

?

0

3100/3200/3300/3500 COMPASS

COMPASS is the upward compatible assembly system for the CONTROL DATA ${ }^{\circledR} 3100 / 3200 / 3300 / 3500$ computers. COMPASS provides convenient mnemonics for the complete repertoire of machine instructions. Information may be referenced by word or by character.
addition, COMPASS offers a variety of pseudo instructions to expedite programming. Pseudo instructions provide for:

Storage allocation
Storage reservation
Subprogram communication and linkage
Definition of various modes of constants
Variable field definitions
Macros
Conditional assembly
Output listing control
COMPASS source programs can be assembled with a variety of hardware configurations running under a Control Data operating system. The operating systems provide convenient input/output and data handling macros which programmers may reference with in COMPASS programs.

COMPASS CODING FORM

Each line of a COMPASS coding form represents the four fields of a punched card.

Field

Location field
Operation field

Address field

Identification field

Position

Columns 1-8; column 9 blank
Begins in column 10; terminates with first blank column

Subfields begin before column 41; terminate with first blank column or column 72

Columns 73-80

Location Field

Program locations, data, and common area information.

Operation Field

Mnemonic machine instruction, pseudo instruction, macro name, $00-778$ in the first subfield, and operation modifiers as applicable.

Address Field

Relocatable or fixed
m
n
r
s
y
z
First or second operand or jump address
Numbelof bits15
Second operand address 15
First character address 17
Second character address 17
Operand 15
Operand 17
Fixed only
$k \quad$ Shift count 15
b Index register 3

* Connect code or interrupt mask 12
i Increment or decrement 3
$v \quad$ Address in register file 6
c Character code or field 6
ch Channel designator 3
1 Field length of block 7

Fixed only, 3300/3500 only
$\mathrm{B}_{\mathrm{m}} \quad$ Index register flag for M -field of BDP instructions $B_{r} \quad$ Index register flag for R-field of BDP instructions Index register flag for S-field of BDP instructions Number of characters in M-field for BDP instructions Number of characters in R-field for BDP instructions Number of characters in S-field for BDP instructions Scan character
w Page index file address
cm
Channel mask

Expression
An address field expression may be a symbol, a constant, *, or a combination of these, joined by the operators

+ addition
- subtraction

Constants
Decimal unless suffixed with B to signify octal.

* Current value of location counter; if the instruction occupies two words, the asterisk signifies the address of the first word.
** Associated subfield in assembled instruction is filled with ones.
Literals

The digit 2 may be inserted between the equal sign and $\mathrm{D}, \mathrm{O}, \mathrm{H}$, or 1 to indicate double precision
$=$ Dv Decimal value v in DEC or DECD pseudo instruction format
$=\mathrm{Ov} \quad$ Octal value v in OCT pseudo instruction format
$=H v \quad$ Four-character Hollerith value v; eight character for $=2 \mathrm{Hv}$
=lv Two-character BCD (ASClI) value v; four characters for $=2 \operatorname{lv}(3300 / 3500$ only $)$

Comments
Begin with first column after the first blank column in the address field and end with column 72

Identification Field

Printed with program listing

Address Modification

The contents of the address field plus the contents of a specified index register may be combined to form a modified address:

$$
\begin{aligned}
m+\left(B^{b}\right) & =M \\
r+\left(B^{b}\right) & =R \\
y+\left(B^{b}\right) & =Y
\end{aligned}
$$

COMPASS Assembly Error Flags

A Format error in address field
C Attempt to assemble information into common
D Multiply defined symbol
F Full symbol table
L Location of field error
M Operation modifier error
O Operation error
U Undefined symbol
T Truncation error

A	A register	24
$\mathrm{~B}^{b}$	Index register b	15
E	E register	48,52
P	P register	15
Q	Q register	24

INSTRUCTION MODIFIER!

