Additional Calculation Topics

Before discussing additional TUTOR calculational capabilities, let’s
review briefly those aspects which have been covered so far:

1)

2)

3)

5)

Expressions follow the rules of high school algebra. Multiplica-
tion takes precedence over division, which takes precedence over
addition and subtraction. Superscripts may be used to raise
numbers to powers. The symbol m may be used to mean
3.14159. The degree sign (°) may be used to convert be-
tween degrees and radians.

There are 150 student variables, v1 through v150, which may be
named with the -define- command. These variables can be set or
altered by assignment (<) and by ‘-store-, -storen-, or -storea-
commands. If a “define student” set of definitions is provided,
the student may use variable names in his or her responses.
Logical expressions are composed using the operators =, #, >,
<, =, =, and, or, and the “not” function. Logical expres-
sions have the value true (—1) or false ().

There are several available system variables such as “where”,
“wherey”, “anscnt”, “jcount”, “spell”, etc. Available system
functions include sin(x), sqrt(x), etc. A full list of system varia-
bles and functions is given in Appendix C.

The -show- command (and its relatives -showt-, -showz-,
-showe-, and -showo-) will display the numerical value of an

10

201

The TUTOR Language

202

6)

8)

expression. The -showa- command will display stored alphanu-
meric information. These commands may be embedded within
-write- and -writec- statements.

The -calcc- and -calcs- commands make it easy to perform
(conditionally) one of a list of calculations or assignments.
The -randu- command with one argument picks a fraction
between @ and 1. With two arguments, it picks an integer
between 1 and the limit specified. There is a set of commands
associated with permutations: -setperm-, -randp-, -remove-, and
-modperm-.

The iterative form of the -do- command facilitates repetitive
operations.

Now let’s look at additional TUTOR calculational capabilities.

Defining Your Own Functions

While many important functions such as In(x) and log(x) are built-in
to the TUTOR language, it is frequently convenient to define your own

functions. To take a simple example, suppose you define a cotangent
function:

define cotan(a)=cos(a)/sin(a)

Then, later in your lesson you can write:

calc recotan(3x+y—b5)

and TUTOR will treat this as though you had written:

calc r«[cos(3x+y—b5)/sin(3x+y—5)]

Such use of functions not only saves typing but improves readability.

CAUTION: In defining a function, the arguments must not be
already defined. For example, the following definition will be rejected by
TUTOR (with a suitable error message):

define x=v1
cube(x)=x3

This must be rewritten as:

define x=v1
cube(dummy)=dummy?

ADDITIONAL CALCULATION TOPICS

or anything similar. A function definition may involve previously defined
quantities on the right side of the “="" sign, however. You might have:

define x=v1
new(c)=c*+2x

In this case you might have a -calc- that looks like:

calc x«15.7
y<3new(8)

and this would be equivalent to:

calc x«15.7
y<3[(8)*+2x]

Sometimes it is convenient to define “functions” that have no
arguments:

define r=v1
quad=r2—100
r3=ri”
root=sqrt(r)
prod=r3xroot
trans=(r<prod)

Note that “prod” depends on two previous definitions, each of which (in
turn) depends on the definition of “r”. There is no limit on how deep you
can go in definition levels. The unusual definition of “trans” permits you
to write an unusual -calc- (where the assignment is implicit in the

definition of “trans”):
calc trans

Essentially anything is a legal definition. The only rule is that the
definition make sense when enclosed in parentheses (since a defined
name when encountered in an expression is replaced by its meaning and
surrounded by parentheses). This means that you cannot define
“minus=-"" because (—), a minus sign enclosed in parentheses, is not
permitted in an expression. On the other hand, “minus=—1" is all right
because (—1) is meaningful.

A function may have up to six arguments. Here is a function of two
arguments:

203

The TUTOR Language

define modulo(N,base)=N—[basexint(N/base)]

This means that modulo (17,5) in an expression will have the value 2; the
“int” or “integral part” function throws away the fractional part of 17/5,
leaving 3, so that we have (17—5x3)=(17—15)=2. This modulo function,
therefore, gives you what is left over in division of “N” by “base”.

Here are a couple of other examples of multi-argument function
definitions:

define big(a,b)=—[ax(a=b)+bx(b>a)]
small(a,b)=—[ax(a<b)+bx(b<a)]

The minus sign appears because logical true is represented by —1. If you
have “big(x+y,z)” in an expression, with (x+y)=7 and z=3, this expands

. to:

204

—[7x(7=3)+3x(3>7)]

which reduces to —[7Xx(—1)+3x(@)] which is 7. So our “big” function
picks out the larger of two arguments.

Arrays

It is often important to be able to deal with arrays of data such as a
list of exam scores, the number of Americans in each 5-year age group
together with their corresponding mortality and fertility rates, a list of .
which pieces are where on a chess board, or the present positions of each
of several molecules in the simulation of the motion of a gas.

Suppose we have somehow entered the exam scores for twenty
students into variables v31, v32, v33 . . . up to v50. Here is a unit which
will let you see the score of the 5th or 13th or Nth student:

unit see
back index
at 12156

write Which student number?
(Press BACK when done.)
arrow 1518
store N
wrongv 10.5,9.5 $$ range 1 to 20
write The score of the <s,N>th student is <s,v(30+N)}>.

ADDITIONAL CALCULATION TOPICS

(The -wrongv- rather than -ansv- makes it easy to ask another question.)
The new element here is the “indexed variable™:

v(30+N)

which means “evaluate 30+N, round to the nearest integer, and choose
the corresponding variable”. For example, if N is 9, v(30+N) is v(39) or
v39. If N is 13.7, v(30+N) means v44.

We might list and total all the scores:

calc total<0 $$ initialization step
do showem,N<«1,20
at 3035

write The average score is <s,total/20)>.
E 3

unit showem

at 835+ 100N

show v(30+N)

calc total«total+v(30+N)

As usual, it is preferable to define a name for this data, such as:
define scores(i)=v(30+i)
in which case we would write our last unit as:

unit showem

at 835+ 100N

show scores(N)

calc total«total+scores(N)

Due to the special meaning attached to “v(expression)” you must exercise
some care in using a variable named “v”, in that you must write
“vXx(a+3b)” and not “v(a+3b)” if you mean multiplication. We will see
later that the same restriction applies to the names “n”, “ve¢”, and “nc”.
This restriction does not apply to students entering algebraic responses,
where “v(a+3b)” is taken to mean “vx(a+3b)”. Students can use indexed
variables only if they are named (as in “scores” in the above example).
Such definitions must, of course, be in the “define student” set.
Suppose you have three sets of exam scores for the twenty students.

This might conveniently be thought of as a 3 by 20 (“two-dimensional”)

205

The TUTOR Language

206

array. Suppose we put the first twenty scores in v31 through v50, the
second set in v51 through v70, and the third set in v71 through v90. It
might be convenient to redefine your array in the following manner:

define scores(a,b)=v(10+20a+b)

Then, if you want the 2nd test score for the 13th student, you just refer to
scores (2,13) which is equivalent to v(1¢+40+13) or v(63). If you wanted
to display all the scores you might use “nested” -do- statements:

do column,i<1,3
%

unit column

do rows,j<1,20
*

unit rows
at 820+ 10i+ 100;
show scoresli,j)

Unit “column” is done three times and for each of these iterations, unit
“rows” is performed twenty times.
There is an alternative way to define our array:

define i=v1,j=v2
scores=v(10+20i+j)

Then our unit “rows” would look like:

unit rows
at 820+ 10i+100j
show scores

The indices specifying which test is for which student are implicit. This
form is particularly useful when you have large subroutines where “i”
and “j” are fixed and it would be tiresome to type over and over again
“scores(i,j)”. Just set “i”” and “j”, then -do- the subroutine.

