

DAVIDE.LEI 12/12/68 3100/3200/3300/3500 COMPASS

COMPASS is the upward compatible assembly system for the CONTROL DATA® 3100/3200/3300/3500 computers. COMPASS provides convenient mnemonics for the complete repertoire of machine instructions. Information may be referenced by word or by character.

In addition, COMPASS offers a variety of pseudo instructions to expedite programming. Pseudo instructions provide for:

Storage allocation

Storage reservation

Subprogram communication and linkage

Definition of various modes of constants

Variable field definitions

Macros

Conditional assembly

Output listing control

COMPASS source programs can be assembled with a variety of hardware configurations running under a Control Data operating system. The operating systems provide convenient input/output and data handling macros which programmers may reference within COMPASS programs.

COMPASS CODING FORM

Each line of a COMPASS coding form represents the four fields of a punched card.

Field

Location field

Operation field

Address field

Position

Columns 1-8; column 9 blank

Begins in column 10; terminates with first blank column

Subfields begin before column 41; terminate with first blank column or column 72

Identification field

Columns 73-80

6	COMPASS CO	DING FORM	CONTROL	NAME NAME	
PROGRAM			JOUNTRUE	PAGE	
ROUTINE			Second of the	DATE DATE	
LOCA	OPERATION MEDIFIERS	ANALIS URI	CONNENIS		201
and sectors	فيستعمد والم	nanimo.netenet.es.	in the second second second second second	COLORIDA MARKA DA MARKA	
	- Harana and				
	Huuuni				****
	بمسمسمها	يت أن يتعادم المحافظ		a and a second second	مطييستية
	i				
م د د د د د د د	وسيستسبهم			ويتقارب والمتحدث والمسار	
			· · · · · · · · · · · · · · · · · · ·		
			والمحتجبة والمتنا المراجبة المتعاد والمتعادية		
	Hummi			Littlesson on Lites	
	ليستسله				
	يستعتبون الم				
			!		

Location Field

Program locations, data, and common area information.

Operation Field

Mnemonic machine instruction, pseudo instruction, macro name, 00-778 in the first subfield, and operation modifiers as applicable.

Address Field

Relocatable or fixed	Subfield	Number of bits
m	First or second operand or jump address	15
n	Second operand address	15
r	First character address	17
5	Second character address	17
y	Operand	15
z	Operand	17

Fixed only

Bm

B_r Bs

I_m I_r

l_s

sc

k	Shift count	15
Ь	Index register	3
x	Connect code or interrupt mask	12
i	Increment or decrement	3
v	Address in register file	6
с	Character code or field	6
ch	Channel designator	3
1	Field length of block	7

Fixed only, 3300/3500 only

Index register flag for M-field of BDP instructions Index register flag for R-field of BDP instructions Index register flag for S-field of BDP instructions Number of characters in M-field for BDP instructions Number of characters in R-field for BDP instructions Number of characters in S-field for BDP instructions Scan character

w Page index file address

cm Channel mask

Expression

An address field expression may be a symbol, a constant, *, or a combination of these, joined by the operators

- + addition
- subtraction

Constants

Decimal unless suffixed with B to signify octal.

- * Current value of location counter; if the instruction occupies two words, the asterisk signifies the address of the first word.
- ** Associated subfield in assembled instruction is filled with ones.

Literals

The digit 2 may be inserted between the equal sign and D, O, H, or I to indicate double precision

=Dv	Decimal value v in DEC or DECD pseudo instruction format
=Ov	Octal value v in OCT pseudo instruction format
=Hv	Four-character Hollerith value v; eight character for = $2Hv$
=lv	Two-character BCD (ASCII) value v; four characters for = 21v (3300/3500 only)

Comments

Begin with first column after the first blank column in the address field and end with column 72

