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The CYBER 180s.
Now accepting
applications.

Pertormance. Secunty. Application
portability. Compatible growth. The
CYBER 180 computers have been
designed for the 1990s and beyond
to provide a comprehensive answer
to these diverse computing
requirements.

From the CYBER 180 Supermini 810
to the CYBER 180 Model 990. these
systems offer a performance range of
1to 60—the largest compatible growth
path in the industry. And all provide
security safeguards built into

the hardware.

Through the unique architecture of the
CYBER 180, it is possible to run two
operating systems simultaneously-
NOS (6-bit 60-bit words) and NOS VE
(8-bit 64-bit words)—in the same mem-
ory and central processing unit (CPU)

The CYBER family offers easy applica-
tion portability from other systems
And within the family all applications
and systems software are portable
without change.

And because they meet the widest
range of user requirements—in partic.-
lar, for response time. terminal loads
and security measures—the CYBER
180s represent a major advance in
applications performance.

By running a wide variety of applica-
tions—both from Control Data as well
as other software sources—the
CYBER 180s provide cost effective
solutions for manufacturing, energy
development, education. research
and government.



System Architecture GD
CONTROL
DATA




Contents

3 Introduction to the Systems

7 The Components of the
Systems

13 170 State
23 180 State
55 170/180 State Interaction

59 Additional Sources of
Information



Introduction to the

| Systems




Introduction

This overview describes the hard-
ware architecture of Control Data’s
CYBER 180 Series Computer Sys-
tems and the CYBER 170 Series
models 815, 825, 835, 845, and 855
(hereafter referred to simply as the
CYBER 180 series). The CYBER
180 series computer systems sup-
port two operating systems - NOS
(the Network Operating System), an
established, feature-rich system,
and NOS/VE (the Network Operat-
ing System/Virtual Environment), an
advanced system designed for the
development of future applications.

A unique feature of these computer
systems is their ability to execute
two operating systems concurrently
using the same processor. This
mode of operation is called dual
state. NOS executes in what is
called 170 state. NOS/VE executes
in 180 state. (Figure 1.)

I
Figure 1
Dual State
NOS NOS/VE
(170 State) (180 State)

Many aspects of the hardware work
the same regardless of the state in
which the computer system is oper-
ating. Other aspects vary depending
on the state to let each operating
system take full advantage of partic-
ular hardware features. The next
chapter describes the common parts
of the computer systems. Subse-
quent chapters describe 170 state,
180 state, and finally, how the two
work together, dual state.

But first, the remainder of this chap-
ter discusses the general architec-
tural concept behind all of these
computer systems and how that
concept is put into action.

The Architectural
Concept

The architecture of these computer
systems exemplifies the concept
that the processor should fit the pro-
cess. Each model has a large cen-
tral processor that handles all
computation and execution of user
programs. Smaller peripheral pro-
cessors handle all input/output oper-
ations and some operating system
functions, leaving the central pro-
cessor free to work on user pro-
grams. This architectural concept
accounts for the high system
throughput evident in these com-
puter systems in two ways.

First, the central processor is not
burdened with input/output activities
and minor operating system func-
tions. Any time it would have spent
doing these activities can be used to
process user programs. Second,
processing by the central processor
and peripheral processors can be
done in parallel. While input/output
is being done by a peripheral pro-
cessor, the central processor contin-
ues executing other programs; one
does not have to wait for the other.
Furthermore, because peripheral
processors are independent, they
also work concurrently to complete
their separate activities.



Figure 2 shows the architectural
concept of this hardware. The cen-
tral processor performs most of the
functions traditionally associated
with the execution of user programs
with the exception of the input/out-
put. Central memory isolates the
central processor from the periph-
eral processors and serves as the
communication vehicle between
them. Data is read from peripheral
equipment by the peripheral proces-
sors and stored in central memory. It
is only from central memory that the
central processor accesses data
and program instructions.
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Figure 2

When additional data not currently in
central memory is needed, the cen-
tral processor temporarily stops the
executing program and puts it in an
inactive state while a peripheral
processor gets the needed data.
The central processor, however,
does not remain idle. It begins exe-
cution of another program. When
data is ready, the central processor
is notified and can halt the new pro-
gram and resume the interrupted
program. Thus, many programs, in
some state of execution, can be in
the system at the same time.

Central
Processor

Central
Memory

| |
... Peripheral Processors
Input/Output Channels

Peripheral Equipment

Although only one program can use
the central processor at a time,
many programs may have periph-
eral processors performing opera-
tions for them.

This process can be effective only if
the method of switching programs in
and out of execution is fast and effi-
cient. This is made possible by the
exchange jump operation and the
exchange package.




The Method

For every program, an exchange
package exists that contains all the
information necessary to start or
resume processing of the program.
This information includes a descrip-
tion of the central memory used by
the program, the next instruction
word to be executed, the contents of
all central processor registers, and
the contents of certain status
registers.

The exchange jump is the operation
that actually switches programs. It is
performed any time one program
must be put in an inactive state and
another program executed (for
example, when additional data is
needed or a high priority program
comes along). Figure 3 illustrates
the 170 state exchange jump. The
180 state exchange jump is similar
in concept.
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Figure 3

The exchange operation is a fast
and efficient method of switching
programs. It is initiated and per-
formed by a single instruction, and
the exchange package it writes con-
tains all the data necessary to start
or resume a program. No additional
operations to store registers are
needed.

PROGRAM 1
Memory
Area

PROGRAM 1

PROGRAM 2
Memory
Area

PROGRAM 2

PROGRAM 2
Memory
Area

PROGRAM 1
Memory
Area

PROGRAM 1

The concept of matching the proces-
sor to the process accounts largely
for the high system throughput in the
CYBER 180 series. It also allows a
computational load to be balanced
against an input/output load since
the processors that perform each
function are independent. A produc-
tion environment with extensive
input/output needs does not have to
purchase a large central processor
whose major function is computation
just to obtain additional input/output
power.
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Introduction

The Central
Processor

This chapter talks specifically about
the individual components of the
computer systems: the central pro-
cessor, central memory, and the
peripheral processors. It discusses
the features that remain the same
regardless of the state of operation,
170 state or 180 state.

The central processor is a high-
speed arithmetic processor dedi-
cated to executing instructions of
user and system programs. It per-
forms computations in both fixed
and floating-point arithmetic. The
central processors increase in per-
formance across the product line but
within each state of operation they
appear to the software to be com-
mon in areas such as:

J Registers

[ Instruction set and instruction
word formats

] Instruction lookahead

[0 Exchange jump operation and
exchange package

]
Registers

The central processor contains a set
of registers, some of which are used
to hold data from instructions and
others that contain information about
the program itself. These registers
are used by the central processor
during execution and, as mentioned
earlier in the first chapter, they are
also the registers that are written
into the program’s exchange pack-
age if an exchange jump occurs.

To reduce the number of accesses
to central memory for data and
results, operating registers are used
to hold operands and results during
execution of a program. These oper-
ating registers allow a large degree
of speed and latitude within the cen-
tral processor. The central processor
instruction set takes advantage of
them and offers many register-to-
register instructions. The number
and type of registers varies depend-
ing on the state of operation and
they are discussed in more detail in
the later chapters on 170 state and
180 state.

To keep track of each program, sup-
port registers exist that contain infor-
mation about the program. Again,
the support registers vary depend-
ing on the state of operation and
they are discussed later.

In either state of operation, the oper-
ating and support registers are cop-
ied to the program’s exchange
package should the program have to
be interrupted and switched with
another. These registers, along with
some miscellaneous status regis-
ters, contain all the information
needed to restart a program that has
been interrupted. Both states of
operation use an exchange package
but the 170 state exchange package
is a subset of the 180 state
exchange package.

[
Instruction Set and Instruction
Word Formats

In each state, there are two instruc-
tion sets: one for the central proces-
sor and one for the peripheral
processors. The instruction set and
instruction word formats for the cen-
tral processor vary depending on the
current state of operation. The
peripheral processor instruction set
is actually the same for both 170
state and 180 state; only the format
of the word used changes.

The central processor instructions
perform primarily arithmetic compu-
tations, data manipulation, memory
transfers, and exchange jumps but
no input/output operations. All input/
output instructions are contained in
the peripheral processor instruction
set. The applications programmer,
however, sees none of this separa-
tion between the central processor
and peripheral processors, except
as outstanding performance. The
compilers, not the programmer, sep-
arate functions between the central
processor and the peripheral pro-
cessors. Each instruction set is dis-
cussed in more detail in the later
chapters on 170 state and 180 state.
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Instruction Lookahead

The instruction lookahead process is
present on alt models of the CYBER
180 series. It is based on the
assumption that, in most cases, pro-
gram instructions are located in con-
secutive central memory words.
Lookahead hardware reads a cer-
tain number of instruction words
beyond the currently executing
instruction word and keeps them in
reserve, usually in a set of registers
that can be thought of as a first-in,
first-out buffer. Then, when the cur-
rent instruction has been executed,
the next instruction is available
immediately. deally, the lookahead
hardware keeps the central pro-
cessor continually supplied with
instructions, and there is no waiting
for a reference to central memory.

