR A 000c AEINPT R 4583 ATPDI5 R 1133::333:
ACPEVE A 0000 AEIN1 R 458c ATPDI6 R 11363:3363
ACPICS A 0050 AEMBT R 455: ATPDIB R 1138?:33B7
ACPIOH A 0060 AESEDI R 473c ATPPR1 R 11203:3205
ACPLR1 R 1c00 AESLL R 4570 AIRPR4 R 11z:2:32:2
ACPOBL A 0058 AEs110 R 4653 AucAPL R 4c3c
ACPOHA A 006c AEs150 R 4668 AucoRA R 4A7c
ACPONS A 0048 AEs151 R 4662 AUEAPL R 4870
Ac:RnA A 0010 AEs300 R 4674 AUEBCD R 4A:c
ACRITT A 000A AES301 R 467A AvAsce R 11729:3729
AcRL: L 0003 AEXBLS R 4635 AvAscR R 1:50
AcR L 0001 AEx0Ln R 463A AVB7TD R 1:74
ADDRES R 0150 AEx0rA R 462A AVCNTR R 1530
A00RLc R 015: AEXPTO R 462: AvcoRE R 1173A:373A
A00Rsu R 0160 AEXSOI R 4604 AvcoRR R 155:
ADEADT A 0014 AE4x0L R 47A7 AvcRL: R 1:52
ADST1 A 0001 Ae4x1u R 4792 AVCRHS R 1550

Figure 4-6. PartiaL MPEDIT SYMTAB Listing (Sorted by Entry Name)

REQUESTING THE INITIALIZED LOAD

MODULE FILE LISTING

The pseudovariable /DMPS is used in MPEDIT to

request a listing of the initialized memory image
load module file. Format of the request is:

/DMP$:=x;

If the value of x is 2 or greater, the listing is

produced; if the value is 0 or 1, the listing is

suppressed. Default value for /DMP$ is 2. The

request can appear anywhere in the assignment part
of the program.

The memory image load module file values are listed

in hexadecimal; the listing is generated at the end

of an MPEDIT run.

REQUESTING THE OPTIONAL FORM OF

THE INITIALIZED LOAD MODULE FILE

The pseudoconstant /NAMS is used in MPEDIT to

request the optional form of the initialized memory

image load file. That load file is especially
formatted for downline-loading in the NPU. The

format of the file is shown in appendix E.

Any three-character identifier can be assigned to
the /NAM$ definition. The identifier specified is

placed in the heading of the load file. An example
of the /NAMS definition is:

/NAM$:=OE2

The definition can appear anywhere in the CONST

definition part of the program.

60471200 G

NOTE

This alternate form is not the final form
of the load file that is downline-loaded
into an NPU to provide the on—line CCP or
CCI. Instead, as shown in figure 1-1 in
section 1, the CC? or CCI installation pro~
cedures use a load file generating utility
to process this optional form of the memory
image load module file along with other load
files. After processing by the host's load
file generating utility, the reformatted
and combined load file can be downline~
loaded into an NPU.

MPEDIT DIAGNOSTICS AND

ERROR MESSAGES

Some types of statement faults cause errors from
the programer's standpoint but do not generate an
error message. Others can generate one or more
error messages. Statements with the following
types of errors will fail:

An undefined identifier

An attempt to assign a nonexistent memory
location

A bad field specification (overflows word or
has an illegal format)

An out-of-range subscript

60471200 G

A failed statement behaves functionally like a null
statement. The following examples show failed
statements.

Example 1:

U:=0

where U is an undefined identifier. This acts as
an empty statement.

Example 2:

VAR/I;

FOR./I:=$l00 TO $202 no
(/l):=0

where only addresses $100 through $1FF are defined
in the load file. In this case, 259 assignment
statements are executed. The first 256 are valid;
the last three fail.

If a failed statement or other error causes an
error message, the error message is delivered to
the output file. The messages are preceded by an
up-arrow. If the error is a recognized syntax
error, the up-arrow is followed by the character
that was being processed when the error occurred.

Table B-3 in appendix B lists the MPEDIT error
messages, the significance of the message, and the
action that the operator or programmer should take
in response to the message.

CHARACTER SET

The CYBER host uses one of two character sets to the CYBER Cross Build Utilities:

63~character ASCII

64~character ASCII

These code sets are shown in table A-1.

60471200 F

.>_co

S9:

5.

uwwmwoom

Em

mwzocsa

Ammo.

__ow<

ucm

ENE

.t_.w__oI

u.m.:m._m

o._HT.+

gwmmv

x:m_n
m

u_m_>
.x.

o_oomm\:uw<

Eo...

m:o_.m_m:E.

can

5:8

.0:

on

mmuoo

E8

USES

can

u_.EEm
ON.

ask

.3055

mum.

:28

mg.
m_

me

once

>m_nm_u

«Bum

Econ

E8

5

u_._%a

umtgoommm

0:

8;

oo

wvoo

>m_%_u

Jew

.3um:2_u:mm

ofa■m
m

m:_...:

m:o_.m__m.m:_

:_.f.

.Nm®_.

com

_m:._3xw

9

cmtm>:oo
m_

x._mE

w:=:.o:c:m

.u:o_oo

95.

cm...

852

v_._mE

w:__¢oxu:w

mm

u3wE._3:_

o._m

E03

tauoo
a

.0

cum

9:

um

$5

93

o.oE

.0

w>_m>>.:

mNo

ow...

NN

N.m.N.

NN

.:o_8_Eu..
.

.co_ou_Eu3.

moo

m

mo

m

ow

m

m

cm.

N.m.
..

wN

o.m.N.

mN

:3_.E3._2(

F

woo

..

3

..

Nm

v

e

«N.

N.m.o

....N

m.m.N.

mN

,

N

mmo

N

8

m

mm

m

m

8.

K.

m.

m.m

«N

@

W

N8

N

No

N

mm

N

N

oNo

o.m.o

Nm

N.w...

mN

A

A

.8

.

.o

.

em

.

.

...o.N.

...N.m.N.

coo

o

N.

o

mm

o

o

.No

5

Vm.N.

NN

5

¢N.

NN

V

V

N...

m.o

.m

m.o

Nm

N

N

NE

N.m.o

mm

mm...

.N

N

.

.m.

we

on

we

.m

>

>

Nvo

Wm

mm

mm...

oN

tzaoioae
.

.

om.

N.o

NN

N.o

on

x

x

mvo

N.

Nm

N.w.o

Nm

a

<

NN.

w.o

mN

m.o

NN

3

2,

2.9..

...N.m...

mN.

m.o

mN

m.o

MN

>

>

So

5

N.m.N.

Nm

6

9..

mo

_

>

mN.

vo

«N

..,o

mN

3

3

Nm.

m.m.o

mm

m.m.o

mm

.2__:%§.
»

1

«N.

m.o

NN

N...

«N

N

.

N3

N...

E

X.

3

.233
__

an

NN.

N.o

NN

N...

.N

m

m

mvo

v.m.o

o.

w.m

23

x

x

NN.

mk
..

.m

m.
..

NN

m

m

mm.

Nd...

Nm

N.m.o

Nw

_

_

.N.

m...

cm

w‘
..

.N

o

0

mm.

N.m.N.

N.

N.m

6

_

_

oN.

N...

N..

N...

oN

N

N

mvo

mm

mm

o.w.o

8

#

m

N.
.

m.
..

me

me
..

N.

o

o

wmo

m.w.N.

«N

m.m.N.

Nm

:.o_;&
.

:.o_:.&.

w..

m...

mu

m...

o.

2

2

«mo

m.m.o

mm

m.m.o

om

:..EEo3
.

.~EE8..

m...

.2

..

3

.2

..

m.

.2

>

ovo

655

oc

oN

5:3

9.

mm

..E.._n

xE.._n

3.

m...

9.

M...

.1

I.

4

mNo

o.m

m.

N...

an

n

n

m..

N...

Nv

N...

m.

V.

V.

35

Wm...

mm

Wm...

mm

a

e

N..

....

...

...

N.

N

N

..n_o

Wm...

«N

v.w.N.

Nm

.

.

...

mN.

.N

m.N.

..

_

_

omo

m.m.N.

Sn

q.m.o

.m

.

V

o..

w.N.

oN

w.N.

o.

x

:

Nmo

..o

.N

..o

om

\

\

No.

N.N.

No

NN.

No

o

o

Nmo

...m...

cm

«,m...

N..

.

.

mo.

o.N.

mo

©N.

mo

H.

N

mmo

..

on

..

wv

:

-

mo.

mN.

mo

m.N.

mo

m

m

mmo

m.m.N.

om

N.

me

+

+

no.

...N.

E

«N.

co

0

o

.8

m

..

m

3.

m

m

mo.

NN.

8

ON.

no

u

u

oNo

w

o.

w

9.

m

w

No.

N.N.

Nm

N.N.

No

m

m

Noo

N

No

N

Nv

N

N

.o.

..N.

B

..N.

.o

<

<

moo

m

we

o

S

w

m

NNo

N.m

8

N...

too

H

.

Sou

BN9

.68

68.

once

33am

2.320

muoo

ENE

.68

8N9

88

53%

2.380

__om<

ES...

com

555

3.9.0

uineo

oou

:um<

5:5

com

6:5

3_%._o

3.380

oou

.5-N

__ow<

.9:...:.m

.:_.;._o...

.56

:84

.5-N

__om<

_8a:.m

.:_a_.oI

.5-..

:84

mnoo

HHom<

mm.$<m<..u

3:8

.~|<

m..m<...

60471200 G

DIAGNOSTIC MESSAGES

Each of the utilities described in

generates a set of error and (in some cases) infor-
mational messages. Some of these messages are sent
to the output file (error file),
sent to a special fatal error file.

The error messages in this appendix are arranged by

this manual Table

B-1
and others are

8-2

B-3

utility type. The tables are:

TABLE B-1. MTLIB ERROR MESSAGES

Utility

Library Maintenance

Link

Edit

Message Text Significance User Action

AN ATTEMPT WAS MADE TO WRITE
TOO MANY PROGRAMS TO THE NEW
LIBRARY FILE

DEL DIRECTIVE DOES NOT HAVE A
MATCH ON TH OLD LIBRARY FILE

I/0 ERROR — READING
INTERMEDIATE LIBRARY FILE

I/0 ERROR - READING
LGO FILE

I/0 ERROR - READING OLD
LIBRARY FILE

I/O ERROR - WRITING
INTERMEDIATE LIBRARY FILE

I/O ERROR - WRITING NEW
LIBRARY FILE

NAM FIELD ON DIRECTIVE CARD
IS NOT RECOGNIZABLE

NEW LIBRARY ENTRY POINT
TABLE OVERFLOW

NO END—OF-TABLE WORD FOR
ENTRY POINT TABLE RECORD
ON LIBRARY FILE

60471200 G

The library file is limited to 425

programs.

The specified program (or the first

program of a group) does not have a
match on the old library file.

The intermediate file could not be
read.

The LGO file is not in the proper
format, or has been damaged.

The old library file is not in the

proper format, or has been damaged.
The old library cannot be used.

The intermediate library file could
not be written. The space for

temporary files was exceeded, or
there was an error in writing the
file.

The new library file could not be
written. The file may be write-

protected, or it could exceed the
user's allocated file size, or
there may be an error in writing
the file.

Program names consist of one to six
letters, numbers, or $.

The total number of entry points
plus programs (times 2) cannot
exceed 4000.

The old library file is not in the
proper format or has been damaged.
The old library cannot be used.

Delete nonused programs.

Check the object code module names
against the directive parameter
names.

Try again. If error persists, call
a system analyst.

Generate a new LGO file.

Try again. If error persists, call
a system analyst.

Return unused local files and try
again; if second attempt fails,
allocate more space for temporary
files.

Try again after checking protection
of file. If error persists, call a

system analyst.

Check the directive name. Correct
as appropriate.

Rewrite the programs to have fewer

entry points or larger programs.

Try again. If error persists, call
a system analyst.

TABLE B-1. MTLIB ERROR MESSAGES (Contd)

Message Text Significance User Action

NO XFR BLOCK FOR PROGRAM ON
RANDOM LGO FILE

NON—ASCII (NOT $20—$5F)
CHARACTER IN PROGRAM NAME OR
ENTRY POINT on THE LGO FILE

PUT OR SUP DIRECTIVE DOES NOT
HAVE A MATCH ON LGO FILE

PUT OR SUP DIRECTIVE SECOND
NAM DOES NOT HAVE A MATCH
ON LGO FILE

PUT OR SUP SECOND NAME DOES
NOT HAVE A MATCH ON OLD
LIBRARY FILE

TOO MANY PROGRAMS ON LGO
FILE

UNRECOGNIZABLE DIRECTIVE

The LGO file is not in the proper
format.

The LGO file is not in the proper
format, or has been damaged.

The specified program (or programs)
does not have a match on the LGO
file.

The name of the second program
(mod2) in a modl—mod2 parameter
does not exist on the LGO file or
it precedes the first program name

(modl).