EQ	Equal
NE	Not equal
GE	Greater than or equal
LT	Less than
I	Indirect addressing
S	Sign extension
INT	Interrupt on completion
A	Conversion
B	Backward read or write
H	Half assembly or disassembly
N	No assembly or disassembly
C	Assign character address
NC	No conversion
dc	Delimiting character option in BDP instructions

3100/3200/3300/3500 MACHINE INSTRUCTIONS

Stops and Jumps

HLT ${ }^{\dagger}$	m	Halt; next instruction from m
SJI	m	Read next instruction at m if key 1 is set
SJ2	m	key 2
SJ3	m	key 3
SJ4	m	key 4
SJ5	m	key 5
SJ6	m	key 6
RTJ	m	$(P)+1 \rightarrow m_{14-00}$ and read next instruction at $m+1$
UJP, I	m, b	Unconditional jump to M
IJ	$m, \mathrm{~b}$	If $\left(B^{b}\right) \neq 0,\left(B^{b}\right)+1 \rightarrow\left(B^{b}\right)$ and read next instruction at m; if $\left(B^{b}\right)=0$, read next instruction at $\mathrm{P}+1$
IJD	$m, \mathrm{~b}$	If $\left(B^{b}\right) \neq 0,\left(B^{b}\right)-1 \rightarrow\left(B^{b}\right)$ and read next instruction at m; if $(B b)=0$, read next instruction at $\mathrm{P}+1$
AZJ, EQ	m	Read next instruction at m if $(A)=0$
NE	m	(A) $\neq 0$
GE	m	(A) ≥ 0
LT	m	(A) <0
$A Q J, E Q$	m	Read next instruction at m if $(A)=(Q)$
NE	m	$(\mathrm{A}) \neq(\mathrm{Q})$
GE	m	$(\mathrm{A}) \geq(\mathrm{Q})$
LT	m	$(\mathrm{A})<(\mathrm{Q})$

Storage Test

$M E Q \quad m, i$
$\left(B^{1}\right)-i \rightarrow B^{1}$; if $\left(B^{1}\right)$ negative, read nex \dagger instructions at $P+1$; if (B^{l}) positive, test $(A)=(Q) \wedge(M)$, if true, read next instruction at $P+2$; if false, repeat sequence.
MTH $\quad m, i \quad\left(B^{2}\right)-i \rightarrow B^{2} ;$ if $\left(B^{2}\right)$ negative, read next instruction at $P+1$; if $\left(B^{2}\right)$ positive, test $(A) \geq(Q) \wedge(M)$, if true, read next instruction at $P+2$; if false, repeat sequence.
SSH m place. If sign is negative, read next instruction at $P+2$; otherwise, read next instruction at $P+1$.

CPR,I m,b
$(M)>(A)$, read next instruction at $P+1$
$(Q)>(M)$, read next instruction at $P+2$
$(A) \geq(M) \geq(Q)$, read next instruction at $P+3$.

Logical Instructions, Storage Reference

SSA, I	m, b	SET $\left(A_{n}\right)=1$ where $\left(M_{n}\right)=1$
SCA, 1	m, b	Complement $\left(A_{n}\right)$ where $\left(M_{n}\right)=1$
LPA,	m, b	(A) $\wedge(M) \rightarrow A$

Load

LDA, I	m, b	$(\mathrm{M}) \rightarrow \mathrm{A}$
LDQ, I	m, b	$(\mathrm{M}) \rightarrow \mathrm{Q}$
LACH	$r_{\text {r }} 1$	$0 \rightarrow A,(R) \rightarrow A_{05-00}$
LQCH	$r, 2$	$0 \rightarrow Q_{\text {, }}(R) \rightarrow Q_{05-00}$
LCA, I	m, b	$(\bar{M}) \rightarrow \mathrm{A}$
LDAQ, 1	m, b	$(M, M+1) \rightarrow A Q$
LCAQ, 1	m, b	$(\bar{M}, \overline{M+1}) \rightarrow A Q$
LDL, 1	m, b	(Q) $\wedge(M) \rightarrow A$
LDI, 1	m, b	$\left(M_{14-00}\right) \rightarrow \mathrm{B}^{\text {b }}$