The number of instruction words
read ahead and the method of han-
dling branch instructions varies
slightly from model to model. Keep
in mind that one instruction word can
hold up to four instructions.

The models on the lower end of the
series read up to two instruction
words ahead of the current instruc-
tion word but have no provision for
branch instructions.

Intermediate models read up to
three instruction words ahead of the
current instruction word. If a condi-
tional branch is detected, the central
processor reads two words starting
at the branch’s destination address
and holds them, in addition to the
words from the regular program
sequence, until the branch is
resolved. If the branch is taken,

those two words are available imme-
diately; if not, they are discarded,
and processing continues with the
next word in the original three-word
buffer. This can be thought of as a
five-word instruction lookahead
buffer with three words for the regu-
lar program sequence and two
words for a conditional branch
sequence.

The models on the upper end of the
series read up to six instruction
words ahead of the instructions con-
tained in the current word in execu-
tion. If a conditional branch is
detected, the central processor
assumes the branch will be taken.
The next instructions are read from
the branch’s destination address. If
the branch is taken, the instructions
are available immediately; if not,
they are discarded, and processing
and reading ahead are resumed at
the instruction following the branch.
Even when the branch is not taken,
there is minimal delay because the
nonbranch instructions are available
from a high-speed cache memory.

Note that in all of these cases, the
instruction lookahead buffer cannot
be reread and, therefore, does not
support program looping within the
buffer. However, in machines on the
upper end of the product line, the
instructions are held in cache mem-
ory so program looping is generally
done without references to central
memory.

For extremely high performance, the
model 990 uses advanced hardware
technigues for lookahead that are
quite different from those described
here. See the Model 990 brochure
(publication number 204,121) for
more information on the model-
dependent differences that provide
that performance.

Memory

I
Central Memory

Word Size

The length of a central memory
word is always 64 bits with an addi-
tional 8 bits used for error checking
and correction. In 170 state, 60 bits
are used with five 12-bit bytesto a
word. In 180 state, 64 bits are used
with eight 8-bit bytes to a word. In
180 state, memory can be
addressed at both word and byte
boundaries.

Addressing and Program
Isolation in Memory

Likewise, the method of addressing
and isolating programs in memory
differs depending on the state of
operation. NOS in 170 state uses
real memory addressing on word
boundaries only. NOS/VE in 180
state, on the other hand, uses
virtual memory addressing on both
word and byte boundaries. Both
subjects are discussed later in the

chapters on 170 state and 180 state.

—
Extended Memory

Extended memory is available only
in 170 state and is described further
in that chapter.

o~



Peripheral
Processors

The peripheral processors perform
input/output operations and, in 170
state primarily, some operating sys-
tem functions. Their major role is to
do input/output, leaving the central
processor almost entirely free for
user programs. There is, of course,
a central processor monitor, but the
amount of time it spends in execu-
tion is very small compared with
other vendors’ systems.

Peripheral processors save consid-
erable central processor time com-
pared to other systems where the
processor must perform all of the
input/output activity rather than work
on user programs. Even when that
processor is not directly involved in
the program, it must often monitor
the proceedings and, thus, loses
processing time that would other-
wise be available for programs.

A comparison of the two types of
systems might appear as shown in
Figure 4.

A

Figure 4

Of course, there is some overlap
between performance of system
functions, such as input/output, and
pure program processing time on
the other types of systems but not
nearly as much as is evident on the
CYBER 180 series. In addition on
these machines, each peripheral
processor operates independently;
therefore, many peripheral pro-
cessors can be performing opera-
tions for many programs at the same
time.

The central processor cannot,
except by software protocol, calt a
peripheral processor. This in itself
forms the basis for high system
security and program integrity.

Peripheral processors are logically
independent but physically con-
tained in one unit - the input/output
unit. The minimum number of
peripheral processors available is
10, but this number can be
expanded to 20. Peripheral pro-
cessors on all models of the CYBER
180 series are functionally identical
although some features vary
depending on the state of operation.
For example, the length of a periph-
eral processor memory word is 16
bits but the actual number of bits
used varies depending on the cur-
rent state of operation. Within a par-
ticular state, peripheral processors
share such features as:

LI Memory and word size

] Method of reading and writing
central memory words

[} Instruction set
] Registers

[} Channel usage

System where processor User
must perform input/output Programs
Input/
Output
System where peripheral User
processors perform input/output for Programs
the processor (CYBER 180 series systems)
Input/
Output
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Memory and Word Size

A peripheral processor has a mem-
ory of 4096 words. The length of a
peripheral processor memory word
is 16 bits. In 170 state, the least sig-
nificant 12 bits of the 16-bit word are
used. In 180 state, the full 16 bits
are used. Regardless of the word
length used in a particular state, the
peripheral processor uses the same
method to read and write words to
and from central memory.

—
Reading and Writing Central
Memory Words

Central memory words are read and
written between central memory and
peripheral processor memory by the
peripheral processors using a hard-
ware buffering mechanism that
assembles and disassembles the
words. When a central memory
word is read, it is disassembled into
a fixed number of peripheral pro-
cessor words and sent to successive
locations in the peripheral pro-
cessor's memory. To write a central
memory word, the hardware assem-
bles several successive peripheral
processor words into one larger
word and sends it to central mem-
ory. An obvious advantage of this
process is that there is only one
access to central memory rather
than several. In 170 state, five 12-bit
peripheral processor words are
assembled and disassembled to
transfer 60-bit central memory
words. In 180 state, four 16-bit
peripheral processor words are
assembled and disassembied to
transfer 64-bit central memory
words. (The hardware that performs
this function is called a read/write
pyramid.)

I
Instruction Set

The instruction set used by the
peripheral processors is the same
regardless of the state of operation.
The instruction set emphasizes
input/output operations and system
monitoring activities. Peripheral
processors address only real mem-
ory and, therefore, need not change
because of virtual memory consider-
ations in 180 state.

Peripheral processor instructions are
either one or two peripheral pro-
cessor words long. Of the 70 instruc-
tions in the set, 43 are single-word
instructions, and 27 are double-word
instructions. Many instructions
require only a 2- or 3-digit operation
code and a single operand. For
example, the following instruction
(Figure 5) transfers a word from
channel 3 to a peripheral processor
register (the A register).

|
Figure 5
Operation Channel
Code Number
70 03

The instruction set includes instruc-
tions to perform:

] Input/output

] Testing and setting of channel
flags

[J Read and write operations
between central memory and
peripheral processor memory

] Arithmetic and logical operations

['] Conditional and unconditional
jumps

[] Central processor exchange
jumps

\ :



]
Registers

The peripheral processor registers
are the same in both 170 and 180
state. Each peripheral processor
has its own set of registers that hold
information necessary for executing
the processor’s current instruction.
One of these registers holds the pro-
gram address; others can hold input/
output data words, functions, oper-
ands, and addresses used in exe-
cuting instructions.

Two registers in particular, the A and
R registers, work together to form
large central memory addresses for
read/write instructions. The A regis-
ter holds one operand; this operand
may be a central memory address.
However, this 18-bit register is not
always sufficient to hold the large
central memory addresses available
on the CYBER 180 series. When
necessary, a relocation register, the
R register, is used to supplement the
A register to form a larger address.

I
Channel Usage

Peripheral processors communicate
with each other and with external
devices (peripheral equipment) over
input/output channels. One or more
of these devices can be connected
to a channel and any peripheral
processor can access any channel
assigned to its particular state (170
or 180). The number of channels
available can be as many as 24
depending on the model.

Channel instructions in the periph-
eral processor instruction set direct
all activities related to peripheral
equipment. They select a specific
piece of equipment on a channel
and transfer data to or from that
equipment. Although more than one
piece of equipment can be con-
nected to a channel, one device ata
time uses the channel to transfer
data.






Introduction

170 Central
Processor

The CYBER 180 series executes
NOS in a mode known as 170 state.
In this state, the hardware uses
features that optimize NOS
performance. It operates using real
memory addressing on word
boundaries. This chapter describes
the features and characteristics that
are unique to 170 state.

The central processors vary in per-
formance from model to model but in
170 state they appear to the soft-
ware to be common in areas such
as:

[J Registers

] Instruction set and instruction
word formats

] Exchange jump operation and
exchange package

—
Registers

As was mentioned earlier, the cen-
tral processor contains a set of reg-
isters which are used to hold data
from instructions and to contain
information about the program itself.

