Additional Display Features 9

More on the -write- Command

It should be pointed out that the -at- command not only specifies a
screen position for subsequent writing but also establishes a left margin
for “carriage returns” (CR on the keyset), much like a typewriter. Upon
completion of one line of text, the next line will start at the left margin set
by the last -at- command. There are carriage returns implicit in “contin-
ued” write statements:

at 1215
write Now is the
time for all

good men to
come home.

The “at 1215” establishes a left margin at the 15th character position so
that each line will start there. This example will produce an aligned
screen display similar to the appearance of the tags of this continued
-write- statement.

The setting of a margin by -at- has an unusual side effect. Consider:

at 2163
write The cow jumped.

m

The TUTOR Language

This will put the following display on the screen:

Th
e
co
w
ju
mp
ed

This unusual display is caused by the setting of the left margin at
character position 63, just two characters shy of the right edge of the
screen. When a -write- would go past the right edge of the screen,
TUTOR performs a carriage return to drop down one line, starting at the
left margin. An -arrow- also sets a left margin with respect to the student
typing a long response which would pass the right edge of the screen.
Further typing appears on the next lower line starting at the margin set by
-arrow-.

Occasionally, it is useful to position something on the screen without
setting a margin. This can be done with an -atnm- command (“at with no
margin”). The statement “atnm 12157, is equivalent to “at 1215, but
does not change the current margin setting.

It is important to understand that writing characters on the screen
automatically advances the terminal’s current screen position. Suppose
we have consecutive -write- statements:

at 712
write horses
write and cows

This sequence will display “horseand cows” all on line 7. The first -write-
(“horses”) advances the terminal’s screen position from the 712 specified
by the preceding -at- to 712+6=718 (there being 6 characters in the text
“horses”). Without an explicit -at- to change this, the second -write- (“and
cows”’) starts at position 718. Note that:

at 712
write horses
and cows

would give a different display:

horses
and cows

172

ADDITIONAL DISPLAY FEATURES

because the “continued” -write- statement implies carriage returns.
TUTOR keeps track of the current screen position in a system
variable named “where”. For example:

at 712
write horses

at where+305 $$ “where” is 712+6=718 here
write and cows
will produce the display:

where

e

horses,

3 lines where+305

D e T p——

..... ‘and cows
B Y
5 characters

The statement “write horses” leaves the screen position at 712+6=718,
and the system variable “where” therefore has the value 718. When you

then say “at where+305” this is equivalent to saying “at 718+305” or
“at 10237

There are many uses of this “where” system variable. Here is another
y
example:

at 1215
write What is your name?
arrow where+3

This will appear as:

What is your name? > Sam

The arrow has been positioned 3 characters beyond the end of the -write-
statement’s display.

The positioning information is useful with other display commands
as well. Consider this:

173

The TUTOR Language

174

at 815
write Look at this!
draw where;815

This will display underlined text:
Look at this!

This is due to the fact that upon completion of the -write- statement,
“where” refers to the beginning of the next character position just after
the exclamation point. We simply draw from there back to the starting
point. This form of the -draw- statement is so common that a concise form
is permitted. For example, ‘“draw ;815" is equivalent to
“draw where;815”. Either form will draw a line or figure starting at the
current screen position. This is particularly useful in constructing a
graph (by connecting the new point to the last point with a line). The
point reached with a -draw- (or any display command) will be the new
screen position and may be referred to through the system variable
“where”, which is kept up to date automatically by TUTOR.

There are fine-grid system variables “wherex” and “wherey”” which
correspond exactly to the coarse-grid “where”. The position
“where+305” is equivalent to “wherex+(5x8),wherey—(3x 16)” because
a character space is 8 dots wide and 16 dots high. The minus sign is
present because, in coarse grid, line 4 is below line 3, whereas in fine grid
dot 472 is above dot 471.

Superscripts and subscripts may be typed either in a locking or
nonlocking mode. To type “102%” you can either: (a) press 1, press 0, press
SUPER, press 2, press SUPER, press 3 (non-locking case); or (b) press 1,
press 0, press shift-SUPER (that is, hold down the shift key while
pressing SUPER), press 2, press 3. To get down from a locked superscript
you type shift-SUB (locking subscript). Notice that in typing superscripts
or subscripts the SUPER and SUB keys are pressed and released before
typing the material to be moved up or down. You do not hold these keys
down while typing, unlike the shift key used for making capital letters.

It is possible to overstrike characters to make combinations. The
symbol “¥” can be made by typing v, backspace, SUPER, minus sign.
This will superimpose a raised minus sign above the v. The backspace is
typed holding down the shift key while hitting the wide space bar at the
bottom of the keyset. Similarly, “horse” can be typed by typing “horse”
followed by five backspaces and five underline characters. Note that these
superpositions of characters won’t work in “mode rewrite”, where a new
character is written on the screen. In mode rewrite, the last example
would show up as “ ”, the “horse” having been wiped out by
the characters whose only visible dots are the low, horizontal bars.

