More About Judging

The previous chapter described the array of major response-judging
features of the TUTOR language. We can now discuss the judging
process in more detail, after which we will see how to treat responses that
don’t quite fit the categories of the previous chapter.

Stages in Processing the -arrow- Command

The following is a summary of the several stages of processing
involved when there is an -arrow- command.

Stage 1

Stage 2

The -arrow- command is executed. The arrow is displayed
on the screen, and a marker is set to remember the unit and
location within the unit of this -arrow- command. Regular
processing continues until a judging command is encoun-
tered, at which point there is a wait while the student types
a response.

The student presses NEXT or otherwise completes his or
her response. TUTOR uses its -arrow- marker to start
judging at the statement following the -arrow- command.
Only judging commands are executed; all regular com-
mands are skipped. Execution of a -specs- command sets a
-specs- marker to remember the unit and location within
the unit of this -specs- command.

141

The TUTOR Language

142

Stage 3 Some judging command terminates judging and succes-
sive regular commands are executed until a judging com-
mand is encountered, which ends this regular processing,
even if we are several levels deep in -do-s. There is no
“undoing”. An -arrow- or -endarrow- will also halt this
regular processing without permitting “undoing”. (If no
judging command terminates the judging phase, the end of
a unit with no more “undoing” to do; an -endarrow-; or
another -arrow- will end Stage 3 and make a “no” judg-
ment.)

Stage 4 If the -specs- marker has been set, regular processing
begins at the statement following the last -specs- command
encountered. (The -specs- marker is cleared.) This process-
ing terminates in the same way as the regular processing of
Stage 3. If the judgment is not “ok,” the -arrow- is not
satisfied. The student must erase part or all of the response
and enter a different response, which initiates Stage 2
again.

Stage 5 The search state is initiated if there is an “ok” judgment.
TUTOR again uses the -arrow- marker to start processing at
the statement following the -arrow- command, this time in
a search for another -arrow-. Only -join-s are executed, all
other commands (regular or judging) are skipped during
this search state. If an -arrow- command is encountered,
TUTOR begins Stage 1 for this additional -arrow-. If an
-endarrow- command is encountered, the search state ends
and regular commands are processed. If neither -arrow- nor
-endarrow- is encountered, the student can press NEXT to
go on to the next main unit, having satisfied all the -arrow-s.

This all sounds rather complicated, written out in this way, but in most
practical cases this structure turns out to be quite natural and reasonable.
It is, nevertheless, useful to look at some unusual cases to further clarify
the various processing stages.

Repeated Execution of -join-
The following is an example of the repeated execution of a -join- in
regular, judging, and search states (remember that -join- is similar to

-do-):

unit multy
calc i0

MORE ABOUT JUDGING

arrow 1514

join i«<i+1,ansdog
endarrow

at 2514

show i

*

unit ansdog
answer dog

write Bowwow!

The conditional -join- has only one unit listed, so we will always join unit
“ansdog” no matter what value the expression (i«i+1) has. Upon first
entering unit “multy”, we do the -calc-, the -arrow-, and the -join-, all in
the regular state. This terminates at the -answer- command to await a
student response. Note that i is now 1, due to the assignment (i<i+1)
contained in the conditional -join-. Suppose the student types “cat” and
presses NEXT. TUTOR starts at the statement following the -arrow- and
executes the -join- in the judging state (incrementing 1 to 2 in the
process). No match is found for “cat”, so the student must give another
response. Suppose the student now enters “dog”. TUTOR again starts
judging just after the -arrow- and again executes the -join- (thus incre-
menting i to 3). This time there is a match to “answer dog” which
changes the state from judging to regular. The “write Bowwow!” is
executed, and the end of unit “ansdog” causes TUTOR to “undo” back
into unit “multy”, where the -endarrow- signals the end of the statements
associated with the -arrow-. Since we received an “ok” judgment, we are
ready to search for any other -arrow-s that might be in unit “multy”. We
return to the -arrow- one last time, this time in the search state. The -join-
is executed to see whether there is an -arrow- command in unit “ansdog”,
with the incidental result that i gets incremented to 4. No -arrow- is found
in unit “ansdog” and we “undo” into the -endarrow- command, which
changes us from search state to regular state. The -at- and -show- are
executed and we get “4” on our screen, due to the quadruple execution of
the -join-.

Aside from illustrating some consequences of the processing rules,
this example should emphasize that using the assignment symbol (<) in a
conditional -join- may have unexpected results. Note that -join- is the only
command with these properties, due to the fact that it is the only
command executed in regular, judging, and search states. It is important
that -join- be universally executed in this way so that you can join judging
commands in the judging state and even -arrow- commands in the search
state, not just regular commands in the regular state.

