Manipulating Data Bases

In this chapter we will discuss the tools available in TUTOR for
creating and using “data bases” (small or large blocks of data such as test
scores, population statistics, map coordinates, etc.). In the process of
discussing these tools we will also learn more about the internal workings
of the PLATO system.

The -common- Command

The “student variables” v1 through v15Q are associated with the
individual student. It is possible to use “common variables” which are
common to all those students studying a particular lesson. These com-
mon variables ean be used to send messages from one student to another,
to hold a bank of data used by all the students, to accumulate statistics on
student use of the lesson, to contain test items in a compact, standardized
form, etc.

As a first example of the use of the -common- command, let’s count
the number of students who have entered our lesson. We will also count
how many of these students are female:

common 2 $$two common variables
define total=vc1,females=vc2
(Continued on the next page.)

11

237

The TUTOR Language

238

*

unit ask

calc total«total+1

at 1215

write Are you a female?
arrow 1415

answer yes

calc females«females+1
answer no

no

write Yes or no, please!
endarrow

at 1615

write There are <s,total)> students, of whom

Is,females) are female.

The -common- command tells TUTOR to set up two common variables,
vel and ve2, which we have defined as “total” and “females”. These
common variables are automatically initialized to zero before the first
student enters this lesson. The first student increments “total” to one
(“calc totaletotal+1”) and may also increment “females”. The second
student to enter the lesson causes “total” to increase to two and may also
change “females”. Each student is shown the present values of “total”
and “females”, which depend on what other students are doing. We must
use common variables vel and vc2 rather than the student variables v1
and v2 because the student variables cannot be directly affected by
actions of other students. Another way to see this is to point out that when
there are five students in this lesson, they share a single vcl and a single
ve2, whereas they each have their own v1 and their own v2: there are five
v1’s and five v2’s but only one vcl and vc2.

Integer common variables are ncl, nc2, etc., and indexed common
variables are written as ve(index) or nc(index).

The statement “common 27 tells TUTOR to associate a two-word
set of common variables with this lesson. For reference purposes, it is
good style to place the -common- command near the beginning of the
lesson. There can be only one -common- statement in a lesson. Like
-define-, -vocab-, and -list-, the -common- command is not executed for
each student. Rather, when TUTOR is preparing the lesson for the first
student who has requested it, a set of common variables is associated
with the lesson and all these common variables are initialized to zero.
Additional students entering the lesson merely share the common varia-
bles previously set up.

Suppose a class of fourteen students uses our lesson from 1¢ a.m. to
11 a.m. The fourteenth student comes at 10:05 and gets a message on the

MANIPULATING DATA BASES

screen saying “There are 14 students, of whom 8 are female”. As long as
the lesson is in active use, each new student who enters the lesson
increases “total” (vcl). However, when all the students leave at 11:90, the
lesson is no longer in active use and will eventually be removed from
active status to make room for other lessons. When another class comes at
3:00 p.m., the lesson is not in active use and TUTOR must respond to the
first student’s request for the lesson by preparing the lesson for active use.
In the preparation process the statement “common 27 tells TUTOR to
set up two common variables and initialize them to zero. The first student
to enter the lesson at 3:00 is told “There are 1 students, of whom 1 are
female”. She is not told “There are 15 students, of whom 9 are female”,
despite the fact that the previous student (at 10:05 that morning) had been
told there were 14 students, 8 female. The “common 27 statement will
cause the common variables to be zeroed every time the lesson is
prepared for active use.

The type of common which is set up by the statement “common 2~
is called a “temporary common”. It lasts only as long as the lesson is in
active use, and its contents are initialized to zero whenever the lesson is
moved from inactive to active status. Temporary common can be used for
such things as telling the students how many students are present, what
their names are, and whether a student at another terminal who has
finished a particular section of the lesson is willing to help a student who
is having difficulties. Messages can be sent from one student to another
through a temporary common by storing the message in the common area
with an identifying number, so that the appropriate student can pick up
the message and see it with a -showa-. The lesson simply checks
occasionally for the presence of a message.