ADDITIONAL DISPLAY FEATURES

Extensions to the Basic Character Set

We've seen examples of lower-case and upper-case characters, num-
bers, punctuation marks, superscripts, and subscripts. What if you need
special accent marks, or an unusual mathematical symbol, or the entire
Cyrillic alphabet for writing Russian? It is important that you be able to
write text on the screen using the special symbols of your particular
subject area. In addition, it is possible to use special characters to display
small, intricate figures whose display would be slow and cumbersome if
done with -draw- commands.

The PLATO terminal has 126 built-in characters (including those
used so far) and storage for 126 additional characters which can be
different in every lesson. For example, Russian lessons fill this additional
character storage space with the Cyrillic alphabet, whereas there is a
genetics lesson which fills the storage area with fruitfly parts which
permit displaying flies by writing appropriate characters at appropriate
positions on the screen. We will learn how to access all 252 characters
(126 which are built-in and 126 which can be varied).

The 126 built-in characters include many useful symbols which do
not appear on the keyset (since there aren’t enough keys). This is due to
the fact that the keys on the right of the keyset are reserved for various
important functions (ERASE, BACK, STOP, etc.). In order to access the
“hidden” characters it is necessary to first strike the ACCESS key
(presently the shift-[J key) and then to strike a second key. Like SUPER
and SUB, the ACCESS key is not held down but struck. You can press
ACCESS, then “a” to get a Greek alpha; ACCESS-b for beta;
ACCESS-m for mu; ACCESS-= for #; and also ACCESS-<or> for
< and =. It is useful to try ACCESS followed by every key (or shifted
key) at a terminal to find approximately 36 useful hidden characters. In
most cases, there is a mnemonic connection between the key which
follows the ACCESS key and the hidden character which results, such as
being ACCESS-=. ACCESS followed by comma gives the symbol }
mentioned in the discussion of the -writec- command in Chapter 6.
ACCESS-0 and ACCESS-1 give the symbols {and > used for embedding
-show- commands in -write- statements. (In the discussion of “micro
tables” later in this chapter, we will see that the MICRO key is equivalent
to the ACCESS key, under normal circumstances.)

You can get at the “alternate font” of 126 additional, modifiable
characters by pressing the FONT key (the shifted MICRO key), then
typing regular keys, which will produce characters from the alternate
font. Which characters appear depends on what character set has been
previously loaded into the terminal. The FONT key toggles you between
the standard built-in font and the alternate font (you stay in the alternate

175

The TUTOR Language

font until you strike FONT to return to the standard font). It is, therefore,
not necessary to strike FONT for each symbol (unlike the way ACCESS
works).

Here is an example of the use of a special character set:

at 912

write Now LOADING CHARRACTER SET.
Please be patient - loading
takes about 17 seconds.

charset charsets,russian

erase $$ full-screen erase to remove message
unit intro
at 9@5

write The Russian word kapaHaaw means pencil.

Fig. 9-1.

The -charset- statement sends to the terminal the character set specified in
the tag (character set “charsets,russian” in this case). Character patterns
are transmitted to the terminal at a rate of 7.5 character patterns per
second, so a full 126-character set will take about 17 seconds to send.
Precede the -charset- command with a -write- statement to explain this
delay to the student, so that he or she will not think that something is
wrong or broken! The full-screen -erase- will remove the message upon
completion of the loading process. Once the character patterns have been

176

ADDITIONAL DISPLAY FEATURES

loaded into the terminal, it is possible to write Russian text on the
student’s screen at the same high speed as English, 180 characters per
second, which corresponds to a reading speed of almost two thousand
words per minute.

TUTOR keeps track of which character set has been loaded into the
terminal and skips a -charset- statement if loading is not required. In the
above example, TUTOR would rush right through the message, skipping
the -charset- and erasing the screen. There would not be the 17-second
delay which occurs if the Cyrillic characters have not been loaded.

The -write- statement in unit “intro” is created by:

1. typing “write The Russian word"’;

2. striking the FONT key to select the alternate font;

3. typing the keys k, a, r, a n, d, a, w (which
causes xapaHaaw tO appear)

4. striking the FONT key to toggle back to the standard font

5. typing " means pencil.”

Each character in the alternate font is associated with a key on the keyset.
For example, the creators of the “russian” character set chose to associate
the Cyrillic “ 8" with the “d” key because of the phonetic similarity of
these two letters. Similarly, the Cyrillic “p” and “w” sound like the “r”
and “n” letters with whose keys they are associated. Just as accessing
some of the 126 built-in characters requires the ACCESS key, so a full
126-character alternate font will also necessitate the use of the ACCESS
key to reach some of the characters.

If the student is to respond at an -arrow- with a Russian response, he
or she must hit the FONT key in order to do so. Usually it is preferable to
precede the first judging command with the statement “force font”,
which essentially hits the FONT key for the student. The student merely
uses the regular typing keys, but the typing appears in the alternate font.
Some languages, including Arabic, Hebrew, and Persian, are written
right-to-left instead of left-to-right. For these languages use a
“force fontleft” and the student’s typing will automatically go left-
wards from the -arrow- in the alternate font.

The “initial entry unit’ (ieu)

You may have noticed that the first few statements of the previous
example (which write a message, load a character set, and then erase the
screen) are not preceded by a -unit- statement. This is intentional.