Identification Field

Printed with program listing

Address Modification

The contents of the address field plus the contents of a specified index register may be combined to form a modified address:

$$m + (B^{b}) = M$$

$$r + (B^{b}) = R$$

$$y + (B^{b}) = Y$$

COMPASS Assembly Error Flags

- А Format error in address field
- С Attempt to assemble information into common
- Multiply defined symbol F⊍ll symbol table D
- F

ij

)

- Location of field error L
- Operation modifier error Μ
- O Operation error U Undefined symbol T Truncation error

REGISTERS

nemonic	Register	Bits
А	A register	24
Bp	Index register b	15
E	E register	48, 52
Р	P register	15
Q	Q register	24

INSTRUCTION MODIFIERS

EQ	Equal			
NE	Not equal			
GE	Greater than or equal			
LT	Less than			
1	Indirect addressing			
S	Sign extension			
INT	Interrupt on completion			
А	Conversion			
В	Backward read or write			
Н	Half assembly or disassembly			
N	No assembly or disassembly			
С	Assign character address			
NC	No conversion			
dc	Delimiting character option in BDP instructions			

3100/3200/3300/3500 MACHINE INSTRUCTIONS

Stops and Jumps

HLT †		m	Halt; next instruction from m
IL 2		m	Read next instruction at m if key 1 is set
SJ2		m	key 2
SJ3		m	key 3
SJ4		m	key 4
SJ5		m	key 5
S J 6		m	key 6
RTJ		m	$(P) + 1 \rightarrow m_{14-00}$ and read next instruction at m + 1
UJP,	1	m,b	Unconditional jump to M
ונו		m,b	If $(B^b) \neq 0$, $(B^b) + 1 \rightarrow (B^b)$ and read next instruction at m; if $(B^b) = 0$, read next instruction at P + 1
D		m,b	If (Bb) \neq 0, (Bb) - 1 \rightarrow (Bb) and read next instruction at m; if (Bb) = 0, read next instruction at P + 1
AZJ,	EQ	m	Read next instruction at m if $(A) = 0$
	NE	m	(A) ≠ 0
	GE	m -	(A) ≥ 0
	LT	m	(A) < 0
AQJ,	EQ	m	Read next instruction at m if (A) = (Q)
	NE	m	(A) ≠ (Q)
	GE	m	$(A) \ge (Q)$
	LT	m	(A) < (Q)

[†]When the 3300/3500 computer is operating in the program state of executive mode, an attempt to execute this instruction generates an executive interrupt and the processor reverts to the monitor state.

Register Operations, No Storage Referenc

	ASE,S QSE,S ISE ISE ASG,S ISG ISG ENA,S ENQ,S ENI ENI INA,S INO S	y y y,b y y y,b y y y y y	Read next instruction at P + 2 if (A) = y (Q) = y (B ^b) = y y = 0 (A) $\ge y$ (Q) $\ge y$ (B ^b) $\ge y$ y ≥ 0 Enter y into A Enter y into Q Enter y into B ^b No operation (A) + y \rightarrow A (O) + y \rightarrow O
	INU INI XOA,S XOQ,S XOI XOI ANA,S ANQ,S ANI ANI ISI	у у,ь у у,ь у у,ь у,ь у,ь	$\begin{array}{l} (U) + y \rightarrow B^{b} \\ (B^{b}) + y \rightarrow B^{b} \\ No operation \\ Exclusive OR (A) \forall y \rightarrow A \\ (Q) \forall y \rightarrow A \\ (B^{b}) \forall y \rightarrow B^{b} \\ No operation \\ AND \\ (A) \land y \rightarrow A \\ (Q) \land y \rightarrow Q \\ (B^{b}) \land y \rightarrow B^{b} \\ No operation \\ If (B^{b}) = y, 0 \rightarrow B^{b} \text{ and read next instruction} \\ \text{at } P + 2 \text{ otherwise } (B^{b}) + 1 \rightarrow B^{b} \text{ and read next instruction} \\ \end{array}$
	ISD	у,Ь	The formation of the second s
WV	ECHA,S	r	Enter 17-bit character address into A
	SHA	k,b	Shift A \pm K positions to the right (–K) or end–around left (+K)
	SHQ	k,b	Shift Q \pm K positions to the right (-K) or end-ground left (+K)
	SHAQ	k,b	Shift $AQ \pm K$ positions to the right (-K) or end-around left (+K)
	SCAQ	у,Ь	Scale AQ; shift end-around left; if $b = 1,2$ or 3,y - shift count $\rightarrow B^{b}$
1			