When-a student signs out you usually want to change the temporary
common in some way. For example, if you are keeping a count of the
number of students presently using the lesson, you increase the count by
one when a student signs in and you decrease the count by one when the
student leaves. The -finish- command lets you define a unit to be executed
when the student presses shift-STOP to sign out:

finish decrease

unit decrease
calc count«count—1

In this case unit “decrease” will be done each time a student signs out.
Normally the -finish- command should be put in the “ieu”. As with
-imain-, the pointer set by the -finish- command is not cleared at each new

main unit. A later -finish- command overrides an earlier one, and 239

The TUTOR Language

240

“finish q” or a blank -finish- statement will clear the pointer. Like all
unit pointer commands, -finish- can be conditional. Only a limited
amount of processing is permitted in a -finish- unit to insure that the
student can sign out promptly.

We can keep a permanent, on-going count of students who enter the
lesson by using a “permanent common”. Instead of writing ‘“‘common
27, we write “common italian,counts,2”’, where “italian” is the name of
a permanent lesson storage space and “counts” is the name of a common
block stored there. This is the same format used for character sets (the
-charset- command) and micro tables (the -micro- command). When the
common block is first set up in the lesson space, its variables are
initialized to zero. Let’s suppose that the fourteen students who come in
at 10:00 a.m. are the very first students ever to use our lesson. The
statement “common italian,counts,2” will cause TUTOR to fetch this
(zeroed) common block from permanent storage. As before, the four-
teenth student arrives at 10:05 and is told “There are 14 students, of
whom 8 are female”. At 11:00 a.m. these students leave and our lesson is
no longer in active use. At some point, room is needed for other active
lessons (and commons), at which point our permanent common, with its
numerical contents of 14 (students) and 8 (females) is sent back to perm-
anent storage. At 3:00 p.m. the first student (a female) of the afternoon
class causes TUTOR to prepare the lesson and retrieve the permanent
common from permanent storage without initializing the common varia-
bles to zero. The result is that she gets the message “There are 15
students, of whom 9 are female”. (There is an -initial- command which
can be used to define a unit to be executed when the first student
references the common. This makes it possible to perform initializations
on a permanent common.)

The key feature of permanent common is that it is retrieved from
storage when needed and returned in its altered state to permanent
storage when the associated lesson is no longer active. In our case, we
could enter the lesson months after its initial use and see the total number
of students who have entered the lesson during those months. Other uses
of permanent common include the storage of data bases accessed by the
students, such as census data in a sociology course or cumulative
statistical data on student performance in the course.

The Swapping Process
Before discussing additional applications of common variables, it is

useful to describe the “swapping” process by which a single computer
can appear to interact with hundreds of students simultaneously. The

MANIPULATING DATA BASES

computer actually handles students one at a time but processes one
student and shifts to another so rapidly that the students seem to be
serviced simultaneously. In order to process a student, the student’s
lesson and individual status (including the variables v1 through v150)
must be brought into the “central memory” of the computer. After a few
thousandths of a second of processing, the student’s modified status is
transferred out of the central memory (to be used again at a later time) and
another student’s lesson and status are transferred into central memory.
This process of transferring back and forth is called “swapping,” and the
large storage area where the lessons and status banks are held is called the
“swapping memory.” The swapping memory must be large enough to
hold all the status banks and lessons which are in active use; that is, in
use by students presently working at terminals. It is not necessary for the
swapping memory to also hold the many lessons not presently in use nor
the status banks for the many students not using the computer at that
time. These inactive lessons and status banks are kept in a still larger
“permanent storage” area. (See Fig. 11-1.)

Central
memory

Permanent storage
Thousands of in-

active lessons
and inactive

student status
banks.

igh transfer rate

é

low transfer rate

o Swapping
memory

One lesson.
One student
Hundreds of active status bank.
lessons and active

student status

banks.