It is frequently necessary to initialize an entire array to zero. One way

to do this is with -do- statements:

unit clear
do clear2,i<1,3
*

ADDITIONAL CALCULATION TOPICS

unit clear2
do clear3,j=1,20
*

unit clear3
calc scores(i,j)<0

A simpler way to accomplish the same task is to say:
zero scores(1,1),60

You simply give the starting location (the first of the 60 variables) and the
number of variables to be cleared to zero. As another example, you can
clear all of your variables by saying:

zero v1,150

Not only is the -zero- command simpler to use, but TUTOR can carry out
the operation several hundred times faster! TUTOR keeps a block of its
own variables, each of which always contains zero. When you ask for 150
variables to be cleared, TUTOR does a rapid block transfer of 150 of its
zeroed variables into your specified area. This ultra-high-speed block
transfer capability can be used in other ways. For example:

transfr v10;v85;25

performs a block transfer of the 25 variables starting with v10 to the 25
variables starting with v85. In this way you can move an entire array from
one place to another with one -transfr- command, and at speeds hundreds
of times faster than are possible by other means.

Segmented Variables

Storing three scores for each of your twenty students required the use
of 60 variables, out of an available 150. We're running out of room! You
can save space by defining “‘segmented” variables which make it easy to
keep several numbers in each student variable. For example, you can
write a definition of the form:

define segment,score=v31,7
This identifies “score” as an array which starts at v31 and consists of

segments holding positive integers (whole numbers) smaller than 27
(which is 128). It turns out that each student variable will hold 8 such

207

The TUTOR Lénguage

208

segments, so “score(8)” is the last segment in v31, while “score(9)” is the
first segment in v32. Since “score(6Q)” is the fourth segment in v38, we
need only eight variables to hold all sixty scores. You can use
“score(expr)” in calculations. The expression “expr” will be rounded to
the nearest integer and the appropriate segment referenced. As a simple
example:

calc score(23)«score(3)+5

will get the third segment, add 5 to it, and store the result in the
twenty-third segment.

If we define a segmented one-dimensional array “score”, we can
define a two-dimensional array as before:

define segment,score=v31,7
scores(a,b)=score(20a—20+b)

With these definitions, “scores(1,1)” means “score (20—20+1)” or
“score(1)”, which is the first segment in v31. As before, “scores” could
use implicit indices:

define i=v1,j=v2
scores=score(20i—20-+j)

In this case you use “scores” rather than “scores(exprl,expr2) in calcula-
tions. NOTE: At the present writing, the commands -zero- and -transfr-
cannot be used with segmented variables because these commands refer
to entire variables. You could, however, zero all of the scores by saying
“zero v31,8” which sets v31 through v38 to zero, which has the effect of
zeroing all the segments contained in those eight variables. You can make
such manipulations more readable by defining your segmented array this
way:

define start=v31
segment,score=start,7

Then you can write “zero start,8” rather than “zero v31,8”. Similar
remarks apply to the -transfr- command.

It is possible to store integers (whole numbers) that can be negative
as well as positive:

define segment,temp=v5,7,signed

ADDITIONAL CALCULATION TOPICS

The addition of the word “signed” (or the abbreviation “s”) permits you
to hold in “temp(i)” any integer from —63 to +63. The range 27 (128) has
been cut essentially in half to accommodate negative as well as positive
values. The following table summarizes the unsigned and signed ranges
of integers permissible for various segment size specifications up to 30
(sizes up to 59 are allowed, though beyond 30 there is only one segment
per variable).

Segment

size

n 2"n
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2 048
12 4 096
13 8 192
14 16 384
15 32 768
16 65 536
17 131 072
18 262 144
19 524 288
20 1 048 576
21 2 997 152
22 4 194 304
23 8 388 608
24 16 777 216
25 33 554 432
26 67 108 864
27 134 217 728
28 268 435 456
29 536 870 912
30 1 073 741 824

No. of
unsigned range signed range segments
per
variable
Pto1 - 60
Pto3 -1to +1 30
0to7 -3to +3 20
0 to 15 -7 to +7 15
0 to 31 -15t0 +15 12
0 to 63 —31to +31 10
0 to 127 —63 to +63
0 to 255 —-127 to +127
0 to 511 —255 to +255
0to 1023 -511to +511
0 to 2 047 -1 023 to +1 023
0 to 4 995 —2 047 to +2 047
? to 8 191 —4 095 to +4 095
0 to 16 383 -8 191 to +8 191
0 to 32 767 —16 383 to +16 383
® to 65 535 —32 767 to +32 767
0 to 131 071 —65 535 to +65 535
0 to 262 143 -131 9§71 to +131 071
0 to 524 287 —262 143 to +262 143

@ to 1 048 575 —524 287 to +524 287

0 to 2 97 151
0 to 4 194 303
0 to 8 388 607

—1 048 575 to
—2 097 151 to
—4 194 303 to

+1 048 575
+2 097 151
+4 194 303

0 to 16 777 215

® to 33 554 431

0 to 67 108 863

0 to 134 217 727

? to 268 435 455
0 to 536 870 911

0 to 1073 741 823

Table 10-1.

—8 388 607 to +8 388 607
~16 777 215 to +16 777 215
—33 5564 431 to +33 554 431
—67 108 863 to +67 108 863

—~134 217 727 to +134 217 727
—268 435 455 to +268 435 455
—536 870 911 to +536 870 911

NNPNNMNNMNNNNNNNNNOWOWWWAADMNTOOON O

209

The TUTOR Language

210

As an example of the use of this table, suppose you are dealing with
integers in the range from —1200 to +1800. You would need a segment
size of 12 (signed), which gives a range from —2047 to +2047. There
would be 5 segments in each variable. Your -define- might look like:

define segment,dates=v140,12,signed

It is not necessary to understand the rationale behind this table in order to
be able to use segments effectively. Explanations of the underlying
“binary” or “base 2” number system and the associated concept of a “bit”
are discussed later in an optional section of this chapter.

Segments are frequently used to set “flags™ or markers in a lesson.
For example, you might like to keep track of the topics the student has
completed or which questions in a drill have been attempted. A segment
size of just one is sufficient for such things, with the segment first
initialized to zero, then set to one when the topic or question has been
covered. The definition might look like this:

define flags=v2
segment,flag=flags,1

In the first unit, (not the “initial entry unit”) use the statement
“zero flags” to clear all sixty segments in v2. If you use up to 120
markers you would use “zero flags,2” to clear two variables, each
containing 60 segments. When the student completes the fourth topic you
use “calc flag(4)«1” to set the fourth flag. You can retrieve this informa-
tion at any time to display to the student which topics he or she has
completed. Note that the -restart- command can be used to restart the
student somewhere after the first unit (where the flags would otherwise
be cleared), so that you can remind the student of which sections he or
she completed during previous sessions.