Ņ

Storage Test

MEQ	m,i	$(B^1) - i \rightarrow B^1$; if (B^1) negative, read next instructions at $P + 1$; if (B^1) positive, test $(A) = (Q) \land (M)$, if true, read next instruction at $P + 2$; if false, repeat sequence.
MTH	m,i	$(B^2) - i \rightarrow B^2$; if (B^2) negative, read next instruction at P + 1; if (B^2) positive, test $(A) \ge (Q) \land (M)$, if true, read next instruction at P + 2; if false, repeat sequence.
SSH	m	Test sign of (M), shift (M) end-around left one place. If sign is negative, read next instruc- tion at P + 2; otherwise, read next instruction at P + 1.
CPR,1	m, b	(M) > (A), read next instruction at P + 1 (Q) > (M), read next instruction at P + 2 (A) > (M) \ge (Q), read next instruction at P + 3

Logical Instructions, Storage Reference

SSA,I	m,b	SET $(A_n) = 1$ where $(M_n) = 1$
SCA,I	m , b	Complement (A _n) where (M_n) = 1
LPA,I	m,b	$(A) \land (M) \rightarrow A$

Load

LDA,I	m,b	$(M) \rightarrow A$
LDQ,I	m,b	(M) → Q
LACH	r,1	$0 \rightarrow A$, (R) $\rightarrow A_{05-00}$
LQCH	r , 2	$0 \rightarrow Q, (R) \rightarrow Q_{05-00}$
LCA,I	m,b	(Ā) → A
LDAQ,I	m , b	(M, M + 1) → AQ
LCAQ,I	m,b	(M, M+1) → AQ
LDL,I	m,b	$(Q) \land (M) \rightarrow A$
LDI,I	m , b	$(M_{14-00}) \rightarrow B^{b}$

Store

STA,I	m,b	(A) → M
STQ,I	m,b	(Q) → M
SACH	r,2	$(A_{0.5-00}) \rightarrow R$
SQCH	r,1	$(Q_{05-00}) \rightarrow R$

swa,I	m,b	$(A_{14-00}) \rightarrow M_{14-00}$
STAQ,I	m,b	(A) → M, (Q) → M + 1
SCHA,I	m,b	$(A_{16-00}) \rightarrow M_{16-00}$
STI,I	m,b	$(B^b) \rightarrow M_{14-00}$

Inter-Register Transfer, 24-Bit Precisio

AQA		(A) + (Q) → A
AIA	b	$(A) + (B^b) \rightarrow A$
IAI	Ь	$(B^{b}) + (A) \rightarrow B^{b}$
TIA	Ь	(B ^b) → A
TAI	Ь	$(A_{14-00}) \rightarrow B^{b}$; no operation if $b = 0$
TMQ†	v	(Register v) → Q
TQM [†]	v	(Q) → Register v
TMA	v	(Register v) -+ A
TAM [†]	v	(A) → Register v
TMI	v,b	(Register v ₁₄₋₀₀) → B ^b
TIMŤ	v,b	(B ^b) → Register v14–00

Inter-Register Transfer, 48-Bit Precisio

ELQ	(E _{lower}) → Q
QEL	(Q) → E _{lower}
EUA	(E _{upper}) → A
AEU	(A) → E _{upper}
EAQ	$(E_u) \rightarrow A, (E_{lower}) \rightarrow Q$
AQE	$(A) \rightarrow E_{upper} (Q) \rightarrow E_{lower}$

⁺When the 3300/3500 computer is operating in the program state of executive mode, an attempt to execute this instruction generates an executive interrupt and the processor reverts to the monitor state.