The name of the second program
(mod2) in a mod1—mod2 parameter
does not exist on the old library
file or it precedes the first

program name (modl).

The LGO file is limited to 425
programs.

The directive name is not *ALL,
*PUT, *SUP, *DEL, or *LST.

Try again. If error persists, call
a system analyst.

Correct any format error; then try
again.

Check the object code module names
against the directive parameter
names.

Check the order of modules in the
LGO file. Use a different range of
modules, or reverse the names in the
parameter.

Check the order of modules in the

library. Use a different range of
modules, or reverse the names in the

parameter.

Delete nonused programs.

Check the directives file, and enter
a proper directive name.

TABLE B-2. MPLINK ERROR MESSAGES

Message Significance User Action

ADDRESS TABLE OVERFLOW

ASSIGNMENT OPERATOR EXPECTED

BAD LGO OR NEWLIB FILE

COMMA EXPECTED

The combined number of addresses

specified in all the directives
exceeds the maximum number per-
mitted.

The expression evaluator expected
the := operator in the *VE direc-
tive but did not find one.

Either the input object code or the
NEWLIB file is improperly format-
ted. An improper file may have
been attached.

The expression evaluator en-
countered a directive with fewer
required parameters than expected.

The operator should revise the

directives, perhaps using direc-
tives with a range of items in the

parameters such as *L,modl-mod2,
addr, rather than individual linking
or reverse linking directives. This
can require more than one library
building operation, or a rearrange-
ment of modules on the input object
code file.

The user should correct the direc-
tive.

If this is not the case, the user

may need to generate another input
object code or NEWLIB file.

The user should check the expression
to assure that all the required
parameters are present, and are

separated from the previous param-
eter or directive name by a comma.

60471200 G

TABLE B-2. MPLINK ERROR MSSAGES (Contd)

Message Significance User Action

COMON AREA EXCEEDED

CURRENT LOWER LIMIT EXCEEDED

CURRENT UPPER LIMIT EXCEEDED

DATA AREA EXCEEDED

DIRECTIVE TABLE OVERFLOW

DUPLICATE ENTRY POINT

DUPLICATE LOADER MODULE

ENTRY POINT TABLE OVERFLOW

EXPRESSION OPERAND STACK
OVERFLOW

EXPRESSION TABLE OVERFLOW

EXPRESSION VAL EXCEEDS $3FFF

EXT IN EXPR NOT ABSOLUTIZED

IDENTIFIER EXPECTED

60471200 G

MPLINK found a blank common speci-
fication in an object code module
that exceeded the area allocated

by the *COM directive.

During linking caused by a *RL

directive, MPLINK attempted to
use a memory location below the
word specified by the *LL direc-
tive.

During normal loading caused
by a *L directive, MLINK
attempted to use a memory
location above that specified
by the *UL directive.

MTLINK found a named, common speci-
fication in an object code module
that exceeded the area allocated
by the *DAT directive.

MPLINK encountered too many direc-
tives in the input directives file.

The entry point or module name (or
at least the first six characters
of it) have been used in a previous
entry point or module name.

MLINK found at least two modules
with the name LOADER.

The combined number of entry point
names, module names, and synonyms
exceeded the entry—point table
capacity.

The expression evaluator found too
many operands during its process-
ing.

The number of expressions appearing
in the *VE directives exceeds the
allowable maximum.

The value encountered in a *VE
directive is too large (value
range is 0 to $3FFF).

An entry—point name (naml or nam2)
appearing in a *VE directive has
not previously been made absolute.

A valid name is expected in a

*ENT, *OVLY, or *SYN expression,
and it was not supplied.

The user should increase the size
of the blank common area assigned
by the *COM directive.

The user should change the *LL

boundary, or insert other direc-
tives to relocate the module (or
group of modules) that crossed the

boundary.

The user should change the *UL

boundary, or insert other directives
to relocate the module (or group of
modules) that crossed the boundary.

The user should increase the size
of the common area assigned by the
*DAT directive, or decrease the
number of applications used.

The user should consolidate direc-
tives (for instance, by using the
directives with a range—type
parameter such as modl-mod2).

The user should rename one of the
two expressions to obtain a unique,
six—character name.

The user should eliminate duplicate
LOADER modules; he should retain

only that module to be used at the
head of the load file.

The user could rewrite his programs
to consolidate modules, or to use
fewer *SYN directives.

The user should restate the
expression with additional, nested

parenthesis groupings.

The user should use fewer *VE direc-

tives, and revise the input modules

accordingly.

The user should change the direc-
tive.

The user should alter the *VE

expression, or the order in which
directives are added, so that the
name is made absolute by the time
MPLINK encounters the *VE directive.

The user should insert a valid
name (a letter followed by a string
of letters and/or digits) at the

appropriate place in the directive.

TABLE B-Z. MPLINK ERROR MESSAGES (Contd)

Message Significance User Action

ILLEGAL DIRECTIVE

ILLEGAL EOF ENCOUNTERED

ILLEGAL SYMBOL

INCORRECT GROUP SPECIFICATION

INVALID ADDRESS (COMONENT)

LOGICAL ADDRESS EXCEEDS $FFFF

MAXIMUM GROUP SIZE EXCEEDED

MEMORY OVERFLOW

MISSING LEFT OR RIGHT PAREN

MOD ON LINK DIR NOT FOUND

MODULE TOO LARGE

OPERAND EIQECTED

OVERLAX AREA LEN LESS THAN 0

B-4

The keyword that names the direc-
tive is incorrect.

A temporary MTLINK work file
encountered an unexpected end—of—
file. This is an internal error.

The expression evaluator found a
symbol it could not interpret.

The module names specified by the
modl-mod2 parameter in a *L or *RL
expression are not correct; that
is, modl, mod2, or both are incor-
rectly specified.

A directive has an invalid addr, or
some component of an addr is in
error.

An object code module is longer in
64K words and cannot be fitted in
the NPU.

In a range—type parameter (modi-
mod2), the number of modules, or
the number of words in all of the
modules, exceeds MTLINK’s ability
to process the group.

MPLINK assigned memory locations
that do not exist in the NPU.

The expression evaluator found one
of two errors: a left parenthesis
not followed by a right parenthesis,
or a right parenthesis that was not

preceded by a left parenthesis.

The module specified by the mod

parameter in a *L or *RL directive
could not be found on the input
object code or library file.

The specified module exceeds the
size of MTLINK’s external buffer.

The expression evaluator expected
a numeric value operand.

In an OVLY directive, the ending
address (addre) parameter is
smaller than the beginning address
(addrb) parameter.

The user should reenter the direc-
tive with the correct keyword.

Rerun MLINK.

The user should check the directive
for symbols that are not in the
63 or 64-character display code set
(as appropriate).

The user should reenter the direc-
tive with the correct module names
as they appear on the input object
code or NEWLIB files. Alterna-
tively, an incorrect module name
on those files should be changed.

The user should correct the address
and reenter the directive.

The module should be divided into
smaller modules, or rewritten to
reduce the number of words.

The user should split the range
parameter between two or more

directives, each with a smaller
modl—mod2 size.

The user should check the memory
size assigned by the *COR directive.
If it is correct, the user can try
reassigning the link start loca-
tions. It is possible that there
is not enough memory for all the

planned applications. The user
could remove some applications;
alternatively, additional memory
should be purchased.

In either case, the user should mod-

ify the expression to include the
missing parenthesis, or to delete
the unwanted parenthesis.

The user should check the module
name and correctly specify it, or
add the missing module to the appro-
priate file.

The user should recode the module
to compress it, or divide the module
into two or more modules.

The user should revise the state-
ment.

The user should check the limits of
the desired overlay size, and enter
the proper limits.

60471200 G

TABLE B-Z. MPLINK ERROR MESSAGES (Contd)

Message Significance User Action

OVERLAY AREA TABLE OVERFLOW

PERIOD EXPECTED

PLUS, MINUS, OR PERIOD
EXPECTED

SYNONYM TABLE OVERFLOW

TOO MANY LOCAL VARIABLES

UNDEFINED OR ILLEGAL IDENT

UNSATISFIED EXT TABLE
OVERFLOW

*DAT AND GLOBL$ CONFLICT

*RL FORCES MOD BELOW ADDR 0

Only ten overlay areas can be
declared with *OVLY directives.

The expression evaluator expected
the directive to be terminated with
a period but found another
* instead.

In a variable directive (*VE), the
expression evaluator expected a

plus, a minus, or a period in the

exp parameter. None of these
was found.

Too many *SYN directives were en-
tered.

Too many variables were declared by
*VE directives.

The name of an overlay is being
illegally defined, or the refer-
enced name of an entry point in a
*SYN or *ENT directive is

missing.

MLINK has encountered too many
unsatisfied external references, or
forward external references.

MPLINK encountered both a *DAT
directive and an object code module
called GLOBL$. The assigned GLOBL$
area exceeds the area assigned by
the *DAT directive.

The *RL directive causes MPLINK
to locate some part of a module be-
low the start of main memory.

The user should rearrange his appli-
cations so that no more than ten of
them use overlays.

User should check to assure the
directive is properly terminated
with a period.

The user should enter the correct
expression in the directive.

The user should revise his programs
so he will have to declare fewer of
these name-equating operations.

The user should recode to use fewer
local variables.

The user should use a correct over-

lay identifier (range AA through
ZZ), or should enter the correct

entry-point name on the *SYN or *ENT
directive.

The user should rearrange module

sequencing to minimize forward

references, or he should delete
some of the unsatisfied external
references.

The user can remove the *DAT direc-
tive from the directives file, or
he can increase the area assigned
by the directive.

The user should change the *RL
directive.

TABLE B-3. MTEDIT ERROR MESSAGES

Message Significance Programmer Action

ARRAY TABLE OVERFLOW

BEGIN EXPECTED

COMA EXPECTED

60471200 G

The number of arrays declared in
the ARRAY section exceeds the

capacity of MTEDIT.

MTEDIT syntax requires that a

composite statement begin with the

keyword BEGIN.

MPEDIT syntax requires that param-
eters in /VFD expressions and array
expressions be separated by commas.

The programmer should revise his

program to include fewer arrays.

The programmer should revise the

composite statement.

The programmer should revise the
statement.

TABLE B-3. MEDIT ERROR MESSAGES (Contd)

Message Significance Programmer Action

DIMENSION TABLE OVERFLOW

DO EXPECTED

END EXPECTED

EXPRESSION OPERAND STACK
OVERFLOW

ILLEGAL ARITHMETIC OPERATOR

ILLEGAL DIMENSION COUNT

ILLEGAL END

ILLEGAL KEYWORD

ILLEGAL SYMBOL IN EXPRESSION

MISSING RIGHT PARENTHESIS

NO ASSOCIATED LEFT
PARENTHESIS

NOT A LOCAL VARIABLE

OF EXPECTED

B-6

The total number of dimensions de-
clared for all arrays within the
ARRAY section exceeds the capacity
of MTEDIT.

MPEDIT syntax requires that a FOR —

TO statement be followed with the

keyword DO.

MPEDIT syntax requires that a com-

posite statement terminate with
the END keyword.

The expression evaluator encoun-
tered too many operands during
evaluation.

The expression evaluator expected
one of the five legal arithmetic

operators: +, —, *, DIV, or MOD.

The number of index values speci-
fied for an array in the assignment
section does not agree with the
number of values declared in the

array declaration section.

The keyword END is not permitted
where it was found.

The only keywords recognized by
MPEDIT are:

ARRAY DO OF
BEGIN END OVERLAY
CHAR FOR TO
CONST MOD VAR
DIV

The keyword found in the program is
not one of these.

The expression evaluator encoun-
tered a symbol that was not in the
CDC 63 or CDC 64 display code set

(as appropriate).

The expression evaluator found a
left parenthesis that was not fol-
lowed by a right parenthesis.

The expression evaluator found a

right parenthesis that was not pre-
ceded by a left parenthesis.

The indicated local identifier was

not previously specified in the
VAR section.

MTEDIT syntax requires that an

array statement have the form:
ARRAY size OF X. The array state-
ment lacks OF following the array
size specification.

The programmer should revise his

programs to include fewer arrays,
or reduce the dimensions in the

existing arrays.

The programmer should revise the
statement.

The programmer should revise the

composite statement.

The programmer can usually avoid
this problem by revising the state-
ment with additional, nested

parenthetical groupings.

The programmer should revise the
statement.

The programer should revise the

program to make the index values

agree.

The programmer should eliminate END
from this position in the program.

The programmer should change the

program to use the desired legal
keyword.

The programmer should remove the un-
defined symbol, and substitute a

symbol defined in the proper
character set.

The programmer should modify the

expression to include a right
parenthesis, or to delete the left

parenthesis.

The programmer should modify the

expression to include a left

parenthesis, or to delete the right
parenthesis.

The programmer should either

declare the variable in the VAR sec-

tion, or specify an already declared
variable.

The programmer should revise the

composite statement.

