60471200

(G2 CONTROL DATA

CYBER CROSS SYSTEM
VERSION 1
BUILD UTILITIES

REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 2
NOS/BE 1

60471200

(G2 CONTROL DATA

CYBER CROSS SYSTEM
VERSION 1

BUILD UTILITIES
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 2
NOS/BE 1

Revision
A (04/76)
B (06/76)
C (11/77)

D (08/79)

t

(02/80)

g

(10/80)

«

(11/22/82)

REVISION RECORD

Description
Manual released.
Manual Update (ECO 06420).

Corrections on pages 3-2 and 3-11.

Manual revised to incorporate CYBER Cross NOS R6.

Manual revised to change above references from R6 to R5.

Manual revised to incorporate on-line console removal and all PSRs to level 528. Manual
title changed from CYBER Cross System, Version 1 Link Editor and Library Maintenance
Programs Reference Manual. This revision obsoletes all previous editioms.

Manual revised at PSR level 580 to reflect release of CYBER Cross System Version 1.2,
which runs under NOS Version 2.1 Release 6.1. The description of the AUTOLINK and EXPAND
utilities has been removed from this manual and placed in the Communications Control

Program Internal Maintenance Specification.

REVISION LETTERS I, O, Q, AND X ARE NOT USED

CDCOPYRIGHT CONTROL DATA CORPORATION

1976, 1977,

1980, 1982
All Rights Reserved

Printed in the United States of America

ii

Address comments concerning this manual to:
CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. Box 3492
SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this manual

60471200 G

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision
Front Cover -
Title Page -
ii G
iii/iv G
v G
vi G
vii G
viii G
ix G
1-1 G
1-2 G
2~1 thru 2-6 G
3-1 thru 3-11 G
4-1 thru 4-11 G
A-1 F
A-2 G
B-1 thru B-7 G
C-1 thru C-4 G
D-1 thru D-3 G
E-1 F
E-2 F
F-1 thru F-4 G
G-1 G
H-1 thru H-7 G
Index-1 thru -3 G
Comment Sheet/Mailer G

Back Cover

60471200 G iii/iv

PREFACE

D ..

This manual was formerly called the CYBER Cross
Link Edit/Library Maintenance Reference Manual.
Under its new form and title, this manual describes
three CYBER Cross System build utilities that aid
in generating load files for a CONTROL DATA® 255x
Network Processor Unit (NPU). These load files
contain the on-line system for a network processing
unit. The load files are of two types:

A Communications Control Program (CCP) used as
a part of a NOS Network

A Communications Control INTERCOM (CCI) used as
a part of a NOS/BE Network

The utilities are run on a CDC® CYBER host:
either the CYBER 180 Computer Systems; the CYBER
170 Computer Systems; the CYBER 70 Computer
Systems; or the 6000 Computer Systems under either
the NOS 2 operating system or the NOS/BE operating
system. The reader 1is assumed to be familiar with
the command structure of these operating systems.

The utilities described in this manual are:

The 1library maintenance utility (MPLIB) used
with CCI, which allows the user to generate a
new library of object code modules. While this
utility could be used with CCP, the current
installation procedures do not use it.

The link utility (MPLINK), which assigns space
for modules and links modules together. This
utility produces a memory image load module
file that can later be converted to a load
file. The wutility is used with both CCP and
CCI.

The edit utility (MPEDIT), which allows the
user to initialize values in the memory image

The memory image load module file that is produced
for an NPU by MPLINK and MPEDIT is composed of
object code modules that were initially generated
by one of three CYBER Cross programs:

The CYBER Cross PASCAL compiler
The CYBER Cross macro assembler

The CYBER Cross micro assembler

Therefore, to fully use the capabilities of the
utilities, the reader of this wmanual should be
familiar with:

The installation procedures using a NOS or
NOS/BE operating system

The CYBER Cross version of the PASCAL compiler

The CYBER Cross macro assembler and micro
assembler

The NOS 2 and NOS/BE manual abstracts are pocket-
sized manuals containing brief descriptions of the
contents and intended audience of all manuals for
NOS 2 and NOS/BE and their product sets. The manual
abstracts can help a particular user determine the
manuals that are of greatest interest.

The Software Publications Release History can help
a user determine which revision level of software
documentation corresponds to the Programming Sys—
tems Report {PSR) level of installed site software.

Related material 1is contained in the publications
listed below. These publications are listed alpha-
betically within groupings that iundicate relative

load module., The utility is used with both CCP importance to readers of this wmanual. Applicable
and CCI. operating systems are also indicated.
The following manuals are of primary interest:
Publication

Publication Number NOS 1 NOS 2 NOS/BE 1

CYBER Cross System Macro Assembler

Reference Manual 96836500 X X X

CYBER Cross System Micro Assembler

Reference Manual 96836400 X X X

Network Products

NAM Version 1 Network Definition

Language Reference Manual 60480000 X X

NOS Version 2 Installation Handbook 60459320 X

NOS/BE Version 1 Installation Handbook 60494300 X

60471200 G

ve

Publication

Publication Number NOS 1 NOS 2 NOS/BE 1
NOS Version 2 Reference Set,

Volume 3, System Commands 60459680 X

NOS/BE Version 1 Reference Manual 60493800 X

NOS Version 2 System Maintenance
Reference Manual 60459300 X

The following manuals are of secondary interest:

Publication

Publication Number NOS 1 NOS 2 NOS/BE 1
CCP Internal Maintenance Specification 60490029 X X

NOS Version 2 Diagnostic Index 60459390 X

NOS/BE Version 1 Diagnostic Index 60456490 X

NOS Version 2 Manual Abstracts 60485500 X

NOS/BE Version 1 Manual Abstracts 84000470 X
Software Publications Release History 60481000 X X X

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

o vi 60471200 G

CONTENTS

NOTATIONS

1. INTRODUCTION

Library Maintenance Utility (MPLIB)
Link Utility (MPLINK)
Edit Utility (MPEDIT)
Inputs to the Utilities
General Command Format for the Utilities
General Data Format Input to the Utilities
Outputs From the Utilities

2. LIBRARY MAINTENANCE UTILITY

Introduction
MPLIB Inputs
MPLIB Directives File
MPLIB Object Code File
MPLIB Old Library File
MPLIB Output Files
New Library File
Library Listings
Executing MPLIB
MPLIB Directives
*ALL - Adds All the Object Code File
Programs to the New Library
*PUT - Adds Programs to the Library
From the Object Code File
*DEL - Deletes Programs From the Library
*SUP -~ Suppresses Copying Programs From
the Object Code File to the Library
*LST - Lists a Library
*END - Ends the Library Building Operation
MPLIB Error Messages

3. LINK UTILITY

Introduction
NPU Addressing
Page Addressing Mode
Absolute Addressing Mode
Specifying a Memory Address
Address Functions
Abbreviating Address Specification
Address Assignment
MPLINK Input Files
MPLINK Directives File
MPLINK Object Code Input File
MPLINK Output Files
Memory Image Load Module File (ABSOLMP)
Symbol Table File (SYMTAB)
MPLINK Listings
Executing MPLINK
MPLINK Directives
MPLINK Directive Parameters
Names
Overlay Identifiers
Memory Addresses

60471200 G

ix

NRORONNRNNR NN
I
(O O o

tfutr’ww

[L U
S WWWNNN P =

| S I I Y B |
NNN N NNV

wwwuwwutruuwwwwuw

Summary of MPLINK Directives

*], - Specifies Modules to be Linked

*RL - Specifies Modules to be Reverse
Linked

*CB - Defines Linking Boundary

*LL - Defines a Lower Limit for
Linked Modules

*UL - Defines an Upper Limit for
Linked Modules

*SYSID ~ Identifies the System Load
File

*QVLY - Specifies Overlay Areas and
the Modules in an Overlay

*ENT - Defines Entry Points

*SYN - Defines External Synonyms

*COR - Defines NPU Memory Size

*LIB - Specifies Library File

*VE - Equates a Variable to an
Expression

*DSTK — Allocates a Stack Area for
Recursive/Reentrant PASCAL Programs

*DVAR - Allocates a Dynamic Variable
Area for PASCAL Programs

*COM - Defines a Blank Common Area
for Macro Assembler Programs

*DAT - Defines the Labeled Common Area

*DMP - Generates the Memory Image Load
Module File Hexadecimal Listing

*END - Ends MPLINK Directive Input
File

MPLINK Error Messages

4. EDIT UTILITY

Introduction
MPEDIT Inputs
MPEDIT Outputs
Executing MPEDIT
MPEDIT Statement Format
MPEDIT Syntax
Keywords
Reserved Words
Local Symbols
External Symbols
Literals
Address Functions
/START - Field Start Address Function
/LENGTH - Field Length Address
Function
/ENTRY - Entry Point Address Function
/VFD - Variable Field Definition
Address Function
MPEDIT Expressions
Operand Expressions
Address Expressions
MPEDIT Program Structure
Constant Declaration Part
Variable Declaration Part
Array Declaration Part
Assignment Section
Local Assignment Statement
Address Assignment Statement

W w
i
~ o~

£
]
—

UL L

[

J-\J-\J-\L\J-\J-\J‘-\&\J-\J-\L\J-\J‘#

Jr‘l‘\] 1
(S SR AP WOWWNN = ——

Lty

[|

L\L\L\L\J-\J-l\bi-\b&\b
NN OOt

vii @

FOR Assignment Statement
Composite Assigmment Statement
Empty Assignment Statement
Comments
Requesting a Trace Operation
Requesting the SYMTAB Listing
Requesting the Initialized Load Module
File Listing
Requesting the Optional Form of the
Initialized Load Module File

MPEDIT Diagnostics and Error Messages

APPENDIXES

mo oWk

Character Set

Diagnostic Messages

Glossary

Memory Image Load Module File Format

Optional Memory Image Load Module
File Format

F Relocatable Object Code File Format
G Link Utility Examples

H Edit Utility Examples

INDEX

® viii

FIGURES

I-1 Producing a CCP Downline Load File -2
2-1 Format of an MPLIB Library File 2-2
2-2 Sample MPLIB Library Listing 2-3
3-1 Page Register Selection 3-2
3-2 MPLINK Procedural Flow 3-4
3-3 Sample MPLINK (Partial) Memory Map

Sorted by Module Name 3-5
3-4 Sample MPLINK Memory Map Sorted by

Entry Name (Partial) 3-6
4-1 MPEDIT Program Format 4-2
4-2 MPEDIT Program Flow 4-3
4-3 Examples of MPEDIT Constant, Variable,

and Array Declarations 4-7
4-4 Methods of Packing an NPU Array 4-8
4-5 Partial MPEDIT Trace Listing 4-9
4~6 Partial MPEDIT SYMTAB Listing (Sorted

by Entry Name) 4-10
TABLES
2-1 Summary of MPLIB Directives 2-5
3-1 Summary of Address Function Keywords 3-2
3-2 Summary of MPLINK Directives 3-8
60471200 G

NOTATIONS

Throughout this manual, the following conventions
are used to present statement formats, command
formats, request formats, operator type-ins, and
diagnostic messages:

UPPERCASE Uppercase letters indicate words,
acronyms, keywords, or mnemonics
required by the network software as
input to it, or produced as output.

lowercase Lowercase letters identify vari-
ables for which values are supplied
by a console operator, a programmer
using batch input, or by the system
itself.

pee Ellipses indicate omitted entities
that repeat the form and function

60471200 G

of the last entity given. In PASCAL
statements, ellipses are indicated

by.c.).
[} Square brackets enclose entities
that are optional., If omission of

an entity causes the use of a de-
fault value, the default is noted.

{} Braces enclose entities from which
one must be chosen.

All numbers are given in decimal notation unless
otherwise specified. Hexadecimal numbers in text
are 1indicated by a subscript 16; for instance,
C000,¢. Hexadecimal parameters in commands re-
quire the display code designator, the dollar sign
($); for example, $CO00.

ix

INTRODUCTION 1

This manual describes the utility programs used to
build the memory image load module file and to
maintain the object code 1library file for 255x
Network Processor Unit (NPU) on-line programs.
These utilities are used with the standard Com—
munications Control Program (CCP) or Communications
Control TImtercom (CCI) installation procedures
described in the NOS and NOS/BE Installation Hand-
books. The wutilities are called and executed
automatically from those installation procedures.
The utilities are:

A library maintenance utility (MPLIB) used only
with CCI

A link utility (MPLINK) used with both CCP and
CCI

An edit utility (MPEDIT) used with both CCP and
CCI

All the utilities execute on a CYBER host computer
operating under either NOS or NOS/BE.

Figure 1-1 shows the logical flow of the utilities
in producing a downline load file for a CCP system.

LIBRARY MAINTENANCE
UTILITY (MPLIB)

This utility uses object code either from a previous
library or from one of the CYBER Cross compilers or
assemblers to generate a new library file. The
library consists of object code which includes a
directory to all the modules on the libraries.

LINK UTILITY (MPLINK)

MPLINK assigns space and links together all the
modules that are to be a part of the load file.
Each module is assigned an execution space on a
memory image load module file, which, after initial
values are assigned, can be converted to the 1load
file for the NPU.

EDIT UTILITY (MPEDIT)

After MPLINK generates a memory image load module
file {ABSOLMP) and a symbol table file (SYMTAB),
the edit utility initializes values in selected
variables. The variables to be initialized and the
initialization values are specified by an MPEDIT
program that uses a PASCAL-like syntax.

INPUTS TO THE UTILITIES

There are two types of inputs to the utilities:

Directives files. These directives are arranged
into a batch input file.

Other files. The most important of these files

consist of object code modules that are built
into the on~line CCP or CCI system.

60471200 G

GENERAL COMMAND FORMAT FOR THE
UTILITIES

Directives are used as the command inputs to the
utilities. The general form of any directive is a
command identifier (keyword) followed by a set of
parameters:

KEYWORD,paraml ,param2,...,paramn

Parameters are separated by commas. Parameters
usually specify either values (such as the size of
NPU memory) or files (such as an application pro-
gram name).

GENERAL DATA FORMAT INPUT TO THE
UTILITIES

The data inputs to the utilities are modules in
object code format that are generated by the CYBER
Cross PASCAL compiler, by the CYBER Cross macro
assembler, or by the CYBER Cross micro assembler.
When used, the object code modules can be:

Separate files newly produced from one of the
agssemblers or compilers

Separate files read from magnetic tape or mass
storage

Selected records read from a program library

OUTPUTS FROM THE UTILITIES

When used with NOS installation techniques, the
principal output from the link and edit utilities
is an initialized memory image load module on mass
storage in the host computer, This load module can
then be converted by the Load File Generator (LFG)
into a downline loaded and formatted file.

A similar use of the link and edit utilities oper-~
ating under NOS/BE produces an initjalized memory
image load module on mass storage in the host com-
puter. This load module can be converted into a
downline loaded and formatted file.

Optional outputs from various wutilities include
load maps, listings of all modules, and diagnostic
reports.

The principal output from the library maintenance
utility is a new, indexed library of the selected
on—line NPU modules in object code format. All
program libraries are held on the CYBER host’s mass
storage. Object code modules selected from any
library are used to build a new load file for the
on~line CCI system. The library maintenance utility
could be used to build a new CCP library.

Another output of the library maintenance program
is a listing of the programs on the library, to-
gether with information about these programs.

MPLIB oLD 0BJECT CODE
DIRECTIVES LIBRARY MODULES
FILE FILE FILE
MPL INK NEW OBJECT CODE MODULES
DIRECTIVES LIBRARY FILE FROM CYBER CROSS
FILE FILE ASSEMBLER OR PASCAL
COMPILER
(OPTIONAL)
NONINITIALIZED
MEMORY IMAGE MPEDIT SYMBOL TABLE

LOAD MODULE
FILE (ABSOLMP)

DIRECTIVES FILE

FILE (SYMTAB)

INITIALIZES
VALUES IN LOAD
MODULE FILE

OTHER LOAD
MODULE TYPE

FILES (OVERLAYS
MUX LEVEL CODE)

INITIALIZED
MEMORY IMAGE
LOAD MODULE

FILE

NOS
LOAD FILE
GENERATOR

CCP LOAD FILE
READY FOR
DOWNLINE LOADING
IN THE NPU

Figure 1-1.

Producing a CCP Downline Load File

60471200 G

LIBRARY MAINTENANCE UTILITY

2]

e

INTRODUCTION

The library maintenance program (MPLIB) can be used
with the Communications Control Program (CCP) or
the Communications Control INTERCOM (CCI) but
currently is used only with CCI. The utility uses
a set of directives operating on a set of object
code files to generate a new library. MPLIB uses
two files:

An object code file., This file contains the
object code for modules that are to be added to
the new library or that are to replace existing
object code modules of the same names which are
already on the old library. This file is re-
quired. If there is no old library, the modules
on the object code file create a library.

The old library file. Although this file is
optional, it is usually present.

The user has the option of ordering listings of the
new and/or the old libraries.

MPLIB INPUTS
The library maintenance utility requires two files:
A directives file

The object code file that contains the modules
used to generate the library

If a library has already been built, MPLIB also
requires the old library file.

Several calling parameters are assoclated with the

library maintenance utility. These parameters are
discussed in the Executing MPLIB subsection.

MPLIB DIRECTIVES FILE

This file contains the directives in the order of
execution. The directives:

Cause modules to be selected for the library or
deleted from an existing library

Allow the operator to order a listing of the
new and/or the old library

Terminate the library maintenance operation

The default name of this file is INPUT.

60471200 G

MPLIB OBJECT CODE FILE
This file contains the object code of modules that:
Build a new library for the first time

Replace existing modules of the same name on
the old library (the new library contains these
modules)

The relocatable object code format of these modules
is given 1in appendix F. Object programs that
replace old programs of the same name are added to
the new library at the same relative position as
the replaced module. Wew object code programs that
were not on the previous library are added to the
end of the new library in the order in which they
occur on the object file. MPLIB adds a directory
record to this file.

The default name of this file is LGO.

MPLIB OLD LIBRARY FILE

This file was created by a previous run of MPLIB.
Once a library file has been created, it cannot be
modified by MPLIB. A library file 1is modified by
creating a new file.

The format of a library file is shown in figure 2-1.
The first record of the file consists of the file
name and the library directory. Each program in
the 1ibrary has an entry in the directory. Follow-
ing this is the object code of each program. Each
program is contained in a single record; the records
appear in the same sequence as their entries in the
directory.

The default name of this file is OLDLIB.

MPLIB OUTPUT FILES

MPLIB produces two output files: the new library
file and an optional listing of the new and the old
library file.

NEW LIBRARY FILE

The new library file has the same format as the old
library file. However, it contains additional
modules and substituted modules (as specified by
the directives) and lacks modules that the direc-—
tives have deleted.

The default name of the new library is NEWLIB.

2-1

FORMAT OF PROGRAM NAME

LIBRARY FiLE FORMAY AND ENTRY POINT RECORD

FORMAT OF OBJECT PROGRAM INFORMATION
{IN THE FROGRAM NAME AND ENTRY POINT RECORD}

i

LOGICAL RECORD, WITH A
MAXIMUM SIZE OF 4,902

OBJECT PROGRAM n CARD IMAGES).

) 4

NOTE: AN OBJECT PROGRAM IS ONE

SIXTY-BIT WORDS {312 OBJECT

END OF FILE

o]

0
ALL ZEROS 1

{END-OF - TABLE WORD)

—— W 53 47 41 % 20 1 ! [
OGAAM NAME A OBJECT PROGRAM 1 INFORMATION | [] @ l a I o l - l - l °] PrOGRAM
ENTRY POINT RECORD OBJECT PROGRAM 2 INFORMATION
*
° 59 0
END OF RECORD : 2 OBUECT PROGRAM SIZE (60.B1T) J
OBJECT PROGRAM n INFORMATION
- END-OF-TABLE WORD*
I [¥ W N 17 11 5 0
OBJECT PROGRAM 1 \
, y . Je]a]a]=]<]=]
i
END OF RECORD : » % % B 17 1 5 o
- FORMAT OF OBJECT PROGRAM 4[° lcalalalalr_f.leﬁ]
OBJECT PROGRAM 2 r" OBJECT CARD IMAGE 1 (NAM) . "
1 118 SIXTY-8IT WORDS) . .
H OBJECT CARD IMAGE 2 . .
i (RBD OR ENT OR €XT. EVC) . .
END OF RECORD | < ™ ¥ ® 2 1 1 5 0
} b n [} lctJ 2 lc&] o4 lcsl fJ
i OBJECT CARD IMAGE n (XFR)
\ NOTES: 1. WORD 1 CONTAINS THE SIXCHARACTER
J

NAME AND THE LENGTH OF THE PROGRAM
IN 18817 WORDS,

2 WORD 2 CONTAIMS THE LENGYH OF THE
OBJECT PROGRAM IN 80-BIT WORDS.

3 WORDS 3 THRU n CONTAIN THE SIX-
CHARACTER NAMES OF ENTRY POINTS
N THE PROGRAM. NOTE THAT A
PROGRAM MAY HAVE NO ENTRY POINTS.

Figure 2-1.

LIBRARY LISTINGS

The
requested by an MPEDIT directive.
is used,
file.

optional new and old 1library 1listings are
If the directive
the listing file is sent to the output

The user can order printed copies of the

file using the techniques described in the NOS/BE
reference manual.

A library 1listing consists of program names, pro—
gram lengths, and program entry points for each of
the programs on the library. A sample listing is
shown in figure 2-~2.

If both the new and the old library listings are

ordered, the old library is the first part of the
output file and the new library is the second part.

EXECUTING MPLIB

The wutility is executed by attaching the MPLIB
permanent file and then using the name call state-
ment (see the NOS/BE reference manual).

Five parameters, which specify files, are agso-

ciated with the MPLIB name call statement. The

format of the statement is:
MPLIB{,1fnl,1fn2,1fn3,1fn4,1fn5.]

where:

1fnl is the object code input file name (de-
fault name is LGO)

1fn2 is the input directives file name (default
name is INPUT)

Format of an MPLIB Library File

1fn3 is the output listing file name (default
name is OUTPUT)

1fn4 is the old library file name (default name
is OLDLIB)

1fn5 is the name of the new library file created
by the MPLIB run (default name is NEWLIB)

The parameters are positional. Therefore, 1if a
parameter is omitted, its delimiting commas must be
retained. If a call uses all default parameters,
all commas are omitted. Such a default call 1is
terminated with a period to indicate the lack of
delimiting commas.

Example 1:
MPLIB.

This call uses an object code file, LGO (1fnl),
which is operated on by the directives file, INPUT
(1fn2), to produce a mnew library, NEWLIB (1fn5),
from an old library, LGO (lfn4). It outputs any
listings to the library file OUTPUT (1fn3).

Example 2:
MPLIB, , ,OLDOBJ,NEWOBJ.

This call uses default parameters for the object,
directives, and listing files. However, it names
the new and old libraries.

This call uses an object code file, LGO (1fnl),
which 1is operated on by the directives file, INPUT
(1fn2), to produce a new library, NEWOBJ (1fn5),
from an old library, OLDOBJ (1fn4). It outputs any
listings to the listing file, OUTPUT (1fn3).

60471200 G

MPLIB Directives

*ALL.
*LST ,NEW.
#«END.