177

The TUTOR Language

178

TUTOR statements which precede the first -unit- statement (“unit intro”
in this case) constitute an “initial entry unit” which is performed
whenever a student enters the lesson. The “initial entry unit” (or “ieu”) is
the logical place to put various kinds of initializations, such as a -charset-
statement to load characters which will be used throughout the lesson.
Although -define-, -vocabs-, and -list- statements are not actually executed
(they are only instructions to TUTOR on how to interpret -calc-,
-concept-, and -answer- statements in preparing a lesson for student use),
they can also be placed in the “ieu” at the beginning of the lesson, for the
sake of readability.

The importance of the “ieu” lies in the fact that it is performed no
matter where the student starts within the lesson (even if the student does
not start at the first unit statement). TUTOR is capable of keeping track of
a student’s place within a lesson, so that a student who leaves without
finishing a lesson is able to restart the next day where he or she left off. It
is important, in the restarting process, to load the appropriate character
set. The restart procedure can not be executed properly if the -charset-
statement comes after the first -unit- statement (since the student will not
go through the first part of the lesson again).

Suppose the student is to restart in unit “middle”, which looks like
this:

unit middle
next mid2

The “ieu” is utilized in such a way that TUTOR acts as though the “ieu”
were done at the beginning of the restart unit:

unit middle
(do “ieu”)
next mid2

This pseudo-do is the reason for following the -charset- statement with a
full-screen erase. We don’t want the “loading” message to interfere with
the display to be created by unit “middle”.

Smooth Animations Using Special Characters

The -charset- command is not limited to its use with foreign
alphabets. Special characters are often used to create pictures:

at 1319
write This &= uses special characters!

ADDITIONAL DISRLAY FEATURES

The car is composed of several adjacent characters. Because characters
can be drawn very fast (180 per second), dramatic animations are
possible:

mode rewrite
do drive,x<100,400
*

unit drive
at x,200
write £

The car advances one dot at a time. If the car characters are designed in
such a way as to leave a vertical column of blank dots at the back of the
car, the “rewrite” mode will insure that the advancing car simultaneously
erases its old position. If two columns are left blank, the car could be
advanced two dots at a time and still completely wipe out the previous car
display. This type of animation can run as fast as twenty or thirty moves
per second, which creates the illusion of a smoothly moving object.

For the built-in characters there is an expandable and rotatable (but
slow) line-drawn form available through the use of -size- and -rotate-, but
these commands have no effect on charset characters. If a larger or rotated
car is needed, it can be constructed with -draw- and -circle- commands,
built up out of additional special characters, or produced with “lineset”
characters. A lineset is like a charset, but the characters are made up of
lines instead of dots. If “size” is not zero, and a lineset is in effect,
alternate-font text is displayed as line-drawn characters which can be
expanded and rotated.

Creating a New Character Set

Figure 9-2 on the following page demonstrates how a special
character is designed at a PLATO terminal. The author moves the cursor
on an 8 X 16 grid to specify which dots are to be lit. The author can
inspect “in the small” the appearance of the character he designs “in the
large”. The letter shown at the top of the page is the key with which this
character will be associated when typing in the alternate font, just as
character “a” is associated with key “d” in “charset russian”. The
character pattern is stored in such a way that the author can (at any later
time) recall the pattern and modify it. A character set can contain up to

126 special characters or as few as one or two characters.

179

The TUTOR Language

Character Design t 29
'
0|0j0|0 "+" move point mode
c|lolo|ofofo "o" store point mode
olololololololo "-" remove point mode
- "i" inspect
ojolo|o|ofo|O]|O "R" restore
0j0]|0|0j0|0|0]|O
0j0jo|0f0O|0
B olo
00 +
o0
0j0
0(0 .
This t is your character
0|0
) olo
clo
of{ojojo
0[|0|0]|0|0O|O >
Press -BACK- to format when you are done
Press -HELP1- to exit without formating

Fig. 9-2.

Figure 9-3 shows how an author can create several 8 X 16 characters
at once to be used together or separately. This option is particularly
helpful when designing character-mode pictures.

Characters
s
B ofofalolofolo]d alb
al 5] 5} . I . r
. 0 o] ¥
[a) [x] [§]
0 [5]) 0
Slefool “ojelalolofalalalolofe
) : 4] - 5]
(] 5
Q &
1912 slojololololo Slale
8]] i) 5 o]
Q10 olol
&
-
) BACK = done
| HELP1 = exit
- 5
Fig. 9-3.

180

ADDITIONAL DISPLAY FEATURES

Your own character set will be stored in an electronic storage area
assigned to you. Such storage areas are called “lesson spaces”™ because
they mainly hold TUTOR statements which describe a lesson to be
administered to students by PLATO. Your lesson space might be called
“italian3” and it is by this name that you refer to the lesson space when
you want to look at the TUTOR statements or change them. Within this
lesson space you can also have one or more character sets, which you will
have named. Suppose in lesson space “italian3” you have stored a
character set named “rome”. In this case, the TUTOR statement used to
-transmit this character set to a terminal is:

charset italian3,rome
lesson space character set

The same format holds for linesets.