Although only whole numbers can be kept in segments, it is possible
to use the space-saving features of segments even when dealing with
fractional numbers. Suppose you have prices of items which (in dollars
and cents) involve fractions such as $37.65 (37 dollars plus 65 hun-
dredths of a dollar). Assume that $50 is the highest price for an item.
Simply express the prices in cents, with the top price then being 5000
cents. Using the table, we see that a segment size of 13 will hold positive
integers up to 8191, so we say:

define price=v1 $$ in dollars and cents
segment,cents=v2,13
put(i)=[cents(i)«=100price]
get(i)=[priceccents(i)/100]

ADDITIONAL CALCULATION TOPICS

A sequence using these definitions might look like:

calc price«28.37
calc put(16) $$ equivalent to “cents(16)«<10@price”

show get(16) $$ equivalent to “price«=cents(16)/100"

The final -show- will put “28.37” on the screen, even though between the
“put” and “get”, the number was the integer “2837”. Notice the unusual
“calc put(16)” which has an assignment (<) implicit in the definition of
“put”. Also notice that the variable “price” is changed as a side-effect of
“get”. If this is not desired, we could define “get(i)=cents(i)/ 100

As another example of the use of segments with fractional numbers,
suppose you have automobile trip mileages up to 1000 miles which you
want to store to the nearest tenth-mile (such as 243.8 miles). In this case
you must multiply by 10 when storing into a segment and divide by 10
when retrieving the information. You would use a segment size of 14,
since your biggest number is 10000. It should be pointed out that
rounding to the nearest integer occurs when storing a non-integer value
into a segment:

calc miles«b39.47
seg(2)<10 miles $$ 5394.7 becomes 5395
miles«seg(2)/10 $$ 5395/10 or 539.5

So, by going into and out of the segment, the “539.47” has turned into
“539.5”.

Aside from the restriction to integers, calculations with segmented
variables have one further disadvantage: they are much slower than
calculations with whole variables. This is due to the extra manipulations
the computer must perform in computing which variable contains the
Nth segment, and extracting or inserting the appropriate segment. Seg-
ments save space at the expense of time. In many cases this does not
matter, but you should avoid doing a lot of segment calculations in a
heavily-computational repetitive loop, such as an iterative -do- which is
done ten thousand times. (There are other kinds of segments, “vertical”
segments, which are handled much faster but these have quite different
space requirements than regular segmented variables.)

211

The TUTOR Language

212

Branching Within a Unit: -branch- and -doto-

All of the branching or sequencing commands discussed so far
referred to -unit-s (or -entry-s). It is often convenient to be able to branch
within a unit, which is possible with the -branch- command:

unit somethin
629 branch count—4,5,x,8after
at 1215
write “count” is equal to 4
5
do countit

8after count«1b

The tag of the -branch- command is like the tag of a -goto-, except that
unit names are replaced by “statement labels.” These labels appear at the
beginning of statements and must start with a number () through 9) to
distinguish them from commands, which start with letters. A statement
beginning with a label need not have any tag (as in the line above labeled
“57), but it can have a tag like that of a -calc-, as in the last statement
above (“8after count«157). In fact, a labeled statement is essentially a
-calc- statement. As with -goto-, “x” in a -branch- means “fall through” to
the next statement.

It is not permissible in a unit to label two statements with the same
label (nor can you have two units with the same name in a lesson). On the
other hand, since -branch- operates only within a unit and cannot refer to
labels in other units, it is all right to use the same label in different units.
(Similarly, you can use the same unit name in different lessons.) Note that
-entry- is similar to -unit-, so -branch- cannot be used to branch to a label
if an -entry- command intervenes.

It is often convenient to use -branch- rather than -goto-. In addition,
-branch- requires less computer processing than -goto-, so that heavily
computational iterations are better done with -branch- where possible.
Generally speaking, about the only time you must consider the computa-
tional efficiency of one TUTOR technique compared with another is
when you do a large number of iterations of some process. Unless you are
making many passes through the same statements, merely write your
TUTOR statements in what seems to be the simplest and most readable
manner. It is a mistake to spend time worrying about questions of
efficiency if the student will make only one pass through the statements.

Just as -branch- is a fast -goto- within a unit, there is a fast -doto-
(analogous to the iterative -do-) for use within a unit:

ADDITIONAL CALCULATION TOPICS

doto 8end.,i«first,last,incr
calc a«bxsin(bi®)
at 100,200+2a—i

write T
8end
circle 100

The tag of the -doto- is similar to an iterative -do-, but instead of naming a
unit to be done repeatedly you name a statement label. For each iteration
TUTOR executes statements from the -doto- down to the named state-
ment label. After the last iteration is performed, TUTOR proceeds to the
statement which follows the -doto- label (-circle- in the above example).

Just as it is possible to have nested -do- iterations, it is also possible
to have nested -doto-s. Here is a comparison of -do- and -doto- for
displaying a two-dimensional array:

-do- -doto-
do column,i«=1,3 doto 4,i<=1,3
unit column doto 4,j<1,20
do rows,j<1,20 at 820-+10i+100]
unit rows show scores(i,j)
at 820+10i+100j 4

show scores(i,j)

This nested -doto- example has the structure:

doto 4
doto 4]
4
Other possible structures include the following:
doto 8—
doto 5
.
8 |

213

The TUTOR Language

214

doto 8 — doto 8—
doto 5-— doto 3
doto 3 3 —
3 :| doto 5—
5 — 5 —
8 — 8 —

Note that in each case the “inner” -doto-s are nested within the “outer”
-doto-s. Here is a counter-example of a structure which is not permissible:

doto 5
doto 8
ILLEGAL!
5
8 S——

When do you use -doto- instead of an iterative -do-? Use -doto-
whenever the contents of the loop are very short, because the “overhead”
associated with each -doto- iteration is much less than the “overhead”
associated with each -do- iteration. This is due to the extra manipulation
involved in getting to the “done” unit. If the contents of the loop are long,
the overhead becomes insignificant, and either -do- or -doto- can be used,
whichever you prefer or whichever is more readable.

Array Operations

You have seen how to operate on individual elements of an array by
using indexed variables. It is also possible to define an array in such a
way as to permit operating on the array as a whole. Here are two sets of
statements, one using true “arrays” and the other using indexed variables,
with both routines calculating the sum of sixty scores (three scores for
each of twenty students):

TRUE ARRAY INDEXED VARIABLE
define total=v1 define total=v1,i=v2,j=v3
array,scores(3,20)=v31 scores(a,b)=v(10+20a+b)

ADDITIONAL CALCULATION TOPICS

calc total<<Sum(scores) calc total«<0
doto 4,i<1,3
doto 4,j«<1,20
calc total«total+scores(i,j)
4

The calculation using indexed variables involves initializing “total” to
zero, then using nested -doto-s to add in each element of “scores”. The
true array calculation is much simpler, involving a single -calc- state-
ment!

The statement “define array,scores(3,20)=v31” tells TUTOR to put
scores (1,1) in v31, scores (1,2) in v32, scores (1,3) in v33, etc., with scores
(2,1) in v51, scores (2,2) in v52, etc. Moreover, this “array” definition
permits you to work with the whole array, and there are various array
functions such as “Sum” to help you. The expression “Sum(scores)”
means “add up all the numbers in all the elements of the array”.
Similarly, the statement “scoresescores+17 will cause all sixty array
elements to be increased by one.