NEW LIBRARY

PROGRAM
ZEROX
BEGINX
PBINTR
JUMPS

ADDRES

PBLNOO
PBLNO1
PBLNO2
PSLNO3
PBLNO6
PBLNO8
PBGETC
PBPUTC
PBCALL
PNSTOR

PBFILE

PILMT

PBAMAS
PBLMAS
PBOMAS
PBSMAS
PBBEXI
PBAEXI
PBSETP

PBCLRP

LENGTH ENTRY POINTS
0040 ZEROX
0008 BEGINX
0040 PBINTR
0010 JUMPS
001a CIBADD

CCPLEV
CCPCYC
ADDRLC
ADDRES
CCPVER
ADDRSU
0029 PBLNOO
001F PBLNO1
001F PBLNO2
001F PBLNO3
0020 PBLNO6
001F PBLNOS
0008 PBGETC
0007 PBPUTC
0008 PBCALL
0022 PNSTOR
0028 PBDF
PBBF
Q03¢ PILMT
0012 PBAMAS
000D PBLMAS
00cE PBOMAS
000¢ PSBMAS
Q0008 PBBEXI
000e PBAEXTL
0022 PBSETP
000c PBCLRP

PBPSWI
PBPUTP
PBGETP
PBSTPM
UNLOCK
QULOCK
PBRTCD
QENTRY
QEXIT

BUFMAIL

LISTSR

PBSTOP
PBSLJ

PTTPIN
PBSCLA

MODMST

ASMUSE

HSPRUI

HS2PRU

HSPRUT

HSPMGS

COPY ALL OF LGO

0013
0017
0011
0013
000F
0011
00cB
0048
001E
0076

0028

001¢
0007
002a
002F

00ce

000¢

00cCF

a00c

PBPSWI
PBPLTP
PBGETP
PBSTPM
UNLOCK
QULOCK
PBRTCD
QENTRY
QEXIT

PBRELC
P3REL1
PBGET1
PBRELZ

PBLSGE
PBLSPU

PBSTOP
PBSLY

PTTPIN
PBSCLA

MILT8
MILT?
MILTO
MILTS
MILTY
MILT3
MILTS
MILTA

HDCDY
HINSPT
HTERMZ2

H2ISPT

HXTPT

HNTTPT
H1ATPT
H2PTPT

INSTA? 01A7

TPST78 01C1

SCFLIB
SCFLIB
SCFLIB

BIV020
BIVO40
BIVO50
81C230
B1C250
BIC400
81C410
BIC420
BIC430
BINTXT
BINOOS
BIN110
BIN140
8IN180
BINGAD
BISTID
8ISTBL
BISTRS
BISTRC

BIX100
8IX140
BIC100
3I1C210
BIY350
BICLAS
BIDCDN
B8I0OVER
BIBUTH
BITERM
BIC200
3IN230
BIN250
BIT100
BIX130
8IX150
BIX160
BIX170
81X180
BIX190
31X200
BIX210
31X240
BIX250
BIX300
BIX320
8IX350
BIX440
BIX450
BIERRO
BITOO1
810009

B27TPT
B37TPT

NAKHMS BSCMSG 002D ACKOMS

60471200 G

Figure 2-2. Sample MPLIB Library Listing (Sheet 1 of 2)

PBCOMP 001F PBCOMP ACKHMS ACKIMS
EOTBMS

PBRDPG 0010 PBRDPG INPST7 021D BISTAR WACKBM
BIDISC TTDBMS
BIENTR DISCBM
818010 ENQBMS

NAKBMS

PDEXIT 004cC PDEXIT PNTMLD 0098 PNTMLD

PDSTTR 0282 PDSTTR PNCNTL 00546 PNCNTL

PDTERM 0011 PDTERM PNLCR 0026 PNLCR

OLDIAG 048F OLDIAG PNSTAT 002F PNSTAT

OLDMUX 0012 OLDMUX PN1LNS 0077 PN1LNS

PTMSQU 003A PTMSQU PN2LNS 005¢ PN2LNS

PTMSCA 0070 PTMSCA PNLNST 0087 PNLNST

PTDELM 0048 PTDELM PN1TML 009F PN1TML

PTTYMU 0007 PTTYMU PNTMLS 009A PNTMLS

PTTYTI 054F PTTYTI PNBRDC 0138 PNBRDC

PTTYTC 000 PTTYTC PN1BRD Q07 PN1BRD

PNAWAI 001F PNAWAI PNOVLO 0118 PNOVLO

PNRTN 000A PNRTN PNOVLD 0089 PNOVLD

PNSMBA 0056 PNSMBA PNOVLT 001A PNOVLT

PNLNBA 004D PNLNBA PNFRCE 0027 PNFRCE

PNRVRS 0021 PNRVRS PNPSTA 00A2 PNPSTA

PNTO000 0037 PNT000 PNDSTA 0129 PNDSTA

PNQREL 0035 PNQREL PNSMGE 0125 PNSMGE

PNGT(CB 004cC PNGTCB QDEBUG 0021 QDEBUG

PNTCB8S 0066 PNTCBS PBCLR 0028 PBCLR

PNDLTC 009f PNDTLC PBDISP 0068 PBDISP

PNDISC 0009 PNDISC PBLOAD 004A PBLOAD

PNSMTR 000A PNSMTR PBILL 0007 PBILL

PNSMWL 0171 PNSMWL PBHALT 01c1 PBHALT

PNSMDI 00E4 PNSMDI PBMON 0063 PBMON

PNCONF 0294 PNCONF TOTIME 0011 TOTIME

PNLNCH 01AE PNLNCH TOSTAR 0008 TOSTAR

PNTMLC 02eC PNTMLC TOSTOP 0008 TOSTOP

PNDELE 009 PNDELE PIDTBL 0081 PIDTBL

PNENAB 006F PNENAB MAINS 0018 MAINS

PNDISA 0105 PNDISA

PNLINE Q0F5 PNLINE

Figure 2-2. Sample MPLIB Library Listing (Sheet 2 of 2)

60471200 G

MPLIB DIRECTIVES

I There are six MPLIB directives. Four of them choose
the programs that form the new 1library. One of
them selects the optional listings. One of them
terminates the directives list. Except for the
terminating statement, the directives can occur
in any order. Table 2-1 summarizes the WMPLIB
directives.

TABLE 2~1. SUMMARY OF MPLIB DIRECTIVES

Name Function

*ALL Adds all the programs on the object code
file to the new library file.

*PUT Adds selected progams to the new library
file. Also replaces old library file
programs with object code file programs
of the same name,

*DEL Suppresses copying of specified programs
from the old library file to the new
library file.

*Syp Suppresses copying of specified programs
from the object code file to the new
library file. Used only with the *ALL
directive.

*LST Requests a listing of either the new
library or the old library.

*END Terminates the directives file and ends
the library building operation.

All directives begin with an asterisk (*); any
directive can be terminated with an optional period.
The general form of an MPEDIT directive is:

*DIRECTIVENAME[,parameter.]
] A1l directives begin in position 1.

If there are no directives in the directive file,
the old library is copied to the new library with-
out alteration.

*AllL - ADDS AlL THE OBJECT CODE FilE
PROGRAMS TO THE NEW LIBRARY

The *ALL directive causes MPLIB to copy all the
programs on the object code file to the new library
file. 1t is used to create a new library for the
first time. It can also be used for adding a set
of new modules (such as a terminal interface pro-
gram) to an existing library.

The format of the directive is:

*ALL[.]

*PUT = ADDS PROGRAMS TO THE LIBRARY
FROM THE OBJECT CODE FILE

The directive is used to select programs for inclu-
sion in the new library. 1Tt is also used to replace
programs on the old library file with programs of

60471200 G

the same names from the object code file. The
utility can be used in the latter manner to update
a program library.

The *PUT directive can add either a single program
or a sequence of programs from the object code file
to the new library file.

The single program format of the directive is:
*PUT,mod{.]

where mod is the program name. Tt starts with a
letter. If the name exceeds six characters (letters
or numbers), MPLIB® discards the seventh and follow~
ing characters. The names on the old library are
no longer than six characters.

If a program is replaced with a new version of the
program, the new program has the same place in the
new library index and in the library file.

The series program format of the directive is:
*PUT ,mod 1~mod2{.]

where modl is the name of the first program in the
object code sequence, and mod2 is the name of the
last program in the sequence. Names are truncated
to six characters as uecessary. If the programmer
wishes to replace a series of programs on the old
program library, the names of all programs in the
sequence must be identical to the new names. This
form of the directive is particularly useful for
adding new applications to a library, or replacing
applications where the modular structure of the
application has not changed.

A dollar sign (§) sywmbol can be substituted for the
name of the first or last program on the object
code file.

*DEL - DELETES PROGRAMS FROM
THE LIBRARY

The *DEL directive suppresses copying the specified
program or programs from the old library to the new
library.

The single program deletion format is:
*DEL ,mod[.]

where mod is the program name. If the name exceeds
six characters, MPLIB discards the seventh and
following characters.

The series program deletion format is:
*DEL ,mod1-mod2{.]

where modl is the first of the programs to be
deleted during copying, and mod2 is the last pro-
gram to be deleted in the sequence. All programs
on the library index between {and including) the
named programs are deleted. (A listing of the old
library can be produced by a *LST directive to find
the order of programs on the library.)

A dollar sign ($) symbol can be substituted for the
name of the first or last program on the library
file.

*SUP = SUPPRESSES COPYING PROGRAMS
FROM THE OBJECT CODE FILE TO THE LIBRARY

The *SUP directive is wused only with the *ALL
directive. It allows the user to suppress copying
of the specified program or programs from the
object code file to the new library.

The single program suppression format is:

*SUP ,mod{.]

where mod is the program name. If the name exceeds
six characters, MPLIB discards the seventh and
following characters.

The series program suppression format is:

*SUP,mod1-mod2{.]

where modl is the first of the programs to be
deleted during coping, and mod2 is the last program
to be deleted in the sequence. All programs on the
object code file between (and including) the named
programs are deleted.

A dollar ($§) symbol can be substituted for the name
of the first or last program on the object code
file.

*LST = LISTS A LIBRARY

The *LST directive is used to request either a
listing of the new library or a listing of the old
library.

The format for the old library listing is:
*LST,O0LD[.]

The format for the new library listing is:
*LST,NEW[.]

If both 1listings are requested, the old library
occurs first on the output file.

*END -~ ENDS THE LIBRARY BUILDING
OPERATION

The *END directive terminates the directives file.
The format of the directive is: I

*END[.]

MPLIB ERROR MESSAGES

Library maintenance wutility error messages are
listed in table B-1 of appendix B. The signifi-
cance of the message and the action that should be
taken when the message appears are also given in
that table.

60471200 G

LINK UTILITY

3l

INTRODUCTION

The link utility (MPLINK) uses an input directives
file and an input object code file to generate two
outputs (see figure 1-1 in section 1):

A memory image load module file consisting of
object code modules. The local file name (1fn)
for this file is ABSOLMP. The file’s modules
are located in wmemory image order; that is,
they have the absolute addresses they would
have if they loaded into a Network Processing
Unit (NPU). Initializable variables have the
same values that they have on the object code
input file. These variables are initialized
later to selected values by the edit utility.

A symbol table (1fn = SYMTAB) consisting of the
module names and entry points.

The edit utility uses both these files plus its own
input directives to generate an initiallized version
of the memory image load module file. This load
module can then be used to generate the downline
load files used by the host to load a Communica-
tions Control Program (CCP) or a Communications
Control Intercom (CCI) system into an NPU.

If standard CCP installation procedures are used,
this program is generated by the build procedures
from the release tapes; its use is generally in~
visible to the system installer (see the NOS and
NOS/BE Installation Handbooks}.

The MPLINK input directives file can be:
User~supplied

Generated by SCF procedures during a standard
CCI installation

The link atility supplies special output listings
including memory maps, symbol lists, input direc-
tives, and a hexadecimal 1listing of the memory
image file.

NPU ADDRESSING

MPLINK assigns each module to an execution area in
main memory, in extended memory, or in an overlay
area of wmain memory. To uniquely address 128K
(131072) words, an 18-bit address is provided (only
17 bits of the address are used). However, when
paging registers are used, an ll-bit address will
locate any word on a 2K (2048) word physical page.
The remaining seven high-order bits are used to
designate the logical page. Note that both CCP and
CCI use an 8K (8196) word logical page.

60471200 G

The NPU has two addressing modes: paged and
absolute, In either mode, the operating system
calculates a 16-bit address for each memory ref-
erence.

In the absolute mode, the 16=-bit value is the
effective address in the range 0000 to FFFFq.

In the page address mode, the page registers
are used to achieve an effective 18-bit memory
address in the range 0000 to 3FFFFyy4 (only
the range 0000 to 1FFFjg is used).

PAGE ADDRESSING MODE

In page addressing mode, the NPU memory is sub-
divided into physical pages, each of which {is 2K
words long. The location of a word within a page
requires an 1ll-bit address {(range 000 to 7FF16)
and is called the page displacement. Page dis-
placement 1is the least significant bits of an NPU
address.

Each page 1is assigned a unique identification
(range 00 to 7F;¢) called the page number. The
page number uses the most significant bits of an
NPU address.

Page displacement taken together with page number
gives an 18-bit addressing capability.

During page addressing wmode, a page number is
associated with one of the 32 hardware paging
registers (range 00 to IF;¢). This association
requires five bits of the address and is handled by
an MPLINK directive that associates the page numbers
with the page registers. Page register selection
(five bits) together with page displacement (11
bits) gives the normal 16 bits of memory address
referencing.

There are two sets of 32-page registers. Either
set (0 or 1) can be active at any one time. The
set being used is selected by the executing pro-
gram. Figure 3-1 correlates the 18-bit address to
page register and page displacement.

MPLINK assumes that all memory address specifica-
tions are in the page addressing mode. Therefore,
each addressing specification has four distinct
components:

Page displacement

Page number

Page register

Page register set

16-817T ADDRESS REFERENCE VALUE

PAGE DISPLACEMENT

PAGE REGISTER
REG SET 1
0 PAGE NUMBER

1 PAGE NUMBER

. L4
[] L d
] .

31 [PAGE NUMBER]

18-BIT EFFECTIVE ADDRESS
10

PAGE REGISTER POINTS TO A ; 15 10
SPECIFIC REGISTER DEPENDENT)
UPON WHICH REGISTER SET i$ PAGE REGISTER
CURRENTLY IN EFFECT. T
l
PAGE REGISTER i
peG SET O "
[PAGE NUMBER |
- o~ ——1d
1 PAGE NUMBER
prr - —
[] L] }
[] * I
L]
|
31 I PAGE NUMBER] :
|
|
|
i 17
L

-D[PAGE NUMBER l

Do e —— - — — i W — ——— -

-

PAGE DISPLACEMENT

Figure 3-~1. Page Register Selection

ABSOLUTE ADDRESSING MODE

The link and edit wutilities do not support an
absolute addressing mode directly. However, the
default mode causes MPLINK to generate a program
that effectively is an absolute addressing mode.
In this case, address assignments are made entirely
from page register set O.

In default mode, the page register contents are the
same as the page register numbers; that is, page
register 0 has a zero value, page register 1 has a
1 value, etc. The resulting address resolution
provides the same addresses that would be generated
if absolute addressing mode was used.

SPECIFYING A MEMORY ADDRESS

The memory address is specified in three parts:

Number
of Bits Address Part
18 An effective address consisting of
a page number plus page displacement
5 Page register
1 Page register set

The format of the address is:

effective address:page register:register set
Note that address parts are separated by colons.
Each part 1s a numerical value in one of seven

formats:

A decimal constant. This is preceded by a sign
if necessary. Examples: 10, -734.

A positive hexadecimal constant. This is pre-
ceded by a dollar sign ($). Examples: $2000,
$4FAC.

A linked module name.

An entry point name.

An overlay area name.
A local variable name.
An address function.

A previously linked module name with an explicit
address assignment, a defined entry point name, a
defined overlay area name, a defined local variable
name, or an address function can be used as any
part of the specified address. The effective
address associated with any of these names repre-
sents the numerical address value.

Address Functions

MPLINK provides five functions that c¢an be used
with an operand or an address expression to gen-—
erate a part of an address. The functions are
requested by means of keywords. If this method is
used, specification must have the following format:

/keyword (name)
where keyword is a reserved word used by the link
utility for a specific operation, and name identi-

fies a module, an entry point, or an overlay.
Table 3~1 summarizes the allowable keywords.

TABLE 3-1. SUMMARY OF ADDRESS FUNCTION KEYWORDS

Keyword Value Returned by the Function

PGDISP 11-bit page displacement

PGNUM 7-bit page number

PGREG 5~-bit page register

PGSET 1-bit page register set

oviD Last two characters of the overlay
name in which the overlay module
resides

60471200 G

For example:
/PGNUM(PNSMWL,)

Returns the 7-bit number of the page used
by the service module (PNSMWL).

Address functions can be used only if the module,
entry point, or overlay has been explicitly named
and the assignment of the address related to the
name has preceded the reference.

Examples of a full address specification are:
$13B75:5A:1

The 18-bit effective address 1s composed of
a page number = 27;¢, and a page displace-
ment of 3754.

Page register 10 is to be used.
Page register set 1 is to be used.
MODA: /PGREG(MODB):1

The 18-bit effective address is taken from
the starting execution address of MODA,

The page register where MODB is located is
to be used.

Page register set 1 is to be used.
$1A45: /PGREG(MODA) : /PGSET(MODB)

The 18-bit effective address 1s composed of
a page number (3) and a page displacement
of 045;4.

The page register where MODA is located is
to be used.

The page register set where MODB is located
is to be used.

Abbreviating Address Specification

It is not always necessary to specify the second
{page register) and third (page register set) parts
of the memory address. If only the first part of
the address is specified (either as a constant or
an address fuanction), the page register is equal to
the page number portion of the effective address
(upper seven bits), and the page register set is
assumed to be the same as iIn the previous memory
address specification. For example:

$421F:8:0

$421F:8

$421F::0

$421F
All specify the same address: the page displace—
ment is 2lFj4, the page number is 8, the page
register is 8, and the page register set is 0.
Addresses are specified similarly 1if an address

function is used. For example, MODA is equivalent
to MODA: PGREG(MODA):PGSET{MODA),

60471200 G

ADDRESS ASSIGNMENT

MPLINK maintains an internal location counter for
the four-component memory address. The location
counter {which is used to assign space within the
memory image file) is initially set to zero. The
components are updated automatically as the memory
image file 1s generated. Specifying a memory
address within a link or overlay directive is the
only method used by the link or edit utilities to
explicitly assign an address.

As 16~bit words of a module’s object code are moved
into the memory image load module file (possibly
with address resolution), the words are assigned
consecutive memory addresses. If assigning the
next address causes a memory page overflow con—
dition, the internal location counter is adjusted
to the first word (displacement = 0) of the next
consecutive page. At the same time, the page
register value is incremented by one.

Note that memory page overflow is not an error
condition unless the resultant page register value
is greater than 31 or the page number is greater
than 127.

Unless MPLINK is given a specific load address for
linking a module, the memory address assigned to a
module is the next available memory address held in
the internal location counter.,

An area of memory that is designated as an overlay
area can have several different module groupings
for the area. Such a module grouping is called an
overlay. On-line CCP or CCI execution of these
different groupings occurs at different times.

Each overlay has a unique, two-letter Iidentifier.
If the user does not gpecify the identifier, MPLINK
assigns the next alphabetic character in sequence
{range AA through ZZ) when the next overlay f{s
built. The binary equivalent of the identifier
is returned to the user with each OVID keyword
assignment.

The first overlay module of an overlay group is
assigned the memory address at the start of the
overlay area. Subsequent overlay modules of the
same group are assigned space directly following
the previously linked overlay module. MPLINK
assigns overlay wmodules in this fashion until the
next *L directive with an explicitly declared
address occurs {the *L directive declares the
overlay name). The wuser must explicitly declare
all overlays using this directive.

MPLINK INPUT FILES

The user must supply MPLINK with two input files:
one file contains directivesg, the other file con-
tains object code modules. The user has the option
of supplying a library file in addition to, or
instead of, the object code module file. The MPLINK
procedural flow is shown in figure 3-2. Examples
of the use of MPLINK are given in appendix G.

3

MPLINK ggg?T
DIRECTIVE
s MODULES

~—

y

MPLINK

MEMORY IMAGE

LOAD MODULE SYMTAB
FILE (NON- {SYMBOL
INITIALIZED) TABLE)

{ABSOLMP)

OLD LIBRARY
{OPTIONAL)

LISTING

A

MEMORY IMAGE
LOAD MODULE
FILE
HEXADECIMAL

MEMORY MAP
SORTED BY
MODULE NAME

INPUT
DIRECTIVES

MEMORY MAP
SORTED B8Y
ADDRESS

ENTRY POINTS
SORTED BY
ENTRY NAME

ENTRY POINTS
SORTED BY
ADDRESS OR
VALUE

Figure 3-2.

MPLINK DIRECTIVES FILE
This file can be generated by one of the following:

CCP or CCI: The user can generate his own file
of input directives using the MPLINK directives
described later in this section.

CCI: The installer uses the SCF procedures
with the standard installation processes.

In all cases, the directive file is the first input
file presented to MPLINK.

MPLINK OBJECT CODE INPUT FILE
The required input file contains the object code
modules to be included in the build.

These modules in this file were previously put in
this form by a CYBER Cross assembler or compiler
(macro assembler, micro assembler, or PASCAL com-
piler). See the appropriate CYBER Cross Language
Reference Manual. The format of this relocatable
object code is given in appendix F.

Optionally, in CCI, the input modules file can be a
library file version of the modules in object code.
This file was previously produced by MPLIB. The
library file 1is always presented to MPLINK as the
NEWLIB file. The 1library is used by MPLINK to
resolve all unsatisfied external references.

3-4

MPLINK Procedural Flow

Note that any object code file must be rewound
prior to delivery to MPLINK; MPLINK does not rewind
the files automatically.

MPLINK OUTPUT FILES

Three types of output files are produced by MPLINK:
Memory image load module file (ABSOLMP)
System table (SYSTAB)

Listings

MEMORY IMAGE LOAD MODULE FILE
(ABSOLMP)

The file contains all the object code modules speci-
fied by the MPLINK directives. In this absolute
memory image file:

All modules are assigned to a specific execu-
tion address.

All modules
register.

are assigned to a selected page

All relocatable addresses converted to

absolute addresses.

are

All external references are resolved.

All overlay modules are grouped in specified

overlay areas.

60471200 G

SYMBOL TABLE FILE (SYMTAB)

The SYMTAB file contains the entire set of entry
symbols and module names defined by MPLINK. Each
entry has a value (either a memory address, a dis-
placement, or a constant), a field start location,
and a field length.

MPLINK LISTINGS

MPLINK automatically produces five 1listings; a
sixth listing can be produced at the user’s option.
The listings are:

A copy of the input directives file.

A module memory map sorted by module name.

A

sample partial listing is shown in figure 3-3.

A module memory map sorted by module address.

An entry symbol list sorted by entry name.

A

sample partial listing is shown in figure 3-4.

An entry symbol list sorted by address.

A hexadecimal 1list of the memory image load

file (optional).
directive.

This is requested by the #*DMP

MODULE *ADDRESS* *MODULE* *ADDRESS*
AACAPL 493¢ PBCOMP 53C1
AAEAPL 48FC PBCOPY S7EE
AAEBCD 48FC PBDELE 653
AASBAP 4A3C PBOLTX 58(8
AASCST 48BC PBDNAB 7607
AASTAP 49FC PBFILE 5325
ABAPLA 498C PBFMAD 7F84
ACAPLA 4C3C PBFMAH 6235
ADDRFS 0150 PBFRNC 7A94
AEAPLA 487¢ PBGETP 5422
AFBCDA 4AFC PBHALT 8096
ASCF26 1539¢:339¢ PBHDRB T6FF
ASCE29 1535C:335¢C PBIIPO 7758
ASTDAS GATC PBILL 808F
ASYERR 11729:3729 PBINSE 657D
ASYLEM 4781 PBINTP 76CB
ASYMSG 4788 PBINTR 0100
ATAPLA 497¢ PBIOPO 7956
A128¢B 153pC:330cC PBLCPSB 5732
A7TO6P 4C8C P8LCBT 6A21
BEGINX F671 PBLLEN 6B8F
BUFMAIL 54DA PBLLRM 6800
CLEANU 16221:2221 PBLMAS 5350
EBCA12 1551€:351¢ PBLNKD 7¢01
E26ASC 1549C:349¢C PBLNKU 7BAS
E29ASC 1541C:341¢C PBLNOO 1F98
FCSRCB 1559C:859¢ PBLNO1 1FC4
GLOBLS OpAD PBLNOZ 52¢8
HASPMS 858E PBLNQ3 527
HSPTCB 155BE:358E PBLNO4 5699
HSR4IP 85CA PBLNO6 4CFC
HSR4IT 14F6B:2F68 PBLNO? 56A5
HSR4TP 150F4:30F4 PBLNO8 5306
IC 16010:2010 PBLNO9 5681
ISPOLD 1F58 PBLN10 568D
JUHPS 0140 PBLN11 56C9
LIPSMA 848C PBLN12 56D5
LISTSR 5550 PBLN13 56E1
MAINS F659 PNLN14 S6ED
MODMST 5582 PNLN15 56F9
PBADJU 5¢7¢C PBLOAD 8045
PBAEXI 5385 PBLOST 76F5
PBAMAS 1FED PBMAX 577F
PB3EXI 5377 PBMEMB 5705
PBBFAV 5¢05 PBMIN S75F
PBCALL 1F8D PBMLIA 5077
PBCLKI 6514 PBMON 8085
PBCLRP 5385 P3OMAS 535D
PBCLR 801D PBPAGE 5928
PBCOIN 4C8E PSPIPO 774D

MODULE

PBPOPO
PBPROP
PBPSWI
PBPUTP
PBPUTY
PBABLK
PBQ1BL
PBRDPG
PBRTCD
PBSCLA
PBSETP
P3SLJ

PBSMAS
PBSTOP
PBSTPM
PBSTRI
PBSWLE
PBTICK
PBTIMA
PBTIMO
PBTMRS
PBTOAD
PBTOAH
PBTODE
PBTOQU
PBTOSR
PBTWLE
PBUPAB
PBUPDA
PBXFER
PB100M
PB16AD
PB18AD
PB18BI
PB18CO
PGDSTA
PGHALT
PGIVTC
PGSWIT
PIAPPS
PIBUF1
PIBUF2
PIDTBL
PIFR1

PIGETA
PLINIT
PILCBS
PILINI
PILMT

PIMLIA

CYBER MINI CROSS SYSTEM - LINK EDITOR -

MODULE MEMORY MAP - SORTED BY MODULE NAME

ADDRESS

7A7D
7TA55
53F1
5408
5878
4LELF
4ET78
53e0
5466
7297
5393
4EDB
5368
5578
5433
579F
76¢c0
6818
69A2
6805
6751
640F
6320
6956
6883
68DD
4LE36
76D4
66F3
5988
652F
69E7
5980
SA2A
5AD8
LEE2
17D47:3047
15E5C:3E5C
5184
FC77
FB822
FF98
868F
F99A
F8A4
FC37
F849
FD63
FGE8
FE97

MODULE

PINIT
PINWIN
PIPROT
PISIZIC
PITMRS
PIWLIN
PLCBIN
PLIOST
PLIPML
PLIPTC
PLIP
PLREAD
PLTKOP
PMCDRV
PMCOIN
PMMLFH
PMTISE
PMWOLP
PNAWAIL
PNBMPS
PNBRDC
PNCECN
PNCEFI
PNCNTL
PNCONF
PNDELE
PNDEQU
PNDIRA
PNDIRD
PNDISA
PNDISC
PNDLTC
PNENAB
PNFRCE
PNGTCB
PNLCR
PNLINE
PNLLCN
PNLLIN
PNLLLI
PNLLLO
PNLLRC
PNLLRE
PNLLSN
PNLLST
PNLLTC
PNLNBA
PNLNCN
PNLNST
PNOVLD