Store

STA,	m, b	$(A) \rightarrow M$
STQ, 1	m, b	$(Q) \rightarrow M$
SACH	$r, 2$	$\left(A_{05-00}\right) \rightarrow R$
SQCH	$r, 1$	$\left(Q_{05-00}\right) \rightarrow R$

$1 \&$| $S W A, I$ | m, b | $\left(A_{14-00}\right) \rightarrow M_{14-00}$ |
| :--- | :--- | :--- |
| $S T A Q, I$ | m, b | $(A) \rightarrow M_{1}(Q) \rightarrow M+1$ |
| $S C H A, 1$ | m, b | $\left(A_{16-00) \rightarrow M_{16-00}}\right.$ |
| $S T I, I$ | m, b | $\left(B^{b}\right) \rightarrow M_{14-00}$ |

Inter-Register Transfer, 24-Bit Precisio।

AQA		$(\mathrm{A})+(\mathrm{Q}) \rightarrow \mathrm{A}$
AIA	b	$(A)+\left(B^{b}\right) \rightarrow A$
$\|A\|$	b	$\left(B^{b}\right)+(A) \rightarrow B^{\text {b }}$
TIA	b	$\left(B^{b}\right) \rightarrow A$
TAI	b	$(\mathrm{A} 14-00) \rightarrow \mathrm{B}^{\mathrm{b}}$; no operation if $\mathrm{b}=0$
TMQ ${ }^{\dagger}$	v	(Register v) \rightarrow Q
TQM ${ }^{\dagger}$	v	$(\mathrm{Q}) \rightarrow$ Register v
TMA	v	$($ Register v) $\rightarrow \mathrm{A}$
TAM ${ }^{\dagger}$	v	$(A) \rightarrow$ Register v
TMI	v, b	$\left(\right.$ Register $\left.v_{14-00}\right) \rightarrow B^{b}$
TIM ${ }^{\dagger}$	v, b	$\left(B^{\text {b }}\right) \rightarrow$ Register ${ }^{\text {V }} 14-00$

Infer-Register Transfer, 48-Bit Precisiol

ELQ
QEL
EUA
AEU
EAQ
AQE
$\left(E_{\text {lower }}\right) \rightarrow Q$
$(Q) \rightarrow$ Elower
$\left(E_{\text {upper }}\right) \rightarrow A$
$(A) \rightarrow E_{\text {upper }}$
$\left(E_{U}\right) \rightarrow A,\left(E_{\text {lower }}\right) \rightarrow Q$
$(A) \rightarrow E_{\text {upper }}(\mathrm{Q}) \rightarrow E_{\text {lower }}$

[^0]Fixed-Point Arithmetic, 24-Bit Precision

$A D A, 1$	m, b	$(A)+(M) \rightarrow A$
$S B A, 1$	m, b	$(A)-(M) \rightarrow A$
$R A D, 1$	m, b	$(A)+(M) \rightarrow M$
$M U A, 1$	m, b	$(A) *(M) \rightarrow Q A$
$D V A, 1$	m, b	$(A Q) /(M) \rightarrow A$

Fixed-Point Arithmetic, 48-Bit Precision

$A D A Q, 1$	m, b	$(A Q)+(M, M+1) \rightarrow A Q$
$S B A Q, I$	m, b	$(A Q)-(M, M+1) \rightarrow A Q$
$M U A Q, 1$	m, b	$(A Q) *(M, M+1) \rightarrow A Q E$
$D V A Q, 1$	m, b	$(A Q E) /(M, M+1) \rightarrow A Q$
remainder in E regisfer		