143

The TUTOR Language

144

Judging Commands Terminate Regular State

The rule that a judging command terminates the processing of
regular commands is an important and general rule. We have seen that
this must be true upon first encountering an -arrow- (the first judging
command after the -arrow- makes TUTOR wait for a student response,
since that judging command needs a response to work on). Let’s see
another instance of the rule:

arrow 1518
answer dog
write Bowwow
wrong cat

write Meow
wrong horse

If the student says “dog”, he or she gets a reply “Bowwow” and regular
processing stops at the “wrong cat” because -wrong-, a judging com-
mand, terminates the regular state. Similarly, if the student response is
“cat”, the statement “write Meow” is the only regular statement which
is executed. The judging commands delimit those regular commands
associated with a match of a particular judging command. This delimit-
ing effect is achieved because:

1) Regular commands are skipped in the judging state; and

2) The processing of regular commands ends whenever a judging

command is encountered.
Now let’s consider a slightly modified sequence:

arrow 1518
[f join dogcat

write Meow

wrong horse

MORE ABOUT JUDGING

unit dogcat
answer dog
write Bowwow
wrong cat

Supposedly, the “join dogcat” will act as though the statements of unit
“dogcat” were inserted where the -join- is, which should make this
modified version equivalent to the earlier version. Indeed, the rule that a
judging command terminates the processing of regular commands does
make the two versions equivalent, as we will show. Remember, in this
discussion, that -join- is the same as -do- except for the universal nature of
-join-.

Suppose the student types “dog”. We start just after the -arrow-, in
the judging state. The -join- is executed and we find a matching
“answer dog” which ends judging and puts us in the regular state. The
“write Bowwow” is executed. The statement “wrong cat” is encoun-
tered next. The judging command -wrong- stops the processing of
regular commands and also prevents coming out of the joined unit. Even
though we are one level deep in -join-s, TUTOR will not “unjoin” and the
“write Meow” which follows the “join dogcat” will not be executed.
What will happen is just what happens in the earlier version: we have an
“ok” judgment which causes the search state to be initiated at the -arrow-
(there was no -specs-). Thus, the two versions operate in identical
manners because the -join- acts like a text insertion. Note that a response
of “cat” will get a reply “Meow” because there is no judging command
following the “wrong cat” (and a normal “undo” is performed at the
end of unit “dogcat”).

This last example illustrates the importance of the rule “a judging
command terminates the regular state.” It is this rule which insures that
-join- (or -do-) will act like a text insertion.

In the discussion of the -goto- command in Chapter 6, we saw that a
-goto- in a done unit destroys the strict text insertion character of the -do-.
This is true in the present context as well. Suppose we insert a -goto- in
unit “dogcat” (any -goto- will do, we’ll use a “goto q”):

unit dogcat
answer dog
write Bowwow

EE’ goto q
wrong cat

The student enters “dog” and we do unit “dogcat” where the match to
“answer dog” flips us from the judging to the regular state. The regular

145

The TUTOR Language

146

commands -write- and -goto- are executed. (Note that -goto-, like -do-, is
only regular whereas -join- is universal, being executed not only in
regular but in judging and search states.) The execution of the -goto-
prevents TUTOR from encountering the “wrong cat” which previously
terminated the regular state. We have run out of things to do in unit
“dogcat” and are one level deep in -do-s. TUTOR, therefore, “undoes”
and executes the “write Meow’”” which follows the “join dogcat”! The
student will see “BowwowMeow” on the screen. If, on the other hand,
we replace the “join dogcat” with the statements contained in unit
“dogcat” we would have:

arrow 1518

answer dog

write Bowwow
@;‘ goto q

wrong cat

write Meow

wrong horse

and a response of “dog” would merely cause “Bowwow” to appear on the
screen, not “BowwowMeow” .

We have again seen that a -goto- in a done unit can cause the -join-
operation to behave differently from a text insertion. We get different
effects depending on whether we -join- such a unit or put that unit’s
statements in place of the -join- statement. You can avoid confusion by
not using -goto- commands in “done” or “joined” units which contain
-arrow- commands or judging commands.

The -goto- is a Regular Command

Since the -goto- command is a regular command, it is skipped in the
judging and search states. Here is a sequence of commands which
illustrates the fact that the -goto- is skipped in the judging state:

MORE ABOUT JUDGING

arrow 1612

gp goto dogcat
%

unit dogcat
answer dog

write Bowwow
wrong cat

When the -arrow- is first encountered, an arrow is displayed on the screen
at 1612. TUTOR continues in the regular state and executes the -goto-.
The -answer- in unit “dogcat” ends this regular processing to await the
student’s response. Suppose the student types “dog” and presses NEXT.
TUTOR starts judging just after the -arrow-, skips the regular -goto-
command, and finds no judging commands at all. The student’s response
gets a default “no” judgment. The -goto- should be replaced by a -join- so
that unit “dogcat” will be attached in the judging state.