ADDRESS

FBAF
F724
FOTF
F6D5
FEQS
FBF3

1605¢:205¢

162¢0:22¢0
1621A:221A

16006:2006

162F2:22F2

160DD: 200D

16000:2000
6CDE
6C59
6470
7664
72C6
2198
537
38FE
4648
42AE
372E

15902:3902
2F7D
6104
60AF
6134
3118
2458
2346
3077
3F9A
2294
376D
32CA
265¢
7ADA
7E66
7ECS
7DEE
7D39
7058
3644
7FOC
4148
2762
391E
4300

Figure 3-3. Sample MPLINK (Partial) Memory Map Sorted by Modute Name

60471200 G

ENTRY##R /A**ADDRESS /VALUE#*BIT S/Lw *ENTRY*#*R/A**ADDRESS/VALUE**BIT S/L* *ENTRY*#*R/A**ADDRESS/VALUE**B17 S/L*
AACAPL R 493¢C AEAUTT R 4648 AISP4C R 4512
AACDAD A 0000 AEAUT2 R LO4LE AISP4E R LUFA
AACOPT A 0000 AEAUT3 R 4654 ALARM1 A 0001
AACORR R 488¢ AEBLS R 4584 ALARM2 A 0002
AAEAPL R 48FC AECHR1 R 466D ALARM3 A 0003
ARESCD R 48FC AECINT R 46DA ALCAPL R 4C7¢
AANREA A 0007 AECINZ R 460¢ ALCORA R 4ABC
AAOUTP A 0003 AECIN3 R 46E7 ALEAPL R 4BBC
AAREAD A 0004 AECING R L6E9 ALEBCD R 483¢C
AASBAP R 4A3C AECKMD R 45A8 ASASCI A 0022
AASTAP R 49FC AECODI R 46¢0 ASAUTO A 0018
ABAPLA R 498¢ AECOD2 R 46A0 ASCE26 R 1539¢:339¢C
ACAPL R 116FD:36ED AECSE R 116D7:3607 ASCE29 R 1535C:335¢
ACARTO A 0c8 AECSLL R 475F ASCINT R 176¢
ACAUTO A 0001 AECSL1 R 477 ASDISC A 0003
ACCAPL A 0004 AECSL2 R 477¢ ASSLL A 0004
ACCASE R 11887:3687 AEEINT R 4L6FS ASSOL A 0001
ACCORR A 0003 AEEIN2 R 46F7 ASXPT A 0002
ACDELM A 0002 AEEIN3 R 4702 ASXSOI A 0005
ACEAPL A 0002 AEEING R 4704 ASYNCE R 153A
ACEBCD A 0001 AEELL R 4505 AS2741 A 0020
ACELL A 0000 AEELT1 R 45CE ATAPLA R 497¢
ACEPL A 0001 AEELT3 R 45E0 ATELL A 0000 F:7
ACKMSG R 858€ AEEPL R 45F1 ATEPL A 0000 7:7
ACKPTP R 1068 AEEPT1 R 45F8 ATPDI2 R 11318:3318
ACLIHZ A 0000 AEESL1 R 4780 ATPDIS R 1133F:333F
ACLIMT A 0A00 AEESLZ R 4782 ATPD16 R 11363:3363
ACPBLI A 0001 AEINPT R 4583 ATPDIB R 11387:3387
ACPROS A 0002 AEINY R 458¢ ATPPR1 R 11203:3203
ACPCLR A 000¢C AEMBT R 455F ATPPRG R 112F2:32F2
ACPEVE A 0000 AESEDI R 473C AUCAPL R 4c3c
ACPICS A 0cs0 AESLL R 4570 AUCORA R 4LATC
ACPTOW A 0060 AES110 R 4658 AUEAPL R 4B7cC
ACPLRT R 1c0p AESTS0 R 4668 AUEBCD R 4AFC
ACPOBL A 0058 AES151 R 4662 AVASCE R 11729:3729
ACPOMA A 006¢ AES300 R 4574 AVASCP R 1E5D
ACPONS A 0048 AES301 R 467A AVB7TO R 1E74
ACPRMA A 0010 AEXBLS R 4635 AVCNTR R 1E3D
ACRITT A 000A AEXDLM R 463A AVCORE R 1173A:373A
ADDRES R 0150 AEXDTA R 462 AVCORR R 1ESE
ADDRLEC R 015F AEXPTO R 462F AVCRLF R 1E52
ADDRSU R 0160 AEXSOI R 4604 AVCRMS R 1€50
ADEADT A 0014 AE4XDL R 4787 AVEBCD R 1ESF
ADST1 A 0001 AE4XIN R 4792 AVEBCE R 1174A:374A
ADST2 A 0002 AIDLET A 0003 AVEOLS R 1829
AEABLS R 4T6A AIDLE A 0001 AVEOLT R 1E20
AEAPL R 11709:3709 AINPLE A D00E AVEOTM R 47A8
AEASCI R 4L6A7 AINPSB A 0000 AVEOTP R 1E58
AEATTN R 4769 AISPT1 R 44D5 AVINTA R 1€60
AEATT1 R 4775 AISPT6 R 4524 AVIS4C R 1654
LEGEND:
ENTRY Name of the entry symbol. It is up to six Lletters and numbers long. If a local entry,
the slash (/) is omitted.
R/A Entry type; R=relocatable, A=absolute, L=local.
ADDRESS/VALUE Address of the entry or its value. Addresses are a displacement from the first word of
the file. I1f address is 64K (65,536) or less, true address appears. If address is
above 64K, two addresses appear as shown: true:paged. For example, 10000:2000 has a
true address of 1000014 and a page address of 20001¢.
BIT S/L Field start position/field Length. Both of these values are given in bits. For start

CYBER MINI CROSS SYSTEM - LINK EDITOR -

ENTRY SYMBOL LIST - SORTED BY ENTRY NAME

position, bit 15 is the leftmost bit, bit 0 is the rightmost. Both start and length
have a range 0-Fqq4.

Figure 3-4. Sample MPLINK Memory Map Sorted by Entry Name (Partial)

60471200 G

EXECUTING MPLINK

MPLINK is executed by attaching the MPLINK permanent
file (local file name is MPLINK), and then execut-
ing the file name call statement MPLINK.

Four optional parameters are available with the
MPLINK file name call statement:

MPLINK[D=infile,R=outfile ,CSET=cset ,X=1]

where:

D 1s the logical file that presents the input
directives to MPLINK (default name is INPUT).

R is the logical file that receives the list-
ings (default name is OQUTPUT).

CSET is the host display code set to be used.

CSET=63 selects the CDC 63~character display
code set (this is the default value).

CSET=64 selects the CDC 64-character display
code set.

X=1 aborts the job if errors occur. If X=1 is
omitted (default action) the job will not abort
if errors occur.

Appendix G gives examples of executing MPLINK.

MPLINK DIRECTIVES

All MPLINK processing 1is controlled by the MPLINK
directives entered in the input directives file.
The general format of a directive is: .

*dirname,
paraml,...,parami{paramj.,.paramn] comment

where:

An asterisk (*) indicates the beginning of an
MPLINK directive.

dirname is the name of the directive.

paraml is a parameter.

The first parameter is separated from the directive
name by a comma. Additional parameters are sepa-
rated from one another by commas. Some parameters
are optional; optional parameters are enclosed in
brackets [,param]. Parameter types are discussed
below. Specific parameters are defined 1in the
descriptions of individual directives. A period
(.) terminates the command portion of the MPLINK
directive. Comments start after the period and
include all characters until the *, which starts
the next directive.

60471200 G

MPLINK DIRECTIVE PARAMETERS
An MPLINK parameter is either:
A name of:
A module
An entry point in a module

A synonym equating an entry point to an
external

The system being built
An overlay area
A local variable

An overlay identifier

A memory address

Names

A parameter name must begin with a letter. It can
contaln any number of following letters or numbers;
however, MPLINK uses only the first six charac-
ters. Therefore, all unique names must differ in
their first six characters. Identical names lead
to an MPLINK error.

For the purpose of parameter names, the dollar sign
($) 1s considered to be a number.

Overlay ldentifiers
An overlay 1identifier always consists of two
letters. If an identifier is not assigned in a

directive statement, MPLINK generates its own
overlay identifiers.

Memory Addresses

The allowable forms of memory addressing were
discussed earlier in this section.

SUMMARY OF MPLINK DIRECTIVES
Table 3-2 is an alphabetical summary of the MPLINK

directives. Detailed descriptions of the MPLINK
directives follow.

*L - Specifies Modules to be Linked

This directive links modules. The standard form of
the link directive is:

*L,mod ,addr.

TABLE 3-2. SUMMARY OF MPLINK DIRECTIVES

Name Function

*CB Defines the upper boundary for
linking programs.

*COM Defines the blank common area used by
macroassembler modules.

*COR Defines the size of the combined main
and extended NPU memories.

*DAT Defines a common data area for PASCAL
global variables.

*DMP Produces the hexadecimal listing of
the memory image load file.

*DSTK Defines a stack area to be used for
PASCAL reentrant/recursive procedures.

*DVAR Defines a dynamic variable area for
use with PASCAL variables.

*END Last statement of the input
directives file; ends the file.

*ENT Associates a memory address with an
entry point name.

*L Links one or more modules, or links
all the unlinked modules oun a library
file.

*LIB Defines the library file used to

resolve unsatisfied externals.

*LL Specifies a lower limit memory
address; modules cannot be located
below this address.

*OVLY Identifies and establishes the limits
of an overlay area.

*RL Links reverse-loaded modules with
the module ending address specified
in the directive.

*SYN Equates an arbitrary name with an
entry point name or a defined module
name.

*SYSID Specifies the name for the build.

*UL Specifies an upper limit memory
address; modules cannot be located
above this address.

*VE Assigns a variable expression value
to a local variable.

This form causes MPLINK to locate object code
module mod at starting address addr. As it is
located, other linking operations also occur:
addresses are made absolute and externals are
resolved.

There are five alternate ways of writing a link
directive:

3-8

*L,mod .

Links the object code module (mod) starting
at the word following the last word of the
module most recently linked by MPLINK. Note
that 1if trailing parameters are omitted,
their delimiting commas can also be omitted.

*L,,addr.

Links all object code modules in the object
code input file except those which are
expressly linked by other *L directives.
The modules are linked 1in the order in
which they occur on the input object code
file. The first module encountered starts
linking at the specified address (addr).
Note that the delimiting commas for the
omitted mod parameter must be retained.

*L,modl-mod?2,addr.

Links all the modules starting with modl
extending through mod2 on the object code
input file. The first module (modl) is
located at the specified address. The
other modules are located in order follow-
ing that module. If either modl or mod2
cannot be located, an error occurs.

*1,,mod 1-mod2.

Same as the previous form, except modl is
located at the address following the last
word of the module previously linked.

*L.

Links all object code modules in the in-
put object code file except those which
are expressly linked by other linking
(*L,parameters, or *RL) directives. The
modules are linked in the order in which
they occur on the input object code file.
The first module encountered starts at the
word following the last word of the module
most recently linked.

*RL - Specifies Modules to be
Reverse Linked

The reverse linking directive locates a module so
that the last word of the module is placed in the
specified address. There are two alternate forms
for the directive:

*RL,mod ,addr.

Links the module so that the last word is
placed in addr.

*RL,modl-mod2,addr.

Links a series of modules on the object
code input file, starting with modl and
extending through mod2. The last word of
mod2 is located at addr. The module ahead
of mod?2 is linked next, with its last word
immediately preceding the first word of
mod2. Other modules are linked similarly
until all modules in the sequence (includ-
ing modl) are linked. T1f either modl or
mod?2 cannot be found on the object code
input file, an error occurs.

60471200 G

*CB - Defines Linking Boundary

This boundary directive prohibits linking programs
above the specified address. The format of the
directive is:

*CB, addr.

More than one *CB directive can be used in the
directives file. If a second (or subsequent)
*CB,addr is used, the second address becomes the
new boundary value. If a *CB,0 directive is wused,
the boundary is removed.

Programs that are prevented from being linked by
the *CB,addr directive are subsequently linked by
the link all (*L) directive unless an *L has already
been used or there is no *L directive in the input
directives file. In either of these cases, the
unlinked modules are 1linked following the last
program linking.

*LL - Defines a Lower Limit for
Linked Modules

This directive prohibits any module from being
located below a given address in memory. If a
module’s starting address is less than the speci-
fied address, processing 1s halted and a fatal
error message is generated. The format of the
directive is:

*LL,addr.

Since *LL is positional (that is, it applies only
to linking directives that follow it in the direc-
tives file), more than one *LL directive can be
included {n the file. 1In this case, 1If *LL,addr2
follows *LL,addrl, the specified lower threshold is
changed to addr? for the remaining directives. To
cancel a lower limit, the user enters the directive:

*LL,0.

*UL - Defines an Upper Limit for
Linked Modules

This directive prohibits any part of any module
from being located above a given address in memory.
If a module’s ending address is greater than the
specified address, processing is halted and a fatal
error message 1s generated. The format of the
directive is:

*UL, addr.

Since *UL is positional {(that is, it applies only
to linking directives that follow it in the direc-
tives file), more than one UL directive can be
included in the file. In this case, if *UL,addr2
follows *UL,addrl, the specified upper 1limit is
changed to addr2 for the remaining directives.
To cancel an upper 1limit, the user enters the
directive:

*UL,0.

60471200 G

*SYSID - ldentifies the System
Load File

This directive establishes a user—supplied name for
the load file. The system name and the optional
text are placed in the memory resident header
record of the load file.

The format of the directive is:
*SYSID,namel,text].

If the SYSID is not specified in a directive, the
load file will not have a memory resident header
record. In such a case, if an *L directive in-
cludes a module with the name LOADER, that module
is placed at the head of the load file.

The optional text 1is any string of letters or
numbers up to a total of 48 characters.

*OVLY - Specifies Overlay Areas
and the Modules in an Overlay

This directive has two purposes:
It defines the limits of an overlay area.

It specifies the modules that are to be a part
of the overlay. An overlay consists of all
modules defined by *L directives which follow
one overlay directive and which precede the
next overlay directive or the *END directive.

The format of the *OVLY directive is:
*OQVLY ,name,ovlyid,addrb,addre.

where name 1is the overlay name (note that the
overlay name is six letters or numbers and has the
attributes of a defined entry point); ovlyid is the
two~letter overlay identifier; addrb is the begin-
ning address of the overlay area; and addre is the
ending address of the overlay area.

In using the *OVLY directive, the user should
observe these rules:

A memory image load module file can have no
more than ten overlay areas.

An *L directive that specifies the overlay area
name as its starting address designates Iits
first module as the start of that overlay.

Overlay areas cannot overlap.

*ENT - Defines Entry Points

This directive assigns a four-component memory
address to a user-assigned name. The name is used
to resolve like-named external references. The
name must not be the same as an entry point in an
already linked module.

The format of the directive is:

*ENT,name,addr.

*SYN - Defines External Synonyms

This directive equates an arbitrary name to a
declared entry point name or defined module name.
The equated name is to be used for resolving exter-—
nal references.

The format of the directive 1is:
*SYN,namel,name?2.

where namel is the name of a declared entry point
or a defined module; and name2 is the name to be
associated with namel. At every occurrence of
namel in the object code, name2 is substituted.

*COR - Defines NPU Memory Size

This directive defines the size of the NPU memory
for which the load file is being generated. The
format of the directive is:

*COR,addr.

where addr specifies one of the four legal CCP or
CCI memory sizes. These are:

SFFFF 65536 words
S13FFF 81920 words
S$17FFF 93302 words
$1FFFF 131072 words

1f addr 1is omitted, a default value of S$FFFF is
used. This 1s equivalent to an address speci-
fication of SFFFF:$1F:0; that is, FFFFjg is the
last address of memory, memory page 31 holds that
address, and address register set O is used for
that range of addresses.

*LIB - Specifies Library File
This directive specifies the 1library file that
MPLINK uses to resolve unsatisfied externals during
the linking process. The format of the directive
is:

*LIB.

The library file is always presented to MPLINK with
the local file name of NEWLIB.

*VE - Equates a Variable to an
Expression

This directive assigns the value of the specified
expression to the named variable. The format of
the directive is:

*VE,nam:=exp.

where nam creates a local variable of that name;
exp can have any of the following formats:

naml

constant

] -0

naml+constant
naml+nam2
naml-constant
naml-nam2

naml and nam2 can be 1local variables or entry
points that are absolute or have been previously
made absolute.

*DSTK - Allocates a Stack Area for
Recursive/Reentrant PASCAL Programs

This directive allocates the area that is used by
all reentrant and recursive PASCAL programs to save
processing parameters when a call is wade to a
program that has not completely finished processing.
The format of the directive is:

*DSTK,addrb,addre.

where addrb is the starting address of the area and
addre is the ending address.

The programmer can choose a starting address in any
part of main memory that is not to be used for
other purposes (buffers, programs, globals, or
other reserved areas).

*DVAR - Allocates a Dynamic
Variable Area for PASCAL Programs

This directive allocates the dynamic variable area
used by all PASCAL programs. The area is accessed
by the PASCAL standard procedure NEW. NEW 1is a
variable space allocation routine; it automatically
allocates space for a variable based on the type of
variable (see the CYBER Cross System PASCAL Compiler
Reference Manual).

The format of the directive is:
*DVAR,addrb,addre.

where addrb is the starting address of the area and
addre is the ending address.

The programmer can choose a starting address in any
part of main memory that is not to be used for
other purposes (buffers, programs, globals, or
other reserved areas).

*COM - Defines a Blank Common
Area for Macro Assembler Programs

This directive allocates a blank common area that
is referenced by macro assembler modules. The
format of the directive is:

*COM, addrb,addre.

where addrb is the starting address of the area and
addre is the ending address.

60471200 G

*DAT - Defines the Labeled
Common Area

This directive defines the labeled common area.
PASCAL global variables are assigned to this area,
and macro assembler programs can reference this
area. The format of the directive is:

*DAT, addrb, addre.

where addrb is the starting address of the area and
addre 1s the ending address.

The programmer can choose a starting address in any
part of main memory that is not to be used for
other purposes (buffers, programs, globals, or
other reserved areas).

PASCAL global variables are defined in an object
code module named GLOBL$. The appearance of GLOBLS
in an *L directive takes precedence over a *DAT
directive.

*DMP - Generates the Memory Image
Load Module File Hexadecimal Listing

This directive causes MPLINK to generate an output
file consisting of a hexadecimal dump of the memory

60471200 G

image load module file. The listing is sent to the
file named OUTPUT. The format of the directive is:

*DMP .

*END - Ends MPLINK Directive
Input File

This directive ends the MPLINK input directives
file. It also specifies the address of the first
instruction to be executed after the load file is
downline-loaded into the NPU. The format of the
directive is:

*END, addr .

where addr is a hexadecimal number or an entry
point name. The default for address is location O.

MPLINK ERROR MESSAGES

If an error occurs during an MPLINK run, an error
message 1is delivered to the output file. The
messages are preceded by a leading-up arrow. If
the error 1s a recognized syntax error, the up~
arrow is followed by the character that was being
processed when the error occurred. Table B-2 in
appendix B lists the MPLINK utility error mes~
sages, the signiflicance of the message, and the
action that the user should take 1ln response to the
message.

EDIT UTILITY

4|

INTRODUCTION

The edit wutility is used to initialize wvalues in
specified variables of the Communications Control
Program (CCP) or the Communications Control INTERCOM
(CCI) modules which have been made absolute.

The MPEDIT utility requires three inputs:

The noninitialized memory image load module
file (APSOLMP) output of MPLINK. This is the
file to be initialized.

The symbol table file (SYMTAB) output of MPLINK.
This is used to locate the modules to be ini-
tialized.

The MPEDIT directives that control the ianitial-
ization. This extensive file of directives is
called an MPEDIT program throughout this sec-
tion. The program is similar in format to a
CYBER Cross PASCAL program; that is, it consists
of a declaration/definition part followed by a
group of executed statements. The user should
be familiar with PASCAL compiler requirements
and syntax (see the CYBER Cross System PASCAL
Compiler Reference Manual).

If a standard CCP or CCI build procedure is used,
the MPEDIT program is available from the CCP or CCI
program library. The program is generated by the
build procedures from the release tapes (see figure
1-1 in section 1).

The output of MPEDIT 1is an initialized version of
the memory image load module file. This file can
be converted to a downline-load file for an NPU.

MPEDIT also supplies several optional output list-
ings.

The MPEDIT utility section contains the following
subsections:

A description of the input files required

A description of the output files: the required
memory image load module file, and the optional
listings

The method of executing the MPEDIT program

The structure of the MPEDIT program

Error message discussion

Addressing for the MPEDIT utility follows the rules
specified in the MPLINK utility section.

MPEDIT INPUTS
MPEDIT requires two files produced by MPLINK:

The memory image load module file (ABSOLMP).
The file structure is shown in appendix D.

60471200 G

The symbol table file (SYMTAB). This file
contains every entry symbol defined during
MPLINK, together with the symbol’s absolute
location in the memory image file.

MPEDIT also requires the MPEDIT program. The
syntax of this program 1is described in detail in
the remainder of this section. A sample of parts
of an MPEDIT program is given in appendix H.

MPEDIT OUTPUTS

The MPEDIT utility produces two standard outputs:

A memory image load module file with the speci-
fied variables initialized.

NOTE

A variable can take the form of a
declared constant, a variable, or a
field within an array. Fields ian
arrays are restricted to 16 bits
(one contiguous NPU word) in length.

A 1listing of the MPEDIT {input program. Any
syntax errors encountered in this program are
indicated on this listing.

Four optional outputs are also supplied:

A specially formatted memory image load module
file, tailored for downline loading on an NPU.
The format of this load file is given in appen-
dix E. This 1is not the downline-load file for
CCP or CCI, but is a required input to generate
that file. That load file itself is generated
by the CCP or CCI installation procedures.

A trace listing of the MPEDIT assignments that
were made.

A listing of the symbol table (SYMTAB), which
includes 1local symbols that were introduced
during the MPEDIT phase.

A hexadecimal 1listing of the memory image load
module.

EXECUTING MPEDIT

MPEDIT is executed by attaching the MPEDIT permanent
file and then executing the name call statement
MPEDIT (see the appropriate NOS or NOS/BE reference
manual).

These optional parameters are available with the
MPEDIT call statement:

MPEDIT{D=infile,R=outfile,CSET=cset,X=1]

where:

D is the 1local file which presents the input
directives to MPEDIT. The default is INPUT.

R is the local file that receives the list-
ings. The default is OUTPUT.

CSET is the host display code set to be used.
CSET=63 selects the CDC 63-character display
code set; this is the default value. CSET=64
selects the CDC 64-character display code set.

X=1 aborts the job if errors occur. If X=1 is
omitted, the default action is not to abort the
job, despite errors.

I Appendix H shows examples of executing MPEDIT.

Note that the user must rewind the ABSOLMP and
SYMTAB files before entering this utility; MPEDIT
does not rewind the files before using them.

MPEDIT STATEMENT FORMAT

MPEDIT statements are similar to PASCAL statements
(see the CYBER Cross Compiler Reference Manual)
with some restrictions and extensions. A typical
extension allows an expression on the left side of
a VALUE statement. The evaluated expression speci-
fies the address that receives the assigned value.
Comments are permitted as in PASCAL statements.
Appendix H shows selected sections of an MPEDIT
program.

As in a PASCAL program, the MPEDIT utility has two
parts, which occur in the order given:

A definition/declaration section
An assignment (initialization) section
The utility ends with a terminator.

The sections of the MPEDIT utility are shown in
figure 4-1. The MPEDIT flow is shown in figure 4-2.

The definition/declaration section consists of
three parts, which must occur in the order given:

A constant definition part
A variable definition part
An array definition part

The assignment section consists of one or more
composite statements. One composite assignment
statement 1{is required for the memory resident
portion of CCP or CCI; one additional composite
assignment statement is required for each overlay
to be edited. T1If overlay statements are present,
they must precede the memory resident statement.
The memory resident statement must be present even
if it is an empty statement (empty statements are
defined later).

PROGRAM STRUCTURE

CONST (&P
Constant Definition Part

VAR m
Variable Declaration Part

ARRAY (&P
Array Declaration Part

OVERLAY overlay identifier 2>
BEGIN

Assignment Section

END;

BEGIN 3)

Assignment Section
END.

1) Optional.

) Optional composite statement; can be
repeated for every overlay that requires
editing up to the maximum number defined
for the Link edit.

3 Required composite statement; Memory
Resident Partition.

Figure 4-1. MPEDIT Program Format

The MPEDIT terminator is a period (.) immediately
following the END statement of the memory resident
assignment statement.