Floating-Point Arithmetic

FAD,I	m, b	$(A Q)+(M, M+1) \rightarrow A Q$
$F S B, I$	m, b	$(A Q)-(M, M+1) \rightarrow A Q$
$F M U, I$	m, b	$(A Q) *(M, M+1) \rightarrow A Q$
$F D V, I$	m, b	$(A Q) /(M, M+1) \rightarrow A Q$

Block Operations

SRCE, INT	C, r, ${ }^{\text {s }}$	Search from r to s for character $=c$
SRCN, INT		Search from r to s for character $\neq \mathrm{c}$
MOVE, INT^{\dagger}	$1, r, s$	Move characters from r to s, $1 \leq 1 \leq 177_{8}$ $\mathrm{I}=0$ means 200_{8} characters
INAC, INT \dagger	ch	A cleared, character from peripheral device \rightarrow A05-00
INAW, INT ${ }^{\dagger}$	ch	A cleared, word from peripheral device \rightarrow A
OTAC, INT ${ }^{\dagger}$	ch	$\mathrm{A}_{05-00} \rightarrow$ peripheral device
OTAW, INT ${ }^{\dagger}$	ch	

[^1]| INPC, INT, $\mathrm{B}_{2} \mathrm{H}^{\dagger}$ | ch,r,s | 6 or 12 bit |
| :---: | :---: | :---: |
| INPW, INT, B, ${ }^{\dagger}$ | ch,m,n | 12 or 24-bit input words m to n |
| OUTC, INT, $\mathrm{Br}_{2} \mathrm{H}^{\dagger}$ | ch,r,s | 6 or 12-bit output characters |
| OUTW, INT, B, N^{\dagger} | $\mathrm{ch}, \mathrm{m}, \mathrm{n}$ | 12 or 24-bit output words m to n |

Sensing, Selecting, Interrupt and Control Function:

\ddagger When the $3300 / 3500$ computer is operating in the program state of executive mode, an attempt to execute this instruction generates an executive interrupt and the processor reverts to the monitor state.

PAUS ${ }^{\dagger} \times \quad$ Compare busy lines with bits $x_{i}, 0 \leq i \leq 11$; if positive, do not advance. If advancement inhibited for more than 40 ms , read next instruction at $P+1$; if no comparison, read next instruction at $P+2$
SLS \dagger

SFPF
SBCD
DINT
EINT ${ }^{\dagger}$
CTI ${ }^{\dagger}$
CTO ${ }^{\dagger}$
UCS \dagger
NOP
Stop if Selective Stop switch is set; read next instruction at $P+1$ if restarted
Set floating-point fault
Set BCD fault
Disable inferrupt
Enable interrupt after next instruction
Set Type in
Set Type out
Unconditional stop; restarts at $P+1$
No operation

3300/3500 MACHINE INSTRUCTIONS, EXECUTIVE MODE

ACl		$\left(A_{02-00}\right) \rightarrow$ Channel Index register
ACR		$\mathrm{A} \rightarrow$ Condition register
AIS		$\left(\mathrm{A}_{02-00}\right) \rightarrow$ Instruction State register
AOS		$\left(A_{02-00)} \rightarrow\right.$ Operand State register
APF	w, 2	$\left(\mathrm{A}_{11}-00\right) \rightarrow$ Page File Index Address W
CIA		Clear $A_{\text {; }}$ (Channel Index register) $\rightarrow \mathrm{A}_{02-00}$
CILO	cm	Lockout external interrupt on masked channels, cm , until channels not busy
CLCA	cm	Clear channels, cm , but not external equipment; clear channels activity
CRA		Condition register $\rightarrow \mathrm{A}$
ISA		Clear A; (Instruction State register) $\rightarrow \mathrm{A}_{02-00}$
JAA		Last executed jump address $\rightarrow \mathrm{A}_{14-00}$
LBR	m	Load m with BDP conditions