Such whole-array operations are not possible with indexed variables,
because (with indexed variables) TUTOR does not know how many
elements make up the whole array. On the other hand, the complexities of
handling true arrays limits their size to 255 elements at present and to
only two “dimensions” (that is, you can’t say “define array,points
(2,5,4)=v1”, which would define a three-dimensional array). So, ordinary
indexed variables do have their uses, particularly when manipulating
large databases (as discussed in the next chapter). While the most useful
feature of true arrays is the ability to deal with all elements at once, you
can also refer to individual elements, such as scores(2,15), just as you
would with indexed variables.

Suppose we define two arrays, A and B, both ten variables long:

define array,A(10)=v141
array,B(10)=v131

The following calculations involving these arrays will have the specified
results:

CALCULATION RESULT

A<2B Each element of A is assigned the value of
two times the corresponding element of B:
A(1)=2B(1), A(2)«2B(2), etc.
(Continued on next page.)

215

The TUTOR Language

216

CALCULATION RESULT
(continued) (continued)
A<x25 Each element of A is set to 25.
A<1/A Each element of A is replaced by its recipro-
cal.
A<A+B Corresponding elements of A and B are

added together, and the sum replaces the
element of A: A(1)<A(1)+B(1), A(2)<A(2)

+B(2), etc.
A«3.4cos(B) A(1)«<3.4cos(B(1)), etc.
A«B? Presently not allowed: use A«<BxB instead.

A<A and B Each element of A is replaced by —1 or 0,
depending on a logical “and” of the corre-
sponding elements of A and B (which
should of course contain logical values, —1
and 0, to begin with).

There are a couple of special operators unique to array manipulations:
A ° B gives the standard “matrix multiplication”, with row-by-column
multiplication and summation, and AXB gives the standard ‘“vector
product” or “cross product”. If A and B are one-dimensional arrays, the
matrix multiplication A o B yields a single number, known in mathemat-
ics as the “dot product”. The symbol o is typed by means of MICRO-X,
and “X” is typed by MICRO-shift-X.

There are some useful functions:

Sum(A) Adds up all the elements of A
Prod(A) The product of all the elements: A(1) x A(2)

x A(10)
Min(A) Picks out the smallest value
Max(A) Picks out the largest value
And(A) A(1)andA(2)andA(3) andA(10)
Or(A) A(1)orA(2)$0r$A(3) orA(10)
Rev(A) Reverses the order of the elements

Transp(A) Produces the transposed array: Ali,j)<A(j,i)

Combinations of the various operations and functions can be used to
your advantage. For example, a common statistical calculation involves
the square root of the sum of the squares of all array elements. This can be
easily obtained from sqrt(Sum(AxA)), or from sqrt(AcA) if A is a
one-dimensional array.

ADDITIONAL CALCULATION TOPICS

Arrays can be filled with a -set- command and displayed with a
-showt- command:

define array,C(2,3)=v16

set C<100,200,300 200 400 600
400,500,600 will display
at 1215 800 1000 1200

showt 2C,5 $$ 5 figures

The -set- command fills elements in order. For example: C(1,1), C(1,2),
C(1,3), C(2,1), C(2,2), C(2,3). The -showt- (“show tabular”) command
shows the numbers appropriately on the screen. You can also use
-showe-, -showo-, and -showa- (but not -show- or -showz- at present).

It is often convenient for the array elements to be offset, so that the
first element is not numbered “one”. For example, you might want an
array of the world population from 1900 to 1970. In this case, simply say
“define array,popul(1900;1970)=v1”, which assigns popul(1900) to v1
and popul(1970) to v71. Note the semicolon in the -define-. A two-
dimensional array with offsets is written “define array,D(—3,0;5,8)=v1”,
where D(—3,0) is in v1, D(—3,1) is in v2, etc. The last element of this array
is D(5,8).

Integer Variables and Bit Manipulation

This section goes much more deeply into the way a computer rep-
resents numbers and character strings. You might start off by skimming
this section to see whether you will need to study it in detail. You will
need this material only if you pack several pieces of data in one variable
or if you want to use -calc- operations on character strings.

A variable such as v15Q can hold a number as big as 10322 (the
number 1 followed by 322 zeros) or a non-zero number as small as 1293
(a 1 in the 293rd position after the decimal point). These huge or tiny
numbers may be positive or negative, from =129 up to +10322. Any
number held in v150 is recorded as sixty tiny “bits” of information. For
example, whether the number is positive or negative is one bit of
information, and whether the magnitude is 10+290 or 1029 is another bit
of information. The remaining 58 bits of information are used to specify
precisely the number held in v150.

What is a bit? A bit is the smallest possible piece of information and
represents a two-way (binary) choice such as yes or no, or true or false, or

217

The TUTOR Language

218

up or down (anything with two possibilities). A number is positive or
negative and these two possibilities can be represented by one bit of
information. Numbers themselves can be represented by bits correspond-
ing to yes or no. Let us see how any number from zero to seven can be
represented by three bits corresponding to the yes or no answers to just
three questions. Suppose a friend is thinking of a number between zero
and seven and you are to determine it by asking the fewest possible
questions to be answered yes or no. Suppose the friend’s number is 6:

a)‘ Is it as big as 4? Yes.
b) Is it as big as 4+2? Yes.
c) Isitas big as 4+2+1? No.

From this you correctly conclude that the number is 6. You determined that
the number was made up of a 4, a 2, and no 1. You might also say that the
number can be represented by the sequence “yes,yes,no”!

As another example, try to guess a number between zero and 63
chosen by the friend. Suppose it is 37:

a) Is it as big as 32? Yes.
b) Is it as big as 32+16? No.
c) s it as big as 32+8? No.
c) lIs it as big as 32+4? Yes.
d) Is it as big as 32+4+2? No.
e) lIs it as big as 32+4+1? Yes.

So the number is 37, or perhaps “yes,no,no,yes,no,yes”’. Try this ques-
tioning strategy on any number from zero to 63 and you will find that six
questions are always sufficient to determine the number. The strategy
depends on cutting the unknown range in two each time (a so-called
“binary chop”).

Conversely, any number between zero and 63 can be represented by
a sequence of yes and no answers to six such questions. What number is
represented by the sequence

yes,yes,no,yes,no,yes?

This number must be built up of a 32, a 16, n0 8, a4, no 2, and a 1.
32+16+4+1 is 53, so the sequence represents the number 53.

Because a yes or no answer is the smallest bit of information we can
extract from our friend, we say any number between zero (six nos) and 63
(six yeses) can be represented by six bits. If on the other hand we know
the number is between zero and seven, three bits are sufficient to describe

ADDITIONAL CALCULATION TOPICS

the number fully. Similarly, numbers up to 15 (24—1) can be expressed
with four bits, and numbers up to 31 (25—1) with five bits. Each new
power of two requires another bit because it requires another yes/no
question to be asked.