MPEDIT SYNTAX

The MPEDIT utility uses the following syntax ele-
ments:

Keywords that designate the part of the program
or operation to be performed by the assignment

section

Reserved symbols used to order the optional
outputs

Local symbols wused for equating constants
locally, or specifying a local variable

External symbols in MPEDIT that always have an
array attribute

Literals
Address functions

Expressions

60471200 G

MPLINK SYMBOL

MPEDIT MEMORY IMAGE g INPUT

PROGRAM LOAD MODULE FILE FiLes

{COMMANDS) FILE (SYMTAB)
(ABSOLM:L‘/
) 4
MPEDIT
\ 4 d
SPECIAL INITIALIZED
FORMAT MEMORY MEMORY IMAGE ?ﬁ.?sm
LOAD IMAGE LOAD MODULE
MODULE FILE FILE
-~ i ~
-7 N
- { \“\
— 7
- Ve i N
-~ 4 \\
o ¥ ¥ L

INPUT

N ives TRACE INITIALIZED N oSt

(WITH SYNTAX SYMTAR FILE LISTINGS

ERRORS) (HEXADECIMAL)

Figure 4-2.

] KEYWORDS

The following keywords are reserved for MPEDIT

controls:

ARRAY
BEGIN
CHAR
CONST
DIV
Do
END
FOR
MOD
OF
OVERLAY
T0
VAR

These c¢ontrol words have the same defianitions in

the PASCAL compiler.

] RESERVED WORDS

MPEDIT assigns specific output option request

meanings to the following reserved symbols:

/DMPS
JESLS
/NAMS
/TRACE

60471200 G

MPEDIT Program Flow

MPEDIT assigns specific address meanings to the
following reserved symbols:

/ENTRY
/LENGTH
/PGDISP
/PGNUM
/PGREG
/PGSET
/START
/VFD

These symbols must be used ounly to perform the
desired MPEDIT functions. The functions are dis-
cussed later in this section.

LOCAL SYMBOLS

Local symbols are used to equate a constant in the
constant definition part of the program or to
declare a local variable.

A local symbol is defined by a slash (/) followed
by one to six letters and/or digits., The first
character must be a letter., The dollar sign ($) is
considered to be a digit. The following are valid
local symbols:

/ABCDEF
/46
/MAINS4
/1

A local symbol can have more than six letters or
digits. MPEDIT, however, truncates the symbol at
the seventh character and discards that character
and all that follow. The user cannot, therefore,
define two local symbols such as /ABCDEFG and
/ABCDEFH. MPEDIT treats both of these as /ABCDEF.

| EXTERNAL SYMBOLS

External symbols are used during array processing.
The symbols refer to arrays in the SYMTAB load file
produced by MPLINK. An external symbol consists of
one to six letters and/or digits. The first char-
acter must be a letter. The dollar sign (§) is
considered to be a digit. An external symbol can-
not be one of the keywords defined earlier. The
following are valid external symbols:

A36F

MAINS

GLOBLS

UPTOPARAM (treated as UTOPAR)

An external symbol can have more than six letters
or digits. MPEDIT, however, truncates the symbol
at the seventh character and discards that char-
acter and all that follow. The user cannot, there-
fore, define two external symbols such as /ABCDEFG
and /ABCDEFH. MPEDIT treats both of these as
/ABCDEF .

External symbols can be qualified by other external
symbols. To do this, the user separates the exter—
nal symbols by a period. A single external symbol
can be progressively qualified by additional exter-
nal symbols, as shown in the examples:

A36F .FIELD
GLOBLS .RECORD.FIELD
where:

The first external symbol specifies a location
on the memory image file.

Intermediate external symbols (if any) specify
a displacement from the previous location (for
instance, the start of a record in the global
variables).

The final external symbol specifies a field as:

A displacement from the start of the pre-
vious external symbol

A start bit position for a field
A field length (in bits)

This method of qualification is identical to that
used in the PASCAL syntax.

I uTeraALs

A literal can be a decimal number (a sequence of
decimal digits), or a hexadecimal number (a sequence
of hexadecimal digits preceded by a $). Intermally,
literals are represented as 16~bit quantities.
Larger quantities are illegal.

44

Signed literals are allowed {the leftmost bit is a
sign bit). A negative literal forces the comple-
ment of the 16~bit quantity, If a literal is
represented by less than 16 bits, the unused left
bits are packed with binary zeros. Examples of
legal literals are:

123
$147
~$F

ADDRESS FUNCTIONS

MPEDIT provides nine functions that can be used
within operand or address expressions to generate
an address. The functions are executed by a re-
served word in the form /xxxxx. Five of these
functions are also available with MPLINK (see
address functions in MPLINK):

/OVID
/PGDISP
/PGNUM
/PGREG
/PGSET

In addition, MPEDIT defines four more address
functions:

/ENTRY
/LENGTH
/START
/VFD

As in the MPLINK case, the function takes the
format:

/xxxxx(name)

/START ~ Field Start Address Function
The /START function has the format:

/START(external)
The function returns the start position in bits
(range 15 to 0) of a field relative to the start of
a variable word. For example:

/START (FIELDX)

generates a bit position of 9 as the start of
FIELDX:

15 9 0

FIELDX

/LENGTH = Field Length Address Function

The /LENGTH function has the format:
/LENGTH(external)

The function returns the value of the field length
(in bits) minus 1. A single bit field has a value
of =zero; a full word field has a value of 15.
PASCAL fields cannot exceed word length, nor can a
field start in one word and overflow into the next.

60471200 G

) I Example 1:

The length of FIELDX in the example
above 1is requested with /LENGTH(FIELDX). The
address function would return a value of 10.

Example 2: The terminal class field (BSTCLASS)
start position and 1length in the base terminal
control block (TCB) descriptor table are found by
using the following MPEDIT statements:

DGTCBFDT[5] .DDFSTRT :=/START(BSTCLASS);

DGTCBFDT[5] .DDFLNTH :=/LENGTH(BSTCLASS);

/ENTRY = Entry Point Address Function
The /ENTRY function has the format:

/ENTRY (external)
This function accepts a module name as a parameter
and generates the address of the module’s asso-
ciated entry point.
Example: The entry point and the page number of
the service module in CCP are located by using the
following MPEDIT statements that include address
functions:

BYWLCB [BOSMWL] .BYPRADDR :=/ENTRY(PNSWML);

BYWLCB [BOSMWL] ,BYPAGE +=/PGNUM(PNSWML) ;

/VFD « Variable Field Definition
Address Function

The format of the /VFD specification is:
/VFD(addr/disp,fldstrt ,fldlngth)

where:
addr/disp defines the absolute address of the
;:I:.holding the field in the memory image load

fldstrt defines the start bit position of the
field within the word (range 15 to 0).

fldlngth defines the length of the field (in
bits) minus 1 (range 0 to 15).

The /VFD function uses three parameters {address/
displacement, field start, and field length) to
generate the location and length of a field in the
memory image load module file.

The address expression A, where A is an external,
is equivalent to the expression:

/VED(A,/START(A),/LENGTH(A))
or more completely:

/VFD(A:PGREG(A): /PGSET(A),/START(A),/LENGTH(A))

60471200 G

MPEDIT EXPRESSIONS

Two types of expressions are used:
Operand expressions

Address expressions

Operand Expressions

An operand expression produces a single 16-bit
binary value. An expression is a valid combination
of:

Constants (which are interpreted as 16-bit
integers)

Local variables
Functions
Unqualified external symbols

These are joined together by arithmetic operators
(+, -, *, DIV, and MOD) and are grouped within
parentheses to specify the order in which the oper-
ations are to be performed. An evaluated external
symbol 1is represented by its address/displacement
value. Qualified address values can be accessed
using the address evaluation functions given 1in
MPLINK and MPEDIT, above.

In an operand expression, an externmal symbol cannot
be subscripted, even if 1t is declared in an array.
The NPU performs all arithmetic in one’s complement
mode so that results are unique.

Examples of operand expressions are:
GLOBALS

(/PGREG(MOD)+$F21)DIV/START (GLOBLS)

Address Expressions

An address expression has one of two forms:
A /VFD address function call.

A single external symbol. The symbol can be
qualified. 1If this form is used, symbols that
are declared in arrays must be properly sub-
scripted; that 1is, the subscript expressions
must be operand expressions with values that
fall within the expected range.

Example 1:
A

This is an address expression unless A was
declared in an array. In that case, the
lack of subscripts indicates that it is an
operand expression. It could also be an
operand expression if its usage forced that
conclusion; that is, it is om the righthand
side of an assignment statement.

I Example 2:

Al2]
JVFD(MAINS,0,0)

I Fxample 3:

ARRAY A[l1...5,1.,..5] OF 24;
C{1...10] OF CHAR;

VAR/I; /J

Al/I,(/START(Q)~2)*/J]1.B.C[3] address
expression”’

MPEDIT PROGRAM STRUCTURE

An MPEDIT program consists of four parts:
Constant declaration part
Variable declaration part
Array declaration part
Assignment section

The first three parts are optional, but the assign~
ment section is required.

CONSTANT DECLARATION PART

The first part of an MPEDIT program contains
constant declarations; this section is optional.
Constant declarations allow programmers to create
synonyms for literals. A local symbol defined as a
constant behaves as a true constant; its appearance
is legitimate wherever a literal is expected.

If a constant declaration part is present, it is
preceded by the keyword CONST. The complete list
of constant declarations must follow that word.

Each declaration has the following format:
/symbol=expression;

That is, the declaration consists of a local symbol,
an equals sign, and a literal, or a previously
defined constant. The declaration terminates with
a semicolon. Literal and previously defined con-
stants can be signed.

A constant value can be defined as an expression
that itself is a mixture of constants, previously
declared local constants, and entry symbols that
appear in SYMTAB.

l Examples are given in figure 4-3.

VARIABLE DECLARATION PART

The next part of an MPEDIT program contains variable
declarations. This section, also optional, allows
programmers to create local symbols for local vari-
ables. These symbols exist only during the MPEDIT
phase. All such variables are 16-bit quantities
that can be used in one’s complement arithmetic.

4-6

If the variable declaration part is present, it is
preceded by the keyword VAR. That word is followed
by the complete list of local variable declarations.

Each declaration has the following format:
/symbolj;

That is, the declaration consists of a local symbol
followed by a semicolon terminator.

Examples of variable declarations are given in
figure 4-3.

ARRAY DECLARATION PART

The next part of an MPEDIT program contains array
declarations. This section, alsoc optional, allows
programmers to create external symbols as arrays so
that elements can be referenced by an index. Any
external symbol to be indexed must be declared as
an array.

If the array declaration part is present, it is
preceded by the keyword ARRAY. That word is fol-
lowed by the complete list of array declarations.

A declaration can have either of two formats:
name{index] OF number;
name[index] OF CHAR;

In each case, the name is an external symbol, the
index 1is a range of numbers im PASCAL notation
(number..number), and the declaration is terminated
with a semicolon. Note that number itself can be
an expression. If the CHAR format is used, the
array corresponds to a PASCAL packed array; that
is, there are two characters packed per NPU word.

Examples of array declarations are shown in figure

4-3.

ASSIGNMENT SECTION

There are two general types of assignment sections:
resident assignments and overlay assignments. All
overlay assignments must precede the resident
asgignment section. The two types are identical
except that each overlay assignment section begins
with:

OVERLAY overlay identifier
An assignment section consists of a single composite
statement that is delimited by the keywords BEGIN
and END. The composite statement consists of zero
or more statements that direct the MPEDIT actions
to be performed., There are five types of assign-—
ment statements:

Local

Address

FOR loop

Composite

Empty

60471200 G

CONSTANT DECLARATIONS

CONST
/TRUE = 1;
/FALSE = 0;
/COUPLER = $0000;
/PORT01 = $0100;
/PORTO2 = $0200;
/80S1 = 1;
/B0S16 = /B0S1;
/BFLCDO = /BUFSZ0%2 - /J1LSTPAD;
/DBFSZE = /BECTLBK + (3*/SIZBECTLEK);

VARIABLE DECLARATIONS

VAR
/1
/13
/P
/IDTBL
/BZOWNER
/BZLNSPD
/BSCN
/BSPGWAIT

ARRAY DECLARATIONS

ARRAY
JZOPSBASE [BOCHWL..BODUMMY] OF 2;
DBPFCTBLE [1..DBLAST] OF 2;

CGTCBS [0..C4TCM1] OF /SIZTCB
VATCBAT [1..40] OF 3;

JGTESTABLE /FALSE../TRUE,/FALSE../TRUE,/FALSE../TRUE] OF 1;

NAMEN ([1..201 OF CHAR;

Constants as decimal numbers

Constants as hexadecimal numbers

Constants as previously defined constants

Constants as arithmetic expressions

General loop index
General use variable
Work pointer for program
Table work pointer

Local variables

Sequence of elements defined by symbols;
numerically defined size

Sequence of elements defined by symbols;
constant defined size

Combination of both of the above
sequence of elements defined by
numbers; numerically defined size

Sequence of element sets defined by
symbols; numerically defined size

Sequence of elements defined by numbers;
elements packed two per NPU word.

figure 4-3. Examples of MPEDIT Constant, Variable, and Array Declarations

Each statement (except the last) is terminated by a
semicolon.

An MPEDIT program must include an assignment section
for the memory resident programs, even if that
section consists of only one empty statement.

Selected portions of an assignment section for a
CCP MPEDIT program are given in appendix H.

Local Assignment Statement

A local assignment statement has the following
format:

local variable:=operand expression

where := is the assignment operator.

MPEDIT evaluates the operand expression to find the
value and places that value in the named local
variable. Examples of 1local address assignment
statements are:

60471200 G

VAR /I; /J; /Ky /L;

/I:=/i+l; /J:=0; /K:=/LENGTH(X);
/L:=/VALUE(A.B)+C;

Address Assignment Statement

An address assignment statement has the format:
address expression:=operand expression

An address expression can take the form of an
operand expression (that is, the operand expression
can appear on the lefthand-side of the assignment
operator). In this case, a /VFD with full-word
attributes is implied.

Semantically, MPEDIT evaluates the righthand-side
operand expression and replaces the value in the
memory image location specified on the 1lefthand
side with this new value.

If a 16-bit value is assigned to a smaller than
16-bit field, the higher order bits are truncated.

As mentioned above, an address assignment statement
can have an operand expression on the lefthand
side. For example:

/I+1:=0 is interpreted as /VFD(/I+1,15,15) :=0

MPEDIT is instructed to zero the full 16-bit word
that appears at location /I#l. Similarly, 1:=0
would zero the full word at memory image location 1.

Example:

VAR/T;

/1:=0

This sets the local variable /I to zero. To zero
the word at memory location /I, the lefthand side
of the assignment must be forced to look like an
expression. This could be done in any of the
following three ways:

+/1:=0
(/1):=0

/VFD(/1,15,15):=0

FOR Assignment Statement
The format of the FOR assignment statement is:

FOR control variable:=initial operand expression
TO final operand expression
DO statement

The FOR ... TO statement assigns values for the
control variable in increasing order. The control
variable must be a local variable.

The FOR assignment statement in MPEDIT is entirely
analogous to the FOR ... TO statement in PASCAL.
The statement causes the indicated statement to be
repeated, while a progression of values is assigned
to a control variable.

In the following example, the FOR statement causes
MPEDIT to set 256 successive locations, beginning
at the external symbol GLOBLS$, with the value of
the preceding memory location’s address:

VAR /1

FOR /I:=GLOBL$
TO GLOBL§+$FF
DO {(/1):=/1~1

4-8

Composite Assignment Statement
The format of the composite assignment statement is:

BEGIN
statement;
statement;

statement
END.

A composite statement is a sequence of statements
(which can include embedded composite statements)
that are to be executed in the order specified. A
composite statement is delimited by BEGIN and END.

A composite statement is {interpreted syntactically
as a single statement. It is used to delimit the
entire assignment section. It is also useful for
specifying several statements that are to be acted
upon as a single statement.

The example in figure 4-4 gives alternative ways of I
packing an array.

METHOD 1

VAR /1;

FOR /1 := 0 TO 49 DO

BEGIN
/VFD(GLOBLS+/1,15,7)
/VFD (GLOBLS$+/1,7,7) :

END;

= $4D;
/1

METHOD 2

VAR /1; /J; /K;

ARRAY GLOBLS [0..991 OF CHAR;

-

/K 1= $4D;
FOR /I := 0 to 49 D0

BEGIN
/3 = 2%/1;
GLOBLS [/4] := /K;
GLOBLS [/J+1] := /I
END;

This example packs an array of 50 NPU (16-bit)
words starting at lLocation GLOBLS. Value $4D
is placed in the uper half word, and the word
count (0 through 49) in the lower half word.

Figure 4-4, Methods of Packing an NPU Array l

60471200 G

Empty Assignment Statement

The empty assignment statement is analogous to the
empty PASCAL statement. It contains no informa-
tion; it can be used anywhere that a statement is
appropriate. The empty statement exists so that a
syntax error is not generated if the user inad-
vertently enters a semicolon. This most frequently
occurs after the statement that preceded the END
statement in a composite statement.

COMMENTS

Comments can be introduced in any position within a
statement that does not vioclate a keyword or a
symbol. Comments are delimited at the beginning by
an ASCII underscore (this appears as a broken arrow
in display code) and at the end by an ASCII ques-—
tion mark (this appears as a down-arrow in display
code). Any character can be used within a comment
except the delimiters.

REQUESTING A TRACE OPERATION
The pseudovariable /TRACE is used in MPEDIT to
request a trace listing. The trace listing pre-
sents the following information:
The address or field that is initialized
The value to be inserted into the field
The previous contents of the full 16-bit word
holding the field (the field can be all or only

a part of that word)

The current contents of the full 6-bit word
after the initializing value {s inserted

The line number of the MPEDIT program that
caused initialization of the field

The format of the pseudovariable requesting a trace
listing is:

/TRACE : =x;

If the value for /TRACE is 2 or greater, the listing
is produced. If /TRACE is assigned a value of 0 or
1, the trace report for that /TRACE entry is not
produced. The default value for /TRACE is 2. The
pseudovariable can appear anywhere in the assignment
section; however, only those assignment statements
that appear after the trace request will be in-
cluded in the listing. For this reason it {is
customary to define the pseudovariables at the
beginning of the assignment section.

A partial trace listing is shown in figure 4-5. l

REQUESTING THE SYMTAB LISTING

The pseudovariable /ESL$ is used in MPEDIT to
request a listing of the symbol table (SYMTAB).
This report includes the local symbols. The report
is generated at the end of an MPEDIT run. The
format of the request is:

JESLS:=x;

If the value of x is 2 or greater, the SYMTAB
listing is produced; if the value is 0 or 1, the
listing is suppressed. The default value for /ESLS
is 0.

The request can appear anywhere in the assignment
section of the program. A sample partial SYMTAB
listing is shown in figure 4-6. The listing was l
requested by the pseudovariable declaration:

/SESL:=2;

CYBER MINI CROSS SYSTEM ~ LINK EDITOR -
TRACE LIST
44 VFD(300002, $7, $7) 1= QOO0 0000 » 0000 114 VFD(3C0020, $8, $0) ts 00003 1000 » 1000
4% VFD(SO0CO3s SFs SF) 1% 1AB1} OOCO # 1ABL 115 VFD($G002Js $7» ST7) 1» 004D} 1000 » 104D
53 VFD($CO004s $Fy $3) ts 00003 0000 » 0000 117 VFD(SCO021, $F, SF) 3w 496433 0CO0 @ 4943
54 VFD(3C0004, 3B, $2) te 0DO4; 0000 » 0800 122 VFD($CO024s $F, $3) ts 00D23 0000 » 2000
595 VFOUSC0004s 58, $0) 3= QQO03 0800 » 0800 126 VFD($G0028, $F, $3) 1= 00Cl; 0000 » 1000
56 VFD(SCOO006s $7p $7) ts 00013 00CO # 0001 127 VFD(SO0028, $B, $2) t= 03003 1000 # 1000
88 VFDISCO007, $F» SF) t= TFFF3 0000 » TFFF 128 VFD(SC0028» 38, $0) &= 00005 10006 # 1000
63 VFDUSOO008, $F, $3) t= 00063 HOO0 # 6030 129 VFDUSCOC28, $7, 371 1= Q0%E; 1000 » 104E
67 VFD($0000C, $Fs $3) 1= CODL3 0000 » 1000 131 VFD(300029, $F, SF) 9= 31355 0000 # 3135
68 VFD(SOC00Cs $B, $2) = QD003 1000 # 1C20 133 VFDUSOU02As SFy $F) 1w 4C4D3 Q000 & 4C4D
69 VFD(SO000Cs $8, 30) 3= DOGC3 1000 ¢ 1000 135 VFD(SO00C2B, $F, $7) = 0020; 0000 # 2000
70 VFD($0000Cs $7, $T) t= 00443 1000 # 1044 140 VFD($CO02Cs $F, $3) k= 00055 0000 » 5000
72 VFD($0000Ds $F, SF) s 42533 0000 & 4233 141 VFDUSLU02C, $By $2) 1w (2005 5000 » 5000
77 VFD($00010, SFy $3) 1= 00023 00CO & 2000 142 VFDUSCO02Cs $B, 30) 1w (0003 S000 & 5GQ2
81 VFD($00014, $F, $3) 3= 00003 0000 » 0000 143 VFD($0002Cs $7, $T) 1= 006G S000 & 5000
82 VFD($00014, $8, 32) 1= 00C1} 0000 » 0200 144 VFD(3Q0020, SFs SF) ts 04RC; OCO0 & C4RY
83 VFO{$C00l4y $8, S0} t= 00005 0200 » 0230 146 VFDUSLOO2Es $7» $7) 3w 00003 0000 » 0000
84 VFO(300014, $7, $7) &= C00Q; 0200 » 0200 147 VED(SODO2F, $F, $F) 1= AROA} QGO0 + BBO3I
85 VFD(S0J01%5 $F, $F) 1= 52003 0000 » 5200 152 VFDUSCOC30, $Fs $3) 31» (0G4: D000 # 4000
87 VFD(SOOG16s» $7s $7) 1s QOO0 0000 » 0000 156 VFD($COD34s $Fs $3) 1w QOCF; 00GO e FOOD
88 VFD($00017» $F» SF) ts 5300; 0000 # 5300 163 VFD(SCOO3R, SF, $3) 1w 00Gl3 0900 # 1309
93 VFD{300018, $F, $3) &= 00003 0000 # 0000 164 VFD(SCS038s $8, $2) st GGOC3 1000 » 1690
94 VFD($00018, $By $2) 3= 00023 0OGO » 0400 165 VFD($0003B, $8, $0) 1« 0000; 1000 » 1000
95 VFDI$G0O018, 38, $0) 3= 0000; 0400 # 0400 166 VFD{300038, $7, $7) 1= 00%3; 1000 # 1053
96 VFOUSCO018y $7, $7) 1= 00003 G400 # 0430 168 VFOU300039, $Fs $F) ts 414D; 0000 # 4140
97 VFD(SLO019s $Fs $F) 3= 53013 0000 # 5301 173 VFDUSO003C, SF, $3) 1= 0004} 0000 # 4000
99 VED(SCOGLlAs $7, $7) 1= 0000; 0000 » 0020 177 VFD{300040y SFs $3) t= COOF§ 0000 & FOOO
100 VFD($00018, $F, SF) te 53213 0000 » 5321 186 VFO(30004Ds $F» $F) e 00005 1COL » 0000
105 VFO(SCO01C, $Fp $3) ta QDOF; 0000 » FOOO 187 VFD(SOO0%Es $F, $F) %= 00005 0BOO 4 0000
112 VFD(300020s $F» $3) 1= 00013 0000 # 1000 183 VFD($0004Fs $Fy» $F) 3» 00003 18FD # 0000
113 VFOUSCOU20s 3B, $2) te GO00F 1000 # 1000
Figure 4~5. Partial MPEDIT Trace Listing l

60471200 G

4=9

CYBER MINI CROSS SYSTEM - LINK EDITOR -
ENTRY SYMBOL LIST ~ SORTED BY ENTRY NAME
AENTRY*#R /A**ADDRESS /VALUE#*BIT S/L* *ENTRY#*R /A**ADDRESS /VALUE#+B1IT S/L* *ENTRY*4R /A**ADDRESS/VALUE**BIT S/L#*
AACAPL R 493¢C ADST2 A 0002 AIDLET A 0003
AACDAD A 0000 AEABLS R 474A AIDLE A 0001
AACDPT A 0000 AEAPL R 11709:3709 AINPLB A 000E
AACORR R 488C AEASCI R 46A7 AINPSB A 000D
MAEAPL R 48FC AEATTN R 4769 AISPT1 R 4605
AAEBCD R 48FC AEATT1 R 4775 AISPT6 R 4524
AANREA A 0007 AEAUTT R 4648 AISP4C R 4512
AAOUTP A 0003 AEAUT2 R L64E AISP4E R G4FA
AAREAD A 0004 AEAUT3 R 4654 ALARMT A 0001
AASBAP R 4A3C AEBLS R 4584 ALARM2 A 0002
AASTAP R 49FC AECHRY R 466D ALARM3 A 0003
ABAPLA R 498¢ AECINT R 46DA ALCAPL R 4c7c
ACAPL R 116ED : 36ED AECIN2 R 46DC ALCORA R 4ABC
ACARTO A 0078 AECIN3 R 46ET7 ALEAPL R 488C
ACAUTO A 0001 AECING R 46E9 ALEBCD R 483¢
ACCAPL A 0004 AECKMD R 45A8 ALF L 0002
ACCAPL L 0004 AECODT R 46¢0 ANIL L 0000
ACCASE R 11687:3687 AECOD2 R 46A0 ASASCE A 0022
ACCORR A 0003 AECSE R 116D7:3607 ASAUTO A 0018
ACCORR L 0003 ACESLL R 475F ASCE26 R 1539¢:339c
ACDELM A 0002 AECSL1 R 4774 ASCE29 R 1535C:335¢
ACEAPL L 0002 AECSL2 R 477¢ ASCINT R 176¢
ACEAPL A 0002 AEEINT R 46FS ASDISC A 0003
ACEBCD A 0001 AEEIN2 R 46F7 ASSLL A 0004
ACEBCD L 0001 AEEIN3 R 4702 ASSOL A 0001
ACELL A 0000 AEEING R 4704 ASXPT A 0002
ACEPL A 0001 AEELL R 45¢5 ASXSOI A 0005
ACKMSG R 858E AEELTT R 45CE ASYNCE R 153A
ACKPTR R 1068 AEELT3 R 43€0 AS2741 A 0020
ACLIH2 A 0000 AEEPL R 45F1 ATAPLA R 497¢
ACLIMT A 0A00 AEEPT1 R 45F8 ATELL A 0000 Fi7
ACPBLI A 0001 AEESLY R 4780 ATEPL A 0000 7:7
ACPBOB A 0002 AEESL2 R 4782 ATPDI2 R 1131B:3318
ACPCLR A 000c AEINPT R 4583 ATPDIS R 1133F:333F
ACPEVE A 0000 AEINT R 458¢ ATPDI6 R 11363:3363
ACPICS A 0050 AEMBT R 455F ATPDI8 R 11387:3387
ACPIOW A 0060 AESEDI R 473¢ ATPPR1T R 11203:3203
ACPLRT R 1c0p AESLL R 4570 ATPPRG R 112F2:32F2
ACPOBL A 0058 AES110 R 4658 AUCAPL R 4C3c
ACPOMA A 006¢ AES1SO0 R 4668 AUCORA R 4ATC
ACPONS A 0048 AES151 R 4662 AUEAPL R 487c
ACPRMA A 0010 AES300 R 4674 AUEBCD R GAFC
ACRITT A 000 AES301 R 467A AVASCE R 11729:3729
ACRLF L 0003 AEXBLS R 4635 AVASCP R 1E5D
ACR L 0001 AEXDLM R 463A AVB7TO R 1E74
ADDRES R 0150 AEXDTA R 462A AVCNTR R 1E3D
ADDRLC R 015F AEXPTO R 462F AVCORE R 1173A:373A
ADDRSU R 0160 AEXSOI R 4604 AVCORR R 1ESE
ADEADT A 0014 AE4XDL R 47A7 AVCRLF R 1652
ADSTY A 0001 AEGXIN R 4792 AVCRMS R 1€50
Figure 4-6. Partial MPEDIT SYMTAB Listing (Sorted by Entry Name)

REQUESTING THE INITIALIZED LOAD
MODULE FILE LISTING

The pseudovariable /DMP$ 1is wused in MPEDIT to
request a listing of the initialized memory image
load module file. Format of the request is:

/DMP$:=x;

If the value of x is 2 or greater, the listing is
produced; 1if the value is 0 or 1, the listing is
suppressed. Default value for /DMP$ is 2. The
request can appear anywhere in the assignment part

of the program.