Fig. 11-1.

24

The TUTOR Language

242

When a student sits down at a terminal and identifies herself as “Jane
Jones” registered in “french2a”, her status bank is fetched from perma-
nent storage to see what lesson she was working on and where in the
lesson she left off last time. If the lesson is already in the swapping
memory (due to active use by other students), Jane Jones is simply
connected up to that lesson, and, as she works through the lesson, her
lesson and her changing status bank will be continually swapped to
central memory. If, on the other hand, the required lesson is not presently
in active use, it must be moved from permanent storage to the swapping
memory. (This involves a translation of the TUTOR statements into a
form which the computer can process later at high speed.) This fetching
of the inactive lesson from permanent storage to prepare an active version
in the swapping memory will typically be done once in a half-hour or
more often as the student moves from one lesson to another. In contrast,
the swapping of the active lesson to central memory happens every few
seconds as the student interacts with the lesson. Therefore, the swapping
transfer rate must be very high (whereas a low transfer rate between
permanent storage and the swapping memory is adequate).

When Jane Jones leaves for the day, her status bank is transferred
from the swapping memory to permanent storage. This makes it possible
for her to come back the next day and restart where she left off.

The question arises as to why there are three different memories:
central memory, swapping memory, and permanent storage. For example,
why not keep everything in the central memory where students can be
processed? It turns out that central memory is extremely expensive, but
permanent storage in the form of rotating magnetic disks is very cheap.
Why not do swapping directly between permanent storage and central
memory? The rate at which lessons can be fetched from permanent
storage is much too slow to keep the computer busy: the computer would
handle only a small number of students because a lot of time would be
wasted waiting for one student to be swapped for another. If the cost of
the computer were shared by a small number of students, the cost would
be prohibitively high. In order to boost the productivity of the computer,
a special swapping memory is used which permits rapid swapping. This
minimizes unproductive waiting time and raises the number of students
that can be handled. The swapping memory is cheaper than central
memory but considerably more expensive than permanent storage.

There is, therefore, a hierarchy of memories forced on us by
economic and technological constraints. The expensive, small central
memory is the place where actual processing occurs, and there is never
more than one student in the central memory. Material is swapped back
and forth to a large medium-cost swapping memory whose most impor-
tant feature is a very high transfer rate to central memory. Permanent
storage is an even larger and cheaper medium for holding the entire set of

MANIPULATING DATA BASES

lessons and student status banks. It has a low transfer rate to the
swapping memory.

Common Variables and the Swapping Process

Now it is possible to describe more precisely the effect of a -common-
statement in a lesson. Just as an individual student’s lesson and status
bank (including the student variables v1 through v150) are swapped
between central memory and the swapping memory, so a set of common
variables associated with the lesson is swapped between central memory
and the swapping memory. There is in central memory an array of 1500
variables, called vcl through vcl500, into and out of which a set of
common variables is swapped. As long as the -common- statement
specifies a set of no more than 150 common variables, this set will
automatically swap into and out of the central memory array vcl to
vel500. (See Fig. 11-2.) (There is a -comload- command which can be
used to specify which portions of a common to swap if the common
contains more than the 1500 variables which will fit into central memo-
ry.) All 1500 variables in the central memory array are set to zero before
bringing a lesson, status bank, and common into central memory, so that
any of these variables not loaded by the common will be zero.

Swapping memory

student Jane
M~swap Central memory

| # lesson area

/ vel
a lesson lesson

swap | through

/—f‘__'__’_,_,..a

student Bill

student Neil

vel588

a common containing
up to 1588 variables

ig. -2.
Fig. 11 243

The TUTOR Language

244

Note that the student status banks and commons are swapped in and
out of central memory in order to retain any changes made during the
processing in central memory. On the other hand, lessons are brought
into central memory but are not sent back since no changes are made to
the lesson. (A lesson only has to be copied into but not out of central
memory.) The separation of the modifiable status banks and commons
from the unchanging lessons makes it possible for a single copy of a
lesson to serve many students.