This method of representing numbers as a sequence of bits, each bit
corresponding to a yes or no, is called “binary notation” and is the
method normally used by computers. Whether a computer bit represents
yes or no is typically specified by a tiny electronic switch being on or off,
or by a tiny piece of iron being magnetized up or down. A TUTOR
variable contains sixty bits of yes/no information and could therefore be
used to hold a positive integer as big as (269—1), which is approximately
1018, or 1 followed by 18 zeros. What do we do about negative integers?
Instead of using all sixty bits we could give up one bit to represent
whether the number is positive or negative (again, a two-way or binary bit
of information) and just use 59 bits for the magnitude of the number. In
this way we could represent positive or negative integers up to +(259—1),
which is approximately plus or minus one-half of 1918,

But what do we do about bigger numbers, or numbers such as 3.782
which are not integers? The scheme used on the CONTROL DATA®
PLATO computer is analogous to the scientific notation used to express
large numbers. For example, 6.02x102% is a much more compact form
than 602 followed by 21 zeros, and it consists of two essential pieces: the
number 6.02 and the exponent or power of ten (23). Instead of using 59
bits for the number, we use only 48 bits and use 11 bits for the exponent.
Of these .11 bits, one is used to say whether the exponent is positive or
negative (the difference between 10*6, a million, and 10~¢, one-millionth).
The remaining ten bits are used to represent exponents as big as one
thousand (21%—1 is 1023, to be precise). The exponent is actually a power
of two rather than ten, as though our scientific notation for the number 40
were written as 5% 23 instead of 4x10*. That is, instead of expressing the
number 40 as 4x 10!, we express it as 5X23, putting the 5 in our 48-bit
number and the 3 in the 11-bit exponent storage place. In this way we
split up the 60 bits as:

1 bit for positive or negative number
1 bit for positive or negative exponent
10 bits for the power of two

48 bits for the number

The 48-bit number will hold an integer as big as (248—1), which is about
2.5x 104, If we wish to represent the number 1/4, the variable will have a
number of 247 and an exponent of —49:

247x27499=2"2=1/4

219

The TUTOR Language

220

That is, the 48-bit number will hold a large integer, 247, and the exponent
or power of 2, will be —49. The complicated format just described is that
used by the PLATO computer when we calculate with variables v1
through v150. It automatically takes care of an enormous range of
numbers by separating each number into a 48-bit number and a power of
two. This format is called “fractional” or “floating-point” format because
non-integral values can be expressed and the position of the decimal
point floats automatically right or left as operations are performed on the
variable.

Sometimes this format is not suitable, particularly when dealing with
strings of characters. The -storea- and -pack- commands place ten
alphanumeric characters into each variable or “word” (a computer
variable is often called a “word” because it can contain several charac-
ters). We simply split up the sixty bits of the word into ten characters of
six bits each, six bits being sufficient to specify one of 64 possible
characters, from character number zero to character number 63 (26—1). In
this scheme character number 1 corresponds to an “a”, number 2 toa “b”,
number 26 to a “z”, number 27 to a “0”’, number 28 to a “1”, etc. A capital
D requires two 6-bit character slots including one for a “shift” character
(which happens to be number 56) and one for a lower-case “d” (number
4). The -showa- command takes such strings of 6-bit character codes and
displays the corresponding letters, numbers, or punctuation marks on the
student’s screen.

sign of number

sign of exponent

floating-point

exp. 48-b1t number

11 18 48 bits

character stri

t h e c o w] u

6 6 6 6 6 6 6 6 6 6 bits

ADDITIONAL CALCULATION TOPICS'

Nonsensical things happen when a -showa- command is used to
display a word which contains a floating-point number. The two sign bits
(for the number and for the exponent) and the first four bits of the
exponent make up the first 6-bit character code. The last six bits of
the exponent are taken as specifying the second 6-bit code. Then the
remaining 48 bits are taken as specifyifig eight 6-bit character codes.
Small wonder that using a -showa- on anything other than character
strings usually puts gibberish on the screen. On the other hand, using a
-show- with a character string gives nonsense: the floating-point exponent
is made up out of pieces of the first and second 6-bit character codes, the
48-bit number comes from the last eight character codes, and whether the
number and the exponent are positive or negative is determined by
the first two bits of the first character code. (See Fig. 10-1)

So far we have kept numerical manipulations (-calc-, -store-, -show-)
completely separate from character string manipulations (-storea-,
-showa-). The reasons should now be clear. It is sometimes advantageous,
however, to be able to use the power of -calc- in manipulating character
strings and similar sequences of bits. For such manipulations we would
like to notify TUTOR not to pack numbers into a variable in the useful
but complicated floating-point format. This is done by referring to
“integer variables™:

n1,n2,n3-------------- n149,n150

The integer variable n17 is the same storage place as v17, but its internal
format will be different. If we say “calec v17«6”, TUTOR will put into
variable number 17 the number 6, expressed as 6x 245 with an exponent of
—45, so that the complete number is 6x24x2745 or 6. If on the other
hand we say “cale nl17<6”, TUTOR will just put the number 6 into
variable number 17. (See Fig. 10-2.) Since the number 6 requires only
three bits to specify it, variable 17 will have its first 57 bits unused (unlike
the situation when we refer to the 17th variable as v17, in which case both
the exponent and the magnitude portions of the variable contain informa-
tion).

exponent number
-45 6x24° V1746
6 n17«6

Fig. 10-2.

221

The TUTOR Language

222

Consider the following sequence:

calc n17«6

at 1223
showa n17,10

This will cause an “f” (the 6th letter in the alphabet) to appear on the
screen at location 1223. The first 9 character codes in n17 are zero, and
these zero or “null” codes have no effect on the screen or screen
positioning. Indeed, a “showa nl17,9” would display nothing since the
“6” is in the tenth character slot. If we use “show nl17”, we will only see
a “6” on the screen. The integer format of n17 alerts -show- not to expect a
floating-point format.

If we say “calc n23«5.7”, variable n23 will be assigned the value 6.
Rounding is performed in assigning values to integer variables. If
truncation is desired, use the “int” function: “n23<«int(5.7)” will assign
the integer part (5) to n23. Indexed integer variables are written as
“n(index)” in analogy with “v(index)”.

The -showa- and -storea- commands may be used with either
v-variables or n-variables. These commands simply interpret any v- or
n-variable as a character string. This is the reason why we were able to
use -showa- and -storea- without discussing integer variables.

It is possible to shift the bits around inside an integer variable. In
particular, a “circular left shift”, abbreviated as “cls”, will move bits to
the left, with a wrap-around to the right end of the variable. For example:

calc n17«6 cls 54

at 1223
showa n17,1 $$ show one character

will display an “f” even though the -showa- will display only the first
character, because the “6” has been shifted left 54 bit positions (9 six-bit
character positions). A circular left shift of 54 may also be thought of as a
right circular shift of 6 because of the wrap-around nature of the circular
shift.

We have been using “nl7” as an example, but we should actually be
writing “inum” or some such name, where we have used a -define- to

ADDITIONAL CALCULATION TOPICS

specify that “inum=nl17". For the remainder of this chapter we revert,
therefore, to the custom of referring to variables (v or n) by name rather
than number. Also, if we want the character code corresponding to the
letter “f” we should use “f” rather than 6. For example:

calc inum<"f’ cls 54
is equivalent to but much more readable than:

calc n17«6 cls 54.

The quotation marks can be used to specify strings of characters. For
example:

calc inum<“cat”

will put these numbers in inum:

null null null null null null null C a } t
I’ g g "} "} 2 g 3 1 20
Fig. 10-3.