[^2]OSA
PFA
PRP

RCR
RIS
ROS
SBJP

SBR
SDL

SRA
TMAV

Clear $A_{;}$(Operand State register) $\rightarrow A_{02-00}$
w, $2 \quad$ Clear $A_{\text {; }}$ (Page Index File) $\rightarrow A_{11}-00$
$\times \quad$ Same as PAUS, but halt real-time clock incrementing
(Subcondition register) \rightarrow Condition register
Relocate to instruction stare
Relocate to operand state
Monitor state to Program state when next jump occurs
BDP conditions $\rightarrow m$
When next LDA instruction encountered (M) $\rightarrow \mathrm{A}$ $77777777 \rightarrow M$
Clear $\mathrm{A}_{\text {; }}$ (Subcondition register) $\rightarrow \mathrm{A}_{12-00}$ Initiate memory request. If reply occurs within 5 usec., read next instruction at $P+2$; if not read next instruction at $P+1$. Storage address in (B^{b}) with (operand state register) or zero appended

WITH BDP HARDWARE

ADM	$r, B_{r}, l_{r},{ }^{5}, B_{r}, l_{s}$	$(\mathrm{R})+(\mathrm{S}) \rightarrow 5$
ATD, dc	$m, B_{m r} I_{m r}, B_{s}$	$(\mathrm{MASCII}) \rightarrow S_{\text {BCD }}$
CMP	$r, B_{r}, l_{r, s,} B_{s}, l_{s}$	Compare (R) to (S); exit upon encountering unequal characters
CMP, dc	$\mathrm{r}, \mathrm{B}_{\mathrm{r}}, \mathrm{s}, \mathrm{B}_{\mathrm{s}}, \mathrm{I}_{\mathrm{s}}$	Compare (R) to (S); exit upon encountering unequal characters
CVBD	$m, B_{m, n}, B_{n}$	$\left(M_{\text {binary }}\right) \rightarrow N_{B C D}$
CVDB	$r, B_{r}, r_{r}, m, B_{m}$	$\left(R_{B C D}\right) \rightarrow M_{\text {binary }}$
DTA, dc	$r_{,} B_{r},{ }_{r}, m, B_{m}$	$\left(\mathrm{R}_{\mathrm{BCD}}\right) \rightarrow \mathrm{M}_{\text {ASClI }}$
EDIT	$r, B_{r}{ }^{\prime}, r,{ }^{\prime}, B_{s} I_{s}$	$(\mathrm{R}) \rightarrow{ }^{\text {COBCOL}}$ picture editing
FRMT	$r, B_{r}, I_{r},{ }^{\prime}, B_{s} l_{\text {l }}$	$(R) \rightarrow$ S, comma insertions
HI		
JMP, LOW $Z R O$	m	Read next instruction at m if >0 (BDP condition register) <0

MVBF	$r_{r} B_{r}, I_{r}, s, B_{5}, I_{5}$	$(R) \rightarrow S$ with blank fill
MVE	$r, B_{r}, l_{r, s}, B_{s}, l_{s}$	$(\mathrm{R}) \rightarrow 5$
MVE,dc	$r, B_{r}, s, B_{s} r_{s}$	$(\mathrm{R}) \rightarrow S$
MVZF	$r, B_{r}, I_{r}, s, B_{s}, I_{s}$	$(\mathrm{R}) \rightarrow$ S with zero fill
MVZS	$r, B_{r}, l_{r}, s^{\prime}, B_{s}, I_{s}$	$(\mathrm{R}) \rightarrow \mathrm{S}$ with leading zeros suppressed.
MVZS,dc	$r_{r} \mathrm{~B}_{\mathrm{r}, \mathrm{s},}, \mathrm{B}_{5}, \mathrm{I}_{5}$	$(R) \rightarrow S$ with leading zeros suppressed
PAK	$r, B_{r}, I_{r}, m, B_{m}$	($\mathrm{R}_{\text {BCD }}$ 6-bit numeric) \rightarrow $M_{B C D}$ 4-bit numeric
SBM	$r_{r} B_{r}, I_{r}, s, B_{s}, l_{s}$	$(S)-(R) \rightarrow S$
SCAN,LR	c $r, B_{r}, r_{r}, s c$	Scan (R) from left to right for character equality/inequality
SCAN,RL	dc $\mathrm{r}, \mathrm{B}_{\mathrm{r}}, \mathrm{I}_{\mathrm{r}}$, sc	Scan (R) from right to left for character equality/inequality
TST	r, B_{r}, l_{r}	Test (R); -, 0, or $+\rightarrow B C D$ condition register
UPAK	$m_{r} \mathrm{~B}_{\mathrm{m}}, \mathrm{s}, \mathrm{B}_{5}, \mathrm{I}_{5}$	$\left(\right.$ M $_{\text {BCD 4-bit }}$) $\rightarrow S_{\text {BCD }}$ 6-bit
ZADM	$r, B_{r}, I_{r}, s, B_{s}, l_{s}$	$(\mathrm{R}) \rightarrow$ right justified