It is dangerous to use ve-variables without a -common- statement or
to use vec-variables outside the range loaded by the common (e.g.,
referring to ve3 when there is a2 “common 27 statement in the lesson).
For example, consider this sequence in a lesson which has no -common-
statement:

calc vc735«18.34
pause 2
show vc735

This will show 0, not 18.34. The “pause 27 statement causes this
student’s material to be swapped out to the swapping memory for two
seconds while many other students are processed. When the student is
swapped back into central memory, all the vc-variables are zeroed. As a
matter of fact, vc735 may temporarily take on many different values
during those two seconds as different students are processed. On the
other hand, a “common 800" would insure that vcl through vc800
would be saved in the swapping memory and restored after two seconds,
so that the “18.34” stored in vc735 would again be available to be shown
(unless it had been changed by a student using the same common who
was processed during the two-second wait). Similarly, because the
student variables v1 through v150 are part of the swapped student status
bank, the sequence:

calc v126<3.72
pause 2

MANIPULATING DATA BASES

show v126

will correctly show “3.72”. The contents of the student variables cannot
get lost in the swapping process because these variables are saved in the
swapping memory and restored to central memory the next time this
student is processed.

The fact that common variables are shared by all students studying
the lesson is extremely useful but can cause difficulties if you are not
careful. Suppose you want to add up the square roots of the absolute
values of vcl@1 through vc1000:

calc total<0 .

doto 8sum,index<101,1000
total«total+[abs(vc(index))]-5

8sum

show total

This iterative calculation will take longer than one “time-slice” (the
computing time TUTOR gives you before interrupting your processing to
service other students). You are swapped out and will be swapped back
into central memory later to continue the computation. It might take
several time-slices to complete the computation, and in between your
time-slices other students are processed. This time-slicing mechanism
insures that no one student can monopolize the computer and deny
service to others. Suppose two students, Jack and Jill, are studying this
lesson and sharing its common. Suppose that Jack has reached the part of
the lesson that contains the -doto- shown above. If, at the same time, Jill
runs through calculations that modify vc1@1 through vel®00, her modifi-
cations will be made during the interruptions in Jack’s processing. The
total that Jack calculates will, therefore, be based on changing values and
will not be the total at a particular instant. Jack calculates a partial total,
Jill makes some changes, Jack continues to do more calculations in the
-doto-, then Jill makes further changes, etc. At the end Jack has a peculiar
total made up of partial totals made at different times. Even more drastic
things will happen if “total” is itself a common variable: Jill might do
“totale0” right in the middle of Jack’s summation!

245

The TUTOR Language

246

If it is necessary to get an accurate total at a specific instant, it is
necessary to lock out Jill and other students from modifying common
until the totaling is complete. This is done by doing a “reserve common”
statement before starting Jack’s calculation and a “release common”
statement after the calculation is complete. The -reserve- command
checks to make sure no other student has reserved the common, and then
reserves the common. The system variable “zreturn” is set to —1 if the
-reserve- was able to get control of the common. Otherwise “zreturn” is
set to the station number of the student who had previously reserved the
common. Normally, if you can’t get the common, you loop waiting for the
other person to do a “release common™;

8again
reserve common
branch zreturn,x,8again

Notice that you must reserve and release common for Jill as well as for
Jack (doing it for one but not the other will not prevent the other from
looking at or changing the common).

Don’t forget the “release common” for a student, or other students
will get hung up waiting for the common to be available. When a student
who has reserved a common signs out of the lesson, TUTOR automatical-
ly releases the common.

Note that a lock is certainly needed if different students are storing
information into the same area of common. There is often no problem
with having different students reading information out of the same area
of common and no problem when storing information in different areas of
common. Logical conflicts are most serious when modifying the same
part of common. However, even in this case there are usually no
problems. In the example of counting the number of students in the
lesson, we simply execute “ve=vcl+1”, which cannot cause any prob-
lems since all of the modifications are completed in one simple step.
(Note, however, that a very complicated -calc- statement, particularly one
involving multi-element array operations, may take more than one
time-slice to be performed.)