L
Figure 6

These registers are used by the cen-
tral processor during execution and
they are also the registers that are
written into the program'’s exchange
package if an exchange jump
occurs.

Operating registers are used to hold
operands and results during execu-
tion of a program. In 170 state, there
are eight 60-bit X registers that hold
the operands. (A central memory
word in 170 state is also 60 bits
long.) The eight X registers are num-
bered X0 through X7 (where X0 is
the first register and so on). Eight
18-bit A registers hold the central
memory addresses of the operands.

ARegisters
= Central
Memory
1000 —_— -
= Address
777
L Address
; — 1000
- X isters Address
Reg 1001
-




The eight A registers are likewise I
numbered AO through A7 (where AO Figure 7
is the first register). The X and A
registers work together to read from
and write to central memory. Writing a Central A Registers
Memory Word
To read a central memory word e A0
(Figure 6), one of the registers A1 ¢ R — Central
through A5 is set to a central mem- e Memory
ory address. The central processor Lt
accesses that address and writes its = L -~ = =
contents in the corresponding X reg- :
ister (X1 through X5). There is no : = e — Address
explicit read memory instruction; ‘A7 (the eighth A register) is set. - A7 1001 1000
instead, the set A register instruction LR ——I—> Address
performs that function. > 1001

X Registers Address
To write a central memory word (Fig- 1002
ure 7), A6 or A7 is set to a central X0 —_—
memory address. The central pro- g - = =~
cessor transfers the word in the cor-
responding X register (X6 or X7) to ; : =~ =~
the central memory address. e
Of course, instructions also exist to g:ﬁ;%ﬂggigm{:ﬂsﬂfﬁ' X7 ]
move the contents of one register to {the eighth X register)in central
another. All 60-bit operands involved - memory address 1001
in computation are taken from and e
returned to the X registers.

There are also eight 18-bit B regis-
ters used primarily for indexing.
They can be used, for example, to
increment and decrement program
loop counts.

These 24 operating registers allow a
large degree of speed and latitude
within the central processor. The
central processor instruction set —
takes advantage of them and offers .
many register-to-register Figure 8
instructions.
Central

To keep track of each program, sup- Memory
port registers exist that contain infor-
mation about the program. (Figure . ~ =~
8.) The RAC register holds the refer- Starting Address (RAC)
ence address of the program. This is Adz“’g’ams

. . ress Space
simply the starting address of the In Memory Field Length
program in central memory. The Current Instruction Word (RAC + P) s o.0vnniennes.n.. (FLC)
FLC register holds the length of the ‘
program in central memory (its field Ending Address (RAC + FLC-1) ——ppo— |
length). These two registers define . ~ ~




the entire user address space of a
single program. The contents of the
RAC register added to the contents
of the FLC register provides the end-
ing address of the program in central
memory. (RAC { FLC -1is the
actual address.) Any attempt to go
outside these boundaries causes a
hardware interrupt to occur.

Within the program itself, ail
addresses are given relative to a
base address of zero, the beginning
of the program. This method allows
programs to be loaded anywhere in
the system simply by changing the
RAC register; no internal program
addresses are changed because
they are still given relative to the
base address of zero.

The P register is the program
address register. It is the address
within the program of the instruction
word currently being executed. It is
relative to the beginning address of
the program which is always zero.
Thus, to find the absolute central
memory address of the instruction to
be executed, hardware adds the
contents of the RAC register to the
contents of the P register.

All of the preceding registers, both
operating and support registers, are
copied to the program’s exchange
package should the program have to
be interrupted and switched with
another. These registers, along with
some miscellaneous status regis-
ters, contain all the information
needed to restart a program that has
been interrupted.

I
Instruction Set and Instruction
Word Formats

The central processor instructions
perform primarily arithmetic compu-
tations, data manipulation, memory
transfers, and exchange jumps but
no input/output operations. All input/
output instructions are contained in
the peripheral processor instruction
set.

In 170 state, the central processor
uses the least significant 60 bits of
the 64-bit word and leaves the other
4 bits unused. Central processor
instructions are 15 bits, 30 bits, or
60 bits long. An advantage of this
central processor word size is that
15- and 30-bit instructions can be
packed into it, allowing as many as
four 15-bit instructions to be stored
in one central processor word. This
obviously saves space and time
(only one central memory access is
required instead of four). Because of
the instruction lookahead discussed
earlier, efficient programming can
dramatically increase the number of
available instructions awaiting exe-
cution in the central processor. With
few restrictions, almost any combi-
nation of 15- and 30-bit instructions
are allowed in one word.

The central processor instruction set
is extensive, consisting of 85 instruc-
tions, yet simple in structure. It is
powerful but easy to learn and easy
to use. Of the 85 central processor
instructions, 55 are 15-bit instruc-
tions and 27 are 30-bit instructions;
only 3 instructions require the full 60
bits. Many instructions require only
the operation code (a 2- or 3-digit
number) and the registers contain-
ing the operands and results.

The instruction set features floating-
point add, multiply, and divide
instructions with double and single
precision, and rounded and
unrounded results. In addition, there
are instructions to:

[} Perform integer arithmetic (add,
subtract, multiply, and divide)

[} Pack and unpack floating-point
numbers

['] Normalize floating-point numbers

['] Setthe X registers (data), A reg-
isters (addresses), and B regis-
ters (indexes)

] Perform logical operations, trans-
mission operations, and shift
operations

[} Perform conditional, uncondi-
tional, and return jumps

[J Perform exchange jumps, as
described in the first chapter

Ll Read and write single words to
and from central memory or
extended memory

[J Transfer blocks of data between
central memory and extended
memory

Operands are represented in one’s-
complement form. Operands can be
18 or 60 bits long.

Because of the simplicity of this
instruction set, the central processor
assembler can be learned in a rela-
tively short time. Furthermore, the
assembly language programmer
need not understand the peripheral
processor input/output architecture
to code the central processor. All
input/output is initiated with simple
macros. Of course, for those envi-
ronments that demand it, a periph-
eral processor instruction set and
assembler are also available.



170 Memory

——
Central Memory

Word Size

In 170 state, central memory words
are 60 bits long with additional bits
used for error checking and correc-
tion. This data word size offers sev-
eral advantages (Figure 9):

l

High precision floating-point
quantities

Large integer quantities

Ten 6-bit characters per word in a
single word access from central
memory

| | More than one instruction per
word because 15- and/or 30-bit
instructions can be packed in one
word

The bits reserved for error checking
and correction are used for parity
bits and codes that enable single-bit
error correction and double-bit error
detection (SECDED).

E—
Figure 9

High Precision Floating-Point Quantities

10-Bit 48-Bit Coefficient
Exponent

Coefficient Sign and Bias Bits

Large ﬁinmger Quantities

60-Bit Integer

“Ten 6-Bit Chafacters'

C|H/A|[R|A|C|T|E]|R

Multiple Instrictions

15-Bit 15-Bit 15-Bit 15-Bit
Instruction Instruction instruction Instruction

15-Bit 15-Bit 30-Bit
Instruction instruction Instruction

15-Bit 30-Bit 15-Bit
Instruction Instruction Instruction

30-Bit 15-Bit 15-Bit
Instruction instruction Instruction



Addressing and Program
Isolation in Memory

The RAC (reference address) and
FLC (field length) registers that were
described earlier in this chapter are
used in the central processor to des-
ignate the beginning and ending
addresses of the program in central
memory. Each program in central
memory has an RAC and FLC asso-
ciated with it that separates and iso-
lates it from all other programs. No
program can read or write in another
program’s field length, either acci-
dentally or deliberately. (Figure 10.)

I
Figure 10

Central
Memory
PROGRAM 1 Starting Address = =
(RAC for PROGRAM 1) PROGRAM 1
PROGRAM 1-Ending Address PROGRAM 1 Field Length
(RAC + FLC -1 for PROGRAM 1) Address Space (FLC for
PROGRAM 1)
PROGRAM 2
PROGRAM 2 Starting Address PROGRAM 2 Field Length
{RAC for PROGRAM 2) Address Space (FLC for
PROGRAM 2 Ending Address PROGRAM 2)

(RAC + FLC~1for PROGRAM 2)

Hardware aborts any program that
attempts to access data outside of
the limits of its address space (as
defined by RAC and FLC). Only the
operating system can access data in
any program. Communication
between address spaces (programs)
can be done only via the operating
system and always using a strictly
enforced software protocol. Memory
is not shared between user
programs.