The memory image load module file values are listed
in hexadecimal; the listing is generated at the end
of an MPEDIT run.

REQUESTING THE OPTIONAL FORM OF
THE INITIALIZED LOAD MODULE FILE

The pseudoconstant /NAMS$ is wused in MPEDIT to
request the optional form of the initialized memory
image load file. That load file is especially
formatted for downline-loading in the NPU. The
format of the file is shown in appendix E.

Any three-character identifier can be assigned to
the /NAM$ definition. The identifier specified is

placed in the heading of the load file. An example
of the /NAMS definition is:
/NAM$:=0E2
The definition can appear anywhere 1in the CONST
definition part of the program.
60471200 G

NOTE

This alternate form 1is not the final form
of the load file that is downline-loaded
into an NPU to provide the on~line CCP or
CCI. Instead, as shown in figure 1-1 in
section 1, the CCP or CCI installation pro-
cedures use a load file generating utility
to process this optional form of the memory
image load module file along with other load
files. After processing by the host’s load
file generating utility, the reformatted
and combined load file can be downline~
loaded into an NPU.

MPEDIT DIAGNOSTICS AND
ERROR MESSAGES

Some types of statement faults cause errors from
the programmer’s standpoint but do not generate an
error message. Others can generate one or more
error messages. Statements with the following
types of errors will fail:

An undefined identifier

An attempt to assign a nonexistent wemory
location

A bad field specification (overflows word or
has an illegal format)

An out-of-~range subscript

60471200 G

A failed statement behaves functionally like a null
statement. The following examples show failed
statements.

Example 1:
U:=0

where U is an undefined identifier. This acts as
an empty statement.

Example 2:

VAR/1;

FOR /I:=$100 TO $202 DO
(/1):=0

where only addresses $100 through $1FF are defined
in the load file. TIn this case, 259 assignment
statements are executed. The first 256 are valid;
the last three fail.

If a falled statement or other error causes an
error message, the error message is delivered to
the output file. The messages are preceded by an
up-arrow. If the error 1is a recognized syntax
error, the up-arrow is followed by the character
that was being processed when the error occurred.

Table B-~3 in appendix B 1lists the MPEDIT error
messages, the significance of the message, and the
action that the operator or programmer should take
in response to the message.

CHARACTER SET

The CYBER host uses one of two character sets to the CYBER Cross Build Utilities:
63~character ASCII
64~character ASCII

These code sets are shown in table A-l.

60471200 F

‘Ajuo Indui Joy paydasoe ate sayound (6Z0) 110SV Pue (9Z0) YiMelIoH @1eusde ayj
"(8gG) ueiq e plalA % 91A293/11DSY WOl SUOHE|SUB) pUE 1SIXS 10U Op SOPOD pied palejas pue olydesb o ayl

‘(ysund z-g) uUOJED Byl sI £9 apod Aejdsip 1g-9 'apod pieo uo dydesb palelsosse ou sey QO apod Aedsip ‘18s seloeleyd-gg olydelb e Buisn suonejjelsul uf

'2€9L Qo9 leulaixa

0} PalIBAUOD §| HIBW BUK-JO-PUT ‘SUO|OD OM] UBY) JAYIeJ SJJEW 3ulj-J0-pud se pajaidisiul aie PIOM 11-09 B JO pua 3yl 1e Silq 049z Jow 10 BAPPM]

£€L0 9811 L (8el L (uojodywias) ! (uojooiwas) © S90 S S0 S ov S S
9ctL L8 9¢ 982! 9¢L (X@)jWNdiID)~ w $90 v 0 v L€ v v
vel Z:80 S G821 SL \ < £90 € £0 £ gt £ €
001 v-8 St S8 vL o > 90 z Z0 Z =13 z z
9.0 9-8-0 LS (8L €L < < 190 L 10 L e L !
141021 4442821 090 0 zt 0 €€ 0 0
vL0 10 t-8-21 ZL 0zt zL > > 41 60 £ 60 ze Z z
LL0 L°80 9g 98 Ll V3 ¢ 1 et 80 o€ 80 1€ A A
LY0 58 SS S8 L oL {aydouisode) J oct L0 Lz L0 ot X X
90 zi Lg (80 L9 L4 v Lz 90 e14 90 Lz M M
L4401 1442811 9zt S0 14 S0 9 A A
1%0 10 £-8-Tt ZS 0011 99 i A Szl v0 vZ v0 14 n n
LeL 580 St 580 59 (aurjsapuny - vzl £0 £z £0 v 1 L
Zvo L8 4 v8 v9 (aionby #* €zl z0 e Al €z S S
S0 v-8-0 9l 98 11€9 % % 44! 611 1S 611 44 H o
Sel Z8 it 4> Z-8:0 z9 ({ 1zt 8t 0S gL 4 o) 0
€€l Z2-8ZL L L8 19] J ozt L1l LY Ll oz d d
€v0 €8 9€ 9-8-0 09 # = LiL 9Ll oy oLl L 0 0
960 €8clt €L €82t LS (potsad) - {poyad) - 9t Gl St Sl 9l N N
vS0 €80 £€ €80 95 {ewwod) (ewwod) S il 144 il St W W
ov0 ydund ou oz ysund ou 56 Jueig yue|q vLl et £y €Ll vl 1 1
SL0 98 €l €8 vS = = gLt AN v it £l bl P
1244 €81l €5 €8l €5 $ $ Zil Lt 87 Ll Zt r r
160 S8l v t-8-C1 Zs { (Ll 6L V2 6L 1 I]
0S0 S-8ZL ve t-8-0 1s) } oLl 82zl 0L 8cl ol H H
(S0 1-0 ¥4 1-0 0S / / Lot Lzl L9 Lzl L0 9 9
¢so vg Ll vs b8t Ly . . 901 91 99 9:z1L 90 4 4
GG0 Lt ot i 14 - - =To]} Szl 59 Szt S0 3 3
£50 9821 09 4} =14 + + vol vZi v9 vzl) a a
1L0 6) 6 14 6 6 £01 £zl £9 A £0 o) 2
0L0 8 ol 8 £v 8 8 Z01 zzL z9 Al 20 g |
190 L L0 L v L L 1ot -zl 19 1-Zt 10 v v
990 9 90 9 I 9 9 ZLo 8 00 Z8 4400 I
3po) {620} apo) {920} apo) 18sgng Jydes apo) | (620) 3po) (920} apo) 185ang aydes
110SV Yyoung aos yaung Aeidsiq oydesn 2Q0 11JSY | ydund aos young Aeidsig | owydeso J3ad
Hg-£ 1HOSY 12UIaIX3 | Y13{I0H ug-9 110SV Ha-£ | 1oSv | 1ewiaix3 | qiaioH 19-9 1108V

4@0D IIDSV ¥ALOVIVHD %9/€9 °1-V 414Vl

60471200 G

DIAGNOSTIC MESSAGES Bl

Each of the wutilities described in this manual
generates a set of error and (in some cases) infor-
mational messages. Some of these messages are sent B-1
to the output file (error file), and others are

Utility

Library Maintenance

sent to a special fatal error file.

The error messages in this appendix are arranged by
utility type. The tables are:

Link

Edit

TABLE B-1. MPLIB ERROR MESSAGES

Message Text

Significance

User Action

AN ATTEMPT WAS MADE TO WRITE
TOO MANY PROGRAMS TO THE NEW
LIBRARY FILE

DEL DIRECTIVE DOES NOT HAVE A
MATCH ON THE OLD LIBRARY FILE

I/0 ERROR - READING
INTERMEDIATE LIBRARY FILE

1/0 ERROR - READING
1GO FILE

1/0 ERROR - READING OLD
LIBRARY FILE

1/0 ERROR - WRITING
INTERMEDIATE LIBRARY FILE

I/0 ERROR - WRITING NEW
LIBRARY FILE

NAME FIELD ON DIRECTIVE CARD
IS NOT RECOGNIZABLE

NEW LIBRARY ENTRY POINT
TABLE OVERFLOW

NO END-QF-TABLE WORD FOR
ENTRY POINT TABLE RECORD
ON LIBRARY FILE

60471200 G

The library file is limited to 425
programs,

The specified program (or the first
program of a group) does not have a
match on the old library file.

The intermediate file could not be
read.

The LGO file is not in the proper
format, or has been damaged.

The old library file is not in the
proper format, or has been damaged.
The old library cannot be used.

The intermediate library file could
not be written., The space for
temporary files was exceeded, or
there was an error in writing the
file.

The new library file could not be
written., The file may be write-
protected, or it could exceed the
user’s allocated file size, or
there may be an error in writing
the file.

Program names consist of one to six
letters, numbers, or $.

The total number of entry points
plus programs (times 2) cannot
exceed 4000.

The old library file is not in the
proper format or has been damaged.
The old library cannot be used.

Delete nonused programs.

Check the object code module names
against the directive parameter
names.

Try again. If error persists, call
a system analyst.

Generate a new LGO file.

Try again. If error persists, call
a system analyst.

Return unused local files and try
again; if second attempt fails,
allocate more space for temporary
files,

Try again after checking protection
of file. 1If error persists, call a
system analyst.

Check the directive name. Correct

as appropriate,.
Rewrite the programs to have fewer

entry points or larger programs.

Try again. 1If error persists, call
a system analyst.

TABLE B-1.

MPLIB ERROR MESSAGES (Contd)

Message Text

Significance

User Action

NO XFR BLOCK FOR PROGRAM ON
RANDOM LGO FILE

NON-ASCII (NOT $20-$5F)
CHARACTER IN PROGRAM NAME OR
ENTRY POINT ON THE LGO FILE

PUT OR SUP DIRECTIVE DOES NOT
HAVE A MATCH ON LGO FILE

PUT OR SUP DIRECTIVE SECOND
NAME DOES NOT HAVE A MATCH
ON LGO FILE

PUT OR SUP SECOND NAME DOES
NOT HAVE A MATCH ON OLD
LIBRARY FILE

TOO MANY PROGRAMS ON LGO
FILE

UNRECOGNIZABLE DIRECTIVE

The LGO file is not in the proper
format.

The LGO file is not in the proper
format, or has been damaged.

The specified program (or programs)
does not have a match on the LGO
file.

The name of the second program
(mod2) in a modl-mod2 parameter
does not exist on the LGO file or
it precedes the first program name
(modl).

The name of the second program
(mod2) in a modl-mod2 parameter
does not exist on the old library
file or it precedes the first
program name (modl).

The LGO file is limited to 425
programs.

The directive name is not *ALL,
*PUT, *SUP, *DEL, or *LST.

Try again. 1If error persists, call
a system analyst.

Correct any format error; then try
again.

Check the object code module names
against the directive parameter
names.

Check the order of modules in the
LGO file. Use a different range of
modules, or reverse the names in the
parameter.

Check the order of modules in the
library. Use a different range of
modules, or reverse the names in the
parameter.

Delete nonused programs.

Check the directives file, and enter
a proper directive name.

TABLE B-2. MPLINK ERROR MESSAGES

Message

Significance

User Action

ADDRESS TABLE OVERFLOW

ASSIGNMENT OPERATOR EXPECTED

BAD LGO OR NEWLIB FILE

COMMA EXPECTED

The combined number of addresses
specified in all the directives
exceeds the maximum number per-
mitted.

The expression evaluator expected
the := operator in the *VE direc-
tive but did not find one.

Either the input object code or the
NEWLIB file is improperly format-
ted., An improper file may have
been attached.

The expression evaluator en-
countered a directive with fewer
required parameters than expected.

The operator should revise the
directives, perhaps using direc-
tives with a range of items in the
parameters such as *L,modl-mod2,
addr, rather than individual linking
or reverse linking directives. This
can require more than one library
building operation, or a rearrange-
ment of modules on the input object
code file.

The user should correct the direc-
tive.

If this is not the case, the user

may need to generate another input
object code or NEWLIB file.

The user should check the expression
to assure that all the required
parameters are present, and are
separated from the previous param-
eter or directive name by a comma.

60471200 G

TABLE B-2.

MPLINK ERROR MESSAGES (Contd)

Message

Significance

User Action

COMMON AREA EXCEEDED

CURRENT LOWER LIMIT EXCEEDED

CURRENT UPPER LIMIT EXCEEDED

DATA AREA EXCEEDED

DIRECTIVE TABLE OVERFLOW

DUPLICATE ENTRY POINT

DUPLICATE LOADER MODULE

ENTRY POINT TABLE OVERFLOW

EXPRESSION OPERAND STACK

OVERFLOW

EXPRESSION TABLE OVERFLOW

EXPRESSION VAL EXCEEDS $3FFF

EXT IN EXPR NOT ABSOLUTIZED

IDENTIFIER EXPECTED

60471200 G

MPLINK found a blank common speci-
fication in an object code module
that exceeded the area allocated
by the *COM directive.

During linking caused by a *RL
directive, MPLINK attempted to
use a memory location below the
word specified by the *LL direc-
tive.

During normal loading caused
by a *L directive, MPLINK
attempted to use a memory
location above that specified
by the *UL directive.

MPLINK found a named, common speci-
fication in an object code module
that exceeded the area allocated

by the *DAT directive.

MPLINK encountered too many direc-
tives in the input directives file.

The entry point or module name (or
at least the first six characters
of it) have been used in a previous
entry point or module name.

MPLINK found at least two modules
with the name LOADER.

The combined number of entry point
names, module names, and synonyms
exceeded the entry-point table
capacity.

The expression evaluator found too
many operands during its process-
ing.

The number of expressions appearing
in the *VE directives exceeds the
allowable maximum.

The value encountered in a *VE
directive is too large (value
range is 0 to $3FFF).

An entry~point name (naml or nam2)
appearing in a *VE directive has
not previously been made absolute.

A valid name is expected in a
*ENT, *OVLY, or *SYN expression,
and it was not supplied.

The user should increase the size
of the blank common area assigned
by the *COM directive.

The user should change the *LL
boundary, or insert other direc-
tives to relocate the module (or
group of modules) that crossed the
boundary.

The user should change the *UL
boundary, or insert other directives
to relocate the module (or group of
modules) that crossed the boundary.

The user should increase the size
of the common area assigned by the
*DAT directive, or decrease the
number of applications used.

The user should consolidate direc-
tives (for instance, by using the
directives with a range-type
parameter such as modl-mod2).

The user should rename one of the
two expressions to obtain a unique,
six-character name.

The user should eliminate duplicate
LOADER modules; he should retain
only that module to be used at the
head of the load file.

The user could rewrite his programs
to consolidate modules, or to use
fewer *SYN directives.

The user should restate the
expression with additional, nested
parenthesis groupings.

The user should use fewer *VE direc-
tives, and revise the input modules
accordingly.

The user should change the direc-
tive.

The user should alter the *VE
expression, or the order in which
directives are added, so that the
name is made absolute by the time
MPLINK encounters the *VE directive.

The user should insert a valid

name (a letter followed by a string
of letters and/or digits) at the
appropriate place in the directive.

TABLE B-2.

MPLINK ERROR MESSAGES (Contd)

Message

Significance

User Action

ILLEGAL DIRECTIVE

ILLEGAL EOF ENCOUNTERED

ILLEGAL SYMBOL

INCORRECT GROUP SPECYFICATION

INVALID ADDRESS (COMPONENT)

LOGICAL ADDRESS EXCEEDS $FFFF

MAXIMUM GROUP SIZE EXCEEDED

MEMORY OVERFLOW

MISSING LEFT OR RIGHT PAREN

MOD ON LINK DIR NOT FOUND

MODULE TOO LARGE

OPERAND EXPECTED

OVERLAY AREA LEN LESS THAN O

B-4

The keyword that names the direc-
tive is incorrect.

A temporary MPLINK work file
encountered an unexpected end-of-
file. This is an internal error.

The expression evaluator found a
symbol it could not interpret.

The module names specified by the
modl-mod2 parameter in a *L or *RL
expression are not correct; that
is, modl, mod2, or both are incor-
rectly specified.

A directive has an invalid addr, or
some component of an addr is in
error.

An object code module is longer in
64K words and cannot be fitted in
the NPU,

In a range-type parameter (modl-

mod2), the number of modules, or

the number of words in all of the
modules, exceeds MPLINK’s ability
to process the group.

MPLINK assigned memory locations
that do not exist in the NPU.

The expression evaluator found one
of two errors: a left parenthesis
not followed by a right parenthesis,
or a right parenthesis that was not
preceded by a left parenthesis.

The module specified by the mod
parameter in a *L or *RL directive
could not be found on the input
object code or library file,

The specified module exceeds the
size of MPLINK’s external buffer.

The expression evaluator expected
a numeric value operand.

In an OVLY directive, the ending
address (addre) parameter is
smaller than the beginning address
(addrb) parameter.

The user should reenter the direc-
tive with the correct keyword.

Rerun MPLINK.

The user should check the directive
for symbols that are not in the

63 or 64-character display code set
(as appropriate).

The user should reenter the direc-
tive with the correct module names
as they appear on the input object
code or NEWLIB files. Alterna-
tively, an incorrect module name
on those files should be changed.

The user should correct the address
and reenter the directive.

The module should be divided into
smaller modules, or rewritten to
reduce the number of words.

The user should split the range
parameter between two or more
directives, each with a smaller
modl-mod2 size.

The user should check the memory
size assigned by the *COR directive.
If it is correct, the user can try
reassigning the link start loca-
tions, It is possible that there
is not enough memory for all the
planned applications. The user
could remove some applications;
alternatively, additional memory
should be purchased.

In either case, the user should mod-
ify the expression to include the
missing parenthesis, or to delete
the unwanted parenthesis.

The user should check the module
name and correctly specify it, or
add the missing module to the appro-
priate file.

The user should recode the module
to compress it, or divide the module
into two or more modules.

The user should revise the state-
ment.,

The user should check the limits of

the desired overlay size, and enter
the proper limits.

60471200 G

TABLE B-2. MPLINK ERROR MESSAGES (Contd)

Message

Significance

User Action

OVERLAY AREA TABLE OVERFLOW

PERIOD EXPECTED

PLUS, MINUS, OR PERIOD
EXPECTED

SYNONYM TABLE OVERFLOW

TOO MANY LOCAL VARIABLES

UNDEFINED OR ILLEGAL IDENT

UNSATISFIED EXT TABLE

OVERFLOW

*DAT AND GLOBLS$ CONFLICT

*RL. FORCES MOD BELOW ADDR 0

Only ten overlay areas can be
declared with *OVLY directives.

The expression evaluator expected
the directive to be terminated with
a period but found another

* instead.

In a variable directive (*VE), the
expression evaluator expected a
plus, a minus, or a period in the
exp parameter. None of these

was found.

Too many *SYN directives were en-
tered.

Too many variables were declared by
*VE directives.

The name of an overlay is being
illegally defined, or the refer-
enced name of an entry point in a
*SYN or *ENT directive is
missing.

MPLINK has encountered too many
unsatisfied external references, or
forward external references.

MPLINK encountered both a *DAT
directive and an object code module
called GLOBLS. The assigned GLOBLS
area exceeds the area assigned by
the *DAT directive.

The *RL directive causes MPLINK
to locate some part of a module be-
low the start of main memory.

The user should rearrange his appli-
cations so that no more than ten of
them use overlays.

User should check to assure the
directive is properly terminated
with a period.

The user should enter the correct
expression in the directive.

The user should revise his programs
so he will have to declare fewer of
these name-equating operations.

The user should recode to use fewer
local variables.

The user should use a correct over-
lay identifier (range AA through
2Z), or should enter the correct
entry-point name on the *SYN or *ENT
directive,

The user should rearrange module
sequencing to minimize Eorward
references, or he should delete
some of the unsatisfied external
references.

The user can remove the *DAT direc-
tive from the directives file, or
he can increase the area assigned
by the directive.

The user should change the *RL
directive.

TABLE B-3.

MPEDIT ERROR MESSAGES

Message

Significance

Programmer Action

ARRAY TABLE OVERFLOW

BEGIN EXPECTED

COMMA EXPECTED

60471200 G

The number of arrays declared in
the ARRAY section exceeds the
capacity of MPEDIT.

MPEDIT syntax requires that a
composite statement begin with the
keyword BEGIN.

MPEDIT syntax requires that param-
eters in /VFD expressions and array
expressions be separated by commas.

The programmer should revise his
program to include fewer arrays.

The programmer should revise the
composite statement.

The programmer should revise the
statement.

TABLE B-3.

MPEDIT ERROR MESSAGES (Contd)

Message

Significance

Programmer Action

DIMENSION TABLE OVERFLOW

DO EXPECTED

END EXPECTED

EXPRESSION OPERAND STACK
OVERFLOW

ILLEGAL ARITHMETIC OPERATOR

ILLEGAL DIMENSION COUNT

ILLEGAL END

ILLEGAL KEYWORD

ILLEGAL SYMBOL IN EXPRESSION

MISSING RIGHT PARENTHESIS

NO ASSOCIATED LEFT

PARENTHESIS

NOT A LOCAL VARIABLE

OF EXPECTED

B-6

The total number of dimensions de-
clared for all arrays within the
ARRAY section exceeds the capacity
of MPEDIT.

MPEDIT syntax requires that a FOR -
TO statement be followed with the
keyword DO.

MPEDIT syntax requires that a com-
posite statement terminate with
the END keyword.

The expression evaluator encoun-
tered too many operands during
evaluation.

The expression evaluator expected
one of the five legal arithmetic
operators: +, —, *, DIV, or MOD.

The number of index values speci-
fied for an array in the assignment
section does not agree with the
number of values declared in the
array declaration section.

The keyword END is not permitted
where it was found.

The only keywords recognized by
MPEDIT are:

ARRAY DO OF
BEGIN END OVERLAY
CHAR FOR TO
CONST MOD VAR
DIV

The keyword found in the program is
not one of these.

The expression evaluator encoun-
tered a symbol that was not in the
CDC 63 or CDC 64 display code set
(as appropriate).

The expression evaluator found a
left parenthesis that was not fol-
lowed by a right parenthesis.

The expression evaluator found a
right parenthesis that was not pre-
ceded by a left parenthesis.

The indicated local identifier was
not previously specified in the
VAR section.

MPEDIT syntax requires that an
array statement have the form:
ARRAY size OF x. The array state-
ment lacks OF following the array
size specification.

The programmer should revise his
programs to include fewer arrays,
or reduce the dimensions in the
existing arrays.

The programmer should revise the
statement.

The programmer should revise the
composite statement.

The programmer can usually avoid
this problem by revising the state-
ment with additional, nested
parenthetical groupings.

The programmer should revise the
statement.