60471200 G

TABLE B-3. MPEDIT ERROR MESSAGES (Contd)

Message Significance Programmer Action

OPERAND EXPECTED

OUT OF RANGE

PERIOD EXPECTED

STUFF TABLE OVERFLOW

T0 EXPECTED

:= EXPECTED

**** our or RANGE

(EXPECTED

) EXPECTED

= EXPECTED

EXPECTED

] EXPECTED

; EXPECTED

xxxxxx MULTIPLE ENTRY
DEFINITION

The expression evaluator expected
a numeric value operand.

The array index is not within the
range declared for the array in the
ARRAY section.

The program ends with a period
after the final END statement.
None was found.

The number of editing values ex-
ceeds the internal capacity of
MTEDIT.

MPEDIT syntax requires that a FOR
statement be followed with the key-
word T0.

MPEDIT syntax requires that the
next element of the statement be
a defining operand.

This occurs only in a trace

listing. The previous statement
referenced an address that does not
exist in the load file.

MPEDIT syntax requires that the
next element of the statement be an

opening parenthesis.

MEDIT syntax requires that the
next element of the statement be a

closing parenthesis.

MPEDIT syntax requires that the
next element of the constant defi-
nition be an equals sign.

MEDIT syntax requires that an

array statement have the form:
ARRAY size OF x. The array
statement lacks the opening
square bracket around
the size parameter.

MTEDIT syntax requires that an

array statement have the form:
ARRAY size OF x. The array state-
ment lacks the closing square
bracket around the size parameter.

MEDIT syntax requires that this
statement or declaration be sepa-
rated from the previous statement
or declaration by a semicolon.

A local symbol, array name, or

overlay name has been defined more
than once. xxxxxx is the multiply
defined name.

The programmer should revise the
statement.

The programmer should either in-
crease the declared range, or revise
the erroneous statement.

The programmer should revise the

composite statement.

The programmer can present the

editing information in successive
runs, recalling MPEDIT for each
new section of the editing
operation.

The programmer should revise the

composite statement.

The programmer should revise the
statement.

The programmer should revise the
statement.

The programmer should revise the
statement.

The programmer should revise the
statement.

The programmer should revise the
statement.

The programmer should revise the
composite statement.

The programmer should revise the

composite statement.

The programmer should revise the
statement.

The programmer should redefine one
of the names, keeping in mind that

only the first six characters of
the name are unique as far as
MPEDIT is concerned.

60471200 G B~7

GLOSSARY

TERMS

Following are terms unique to the description of
the software presented in this manual.

Absolute Address —

An address that is permanently assigned to a
storage location.

Assignment Section ~

The part of the MEDIT program that contains
the statements that assign values to variables
or fields.

Blank Common —

A common area used by macro assembler programs.

Build —

The procedure of converting individual source
code modules into a linked set of object code
modules in the form of a load tape.

Directive —

A utility input statement specifying some util-
ity operation.

Dump Memory —

A hexadecimal listing, or memory dump, of the
memory image load module file produced by
MPLINK.

Dynamic Variable Area —
An area used by the PASCAL NEW procedure. See
the PASCAL Compiler reference manual.

Edit Utility —

The utility (MPEDIT) that allows the user to
initialize values in the memory image load file.
The initialized memory image load file produced
by the edit utility can be converted into an
NPU load file.

Entry Point -

A labeled statement in a module that other
modules can reference. In some cases, another
program can activate a module at the entry
point.

Error Messages —

Messages generated by a utility specifying
operations that the utility could not perform.
The failure could be due to a syntax error, an
overflow condition, or other fault. Error
messages are usually sent to the output file.
Error messages are of two types: fatal errors,
which halt the utility, and nonfatal errors,
which are noted but allow the utility to con-
tinue processing.

External Synonyms —

Statements equating module names and entry
points with local names.

60471200 G

Field -

A sequence of continuous bits consistently used
to record similar information. For CCP and
CCI, fields range from 1 to l6 bits in length
and cannot cross word boundaries.

Initialized Load File -

The load file that is generated by MEDIT. It
has the same format as the MPLINK load file;
however, selected fields and variables have
initial values.

Input Directives File -
A file containing the directives necessary to
execute the MPLINK, MPEDIT, or MTLIB utilities.

Installation Procedures -
The CCP or CCI procedures that generate a load
file, which can be immediately downloaded into
an NPU to form the on-line system of that NPU.

Keyword —

A reserved word used by a utility for a specific
operation.

LGO File —
The load—and—go file. The file with this local
name contains relocatable object code modules.

Library —

A group of object code modules, together with
an index for those modules. The old library
can be used as an input to the MPLINK, MPEDIT,
and MPLIB utilities. The MPLIB utility gener-
ates a new library.

Library File -

A file created by the MTLIB utility. The file
contains object code for all modules in the

library, plus an index to the modules.

Library Maintenance -

The function performed by the MLIB utility;
that is, generating a new library from a set of
object code modules or generating a new library
from the old library, together with selected
new object code modules.

Link Utility —

The utility (MLINK) that links object code
modules into a memory image load module. MPLINK
also produces a symbol table file. Both of
these files are used as input for the edit
utility.

Linking —

The process of locating (assigning space) for

object code modules on a memory image load
module file, and resolving external calls in
those modules with entry points in other load
file modules.

CI

Listing File —

A utility output file. In most cases, it conw
tains user—requested reports.

Load File -

The host file holding a set of linked and edited

object code modules which have been made abso-
lute. The file can be down1ine—loaded into a

specific NPU to form the on—line system for
that NPU. A different load file (variant) is
needed for each NPU to be loaded.

Memory Image Load Module File ~

A file produced by the MPLINK utility. The
load module file contains the code which has
been made absolute for all programs to be used
in the CCP or CCI build. MPLlNK’s version of
this file is not initialized; MEDIT initializes
the file. A host load file generator converts
the initialized memory image load module into a
load file for CCP or CCI.

Memory Map -

An MPLlNK report showing the main memory loca-
tion of every module in the build.

Module —

(1) An integral part of an application that has
a name and at least one entry point (a module
is sometimes called a routine or a program).
Any module can be selected to be used as part
of an NPU build. (2) See memory image load
module file.

MPEDIT -

The editing utility that assigns values to
variables in the memory image load module file

generated by MPLINK.

MPLINK *

The utility that assigns space to modules on a

memory image load module file and links the
modules together by equating external calls in
one module to the comparable entry point in
another module.

Name Call Statement-
The statement that is executed by the host's

operating system to pass control of the computer
to the program (or utility) associated with
that statement.

Object Code Input Files -

input files containing modules in object code
format. Such files are used in all the util—
ities.

Object File —

A utility input or output file containing object
code for modules.

Overlay —
A set of modules (application) that is not

normally resident in the NPU. when the overlay
is to be executed, it is loaded into a specific
overlay area. The modules which normally use
that area cannot be used until the overlay is

ejected.

Overlay Area —

The part of an NFU that can be used to execute

overlay programs.

Page Addressing —

The method of using an l8~bit address to locate
a module that is assigned to a pageable area
of memory. All modules assigned to the region
above 65K are accessed in page~addresslng
mode. Some of the area below 65K is also

page-addressed. in particular, in CCP and CCI,
an SK page starts at address 200016, All
modules paged above 65K are imaged at this page.

Page (logical) —

An 8l96—word section of CCP or CCI memory. All

memory is paged. Memory up to 65K is executable
at the address given; memory above 65K is imaged
at the page beginning at 200016.

Page (physical) -

A 2K (2048) word section of NPU memory.

Page Register ~

A register that indexes one of the NPU physical
pages.

Program —

A module or a group of modules with related
functions.

Report —

One of the reports associated with the link,
edit, or library maintenance utility programs.

Reverse Loaded —

A module that is located in main memory by
assigning the address given to the last word of
the module. Space is then reserved for all

other words in the module down to the first
word.

Stack Area -

A reserved area in an NPU memory for use by
PASCAL recursive/reentrant procedures.

Terminal Interface Program (TIP) —

An application that handles the interface be-

tween the NPU and a type of terminal, such as

teletypewriter terminals or Mode 4 terminals.

Tophat —

Refers to a module that is called by several
other modules. The code required to locate a

tophat module's entry point is minimized by

compiling a small auxiliary piece of code with
the module. This tophat code sets the page
registers when other modules call this module.

If a tophat module is located in a main memory,
this operation is not necessary, so the tophat
auxiliary code is discarded. Otherwise, if a

tophat module is paged, the tophat code is lo~
cated in main memory to set the page registers.

Variant —

The definition of a real set of hardware and

software for an NPU. The variant for an NPU

defines the memory size, the NPU type (local or

remote), the TlPs to be included in the build,
and the maximum number of lines that can be

configured. The variant also identifies the

NPU, the host coupler (if any), and any trunks
used by the NPU.

60471200 G

MNEMONICS

Following is a list of reserved words, symbols,
keywords, and directives unique to the description
of the software presented in this manual.

ABSOLMT Absolute memory image load file

ARRAY Array declaration command - MTEDIT direc-
tive

BEGIN Begin statement — MTEDIT directive

BIP Block interface package

CCI Communications Control INTERCOM

CCP Communications Control Program

CHAR Character mode, array declaration -

MEDIT directive

CONST Constant declaration - MEDIT directive

CSET CDC code set variable

D Input file parameter - MPLINK and MPEDIT
call statement

DIV Division operator - MTEDIT directive

D0 Part of MPEDIT loop directive (FOR x TO
y D0...)

END End statement of a composite statement —
MPEDIT directive

FOR Part of MPEDIT loop directive (FOR x TO
y DO...)

GLOBL$ CCP/CCI data base area

HIP Host interface package

INPUT Default input file

LGO Load—and—go file

LIP Link interface package

LOADER First record on a memory image load
module tape

MOD Module operator - MEDIT directive

MPEDIT Edit utility

MLIB Library maintenance utility

MPLINK Link utility

NEWLIB New library file - MPLIB call statement
parameter

OF Part of array declaration - MTEDIT direc-
tive

OUTPUT Default output file

OVERLAY Overlay identifier — MTEDIT directive

60471200 G

SVM

SYMTAB

TIP

TO

VAR

X.25

*ALL

*CB

*COM

*COR

*DAT

*DEL

*DMT

*DSTK

*DVAR

*END

*ENT

*1.

*LIB

*LL

*LST

*OVLY

*PUT

*RL

*SUP

*SYN

*SYSID

*UL

Service module

Symbol table file

Terminal interface package

Part of MPEDIT loop directive (FOR x TO
y DO...)

Variable declaration - MPEDIT directive

A TIP

Copy all LGO files to new library — MPLIB
directive

Upper boundary declaration — MPLINK
directive

Define blank common area - MPLINK direc-
tive

Define 255x memory size — MTLINK direc-
tive

Define labeled comon area - MPLINK
directive

Delete module — MPLIB directive

Define labeled common area — MPLINK
directive

Define stack area — MPLINK directive

Define dynamic variable area — MLINK
directive

End-of-directive—file directive — all
build utilities

Define entry point - MPLINK directive

Link modules — MPLINK directive

Define library file - MLINK directive

Lower boundary declaration — MPLINK
directive

List the library - MTLIB directive

Define overlay—area-directive — MWLINK
directive

Insert/replace module in library — MTLIB
directive

Reverse—linking - MLINK directive

Suppress copying programs from the LGO
to the library - MPLIB directive

Define external synonym - MPLINK direc-
tive

System identification — MTLINK directive

Upper limit - MLINK directive

*VE

/DMP$

/ENTRY

/ESL$

/LENGTH

/NAM$

/PGDISP

Directive that assigns a value to a local
variable — MPLINK directive

List the load tape - MPEDIT directive

Address entry function — MTEDIT directive

List SYMTAB - MEDIT directive

Field length function - MTEDIT directive

Generate the NPU load tape — MEDIT

directive

Page displacement function - MPLINK/
MEDIT directive

/PGNUM

/PGSET

/START

/TRACE

/VFD

Page resister number function - MPLINK/
MPEDIT directive

Page register set function — MLINK/
MPEDIT directive

Field state location function — MPEDIT
directive

Trace of edit operations - MEDIT direc-
tive

Variable field definition - MEDIT direc-
tive

60471200 G

MEMORY IMAGE LOAD MODULE FILE FORMAT

This appendix describes the format of the memory
image load module file. It is an output of either
MPLINK or MPEDIT. The only difference between the
two files is the initialization of certain values.
The format of the files is identical.

MPLINK or MPEDIT builds the load module file from
object code programs and directives. The object
code programs can be on an LGO file or a library
file, or, for MPEDIT, a noninitialized memory image
load module file produced by MPLINK. If the object
code programs are on an input object code file,
they have been previously produced individually by
a CYBER Cross macro assembler, micro assembler, or
PASCAL compiler. Libraries, likewise, are composed
of object code programs produced by these CYBER
Cross compilers/assemblers. A library has a direc-
tory for locating the modules easily.

specified, or equated to zero, by the MPLINK util-
ity. External references from all programs can be
resolved from a program library. The user can also

specify entry—point values (addresses).