A “showa inum,10” will display “cat”. Notice, particularly, that using
quotes in a -calc- to define a character string puts the string at the right
(“right adjusted”), whereas the -storea- and -pack- commands produce
left-adjusted character strings. It is possible to create left-adjusted
character strings by using single quote marks: inum<‘cat’ will place the
“cat” in the first three character positions rather than the last three.

Let us now return to our early example of the number 37 expressed as
the sequence of six bits “yes,no,no,yes,no,yes”. If we let 1 stand for
“yes”, and @ for “no”, we might write this sequence as:

100101
which stands for:
(1x32)+(0x16)+(0x8)+(1x4)+(0x2)+(1x1) = 324+0+0+4+0+1 = 37

or even more suggestively:

223

The TUTOR Language

(1X25) (0% 24)+{0x23)+(1x22)+(Bx 21) +(1x2¢) = 324+-0+0+4+0+1 = 37

(Note that 2% equals 1.) Writing the sequence in this way is analogous to
writing 524 as:

(5x102)+(2x10")%(4x10°) = 500+20+4 = 524

In other words, when we write 524 we imply a “place notation” in base
10 such that each digit is associated with a power of 1¢: 5x102, 2x 10,
4x10%. Similarly, rewriting our yes and no sequences as 1 and 0
sequences, we find that the string of ones and zeros turns out to be the
place notation in base 2 for the number being represented.

Here are some examples. (1001, means 1001 in base 2.)

1001, = 23+29 =8+1 =9
1100, = 23+22 = 8+4 = 12
110101, = 25+24+22+4+29% = 32+16+4+1 = 53
1000001, = 26+2% = 64+1 = 65

This base 2 (or “binary”’) notation can be used to represent any pattern of
bits in an integer variable, and with some practice you can mentally
convert back and forth between base 10 and base 2. This becomes
important if you perform certain kinds of bit manipulations.

An important property of binary representations is that shifting left
or right is equivalent to multiplying or dividing. Consider these exam-
ples:

<« ghift left 2 places
9 cis 2 = 1001, cis 2 = 100100, = 36
(left shift 2 is like multiplying by'2? or 4)

l<~-~s[hiftlleft 3 places
9 cis 3 = 1001:@@@2 x:72
(left shift 3 like multiplying by 23 or 8)

So, a left shift of N bit positions is equivalent to multiplying by 2. A
right shift of N bit positions is equivalent to division by 2 (assuming no
bits wrap around to the left end in a cls of 60—N). There exists an
“arithmetic right shift”, ars, which is not circular but simply throws
away any bits that fall off the right end of the word:

224

ADDITIONAL CALCULATION TOPICS

thrown away
9 ars 3 = 1001, ars 3 = ﬂ(b>@1 =1.

This corresponds to a division by 23, with truncation (9/22 = 9/8 which
truncates to 1).

A major use of the 60 bits held in an integer variable is to pack into
one word many pieces of information. For example, you might have 60
“flags” set up or down (1 or @) to indicate 60 yes or no conditions, perhaps
corresponding to whether each of 60 drill items has been answered
correctly or not. Or you might keep fifteen 4-bit counters in one word:
each 4-bit counter could count from zero to as high as 15 (24—1) to keep
track of how well the student did on each of fifteen problems. Ten bits is
sufficient to specify integers as large as 1023: you could store six 10-bit
baseball batting averages in one word, with suitable normalizations.
Suppose a batting average is .324. Multiply by a thousand to make it an
integer (324) and store this integer in one of the 10-bit slots. When you
withdraw this integer, divide it by a thousand to rescale it to a fraction
(.324). When we discussed arrays we had exam scores ranging from zero
to 100. The next larger power of two is 128 (27), so we need only 7 bits for
each integer exam score. Eight such 7-bit quantities could be stored in
one 60-bit word.

How do you extract a piece of information packed in a word? As an
example, suppose you want three bits located in the 19th of twenty 3-bit
slots of variable “spack’:

inum<(spack ars 3) $mask$ 7

[x x x x x x x x x x x x Xx x ¥ x x x ? x| spack

[x x X X Xx Xx Xx Xx X Xx X Xx X X X X X X X ?| (spack ars 3)

|6 8 8 7 8 88 8808080008080 888 7| 7 (111,

g # 9 9 P B @ B @ @ @ @ B B P @ @ @A 2| inum
Fig. 10-4.

225

The TUTOR Language

226

The number 7 is 111, (base 2: 4+2+1), so it is a 3-bit quantity with all
three bits “set” or “on” (non-zero). The $mask$ operation pulls out the
corresponding part of the other word, the 3-bit piece we are interested in.
In an expression (x $mask$ y), the result will have bits set (1) only in
those bit positions where both x and y have bits set. In those bit positions
where either x or y have bits which are “reset” or “off” (9), the $mask$
operation produces a #. We could also have used a “segment” definition
to split up the word into 3-bit segments. '

A 4-bit mask would be 15 (1111,) and a 5-bit mask would be 31
(11111,). (Again, “segment” definitions of 4 or 5 bits could be used.) You
might even need a mask such as 110111, (or 55) which will extract bits
located in the five bit positions where 110111, has bits set. There should
be a simpler way of writing.down numbers corresponding to particular
bit patterns. Certainly, reading the number 55 does not immediately
conjure up the bit pattern 110111,!

A compact way of expressing patterns of bits depends on whether or
not-each set of three bits can represent a number from @ to 7:

55 = 110111,
110, = 4+2+0 = 6 1M1, =4+2+1=7

675 = 6x8'+7x8% = 48+7 = 55,4
(base 8) (base 10)

Just as each digit in a decimal number (base 1) runs from @ to 9, so do the
individual numerals run from @ to 7 in an octal number (base 8). Octal
numbers are useful only because they represent a compact way of
expressing bit patterns. With practice, you should be able to convert
between octal and base 2 instantaneously, and between base 8 and base
10 somewhat slower! See the table below.

base 10 base 8 base 2

0 0 or 000
1 1 or 001
2 These 10 or 010
3 should 11 or 011
4 be 100

5 memorized 101

6 110

7 111

NOOA~AWN-©

ADDITIONAL CALCULATION TOPICS

base 10 base 8 base 2
(continued) (continued) (continued)

8 10 1000

9 1 1001
10 12 1010
11 13 1011
12 14 1100
13 15 1101

The conversion between base 8 and base 2 is a matter of memorizing the
first eight patterns, after which translating 1101011011101, to octal is
simply a matter of drawing some dividers every three bits:

1%101‘011'011}101
1|5}3||3|5 ~ 15335,

What is 15335 in base 10?

84| 8|88 |8
4096 | 512 |64 (8 |1

1 5 3 3 5 = 1x4096+5x512+3x64+3x8+5 = 5853,

How about the octal version of the number 79? The biggest power of 8 in
79 is 82 (64), and 79 is 15 more than 64. In turn, 15 is 1x81+7x8%, so:

7915 = 1X64+1x8+7x1 = 1x82+1x8'+7x8% = 117,

Luckily, in bit manipulations the conversions between base 2 and base 8
are more important than the harder conversions between base 8 and base

10.

To express an octal number in TUTOR, use an initial letter “o0”:
x $mask$ 037

will extract the right-most 5 bits from x, because 037 = 37g = 011111,
which has 5 bits set. Naturally, a number starting with the letter “o” must
not contain 8’s or 9’s.