The programmer should revise the
program to make the index values
agree.

The programmer should eliminate END
from this position in the program.

The programmer should change the
program to use the desired legal
keyword.

The programmer should remove the un-
defined symbol, and substitute a
symbol defined in the proper
character set.

The programmer should modify the
expression to include a right
parenthesis, or to delete the left
parenthesis.

The programmer should modify the
expression to include a left
parenthesis, or to delete the right
parenthesis.

The programmer should either

declare the variable in the VAR sec-
tion, or specify an already declared
variable.

The programmer should revise the
composite statement.

60471200 G

TABLE B-3. MPEDIT ERROR MESSAGES (Contd)

Message

Significance

Programmer Action

OPERAND EXPECTED

OUT OF RANGE

PERIOD EXPECTED

STUFF TABLE OVERFLOW

TO EXPECTED

:= EXPECTED

**** OUT OF RANGE

(EXPECTED

) EXPECTED

= EXPECTED

EXPECTED

] EXPECTED

; EXPECTED

xXXxxx MULTIPLE ENTRY
DEFINITION

The expression evaluator expected
a numeric value operand.

The array index is not within the
range declared for the array in the
ARRAY section.

The program ends with a period
after the final END statement.
None was found.

The number of editing values ex-
ceeds the internal capacity of
MPEDIT.

MPEDIT syntax requires that a FOR
statement be followed with the key-
word TO.

MPEDIT syntax requires that the
next element of the statement be
a defining operand.

This occurs only in a trace
listing. The previous statement
referenced an address that does not
exist in the load file.

MPEDIT syntax requires that the
next element of the statement be an
opening parenthesis.

MPEDIT syntax requires that the
next element of the statement be a
closing parenthesis.

MPEDIT syntax requires that the
next element of the constant defi-
nition be an equals sign.

MPEDIT syntax requires that an
array statement have the form:
ARRAY size OF x. The array
statement lacks the opening
square bracket around

the size parameter.

MPEDIT syntax requires that an
array statement have the form:
ARRAY size OF x. The array state-—
ment lacks the closing square
bracket around the size parameter.

MPEDIT syntax requires that this
statement or declaration be sepa-
rated from the previous statement
or declaration by a semicolon.

A local symbol, array name, or
overlay name has been defined more
than once. xxxxxx 1s the multiply
defined name.

The programmer should revise the
statement,

The programmer should either in-
crease the declared range, or revise
the erroneous statement.

The programmer should revise the
composite statement.

The programmer can present the
editing information in successive
runs, recalling MPEDIT for each
new section of the editing
operation.

The programmer should revise the
composite statement.

The programmer should revise the
statement.

The programmer should revise the
statement.

The programmer should revise the
statement,

The programmer should revise the
statement.

The programmer should revise the
statement.

The programmer should revise the
composite statement.

The programmer should revise the
composite statement.

The programmer should revise the
statement.

The programmer should redefine one
of the names, keeping in mind that
only the first six characters of
the name are unique as far as
MPEDIT is councerned.

60471200 G

B~7

GLOSSARY

Cl

%

TERMS

Following are terms unique to the description of
the software presented in this manual.

Absolute Address -
An address that 1is permanently assigned to a
storage location.

Assignment Section -
The part of the MPEDIT program that contains
the statements that assign values to variables
or fields.

Blank Common -
A common area used by macro assembler programs.

Build -
The procedure of converting individual source
code modules into a linked set of object code
modules in the form of a load tape.

Directive -
A utility input statement specifying some util-
ity operation.

Dump Memory -
A hexadecimal listing, or memory dump, of the
memory 1image load module file produced by
MPLINK.

Dynamic Variable Area -
An area used by the PASCAL NEW procedure. See
the PASCAL Compiler reference manual.

Edit Utility -
The wutility (MPEDIT) that allows the user to
initialize values in the memory image load file.
The initialized memory image load file produced
by the edit utility can be converted into an
NPU load file.

Entry Point -
A labeled statement in a module that other
modules can reference. In some cases, another
program can activate a module at the entry
point.

Error Messages -
Messages generated by a utility specifying
operations that the utility could not perform.
The failure could be due to a syntax error, an

overflow condition, or other fault. Error
messages are usually sent to the output file.
Error messages are of two types: fatal errors,

which halt the utility, and nonfatal errors,
which are noted but allow the utility to con-
tinue processing.

External Synonyms -

Statements equating module names and entry
points with local names.

60471200 G

Field -
A sequence of continuous bits consistently used
to record similar information. For CCP and

CCI, fields range from ! to 16 bits in length
and cannot cross word boundaries.

Initialized Load File -
The load file that is generated by MPEDIT. It
has the same format as the MPLINK load file;
however, selected fields and variables have
initial values.

Input Directives File -
A file containing the directives necessary to
execute the MPLINK, MPEDIT, or MPLIB utilities.

Installation Procedures -
The CCP or CCI procedures that generate a load
file, which can be immediately downloaded into
an NPU to form the on-line system of that NPU.

Keyword -
A reserved word used by a utility for a specific
operation.

LGO File -
The load-and-go file. The file with this local
name contains relocatable object code modules.

Library -
A group of object code modules, together with
an index for those modules. The old library

can be used as an input to the MPLINK, MPEDIT,
and MPLIB utilities. The MPLIB utility gener-
ates a new library.

Library File -
A file created by the MPLIB utility. The file
contains object code for all modules in the
library, plus an index to the modules.

Library Maintenance -
The function performed by the MPLIB utility;
that is, generating a new library from a set of
object code modules or generating a new library
from the old library, together with selected
new object code modules,

Link Utility -
The wutility (MPLINK) that 1links object code
modules into a memory image load module. MPLINK
also produces a symbol table file. Both of
these files are used as input for the edit
utility.

Linking -
The process of locating (assigning space) for
object code modules on a memory image load
module file, and resolving external calls in
those modules with entry points in other load
file modules.

Listing File -
A utility output file. 1In most cases, it con-
tains user-requested reports.

Load File =~
The host file holding a set of linked and edited
object code modules which have been made abso-
lute. The file can be downline-loaded into a
specific NPU to form the on-line system for
that NPU. A different load file (variant) is
needed for each NPU to be loaded.

Memory Image Load Module File -

A file produced by the MPLINK uatility. The
load module file contains the code which has
been made absolute for all programs to be used
in the CCP or CCI build., MPLINK’s version of
this file is not initialized; MPEDIT initializes
the file. A host load file generator converts
the initialized memory image load module into a
load file for CCP or CCI.

Memory Map -
An MPLINK report showing the main memory loca-
tion of every module in the build.

Module -
(1) An integral part of an application that has
a pame and at least one entry point (a module
is sometimes called a routine or a program).
Any module can be selected to be used as part
of an NPU build, (2) See memory image load
module file.

MPEDIT ~
The editing wutility that assigns values to

variables in the memory image load wmodule file
generated by MPLINK.

MPLINK -
The utility that assigns space to modules on a
memory image load module file and links the
modules together by equating external calls in
one module to the comparable entry point in
another module.

Name Call Statement-
The statement that is executed by the host’s
operating system to pass control of the computer
to the program (or utility) associated with
that statement.

Object Code Input Files -
Input files containing modules in object code
format. Such files are used in all the util-
ities.

Object File -
A utility input or output file centaining object
code for modules.

Overlay =
A set of modules (application) that 1is not
normally resident in the NPU. When the overlay
is to be executed, it is loaded into a specific

overlay area., The modules which normally use
that area cannot be used until the overlay is
ejected.

Overlay Area -—
The part of an NPU that can be used to execute
overlay programs.

Page Addressing ~
The method of using an 18-bit address to locate
a module that 1is assigned to a pageable area
of memory. All modules assigned to the region
above 65K are accessed 1in page-addressing
mode. Some of the area below 635K is also
page-addressed. 1In particular, in CCP and CCI,
an 8K page starts at address 200016- All
modules paged above 65K are imaged at this page.

Page (logical) -
An 8196-word section of CCP or CCI memory. All
memory is paged. Memory up to 65K is executable
at the address given; memory above 65K is imaged
at the page beginning at 2000 ..

Page (physical) =~
A 2K (2048) word section of NPU memory.

Page Register -
A register that indexes one of the NPU physical
pages.

Program -
A module or a group of modules with related
functions.

Report -
One of the reports associated with the link,
edit, or library maintenance utility programs.

Reverse Loaded -
A module that 1is located in main memory by
assigning the address given to the last word of
the module. Space 1is then reserved for all
other words in the module down to the first
word.

Stack Area -
A reserved area in an NPU memory for use by
PASCAL recursive/reentrant procedures.

Terminal Interface Program (TIP) -
An application that handles the interface be~-
tween the NPU and a type of terminal, such as
teletypewriter terminals or Mode &4 terminals.

Tophat -

Refers to a module that is called by several
other modules. The code required to locate a
tophat module’s entry peoint is wminimized by
compiling a small auxiliary piece of code with
the module. This tophat code sets the page
registers when other modules call this module.
If a tophat module is located in a main memory,
this operation is not necessary, so the tophat
auxiliary code is discarded. Otherwise, if a
tophat module is paged, the tophat code is lo-
cated in main memory to set the page registers.

Variant -
The definition of a real set of hardware and
software for an NPU. The variant for an NPU

defines the memory size, the NPU type (local or
remote), the TIPs to be included in the build,
and the maximum number of lines that can be
configured. The variant also identifies the
NPU, the host coupler (if any), and any trunks
used by the NPU.

60471200 G

MNEMONICS

Following
keywords,

is a list of reserved words, symbols,

and directives unique to the description

of the software presented in this manual.

ABSOLMP

ARRAY

BEGIN
BIP
CCI
CcCp

CHAR

CONST

CSET

DIV

DO

END

FOR

GLOBL$
HIP
INPUT
LGO
LIP

LOADER

MOD

MPEDIT

MPLIB
MPLINK

NEWLIB

OF

OUTPUT

OVERLAY

60471200 G

Absolute memory image load file

Array declaration command - MPEDIT direc-
tive

Begin statement - MPEDIT directive
Block interface package
Communications Control INTERCOM
Communications Control Program

Character mode, declaration -

MPEDIT directive

array

Constant declaration - MPEDIT directive
CDC code set variable

Input file parameter -~ MPLINK and MPEDIT
call statement

Division operator - MPEDIT directive

Part of MPEDIT loop directive (FOR x TO
y DO...)

End statement of a composite statement -
MPEDIT directive

Part of MPEDIT loop directive (FOR x TO
y DO...)

CCP/CCI data base area
Host interface package
Default input file
Load-and-go file

Link interface package

First record
module tape

on a wmemory image load

Module operator - MPEDIT directive
Edit utility

Library maintenance utility

Link utility

New library file - MPLIB call statement
parameter

Part of array declaration - MPEDIT direc-
tive

Default output file

Overlay identifier — MPEDIT directive

SVM

SYMTAB

TIP

TO

VAR

X.25

*ALL

*CB

*COM

*COR

*DAT

*DEL

*DMP

*DSTK

*DVAR

*END

*ENT

*L

*LIB

*LL

*LST

*OVLY

*PUT

*RL

*SUP

*SYN

*SYSID

*UL

Service module
Symbol table file
Terminal interface package

Part of MPEDIT loop directive (FOR x TO
y DO...)

Variable declaration - MPEDIT directive
A TIP

Copy all LGO files to new library - MPLIB
directive
MPLINK

Upper boundary declaration -

directive

Define blank common area - MPLINK direc-
tive

Define 255x memory size - MPLINK direc-—
tive

Define 1labeled common area - MPLINK
directive

Delete module - MPLIB directive

Define labeled common area -~ MPLINK
directive

Define stack area ~ MPLINK directive

Define dynamic variable area - MPLINK
directive

End-of-directive-file directive - all

build utilities
Define entry point - MPLINK directive
Link modules — MPLINK directive

Define library file - MPLINK directive

Lower boundary declaration - MPLINK
directive

List the library - MPLIB directive

Define overlay-area-directive - MPLINK
directive

Insert/replace module in library - MPLIB
directive

Reverse-linking - MPLINK directive

Suppress copying programs from the LGO
to the library - MPLIB directive

Define external synonym - MPLINK direc-
tive

System identification - MPLINK directive

Upper limit - MPLINK directive

*VE

/DMP$
/ENTRY
/ESL$
/LENGTH

/NAMS

/PGDISP

Directive that assigns a value to a local
variable - MPLINK directive

List the load tape - MPEDIT directive
Address entry function — MPEDIT directive
List SYMTAB - MPEDIT directive

Field length function - MPEDIT directive

Generate the NPU load tape -~ MPEDIT
directive
Page displacement function - MPLINK/

MPEDIT directive

/PGNUM

/PGSET

/START

/TRACE

/VED

Page resister number function - MPLINK/
MPEDIT directive

Page register set function - MPLINK/
MPEDIT directive

Field state location function - MPEDIT
directive

Trace of edit operations - MPEDIT direc-
tive

Yariable field definition - MPEDIT direc-
tive

60471200 G

MEMORY IMAGE LOAD MODULE FILE FORMAT

This appendix describes the format of the memory
image load module file. Tt is an output of either
MPLINK or MPEDIT. The only difference between the
two files 1s the initialization of certain values.
The format of the files is identical.

MPLINK or MPEDIT builds the load module file from
object code programs and directives. The object
code programs can be on an LGO file or a library
file, or, for MPEDIT, a noninitialized memory image
load module file produced by MPLINK. If the object
code programs are on an input object code file,
they have been previously produced individually by
a CYBER Cross macro assembler, micro assembler, or
PASCAL compiler. Libraries, likewise, are composed
of object code programs produced by these CYBER
Cross compilers/assemblers. A library has a direc-
tory for locating the modules easily.

Each program on the load module file has an exe-
cution (load) address. This address 1is either

specified, or equated to zero, by the MPLINK util-
ity. External references from all programs can be
resolved from a program library. The user can also
specify entry-point values (addresses).

FILE FORMAT

Figure D-1 shows the load module file format on the
highest level. On this level, the file consists of
an optional 1loader record, a partition for NPU-
resident programs, and partitions for each group of
overlay modules (assuming there are any optional
overlays). The resident load partition includes a
system header record followed by a series of record
pairs, one pair for each program in the on-line
system. If there are overlay partitions, each of
these has a format similar to that of the resident
partition. The file 1is terminated with a trailer
record.

FILE FORMAT

LOADER RECORD
(OPTIONAL)

END OF RECORD

RESIDENT LOAD
PARTITION

60471200 G

SYSTEM HEADER
RESIDENT RECORD _ _ ___LOAD PARTITION
LOAD LOAD MODULE 1
PARTITION PARTITION HEADER RECORD
END OF RECORD OVERLAY AREA Fb OF RECORP
-t LOAD PARTITION MODULE 1
1 OVERLAY AREA MEMORY IMAGE
OVERLAY | HEADER RECORD RECORD
AREA 1 i
LOAD i END OF RECORD END OF RECORD
PARTITION
| OVERLAY 1 MODULE 2
| HEADER RECORD HEADER RECORD
END OF RECORD |
I END OF RECORD END OF RECORD
. |
° | OVERLAY MODULE 2
. | IMAGE BLOCK MEMORY IMAGE
.] (OVERLAY 1) RECORD
END OF RECORD END OF RECORD
OVERLAY
AREA m ' .
LOAD . .
PARTITION ° ®
[] []
END OF RECORD OVERLAY m MODULE n
HEADER RECORD HEADER RECORD
TRAILER
RECORD END OF RECORD
END OF FILE MODULE n
MEMORY IMAGE
RECORD
Figure D-1. Format of an MPLINK or MPEDIT Output Load File

OPTIONAL LOADER RECORD

If the LOADER record exists, it is the first record
on the load module file. This record is included
only if an object text file called LOADER is 1in-—
cluded in the library or input object code files
used as input by MPLINK. The format of this header
record is arbitrary.

RESIDENT LOAD PARTITION

This partition contains object code for every module
in the on-line NPU system. It does not contain any
code for overlay modules.

The partition has a system header, followed by a
record pair for every on-line module. The modules
occur in the same order in which they occur in NPU
memory.

A record pair for a module consists of a module
header record followed by a record containing the
object code for the module.

System Header Record
Figure D-2 shows the format of the system header

record. This record is generated as the direct
result of the MPLINK directive: *SYSID,name(,text).

BIT
WORD 15 14 1110 76 0
1 WORD OR RECORD COUNT
2 o H$¢PDEER NB‘,:A%EER)PAGE FIELDS
COLLECTIVELY
3 PAGE PAGE QE;OT:YE
REGISTER
DISPLACEMENT ACDRESS
4 CHAR 1 CHAR 2
5 CHAR 3 NAME CHAR 4
6 CHAR 5 CHAR 6
7 CHAR 1
L]
o = TEXT, COMMENTS, ~
o OR ZEROS
30 CHAR 48

HEADER TYPE {3 BITS)

0 - SYSTEM (RESIDENT PARTITION)
1 OVERLAY PARTITION

2 - OVERLAY MODULE

4 RESIDENT MODULE

NOTE THE LENGTH OF THE WORD 15 ASSUMED TO BE
16-BITS (THE WORD SIZE OF THE TARGET NPW)
RATHER THAN 60 BITS (THE WORD SIZE OF THE
HOST COMPUTER GENERATING THE LOAD MODULE
FILE)

Figure D-2. Format of Load File Header Record

In this 30-word record the fields are as follows:

RECORD COUNT (word 1) is the number of records
in the resident partition. The number of mod-
ules in this partition is:

] o2

Number (modules) = (records - 1)/2

HEADER TYPE (word 2) is a system header (type =
0).

MEMORY ADDRESS (words 2 and 3) is not used.

NAME (words 4, 5, and 6) is the six-character
ASCII identifier specified by the name parameter
in the *SYSID directive.

TEXT (words 7 through 30) is specified by the
text parameter in the *SYSID directive. The
character code 1is ASCII. Any characters not
used are filled with zeros.

Module Header Record

Figure D-2 shows the format of the module header
record. This record is generated by MPLINK at the
time modules are linked as the result of an *L or
*RL directive.

In this 30-word record the fields are as follows:

WORD COUNT (word 1) is the number of 16-bit
words of object code in the following record.

HEADER TYPE (word 2) is a module header (type =
4).

MEMORY ADDRESS (words 2 and 3) designates the
address of the module’s first word. It has
three parts (see the Page Addressing descrip-
tion in the MPLINK section):

PAGE NUMBER 1is the 7-bit 1logical page
number.

PAGE REGISTER is the 5-bit page register ID.

PAGE DISPLACEMENT is the 11-bit displace-
ment (in words) to the first word of the
module on the physical page.

NAME (words 4, 5, and 6) is a six-character
ASCII identifier. It has one of the following
formats:

A PASCAL common area name: MAINS or GLOBLS

The name associated with a PASCAL-compiled
program

The name specified on the NAM card of a
macro assembled program

The name of a micro assembled program

COMMENTS (words 7 through 30) is blank if this
is a PASCAL-compiled module. It is the comment
(in ASCII characters) on the NAM card if this
is a macro assembled module.

Resident Module Record

This record consists of 16-bit words of object code.

OVERLAY LOAD PARTITION

There can be one to ten overlay partitions. Each
partition 1is separately identified and occurs in
the same order that the overlay directives were
entered in MPLINK.

60471200 G

An overlay partition contains object code for every
module in that overlay.

The partition has an overlay header, followed by a
record palr for every module in the overlay. The
modules occur in the same order in which they occur
in NPU memory when the overlay is moved into its
execution area.

A record pair for an overlay module consists of an
overlay module header record followed by a record
containing the object code for the overlay module.

Overlay Area Header Record

Figure D-2 shows the format of the overlay area
header record. This record is generated as the
direct result of the MPLINK *OVLY directive.

In this 30-word record the fields are as follows:

RECORD COUNT (word 1) is the number of records
in this overlay partition. The number of over-—
lay modules in this partition is:

Number(modules) = (records - 1)/2

HEADER TYPE (word 2) is an overlay area header
(type = 1).

MEMORY ADDRESS (words 2 and 3) specifies the
first word of the overlay area. It has three
parts:

PAGE NUMBER is the 7-bit logical page
number.

PAGE REGISTER is the 5-bit page regilster ID.

PAGE DISPLACEMENT is the 1l-bit displace-
ment (in words) to the first word of the
module on the physical page.

NAME (words 4, 5, and 6) is the six-character
ASCII identifier specified by the name param-
eter in the *SYSID directive.

TEXT (words 7 through 30) is not used. Charac-
ters are filled with zeros.

Overlay Module Header Record

Figure D-2 shows the format of an overlay mod-
ule header record. This record is generated by
MPLINK at the time modules are linked as the result
of an *L or #*RL directive following an overlay
declaration.

In this 30-word record the fields are as follows:

WORD COUNT (word 1) 1s the number of 16-bit
words of object code in the following record.

HEADER TYPE (word 2) is an overlay module header
(type = 2).

MEMORY ADDRESS (words 2 and 3) specifies the
address of the overlay module’s first word when
it is in NPU memory. The address has three
parts:

60471200 G

PAGE NUMBER is the 7-bit 1logical page
number,

PAGE REGISTER is the 5-bit page register ID.
PAGE DISPLACEMENT is the ll-bit displace-

ment {(in words) to the first word of the
module on the physical page.

NAME (words 4, 5, and 6) is a six-character
ASCIT identifier. It is the name associated
with a PASCAL-compiled program.

COMMENTS (words 7 through 30) is blank. The
characters are filled with zeros.

Overlay Module Record

This record consists of 16-bit words of object code.

TRAILER RECORD

The format of the trailer record is shown in figure
D~3. The use of the words is described on that
figure.

WORD 15 10 6 0
1 0 0
: [\ S
TRANSFER
ADDRESS
PAGE
3 REGISTER | PAGE DISPLACEMENT
PAGE
4 NUMBER STACK
v ADDRESS
A (BEGIN)
5 REGISTER | PAGE DISPLACEMENT
PAGE
6 NUMBER STACK
Py ADDRESS
A (END)
7 REGISTER | PAGE DISPLACEMENT j
PAGE
8 NUMBER OYNAMIC
v ' VARIABLE
AREA (BEGIN)
9 REGISTER | PAGE DISPLACEMENT ‘
PAGE
e NUMBER DYNAMIC
 VARIABLE
PAGE a AREA {END}

11 REGISTER PAGE NUMBE ’

12 0 0

L L]

. . ‘

. (. [

) |o 0

BIT 15 IN WORD 2 SET INDICATES THE
TRAILER RECORD. THIS BIT 1S 0 IN A
HEADER RECORD.

NOTE THE LENGTH OF THE WORD IS ASSUMED TO BE
16-BITS {(THE WORD SIZE OF THE TARGET NPU)
RATHER THAN 60 BITS (THE WORD StZE OF THE
HOST COMPUTER GENERATING THE LOAD MODULE
FILE}

Figure D-3. Format of Load Fite Trailer Record

>3 |

OPTIONAL MEMORY IMAGE LOAD
MODULE FILE FORMAT

The optional memory image load file for an NPU
consists of a single record. The file is generated
by the pseudoconstant /NAM$ in the MPEDIT utility.

The record begins with a prefix and a header as
shown in figure E-1. The data within the record 1is
segmented. FEach segment is preceded by the first
word address (FWA) for which it is intended. Each
segment is also preceded by a length field. The
length field indicates the number of 16-bit words
in the data segment. The length can never exceed
120 16-bit words.

The prefix is shown in figure E-2, It contains
information describing the creation of the record.
Except for the first 60-bit word and the binary
zero fill in the second 60-bit word, all informa-
tion in the prefix is in display code, with blank
fill, so that it can be printed. The prefix con-
tains exactly fifteen 60-bit words.

The header 1is one 60-bit word. It contains the
record name in display code, in bit positions 59
through 42. The bit pattern of the remainder of
the word is shown in figure E-3.

The first word address and the length field formats
are shown in figure E-4 and E-5.

The data segment format is shown in figure E-6.

woRrD 39 9
! 1
PREFIX
13
16 HEADER
17 FWA DATA SEGMENT 1

LENGTH OF DATA SEGMENT 1

DATA SEGMENT 1

FWA DATA SEGMENT 2

LENGTH OF DATA SEGMENT 2

DATA SEGMENT 2

FWA DATA SEGMENT n

LENGTH OF DATA SEGMENT n

DATA SEGMENT n

Figure E-1. Optional Load Module Record Format

60471200 F

R s}
59 47 413 29 23 1y o
1| 77008 I 0016g] 0
S :
3 DATE
4 TIME
5 OPERATING SYSTEM NAME l OPER. SYS. VERS.
6 | LANGUAGE PROCESSOR NAME lLANG_PROCvVER
7 LANG. PROC. MOD. LEVEL l BLANK FiLL
8 BLANK FILL

LANGUAGE PROCESSOR INFORMATION

10 OR
BLANK FiLL a—
1
12
13 USER COMMENTS
14 OR
BLANK FILL —

Figure E-2. Optional Memory Image Record

Prefix Format

59

41 35 23 0

RECORD NAME
(DISPLAY CODE)

0 77778 0

Figure E-3. Optional Load Module Record

Header Format

59

4746 2523 19 17 0

0 1 [} Al O] 0 C

®
I

HIGH-ORDER 2 BITS OF FIRST WORD ADDRESS (FWA)
MIDDLE 8 BITS OF FwA
LOW-ORDER 8 BITS OF FWA

Figur

e E-4. Optional Memory Image Record

First Word Address Format

59 7 0

0 LENGTH

LENGTH = NUMBER OF 16-BIT WORDS IN DATA SEGMENT

figure E-5. Optional Memory Image Record
Length Format

23 023 0 23 0
WORD 1 | WORD 2 WORD N
~—
! -~
S~
| ~a
I 19 1 ~ .0
HIGH-ORDER LOW-ORDER
0 | EIGHT 8ITS OF EIGHT BITS OF
16-B1T WORD 16.8IT WORD

ONE WORD OF DATA SEGMENT

Figure E-6. Optional Load Module Record
Segment Format

60471200 F

RELOCATABLE OBJECT CODE FILE FORMAT F

RECORD BLOCK

The object code input to the library maintenance
and link utilities is the relocatable binary code
generated by the CYBER Cross System translators:
PASCAL compiler or macro assembler. The relocat-
able binary is represented in record blocks of 960
bits of information: i.e., sixteen 60-bit words or
sixty 16-bit words.