3100/3200/3300/3500 PSEUDO INSTRUCTIONS

BCD	$n, c_{1}, c_{2}, \ldots, c_{4 n}$	Define $c_{1}, c_{2}, \ldots, c_{4 n}$ as $B C D$ values stored four characters per word in n words. Symbol in location field is assigned the first word address
BCD, C	$n, c_{1}, c_{2}, \ldots, c_{n}$	Define the n BCD characters $c_{1}, c_{2}, \ldots, c_{n}$; symbol in the location field is assigned the first 17-bit character address
BSS	m	Reserve m words; symbol in location field is assigned the first word address
BSS, C	m	Reserve m character locations; symbol in location field is assigned the first character address
COMMON		Assign to common storage counter
DATA		Assign to data storage counter
DEC	$m_{1}, m_{2}, \ldots, m_{n}$	Define decimal integer values $m_{1}, m_{2}, \ldots, m_{n}$ symbol in location field is assigned the first word address

EJECT		Begin new page for listing
END	m	Last statement of subprogram; m is the transfer address or blank
ENDM		Terminate the macro definition
ENTRY	$m_{1}, m_{2}, \ldots, m_{n}$	Define $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}$, for reference as addresses by other subprograms
EQU	m	Equate symbol in location field to the 15 -bit contents of the address field m
EQU,C	r	Equate symbol in location field to the 17-bit contents of the address field r
EXT	$m_{1}, m_{2}, \ldots, m_{n}$	Define $m_{1}, m_{2}, \ldots, m_{n}$ for reference as addresses in other subprograms
FINIS		Terminate assembly process
IDENT	m	First statement of subprogram m
IFF	m, p, n	Assemble following n lines in a macro definition if symbol p is not identical to symbol m
IFN	m, n	Assemble following n lines if the value of the expression m is non-zero
IFT	m, p, n	Assemble following n lines in a macro definition if symbol p is identical to symbol m
IFZ	m, n	Assemble following n lines if the value of the expression m is zero
LIBM	name $_{1}$, name $_{2}, \ldots$	Library macros called in program
LIST		Resume listing of source program

MACRO	$\left(p_{1}, p_{2}, \ldots, p_{n}\right)$	Assemble as the first instruction of a macro definition with the formal parameter list ($p_{1}, p_{2}, \ldots, p_{n}$). The symbol in the location field is the name of the macro
macro name	$\left(p_{1}, p_{2}, \ldots, p_{n}\right)$	Call macro name with actual parameters ($\mathrm{p}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}$); a symbol in the location field is assigned the first assembled instruction of the macro
NOLIST		Suppress listing of source program
OCT	$m_{1}, m_{2}, \ldots m_{n}$	Define octal values $m_{1}, m_{2}, \ldots, m_{n}$; symbol in location field is assigned the first word address
ORGR	m	Set the relocatable address counter with the value of the expression m in the current subprogram, data or common area
PRG		Assign to subprogram location counter
REM		Print remark appearing in columns 1-8, 14-72. A statement with an asterisk in column one will also be printed as a remark
SPACE	m	Space source program listing m lines
TITLE	name	Print name 53 characters beginning in column 20 at top of each page of listing
VFD	$m \mathrm{~m} / \mathrm{v}, \ldots, \mathrm{mn} / \mathrm{v}$	Define continuous fields for specified variables n Number of bits v Variable string m Mode O Octal H Hollerith A Word address arithmetic C Character address arithmetic I ASCII (3300/3500 only)