FILE FORMAT

Figure D-1 shows the load module file format on the
highest level. On this level, the file consists of
an optional loader record, a partition for NPU-
resident programs, and partitions for each group of
overlay modules (assuming there are any optional
overlays). The resident load partition includes a
system header record followed by a series of record
pairs, one pair for each program in the on—line
system. If there are overlay partitions, each of
these has a format similar to that of the resident

Each program on the load module file has an exe- partition. The file is terminated with a trailer
cution (load) address. This address is either record.

FILE FORMAT

LOADER RECORD
(OPTIONAL)

RESIDENT LOAD
END OF RECORD ,,A,m-“ON

V
SYSTEM HEADER

RESIDENT RECORD 4 LOAD PARTITION
LOAD LOAD MODULE 1
PARTITION PARTITION HEADER REcoRD

END OF RECORD
OVERLAY AREA

END OF RECORD

‘T.-"___
LOAD PARTITION

MODULE 1
I OVERLAY AREA MEMORY IMAGE

OVERLAY I HEADER RECORD RECORD
AREA I I
LOAD |

END OF RECORD END OF REcoRD
PARTITION

I OVERLAY 1 MODULE 2
I HEADER RECORD HEADER RECORD

END OF RECORD I
| END OF RECORD END OF RECORD

’ I
O I OVERLAY MODULE 2
Q I IMAGE BLOCK MEMORY IMAGE
O

J
(OVERLAY 1) RECORD

END OF RECORD END OF RECORD
OVERLAY
AREA m 0 O
LOAD O O
PARTITION 0 O

o 0

END OF RECORD OVERLAY m MODULE n
HEADER RECORD HEADER RECORD

TRAILER
RECORD END OF RECORD

END OF FILE MODULE n
MEMORY IMAGE
RECORD

Figure D-1. Format of an MPLINK or MPEDIT Output Load FiLe

60471200 G

OPTIONAL LOADER RECORD

If the LOADER record exists, it is the first record
on the load module file. This record is included
only if an object text file called LOADER. is in-
cluded in the library or input object code files
used as input by MPLINK. The format of this header
record is arbitrary.

RESIDENT LOAD PARTITION

This partition contains object code for every module
in the on-line NPU system. It does not contain any
code for overlay modules.

The partition has a system header, followed by a
record pair for every on-line module. The modules
occur in the same order in which they occur in NPU
memory.

A record pair for a module consists of a module
header record followed by a record containing the
object code for the module.

System Header Record

Figure D-2 shows the format of the system header
record. This record is generated as the direct
result of the MPLINK directive: *SYSID,name(,text).

BIT
WORD 15 14 II 10 76 0

I WORD OR RECORD COUNT

E2 0 H.|IE¢EEER NI:':AGBER)
PAGE FIELDS
COLLECTIVELY

3 PAGE PAGE
3250735REGISTER DISPLACEMENT ADDRESS

4 CHAR I CHAR 2

5 CHAR 3 NAME CHAR4

6 CHAR 5 CHAR 6

7 CHAR ‘I

O
. ;_' TEXT, COMMENTS, ;_
. OR ZEROS

30 CHAR 48

HEADER TVPE I3 BITS)
0 — SYSTEM (RESIDENT PARTITION)
‘I OVERLAY PARTITION
2 - OVERLAY MODULE
4 RESIDENT MODULE

NOTE THE LENGTH OF THE WORD IS ASSUMED TO BE
‘I6—B|TS (THE WORD SIZE OF THE TARGET NPU)
RATHER THAN 60 BITS (THE WORD SIZE OF THE
HOST COMPUTER GENERATING THE LOAD MODULE
FILE}

Figure D-2. Format of Load File Header Record

In this 30-word record the fields are as follows:

RECORD COUNT (word 1) is the number of records
in the resident partition. The number of mod-
ules in this partition is:

I D-2

Number(modules) = (records - 1)/2

HEADER TYPE (word 2) is a system header (type =
0).

MEMORY ADDRESS (words 2 and 3) is not used.

NAME (words 4, 5, and 6) is the six-character
ASCII identifier specified by the name parameter
in the *SYSID directive.

TEXT (words 7 through 30) is specified by the
text parameter in the *SYSID directive. The
character code is ASCII. Any characters not
used are filled with zeros.

Module Header Record

Figure D-2 shows the format of the module header
record. This record is generated by MPLINK at the
time modules are linked as the result of an *L or
*RL directive.

In this 30-word record the fields are as follows:

WORD COUNT (word 1) is the number of 16-bit
words of object code in the following record.

HEADER TYPE (word 2) is a module header (type =

4).

MEMORY ADDRESS (words 2 and 3) designates the
address of the module's first word. It has
three parts (see the Page Addressing descrip-
tion in the MPLINK section):

PAGE NUMBER is the 7-bit logical page
number.

PAGE REGISTER is the 5-bit page register ID.

PAGE DISPLACEMNT is the 11-bit displace-
ment (in words) to the first word of the
module on the physical page.

NAME (words 4, 5, and 6) is a six-character
ASCII identifier. It has one of the following
formats:

A PASCAL common area name: MAINS or GLOBL$

The name associated with a PASCAL-compiled
program

The name specified on the NAM card of a
macro assembled program

The name of a micro assembled program

COMMENTS (words 7 through 30) is blank if this
is a PASCAL-compiled module. It is the comment
(in ASCII characters) on the NAM card if this
is a macro assembled module.

Resident Module Record

This record consists of 16-bit words of object code.

OVERLAY LOAD PARTITION

There can be one to ten overlay partitions. Each

partition is separately identified and occurs in
the same order that the overlay directives were
entered in MPLINK.

60471200 G

An overlay partition contains object code for every
module in that overlay.

The partition has an overlay header, followed by a
record pair for every module in the overlay. The
modules occur in the same order in which they occur
in NPU memory when the overlay is moved into its
execution area.

A record pair for an overlay module consists of an
overlay module header record followed by a record
containing the object code for the overlay module.

Overlay Area Header Record

Figure D-2 shows the format of the overlay area
header record. This record is generated as the
direct result of the MPLINK *0VLY directive.

In this 30-word record the fields are as follows:

RECORD COUNT (word 1) is the number of records
in this overlay partition. The number of over-
lay modules in this partition is:

Number(modules) = (records - 1)/2

HEADER TYPE (word 2) is an overlay area header
(CYPB ‘ 1)-

MEMORY ADDRESS (words 2 and 3) specifies the
first word of the overlay area. It has three
parts:

PAGE NUMBER is the 7-bit logical page
number.

PAGE REGISTER is the 5-bit page register ID.

PAGE DISPLACEMENT is the 11-bit displace-
ment (in words) to the first word of the
module on the physical page.

NAME (words 4, 5, and 6) is the six-character
ASCII identifier specified by the name param-
eter in the *SYSID directive.

TEXT (words 7 through 30) is not used. Charac-
ters are filled with zeros.

Overlay Module Header Record

Figure D-2 shows the format of an overlay mod-
ule header record. This record is generated by
MPLINK at the time modules are linked as the result
of an *L or *RL directive following an overlay
declaration.

In this 30-word record the fields are as follows:

WORD COUNT (word 1) is the number of 16-bit
words of object code in the following record.

HEADER TYPE (word 2) is an overlay module header
(type = 2).

MMORY ADDRESS (words 2 and 3) specifies the
address of the overlay module's first word when
it is in NPU memory. The address has three
parts:

60471200 G

PAGE NUMBER is the 7-bit logical page
number.

PAGE REGISTER is the 5-bit page register ID.

PAGE DISPLACEMENT is the 11-bit displace-
ment (in words) to the first word of the
module on the physical page.

NAME (words 4, 5, and 6) is a six-character
ASCII identifier. It is the name associated
with a PASCAL-compiled program.

COMENTS (words 7 through 30) is blank. The
characters are filled with zeros.

Overlay Module Record

This record consists of 16-bit words of object code.

TRAILER RECORD

The format of the trailer record is shown in figure
D-3. The use of the words is described on that
figure.

WORD‘5 10 6 0

1 o -—-------—-————————— 0

PAGE ADDRESS
3 REGISTER PAGE DISPLACEMENT

PAGE4 NUMBER STACK

P GE
ADDRESS

A
5 REGMER PAGE DISPLACEMENT “3EG'“’

PAGE5 NUMBER STACK

PAGE
ADDRESS

7 REGISTER PAGE DISPLACEMENT ‘END’

2 1 / PAGE
NUMEER TRANSFER

PAGE
VARMBLE
AREA (stem;9 REQSTER PAGE DISPLACEMENT

9AGE
‘° NUMBER oYNAMm

‘VARIABLE
PAGE WM ER AREA (END)“
REGISTER PAGE 8

I

I

8 22:2.

I

I

I

I2 o»---~—--————-———o

C U
0 I o '

30 0 0

BIT IS IN WORD 2 SET INDICATES THE
TRAHIR RECORD. THS MT $ OIN A
HEADER RECORD

NOTE THE LENGTH OF THE WORD IS ASSUMED TO BE
16—8ITS ITHE WORD SIZE OF THE TARGET NPUl
RATHER THAN 60 BITS (THE WORD SIZE OF THE
HOST COMPUTER GENERATING THE LOAD MODULE
FILE)

Figure D-3. Format of Load File Trailer Record

D-3 |

OPTIONAL MEMORY IMAGE LOAD

MODULE FILE FORMAT

:

The optional memory image load file for an NPU
consists of a single record. The file is generated 59 47 41 as 29 23 17
by the pseudoconstant /NAM$ in the MPEDIT utility. 1 77003 I 00169 I o

2 necono
I 0The record begins with a prefix and a header as “"5

shown in figure E-1. The data within the record is 3 DATE
segmented. Each segment is preceded by the first 4 TIME
word address (FWA) for which it is intended. Each
segment is also preceded by a length field. The
length field indicates the number of 16-bit words
in the data segment. The length can never exceed
120 16-bit words.

The prefix is shown in figure E-2. It contains
information describing the creation of the record.
Except for the first 60-bit word and the binary
zero fill in the second 60-bit word, all informa-
tion in the prefix is in display code, with blank
fill, so that it can be printed. The prefix con-
tains exactly fifteen 60-bit words.

The header is one 60-bit word. It contains the
record name in display code, in bit positions 59
through 42. The bit pattern of the remainder of
the word is shown in figure E-3.

The first word address and the length field formats
are shown in figure 13-4 and 131-5.

The data segment format is shown in figure E-6.

wono 59 0
1

I IPREFIX
15
16 HEADER

17 FWA DATA SEGMENT 1

LENGTH OF DATA SEGMENT 1

DATA SEGMENT 1

FWA DATA SEGMENT 2

LENGTH OF DATA SEGMENT 2

DATA SEGMENT 2

FWA DATA SEGMENT n

LENGTH OF DATA SEGMENT n

DATA SEGMENT 1»

Figure E-1. OptionaL Load ModuLe Record Format

60471200 F

OPERATING SYSTEM NAME I OPER SYS. VERS.

LANGUAGE PROCESSOR NAME
ILANG. PROC, VER

LANG. PROC. MOD. LEVEL I BLANK FILL

BLANK FILL

LANGUAGE PROCESSOR INFORMATION
10 OR

'-—- BLANK FILL —
H

n

13 USER COMMENTS

14 OR
,___ BLANK FILL .1.

m

Figure E-2. Optionat Memory Image Record
Prefix Format

w 41 3 n
necono NAME
tonseuw cons) ° 77779 °

Figure E-3. Optional. Load Module Record
Header Format

59 4746 25 3 9 11

0 I 0 A O B 0 C

A = HIGHAORDER 2 BITS OF FIRST WORD ADDRESS (FWA)
m : MIDDLE 8 BITS OF FWA

: LOW-ORDER 8 BITS OF FWA

Figure E-4. Optional Memory Image Record
First word Address Format

59 7 D

0 LENGTH

LENGTH = NUMBER OF IGBIT WORDS IN DATA SEGMENT

Figure E-5. 0ptionaL Memory Image Record
Length Format

23 023 o 23 o

WORDI wonoz wonon

~\‘\
I “

\\I ~\‘\
b3 19 11 ‘~ 0

mcnonoen LOWORDER
0 new ans or morn ans or

1&an'wono 1esn'wono

ONE WORD OF DATA SEGMENT

Figure E-6. 0ptionaL Load Modute Record
Segment Format

60471200 F

RELOCATABLE OBJECT CODE FILE FORMAT

RECORD BLOCK

I

The object code input to the library maintenance
and link utilities is the relocatable binary code
generated by the CYBER Cross System translators:
PASCAL compiler or macro assembler. The relocat-
able binary is represented in record blocks of 960
bits of information: i.e., sixteen 60-bit words or
sixty 16-bit words.