You can display an octal number with a -showo- command (show
octal):

showo 39

227

The TUTOR Language

228

will display “00000000000000000G47” on the screen (39,4=47g). The
default format is twenty (3-bit) octads, corresponding to a whole 60-bit
word:

showo 39,4

will display “0047”, showing just four octads.
Now that we have discussed the octal notation, it is possible to point
out what happens to negative numbers:

showo -39

will display “77777777777777777730”. A negative number is the “com-
plement” of the positive number (binary 1’s are changed to #’s and binary
@’s are changed to 1’s). In octal, the complement of @ is 7 (00@,—111, =
7s), and the complement of 7g is @s. In the example shown, octal 47 is
100111, whose complement is @11000,, or 30s. Notice that the left-most
bit (the “sign” bit) of a negative number is always set. In order for a
negative number to stay negative upon performing an “arithmetic right
shift”, all the left-most bits are set. So,

040000000000000003242 ars 6
077400000000000000032.

yields:

Only the sign bit was set among the left-most bits before the shift (040 is
100000,), but after the shift the first seven bits are all set. The “circular
left shift”, cls, does not do anything special with the sign bit.

It is interesting to see the bits set for floating-point numbers:

calc v1<3

at 1215
write pos=<o,v1> $$ o for -showo-
neg=<o,—v1p)

will make this display:

pos = 17216000000000000000
neg = 60571777777777777777

ADDITIONAL CALCULATION TOPICS

Note that the negative number is the complement of the positive. The
48-bit magnitude (600000000OPOOPPP) represents a huge integer (6x245).
The eleven bits between the sign bit and the 48-bit magnitude give the
power of two (—46) by which the magnitude is to be scaled (3 =
6x245x2746 = 6x271 = 3). A bias of 20005 is added to the correct
exponent (—46, or —56g) to give an eleven-bit exponent of 1721s.
Exponents less than 2000 represent negative powers and exponents
greater than 2000s represent positive powers.

We have encountered octal numbers (e.g., 0327) which can be shifted
left (cls) and right (ars) and complemented (by making them nega-
tive). Pieces can be extracted with a $mask$ operation. Additional bit
operations are $union$, $diff§, and “bitent”. The “bitent” function gives
the number of bits set in a word: bitent(025) is 3, because 025 is 010101,,
which has 3 bits set; bitent (—025) is 57, since the complement will have
only 3 of 60 bits not set; and bitent (@) is 0. Like $mask$, $union$ and
$diff$ operate on the individual bit positions, with all 60 done at once:

x $mask$ y produces a 1 only where both x and y have 1’s.
x $union$ y produces a 1 where either x or y or both have 1's.
x $diff$ y produces a 1 only where x and y differ.

Note that $union$ might be called “merge”, since 1’s will appear in every
bit position where either x or y have bits set. The $diff$ operation might
also be referred to as an “exclusive” union, since it will merge bits except
for those places where both x and y have bits set.

While $mask$ can be used to extract a piece of information from a
word, a $mask$ that includes all but that piece followed by a $union$ can
be used to insert a new piece of information.

These bit operations can be used with arrays. For example, if A, B,
and C are true arrays, the statement “C«A $diff$ B” will replace each
element of C by the bit difference of the corresponding elements of A and
B.

Byte Manipulation

The most common use of bit manipulations is for packing and
unpacking “bytes” consisting of several bits from words each of which
contain several bytes. This can lead to major savings in space. If an exam
score lies always between @ and 100, only seven bits are required to hold
each score, since (27—1) is 127. Another way to see this is to write the
largest 7-bit quantity: 1111111, = 177g = 1x82+7x8'+7%x8% = 64+56+7
= 127. This is one less than 200s, which requires an eighth bit. We can fit

229

The TUTOR Language

230

eight 7-bit bytes into each 60-bit word. Happily, TUTOR will do the
bookkeeping, as we saw earlier:

define segment,scores=n31,7

This definition makes it possible to work with this “segmented” array as
though it were an ordinary array:

calc ss«scores(3)
scores(17)«<83
etc.

These refer to the 3rd and 17th bytes. The first eight 7-bit bytes reside in
n31, with the last 4 bits unused. The next eight bytes are in n32, etc. The
17th byte is the first 7-bit byte in n33.

Just as it is possible to give up one bit of a 60-bit word in order to
have negative as well as positive numbers, so it is possible to have both
positive and negative numbers stored in a segment array:

define segment,temp=v52,8,signed

calc temp(23)<=—95

With 8-bit bytes we can have numbers in the range of +127. The word
“signed” may be abbreviated by “s”.

Now that you understand the bit structure of a variable, you should
be able to understand the table (Table 10-1) provided earlier of segment
ranges and the number of segments per variable. Look at the table now

and see whether you can check the entries in the table.

Vertical Segments

We might call the segments discussed so far “horizontal” segments
(the segments move horizontally across each word). It is possible to
define “vertical” segments (each of which occupies only part of a word):
successive segments are found in the same position in successive
words, rather than in different positions within the same word. As an
example, “define segmentv,left=n51,1,30" defines vertical segments
each occupying the left half of words n51, n52, n53, etc. Each segment

ADDITIONAL CALCULATION TOPICS

starts in bit position 1 of each word, and each segment is 30 bits long. The
right halves of the words could be specified with “define segmentv,
right=n51,31,30", whose elements begin in the 31st bit position and are
30 bits wide. An “s” can be added to denote signed segments, as with
horizontal segments.

Aside from the intrinsic usefulness of this kind of segmenting of
words, the simpler structure permits TUTOR to process vertical segments
much faster than horizontal segments, and only slightly slower than
normal whole-word variables.

You can save space with true arrays by putting the elements in
vertical segments. The -define- statement looks like “define arraysegv,
A(10)=n5,3,12,s”. This example defines a ten-element array, with A(1)
represented by a 12-bit signed segment starting in bit position 3 of n5. It
is not yet possible to define a true array in horizontal segments.

Alphanumeric to Numeric: The -compute-
Command

The -store- command analyzes the judging copy of the student’s
response character string and produces a numerical result. This is
actually a two-step process. First, the character string is “compiled” into
basic computer instructions and then these machine instructions are
“executed” to produce the numerical result. During the compilation
process the “define student” definitions and the built-in function defi-
nitions (sin, cos, arctan, etc.) are used to recognize the meaning of names
appearing in the character string. Numbers expressed as alphanumeric
digits are converted to true numerical quantities. For example, the
character string 49 becomes a number by a surprisingly indirect process.
The character code for “4” is 31 since “z” is 26, “0” is 27, etc. The
character code for “9” is 36. The number expressed by typing 49 is
obtained from the formula:

10(31—27)+(36—27) or 10("4" —"@"")+("'9" —""0")
10(4)+(9)
40+9
49

For these and similar reasons, the compilation process is ten to a hundred
times slower than the execution process. Therefore, TUTOR attempts to
compile the student’s response only once, while the resulting machine
instructions may be used many times.