As far as the hardware is concerned,
RAC and FLC are limited only by the
physical size of memory. However,
system software can impose restric-
tions on RAC and FLC that the hard-
ware cannot override. Individual
programs are limited to 131,072
words of central memory. In addi-
tion, certain areas of central mem-
ory are reserved for the operating
system only, although everything
else is considered available for pro-
grams. Software can also limit the
number of individual programs in
central memory. NOS allows up to
33 programs in central memory at

any one time. Because a program
must be in central memory to be eli-
gible for execution (the central pro-
cessor communicates only with cen-
tral memory), this means a maxi-
mum of 33 programs can be in
central memory in some state of
execution at the same time. How-
ever, the total number of programs in
the system is limited only by disk
space. A much higher number could
be waiting in swapped-out files in
some state of execution or waiting in
input queues for initiation.

RACs and FLCs for programs in
central memory are not fixed. They
are assigned by the operating sys-
tem and may be changed according
to the physical space available and
individual program requirements.
Within the program, of course,
addressing always begins at
address zero. This allows absolute
binaries to be moved freely about
memory because no internal
addresses have to be changed
when the RAC changes.



RACs change during the processing
of a program if space needs to be
reallocated for new programs or
other programs’ changing require-
ments. After the system has been
running for a while, it's not unusual
for gaps to develop between pro-
grams in central memory - as old
programs complete and new ones
begin. (Figure 11.)

I
Figure 11

Central
Memory
PROGRAM 1
PROGRAM 2
Unused

PROGRAM 3

Unused

If the second program in Figure 11

(PROGRAM 2) needs more storage,

itis an easy matter to take the
unused area just below it. The field
length is changed to include this
space but no other values are
changed. (Figure 12.)
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If, however, the first program (PRO-
GRAM 1) needs more storage,
PROGRAM 2 must be moved. The
system shifts PROGRAM 2 and
adds the additional storage to PRO-
GRAM 1. (Figure 13.)

L]
Figure 13
Central
Memory
PROGRAM 1 New Field
................ Length (FLC)
tor PROGRAM 1
New Starting Address - SR Same Field
for PROGRAM 2 (RAC) PROGRAM 2 Length (FLC)
_ for Program 2
PROGRAM 3

These moves are called storage
moves. They are completely trans-
parent to users and do not affect the
relative addresses within programs
in any way.

As mentioned before, individual pro-
grams are limited to 131,072 words
of central memory. If more storage is
needed, extended memory is
available.
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Extended Memory

Extended memory is used for its
large storage capacity and high
transfer rates (faster than other
mass storage devices).

| | If additional memory is needed
for data storage, extended mem-
ory can be used. For example,
Control Data’'s FORTRAN allows
a large array type to be declared
for data, and this array can be in
extended memory. (This exten-
sion to the ANSI 77 standard is
referred to as LEVEL 2 data resi-
dency. COBOL also supports this
extension.) Thus, data is limited
only by the size of extended
memory.

Extended memory offers addi-
tional storage for operating sys-
tem routines that must be
accessed quickly and frequently,
thus saving space in central
memory for user programs and
increasing system throughput.

[] Files, such as user files, can also
be declared resident in extended
memory for fast access, thus
saving access time to normal
mass storage (disk) devices.

[J In the larger systems, extended
memory is also used for disk file
buffering.

Central processor instructions are
available to read and write single
words and perform high-speed
transfers of large blocks of data
between central memory and
extended memory.

Extended memory is available in
170 state by dividing physical central
memory into two areas: one used for
normal central memory purposes
and one used for extended memory
purposes. (Figure 14.)
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This partitioning is determined by
the operating system software; there
is no physical distinction. This type
of extended memory is particularly
useful for cases where additional
program and data storage is
needed.

When a program requests extended
memory, a block is assigned for the
duration of the program. In 170
state, this block is designated by two
central processor registers, RAE
(reference address, extended mem-
ory) and FLE (field length, extended
memory). Notice the resemblance to
the RAC and FLC registers that des-
ignate the program’s central memory
block. The RAE and FLE registers
are also included in the exchange
package when one program is
exchanged for another. They also
serve to separate and isolate the
area in extended memory so that no
other program can read or write into
that area. (Figure 15.)

|
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170 Peripheral
Processors

When a program enters the system,
peripheral processors in 170 state
read it, interpret commands, assign
priority, assign resources, and then
schedule it for central processor
time. The central processor does
none of these things; the peripheral
processor does as much as possible
to prepare the program for execution
before the central processor
receives it

Peripheral processors not only per-
form these functions, but also moni-
tor them. One peripheral processor
is dedicated as the system monitor
that controls the operating system
and assigns activities to the other
peripheral processors. Another dedi-
cated peripheral processor contains
the driver for the system display
console. It is responsible for provid-
ing, through displays, information
about all programs in the system,
equipment, memory contents, and
subsystems, to name a few. All this
is done completely without interrup-
tion of the central processor. In addi-
tion, the system display driver sends
operator commands to the system
and displays messages from operat-
ing system routines.

Peripheral processors on all models
of the CYBER 180 series are func-
tionally identical. The peripheral
processor instruction set, registers,
and channel usage are the same for
both 170 and 180 state and are
described more fully in the preced-
ing chapter on the system
components.

In 170 state, peripheral processors
share such features as:

"1 Memory and word size

["] Method of reading and writing
central memory words

Every peripheral processor can
communicate with any channel or
other peripheral processor that is
assigned to 170 state.

S
Memory and Word Size

In 170 state, a peripheral processor
uses the least significant 12 bits of
the 16-bit memory word leaving 4
bits unused. A hardware error
occurs if an attempt is made to use
those 4 bits while in 170 state.

Reading and Writing Central
Memory Words

In 170 state, 60-bit central memory
words are read and written by the
peripheral processors using a hard-
ware buffering mechanism that
assembles and disassembles the
words in 12-bit quantities. When a
60-bit central memory word is read,
it is disassembied into five 12-bit
words and sent to successive loca-
tions in the peripheral processor's
memory. To write a central memory
word, the hardware assembles five
successive 12-bit peripheral proces-
sor words into one 60-bit word and
sends it to central memory. An
obvious advantage of this process is
that there is only one access to cen-
tral memory rather than five.
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Introduction

180 Central
Processor

The 180 series executes NOS/VE in
a mode known as 180 state. In this
state, the hardware uses features
that optimize NOS/VE performance.
It operates using virtual memory
addressing on either byte or word
boundaries. This chapter describes
the features and characteristics that
are unique to 180 state.

In 180 state, the central processors
are common in the areas of:

[1 Registers

{1 Instruction set and instruction
word formats

[l Exchange jump operation and
exchange package

I
Registers

Although the names and exact func-
tions of registers in 180 state differ
from 170 state, their underlying pur-
pose is the same: to hold data from
instructions and to contain informa-
tion about programs. These regis-
ters are used by the central
processor during execution and they
are also the registers that are written
into the program’s exchange pack-
age if an exchange jump occurs.

To minimize memory references for
arithmetic operands and results,
there are 32 operating registers
accessible to programs. These oper-
ating registers hold operands and
results during execution of
programs.

In 180 state, there are sixteen X reg-
isters that hold operands and can
also be used for indexing. These
registers replace the eight X regis-
ters and eight B registers present in
170 state. Each X register is 64 bits
long. (A central memory word in 180
state is also 64 bits long.) The six-
teen X registers are numbered,
using hexadecimal notation, X0
through XF (where X0 is the first
register and so on).

Sixteen 48-bit A registers hold the
central memory addresses of the
operands. They are given in the
form of process virtual addresses
which are discussed later in this
chapter under 180 Memory. The
sixteen A registers are likewise
numbered A0 through AF (where
AQ is the first register). There are
more A registers available in 180
state than 170 state, sixteen as
opposed to eight. Unlike 170 state,
operations on A registers have no
effect on the X registers; operands
can be loaded into or stored from
any X register.



The two instructions shown in Fig-
ures 16 and 17 transfer a word
between a specified X register and
central memory. In both cases, the
address of the word transferred is
the sum of eight times Q, giving the
displacement, plus the byte number
field from the specified A register.

The first instruction loads the speci-
fied X register (in this case, X4, the
fifth X register) with the contents of
the word specified by the A register
(A5, the sixth A register). There is no
offset because the Q field is zero.

The second instruction stores the
contents of the specified X register
(in this case, XE, the fourteenth X
register) in the word specified by the
A register (A6, the seventh A regis-
ter) displaced by eight times Q. (This
displacement means it is left-shifted
three bits to become a word
displacement.)

I
Figure 16
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a8 Bits——ja—4 Bits—+}a- 4 Bits

83 6 E
- ‘Operation A Register
Number

" Code

Additional registers keep track of
each program. For example, the 64-
bit P register is the program address
register. It contains the address
within the program of the instruction
word currently being executed.

All of the preceding registers are
copied to the program’s exchange
package if the program has to be
interrupted and switched with
another.

X Register
Number

} 16 Bits >

Q (Displacement)

Besides the registers that contain
information specific to a program.
there are also registers that contain
information about the processor
itself, such as processor-dependent
characteristics or processor inter-
rupts. They monitor and report cer-
tain conditions concerning the
hardware. Still others contain point-
ers to tables and exchange pack-
ages in central memory.