Micro Tables

It is sometimes desirable to associate a string of several characters
with a single key. For example, the symbol v may be produced by v,
backspace, superscript, minus sign. It is possible to set up a “micro table”
so that v may be produced simply by hitting the MICRO key followed by
hitting “v”. Similarly, the micro table might specify that MICRO-e
should be equivalent to typing e, shift-SUPER, k, x, SUPER, 2, shift-SUB
to make e ¥*2 The micro table makes possible a kind of shorthand which
can be useful both to authors composing -write- statements and to
students typing complicated responses.

Like character sets, micro tables reside in lesson spaces. If lesson
space “italian3” contains a micro table named “dante”, these micros can
be made available to students by the statement:

micro italian3,dante
As with -charset-, the -micro- statement should be placed in the “ieu”
(initial entry unit).

Figure 9-4 on the following page shows how an author defines an
item in a micro table, by associating a string of characters with a
particular key. Later the effect of striking MICRO followed by this key is
identical to typing this string of characters. With a “force micro” in
effect, the student does not even have to press MICRO. This makes it easy
to redefine the keyboard.

181

The TUTOR Language

182

Press the key you want to set a MICRO for...

Here is the old MICRO...

Type 1n the new MICRO...

> ekxz

(press 3ACK to leave as 1s)

LAB = see everything BACK = all finished
DATA = change micro tupe DATAL = FUNCTION option
Fig. 9-4.

If you do not specify your own micro table, a standard one is
provided that lets you use the MICRO key as though it were the ACCESS
key. For example, MICRO-p gives ACCESS-p, which is . This
means you can (and should) mention only the MICRO key to students in
your typing directions to them. It is not necessary to mention ACCESS.
Note, however, that ACCESS-p must be used to make a m if you have
your own micro table with a different definition for MICRO-p.

The Graphing Commands: Plotting Graphs with
Scaling and Labeling

You may often want to plot a horizontal or vertical bar graph or other
kinds of graphs to display relationships. There exists a group of TUTOR
commands which collectively make it very easy to produce such displays.
In particular, scaling of your variables to screen coordinates is automatic,
as is the numerical labeling of the axes, with tick marks along the axes.
Figure 9-5 shows some examples.

Suppose you want a graph to occupy the lower half of the screen. The
horizontal x-axis should run from zero to ten and the vertical y-axis from
zero to two. Both axes should be labeled appropriately. These statements
will make the display shown in Figure 9-6.

ADDITIONAL DISPLAY FEATURES

Cost vs Quantity
e 15% ke Produced 191
Total Sales
Gross Profits
W1 dgets
Frugals
Glitches
Stimulus T
Fig. 9-5.
unit setup
gorigin 50,50 $$ x,y graph origin
axes 400,150 $$ lengths in dots
scalex 10 $$ maximum x
scaley 2 $$ maximum y
labelx 2,.5 $$ major mark every 2,
* minor every .5
labely .6 '$$ major mark.every .5 = "
graph 6,15A $$ x=6, y=1.5 .
graph 8,.5,BC $$ x=8, y=.6 2T !
hbar 3,15 $$ horizontal bar to s p——— "
* 3,15 toa t / . .
vbar 45,1 $$ vertical bar to I :
* 4.5,1 . !
gdraw 2,.5;4,1.5;7,0 T 2 y ‘ wod
gat 4,2)
write Top Fig. 9-6.

After specifying -gorigin- and -axes- in terms of fine-grid screen coordi-
nates, the -scalex- and -scaley- commands associate scale values with the
end points of the axes. These scale values determine how (x,y) coordinate
positions given in later statements will be scaled to screen coordinates.

183

The TUTOR Language

The -labelx- and -labely- commands cause numerical labels and tick
marks to appear. The statement “graph 6,1.5,A” plots an A at x=6, y=1.5
in scaled coordinates. The -hbar- and -vbar- commands draw horizontal
and vertical bars to the specified scaled points. The -gdraw- command is
like -draw-, except points are specified in terms of scaled quantities. The
-gat- command is like -at- but uses scaled quantities.

Read the example over and try to identify in the picture what part of
the display results from each statement. (Keep in mind that each number
in the tags of these statements could have been a complicated mathemati-
cal expression.)

The -markx- and -marky- commands are similar to -labelx- and
-labely- but merely display tick marks without writing numerical labels.
The -axes- command has an alternative form which allows for axes in the
negative directions. (See Figure 9-7.)

gorigin 100,200
axes —50,—100,300,150

minimum X,y maximum X,y
from origin from origin

288

188

v

168

00

184

Fig. 9-7.

Although the commands were originally designed to make it easy to
draw graphs, the automatic scaling features make these commands useful
in many situations. Note, in particular, that you can move complicated
displays around on the screen merely by changing the -gorigin- state-
ment.

Additional graphing commands include -gvector- for drawing a line
with an arrowhead at one end, -polar- for polar coordinates, and -lscalex-
and -lscaley- for logarithmic scales. The -bounds- command has the same

ADDITIONAL DISPLAY FEATURES

effect as -axes- in establishing lengths, but no axes are drawn on the
screen (a later blank -axes- command will display the axes). The -gbox-
command is used to draw rectangular boxes easily. The -gcircle- com-
mand draws circles or, if the x- and y-scales are different, -gcircle- will
draw an ellipse.