Fixed-Point Arithmetic, 24-Bit Precision

ADA,I	m,b	(A) + (M) → A
SBA,I	m,b	$(A) - (M) \rightarrow A$
RAD,I	m , b	(A) + (M) → M
MUA,I	m,b	(A) * (M) → QA
DVA,I	m,b	(AQ)/(M) → A
		remainder in Q registe

Fixed-Point Arithmetic, 48-Bit Precision

ADAQ,I	m , b	(AQ) + (M,M + 1) → AQ
SBAQ,I	m , b	(AQ) - (M,M+1) → AQ
MUAQ,I	m,b	(AQ) * (M, M + 1) → AQE
DVAQ,I	m,b	(AQE)/(M,M+1) → AQ
		remainder in E register

Floating-Point Arithmetic

FAD,I	m , b	(AQ) + (M, M + 1) → AQ
FSB,I	m,b	(AQ) - (M,M+1) → AQ
FMU,I	m,b	(AQ) * (M,M + 1) → AQ
FDV,I	m,b	(AQ)/(M,M+1) → AQ
		remainder in Ereaister

Block Operations

SRCE, INT	c,r,s	Search from r to s for character = c
SRCN, INT	c,r,s	Search from r to s for character≠c
MOVE,INT [†]	l,r,s	Move characters from r to s, 1 ≤ 1≤ 177 ₈ I = 0 means 200 ₈ characters
INAC, INT†	ch	A cleared, character from peripheral device $\rightarrow A_{05-00}$
INAW, INT†	ch	A cleared, word from peripheral device $\rightarrow A$
OTAC, INT [†]	ch	A05-00 → peripheral device
otaw,Int†	ch	A _{word} → peripheral device

[†]When the 3300/3500 computer is operating in the program state of executive mode, an attempt to execute this instruction generates an executive interrupt and the processor reverts to the monitorstate.

INPC, INT, B, H[†]ch, r, s6 or 12-bit input characters r to sINPW, INT, B, N[†]ch, m, n12 or 24-bit input words m to nOUTC, INT, B, H[†]ch, r, s6 or 12-bit output characters r to sOUTW, INT, B, N[†]ch, m, n12 or 24-bit output words m to n

Sensing, Selecting, Interrupt and Control Functions

CON [†]	x,ch	If channel not busy, connect code x is sent to I/O equipment on channel ch and read next instruction at P + 2; if channel busy, read next instruction at P + 1
SEL [†]	x,ch	If channel not busy, function code x is sent or channel ch, read next instruction at $P + 2$; if channel busy, read next instruction at $P + 1$
COPYT	ch	External status code → A ₁₁ _00 (Interrupt Mask register) → A ₂₃₋₁₂
EXS†	x,ch	Compare external status line bits with x_i , $0 \le i \le 11$; read next instruction at $P + 1$ if comparison, $P + 2$ if no comparison
INS†	x,ch	Compare internal status lines with bits x ₁ , $0 \le i \le 11$; read next instruction at P + 1 if comparison, P + 2 if no comparison
CINS [†]		Interrupt mask and internal status A
INTS†	x,ch	Compare interrupt bits with bits x; $0 \le i \le 11$; read next instruction at P + 1 if comparison, P + 2 if no comparison
INCL [†]	×	Clears interrupt faults defined by bits x_i , $0 \le i \le 11$
IOCL [†]	x	Clear I/O channel, or search/move control defined by bits 00–08 and 11 of x
SSIM†	×	Set interrupt mask register with bits x_i , $0 \le i \le 11$
SCIM [†]	x	Clear interrupt mask register where bits of x are ones
IAPR [†]		Send interrupt to associated processor on left

⁺When the 3300/3500 computer is operating in the program state of executive mode, an attempt to execute this instruction generates an executive interrupt and the processor reverts to the monitor state.