I
Instruction Set and Instruction
Word Formats

The central processor instructions
perform primarily arithmetic compu-
tations, data manipulation, memory
transfers, and exchange jumps but
no input/output operations. All input/
output instructions are contained in
the peripheral processor instruction
set. In addition to the full set of cen-
tral processor instructions shared by
every model, the model 990 also
executes vector instructions.

In 180 state, the central processor
uses 64 bits for data in a word with
additional bits used for error check-
ing. Central processor instructions
vary in length by byte multiples.
Instructions less than a full 64-bit
word can be packed together. For
example, two 16-bit instructions and
one 32-bit instruction can be stored
in a central processor word, as can
four 16-bit instructions.

The central processor instruction set
includes instructions to:

[} Perform integer arithmetic (add,
subtract, multiply, and divide)

Perform floating-point arithmetic
(add, subtract, multiply, and
divide)

L] Move, edit, and translate charac-
ter strings

Perform packed and unpacked
decimal arithmetic

Load or store fields on 64-bit
word, byte, and bit boundaries

Extract or insert bit strings of 1
through 64 bits

Load or store multiple A registers
(addresses) and X registers
(operands)

Normalize floating-point numbers
Perform logical operations
Perform shift operations

0gnorc

Perform conditional branch tests

™M

] Perform exchange jump
operations

[] Perform call and return
operations

In addition to these instructions, the
model 990 also supports vector pro-
cessing instructions. They provide
for:

[J Integer vector arithmetic
Integer vector compare

Logical vector arithmetic

OrC O

Integer/floating-point vector
conversion

Floating-point vector arithmetic
Circular shift

Merge, scatter, and gather oper-
ations with fixed stride

O OooJg

Summation of a floating-point
vector

All operands are represented in
two's-complement form. Operands
are 64 bits long with 32-bit integer
operands used for memory address-
ing. Although both words and bytes
can be addressed in 180 state, any
word-oriented instructions or 64-bit
operand arithmetic always use a
word boundary; the 64-bits are not
split among bytes of two different
words.

The usage of most of these instruc-
tions is evident from the short
descriptions above. The call/return
mechanism, however, is a major fea-
ture of 180 state and warrants more
of an explanation. This is given in a
separate section later in this
chapter called The Call/Return
Mechanism.

]
Debugging Facility

The central processor also provides
hardware debugging capabilities for
programmers debugging programs
in 180 state. It provides an interrupt
capability during instruction execu-
tion. Actually, the instruction is not
executed until the debug processing
is complete. Users can select
debugging based on a number of
conditions:

[J Whenever data is read from a
specified area in virtual memory

[ Whenever data is written into a
specified area in virtual memory

[ ] Whenever an instruction is
fetched from a specified area in

virtual memory

[J Whenever a branch is made to a
specified area in virtual memory

L] Whenever a call instruction is
issued to a procedure in a speci-
fied area in virtual memory

For any instruction issued, users can
debug on any combination of these
five conditions for up to 32 different
areas in virtual memory.



180 Memory

———
Central Memory

Word Size

In 180 state, central memory uses
64-bit words (eight 8-bit bytes to a
word) with additional bits used for
error checking and correction. This
data word size offers several advan-
tages (Figure 18):

['| High precision floating-point
quantities

Large integer quantities

Eight 8-bit ASCII characters per
word in a single word access
from central memory

More than one instruction per
word when 16- and/or 32-bit
instructions are packed in one
word

The bits reserved for error checking
and correction are used for parity
bits and special codes that enable
single-bit error correction and dou-
ble-bit error detection (SECDED).

I
Figure 18
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In addition, decimal arithmetic data
is available in 180 state. (Figure 19.)

Y
Figure 19




Real Memory in 180 State

The CYBER 180 series software

and hardware architecture recognize
areal memory address of 31 bits
which is an addressable real mem-
ory of about 268 million 64-bit
words. Although such memories are
dependent on new circuit technol-
ogy, the introduction of this technol-
ogy will not require changes to the
system architecture.

In the CYBER 180 series, paging
(real memory management) and vir-
tual memory (user memory manage-
ment) are isolated. A page is a unit
of real memory. To allow perform-
ance tuning and to accommodate
the larger memories of the future,
the paging scheme allows different
size pages to be used. Page size
can range from 2,048 bytes to
65,536 bytes in increments of pow-
ers of two; software currently sup-
ports 2,048 bytes to 16,384 bytes.
Page size is set at system initializa-
tion and is then used by all software.
It can be changed from the console
when the machine is idled down
without any effect on software, user
or system. Variable page size is
effectively isolated from the user.
The ability to select page sizes is
both a tuning too! and a guarantee
that, as memories grow, there is no
need to redesign the system.

Virtual Addressing and Program
Isolation in Memory

The 180 state uses a virtual memory
mechanism to address and isolate
programs in memory. The obvious
advantage of the traditional virtual
memory mechanism is, of course, to
allow a user to have a very large
address space without being con-
strained by real memory. The pro-
gram can far exceed the real
memory of the machine because
most of the code and data resides in
external mass storage until it is
actually needed by the program;
overlays and other such techniques
are unnecessary. Virtual memory is
automatically available to the user.
The program is easier to develop
and easier to migrate between dif-
ferent operating systems.

In addition, the CYBER 180 series
virtual memory offers some unique
benefits:

[ NOS/VE itself uses virtual mem-
ory. Only one system process is
concerned with managing real
memory (paging); other than that
single monitoring routine, both
the system and user programs
are totally separated from the
real memory paging mechanism.
The paging mechanism and the
rest of monitor run in real mem-
ory but address it using the vir-
tual mechanisms so that security
benefits still apply.

These machines offer extremely
large virtual address spaces. For
an individual user, a program can
have a virtual address space of
8.8 x 10'2 bytes.

[J Code is automatically and com-
pletely shared (that is, re-
entrant). Data can also be shared
but, for security reasons, it can
be done only by explicit action by
the programmer.

|| The virtual memory mechanism
is also used as a security mecha-
nism. Units of virtual memory
called segments have certain
attributes that determine what
operations can be performed in
that segment and who can per-
form the operation.

As in 170 state, each user's program
has an address space. The purpose
of the address space is the same
and the method of switching pro-
grams is the same. However, using
the 180 state virtual memory mech-
anism, there are several different
aspects about the address space
itself.

The program’s address space in vir-
tual memory is made up of
segments. (Figure 20.)

I
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When a segment is active, it con-
tains zero, one or more pages of
real memory. (Figure 21.)

Unlike 170 state, when a program is
read into real memory, it needn’t be
in contiguous positions. It can be
loaded anywhere there is room in
memory subject to the total number
of pages available.

Other than to show the connection
here between real memory and vir-
tual memory, pages have no signifi-
cance to the user, or to most of the
system. The size of a page (that is,
the number of central memory
words contained in it) can be
changed at system initialization with
absolutely no effect on user pro-
grams or system software.

The address space itself can have
from 1 to 4096 segments with up to
2,000 million bytes (262 million
words) per segment. One purpose of
segments is actually to separate, or
segment, programs into sections of
executable code (the instructions)
and data. This has two advantages:
it provides for built-in security fea-
tures, and it allows parts of pro-
grams (either code or data) to be
shared.

First, we'll discuss the security
aspects. The first level of security is
the address space of the program as
described earlier. Second are
access attributes. Third are rings.

I
Figure 21
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Every segment has certain access
attributes associated with it: read,
write, execute, or a combination of
these three. Say for example that
segment 31 (Figure 22) contains
executable code; it has the execute
attribute associated with it. Segment
32 is a read/write segment that
holds data that can be modified.
Segment 33 contains constants and
therefore is defined as a read-only
segment.

S
Figure 22
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Because of the access attributes
associated with it, each segment is
protected from inappropriate use.
For instance, nothing can be written
into an execute or read-only seg-
ment so the information already con-
tamned there is safe. Typically, a
program has at least a code seg-
ment, a data segment, and a binding
segment (the last of which is used
for procedure calls and is discussed
later in this chapter under The Call/
Return Mechanism).

The access attributes determine
what can be done in a segment. In
addition, each segment has another
property that determines who can
use the segment. This property is
called a ring number. You can think
of the system being within 15 rings,
or levels, where each ring, or level,
is more or less privileged than those
adjacent to it.

In 180 state, the lower the ring num-
ber, the more privileged, and thus
more secure, the information. Most
operating system code executes in
the lower (inner) rings with less
secure user programs executing in
the higher (outer) rings. (Figure 23.)
For example, ring 11 accepts calls
from ring 14 but only at designated
entry points called gates. A more
extensive example of ring numbers
is given later in this chapter under
Using Virtual Memory as a Security
Mechanism.