3300/3500 PSEUDO INSTRUCTIONS

Collating Sequence	Internal Code	Tape BCD Code	Printer Character	Character	Card
00	60	20	\triangle	Δ	blank
01	15	15	\leq		8,5
02	16	16	\%		8,6
03	17	17	1		8,7
04	75	35	\rightarrow		0,8,5
05	76	36	三		0,8,6
06	77	37	\wedge		0,8,7
07	55	55	\uparrow		11,8,5
08	56	56	\downarrow		11;8,6
09	57	57	>		11,8,7
10	35	75	\geq		12,8,5
11	36	76	7		12,8,6
12	33	73	-	-	12,8,3
13	34	74))	12,8,4
14	37	77	;		12,8,7
15	20	60	$+$	+	12
16	53	53	\$	\$	11,8,3
17	54	54	*	*	11,8,4
18	40	40	-		11
19	61	21	/	/	0,1
20	73	33	,	,	0,8,3
21	74	34	1	$($	0,8,4
22	13	13	$=$	$=$	8,3
23	14	14	\neq	-	8,4
24	32	72	$<$	+0	12,0
25	21	61	A	A	12,1
26	22	62	B	B	12,2
27	23	63	C	C	12,3
28	24	64	D	D	12,4
29	25	65	E	E	12,5
30	26	66	F	F	12,6
31	27	67	G	G	12,7
32	30	70	H	H	12,8
33	31	71	1	1	12,9
34	52	52	\forall	-0	11,0
35	41	41	J	J	11,1

Collating Sequence	Internal Code	Tape BCD Code	Printer Character	Cards Character	Card
36	42	42	K	K	11,2
37	43	43	L	L	11,3
38	44	4.4	M	M	11,4
39	45	45	N	N	11,5
40	46	46	\bigcirc	\bigcirc	11,6
41	47	47	P	P	11,7
42	50	50	Q	Q	11,8
43	51	51	R	R	11,9
7 44	72	32]	record-mark	0,8,2
- 45	62	22	S	S	0,2
46	63	23	T	T	0,3
47	64	24	U	U	0,4
48	65	25	V	V	0,5
49	66	26	W	W	0,6
50	67	27	X	X	0,7
51	70	30	Y	Y	0,8
52	71	31	Z	Z	0,9
53	00	12	0	0	0
54	01	01	1	1	1
55	02	02	2	2	2
56	03	03	3	3	3
57	04	04	4	4	4
58	05	05	5	5	5
59	06	06	6	6	6
60	07	07	7	7	7
61	10	10	8	8	8
62	11	11	9	9	9

\bigcirc
Note: Within the collating sequence, tape codes of 00 and 12 are the same.

-
 -
 0

0
-
-

CONTROL DATA

CORPORATION

60176700A © CONTROL DATA CORPORATION Printed in U.S.A. MARCH 1968

[^0]: TWhen the $3300 / 3500$ computer is operating in the program state of executive mode, an attempt to execute this instruction generates an executive interrupt and the processor reverts to the monitor state.

[^1]: †When the $3300 / 3500$ computer is operating in the program state of executive mode, an attempt to execute this instruction generates an executive interrupt and the processor reverts to the monitorstate.

[^2]: \dagger When the 3300/3500 computer is operating in the program state of executive mode, an attempt to execute this instruction generates an executive interrupt and the processor reverts to the monitor state.