Functions can be plotted very easily with the -funct- command. For
example, “funct 5sin(2w),w<1,5,.02” will plot the function “5sin(2w)”
by evaluating this function for values of w running from 1 to 5 in steps of
.02. Note the similarity to the form of the iterative -do- statement. If there
was an earlier “delta .02 statement, we can leave off the increment and
simply write “funct 5sin(2w),w«1,5”. If, in addition, we want the
function to be plotted all the way from the left edge of the established

>

axes to the right edge, we simply write “funct 5sin(2w),w”.

Summary of Line-drawing Commands: -draw-,
-gdraw-, -rdraw-

Recall that the -draw- statement has the form:
draw point1;point2;point3;etc.

Each point in a -draw- statement may be coarse-grid (such as “1215”) or
fine-grid (such as “135,245”). Each point specification is set off by a
semicolon in order to avoid ambiguities when mixing coarse-grid and
fine-grid points, as in “draw 1525;1932;35,120;1525” (the first two
points are given in coarse-grid; the third, in fine-grid; and the last point in
coarse-grid coordinates).

A discontinuous line drawing can be made with a single -draw-
statement by using the word “skip”:

draw 1518;1538;skip;1738;1718

Using “skip” in a -draw- statement means “skip to the next point without
drawing a line.” This example is essentially equivalent to:

draw 1518;1538
draw 1738;1718

The only difference between these otherwise equivalent forms is related
to the fact that the system variables “where”, “wherex”, and “wherey”
are not brought up to date until the completion of the -draw- statement.
The sequence:

185

The TUTOR Language

186

at 1319 $$ affects “where”’
draw 1518;1538;skip;1738;where

is equivalent to:

at 1319
draw 1518;1538
draw 1738;1319

since during the -draw- statement “where” has the value 1319. On the
other hand, the sequence:

at 1319
draw 1518;1538
draw 1738;where

is equivalent to:

at 1319
draw 1518;1538
draw 1738;1538

since upon completion of the first -draw- statement, the value of “where”
is 1538. This difference between a single -draw- using ‘“skip” and
separate -draw- statements is sometimes useful in drawing figures relative
to some point.

As mentioned earlier, starting with a semicolon implies a continued
drawing from the present screen location. The sequence:

at 1319
draw ;1542;1942

is equivalent to:

at 1319
draw where;1542;1942

and is also equivalent to:
draw 1319;1542;1942

Sometimes you have more points for a -draw- than will fit on one
line. A “continued” -draw- can be written, with the command blank on
succeeding lines:

ADDITIONAL DISPLAY FEATURES

draw 1512;1542;skip;100,200;
400,200;400,400;
100,400;100,200

This will behave as though all the points had been listed on one line.

To summarize, the -draw- statement contains fine-grid or coarse-grid
points separated by semicolons, “skip” can be used for a discontinuous
drawing, “where” and the fine-grid “wherex”” and “wherey” are brought
up to date upon completion of the -draw-, and starting the tag with a
semicolon has the special meaning of continuing a drawing from the
present screen position.

The -gdraw- command is like the -draw- command except that points
are relative to the graphing coordinate system established by -gorigin-,
-axes-, (or -bounds-), -scalex-, and -scaley- (or logarithmic scales set up by
Iscalex- and -lIscaley-). Of particular value are the “skip” option and
starting with a semicolon (for continuing a drawing). The use of “where”,
“wherex”’, and “wherey” in a -gdraw- statement is normally not meaning-
ful, since these system variables refer to the absolute screen coordinate
system, not the graphing system. In the graphing coordinate system, there
are only fine-grid, not coarse-grid points, so all points have the form

x’y

It is possible to use -draw- to draw something relative to the present

screen position:

at 2215
draw wherex+25,wherey—75;wherex+200,wherey+150

(Remember that “wherex’” and “wherey” do not change until the comple-
tion of the -draw- statement.) There is an -rdraw- command (“r” for
“relative”) which makes such drawings simpler. The example just shown

can be written:

rorigin 2215
rdraw 25,—75;200,150

Each point of an -rdraw- is taken to be relative to an origin established
with an -rorigin- command.

The -rdraw- command is particularly useful for applications such as
writing the same Chinese characters at different places on the screen. For
each character, make a subroutine involving one or more -rdraw- state-
ments. The characters can be positioned with -rorigin- statements:

187

The TUTOR Language

188

rorigin 400,400

do chin1

rorigin 400,300

do chin2
etc.

Or you might include the -rorigin- statement in the character subroutines:

do chin1(400,400)
do chin2(400,300)

In this case each subroutine has a form like this:

unit chin1(a,b)
rorigin a,b
rdraw —75,30;75,30;etc.