]
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Rings allow code that has different
levels of protection, for example
operating system routines and user
programs, to execute in the same
address space using the same con-
ventions and rules for procedure
calling and parameter passing as
code in an environment with single-
level protection. In addition, the 15
levels of rings allow installations and
protected applications to isolate their
code from end users while protect-
ing the operating system from all of
them.

The second advantage of segment-
ing programs is the ability to share
parts of the program without affect-
ing others. This allows users with
different sets of data to access the
same code. This sharing is done
automatically; users needn't do any
special programming to take advan-
tage of it. The way segments are
actually shared is discussed in more
detail later in the next section where
the actual address translation is
explained.



How Virtual Addresses Are
Translated to Real Memory
Addresses

Within a program’s address space,
only virtual addresses are used; the
program sees only those virtual
addresses local to its address
space. This virtual address known
within the address space is called
the process virtual address (or PVA).
Because it is unique to the address
space, this address is translated into
a virtual address that is known sys-
tem-wide; it is called the system vir-
tual address (or SVA). Finally, the
system virtual address is translated
to a real memory address (or RMA).
(Figure 24.)

In the context of NOS/VE, a program
consists of one or more tasks where
atask is the smallest executable unit
of code. These tasks could be a
combination of user tasks and sys-
temn tasks that form what is typically
called a program.

The process virtual address in the
task address space contains the
number of the segment in which it is
contained and a byte number that is
the offset to the requested memory
byte. (Figure 25.)

E——
Figure 24
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The segment number is used as an —
index into a table called the segment Figure 26
descriptor table. There is a segment

descriptor table for every task in the

system. (Every task has its own vir- Real Memory Virtual Memory
tual address space.) (Figure 26.) Address Spaces
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The entries in the segment descrip-
tor table contain the information
needed to continue the translation
process. One of the fields contained
in each table entry is called an
active segment identifier. This field
identifies each of the segments that
are active in the system and it
replaces the process segment num-
ber to form part of the system virtual
address. (Figure 27.) The active
segment identifier is defined by the
system and varies from one execu-
tion of a program to the next.

The process segment number is
assigned at load time and is unique
to that task.

Figure 27
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System Virﬁjal{Ad&{ess
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The shading shown in these figures reflects
bits that are not discussed; it does not mean
the bits are unused



To form the remainder of the system
virtual address, the byte number of
the original process virtual address
is copied. (Figure 28.)

T
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The system virtual address then
goes through a hashing algorithm
that points to the starting point of
another table in central memory
called the system page table. Con-
secutive entries in the system page
table are searched until the entry
describing the desired page in real
memory is found or until a page
table entry that causes the search to
stop is encountered. (Figure 29)
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There is only one system page table
in a mainframe regardless of the
number of central processors. (Fig-
ure 30.)

If the requested page is not in the
system page table, the central pro-
cessor suspends execution of the
task and the operating system either
reads the requested page from

mass storage (if the page already
exists) or assigns an available page
of memory (if the page is being cre-
ated). The operating system then
adds a new entry in the system page
table that describes the page and
resumes execution of the interrupted
task.

I
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in summary, virtual memory address
spaces use process virtual
addresses. The segment descriptor

tables generate system virtual
addresses. The system page table
generates real memory addresses.
(Figure 31.)

Virtual Memory
ss Spaces

Figure 32 illustrates a very simple
example of the process. It shows a
task address space and associated
segment descriptor table. When a
reference is made to an address in
the task, that address is the process
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virtual address unique to the

address space. It is translated via
the segment descriptor table to a
system virtual address. In this exam-
ple, 10 is the segment number; it is
used as an index into the segment

I
Figure 32

forTaskt | |

descriptor table to find the active
segment identifier of 200. This num-
ber and the byte number from the
process virtual address (in this case,
3) are hashed to a pointer into the
system page table. This table is

searched to find the entry that
describes the desired page in real
memory. The contents of this real
memory page are then mapped as
part of segment 10 within the
program.
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With the address translation
explained, the method for sharing
code and data becomes quite easy
to understand. It is possible both
because of the separation of code
and data segments in the task, and
the fact that two unique virtual
addresses can point to the same
real memory address. The two tasks
in Figure 33 share a single code
segment. The unique process virtual
addresses in each task that refer-
ence the shared segment are trans-
lated to the same system virtual
address. The system page table
then produces the single real mem-
ory address. Thus, the same page
appears to be present in two
address spaces, one in segment 12
and one in segment 37. The two
tasks share the same area of
memory.

Conceptually, this address transla-
tion occurs every time the central
processor translates a virtual
address. In actuality, however, all
models of the CYBER 180 series
have buffer memories that hold the
most recently translated segments
and pages.

Managing the System Page Table

The hardware has been designed
with dynamic paging in mind. The
algorithm for determining when
pages are brought into and taken
out of real memory is the responsi-
bility of the operating system. How-
ever, two flags kept in the system
page table entries help in this pro-
cess. Whenever a page is used
(read, written, or executed), the
hardware sets bit 2 in the page table
entry. Whenever a page is modified
(written), the hardware sets bit 3 in
the page table entry. These bits then
have the following meanings:

1 00 (both bits clear) means the
page is unused and unmodified.

[ 01 (bit 3 set) means the page is
unused but modified. This status
can arise from software
algorithms.

[ 10 (bit 2 set) means the page is
used but not modified (read).

[ 11 (both bits set) means the
page is used and modified
(written).

Pages are chosen as candidates for
reassignment based on the value of
these bits and their least recently
used status. These bits are never
cleared by hardware. They are
cleared by the software process that
manages the system page table.
The modified bit is cleared when the
page is written to disk. The used bit
is cleared periodically to determine
when a page is no longer being
used. Pages are reassigned on a
least recently used basis.

I
The Call/Return Mechanism

The call/return mechanism is the
technique used in 180 state for
transferring control between proce-
dures (subroutines). Itis also used
to assist in code sharing and trans-
ferring across ring boundaries. Itis
designed to satisfy the requirements
of block structured languages, in
particular CYBIL, that permit recur-
sive calls.

Procedures (or subroutines) in a
block structured language are organ-
ized into a series of nested blocks.

Variables can be allocated at a num-
ber of times during program execu-
tion. Memory for static variables is
allocated at the beginning of the pro-
gram and remains until the end of
the program. Dynamic variables are
allocated each time a procedure is
called and disappear when the pro-
cedure returns to the caller. This
allocation occurs in a stack.

A stack is an area in memory that
expands and contracts according to
the procedure call logic of the pro-
gram. The area in the stack associ-
ated with a call is known as a stack
frame. For any program, there is one
stack segment for each of the 15
rings being used by the task.

Each time a procedure is called, a
new stack frame for that procedure
is created. The stack is managed
primarily by the call/return hardware
mechanism. The main objective is to
allow each instance of a callto a
procedure to be separate. This
allows, among other things, recur-
sive procedures and support for one
of the two levels of interrupt, the
trap.
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Figure 34 shows two sets of nested
blocks in program A: B and C, and D
and E. Procedure C uses variables
defined in A and in the procedures B
and C. The actual location of these
variables is maintained by a static
link which is held in the stack frame
for each procedure. This linkage is
called static because its length is
known by the compiler at compila-
tion time and never changes.

I
Figure 34
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Figure 35 shows the stack mecha-
nism. The process starts by creating
a stack frame for the dynamic varia-
bles in the module A. A current stack
frame pointer points to the beginning
of the stack frame and a dynamic
space pointer points to the next
available space in the stack. (The
dynamic space pointer is estab-
lished by software.) When proce-
dure B is called, procedure A’s
environment is saved and a stack
frame is created for procedure B. A
dynamic link is created pointing to
procedure A's stack frame and, in
this case, a static link pointing to the
same stack frame. The dynamic link
is called the previous save area
pointer and it is automatically
updated by a call and return opera-
tion by the hardware. The dynamic
link is called dynamic because its
length changes during program
execution.

A call to procedure C follows in
much the same way. Again the static
and dynamic links simply point to the
previous stack frame. However,
when procedure C calls procedure
D, the dynamic link points to the pre-
vious stack frame but the static link
points to the stack frame for module
A. It does not point to those declared
in blocks B and C which are con-
tained within A but do not contain D.
The reason for this is that procedure
D is a block within the base module
A; thus, procedure D has access to
variables declared in module A but
not to those declared in blocks
BorC.
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On each procedure call, the next
stack pointer is updated to point to
the next available space within the
stack. This is a software function.

——
Figure 36

Stack Frame

Saved
Environment

Mandatory
Registers

Other
Registers

B

The frame contains the saved envi-
ronment, mandatory registers, and
other registers (Figure 36) where the
saved environment exists only after
another procedure has been called,
not for the current procedure. For
example, initially the stack is as
shown in Figure 37.