The -storage- Command

In certain applications 150 individual student variables are not
sufficient, even when using segmented variables. It is possible to set up

MANIPULATING DATA BASES

extra storage of up to 1500 variables to give a total of 1650 variables that
are individual, not shared in a common. A “storage 350 statement will
cause a storage block of 350 variables to be set up in the swapping
memory for each student who enters the lesson. Like -common-, the
-storage- command is not “executed” (it is rather an instruction to
TUTOR to set up storage when the student enters the lesson). Like
temporary common, the storage variables are zeroed when the storage is
set up.

A -transfr- command can be used to move common or storage
variables from swapping memory into the student variables or into the
“vc” area. Usually, however, common is loaded automatically into the
“vc¢” area. If the common is larger than 1500 variables, a -comload-
command must be used to specify which part of this large common is to
be swapped into and out of which section of vcl through vel500. In the
case of -storage-, there is no automatic swapping. Instead, a -stoload-
command is used to specify what parts of the storage are to be moved into
what area of the “v¢” variables. Here is a typical example:

common 1000
storage 75
stoload vc1001,1,75

The common will be automatically swapped in and out of vcl through
vel@@@. The 75 storage variables will be swapped in and out of vc1001
through vcl@75. It is good form to define all these matters:

define comlong=1000,stlong=75
/stbegin=vc(comlong+1)
(etc.)

common comlong

storage stlong

stoload stbegin,1,stlong

calc stbegin«37.4

While -common- and -storage- are ‘“‘non-executable” commands, -com-
load- and -stoload- are executable, so that swapping specifications
can be changed during the lesson.

The student’s current variables v1 through v150 are saved with other
restart information when he or she signs out. Therefore, when the student
signs in the next day, these variables will have the values they had when
the student left. Storage variables are not saved, however. All storage

variables are initialized to zero when the storage block is set up upon 247

The TUTOR Language

248

entry into the lesson, as with temporary common. If it is necessary to file
away more than the standard 150 student variables, you could split up a
common into different pieces for individual students. For example, if you
need to save 200 extra variables for no more than 20 students, you could
split up a 400@-variable common into 20 pieces each containing 200
variables. An alternative is to use “dataset” operations, which permit you
to directly control the transfer of blocks of individual data between the
permanent storage (magnetic disks) and the swapping memory.

Using “datasets”

A PLATO “dataset” is a file of records kept in the permanent
(magnetic disk) storage. You can write some data out to the 5th record of
the dataset, then get it back months later simply by reading back the 5th
record of that dataset. Each record is made up of many words, and the
record word size is specified at the time the dataset is created. (Currently
the minimum record size is 64 words.) One record might, for example,
hold exam scores for a particular student.

In order to perform operations on a dataset, you first must execute a
-dataset- command to tell PLATO which of your datasets you are going to
be working on at the moment. You can then execute any number of
-dataout- commands to send data out to the dataset, and any number of
-datain- commands to read such information back. You can use a -reserve-
command to reserve specific records, similar to using a “reserve com-
mon”. You must use a -release- command to permit others again to
manipulate those records. (For details, see the PLATO on-line “aids™.)

Sorting Lists

When manipulating a data base it is often necessary to sort a list of
items into alphabetic or numeric order. The -sort- (numeric) and -sorta-
(alphabgtic) commands will transform a disordered list into a sorted list.
These commands will also sort an associated list of items at the same
time. For example, you might have student names in one part of a
common, and corresponding grades in another part of the common. You
could use a -sorta- command to place the names in alphabetical order, and
at the same time you could have the -sorta- command similarly re-order
the grades to correspond with the altered order of the students. (See the
PLATO on-line “aids” for details.)