231

The TUTOR Language

232

The first -store-, -ansv-, -wrongv-, -storeu-, -ansu-, or -wrongu-
command encountered during judging triggers compilation. All these
commands following the first one simply reuse the compiled machine
instructions. If a -bump- or -put- makes any changes in the judging copy,
a following -store- or related command will have to recompile. Similarly,
a “judge rejudge” will force recompilation by any of these commands.
Note that re-execution is always performed even if recompilation isn’t,
because the student might refer to defined variables whose values have
been altered.

While -store- will compile and execute from the judging copy, the
regular -compute- command will compile and execute from any stored
character string:

compute result,string,#characters,pointer
For example:

compute v35,v2,v1,v22

[—)
/ character \

return string pointer to
numerical machine instructions
result

After compilation, the “pointer to machine instructions” contains the
location of the machine instructions in a special -compute- storage area.
You must zero the pointer at first to force compilation. TUTOR will then
set the pointer appropriately, so that re-executions of the -compute-
command can simply re-execute the saved machine instructions. Here is a
unit which permits the student to plot functions of interest to him or her.

define student
x=v1
define ours,student
result=v2,string=v3,point=v35
origin 100,250
bounds 0,—200,300,200

scalex 10
scaley 2

*

unit graph
next graph

ADDITIONAL CALCULATION TOPICS

back graph
axes $$ display the axes
labelx 1
labely 0.2
at 3105
write Type a function of x:

. arrow where+2
storea string,jcount

f oK

L / calc x<pointe0

s f : | compute result,string,jcount,point

|) goto formok,x,badform

- \ / gat 0,result $$ draw from here

8.8 L——t ;\ P S AR doto 8plot,x<«.1,10,.1

a4 " \ compute result,string,jcount,point

\ \ goto formok,x,badform

| \ gdraw ;x,result

1.2 8plot

1.6 *

2. t unit badform

Type a function of x: ¥ 2.5simx/ [1+x(cos2x) 2] ok at 32®7
writec formok, . . . $$ tell what’s wrong
Fig. 10-5. judge wrong

Different functions can be superimposed by changing the response
instead of pressing NEXT or BACK. The first -compute- in this unit
calculates the value of the student’s function for x equal to zero. The -gat-
command positions us at location (0, result) so that the first -gdraw- will
draw a line starting at that point. The system variable “formok” has the
value —1, if compilation and execution succeed; @ if compilation suc-
ceeds but execution fails (due to such errors as trying to take the square
root of a negative number); and various positive integral values for
various compilation errors (missing parentheses, unrecognized variable
names, etc.).

Note that predefined functions can be more easily plotted with a
-funct- command. For example, the student could specify a value for “n”,
and you could plot a polynomial simply by using “funct x%x<0,10,.1”.
But, you must use -compute- if the student is permitted to try arbitrary
functions of his or her own choosing.

As another example, the PLATO lesson “grafit” (written by this
author) permits the student to write up to fifteen statements in the grafit

233

The TUTOR Language

234

language and execute his or her program to produce graphical output (as
seen in Fig. 10-6):

Welcome to GRAFIT (HELP is available)
1 veted
2 x&x+vd
3 vevs [- (kem x31d
4 tot+d
5 goto 2 Press
(37 -SToP-
7 to
8 quit.
9
18
11
12
13
14
2.888 15
x
-2.88
B.88e2 t 8.989
Press BACK to clean up screen.

Fig. 10-6.

This student’s program calculates the motion of a mass oscillating on the
end of a non-standard spring. The two curves are the superposition of
running the program twice with different values of the parameters. The
heart of this lesson is a loop through a -compute- command with string,
character count, and point all being indexed variables. The index is the
line number, from 1 to 15. Each student response is analyzed using a
-match- command looking for keywords such as “goto”. Then the rest of
the response is filed away with a -storea- into the string storage area
corresponding to that line number. The 15 pointer variables are zeroed in
the “ieu” (initial entry unit) to insure that when the student returns to a
PLATO terminal after several days TUTOR won’t be confused over
whether the strings have been recently compiled or not. Also, whenever
the student changes one of his or her statements, the corresponding
pointer is zeroed in order to force recompilation of the altered character
string. The student can press DATA to initialize parameters, LAB to
specify what variable to plot against what variable, and HELP for a
description of the grafit language. The student define set defines all 26
letters as variables the student can use.

ADDITIONAL CALCULATION TOPICS

Note that even though s, i, and n have been defined in the student
define set, the student can use the “sin” function. The reason that the
student’s “sin” is not interpreted as sxiXn is that TUTOR looks for the
longest possible name in a string of characters typed by the student. One
difference between the handling of student expressions and author
expressions is that students cannot reference system variables such as
“where”, “anscnt”, or “data” (the numerical value of the DATA key). If
you want the student to be able to use “where”, define it in the student
define set as “where=where”. While authors are discouraged from using
primitive names such as v47 (except in a -define- statement), students are
not permitted to use primitives at all. This is done to protect the author’s
internal information. Similarly, students cannot use the assignment
symbol («), except in a -compute-, unless there is a “specs okassign”.

It should be mentioned that while -compute- converts alphanumeric
information into a numerical result, there is an -itoa- command that can
be used to convert an integer to an alphanumeric character string. Most
often, however, the -pack- command with embedded -show- commands
will be used to convert non-integer as well as integer values to the
corresponding character strings.

The -find- Command

The -search- command discussed in Chapter 8 is character-string
oriented and will locate ‘dog’ even across variable or word boundaries:
the “d” might be at the end of one word and the “og” at the beginning of
the next word. The -find- command, in contrast, is word oriented. It will
find which word contains a certain number or character string:

find 372,n1,50,n125
/ LN \

look starting™ looking return the
atnl through location

for 372

50 words

If nl contains 372, n125 will return the value 0; if n2 is the first word
which contains 372, n125 will be 1; etc. If none of the 50 words contains
372, n125 will be set to —1. Notice that in -search- the return is 1, not 0, if
the string is found immediately. This is due to the fact that in character
strings we start numbering with character number 1. On the other hand,
here the first word is n(1+0).

Do not use v-variables in the first two arguments of -find- because
-find- makes its comparisons by integer operations. The first argument
can be a character string such as ‘dog’ or “dog”. You can look at every 3rd
word by specifying an optional increment:

235

The TUTOR Language

236

find “cat’,n1,50,n125,3
gt

optional

This will look for “cat” in nl, n4, n7, etc., and n125 would be returned 0,
or 3, or 6, etc. Negative increments can be used to search backwards from
the end of the list.

You can also specify that a “masked equality search” be made:

find “cat",n1,5(b,n125,1,o777700)\
e mask
not optional

In this case, n125 will be zero if [(n1 $diff$ “cat”) $mask$ o777700] is
zero. The mask specifies that only a part of the word will be examined.
The increment must be specified, even if it is one, to avoid ambiguity.

There is a -findall- command which will produce a list of all of the
locations where something was found, rather than producing locations
one at a time.

The -exit- Command

Suppose you are seven levels deep in -do-s. That is, you have
encountered seven nested -do- statements on the way to the present unit.
The statement “exit 27 will take you out two levels. The next statement
to be executed is the statement which follows the sixth -do-. A blank -exit-
command (blank tag) takes you immediately to the statement following
the first -do-. (Such operations are occasionally useful.) Notice that
encountering a unit command at the end of a done subroutine will cause
an automatic “exit 17. It is superfluous to put “exit 1" atthe end of a
unit, since this effect is automatic.