]
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After a call is issued, the stack con-
tains two frames as shown in

Figure 38.
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Because each time a procedure is
called the caller's environment is
saved, a procedure can be reen-
tered or called recursively. However,
this is true providing all code is orga-
nized into pure procedures. No code
modification is permitted.

The call/return mechanism provides
facilities for protection and dynamic
linking. First, it is necessary to
understand the hardware support for
the basic mechanism.

The Call Mechanism

A stack segment is created by the
operating system for each ring of
execution. A top of stack pointer for
each of these stacks is kept in the
exchange package. Its main use is
to show which segment contains the
stack on a transfer between rings.
Whenever a procedure calls another
procedure, the caller's environment
is saved in the stack frame save
area. The first four words of this
area are stored unconditionally; the
remaining words are stored under
the control of the caller.

The caller specifies a stack frame by
defining which X and A registers are
to be saved in addition to those
saved by default. When the callee
returns to the caller, these registers
are automatically restored. Thus, the
operation of the hardware supports
a software calling convention
whereby the caller saves the
environment.

The following basic steps are fol-
lowed for a call* (with the pointers
being updated accordingly):

1. The caller’s environment is saved.

2. The caller’s stack frame is
pushed.

3. The P register is updated to point
to the first instruction of the callee
to be executed.

There is a single return instruction
which simply inverts this process:

1. The callee’s stack frame is
popped.

2. The caller's environment is
restored.

3. The P register is updated (from
the caller's environment) so that it
points to the first instruction fol-
lowing the original call to be
executed.

The caller’s environment is saved in
the caller’s stack. In fact, it is saved
at the top of the caller's stack. The
callee’s stack frame is not created
automatically. The current stack
frame pointer is updated to point to
the first entry in the stack frame, but
it is the responsibility of the callee to
reserve the appropriate amount of
space in the stack.

*180 state supports two forms of the call
instruction that may be regarded as
general purpose (CALL INDIRECT) and
special purpose (CALL RELATIVE)
calls. The CALL INDIRECT instruction
may call into a different segment in a
different ring. The CALL RELATIVE
instruction calls only within the same
segment. Although the same basic
mechanism applies to both forms of the
call, the general purpose version must
guarantee the privacy of the callee and
the caller who may have quite different
privileges.

4¢
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The Return Mechanism

The basic return mechanism pops
the callee’s stack frame and restores
the caller's stack frame as the active
frame. In other words, the environ-
ment which exists following the exe-
cution of a return instruction is
exactly that which existed prior to
the execution of the associated call
instruction. Figure 39 shows the
changes that occur in the stack
when this sequence of instructions is
followed:

1. Intra-ring call

2. Inter-ring call from ring 11 to ring 3
3. Return

4. Return

Cal's are typically within rings. Calls
can be made to more privileged
rings which can access less privi-
leged data and write data back in a
place where the less privileged code
can access it. The inverse is not
true. Calls from more privileged pro-
cedures to less privileged proce-
dures are not permitted. Such
returns would be uncontrolled and,
therefore, are not allowed.

The callee’s ring number may
appear in any A register used by the
callee, not just those saved by the
caller. For security reasons, the ring
number must not be returned to the
caller, so a check is made by the
return instruction to ensure that no A
register is returned to the caller with
a ring number more privileged than
the caller’s ring number.

The caller’s privileges, maintained in
the P register, are automatically
restored when the caller's P register
is loaded from the stack frame save
area.

Typically, processes start execution
in their outermost ring. Stacks in all
rings will be empty except for the
one in the primary ring of execution.
As calls are made inward, entries
are made in other stacks which will
be emptied as return instructions are
issued. There are 15 stacks
because of the security of the sys-
tem. Because the stack holds the
dynamic variables for an executing
process, that process has read/write
access to the stack. If there were
only a single stack, then an execut-
ing process could make a call to a
procedure in an inner ring and then
access that procedure’s dynamic
variables which would be at the top
of the stack. The only way to prevent
this would be for the callee to zero
out all dynamic variables used. This
would be prohibitively time-
consuming.
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The Pop Mechanism

There are times, typically in the
presence of an error or a nonlocal
GOTO, when it is necessary to elimi-
nate an entry or a number of entries
from a particular stack. Since these
entries will have been created by a
series of calls, a similar series of
returns will accomplish the required
purge. However, when the purging is
to be completed without executing
intervening instructions, this can
only be achieved by an appropriate
software sequence or by issuing the
pop instruction that has been pro-
vided for this purpose. The pop
instruction simply moves the current
stack frame pointer, previous save
area pointer, and top of stack pointer
eliminating the stack frame but not
changing the P counter. Figure 40
shows an example where calls have
been made three deep into the
structure of a program and then the
entire set of calls aborted.

Pop instructions can only be issued
within the current ring of execution.
Access violations are not checked,
and if a pop instruction is attempted
across rings, then the instruction
execution is inhibited and the pro-
gram interrupted. (The actual code
sequence that would be generated
would be a loop because the num-
ber of frames to pop is not known at
compilation time.)

The Binding Section and Code
Sharing

An implication of protecting code is
that the protected code can be
entered only where it expects to be
entered. It is important that the entry
to procedures be carefully con-
trolled. That is, procedures must
receive control only at those points
where they expect to receive control,
their entry points. These special
entry points are called gates. To
make this controlled entry possible,
procedures are not entered directly”
but are entered via a pointer to the
procedure. This pointer is held in a
binding section (in other words, a
binding segment). All such pointers
are placed in the binding section by
the loader and the call instruction
then guarantees that the call is
made via a binding section.

180 state uses one copy of a code
segment that is shared by several
users (this is called re-entrancy). For
example, the FORTRAN compiler
exists in only one place in real mem-
ory, but each user has asked the
compiler to operate on a different
compilation unit. There must be
nothing in the code segment that
makes a direct reference to data
which is modified. This is accom-
plished by placing pointers to such
data in a binding section that is cre-
ated along with each code module,
and then give the address of the
binding section to the callee when
the procedure is cailed.

*This is true only for calls between seg-
ments. Relative calls can enter any-
where within the procedure; that is,
within the segment.
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Figure 41
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Each task has code (which it may be
sharing with other tasks) and data
which is typically unique to itself.
The binding section is in a separate
segment and is identified uniquely
by its segment descriptor entry. It
contains pointers to external proce-
dures and pointers to static variables
(that is, variables that are allocated
at compilation time).

When a procedure calls another pro-
cedure that is defined externally, the
call points into the binding section.
(Figure 41.) A pointer points to the
first executable statement in proce-
dure B. A flag indicates that the pro-
cedure being called is an external
procedure and, therefore, the next
entry in the binding section is the
pointer to the callee’s binding
section.

Using Virtual Memory as a
Security Mechanism

Even though code and data can be
shared in a virtual memory system,
security features of the CYBER 180
series constrain each task to an
address space and prevent it from
reading, writing, or executing code
or data outside this address space,
as it likewise prevents any other task
or the operating system from doing
the same thing in its address space.
As mentioned earlier, the CYBER
180 concept of virtual memory
allows the operating system to exist
(as shared code) in each task's
address space. The access protec-
tion mechanisms are therefore nec-
essary to protect system code and
user code/data.



Because every memory reference
requires a translation from a virtual
address to a real memory address, it
is appropriate to check for security
violations prior to accessing real
memory. The access attributes and
ring numbers described earlier are
associated with every segment in a
task. The operating system records
the attributes and ring numbers for
each segment in the segment
descriptor table for each task (Figure
42) and the central processor refer-
ences them when the process virtual
address is being translated into a
system virtual address. Thus the
hardware can detect an attempt at
an incorrect access and prevent it.
You can view the relationship
between address translation and
security checking as shown in Fig-
ure 43.

Several tasks can actually share a
segment with each task having dif-
ferent privileges. This is what ena-
bles efficient and safe code sharing
and negates the necessity for every
user to have a separate copy. When
an address is referenced, the central
processor compares the type of ref-
erence (that is, read. write, or exe-
cute) with the attributes in the
segment descriptor table for that
task. The request must match the
attribute of the segment. For exam-
ple, to execute a read instruction,
that segment must have a read
attribute. If a read instruction
attempts to access a location in an
execute-only segment, it is consid-
ered an access violation.

——
Figure 42
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As mentioned earlier in this section,
the system has 15 levels or rings of
protection that also prevent unau-
thorized access. The lower the ring
number, the higher the privilege
given to code or data in that level.
The operating system segments
occupy the lowest rings with the
least privileged user segments occu-
pying the higher rings. The segment
has associated with it ring numbers
for certain operations (read, write,
execute, and call). When a task ref-
erences an address, the central
processor compares the current ring
number of the task attempting the
read, write, execute, or call to the

L
Figure 44

ring attributes of the segment where
the address exists. If the referenced
segment is in a ring that is accessi-
ble by the task at that point, it can be
accessed. This allows codes with
different levels of privilege to be in
the same address space which pro-
vides for easy parameter passing
and communication without losing
security.