Unlike -draw-, the -rdraw- command is affected by preceding -size-
and -rotate- commands. Your Chinese characters can be enlarged and
rotated:

size 3,5 $$ 3 times the width, 5 times the height
rotate 45 $$ rotated 45 degrees

do chin1(400,400)

do chin2(400,300)

(Another way to handle such things as Chinese characters is with
-lineset-.) Figure 9-8 shows a design created with the following com-
mands:

rorigin 250,250
do figure,a<0,360,15
*

unit figure
rotate a
rdraw —50,0;50,0;0,200; -50,0

The -rotate- command affects -rdraw- even with “size 0, even though
-write- is not rotated in size (. (The -write- statement is unaffected in
order to facilitate normal text operations.) As far as -rdraw- is concerned,
size @) is equivalent to size 1. As far as -write- is concerned, size () means
“write text at 180 characters per second, unrotated”, whereas size 1 means
“write line-drawn text at 6 characters per second, rotated”.

ADDITIONAL DISPLAY FEATURES

Note that -rdraw- and -size- are essentially reciprocal to -gdraw- and
-scalex-. In the case of -rdraw-, a drawing gets bigger when -size-
specifies a larger size. But, specifying a larger number in a -scalex-
command implies that the same number of screen dots (given by -axes-)
will now correspond to larger (scaled) numbers in a -gdraw-. This means
that a larger -scalex- implies a smaller -gdraw- figure. Note that -gorigin-
affects -gdraw- the same way that -rorigin- affects -rdraw-.

There is a complete set of “relative” commands for making displays
relative to an origin specified by -rorigin-, and affected by -size- and
-rotate-. Here is a summary:

“ABSOLUTE"” “RELATIVE" (-size-) “GRAPHING" (-scalex-,-scaley-)

rorigin gorigin
at rat gat
atnm rathm gatnm
draw rdraw gdraw
box rbox gbox
vector rvector gvector
circle rcircle gcircle

Note that -rcircle- will draw an ellipse if the x- and y-sizes are different (as
in “size 1,47, for example).

189

The TUTOR Language

The “halfcirc” subroutine of Chapter 4 could be conveniently
rewritten using relative commands:

“ABSOLUTE"” “RELATIVE"
unit halfcirc unit halfcirc
at X,Y rorigin x,y $$ sets rorigin and “rat 0,0"
circle radius,0,180 rcircle radius,d,180
draw x-—radius,y;x+radius,y rdraw —radius,y;radius,y

It is important to note that the relative specifications set by -rorigin-,
-size-, and -rotate-, as well as the graphing specifications set by -gorigin-,
-bounds-, -scalex- (or -Iscalex-) and -scaley- (or -Iscaley-) carry over from
one main unit to another. If you would prefer to have these parameters set
to some standard values at the beginning of each main unit, simply do the
initializations in an -imain- unit. (Remember that the -imain- command
allows you to specify a unit to be performed every time a new main unit is
started.)

How do you decide which of the three sets of display commands to
use? If you want to rotate a drawing, you must use relative commands,
because the absolute and graphing commands are unaffected by the
-rotate- command. If rotations are not involved, just use whichever
commands seem most convenient at the moment. Absolute commands
may be used quite often since they are the simplest and easiest to use.
The graphing commands are certainly best for drawing graphs of
functions, but they are also useful whenever it is convenient to think of
your drawing in terms of numerical scale factors. Graphing commands
are also needed if you use polar coordinates (invoked with the -polar-
command). Sometimes you may use all three sets simultaneously. For
example, in one of this author’s lessons, the most convenient way to
produce the screen display was to give instructions at the bottom of the
screen using absolute commands, draw figures scaled in centimeters
using graphing commands, and superimpose a movable box on the
(absolute) instructions by means of relative commands.

The -window- Command

Sometimes it is useful to specify a “window” through which
drawings are viewed. Parts of a figure extending outside the window are
not drawn. A rectangular window is specified by giving the lower left and
upper right corners of the desired window:

190

ADDITIONAL DISPLAY FEATURES

window 100,200;400,300

M e N e

one corner opposite corner

The corners could also be given in coarse-grid coordinates, as in
“window 1524;1248”.

Drawings constructed from the various -draw- commands and
-circle- commands are affected by a preceding -window- command.
Line-drawn text (size non-zero) produced by -write-, -writec-, -show-,
etc., will also be windowed. Like -size- and -rotate-, windowing is not
reset upon entering a new main unit. Be sure to use a blank -window-
command (blank tag) to turn off windowing operations. It is quite
common for an author to forget to turn off windowing and then wonder
why some of the drawings aren’t showing up! The correct structure is
shown below. (See Figures 9-9 and 9-10.)

window one corner;opposite corner

(windowed) display statements

window $$ blank tag to turn off

g The effect of a -window- command
_\] /
\ < AP NS >

Fig. 9-9. Fig. 9-10
191

The TUTOR Language

192

More on Erasing: The -eraseu- Command

When a student’s response is judged “no” or “wrong”, he or she can
correct the response by hitting ERASE or ERASE] to erase a letter or
word, or by hitting NEXT, EDIT, or EDIT1 to erase the entire response.
If additional judging keys have been defined with a -jkey- command,
these will act like NEXT and erase the response. If there is only one
-arrow- command and no -endarrow-, these options are available even
after an “ok” judgment (except that a NEXT key or another judging key
takes the student to the next main unit rather than merely erasing the
response). If there is a “force firsterase”, the student need not clear an
incorrect response by pressing NEXT before trying a different response.
In this case, the first key of the new response will cause the old response
to be erased.