PAUS [†]	×	Compare busy lines with bits x_i , $0 \le i \le 11$; if positive, do not advance. If advancement inhibited for more than 40 ms, read next instruction at P + 1; if no comparison, read next instruction at P + 2
SLS†		Stop if Selective Stop switch is set; read next instruction at P + 1 if restarted
SFPF		Set floating-point fault
SBCD		Set BCD fault
DINT		Disable interrupt
EINT [†]		Enable interrupt after next instruction
CTI [†]		Set Type in
CTO†		Set Type out
UCS†		Unconditional stop; restarts at P + 1
NOP		No operation
3300/3 EXECUTI	500 M VE MC	ACHINE INSTRUCTIONS, DDE

ACI		(A _{02−00}) → Channel Index register
ACR		A → Condition register
AIS .		(A _{02–00}) → Instruction State register
AOS		(A02–00) → Operand State register
APF	w,2	(A11-00) → Page File Index Address W
CIA		Clear A; (Channel Index register) → A _{02–00}
CILO	cm	Lockout external interrupt on masked channels,
		cm, until channels not busy
CLCA	cm	Clear channels, cm, but not external equipment; clear channels activity
CRA		Condition register - A
ISA		Clear A; (Instruction State register) $\rightarrow A_{02-00}$
JAA		Last executed jump address $\rightarrow A_{14-00}$
LBR	m	Load m with BDP conditions

[†]When the 3300/3500 computer is operating in the program state of executive mode, an attempt to execute this instruction generates an executive interrupt and the processor reverts to the monitor state.

	OSA PFA	w,2	Clear A; (Operand State register) $\rightarrow A_{02-00}$ Clear A; (Page Index File) $\rightarrow A_{11-00}$
0	PRP	x	Same as PAUS, but halt real-time clock incrementing
	RCR		(Subcondition register) → Condition register
	RIS		Relocate to instruction state
	ROS		Relocate to operand state
	SBJP		Monitor state to Program state when next
			jump occurs
	SBR	m	BDP conditions - m
	SDL		When next LDA instruction encountered $(M) \rightarrow A$
			77777777 → M
	SRA		Clear A; (Subcondition register) - A12-00
	TMAV		Initiate memory request. If reply occurs within 5 usec., read next instruction at $P + 2$; if not read next instruction at $P + 1$. Storage address in (B ^b) with (operand state register) or zero appended

WITH BDP HARDWARE

ADM	r,B _r ,I _r ,s,B _r ,I _s	$(R) + (S) \rightarrow S$
ATD,dc	m, B _m , I _m , s, B _s	(MASCII) - SBCD
CMP	r, B _r , I _r , s, B _s , I _s	Compare (R) to (S); exit upon encountering unequal characters
CMP,dc	r, B _r , s, B _s , I _s	Compare (R) to (S); exit upon encountering unequal characters
CVBD	m,B _m ,n,B _n	(M _{binary}) → N _{BCD}
CVDB	r,B _r ,I _r ,m,B _m	(R _{BCD}) - M _{binary}
DTA,dc	r,B _r ,I _r ,m,B _m	(RBCD) - MASCII
EDIT	r,B _r ,I _r ,s,B _s ,I _s	(R) \rightarrow SCOBOL picture editing
FRMT HI	r, B _r , I _r , s, B _s , I _s	(R) \rightarrow S, comma insertions
JMP,LOW ZRO	m	Read next instruction at m if>0 (BDP condition register) < 0 = 0