A segment always has four ring
brackets (that is, ranges of ring num-
bers) associated with it. Code typi-
cally has an execute bracket that
specifies where it can execute and a
call bracket that specifies the ring
from which it can be called. Data
has a read bracket that indicates
where it can be read and a write
bracket that indicates where it can
be written.

As an example, assume a site has a
data base manager but doesn't want
users to access it directly. (Figure
44 ) Instead, all references must go
through a data base interface mod-
ule. The user program is in ring 11,
which is less privileged than ring 10
where the data base modules (the
manager and interface) are located.
The interface module has a range of
ring numbers such that it can com-
municate with rings 11 and 10 but
the data base manager itself can
only communicate with ring 10. The
data base manager can be
accessed only by the data base
interface module and, thus, is iso-
lated (or protected).
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180 Peripheral
Processors

NOS/VE uses peripheral processors
for all input/output, thus achieving a

tremendous overlap of functions and
leaving the central processor availa-
ble for user programs.

Peripheral processors on all models
of the CYBER 180 series are func-
tionally identical. The peripheral
processor instruction set, registers,
and channel usage are the same for
both 170 and 180 state and are
described more fully in the chapter
on the system components.

In 180 state, peripheral processors
share such features as:

| | Memory and word size

[.] Method of reading and writing
central memory words

Every peripheral processor can
communicate with any channel or
other peripheral processor that is
assigned to 180 state.

]
Memory and Word Size

In 180 state, a peripheral processor
uses the full 16 bits as a memory
word.

I
Reading and Writing Central
Memory Words

In 180 state, 64-bit central memory
words are read and written by
peripheral processors using a hard-
ware buffering mechanism that
assembles and disassembles the
words in 16-bit quantities. When a
64-bit central memory word is read,
it is disassembied into four 16-bit
words and sent to successive loca-
tions in the peripheral processor’s
memory. To write a central memory
word, the hardware assembles four
successive 16-bit peripheral proces-
sor words into one 64-bit word and
sends it to central memory. The
advantage of this process is that
there is only one access to central
memory rather than four.
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NOS and NOS/VE
Dual State

As mentioned earlier in this over-
view, dual state is the state of opera-
tion in which two operating systems,
NOS and NOS/VE, are both present
at the same time. NOS is executed
in 170 state and NOS/VE is exe-
cuted in 180 state. Actually the envi-
ronments for each state are both
present but the central processor
executes in either one state or the
other.

An important aspect of dual state is
the dynamic sharing of the central
processor. In the same way that pro-
grams are exchanged, 170 state and
180 state are exchanged. If the cen-
tral processor is executing a pro-
gram and would have to wait for
some action to be taken before con-
tinuing, it switches programs and
processes a different one. Likewise,
if the central processor would have
to wait for some action before con-
tinuing a program in one state and
there is a program waiting in the
other state, it switches states and
works on the other program. The
central processor never waits in one
state if there is something of higher
priority to do in the other state.

Dual state is made possible by the
fact that the CYBER 180 series fully
supports two instructions sets: one
for 170 state and one for 180 state.
(As was mentioned earlier, the
peripheral processor instruction set
is the same, but the central proces-
sor instruction set differs in each
state.) When the central processor is
executing in 170 state, it uses the
170 instruction set; in 180 state, it
uses the 180 instruction set. The
instruction set to be used is deter-
mined by a bit in the exchange pack-
age. Performance remains high in
both states because neither is an
emulation mode.

The 170 state environment is
actually supported as if it were a
special purpose 180 state program.
Thus, parts of 180 state support 170
state but 180 state is transparent to
any user programs executing in the
170 state environment.

The interface between the two envi-
ronments, 170 state and 180 state,
is the environment interface (or El)
which executes in privileged 180
state. The environment interface is
the only part of the system that man-
ages both virtual memory and real
memory.

Although the hardware has been
designed with dynamic paging in
mind, it is not a prerequisite. When
running in 170 state, static paging is
used; that is, the entire 170 state
environment is assigned to a single
segment that cannot be paged. The
NOS segment has read, write, and
execute properties because NOS
does not segment code and data
from each other. 170 state operates
in a virtual memory segment that
has a size corresponding to the
amount of memory defined to the
system for 170 state. A real memory
addressing mode exists within the
hardware but it is only a pseudo
mode since the hardware still goes
through the address translation
mechanism. However, there are no
page faults.

In addition to real memory paging,
the environment interface also han-
dles security and error interrupts.
Obviously it is itself a highly secure
section of code which contains privi-
leged instructions not available to
other areas of the system.” NOS can
actually be thought of as a program
executing under the monitoring of
the environment interface although
the environment interface is
obviously a part of NOS/VE.

(Figure 45.)

I
Figure 45
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The same exchange principle used
to switch programs is used to switch
from 180 state to 170 state and vice
versa. There is an interstate
exchange package that contains all
the information necessary to start a
particular environment. First the
interstate exchange package deter-
mines the state of operation (170 or
180 state), then the specific process
exchange package determines the
particular program to be executed.

While the central processor is
shared between 170 state and 180
state, other resources such as mem-
ory, peripheral processors, chan-
nels, and peripheral equipment are
split between the states. Memory is
statically partitioned with part
assigned to NOS in 170 state and
the rest assigned to NOS/VE in 180
state. The memory available to NOS
can be further partitioned to include
unified extended memory. (Figure
46.)

*For information on the instruction set,
see Volume Il of the hardware refer-
ence manual (referenced in the last
chapter on Additional Sources of
Information).
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Figure 46
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Users don't see the managing of
both operating systems. They
essentially log in to whichever sys-
tem they want and then use that
system as if it were the only one. Of
course, users who are validated to
do so can go back and forth
between the two systems and trans-
fer files.
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Further information about the
CYBER 180 series can be found in
the hardware reference manuals.
They can be ordered from:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street

St. Paul, MN 55103

Volume | for each computer system
contains the general system
description and functional descrip-
tions of each component of the sys-
tem. This information varies from
model to model. Volume 1l contains
the central processor and peripheral
processor instruction sets and pro-
gramming information. With the
exception of the vector instructions
unique to the model 990, the infor-
mation contained in this manual
applies to every model. (The term
virtual state used in the manual titles
is synonymous with the term 180
state as it's been used in this
overview.)

]
For 170 state information, the appropriate manuals are:

Manual Title Publication Number
CYBER 170 Models 815 and 825 60469350

(CYBER 170 State)

Hardware Reference Manual

CYBER 180 Models 810 and 830 60469420

(CYBER 170 State)
Hardware Reference Manual

CYBER 170 Models 835, 845, and 855 60469290
CYBER 180 Models 835, 845, 855,

and 990

(CYBER 170 State)

Hardware Reference Manual

I
For 180 state information, the appropriate manuals are:

Publication Number
60469700

Manual Title

CYBER 170 Models 815 and 825
(Virtual State)

Hardware Reference Manual
Volume |

CYBER 180 Models 810 and 830
(Virtual State)

Hardware Reference Manual
Volume |

CYBER 170/180 Model 835
(Virtual State)

Hardware Reference Manual
Volume |

CYBER 170/180 Models 845 and 855
(Virtual State)

Hardware Reference Manual

Volume |

60469680

60469690

60461320

CYBER 180 Model 990
(Virtual State)

Hardware Reference Manual
Volume |

CYBER 170/180 Models 810, 815,
825, 830, 835, 845, 855, and 990
(Virtual State)

Hardware Reference Manual
Volume |l

60462090

60458890



System Overview

The CYBER 180
Computer
Systems. For_
your information.

Today, Control Data is a $4.6 billion
computer and financial services com-
pany with operations in 47 countries.

We attribute this success to the way we
apply ourselves to solving problems for
customers—to making certain that our
systems and services meet your

needs.

This dedication, along with our im-
plementation of advanced technology,
is the cornerstone of the CYBER 180
computer systems. They give you
application and operating systems
specifically designed to let you run
what you need to run without out-
growing their capabilities. They'e the
systems for the 1990s—and beyond.

There are two ways to get additional in-
formation on the CYBER 180 computer
systems, software, and peripherals.

1. Contact your local Control Data
representative.

2.Inthe U.S.A., write Computer Sys-
tems, Control Data Corporation, P O.
Box 0, HQWO09G, Minneapolis, Min-
nesota 55440.

Outside the U.S.A., contact your local
sales office or write Computer Sys-
tems, Control Data Corporation,
International Operations, 7600 France
Avenue South, ITLOSF Minneapolis,
Minnesota 55435, U.S.A.
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