The data portion of the record block is formatted
accordingly:

Word 1 (16-bit words)

#

Bits 15 through 8 = module sequence number

Bits 7 through 4
indicator

5, the 7/9 binary card

Bits 3 through O = 0

Word 2 = the complement of the length of the
data portion in l6-bit words

l Word 3 to n = the object code block
Word 3 + n + 1 = the checksum

A record block will not exceed one card image; thus
l the length of an object code block (words 3 to n,
where n is the length of the data portion) is 57
words or less. The checksum immediately follows
the last data word in the record block; if the data
portion is less than 57 words, the record block is
padded to fill a complete 80-column card image.

The file of record blocks may be in one of two
formats, depending on whether the packed binary
(PB) parameter was selected on the translator call
card. 1f the PB parameter was not selected, the
file is written with one record block per record.
If the PB parameter was selected, the file is
written with the record blocks packed such that
each record contains one program preceded by a
CYBER Loader 7700 table.

OBJECT CODE BLOCK

The object code block, which contains the relocat-
able binary information, is headed by a type of
block indicator field in bits 15 through 13 of the

| first object code word. The following object code
block types are defined:

Type and Indicator Description
NAM 001 Name block
RBD 010 Command block sequence

60471200 G

BZS 011l Zero storage block
ENT 100 Entry point block

EXT 101 External name block
ENF 000 Entry field block

EXF 111 External field block
XFR 110 Transfer address block

The remainder of this first word contains a constant
of bits 6 and 4 set equal to l, and all other bits
set equal to 0.

A module’s object code begins with a NAM block and l
terminates with an XFR block. The ENT and EXF
blocks follow the RBD blocks. The RBD, BZS, ENT,
and ENF blocks may come in any order.

The following is the format for the eight block
types. Note that the word positions indicated are
relative to the beginning of an object code block. I

NAM BLOCK

The NAM block contains a word count for common and
data storage, the module length, and the name of

the program. See figure F-1.

15 11 7 3 0

IOO‘OlOOOOlO!O!lOOOO

2 NUMBER OF WORDS IN
COMMON STORAGE BLOCK
DATA PORTION
3 NUMBER OF WORDS IN

DATA STORAGE BLOCK

4 PROGRAM LENGTH

] CHARACTER 1 CHARACTER 2

6 CHARACTER 3 CHARACTER 4 PROGRAM NAME

7 CHARACTER § CHARACTER 6

NAM STATEMENT COMMENTS

3t
32

NOT USED

al J

Figure F-1. NAM Block Image

RBD BLOCK

An RBD block contains a portion of the actual
command sequence data of the module. See figure
F-2. Words 2 through 57 contain the relocation
bytes and words for the command sequence input.
Each relocation byte is a 4-bit indicator that
identifies a word of the command sequence input as
an absolute 15-bit address, or as a 15-bit address
relative to some relocation base. The relocation
base for a word 1s determined by the particular
combination of bit settings within the relocation
byte.

15 11 7 3 0
1 o100 0000 o101 0000
2 RQ R1 R2 R3
3 wo
4 w1
5 w2
[w3
[w [w [
8 wae
9 ws
10 wé
1 w7

12 R8 r R9 I R10 I R11

52 R40 l R41 [R42 [R43
53 w40

54 w41

56 wa2

58 w43

57 NOT USED

Wn The nth word of the input block (n=1 to 43).
Rn The relocation byte of the nth word.
W0 The origin address of the input block.

RO The relocation byte for WO.

There is one relocation byte for every word in the
command sequence output, and a maximum of 45 entries
in the RBD block. The first word is the address
relative to the start of the program where the
loader begins storing command sequence data. The
relocation byte for the first word address (storage
address) of an RBD block may be 0000, 0001, or 00I1.
If the field contains a number larger than 0011,
then 0011 is assumed. Zero is the leading bit for
all but the last relocation byte; one is the lead-
ing bit for the last relocation byte.

BZS BLOCK

A BZS block contains relocation bytes, the starting
address, and block sizes for areas of core to be
cleared to zeros when the program is loaded. See
figure F-3.

The relocation bytes for a starting address may be
0000, 0001, or 0Ol1.

Figure F-2. RBD Block Image

The following are the relocation bytes in RBD
blocks:

0000 Absolute (no relocation)

0001 Positive program relocation

0101 Negative program relocation

0010 Positive common storage relocation
0110 Negative common storage relocation
0011 Positive data storage relocation
0111 Negative data storage relocation

15 11 7 3 0
1 0t 10 0 00O 01 011 0000O
2 R A2 R3 R4
3 Al
4 St
5 A2
6 s2
? A3
8 s3
9 Ad
10 54
n RS] R&] R7 l R8
47 R21 I R22 I R23 | R24
48 A21
49 s
50 A22
51 §22
52 A23
63 $23
54 A24
55 524
56 NOT USED
57 NOT USED

An Starting address of the nth entry (n=1 to 24).
Sn Size of the BZS reservation for the nth entry.

Rn Relocation byte of the nth entry.

figure F=3. BZS Block Image

60471200 G

ENF BLOCK

Up to 1l entry fields may be specified in an ENF
block. See figure F-4. The end of data in this
block is identified by zeros. If the sign bit of a
word containing the entry point address is 0, the
address is program-relocatable. If the sign bit is
1, the address 1s absolute and in one’s complement.
Data begins in word 2.

15 1 7 3 0

ODOOTO 000

010|L0000

~N

CHARACTER 1

CHARACTER 2

w

CHARACTER 3

CHARACTER 4

rS

CHARACTER 5

CHARACTER 6

S Et

o

FLOST IFLDLTH i NOT USED

? FIELD NAME 1

~

CHARACTER 1 CHARACTER 2

©

CHARACTER 3 CHARACTER 4

©

CHARACTER § CHARACTER 6

FIELD NAME 2

10 €2

FLOST IFLDLTH zll

NOT USED

52 CHARACTER 1 CHARACTER 2

53 CHARACTER 3 CHARACTER 4

54 CHARACTER & CHARACTER 6 FIELD NAME 11

55 EN

s6 | FLOST]FLDLTH H-IL

NOT USED

name n A six-character name of the nth entry in
the block.

En The entry address of the nth field name.
En is negative (one's complement) if
absolute, and positive if relative.

FLDSTn The Leftmost bit of the nth field:

0<FLDSTn<15.

FLDLTHn The Length of the nth field:
1<FLDLTHN<16.

Figure F-4. ENF Block Image

ENT BLOCK

Up to 14 entry point names and addresses may be
included in an ENT block. See figure F-5. The end
of data in this block is identified by zeros. If
the sign bit of a word containing the entry-point
address 1s 0, the address 1is program-relocatable.
If the sign bit of the word is 1, the address is
absolute and in one’s complement. Data begins in
word 2 and extends to word 57.

60471200 G

15 11 7 3 0
i1 00 oj vooo|lo 1o 1[0 000
2 CHARACTER 1 CHARACTER 2 ’
3 CHARACTER 3 CHARACTER 4
NAME 1
4 CHARACTER 6 CHARACTER 6
5 £l
6 CHARACTER 1 CHARACTER 2 ’
7 CHARACTER 3 CHARACTER 4 ‘
NAME 2
8 CHARACTER § CHARACTER 6
9 E2
50 CHARACTER t CHARACTER 2
5 CHARACTER 3 CHARACTER 4
52 CHARACTER 5 CHARACTER 6
53 £13
54 CHARACTER 1 CHARACTER 2
55 CHARACTER 3 CHARACTER 4
NAME 14
56 CHARACTER 5 CHARACTER 6
57 E14
name n A six-character name of the nth entry in
the block.
En The entry-point address of the nth name.

En is negative (one's complement) if
absolute, and positive if program-
relocatable.

Figure F-5. ENT Block Image

When processing an ENT block, the loader records
the entry-point name in its table. The entry-point
address is adjusted for relocation (either program
or absolute), and then it is recorded in the table
of entry points. This procedure 1is repeated until
the end of input is reached (a name equal to 0).

EXF BLOCK

Up to 14 external fields and link addresses may be
included in an EXF block. See figure F-6.

The end of the EXF block is indicated by zeros. If
the sign bit of the word containing the link address
is 0, the address is program-relocatable. If the
sign bit is 1, the address is absolute and in one’s
complement. The format of the data in the block is
the same for EXF as for ENT information. Relative
external fields are indicated by setting the left-
most bit of the word containing character 1 of the
field name. An external name that contains no
references within the module’s object text is
indicated by a $8000 in the link address.

15 11 7 3 0
Tf1r 1 1 0j0 0 0 0jO0 1 0 1]00O0O
2 CHARACTER 1 CHARACTER 2
3 CHARACTER 3 CHARACTER 4
NAME 1
4 CHARACTER 5§ CHARACTER 6
5 Lt
6 CHARACTER 1 CHARACTER 2
7 CHARACTER 3 CHARACTER 4
NAME 2
8 CHARACTER 5 CHARACTER 6
9 L2
{ 1
50 CHARACTER 1 CHARACTER 2
51 CHARACTER 3 CHARACTER 4
NAME 13
52 CHARACTER § CHARACTER 6
53 L13
54 CHARACTER 1 CHARACTER 2
66 CHARACTER 3 CHARACTER 4
NAME 14
56 CHARACTER & CHARACTER 6
57 L14

name n A six-character name of the nth entry in
the block.

Ln The Llink address of the nth name. Ln is
negative (one's complement) if absolute,
and positive if relative.

Figure F-6. EXF Block Image

EXT BLOCK

Up to 14 external names and link addresses may be
included in an EXT block. See figure F-7.

The end of the EXT block is indicated by zeros. If
the sign bit of the word containing the link address
is 0, the address is program-relocatable. If the
sign bit is 1, the address is absolute and in one’s
complement. The format of the data in the block is
the same for EXT as for ENT information. Relative
externals are indicated by setting the leftmost bit
of the word containing character 1 of the name.
The end-of-link is indicated by a $7FFF.

XFR BLOCK

The XFR block contains a transfer address (in words
2 to 4), which 1is six ASCII characters in length,

including trailing spaces. See figure F-8. The
transfer address must be an entry point in the
program being loaded or in another program loaded
during the same load operation.

15 11 7 3 0
11y 0 o]o 00 0cfo 10 1]0 000
2 CHARACTER 1 CHARACTER 2
3 CHARACTER 3 CHARACTER 4
NAME 1
4 CHARACTER § CHARACTER 6
5 L1
[CHARACTER 1 CHARACTER 2
7 CHARACTER 3 CHARACTER 4
NAME 2
8 CHARACTER 5 CHARACTER 6
9 L2
50 CHARACTER 1 CHARACTER 2
51 CHARACTER 3 CHARACTER 4 I
'NAME 13
52| CHARACTER & CHARACTER 6 s
53 113
54 CHARACTER 1 CHARACTER 2
55 CHARACTER 3 CHARACTER 4
NAME 14
56 CHARACTER 5 CHARACTER 6
57 L1a
name n A six-character name of the nth entry in
the block.
Ln The link address of the nth name. Ln is
negative (one's complement) if absolute,
and positive if relative.

Figure F-7. EXT Block Image

15 11 7 3 0
{1100 000 0 010 1] 0000
2 CHARACTER 1 CHARACTER 2
3 CHARACTER 3 CHARACTFR 4
4 CHARACTER 5 CHARACTER 6

Figure F-8. XFR Block Image

60471200 G

LINK UTILITY EXAMPLES Gl

This appendix gives two examples of calling MPLINK case, this information 1is not necessary since the
independently of the CCP or CCI build procedures build procedures automatically supply all the
(figures G-1 and G-2). Note that in the ordinary calling procedures.

gquile a PASCAL source program and build a load module satisfying external references from an object program
ibrary:

ABC,CM77000,777,P4. 0000, xXxX , xXXXXXXX, SMITH.
REQUEST (ABSOLMP,*PF) *Memory Image Load Module File
ATTACH (NEWLIB,0BJPGMLIBO3,1D=PT *New Library

ATTACH (MPLINK,ID=SCDD) *MPLINK Utility

ATTACH(PASCAL, ID=SCDD) *PASCAL Compiler

PASCAL (0,CSET=64) *List output and use 64 char ASCII
FRMT.

REWIND (LGO) *Reset Object Code Input File
MPLINK (CSET=64) *Call MPLINK

CATALOG (ABSOLMP,LOADMODO1,1D=PT ,RP=30) *Catalog Load Module File
7/8/9

...PASCAL source program... *A11 PASCAL Source Programs
7/8/9

MPLINK directive file

6/7/8/9

NOTES

After all of the object programs on the object code input file have been read and
linked, any remaining unsatisfied external references can be resolved using the
library if one is supplied.

Figure G-1. MPLINK Execution Exampte 1 I

Build a load module from an object program library with editing of the load module file:

ABC,CM77000,777,P4. 0000, xxxX , xxxxxxxx, SCHOF IELD.
REQUEST (ZAPMP,*PF)

ATTACH (NEWLIB,0BJPGMLIBO3,ID=PT)

ATTACH (MPLINK,ID=SCDD)

ATTACH(MPEDIT,ID=SCDD)

MPLINK (CSET=64)

REWIND (ABSOLMP,SYMTAB) *Absolute Memory Image Load File and Symbol Table File
MPEDIT (CSET=64)

CATALOG (ZAPMP,LOADMODO2, ID=PT,RP=30)

7/8/9

*REL ,NEWLIB. First MPLINK Directive

Nest of MPLINK Directive File

6/7/8/9

Figure G-2. MPLINK Execution Example 2 I

60471200 G G-1

EDIT UTILITY EXAMPLES H |

This appendix gives the following examples: A partial 1listing of the memory image load
module file (figure H-2).
Selected portions of an MPEDIT program with
constant, variable, and array declarations, and
a single assignment section for the main CCP Note that the edit utility is automatically called
programs (that is, no overlay assignment sec- as a part of the CCP and CCI build procedures.
tions). This program is given in figure H-1.

60471200 G H~1

CYBER MINI CROSS SYSTEM - LINK EDITOR

EDIT STATEMENTS

4

EERR AR ER AR E R RN AR KRR Rk SRRk k¥ K
* *
* COPYRISHT CINTROL NATA CORP, 1975, *
* 1974¢ 1977, 1978, 1979y 198C *
* *

EEERREE KRR AR AR AR R MR R SR TR R KRR R KR KRR RN Rk &

. DEFINITION/DECLARATION

RERA AR F R R e Rk L R AR KPR R R R RN R R ARk

« *
* CJUNSTANTS *
* *

I R L A R A N RS R R RS E R R S
+

CONST
ITRUF = 13
/FALSF = 33
INAaME =)2y ® GENERATE MPPPU FILE 4
)
e R
* *
* SYLTEM SONSTANTS *
* *

I E R A i R E S RS R L R R A L 2 RS SRR R
4
I
3R A S R R R R s R s Rl s R R S R R Y S RS R R S R NS
KHCNEE SI7Zwk
IR S Ry I Y R R s S A R R R R 2L
4
/CS1AK = $3FFF

t
/CS52K = $TFFF
1C S40K = 39FrfF 3
/CS48K = $BFFE 3
1CS5HK = $0FFF ;
1CS64K = $FFFES
/C3128K = 15
1CS25hKK = 23

» .

AR R R R R RN AR R RN R R R R RN RN AR RN R AR AR R AR R AR AR KRR R R R kS
BUFFER CONTROL BLOCK INDECES

LR e s L R R e i sl

:

/380S0 =0 3 o SIZE O INDEX ¢
/RGS1 = 1 3 - 1 +
180S? = 2 3 ° 2 s
/8053 =3 3 o 3 +
L4

[

®

[]

VAR
(AR A GENeRAL LDOCP INDEX 4
/11 o GINLRAL LOCO IND&X +
/12 A CENERAL L7002 INDEX +
1135 o CFNERAL USE VARIABLF +
/1P A WLRK OV INTER FJIR MONEM STATE PROGRAMS +
/43 » GENERAL INDEX LGQP +
(A ANURK=POINTER FIR TIP-INPUT-STATESH
JLSAVE » SAVFE wIGK PTR [N TEXT °2nCR HDR STATE PROGRAMY
143 AVARTABLF INDIXx KQCNTRTAL 4
JCH3MLUIA 3 # SU8 ©JT LT3 TAHBLE POINTERS ~ MLTA +
JCHSTONS ¢ » CNNSOLE 1
JCHSCNLALYR » COUPLER +
fLCHSURLEOA; » INCEXx - CHSUJLC3 +
/LPI:
1TCICONT 3
FTC3¥LIA 3
119337

/101705 » NCTw3PK DIFINTTION TABLE WORK POINTER 4

AR AR TR R F KR KU R R KRR AR R AR
*]
* JHE FOLLGING IS THE STOURCE INPUT *
* FLP APPLICATINN UNIQUE VARTARLES #
* OEFINITINN FOR THIS SYSTO™ A
* *
Y '

R e R I R A R R S A L

SECTION

CONSTANT DECLARATION PART

VARIABLE DEFINITION PART

Figure H-1. Partial MPEDIT Program (Sheet 1 of &)

60471200 G

SUFLID 07300044 /73053) 0OF 13
BUFMASK ST/ 32S04a/BUDT] PF 1
BelTLAKI/305044/82583) TF /ST7BFCTLYX;
NTICTTT L NIRG0..NODTAG) OF 13

NITEAT [NDTMLTALWNOTCIAG] OF 1°¢;

BETHRIZH [1a)T1 .4 2)THMUX] 2F 13 » RYFFER THRESHALNS ¢
[J
[]
[J
AYTraL® [(Ne46] JF L3
IR AR AR E AL S LR R LRSS R
* *
* ASYNC ARRAYS %
* *
LR A EL R R AR A AR R A R TR S N
3
AVICAAT [1e.401 OF 23 AT(8 ACTION TA3LE 4
AVLTAAT Clea?) F 35 o LCB ACTIAON TABLF ¢
AVTIRFONT (2eeT™) 2F 13 ATCR FIFLD DESCRIPTOR TARL-S
AVLT 5P 0T 2441 AL I oLC3 FIFLD DESCRIPTNR TA3L:S
EYS
a
ASYNC CJD& TARLT ADCRESS AQRAYS
+
AVUCCIDTTO/ATFEROD . /ACCARE Y DF 1
AVINTARL T [/ACERCD e FAITAPLy fNDASYASC Lo /NIITM2741] NF 15
AVOITTAML -~ T/AC-RCD.0/7ACCAPLs INVASYASC L /NNIBMZTGL) OF 13
2
* Proa b i2L1ZATION T8 SVM=ARRAYS F70 HASP-TIC
&
A3V AT Lo T) B0 33 ATCR ACTIOIN TA3LF 4
HSLZaal (14,21 ¢ 32 p LC3 ACTION TASLF 4
ASTI vl Tueed) UF 13
HILCAFLT [M.e3] 0F 15
E X3

FI AL R A R R A R A N R A s N R RS RS S R Rl Y
AEND APOLETATITN UNTINF AKRAY SOIRCF &4
FEE AR SRR RS S R R R R s R R R S R R S 2 S R Y Y

[
R Y Y Y Yy Y]
* *
* Ot FINE P37U0C VARIALES *
« *®
AE RN EFEBE TR R KRR E KRN R R E R AR R R R RR R &
4
BESIN
VARID =2 $9363
VARIN+1 := $COOF:
CIPVER 1= %323 #CCP VERSION - CSD RFEPLACESE
ccrCyc 1= 03 sCCP CYCLE -USER REPLACESS
CCPLEV LE N aCCP LEVEL - CSD REPLACFS?
ITRACE = 2 3
AR 11 t= 2% ® EXTEONAL SY™ TBL LIST ON ¢
]
YL R N S R e RN AT Y
3 *
* NEFINE A% MANY PITNTERS *
* AS 20SSIS3LE *
* «
EECE SRR ARA R KT AT AR R AR E RS KRR TR RS AR RRE SRk R kR %
:
nd
G232 1= f30314 ¢ 13
BEOINY ¢ §D 1= MATNES a SYSTEM INIT +
LOERKR KR SRR R AR AR AR KRR E R RN R L KR
t SET P POLT MURTeM DELIMITERS ¢
I L S I R Z A S
:
TENTIIM = 1203
CNeEmit Tz 5y
o
* A INITIALTI?F WURKLISTS £0 0By LEVEL PRAGRAMS + =
.
L4
* * % [NTFRNAL PRICFSS ¢ *
:

BY JLCR{ADTNAL 1. 8YPRADNR
RAYWLCBIIDINAL 1. BYPAGE

JENTRY (PRINTPRAC)H
/PGNUN (PIINTPRAC)

H
i

BYWLC3I3NINWL) BYWLINDEX 3= R2INGLS
BYWLCBTIASINWL JoBYMAXCNT 3= 43
RYALCREISINAL 1. BYINC t= 23
3YALCRI32INGL ToBYWLRFOQ 1= /TRUF;

ASSIGNMENT SECTION

PSEUDO VARIABLE DECLARATION
PART (PART OF ASSIGNMENT
SECTION)

Figure H-1. Partial MPEDIT Program (Sheet 2 of

60471200 G

6)

A d
DEREFRL AR AR Ak skt kT v kb R R a g

*OSoMVICT vODULE LPCAL VARTAALES #
LR N AR S R R I
TALNENF 2
/AILMNSPN
1AIN2 5

[3Z1PHTLNTH;
FRI2PHTILNI K
f37K;
/371LPVC
/322L°PVC;
/31DCF;
F37TANSTYO S
/321L8SVCs
737205V
/37LAPR:
/37713
fLCws
/BSTCLASSS
/3SOWNFR;
733Ch3
1ON;
IALH
J3SNBL s
/3SIPRI
/BSPGWIDTHS
FRASPGLENGT g
FASCANTHAR
/338SCHRAKS
FASCNTRECH AL
/35CRIDLFS
F35LFTul" S
1RACCRIMLC;
FRAILETALT s
JASNYEDTIT
FoSXPARTNT ¢
£ My
73Sx L
J S ACHAR:
FASKi N
F35IND Ty
JASGUTNC S
FANECHNTLX
IRSPGNATE
F5PARITY
JASARTL TS
/45uSALs
728UsSe 2y
DI AR
FASECHRON S
FYSIHAR2: T
FLCAVARTANT
FICavaRT il
FITLIL T T
FITECREDNT
[203vRe 5T
R R L R e T R T AR N RS S N Y R S Y SR TR LR
S¥CND ARPPLICATIL S UNTO VAR L AP STPRCI#d
R R R e L N R L S P s R IS d ettt

AFIRST VARIANT LLR TINDEX +
AT {RST VAPIANI TCB INDEX 4

ARRAY DECLARATION

Ied
T e S Y R T RS Rt
* *
* B224Y NIOLARATIINS - 3ASE AND (IP *
¥ TAaL "< *
* *
IR RS S A A R R R R A R E R R R AL AR
$
ARAY
AYTIPTYPT [NTHDLELWNIUSPLY OF /SIZTIPTYPT;
RUWLENTOY [144d71 OF 7J1wl™MAYX:
CATIMTELL TOLCATMSCN,COSPARFY NE 43
CATC3S [3..C64TCMLT IF /SI7TCR; o FIXED TCRS. +
JACT [/TTY../LP1742] OF /SI2CT;
JAIJwL [/FALSE../TRLEY OF 13
JATcSTAR: [/FALSS 4o /TRUCY /FALSE o/ TRYES/FALSE../TRUE]) OF 1;
JI0PSBASZ [BOCHWL.sBCNUMMY) OF 2; @ OPS PROGRAM ARRAY &
JKMASK [Llesl?71 JF 13
JKTMASK[1.417] IF 13
JSWLADDR [U.417) 0OF 13
JITUPAE®S [1,.56] NF 13
MALTYT INOLDTAGRG W NCLASTS 1. NKEZINUT Y IF 25
NELT2 [NJEDTAG.WNCLAST] OF 13
RUFLENGTAL/LSCa o/ r253] OF 13
TCOLENGTHIZADTS) /30TSTY NF L
Figure H-1. Partial MPEDIT Program (Sheet 3 of 6)
H~4 60471200 G

* 3

* * MLIA INTERRUPT HANDLER * #

BYWLCBI3OMLWL 1.BYPRADNDOR

3z JENTRY (PBMLIAGDPS);
BYWLCB{BOMLWL 1«BYPAGE H

/PGNUMIPBMLIANPS)