If the student erases part or all of his or her response, the “ok” or
“no” is erased. Moreover, the last response-contingent message to the
student is erased, since it is no longer relevant. For example:

wrong cat
write The cat is
not a canine.

The student types “cat” and presses NEXT:

> cat no

The cat is
not a canine.

ADDITIONAL DISPLAY FEATURES

Notice that there is a default -at- three lines below the response. Suppose
the student now presses ERASE:

> ca

The “t”, the “no”, and the text of the -write- statement have all
disappeared automatically. This is appropriate since the comment “The
cat is not a canine” is no longer needed.

It is helpful to know that the method TUTOR uses for automatically
erasing such text is by re-executing the last -write-, -writec-, or -show-
statement in the erase mode. Suppose we change the lesson slightly:

wrong cat

write The cat is
not a canine.
write Meow!

Now the sequence looks like this:

= ca
> cat no
The cat is . The cat is
not a canine. Meow! not a canine.

193

The TUTOR Language

Only the last -write- statement is removed, leaving “The cat is not a
canine” on the screen. Notice that the normal automatic erasing can be
prevented simply by adding an extra -write- statement. Even a blank
-write- statement will do.

As another example, consider this:

wrongv 4
write Number of apples=
show apnum

Only the -show- will be erased, leaving “Number of apples="" on the
screen. If this is not desirable, use an embedded -show-:

wrongv 4
write Number of apples=<s,apnum)

Now the last -write- statement includes the showing of the number, and
all the writing will be erased. It is important not to change “apnum” after
the -write-. If you change its value from what it was when shown by the
-write-, the re-execution in “mode erase” will turn off the wrong dots in
the numerical part of the writing. Here is the type of sequence to be
avoided:

wrongv 4

write Number of apples=<s,apnum)

calc apnum<«apnum+25

The number will not be erased properly due to the change in “apnum”.

194

ADDITIONAL DISPLAY FEATURES

Similar problems can arise with the other -show- commands, including
-showa-.

Sometimes the automatic erasing of the last text statement is insuffi-
cient. For example, if the reply to the student included a drawing
produced with -draw-, or if there were several -write- statements, you
would need some additional mechanism to remove the reply when the
student presses ERASE. There is an -eraseu- command which you can
use to specify a subroutine to be done when the student changes his or
her response:

Eg:eraseu eblock
arrow 1215

unit eblock

at 1512
erase 354
at 318

erase 42

Unit “eblock” will be done whenever the student changes a response.
Only the first press of the ERASE key triggers the erase unit, since
additional executions of the unit would be erasing nothing.

Another example involves an erase unit specific to a particular
response:

wrong 3 dogs
do woof
eraseu remove

(Continued on the next page.)

195

The TUTOR Language

196

unit remove
mode erase
do woof
mode write
eraseu

The statement “eraseu remove” defines unit “remove” as the unit to be
done when the student presses ERASE (or NEXT, etc.). Unit “remove” in
the example shown simply re-does unit “woof” in the erase mode, thus
taking off the screen everything originally displayed by unit “woof”. The
final blank -eraseu- clears the pointer so there is no longer an erase unit
specified.

Notice the similarities between the -imain- and -eraseu- commands.
Both specify units to be done under specific conditions.

Keeping Things on the Screen: "inhibit erase”

Let us consider a modified version of the simple language drill
discussed in Chapter 7.

unit espo

next espo

back satisfy

at 512

write Here is a simple drill

on the first five
Esperanto numbers.
Press BACK when you
feel satisfied with your
understanding.

at 1812

write Give the Esperanto for

randu item,5

at 2015

writec item—2,0ne,two,three,four five

arrow 2113
answerc item—2;unu;du;tri;kvar;kvin

This version will greatly annoy the student after the first couple ques-
tions. Each time the student gets an “ok” and presses NEXT to move on

ADDITIONAL DISPLAY FEATURES

to the next unit, the screen is erased and the student suffers through the
introductory paragraph being written again on the screen. It turns out to
be very annoying to see the same text replotted this way.

This is a situation where most of the material on the screen is not
changing and should not be replotted. Only the item and the student’s
typing need be erased to make room for a new item and a new response.
One way to do this involves judging correct responses “wrong”, as was
done in the dialog using -concept- discussed in Chapter 7. You should
use “specs nookno” to prevent the “no” from appearing, or you can use
the regular -okword- and -noword- commands to change the standard
TUTOR “ok” and “no”. For example, use the statement
“noword Fine!” to cause “Fine!” to appear for a correct response. You
would need to do a “noword no” whenever the student answers
incorrectly. With all responses judged “wrong” we stay at the -arrow-
and do not move on to another main unit.