The data portion of the record block is formatted

accordingly:

Word 1 (16-bit words)

HBits 15 through 8 module sequence number

Bits 7 through 4
indicator

5, the 7/9 binary card

Bits 3 through 0 = 0

Word 2 = the complement of the length of the
data portion in 16-bit words

I Word 3 to n‘= the object code block

Word 3 + 3_+ 1 = the checksum

A record block will not exceed one card image; thus

I the length of an object code block (words 3 to n,
where 3 is the length of the data portion) is 37
words or less. The checksum immediately follows
the last data word in the record block; if the data
portion is less than 57 words, the record block is

padded to fill a complete 80-colmn card image.

The file of record blocks may be in one of two

formats, depending on whether the packed binary
(PB) parameter was selected on the translator call
card. If the PB parameter was not selected, the
file is written with one record block per record.
If the PB parameter was selected, the file is
written with the record blocks packed such that
each record contains one program preceded by a
CYBER Loader 7700 table.

OBJECT CODE BLOCK

The object code block, which contains the relocat-
able binary information, is headed by a type of
block indicator field in bits 15 through 13 of the

I first object code word. The following object code
block types are defined:

Type and Indicator Description

NAM 001 Name block

RBD 010 Command block sequence

60471200 G

BZS Oil Zero storage block

ENT 100 Entry point block

EXT l0l External name block

ENF 000 Entry field block

EXF Ill External field block

XFR 110 Transfer address block

The remainder of this first word contains a constant
of bits 6 and 4 set equal to 1, and all other bits
set equal to O.

A module's object code begins with a NAM block and
terminates with an XFR block. The ENT and EXP
blocks follow the RBD blocks. The RBD, BZS, ENT,
and ENF blocks may come in any order.

The following is the format for the eight block

types. Note that the word positions indicated are
relative to the beginning of an object code block.

NAM BLOCK

The NAM block contains a word count for common and
data storage, the module length, and the name of
the program. See figure F—l.

15 ll 7 3 O

IOOTOIOOOOIOTOTLOOOO

2 NUMBER OF WORDS IN
COMMON STORAGE BLOCK

DATA PORTION
3 NUMBER OF WORDS IN

DATA STORAGE BLOCK

4 rnosnam LENGTH

5 CHARACTER 1 CHARACTER 2

6 CHARACTER 3 CHARACTER I RROGRAM NAME

7 CHARACTER 5 CHARACTER 6

NAM STATEMENT COMMENTS

NOT USED

57[_________._J

Figure F-1. NAM Block Image

RBD BLOCK

An RBD block contains a portion of the actual
command sequence data of the module. See figure
F-2. Words 2 through 57 contain the relocation
bytes and words for the command sequence input.
Each relocation byte is a 4-bit indicator that
identifies a word of the command sequence input as
an absolute 15-bit address, or as a 15-bit address
relative to some relocation base. The relocation
base for a word is determined by the particular
combination of bit settings within the relocation
byte.

W40

W41

W42

W13

NOT USED

Hn The nth word of the input block (n=1 to 43).

Rn The reLocation byte of the nth word.

U0 The origin address of the input bLock.

R0 The relocation byte for H0.

Figure F-2. RBD BLock Image

The following are the relocation bytes in RBD
blocks:

0000 Absolute (no relocation)

0001 Positive program relocation

0101 Negative program relocation

0010 Positive common storage relocation

0110 Negative common storage relocation

0011 Positive data storage relocation

0111 Negative data storage relocation

F—2

There is one relocation byte for every word in the
command sequence output, and a maximum of 45 entries
in the RBD block. The first word is the address
relative to the start of the program where the
loader begins storing command sequence data. The
relocation byte for the first word address (storage
address) of an RBD block may be 0000, 0001, or 0011.
If the field contains a number larger than 0011,
then 0011 is assumed. Zero is the leading bit for
all but the last relocation byte; one is the lead-
ing bit for the last relocation byte.

BZS BLOCK

A BZS block contains relocation bytes, the starting
address, and block sizes for areas of core to be
cleared to zeros when the program is loaded. See
figure F-3.

The relocation bytes for a starting address may be
0000, 0001, or 0011.

524

NOT USED

NOT USED

An Starting address of the nth entry (n=1 to 24).

Sn Size of the BZS reservation for the nth entry.

Rn Relocation byte of the nth entry.

Figure F-3. BZS Block Image

60471200 G

ENF BLOCK

Up to 11 entry fields may be specified in an ENF
block. See figure F-4. The end of data in this
block is identified by zeros. If the sign bit of a
word containing the entry point address is O, the
address is program-relocatable. If the sign bit is
1, the address is absolute and in one's complement.
Data begins in word 2.

15 ll 7 3 0

ODOOTOOOO 01 OILOOOD
N CHARACTER I CHARACTER 2

ca CHARACTER 3 CHARACTER 4

CHARACTER 6A CHARACTER 5

5 E1

aa FL?ST IFLDLTH Ll NOT usen
> FIELD NAME 1

u CHARACTER 1 CHARACTER 2

cu CHARACTER 3 CHARACTER 4

SD CHARACTER 5 CHARACTER 6
FIELD NAME 2

10 E2

FL25T IFLDLTH 211 NOT useo

52 CHARACTER I CHARACTER 2

53 CHARACTER 3 CHARACTER 4

54 CHARACTER 5 CHARACTER 6 FIELD NAME 11

55 E11

56 F■25T IFLDLTH 11417 NOT useo

name n A six-character name of the nth entry in
the block.

En The entry address of the nth field name.
En is negative (one's complement) if
absolute, and positive if relative.

FLDSTn The leftmost bit of the nth field:

o5H.I>sTn515.

FLDLTHn The Length of the nth field:

1_<_FLDLTHn_<_16.

Figure F-4. ENF Block Image

ENT BLOCK

Up to 14 entry point names and addresses may be
included in an ENT block. See figure F-5. The end
of data in this block is identified by zeros. If
the sign bit of a word containing the entry-point
address is 0, the address is program-relocatable.
If the sign bit of the word is 1, the address is
absolute and in one's complement. Data begins in
word 2 and extends to word 57.

60471200 G

15 11 7 3 O
x 1 0 0

OJ u 0 0 0 0 1 0 Ila 0 0 0

2 CHARACTER 1 CHARACTER 2

3 CHARACTER 3 CHARACTER 4
NAME 1

4 CHARACTER 5 CHARACTER 6

5 E1

6 CHARACTER 1 CHARACTER 2

7 CHARACTER 3 CHARACTER 4
NAME 2

8 CHARACTER 5 CHARACTER 6

9 E2

50 CHARACTER T CHARACTER 2

SI CHARACTER 3 CHARACTER 4

52 CHARACTER 5 CHARACTER 5

H Em

54 CHARACTER 1 CHARACTER 2

55 CHARACTER 3 CHARACTER 4
NAME ‘I4

56 CHARACTER 5 CHARACTER 6

W EM

name n A six-character name of the nth entry in
the block.

En The entry-point address of the nth name.
En is negative (one's complement) if

absolute, and positive if program-
relocatable.

Figure F-5. ENT Block Image

When processing an ENT block, the loader records
the entry-point name in its table. The entry-point
address is adjusted for relocation (either program
or absolute), and then it is recorded in the table
of entry points. This procedure is repeated until
the end of input is reached (a name equal to O).

EXF BLOCK

Up to 14 external fields and link addresses may be
included in an EXF block. See figure F-6.

The end of the EXF block is indicated by zeros. If
the sign bit of the word containing the link address
is 0, the address is program-relocatable. If the

sign bit is l, the address is absolute and in one's

complement. The format of the data in the block is
the same for EXF as for ENT information. Relative
external fields are indicated by setting the left-
most bit of the word containing character 1 of the
field name. An external name that contains no
references within the module's object text is
indicated by a $8000 in the link address.

15 11 7 3 0
1 1 1 1 0 O 0 0 0 0 1 0 1 0 0 0 0

2 CHARACTER 1 CHARACTER 2

3 CHARACTER 3 CHARACTER 4
NAME 1

4 CHARACTER 5 CHARACTER 6

5 L1

6 CHARACTER 1 CHARACTER 2

7 CHARACTER 3 CHARACTER 4
NAME 2

B CHARACTER 5 CHARACTER 6

9 L2

[
'1

50 CHARACTER I CHARACTER 2

51 CHARACTER 3 CHARACTER 4
NAME 13

52 CHARACTER 5 CHARACTER 6

53 L13

54 CHARACTER 1 CHARACTER 2

55 CHARACTER 3 CHARACTER 4
NAME 14

56 CHARACTER 5 CHARACTER 6

57 L14

name n A six—character name of the nth entry in
the block.

Ln The Link address of the nth name. Ln is
negative (one's complement) if absolute,
and positive if relative.

Figure F-6. EXF BLock Image

EXT BLOCK

Up to 14 external names and link addresses may be
included in an EXT block. See figure F-7.

The end of the EXT block is indicated by zeros. If
the sign bit of the word containing the link address
is 0, the address is program-relocatable. If the

sign bit is 1, the address is absolute and in one's

complement. The format of the data in the block is
the same for EXT as for ENT information. Relative
externals are indicated by setting the leftmost bit
of the word containing character 1 of the name.
The end-of-link is indicated by a $7FFF.

XFR BLOCK

The XFR block contains a transfer address (in words
2 to 4), which is six ASCII characters in length,

including trailing spaces. See figure F-8. The
transfer address must be an entry point in the
program being loaded or in another program loaded
during the same load operation.

15 H 7 3 0
1 1 o 1 ole o o o o 1 o 110 o oo

2 CHARACTER 1 CHARACTER2

3 CHARACTER 3 CHARACTER 4
NAME 1

4 CHARACTER 5 CHARACTER 6

5 u

6 CHARACTER 1 CHARACTER 2

7 CHARACTER 3 CHARACTER 4
NAME 2

8 CHARACTER 5 CHARACTER 6

9 L2

50 CHARACTER 1 CHARACTER 2

51 CHARACTER 3 CHARACTER 4
~NAME13

52 CHARACTER 5 CHARACTER 6

S53 Ln

u CHARACTER 1 CHARACTER2

55 CHARACTER 3 CHARACTER!
NAME 14

56 CHARACTER 5 CHARACTER 6

57 L14

name n A six-character name of the nth entry in
the block.

Ln The Link address of the nth name. Ln is

negative (one's compLement) if absoLute,
and positive if relative.

Figure F-7. EXT BLock Image

m 11 7 3 0
1 1 1 o o o o o 0 o 1 0 1] o o o 0

2 CHARACTER 1 CHARACTFR 2

3 CHARACTER 3 CHARACTFR4

4 CHARACTER 5 CHARACTER 5

V“"'2_,v,./~/\/‘/"’\’\‘TJ

Figure F-8. XFR BLock Image

60471200 G

LINK UTILITY EXAMPLES GI

This appendix gives two examples of calling MPLINK case, this information is not necessary since the
independently of the CCP or CCI build procedures build procedures automatically supply all the
(figures G-1 and G-2). Note that in the ordinary calling procedures.

gogpile
a PASCAL source program and build a load module satisfying external references from an object program

1 rary:

ABc,cM77000,T77,P4. 0000,xxxx,xxxxxxxx,SMITH.
REQUEST (ABSOLMP,*PF) *Memory Image Load Module File

ATTACH(NEHLIB,0BJPGMLIB03,ID=PT *New Library
ATTACH(MPLINK,ID=SCDD) *MPLINK Utility
ATTACH(PASCAL,ID=SCDD) *PASCAL Compiler
PAsCAL(0,CsET=64) *List output and use 64 char ASCII
FRMT.
REuINO(LGo) *Reset Object Code Input File
MPLINK(CSET=64) *Call MPLINK

CATALOG(AB$OLMP,LOADMOD01,ID=PT,RP=30) *Catalog Load Module File
7/8/9
...PAScAL source program... *All PASCAL Source Programs
7/8/9

MPLINK directive fiLe

6/7/8/9

NOTES

After all of the_object programs on the object code input file have been read and
linked, any remaining unsatisfied external references can be resolved using the

library if one is supplied.

Figure 6-1. MPLINK Execution Example 1

Build a load module from an object program library with editing of the load module file:

ABC,CM77000,T7?,P4. 0000,xxxx,xxxxxxxx,SCHOFIELD.
REQUEST(ZAPMP,*PF)
ATTACH(NEHLIB,0BJPGMLIBO3,ID=PT)
ATTACH(MPLINK,ID=SCDD)
ATTACH(MPEDIT,ID=SCDD)
MPLINK(CSET=64)

REuIND(ABs0LMP,SYMTAB) *Absolute Memory Image Load File and Symbol Table File

MPEDIT(CSET=64)
CATALOG(ZAPMP,LOADMOD02,ID=PT,RP=30)
7/8/9
*REL,NEHLIB. First MPLINK Directive

Nest of MPLINK Directive FiLe

6/7/8/9

Figure G-2. MPLINK Execution ExampLe 2

60471200 c 0'1

EDIT UTILITY EXAMPLES H I

This appendix gives the following examples: A partial listing of the memory image load
module file (figure H-2).

Selected portions of an MPEDIT program with

constant, variable, and array declarations, and
a single assignment section for the main CCP Note that the edit utility is automatically called

programs (that is, no overlay assignment sec- as a part of the CCP and CCI build procedures.
tions). This program is given in figure H-1.