X

MVBF MVE MVE,dc	r, B _r , I _r , s, B _s , I _s r, B _r , I _r , s, B _s , I _s r, B _r , s, B _c , I _s	$ \begin{array}{c} (R) \rightarrow S \text{ with blank fill} \\ (R) \rightarrow S \\ (R) \rightarrow S \end{array} $
MVZF	r, B _r , I _r , s, B _s , I _s	$(R) \rightarrow S$ with zero fill
MVZS	r, B _r , I _r , s, B _s , I _s	(R) → S with leading zeros suppressed .
MVZS,dc	r, B _r , s, B _s , I _s	(R) → S with leading zeros suppressed
РАК	r,B _r ,I _r ,m,B _m	(R _{BCD 6-bit numeric}) → M _{BCD 4-bit numeric}
SBM	r, B _r , I _r , s, B _s , I _s	$(S) - (R) \rightarrow S$
scan,lr, ^{eq}	,dc r,B _r ,I _r ,sc	Scan (R) from left to right for character equality/inequality
scan,rl, ^{eq} Ne	,dc r,B _r ,I _r ,sc	Scan (R) from right to left for character equality/inequality
TST	r, B _r , I _r	Test (R); -,0, or $+ \rightarrow$ BCD condition register
UPAK	m, B _m , s, B _s , I _s	$(M_{BCD 4-bit}) \rightarrow S_{BCD 6-bit}$
ZADM	r,B _r ,I _r ,s,B _s ,I _s	(R) → S right justified

3100/3200/3300/3500 PSEUDO INSTRUCTIONS

BCD	n,c1,c2,,c _{4n}	Define c1,c2,,c _{4n} as BCD values stored four characters per word in n words. Symbol in location field is assigned the first word address
BCD,C	n,cl,c2,,c _n	Define the n BCD characters c ₁ ,c ₂ ,,c _n ; symbol in the location field is assigned the first 17–bit character address
BSS	m	Reserve m words; symbol in location field is assigned the first word address
BSS,C	m	Reserve m character locations; sym- bol in location field is assigned the first character address
COMMON		Assign to common storage counter
DATA		Assign to data storage counter
DEC	m ₂ ,,m _n	Define decimal integer values m ₁ ,m ₂ ,,m _n ; symbol in location field is assigned the first word address

	DECD	^d 1, ^d 2,, ^d n	Define double precision values d_1, d_2, \ldots, d_n as floating point if a decimal is included, or as in- tegers if a decimal point does not appear. Symbol in location field is assigned the first word address. Floating-point values may also include decimal and binary scaling factors Beain new page for listing
	END	m	Last statement of subprogram; m
and a second	EN IDA A		is the transfer address or blank
	ENDM	^m 1′ ^m 2′···′ ^m n	Define m ₁ ,m ₂ ,,m _n , for refer- ence as addresses by other subprograms
	EQU	m	Equate symbol in location field to the 15-bit contents of the address field m
	EQU,C	r	Equate symbol in location field to the 17–bit contents of the address field r
	EXT	^m 1, ^m 2,, ^m n	Define m ₁ ,m ₂ ,,m _n for refer- ence as addresses in other subprograms
	FINIS		Terminate assembly process
	IDENT	m	First statement of subprogram m
C	IFF	m,p,n	Assemble following n lines in a macro definition if symbol p is not identical to symbol m
×	IFN	m,n	Assemble following n lines if the value of the expression m is non-zero
	IFT	m,p,n	Assemble following n lines in a macro definition if symbol p is identical to symbol m
1	IFZ	m, n	Assemble following n lines if the value of the expression m is zero
	LIBM	name1,name2,	Library macros called in program
1	LIST		Resume listing of source program