BYWLCBIBOMLAL J.BYWLINDEX :x BOMLWL;
BYWLCBIBOMLWL).BYMAXCNT := 10;
BYWLCBIBIMLWL 1.BYINC = 53
SYWLCBIBOMLWL J.BYWLREQ 1= /TRUE;
”
* * * SERVICE MODULE # =
$
BYWLCBIBOSMWL J.BYPRADDR := /ENTRY(PNSMWL);
BYWLCBIBOSMWL 1.BYPAGE = JPGNUM(PNSMWL);
BYWLCATBOSMWL 1.BYWLINDEX z= BOSMWL;
BYWLCBIROSMWL 1.RYMAXCNT HE S B
BYWNLCBIBOSMwL J.RYINC 1z 45
BYWLCR{ROSMWL J.PYWLREQ 2= /TRUF;
3
°
°
®
FYS
é
FOR /1 := 1 1O 17 DD
BEGIN FOR..TO LOOP
JSWLANDRL/T) t= BuWLENTRY4/JIWLMAX®(/T~1)3
ITLE
» THE VALUCS IN JKTMASK ARE THE SAME AS THOSE IN JKMASK +
b
JKMASK(TL] == B JKTMASKI]L] := 03
JKMASK[?2] = 1; JKTMASKL2 } := 1;
JKMASK[3) 2= 53 JKTMASKI3) 5;
JKMASK(4] 3= L L H JKTMASKI4] = $0;
JKMASKIS] &= $10: JKTMASKLS 1 == $10;
JUMASKLH) = $30; JKTMASK[G] &= $£30;
JKMASKL? 1 := t1F; JKTMASKL?) &= $1F;
JKMASKE]R] := $1F; JKTMASK[3] 3= $1F;
JKMASKEY] &= $+F; JKTMASKL9] := $FF;
JKMASKI10] $1FF; JKTMASKELO) t= $1FF;
JKMASK[L11]) == $3FF; JKTMASK(11) = $3FF;
JKMASKEL2Y t= $7FF3 JKTHASKI12) t= S$7FF;
JKMASKL13] 3= $FFF; JXTMASKI13) t= S$FFF;
JKMASKIL14) = S$1FFF; JKTMASKI141 2= S1FFF;
JKMASKLL5]) 3= $3FFF; JKTMASK[15] = $3FFF;
JKMASKL16] t= STFEF; JKTMASKI16) = STFEF;
JKMASK[L1T]) == $FFFF; JKTMASKEL17) == $FFFF;
®
®
®
PEEERER R PR RN AR RE AR R AR R RN SRR R AR AR R KREF R RN AR ER SRR KRR RNk S h R R bR ke Sk ek k P
* INITIALIZATION OF LINE TYPE TABLES NESTED FOR..TO LOOPS

ERBREEREREER AR EREKE SR ERRERR SRR EA RN R ERRPE R R AR R RS RR RN RN RN AL R R RS RS SRR EkE
14

P X3
FUR F1:=NCLODIAG TO NOLAST DN
FOR 711 := 3 TO NKRC30UT 0O » PRIME ALL SECOND WDS +
NRLTYT (/715/711).NBINT2 :=$FFFF;
»
* ===— SET UP CLEAR AND DISABLE COMNMANDS ----
¢
FOR /1 := NNLDIAG TO NOLAST NO
BEGIN N
NBLTYTL 7TsNKCLRLI.NBINT2 := $0400; #SET THE TERMINAL BUSY BIT ¢
NBLTYTL/I,NKOISLI.NBINT2 = 304C); »TO BUSY QUT THE MODEM +
END S
Y
oLINE TYPE O (NOLDIAG) USED FOR ON LINE DIAGNOSTICS ONLY.LINE 4
PCHARACTERTSTICS ARE TAYLORED DINAMICALLY DURING EXECUTION ¢
d
NBLTYT [NOLDTA,2 J.NBINTYI:=MILTO; MODEM STATES PTR. TABLE ADDRS

NBLTYT OINOLDIASNKINILI.NBINT1:2300203
NBLTYT [NOLDIA,NKENBLI.NBINT13=$8840;
NBLTYT CNOLDIA,NKINPTI.NBINT1:230200;

INIT, SET (ISON) ¢
ENABLE SET (DTR, RTS, ISR)
INPUT SET (10N} 4

4
»
»
»
»
NBLTYT [NOLDIASNKOBT).NBINTL1:=$8800; » 08T SET (RTS, DTR)
»
»
o
»

NBLTYT (NOLDIA,NKDOUT1.NBINT1:=30100; DIR.OUT SET (OON) +
4
NBLTYT INOLDIA,NKINOUI.NBINT12=30100; INGAFT.0 SET (OON) AND 4
NBLTYT CNOLDIA,NKINOU].NBINT23a2$FDFF; RESET(ION) +
NBLTYT [NOLDIA,NKENDIJ.NBINT2:=$FODFF; TERM.INP RESETIION) L4
NBLTYT [(NGLOIA,NKENDOJ.NBINT22=SFEFF; TERM.QUT RESET(OON) L[4

[J

[

[J

Figure H-1. Partial MPEDIT Program (Sheet 4 of 6)

60471200 G

»

LA R e A R R e R A s A Al R st
#% SET UP BUFFER AREA POINTERS *%

EXRAERR KRR AR RN R R R R AR RN KRR A KR R SRR AR KR TR R R RN R H Rk

+

>
¥eEx IDTRL %%
INT3L DFFINcS A NLTWORK TN THE CCP. IT MUST 8F
TOENTIZALLY INTTIALIZED IN ZVERY NPU NF A NETWORK,
TOTAL CANTAINS ONF FNTRY FOR EACH NPU IN THE NETWORK,
FACH ENTRY TS A VAKIARLE NUMRER OF wORULS FOLLOWED BY
$47FFT AS A TERMINATOR, THE FINAL SNTRY IS FOLLOWED RY
Twl CONSECUTIVE TcRMINATORS,
THE FIPST WNkD JF AN TNTAL ENTRY IS5 THE NODE ID NF THE
Neu [N OQUESTTION,., TF THE NPU IS A LJOCAL NNEs EACH ID
ACCF SISty JIA ZQOUPLFR TS COMTAINER IN FOLLCOWING WORDS.
FINALLYy THERT TS ONE WORDN FAR 2 ACH TRUNK CONNECTED
TC THFE NPU: THE LINK=REMOTC-NITE ID IS IN THF RIGHT
HALf, ANU THF POPT NUMBER JS TN THE LEFT HALF,
¢
INEBLP = PINTAL; # PASCAL I1DTBL PNINTER, +
71018 = PIOTAL -~ 13 s TDITING IDTBL PDINTER, +
It := 03
Jbor= /L o+ 1 /IDTAL + /L = $J0163
I A JINTRL + /L 1= 30208
P2 I N U B JINT3L ¢ /L sz %030Cs
/ILoz= /L ¢ 13 /IDT3L 4+ /L = 304UD5
U = 4L ¢ 1 FINTBL ¢ /L t= JENNFS
/L = /L ¢+ 135 JIJTRL ¢ /1L = ¢CCOB;
/L 2= /L ¢ 13 7IDY3L + /L := $0000;
/L = /L o+ 13 +INTRL + /7L = 300013
/L t= 4L+ 13 /TOTSL + /L =2 ¢CCO3;
LU 2= /L + 1: tIDT3L 4 /7L = JENDE:
/L ot= /L o+ 15 710730 ¢ /L 1= 30007
L= 1L ¢ 1, 1I0TSL ¢ /L = ¢0C00:
JL t= /L ¢ L; /71DT3AL « /L = $3001;
/L 2= /L ¢+ 1: FIDTBL + /1L := $0004;
L s= L+), /IDTSL + /L = /ENDES
JL t= /L ¢ 15 /INTRL + /L = $0uOD;
IS S S B /IDTBL + /1 := $0C0O0:
JU 2= /L ¢ 13 /IDTBL + /L 1= $00G1:
fL = /L ¢ 13 7IDT3L ¢ /L = $0uN5:
/L 3= /L + 13 /IDTBL + /L == /ENDE;
/L = /L + 1; /71DTBL + /L = JENDE;
B3ISBUF := /L # /IDTBL ¢ 13 AINCREMENT AVAILABLE CORE PTR +
Y
®
|
[
X
SRR FERFERR AR RN R R KRR R R R R R AR R R AP R Rk k&
* *
* STT UP 3ASE TLZB FIbiLD DESIRI2TOR TAR(LE *
* *
AR R R AR AR AR ORI AR KRR R RN R KRR R R E R AR A k)
ot
UOTCHFCT = DGINRFDT;
st
DATIIFPTICILNDNIMENT t= &0 sNO. OF ENTRIFS +
At
I3STCLAS) i= 53
BGTCAFOTL S3,ODFSTRT = /START(RSTCLASS):
AGTARFDTL ©1,DDFLNTH = JLFENGTH(BSTCLASS):
OATIRFDTL S 1.DDFODISP = B8STCLASSS
X%
JBIWNER t= 123
OG1LsFCTI12).N0FSTRY = /START(83NWNER)
NATZACNT(121,00FLNTH 2= JLENGTH(RJWNER)Y;
NATCAFDTLI?2).DDFDISP t= ASNWNFRS
a4+
/387N 135

DGIT3FLTL12143NF3TPT
DA TCAFDTL131.00FLNTH
NGTC3FNTI13).D0FDIMP

JSTART{ASIND S
ILERMGTA(RSIND

a50N;

W e N
[

Figure H-1. Partial MPEDIT Program (Sheet 5 of 6)

60471200 G

/DN $= la;

DRTCBFDTI14).DDFSTRT := $F;

DGTZAFOTC14]1.DDFLNTH = 7;

DGTCYFDTL14].DDFDISP = 35LLCH;
né

/3N 1= 153

NGTCEFDTLL151.DDFSTRT = 7;

DGTCBFNTI1I5).DOFLNTY = 73

DGTCIFDTL15]1.DDFDISP = RSLLCB;
Y

/BSIPRI 193

NGTC3FOTL1?21.0DFSTRT
DGTCBFDT{191.DDOFLNTH
DGTCBFDT[191.DDFDISP
[]
[]
®
CBTIMTBLICOHLIPI.CBINTVAL 2;
AR AL AL AR L A R L R I R P Y T ey
A*¥END APPLICATION UNTQUE EXECUTION STATEMENT SODURCE#$
A AARE A AL A R R T T T IRzt Y
END.

/START(BSIPRI};
/LENGTH(BSIPRI);
BSIPRI;

iz

END OF ASSIGNMENT SECTION

Figure H-1.

Partial MPEDIT Program (Sheet 6 of 6)

CYBER MINI CROSS SYSTEM - LINK EDITOR

MEMORY IMAGE FILE DUMP

LE 1 5] k] 4k *%%3 ey %5 *«hEpH %7 *¥¥R *¥$9 L EL YN *&¥g 2% L2 23} *¢*E (2 113
HEADER
0000 r: 0142 5239 3620 2€20 4343 5020 56641 5249 4I4E 5429 4C4F &l4h 204D &F 44
0010 554C 4520 2020 2020 2020 20720 2020 2020 2020 2020 2020 2070 2020 2020:1
R96
HEADER
0000 [:0060 40CO 5445 524F 5820 2020 2020 2020 2020 20620 2929 2020 2020 20620 2020
0019 2020 202G 2520 2029 2020 2020 2020 2020 2020 2020 2020 2054 4552 &F20:1
IFROX
2000 [:1400 FA71
n010
0020
5030 t]
HEADFR
00¢0 £:000E 401€ FhTL 4245 4749 4F53 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
0010 2020 2020 2u2C 2q2n 2020 202C 2M20 2020 2020 2020 2C20 2042 4547 494F:)
BEGINX
F670 10401 €990 70TC 06402 CLOO 0633 7003 004D D4C4& COCH 1400 Fb659:)
HEADER
0100 [:0040 4000 0100 5C42 494F 5492 4E54 4552 5255 5054 20%& 5741 5053 2054 4142 4C4S
J010 202% 4C6F G144 2041 5420 2431 3730 292C 2020 2029 2C20 2049 4ESG 5241:]
PAINT®
3120 & 140C 1F98 1400 1FCe 1400 523 1400 S2€7
5410 1400 5643 5430 CFC 0El4 5400 4CFC 0E18 1400 S6AF
9120 1400 5306 1400 5638 1400 56C7 1400 5603
0130 140C 560F 16430 S6EB 1400 S6F7 1400 5703 1)
HEADER
0000 [:0010 400C 014C 4ASS 4DS0 5320 5441 424C 4520 434F 4E56 4149 4ES3 204A 554D 5053
0010 2054 4F20 202C 2029 2029 2020 2320 2020 2020 2020 20297 20&4A 554D 5053:)
JUMPS
0140 [:1400 1400 3093 1400 F671 1]
HEADER
0000 [:001E 400U 0150 4144 4452 4553 4E>C 434F 4ES4 4149 4E53 2054 4845 2041 4444 5245
0010 5353 65%3 2F43 4F4E 5445 4E54 5320 4F4b 2020 2020 2020 204l 4444 5245:)
ADDRES
0150 [:115A 126C 1095 1094 1287 0DC4 1774 1297€ 18C9 ODEC 1BE9 ODA?
0160 17AC 1813 1902 146C 0032 0096 000F]
Figure H-2. Sample Memory Image Load Module Hexadecimal
60471200 G H-7

INDEX

Abbreviating Address Specification 3-3

ABSOIMP 3-4
Absolute Addressing 3-2
Add

Object Code to New Library, *ALL,
Programs to Library, *PUT 2-5
Address
Assignment 3-3
Assignment Section 4-6
Expressions, MPEDIT 4-5
Functions
MPEDIT 4-4
/ENTRY 4-5
/LENGTH 4-4
/START 4-4
/VFD 4-5
MPLINK 3-2
Memory 3-2
Parameters 3-7
Specification, Abbreviating 3-3
Addressing
Absolute 3-2
NPU 3-1
Page 3-1
Array
Declaration 4-6
NPU 4-8
Assignment, Address 3-3
Assignment Section 4-6

Blank Common Area 3~10
Block
Object Text F-1
BZS -
ENF
ENT
EXF
EXT
NAM
RBD
XFR
Record F-1
Boundary, Linking 3-9

i

SN~ S WWN

CCP Downline Load File 1-1
Character Set A-2
Command Format for the Utilities 1-2
Comments 4-9
Common Area
Blank 3-10
Labeled 3-11
Composite Assignment Statement &4-8
Constant Declaration 4-6

Data Format Input to the Utilities 1-2
Declarations

Array 4-6

Constant 4-6

MPEDIT 4-6

Variables 4-6
Define

Blank Common Area 3-10

Dynamic Variable Area 3-10

60471200 G

Define (contd)
Entry Points 3-9
External Synonyms 3-10
Labeled Common Area 3-11
Linking Boundary 3-9
Lower Limit for Linked Modules 3-9
NPU Memory Size 3-10
Stack Area 3-10
Upper Limit for Linked Modules 3-9
Delete Programs 2-5
Diagnostics
Messages B-1
MPEDIT 4-11
Directive
END MPLINK 3-11
MPLINK Overlay 3-7
Parameters, MPLINK 3-7
Directives
MPLIB 2-5
MPLINK 3-7
MPLINK Summary 3-8
Directives File
MPLIB 2-1, 2-5
MPLINK 3-4
Downline Load File, CCP 1-1
DUMP Listing 3-11
Dynamic Variable Area 3-10

Edit
Examples H-1
Utility 1-1, 4-1
Empty Assignment Statement 4-9
End, Library Building 2-6
Entry Name, MPLINK Memory Map Sorted by 3-6
Entry Point 3-9
Equate Variable to Expression 3-10
Error Messages

MPEDIT 4-11

MPLIB 2-6

MPLINK 3-11
Example

Edit H-1

Link G-1

MPEDIT Constant, Variable, and Array
Declarations 4-6, 4-7
MPLIB Library Listing 2-2
MPLINK Memory Map Sorted by Entry Name 3-b6
MPLINK Memory Map Sorted by Module Name 3-5
Executing
MPEDIT 4-1
MPLIB 2-2
MPLINK 3-7
Expressions 3-10
Expressions, MPEDIT 4-5
External Symbols, MPEDIT 4-4
External Synonyms 3-10

Field Length Address Function 4-4
Field Start Address Function 4-4
Field, Variable 4-5
Files
CCP Downline Load 1-1
Initialized Load Module 4-10
Library 2-5, 3-10

Index-1 @

Files (contd) Linked Modules 3-9

Memory Image Load Module 3-4, D-1 Linking Boundary 3-9
MPEDIT Linking Modules 3-7
Inputs 4-1 Listing
Outputs 4-1 Library 2-2, 2-3, 2-6
MPLIB Load File DUMP 3-11
Directives 2-1, 2-5 SYMTAB 4-10
New Library 2-1 Trace 4-9
Object Code 2-1 Literals, MPEDIT 4-4
0ld Library 2-1 Load File
Output 2-1 CCP 1-2
MPLINK DUMP Listing 3-11
Directives 3-7 System 3-9
Object Code Input 3-4 Load Module File
Optional Memory Image Load Module E-1 Listing 4-10
Output 3-4 Memory Image 3-4, D-1
Symbol Table 3-5 Optional Memory Image E-1
System Load 3-9 Local Assignment Statement 4-7
FOR Statement 4-8 Local Symbols, MPEDIT 4-3
Format Lower Limit, Linked Modules 3-9

Commands for the Utilities 1-2
Data Input to the Utilities 1-2

MPEDIT Program 4-2 Memory Address Parameters, MPLINK 3-7
MPLIB Library File 2-2 Memory Image Load Module File 3-4, D-1
Function Memory Map
Address 3-2 Sorted by Entry Name 3-6
MPEDIT Address 4-4 Sorted by Module Name 3-5
/ENTRY 4-5 Memory Size, NPU 3-10
/LENGTH 4-4 Messages
/START 4-4 Diagnostic B-1
/VFD 4-5 MPEDIT Error 4-11
MPLIB Error 2-6
General Command Format for Utilities 1-2 MPLINK Error 3-11
General Data Format Input to Utilities 1-2 Mnemonics C~3
Glossary C-1 Module Name, MPLINK Memory Map 3-5
Modules
Linking 3-7, 3-8
Identifying System Load File 3-9 Reverse~Linked (Loaded) 3-8
Initialization Local Module File 4-10 MPEDIT
Input Files Abort Option 4-2
MPEDIT 4-1 Address Assignment Statement 4-7
MPLIB 2-1 Address Expressions 4-~5
MPLINK 3-3 Address Functions 4-4
Input, Relocatable Object Code F-1 Array Declaration 4-6
Inputs Assignment Section 4-6
MPEDIT 4-1 Constant Declaration 4-6
MPLIB 2-1 Diagnostics 4-11
MPLINK 3-3 Error Messages 4-11
Utilities 1-2 Execution 4-1
Introduction Expressions 4-5
Library Maintenance (MPLIB) 2-1 External Symbols 4-4
MPEDIT 4-1 Inputs 4-1
MPLINK 3-1 Introduction 4-1

Keywords 4-3
Literals 4-4
Keywords, MPEDIT 4-3 Local Assignment Statement 4-7
Local Symbols 4-3
Operand Expressions 4-5

Labeled Common Area 3-11 OQutputs 4-1
Library Program Flow 4-3
Add Programs 2-5 Program Format 4-2
Building 2-6 Program Structure 4-6
Delete Programs 2-5 Reserved Words 4-3
File 2-1, 3-10 Statement Format 4-2
New 2-1 SYMTAB Listing 4-10
0ld 2-1 Syntax 4-2
Listing 2-2, 2-6 Trace Listing 4-9
Maintenance, Introduction 2-1 Utility 1-1
Suppress Copying Programs 2-6 Variable Declaration 4-6
Limit MPLIB
Lower, Linked Modules 3-9 Directives 2-5
Upper, Linked Modules 3-9 Directives File 2-1
Link Error Messages 2-6
Examples G-1 Execution 2-2
Utility (MPLINK) 1-1, 3-1 Inputs 2-1

@ Index-2 60471200 G

MPLIB (contd) Program

Introduction 2-1 Flow, MPEDIT 4-3
Library File Format 2-2 Flow, MPLINK 3-4
Library Listings 2-2 Format, MPEDIT 4-2
New Library File 2-1 Library Maintenance 2-1
Object Code File 2-1 Structure, MPEDIT 4-6
0l1d Library File 2-1 Programs
Output Files 2-1 Deleting From Library 2-~5
Sample Library Listing 2-3 Object Code 2-5
Utility 1-1 Suppress Copying to Library 2-6
MPLINK
Abort Option 3-7 Register Page 3-3
Directives 3-7 Relocatable Object Code Input F-1
File 3-4 Requesting
Overlay Identifier Parameter 3-7 Initialized Load Module File Listing 4-10
Parameter Names 3-7 Optional Form Load Module File Listing 4-10
Parameters 3-7 SYMTAB Listing 4-9
Summary 3-8 Trace 4-9
Error Messages 3-11 Reserved Words, MPEDIT 4-3
Execution 3-7 Reverse-Linked Modules (Loaded) 3-8
Inputs 3-3
Introduction 3-1 Specifying
Listings 3-5 Abbreviated Address 3-3
Memory Address Parameters 3-7 Library File 3-10
Memory Map Sorted by Entry Name 3-6 Memory Address 3-2
Memory Map Sorted by Module Name 3-5 Modules to be Linked 3-7
Object Code Input File 3-4 Modules to be Reverse Linked 3-8
Output Files 3-4 Overlay Areas and Modules 3-9
Procedural Flow 3-4 Stack Area 3-10
Utility 1-1 Statement
Address Assignment 4-7
Names Composite Assignment 4-8
Entry 3-7 Empty Assignment 4-9
MPLINK Directive Parameter 3-7 FOR Assignment 4-8
New Library 2-1, 2-6 Local Assignment 4-7
NPU Summary
Addressing 3-1 MPLIB Directives 2-5
Array 4-8 MPLINK Address Function Keywords 3-2
Memory Size 3-10 MPLINK Directives 3-8
Suppress Copying Programs to Library 2-6
Symbol Table File (SYMTAB) 3-5
Object Code Symbols
File MPEDIT Extermal 4-4
MPLINK Input 3-4 MPEDIT Local 4-3
Relocatable F-1 SYMTAB Listing 4-9, 4-10
Suppressed Copying to Library 2-6
Programs 2-5 Variable Declaration 4-6
0ld Library File, MPLIB 2-1
Operand Expressions, MPEDIT 4-5 *ALL 2-5
Optional *CB 3-9
Form of Initialized Load Module File 4-10 *COM 3-10
Memory Image Load Module File E-1 *COR 3-10
Output Files *DAT 3-11
MPLIB 2-1 *DEL 2-5
MPLINK 3-4 *DMP 3-11
Outputs *DSTK 3-10
MPEDIT 4-1 *DVAR 3-10
Utilities 1-2 *END 2-6
Overlay *ENT 3-9
Areas 3-9 *L 3-7
Modules 3-9 *LIB 3-10
MPLINK Directive 3-7 *LL 3-9
*LST 2-6
*QVLY 3-9
Packed Binary (PB) Parameter F-1 *pUyT 2-5
Packing an NPU Array 4-8 *RL 3-8
Page *SUP 2-6
Addressing 3-1 *SYN 3-10
Register 3-3 *SYSID 3-9
Register Selection 3-2 *UL 3-9
Parameters *VE 3-10
MPLINK Directives 3-7 /ENTRY 4-5
MPLINK Memory Address 3-7 /LENGTH 4-4
MPLINK Overlay Identifiers 3-9 /START 4-4
Names, MPLINK Directive 3-7 /VFD 4-5

60471200 G Index-3 @

INN ONOTV IND

e i "]~ T i e e e e e W B e T -~ - -

COMMENT SHEET

MANUAL TITLE: CYBER Cross System Version] Build Utilities Reference Manual
PUBLICATION NO.: 60471200

REVISION: G

This form is not intended to be used as an order blank. Control Data Corporation

welcomes your evaluation of this manual. Please indicate any errors, suggested

additions or deletions, or general comments on the back (please include page number
references).

Please reply No reply necessary

I " ” ' NO POSTAGE
NECESSARY

IF MAILED
iN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MN.

POSTAGE WILL BE PAID BY ADDRESSEE

(G2 CONTROL DATA

Publications and Graphics Division
Mail Stop: SVL104

P.O. Box 3492

Sunnyvale, California 94088-3492

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

NAME :
COMPANY :
STREET ADDRESS:

CITY/STATE/ZIP:

™

TAPE Tap

-——— - " 7> 12 >~ - e e e o e

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

(G2 CONTROL DATA

LITHO IN US.A.

P

	Front Cover
	Title Page
	i
	Revision Record
	ii
	List of Effective Pages
	iii
	iv
	Preface
	v
	vi
	Contents
	vii
	viii
	ix
	x
	Introduction
	1-1
	1-2
	Library Maintenance Utility
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	Link Utility
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	Edit Utility
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	iAppendixes
	Character Set
	A-1
	A-2
	Diagnostic Messages
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	Glossary
	C-1
	C-2
	C-3
	C-4
	Memory Iage Load File Format
	D-1
	D-2
	D-3
	D-4
	Optional Memory Image Load Module File Format
	E-1
	E-2
	Relocatable Object Code File Format
	F-1
	F-2
	F-3
	F-4
	Link Utility Example
	G-1
	G-2
	Edit Utility Example
	H-1
	H-2
	H-3
	H-4
	H-5
	H-6
	H-7
	H-8
	Index-1
	Index-2
	Index-3
	Index-4
	Comment Sheet
	
	Back Cover