60471200 G “*1

CYBER MINI CROSS SYSTEM - LINK EDITOR -

EDIT SYATEHENTS

a
t¢t¢t¢t¢tx¢¢¢:xtttttt¢ttttttttvtttttttttttttt
t t
CUPYal3HI CGNTKDL HAIA CORP. 1975:
197A. 1977. 1978. L979! 1980 t
4 t
t¥¢##¥####$#¥$##*¥¥$#$#$|$t¢#¥##########¥#¥¥¥¥

: DEFINITION/DECLARATION
¥\#tt¥#¥#¢t#$3ti■t‘■■itltlt■lt■iit■iit■■■iitti■
t #
v CJNSHNIS * CONSTANT DECLARATION PART
t 1
tt#t<#$¢t*##$IrQtttltttttttt■ttttittiitttttttt■
Ir
CGNST

/TPJF = 1:
/FNLSF = J:
/Haws = 33?; 9 GENEVAIE MPPPU FILE 5

a
it#####t#$#t¥##t$¢¥¢t¢tt#l##$1#$ttt
z t
t s1,TCM CHNSTANTS #
t t
tttttxt■tttttttx$¢ttt$tt¢tttttt#¢¢#
L
a
¥$tt*#t##$¢¢##¢###«*##¥#:t##¢#t###ttttttttxtttttt$¢t#tttt¢ttt#tt#ttttttt

CW9F SI7§
#ttt#ttt$#tt<tt■ttvttttttt■tttttttttttttt##8##tttittttttttttttttiitttttt
J

/CSIEK ‘ $3FFF 3
/CS3’K = $7FFF ;
/CSQOK = SQFFF :
/CS48K = $BFF‘ 7
/CSSSK = %DFFF ;
/CS64K = SFFFE:
/CSIZSK = 1; ‘

/CS256K I 2}
r’ .

it■tvitttititt#0!!!■t■■■■tttlt■lttt■OIitttttt$#¥#■tt■##¥$¥#¥¥##t###¥#t¥###$
#¥BUFFER CONTROL BLOCK INDECES*#

###t#t#¢#####t#t###¥##ttittttttitt
;

/3050 = 0 ; 9 SIZE 0 INDEX ;
/8051 = 1 ; n 1 6
I805? - 2 : a 2 4
IBOS3 = 3 z 3 3 4

a
O
O
0

VA; VARIABLE DEFINITION PART
/Y; A GEN:RAL LDPP INDEX 6
/I1: » GENERAL LDC“ INDEX t
/12: H GEVFRaL L30” INDFX *
I13: a CFNERAL USE VARIABLF *
/P: A RLPK ”PXNTE9 ¢JR *DDEH STATE PPDGQAMS 3
/J: » GENERAL INDEX LCJP *
IL: auDQK—PDINTtQ FJQ TIP-INPUT-STATES‘
/LSAVE: » CAVF njck DIP IN Text °J"CR HDR STATE PRDG°AW&
/K; »vA9IARLV INDEX KOCNIRTRL #
/CH)“LKF : a SUB 0021 LC3 TABLE PDIVTFRS - MLIA t
/cuacrmg : » CGNSDLE I
/cu:cn1oLro ; + COUPLER +
/lCH>U?LC3; ~ INFLX — C%SUJLC3 *
/LPI1:
/Ycscrnz :
/IC3“LIA 2
/1593?:

IIDIWL; » V&TuG°K D?‘INYT!■N TAELE HDRK POINTER ¢
r§t<<t#$**#¥$¥t■tttuttttt■ttttivtttt■f■i
at C
2 nm FULL-Tmlrxi; 1: rut swuacr INPUT -
»x cm: ApuL1cu1°~v mucue VAQIARLES 4
t DEFINITIVW F"? w1< SHIN t
x ‘K
4 5##t#>v¢<$!¢<ttk#3!#$4r##¢<#?<$0I$■#$¢ia¢t*¥#$V

Figure H-1. PartiaL MPEDIT Program (Sheet 1 of 6)

3.2 60471200 c

JUFLCWI/%“JC../533?] OF 1?
RU‘”ASK:[/$C<3../Bu>3] “C 1:
RECTL“K[/5?aC../B333] TV /SI78‘CTL%<;
NICf"T L “3“uD..NODIAG J UF 1:
NJl77T [V3TVLIA..NCTDIAb 1 CF 1‘?
AFTW9-33>‘1"\JTl..T‘JT*-4NUX] '1F 1; » MJFFEP THQESHQLHS J.

O
O
O

AVT”SL7 [s..«1 3: L;
attrttt3ttt■ltttt#Vtt##t$t¢=ttt$#$vt
t
: AJYNQ An2Av< t
a «
Vt¥3<'0‘l*~$"vtiitvtvttttttttttttttttl

d$
avtcanr L1..4o1 7; 7: arcs ACTION TABLE e
■vL?‘AT [L..11 1: 3: a LCB ACTION YABL‘ ;
■vIS\FPT L:--T1 RF 1; ntca FIELD DESCRIPYUR rAaL=s
AvL■sfar (2..11 “F 1: »Lca cyrlo UESCRIPTWR rAaLE+

at
r)

A<v~c LJD5 TAIL’ 1DCQF5S AQDAYS
t

AvUF£1S7T[/ATF8CC../ACCADI1 UF 1;
A41wrr=.: I/ACEMCD../AC"A°Ly/NWA5YASC../N3I‘H?7#11 NF 1:
AV"JTTA’t" r/Ac:920../ACCAGL,Ik~AsvAsc..INoIar¢7a1J or 1;

at
: 1h.IIfL1ZAT[CV 79 §v~—anexvs awn HASP—Y!°
6

4;!¢~nrr1..LC1 wt 1: »ICR actt■u TASLF s
N■tiial [1..2I IF 3: n LC% ACTIDV rAaLE t
4QT7~fuf rJ..J) u■ 1;
HSLLJFUT [1..3] PF 1;

4;
rO$##$#tOtttt$¢#ttt#ttttttitttttttitttttttitttittttOttttttittittt■■■■iiit
+Iu;'\J[A>’9L["AlI"‘l ‘JNIJ"F AH-I'M S"-Wlrjrus
.w:M¢nvn:#:«<anmuu:t:«¢tu¢Mxtun»:M=n:nMtHttuuttttsttnxxvxtnxtn;
»
tttt*tt00Ctvtttttttttttttttttttttttttoyt
t t
., Mm“; n3,:..g¢ VA“;-ztgs , PSEUDO VARIABLE DECLARATION
a »: PART (PART OF ASSIGNMENT
t#t#$¢$t¢¢tt¥$tttttttvtt##$#¢¢ttt#t¢t#tt SECTTON)
4
B‘GIN

VAQID :3 5963
VA°IW¢1 3= ¥C03F:
CCPVEQ := $32: ■CCP VFWSIUN - C50 RFPLACE5‘
CCPCYC '= 0: RCCV CYCLE -USER REVLACES5
CCPLEV 3: C2 0CCP LEVEL ' CSO REPLACFS$
IIRAC‘ := 2 ;
/VELS 1= ?2 0 EXTF°NAL VY” TBL LIST UN 5

a
o¢t¢otuu::t¢¢aovontttovstttttmttttscttsmttttt
v i
Q WV5INF A‘ MANY PWYKTCDS *
¥ AS 3Q§SX%LF *
t t
ttttot■tcttttttttttttttwvtttttttttttttttttitt
;
at

/“CS1? 3= /Q7315 9 13
I31L,I\l\l o 19 := MAWH at SYSYFH INIT t

_ntI$vt¢$t#¢¢f:tt#¢¥¢#¢$tt#¥$¢t*t¥¢#tt
‘ JET U9 P■:T VuQT:“ ULLINITEQS °
¢$t¢v«vttm:»r¢¢t\¢r#t#t¢#v¢t#¢t##*t#t
¢

T§NT!IV 5: *7}:
CW?‘-‘IQ Y“lt: I‘:

fl
* ‘ * INITIALT7: IJ9KLI§T§ FWQ HD) LFVEL 9RWCQhH§ ‘ ‘

3.
9
O 9' * INTFQNAL .°R3(':§§. V t
5

BVJLCF[%3TVaL).BY°°AD“Q
“YHLCBf331VuL].BYPAGE

/?NT9Y(93INTPP‘C|
/PGNd1(P3INTPQ■C)

3
2

ev.Lcara31uuL 1.aYwLIuo:x := RGINJL;
avuLcata3ImwL].■YMA¥CNT == 4:
%v4Lc1(33Iw4L].BYINC := 2;
dY~LC3[%JINwL].bVwLPFQ “ “TDUF:

Figure H-1. Partial MPEDIT Program (Sheet 2 of 6)

60471200 G “‘3

at
J$9¢¥‘?$lt:#¥¥5*¢8#V#9#¥¥V#$tlI■§t$¥
* 5 “VIC7 ”“hULF IVCWL VAPYARLCS '
::¢:¢¢:~¢«4v:m:¢a¢:¢4v¢t¢«z¢¢:¢t¢t:;

lJI”dN‘>:
/EZLNSPW:
/?7N2?
/JZ1PKTLnTH:
/47?P<TLN1H:
l17K:
/5I1L°VC:
/RZZLOVC;
/320$“;
/l7YiAN§TY°5€
I%Z1L§VC:
/%Z2LSVC;
/%7LA°R:
/JZTI:
/LCM:
/BSICLASS;
/dSOaNF9:
/SSCN;
ION:
/SN;
/BSNdL:
/8§IPRI:
/RSPGUIDTH;
/JSDQLEVGIM:
/“FCANCNA3:
/a)R<CHAx:
I35C■T9L”HAk:
/KSCPIDLIS:
/%;L=IuL’S:
IWCCKCALF;
/JEIFCALT:
/V§S”FnIl:
/¢SX”AD’N1:
yqxxcum;
l3Sl’“l:
/13xcun<:
/*SA|“Z
/YMNWFJ:
/%5LUTW‘V¢
/<\FCH”"Lx;
/9$VG4A¥l:
/‘LPAJITY:
/*‘A?IlI&-:
/ACUSAX:
/350592:
/R§CP)C:

/%5XCH“"V:
/u¥;uA~0::;

/LCld~»I*WT; akl■sf VAPIANY LCR INnFx ;
/lC\vA9IL‘l; »F[DST VAPIANI ICB INDEX 1
/?CL§‘""T:
/3TfC1F)V:
/jilvarul :

+¢vvt#t9$x¢v¢4tr:at¢tt:t■#t*toottvvtuiitttittt■tbttttt¢ttt#tt#t#¥t#ta$
+'C\3 A#DLICAT1 \ QNYEE VA°lLPl4 5”“7C‘*‘
af$¢¥¢$4*$$t¢$~¢#‘¢¢¢$¥¢#¢t¢$¥¢¢####$¢it!$$$*#$*$#U#$¥#*$¢t■¥#$tt#¥$t#V$
a ARRAY DECLARANON
#$?¢■¢#$¥v**##6##i■vi?**¢¢$0*$t#$¢#¢■##88#¢¥t
t 9
* A99AY “5TLA9AII\hi - %ASF AND CCP *
s fA2L*< *
i 1
!k$tttt■¥¥t■■I6&4sxitt■itttfittt■■tttti■t■t■■
3
AQKAY

qJTI9TY“T [N7HULC.-NIUSPIJ DC ISIZTI°TYPT;
RM»L‘NI°Y [1..l7] VF /JluLHAY:
C1TY“TBL["3lC3TM§CV.-CCSDARC] "F 4:
CCTC%S [3..C■TCH1] 7F /SI?YC9; 6 FIXED TC°S. *
JACT [/TTY../LPl762] UF /SIZCY3
JAIJwL I/FAL§?../IPLt] SF 1:
JCTCSTARLE I/FAL§°../TRUE:/‘ALSE../TRUEnIFALSE.-/TRUE] OF 1?
JZO?§9A§€ [80CHdL..5COUMMY] PF 2; n OPS PROGRAM ARRAY *
JKMASK [L--17] JF 13
JKTWASK[1..17] IF 1:
JSHLADD9 [U..17) OF 1;
J1YJ”“"S [l..a¢) "5 1?
*1lfYT [NCL“!AC..NCLASI.!..\K°C1UUT) 7F 23
NELTJ [WQLWIAG..VCLAST] “F 1:
RUFLENCIHI/7;SC../"7531 "F 1:
TC’lFVuYNf/%3TS)../3FY§7] “F L:

Figure H-1. PartiaL MPEDIT Program (Sheet 3 of 6)

60471200 G

*1 V * "LIA INTERPUPT HANDLER t t

BYHLCBIBOHLHL I.B{PRADDR ' /ENTPV(PBHLIAOPS)$
BYHLCBIBOHLHL I-BYPAGE : /PGNUHTPBHLIAUPST?