Another way to manage a screen on which little is changing involves
“inhibit erase”. This statement prevents the normal full-screen erase
upon leaving the present main unit. The next main unit must also execute
an “inhibit erase” if no erase is to be performed upon leaving the second
unit. We can rewrite our drill using this feature:

unit preespo
at 512
write Here is a simple drill

on the first five
Esperanto numbers.
Press BACK when you
feel satisfied with your
understanding.

at 1812
write Give the Esperanto for
goto espol
£
unit espo
at 2015
erase 5 $$ item area
at 2115
erase 15 $$ response area
entry espol
Eg::inhibit erase $$ leave instructions on screen
next espo
back satisfy

(Continued on next page.)

197

The TUTOR Language

198

randu item,b
at 2015
writec item—2,one,two,three,four five

arrow 2113
answerc item—2;unu;du;tri;kvar;kvin

In unit “preespo” we display the instructions about the drill. We then go
to “espol”, where we “inhibit erase” and display the first item. After
receiving an “ok”, the student moves on to the next main unit, “espo”.
The screen is not erased since there was an “inhibit erase”. In unit “espo”
we erase the area containing the displayed item, and we also erase the
response area of the screen. We then fall through the -entry- command
and display a new item. This process repeats continually, and only those
parts of the screen which must be changed are erased.

It is important to place an explicit blank -erase- statement
(“erase ”’) at the beginning of unit “satisfy”. Since we have inhibit-
ed the normal full-screen erase, no erase will occur automatically when
the student presses BACK to leave the drill. If unit “satisfy’” does not
explicitly erase the screen, the student will see a superposition of the drill
display and the display produced by unit “satisfy”.

Similarly, if we specify a help unit, that unit should start with a
full-screen erase. Upon completion of the help sequence, we should come
back to unit “preespo” rather than “espo” in order to restore the screen
display properly, like this:

entry espol
base preespo $$ to come back to preespo from help
help esphelp

The -base- command puts us in a help sequence, with the base unit being
“preespo”’. When a base unit has already been specified, pressing HELP
doesn’t change the base unit (in other words, there is only one “level” of
help). When we reach an -end- command or press BACK, we will return
to the base unit, which is preespo. Note that unit “satisfy’” should have a
blank base statement to insure that we are in a non-help sequence.
Otherwise, pressing BACK in unit “satisfy” will bring us to the base unit
“preespo” again.

ADDITIONAL DISPLAY FEATURES

Interaction of “inhibit erase’” with -restart-

There is a -restart- command which is used to specify in which unit a
student should resume study upon returning to a PLATO terminal. For
example, suppose the last -restart- statement encountered on Monday by
student “Ann North” in course “lingvo” was “restart espo” in lesson
“espnum”. On Wednesday she returns to a PLATO terminal and identi-
fies herself by name (Ann North) and course (lingvo). Her registration
records will show that she is to be restarted in unit “espo” of lesson
“espnum” and she will automatically be taken to that point. As discussed
previously, the “ieu” (initial entry unit) will be done, which among other
things permits character set loading.

Unfortunately, restarting at unit “espo” means that the basic drill
instructions contained in unit “preespo” will not appear (see last exam-
ple). This is basically an initialization problem. You should use -restart-
commands in such a way as to restart students only at the beginning of a
section of this kind. In this particular case, we should have had a “restart
preespo” rather than “restart espo”. This is analogous to our use of
“base preespo” for returning from a help sequence. (The more common
form of the -restart- is the blank -restart-, which means “restart in the
present main unit.” We would place a blank -restart- in unit “preespo”.)

Aside from initialization questions related to TUTOR and the
display screen, it should be pointed out that the student has comparable
initialization problems. Since the student may be away for several days, it
is often advisable to have your restart points only at the beginning of
sections of the lesson. This way the student can ease back into the
context, whereas restarting in the middle of a discussion may be quite
confusing. In those lessons which include an index, the index unit may
be the best restart point. On the other hand, you will want to arrange
things to allow the student to restart in the middle of a section if that
section is very long.

When a student restarts in a lesson, he or she starts at the unit
specified by the last -restart- command. However, the student’s saved
variables, v1 through v150, have whatever values were current at the time
he or she left the last PLATO class session. Therefore, some care is
required to initialize appropriate variables in the restart unit.

The -char- and -plot- Commands
In most cases, special characters are handled with a -charset-

command and displayed with a -write- statement using the FONT key.
Alternatively, -char- commands can be used to transmit character patterns

199

The TUTOR Language

200

to the terminal. If a -char- command sends a pattern to character slot 35 of
the terminal, that character can be displayed using the -plot- command:
“plot 35”. The arguments of the -char- command can be computed
expressions so that a character can be constructed algorithmically.
Similarly, the -plot- command may have a mathematical expression for its
tag in order to choose the Nth character. See Appendix A for sources of
detailed information on the -char- command.

The -dot- Command

The statement “dot 125,375 will plot a single dot at the specified
location (“dot 1817 uses coarse grid). A sequence of -dot- commands
can produce sixty dots per second on the plasma display panel. A -draw-
with one point (“draw 125,375” or “draw 1817”) makes a single dot
by drawing a minute line from this point to the same point (or itself) and,
for technical reasons, will produce only twenty dots per second. (The
commands -rdot- and -gdot- also exist.)