MACRO	(p ₁ ,p ₂ ,,p _n)	Assemble as the first instruction of a macro definition with the formal parameter list (p_1, p_2, \dots, p_n) . The symbol in the location field is the name of the macro
macro name	(p ₁ ,p ₂ ,,p _n)	Call macro name with actual parameters (p_1, p_2, \ldots, p_n) ; a symbol in the location field is assigned the first assembled instruction of the macro
NOLIST		Suppress listing of source program
OCT	^m 1′ ^m 2′··· ^m n	Define octal values m ₁ ,m ₂ ,,m _n ; symbol in location field is assigned the first word address
ORGR	m	Set the relocatable address counter with the value of the expression m in the current sub- program, data or common area
PRG		Assign to subprogram location counter
REM		Print remark appearing in col- umns 1–8, 14–72. A statement with an asterisk in column one will also be printed as a remark
SPACE	m	Space source program listing m lines
TITLE	name	Print name 53 characters begin- ning in column 20 at top of each page of listing
VFD	mn/v,,mn/v	Define continuous fields for specified variables n Number of bits v Variable string m Mode O Octal H Hollerith

- Hollerith
- Word address arithmetic А
- С Character address arithmetic
- L ASCII (3300/3500 only)

3300/3500 PSEUDO INSTRUCTIONS

ASCII,p

^{n,c}1,^c2,···,^cn

BCDN

n,sdd...ddd

Define ASCII characters n words packed p per word, 2 per word if p is omitted

BCD numeric characters are converted to 4-bit characters and stored right-to-left in n consecutive words

- s = sign (stored in rightmost character)
- d = BCD numeric character

SAMPLE COMPASS DECK

Collating Sequence	Internal Code	Tape BCD Code	Printer Character	Cards Character	Card
00	60	20	^	٨	blank
00	15	15	4		8.5
02	16	16	%		8.6
03	17	17	ſ		8.7
04	75	35	, →		0,8,5
05	76	36	Ξ		0,8,6
06	77	37	Λ		0,8,7
07	55	55	t		11,8,5
08	56	56	ţ		11.8.6
09	57	57	>		11.8.7
10	35	75	≥		12,8,5
11	36	76	٦		12,8,6
12	33	73	•	•	12,8,3
13	34	74))	12,8,4
14	37	77	;		12,8,7
15	20	60	+	+	12
16	53	53	\$	\$	11,8,3
17	54	54	*	*	11,8,4
18	40	40	-		11
19	61	21	/	1	0,1
20	73	33	,	,	0,8,3
21	74	34	((0,8,4
22	13	13	=	=	8,3
23	14	14	¥	-	8,4
24	32	72	<	+0	12,0 🙍
25	21	61	А	А	12,1
26	22	62	В	В	12,2
27	23	63	С	С	12,3
28	24	64	D	D	12,4
29	25	65	E	E	12,5
30	26	66	F	F	12,6 🕓
31	27	67	G	G	12,7
32	30	70	Н	Н	12,8
33	31	71	I	I	12,9
34	52	52	A	-0	11,0
35	41	41	J	J	11,1 🧖

		Tape		·		
Collating	Internal	BCD	Printer	Clauds		
Sequence	Code	Code	Character	Character	Cara	
36	42	42	К	к	11,2	
37	43	43	L	L	11,3	
38	44	44	Μ	Μ	11,4	
39	45	45	Ν	Ν	11,5	
40	46	46	0	0	11,6	
41	47	47	Р	Р	11,7	
42	50	50	Q	Q	11,8	
43	51	51	R	R	11,9	
44	72	32]	record-mark	0,8,2	
45	62	22	S	S	0,2	
 46	63	23	Т	Т	0,3	
47	64	24	U	U	0,4	
48	65	25	V	V	0,5	
49	66	26	W	W	0,6	
50	67	27	х	х	0,7	
51	70	30	Y	Y	0,8	
52	71	31	Z	Z	0,9	
53	00	12	0	0	0	
54	01	01	ſ	1	1	
55	02	02	2	2	2	
56	03	03	3	3	3	
57	04	04	4	4	4	
58	05	05	5	5	5	
59	06	06	6	6	6	
60	07	07	7	7	7	
61	10	10	8	8	8 .	
62	11	11	9	9	9	

Note: Within the collating sequence, tape codes of 00 and 12 are the same.