8YHLCB[BOHL4L].8YHLINOEX 8 BOMLHLZ
BYILCBLBOHLHL].BYHAXCNf :x 10;
BYHLCBIEOHLHL].BYINC ‘I 5;
BVHLCBTBOHLHL].BVHLREO :2 ITRUE3

(3
* ‘ * SERVICE HUDULE ‘ *
l

BYHLCBIBOSHHL].BYPRADDR :3 IENTRYTPNSHHLTS
BYHLCBIBOSHHL].8VPAGE 2- IPGNUHIPNSHHLT;
BVHLCETBOSHHL].8YHLINDEX :1 80SHHLi
BVHLCB[%0SHdL].EYMAXCNT :: 1:
BYHLCBIQOSHIL].BYINC :: 4:
BYHLCRTEOSHHL].EYHLREO :: ITRUF;

:0
C
C
C

.06
09$

F0? II := 1 T0 17 D0
BEGIN FORHTO LOOP

JSILAODDI/I] 2: BuHlENTPV¢/JlHLHAX¢(/I-1)?
END:

v THE VALUES IN JKTHASK ARE THE SAFE AS THOSE IN JKHASK 5
db

JKHASKTI l :3 33 JKTWASKII I :: 0:
JKNASKTE I :: 1; JKTHASKLZ I 3' 1;
JKHASKIB I =1 5: JKTHASKI3 I :- S;
JKHASKI5 I :: $0; JKTHASKI6 I 8 SD?
JKEASKTE I == 110: JKTHASKI5 I :: SID:
JKHASKI6 I =- $30; JKTHASKT6) =- 839;
JKFASKI7 I 3* IIF: JKTNASKI7 J :2 SIF3
JKHASKIS] == SIP; JKTHASKIS I is SIF?
JKHASKLQ J :3 SEE; JKTHASKLQ l :2 SF‘;
JKHASKIIOI SIFFS JKTHASKIIOJ :3 QIFFB
JKNASKIIIJ .- !3FF; JKTHASKIIII 1* SJFF:
JKHASKTIZI == STFF: JKTHASKIIZJ :: $7FE:
JKHASKIIZI -= SFFF; JKTHASK[13] :2 $FFF;
JKHASKIIQI := $1FFF; JKTHASKIIBJ ‘= SIFFF;
JKHASKLISI 3: $3FFF3 JKTHASKIISI 3! $3FFF3
JKHASK[l6I 3* $7EEF3 JKTHASK[I6l :I S7FEF$
JKHASKIITJ '= SFFFF; JKTHASKTITI := !FFFF;

C
C
C

■it!$801##3##‘tiititttttt■i■■i■i■■t■■■■t■ti■tt■■i■■■it■■ii■it■l■i■it■ttt P* INITIALIZATIUN OF LINE TYPE TABLES
NESTED FoR"To L00 s

tttt■tit‘titittttttttttttttitttttttttttitttttttttt■tttttttt■titttttttttt
6
96

FOR II:=NCLDIlG TU NOLAST DU
FDR /II == 3 T9 NKRCBUUT D0 9 PHINE ALL SECOND IDS 5
NDLTYT [Ilp/II]-NBTNTZ :ISFFFFS

0
¢ ---- SET UP CLEAR AND DISABLE CONNANDS ----
5

E09 /I 3*-NULDIAG TU NOLAST D0
BEGIN ‘

NBLTYTTIIaNKCLQL].NBINTZ :3 $0#00i ■SET THE TERMINAL BUSY BIT 5
N3LTVT[IIvNKDISL].NBINTZ :: $04033 ■TD BUSY OUT THE HDDEH 6

‘ND:
at

■LINE TYPE 0 INOLDIAG) USED FOR ON LINE DIAGNOSTICS DNLY.LINE 5
■CHARACTERISTICS ARE TAYLURED DINAHICALLY DURING EXECUTION ¢

40‘
NBLTYT INOLDIAJZ]oN8INTl:=HILTO; HODEH STATES PTR. TABLE ADDRS
NBLTYT [NOLDIApNKINIL].NBINTl€IS0O20€
NBLTYT [NOLDIApNKENBL].N8INTl:r$88h0€
NBLTYT (NOLDIApNKINPTl.NBTNT1:=SOZ003

INIT. SET (ISBN) *
ENABLE SET (DIR: RTSn ISRIA
INPUT SET (TON) 5

0
w
a
n
»

NBLTYT [NOLDIApNKOBT].N8INT1I-$8800: 0 OUT SET TRIS: DIR)
o
0
9
w

NBLTYT [NOLDIApNKDDUTl.NBINT1:-$01005 0IR.0UT SET (DON) *
5

NBLTYT (NOLDIAoNKINUUToNBINT13ISO100; IN.AFT.0 SET (DON) AND 5
NBLTYT [NOLDIAyNKINDU].NBINTZ3-SFDFF} RESETTIUNI *
NBLTVT [NOLDIApNKENDII.NBINTZ¢-$FDFF3 TERH.INP NESETIIDN) 5
NBLTYT [NOLD[ApNKENDOI.NBINT22-$FEFF; TERH.0UT RESETTDONI *

O
C
C

Figure H-1. PartiaL MPEDIT Program (Sheet 4 of 6)

60471200 G

a
ttttuutmccattttttmtctttttt#ttu#ttttt¢ttttttttttttttttttrtttttttttttttvtt

** SET UP BUFFER AREA POINTEVS **
ittttttttttttttttttttutvttttttttitttttttv■ittttt#tt#tt##¢ttt¥t¥###¥tt#Vt
&
vb

tit IDTBL tat

IDTQL D5F1NcS A NETHDPK I0 THE CCP. IT MUST 9E
TDENTTCALLV INTTTALIZLD IN EVERY VPU OF A NETWORK.

VDTRL CHNTAINE DNC FNTPY FDR EACH NPU IN THE NETHDRK.
EACH ENTRY TS A VARIA“LF NUMBER OF u0KuS FDLLOHED BY
i7FFC A5 A TERHINATOD. THE ‘TNAL ENTRY TS FOLLOWED HY
Tun C■NStCUTlVE TcRMINATDRS.

TH‘ F1P§T d0kD JF AN TOT“L ENTQI IS THE NUDE [0 OF THE
N°U IN JUESTTUN. IF THE NPd IS A LOCAL ■N£a EACH 10
ACfV§S‘u IIA CUUPLF9 TS CONTAINED IN FOLLDHTNG HURDS.
?INALL1y THEN? TS UHF H09“ F09 EACH TPUVK CONNECTED
TC TNT NFU: T4F LINK-9FMDTF—N■0F ID 15 TN THE RIGHT
HALF. ANU THF PUPT NUMBEP 13 TN TIE LéFT HALF.

A
INTEL? == 9iUT1Li A VASCAL IDTBL PUINTFP. 5

/lDT“L := DIDTRL ~ 1: 6 EDITING TDTBL POINTER. 8
/L := 0:

IL == IL 0 1: ITDTQL + IL .: 30016:
IL := IL 9 1: 4I0TRL 0 IL -= $0209:
/L == IL 0 T; /T“T8L 0 IL -2 70305:
IL == IL 9 1; IIDT%L + IL := iJ4uD:
I1 := IL 0 1: /IDTBL 9 IL := IEN“F:
/L := /L 0 X; /IQTEL " /L1: ?C(‘03€
/L == IL + 1; /TDTSL 4 I1 '= $0000:
/L == /L t 1; /I°THL + IL := $0001:
/L 1: /L 0 1: ITOTSL 6 /L :: I000};
/L := IL * 1: IIDTBL 0 /L := ICND‘:
IL '= /L + 1; IIDTJL 9 IL := £OuOC:
/L '= /L 0 1; ITDTSL 0 /L := ‘G000:
IL := IL 6 1; IlDT3L 9 IL 1: $3001;
IL == /L 4 1: II“TaL 4 It == S0004:
IL := IL + 1; /TDTBL 9 /L := IENnE€
IL ‘x /L 0 1: IIDTEL 0 /L :: §ouo0:
IL '= IL 0 1; /XDTBL 9 Il := $0000:
/L := /L 0 1: ITDTBL 9 IL := $0001:
IL 2- /L 9 1: /IDTBL 0 /L := $Ou05:
IL := IL 0 1; /XDTBL 4 IL == IENDE:
IL =- IL 6 1; IIDTBL 0 IL =- IENDE:

B3S8UF :s IL 9 IIDTBL 0 1: nINCREHENT AVAILABLE CORE PTR &
9

O
0
0

a6
an::::x:vt¢¢¢¢:tttttmvu¢:twt»mtsxtutvttttttt¢¢¢rt¢¢ttt
t t
* SVT UP dASE TCB FILLD DE5CR!3TUK TARIF *
3 t
¢xa«¢\¢::¢:4wt:-t¢¢votxm::tt:uvmm¢::vttttmxttnotttttt;

n;
DOTC%FFT := DGTCDFDT;

,9$
gq1;3;nr[r1.noNwn=Nr := *0: »kO. OF ENTQIFS *

at
/a:TClA35 == 5:
hbTC1kDT[E).WDF>TRT »= ISTART(BST£LAS>)3
DGY"uFDr[5].D0;LNTH := /LFNGTH(RSTCLA§S):
n®TC5CDTf t].DDFDISP := RSTCLASS:

,y&
/E2WMNTR := 1?:
3G1.:‘fT[]7].WDFSTRT = ISTART(R$■dNE°)3
“■T:1’"T(12].DDFLVTH == ILENGTd(Ba1WNE9)3
n¢TC%FCT[1?].DPFDISP := VSWHVFQ:

-it
/JSTM 13;
DG1T3FLT[T’].70CSTPT
02TCJFDT[13].CDFLVTH
■GTC3FOT[1?].DDFDI5P

l§TAQT(“§CN):
/lE“GTA(E$CN)?
EEC“?II

II
-
H

II

Figure H-1. Partial MPEDIT Program (Sheet 5 of 6)

60471200 G

■$

ION
D5TCBFDT[14].DDFSTRT
DGTC9FDT[14].DOFLNTH
DGTC5FDT[14].DDFDI$P

/SN
DGTCBFDT[15].DDF3TRT
DGTCBFDT[15].DDFLNTH
DGTC3FDT[l5l.DDFD1S°

IBSIPRI
UGTCBFDT[17].0DFSTRT
DGYCBFDTi19].DDFLNTH
DGTCBFDT(l9].DDFDISP

O
O
I

CBTIHTBL[COHLlP].CBINTVAL

14;
3F;
7:
BSLLCB:

15$
73
7:
HSLLCB$

1°;
ISTART(BSIPRI)3
/LENGTH(BSIPQIl§
BSIPPIE

Z}3:
nuntutuuunuunntutnnnnu-auntutttntntnutuonutu
■*END APPLICATION UNIQUE EXECUTION STATFHENY SDURCE‘4
rvtttittI#t#tttttt#ttt$ END OF ASSIGNMENT SECTION
FNO.

Figure H-1. Partial HPEDIT Program (Sheet 6 of 6)

cvaen MINI cnass 515155 - LINK 501102 -

n5nonv 1n105 FILE ounp

ttto ittl tt■z 0tO3 tttk ttts ttib ttt7 tits O#U9 #ttA Ott■ tl#C Otto OOIE OOOF

H5105=
0000 1: 0142 5239 3420 2020 4343 5020 5041 5249 4145 5420 4c4F 4144 2040 4544
0010 554: 4520 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020:)

R96

HEADER
0000 r:0040 4000 5145 5245 5020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
0010 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2051 4552 4520:)

ZFRUK
0000 t=14o0 5471
0010
9020
0030 :1

M510=R
0000 t:0005 4015 +571 4245 4749 4:53 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
0010 2020 2020 20zc 2020 2020 2020 2020 2020 2020 2020 2020 2042 4547 494511

a=0INx
5070 1:0401 C000 005C 0402 C800 0413 C003 0040 0404 C000 1400 5059:)

HEADFP
0000 t:o04o 4000 0100 5042 4945 5452 4554 4552 5255 5054 2054 5241 5053 2054 4142 4c45
1010 2025 4c4r 4144 2041 5420 2431 3030 2920 2020 2020 2020 2049 4554 5241:)

PBYNIV
0130 1: 140c 1593 1400 1504 1400 5203 1400 5257
0110 1400 5513 5430 4cFc 0514 5400 4c5c 0510 1400 5015
0120 1400 5300 1400 5530 1400 5007 1400 5003
0130 1400 5005 1400 5558 1400 5057 1400 5703 :1

HEADER
0000 r=0010 400: 0140 4155 4050 5320 5441 424c 4520 4345 4554 4149 4553 2041 5540 5053
0010 2054 4520 2020 2020 2020 2020 2020 2020 2020 2020 2020 2041 5540 5053:)

JUHPS
0140 t:1400 1400 3093 1400 F071 :1

HEADEP
0000 110015 4000 0150 4144 4452 4553 4520 4345 4554 4149 4553 2054 4045 2041 4444 5245
0010 5353 4553 2543 4545 5445 4554 5320 4545 2020 2020 2020 2041 4444 5245:]

100n5s
0150 121151 1250 1099 1091 1237 00:4 1774 1205 1ac9 0050 1059 0017
0100 171c 1513 1902 1100 0032 0095 0005 :1

Figure H-2. SampLe Memory Image Load ModuLe HexadecimaL

60471200 “'7G

INDEX

Abbreviating Address Specification 3-3
ABSOLMP 3-4
Absolute Addressing 3-2
Add

Object Code to New Library, *ALL,
Programs to Library, *PUT 2-5

Address
Assignment 3-3

Assignment Section 4-6

Expressions, MPEDIT 4-5
Functions

MPEDIT 4-4
/ENTRY 4-5
/LENGTH 4-4

/START 4-4
/VFD 4-5

MPLINK 3-2
Memory 3-2
Parameters 3-7

Specification, Abbreviating 3-3

Addressing
Absolute 3-2
NPU 3-1
Page 3-1

Array
Declaration 4-6
NPU 4-8

Assignment, Address 3-3

Assignment Section 4-6

Blank Common Area 3-10
Block

Object Text F-1
BZS —

ENF
ENT
EXF
EXT
NAM
RBD
XFR

Record F-1

Boundary, Linking 3-9

‘*1

TT”?T”” J-\l\3I-—J-‘U39-3LaJl\7

CCP Downline Load File 1-1
Character Set A-2
Command Format for the Utilities 1-2

Comments 4-9
Common Area

Blank 3-10
Labeled 3-11

Composite Assignment Statement 4-8

Constant Declaration 4-6

Data Format Input to the Utilities 1-2
Declarations

Array 4-6
Constant 4-6
MPEDIT 4-6
Variables 4-6

Define
Blank Comon Area 3-10

Dynamic Variable Area 3-10

60471200 G

Define (contd)
Entry Points 3-9
External Synonyms 3-10
Labeled Comon Area 3-11

Linking Boundary 3-9
Lower Limit for Linked Modules 3-9
NPU Memory Size 3-10
Stack Area 3-10

Upper Limit for Linked Modules 3-9
Delete Programs 2-5

Diagnostics
Messages B-1
MPEDIT 4-11

Directive
END MPLINK 3-11
MPLINK Overlay 3-7
Parameters, MTLINK 3-7

Directives
MPLIB 2-5
MPLINK 3-7
MWLINK Sumary 3-8

Directives File
MPLIB 2-1, 2-5
MPLINK 3-4

Downline Load File, CCP 1-1
DUMP Listing 3-11
Dynamic Variable Area 3-10

Edit

Examples H-1

Utility 1-1, 4-1

Empty Assignment Statement 4-9

End, Library Building 2-6

Entry Name, MLINK Memory Map Sorted by 3-6

Entry Point 3-9

Equate Variable to Expression 3-10
Error Messages

MPEDIT 4-11
MLIB 2-6
MLINK 3-11

Example
Edit H-1
Link C-1
MPEDIT Constant, Variable, and Array

Declarations 4-6, 4-7

MPLIB Library Listing 2-2
MPLINK Memory Map Sorted by Entry Name 3-6

MPLINK Memory Map Sorted by Module Name 3-5

Executing
MPEDIT 4-1
MPLIB 2-2
MTLINK 3-7

Expressions 3-10

Expressions, MTEDIT 4-5
External Symbols, MEDIT 4-4
External Synonyms 3-10

Field Length Address Function 4-4
Field Start Address Function 4-4

Field, Variable 4-5
Files

CCP Downline Load 1-1
Initialized Load Module 4-10

Library 2-5, 3-10

Index-1 O

Files (contd)
Memory Image Load Module

Linked Modules 3-9
Linking Boundary 3-9

MTEDIT Linking Modules 3-7
Inputs 4-1 Listing
Outputs 4-1 Library 2-2, 2-3, 2-6

MPLIB Load File DUMP 3-11
Directives 2-1, 2-5
New Library 2-

SYMTAB 4-10
Trace 4-9

Object Code 2-1 Literals, MPEDIT 4-4
Old Library 2-1 Load File
Output 2-1 cc? 1-2

MPLINK DUMP Listing 3-11
Directives 3-7 System 3-9
Object Code Input 3-4 Load Module File
Optional Memory Image Load Module E—1 Listing 4-10
Output 3-4 Memory Image 3-4, D-1
Symbol Table 3-5 Optional Memory Image E—1
System Load 3-9 Local Assignment Statement 4-7

FOR Statement 4-8 Local Symbols, MPEDIT 4-3
Format Lower Limit, Linked Modules 3-9

Comands for the Utilities 1-2
Data Input to the Utilities 1-2
MEDIT Program 4-2 Memory Address Parameters, MPLINK 3-7
MPLIB Library File 2-2 Memory Image Load Module File 3-4, D-1

Function Memory Map
Address 3-2 Sorted by Entry Name 3-6
MEDIT Address 4-4 Sorted by Module Name 3-5

/ENTRY 4-5 Memory Size, NPU 3-10
/LENGTH 4-4 Messages
/START 4-4 Diagnostic B-1
/VFD 4-5 MPEDIT Error 4-11

MPLIB Error 2-6
General Comand Format for Utilities 1-2 MPLINK Error 3-11

1-General Data Format Input to Utilities 2 Mnemonics C-3
Glossary C-1 Module Name, MPLINK Memory Map 3-5

Modules
Linking 3-7, 3-8

Identifying System Load File 3-9 Reverse-Linked (Loaded) 3-8
Initialization Local Module File 4-10 MTEDIT
Input Files Abort Option 4-2

MEDIT 4-1 Address Assignment Statement 4-7
MPLIB 2-1 Address Expressions 4-5
MPLINK 3-3 Address Functions 4-4

Input, Relocatable Object Code F-1 Array Declaration 4-6
Inputs Assignment Section 4-6

MTEDIT 4-1 Constant Declaration 4-6
MPLIB 2-1 Diagnostics 4-11
MPLINK 3-3 Error Messages 4-11
Utilities 1-2 Execution 4-1

Introduction Expressions 4-5
Library Maintenance (MPLIB) 2-1 External Symbols 4-4
MTEDIT 4-1 Inputs 4-1
MPLINK 3-1 Introduction 4-1

Keywords 4-3
Literals 4-4
Local Assignment Statement 4-7
Local Symbols 4-3
Operand Expressions 4-5

Keywords, MEDIT 4-3

Labeled Common Area 3-11 Outputs 4-1
Library Program Flow 4-3

Add Programs 2-5 Program Format 4-2
Building 2-6
Delete Programs 2-5
File 2-1, 3-10

Program Structure 4-6
Reserved Words 4-3
Statement Format 4-2

New 2-1 SYMTAB Listing 4-10
Old 2-1 Syntax 4-2

Listing 2-2, 2-6 Trace Listing 4-9
Maintenance, Introduction 2-1 Utility 1-1
Suppress Copying Programs 2-6 Variable Declaration 4-6

Limit MPLIB
Lower, Linked Modules 3-9 Directives 2-5
Upper, Linked Modules 3-9 Directives File 2-1

Link Error Messages 2-6
Examples C-1 Execution 2-2
Utility (MPLINK) 1-1, 3-1 Inputs 2-1

. Index—2 60471200 G

MPLIB (contd)
Introduction 2-1

Library File Format 2-2
Library Listings 2-2
New Library File 2-

Object Code File 2-
Old Library File 2-
Output Files 2-1
Sample Library Listing 2-3
Utility 1-1

MPLINK
Abort Option 3-7
Directives 3-7

File 3-4

Overlay Identifier Parameter 3—7
Parameter Names 3-7
Parameters 3-7

Summary 3-8
Error Messages 3-11
Execution 3-7

Inputs 3-3
Introduction 3-1
Listings 3-5

Memory Address Parameters 3-7

Memory Map Sorted by Entry Name 3-6
Memory Map Sorted by Module Name 3-5
Object Code Input File 3-4
Output Files 3-4
Procedural Flow 3-4

Utility 1-1

r-—|--ar--

Names

Entry 3-7
MPLINK Directive Parameter 3-7

New Library 2-1, 2-6
NPU

Addressing 3-1
Array 4-8
Memory Size 3-10

Object Code
File

MPLINK Input 3-4
Relocatable F-1

Suppressed Copying to Library 2-6
Programs 2-5

Old Library File, MPLIB 2-1
Operand Expressions, MPEDIT 4-5
Optional

Form of Initialized Load Module File 4-10

Memory Image Load Module File E-1
Output Files

MPLIB 2-1
MPLINK 3-4

Outputs
MTEDIT 4-1
Utilities 1-2

Overlay
Areas 3-9
Modules 3-9
MPLINK Directive 3-7

Packed Binary (PB) Parameter F-1

Packing an NPU Array 4-8
Page

Addressing 3-1

Register 3-3
Register Selection 3-2

Parameters
MPLINK Directives 3-7
MPLINK Memory Address 3-7
MPLINK Overlay Identifiers 3-9
Names, MPLINK Directive 3-7

60471200 C

Program
Flow, MTEDIT 4-3
Flow, MPLINK 3-4
Format, MEDIT 4-2
Library Maintenance 2-1
Structure, MEDIT 4-6

Programs
Deleting From Library 2-5
Object Code 2-5

Suppress Copying to Library 2-6

Register Page 3-3
Relocatable Object Code Input F-1
Requesting

Initialized Load Module File Listing 4-10
Optional Form Load Module File Listing 4-10
SYMTAB Listing 4-9
Trace 4-9

Reserved Words, MPEDIT 4-3
Reverse-Linked Modules (Loaded) 3-8

Specifying
Abbreviated Address 3-3
Library File 3-10

Memory Address 3-2
Modules to be Linked 3-7
Modules to be Reverse Linked 3-8
Overlay Areas and Modules 3-9

Stack Area 3-10
Statement

Address Assignment 4-7
Composite Assignment 4-8

Empty Assignment 4-9
FOR Assignment 4-8
Local Assignment 4-7

Summary
MTLIB Directives 2-5
MPLINK Address Function Keywords 3-2
MPLINK Directives 3-8

Suppress Copying Programs to Library 2-6
Symbol Table File (SYMTAB) 3-5

Symbols
MEDIT External 4-4
MPEDIT Local 4-3

SYMTAB Listing 4-9, 4-10

Variable Declaration 4-6

*ALL 2-5
*CB 3-9
*COM 3-10
*COR 3-10
*DAT 3-11
*DEL 2-5
*DMP 3-11
*DSTK 3-10
*DVAR 3-10
*END 2-6
*ENT 3-9
*L 3-7
*LIB 3-10
*LL 3-9
*LST 2-6
*0VLY 3-9
*PUT 2-5
*RL 3-8
*SUP 2-6
*SYN 3-10
*SYSID 3-9
*UL 3-9
*VE 3-10
/ENTRY 4-5
/LENGTH 4-4
/START 4-4
/VFD 4-5

Index-3 O

3Nl1

‘.')NO1V

in)

COMMENT SHEET

MANUAL TITLE: CYBER Cross System Version 1 Build Utilities Reference Manual

PUBLICATION NO.: 60471200

REVISION: G

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number
references).

Please reply No reply necessary

FOLD FOLD

NOPOSTAGE
NECESSARY
IFMAKED
!NTHE

UNITED smres

BUSINESS REPLY MAIL IIIIIIIII—-

IIIIIIIIIIII
FIRST CLASS PERMIT NO. 3241 MINNEAPOLIS, MN.

e

POSTAGE WILL as PAID BY ADDRESSEE S

IIIIIIIIIIIII

IIIIIIIIIIIII

@3c:oNTI{oL DATA_.

IIIIIIIIIII
Publications and Graphics Division —
Mail Stop: S\/L104

P.O. Box 3492

Sunnyvale, California 94088-3492

"'}I;IB
"""

“F2216”

NO POSTAGE STAMP NECESSARY [F MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

NAME:

COMPANY:

STREET ADDRESS:

CITY/STATE/ZIP:

TAPETAPE

CORPORATE HEADQUARTERS, PO. BOX 0, MWNEAPOLIS, MINN 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

(:33 CONTROL DATA

LITHO IN U.S.A.

no.

	Front Cover
	Title Page
	i
	Revision Record
	ii
	List of Effective Pages
	iii
	iv
	Preface
	v
	vi
	Contents
	vii
	viii
	ix
	x
	Introduction
	1-1
	1-2
	Library Maintenance Utility
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	Link Utility
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	Edit Utility
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	iAppendixes
	Character Set
	A-1
	A-2
	Diagnostic Messages
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	Glossary
	C-1
	C-2
	C-3
	C-4
	Memory Iage Load File Format
	D-1
	D-2
	D-3
	D-4
	Optional Memory Image Load Module File Format
	E-1
	E-2
	Relocatable Object Code File Format
	F-1
	F-2
	F-3
	F-4
	Link Utility Example
	G-1
	G-2
	Edit Utility Example
	H-1
	H-2
	H-3
	H-4
	H-5
	H-6
	H-7
	H-8
	Index-1
	Index-2
	Index-3
	Index-4
	Comment Sheet
	
	Back Cover