Similarly, the following is an erroneous sequence which illustrates
the fact that the -goto- command is skipped in the search state:

arrow 1612
specs bumpshift
answer dog
w==goto another
- wrong cat
oy

unit another
arrow 2514
answer wolf

The student responds to the first -arrow- with “dog” and matches the
“answer dog”, which switches the processing from the judging state to
the regular state. The -goto- is executed, and in unit “another” we
encounter an -arrow- command. This -arrow- command terminates the
regular processing just as a judging command would. The -specs- marker
was set, so we will now execute any regular commands following the
-specs- command (there are none in this example). Since the student’s
response was “ok”, the search state is now initiated. TUTOR starts at the
“arrow 1612” looking for another -arrow- command. The -specs-,
-answer-, -goto-, and -wrong- are skipped in the search state, and we come
to the end of the unit without finding an -arrow-. Thus the -goto- did not

147

The TUTOR Language

join response

148

succeed in attaching a second -arrow-. If the -goto- is replaced by a -join-,
the “wrong cat” will be associated with the second -arrow- (2514). This
is due to the text insertion nature of the -join-, which interposes the
statements of unit “another” between the “answer dog” and the
“wrong cat’. One correct way to write this sequence is shown below:

arrow 1612

specs bumpshift

answer dog

wrong cat

endarrow

goto another $$ or “do another”
%

unit another

arrow 2514

answer wolf

The -goto- or -do- placed after the -endarrow- will not cause any problems
because the search state has been completed, and the -endarrow- flips us
from the search state to the regular state.

Considerations of this kind suggest that some care must be exercised
when using -join- or -do- to attach units containing -arrow- commands.
To avoid unpredictable results follow these two rules:

1) A unit attached by -join- or -do- which contains one or more

-arrow- commands must end with an -endarrow- command. This

~ insures that the unit will end and “undo” in the regular state. (It
is permissible to have regular commands following the
-endarrow-.)

2) The attached unit containing one or more -arrow- commands
must not contain any -goto- commands. (A -goto- can make
TUTOR f{ail to see the -endarrow- or a judging command so that
a premature “undo” occurs.)

If these two rules are followed, the -join- or -do- will act precisely as
though you had inserted the statements of the attached unit where the
-join- or -do- was. Here are examples of good and bad forms:

GOOD BAD
unit response unit response
answer apple answer apple
do newton goto newton (Don’t use -goto- here)
wrong pear wrong pear

MORE ABQUT JUDGING

GOOD (continued) BAD (continued)
write Wrong fruit. write Wrong fruit.
endarrow (Do use -endarrow- here)

Interactions of -arrow- with -size-, -rotate-, -long-,
-jkey-, and -copy-

When an -arrow- command is performed, several things happen. An
arrow character is displayed on the screen, cuing the student to enter a
response. A note is made of the unit and location within that unit of the
-arrow- command so that TUTOR can return to this marked spot when
necessary. Even the trail of -do-s (and/or -join-s) which brought TUTOR
to this -arrow- command is saved, so that each restart at the -arrow- will
be at the appropriate level of -do- relative to the main unit. The current
settings of -size- and -rotate- are saved, to be restored each time so that
you can write a size—3 reply to a student’s incorrect response without
affecting the size of his or her corrected typing. In other words, response-
contingent settings of -size- and -rotate- are temporary, whereas in other
circumstances they are permanent until explicitly changed:

size 2

rotate 0
arrow 1718
answer dog
size 4
rotate 30
write Woof!
answer wolf
endarrow

at 2218

write This is in size 2, rotate 0.

The last writing appears in size 2, rotate @ despite the size 4, rotate 30,
that were contingent on the student’s response, “dog.” When the search
state is initiated, the original size and rotate settings are restored.

149

The TUTOR Language

150

Similarly, if “dog” had been judged wrong, the student’s revised typing
would have been in size 2, not 4, because the original size and rotate are
restored before waiting for the student’s revised input.

Executing an -arrow- command has other important initialization
effects:

1) A default response limit of 150 characters is set. The student
cannot enter a response longer than 150 characters (including
“hidden” characters such as shift-codes and superscripts). This
can be altered by following the -arrow- command with a -long-
command to change this to as much as 300. If this is a “long 1,”
judging will commence as soon as the student types one charac-
ter. If more than 1 is specified, the student is prevented from
entering more characters and must press NEXT to initiate
judging, unless a “force long” statement has appeared in the
unit.

2) A default specification of “judging keys” is set. In most cases,
the NEXT key is solely responsible for starting the judging
process. However, there are two other possible ways to begin
judging: (1) hitting the limit with a “force long”; or (2) if there
isa “long 17, typing one character will begin judging. This can
be altered by following the -arrow- command with a -jkey-
command to specify additional judging keys (NEXT is always a
judging key). One example is “jkey data,help” which would
make the DATA and HELP keys equivalent to the NEXT key at
this arrow.

3) A default specification is set to disable the COPY key. The
-arrow- command can be followed with a -copy- command to
specify a previously stored character string to be referenced with
the COPY key. An example is “copy v51,v3”, where v51 is the
start of the character string and v3 is the number of characters.
This way of specifying a string of characters is the same as the
scheme used with -storea- and -showa-.

Some explanation of the COPY and EDIT keys is required. The
EDIT key is always available for the student to use in correcting his or
her typing. Pressing the EDIT key the first time erases all typing, after
which each press of the EDIT key brings back the typing one word at a
time. This makes it easy to make corrections and insertions without a lot
of retyping. Each press of the COPY key, on the other hand, brings in a
word from the character string specified by the -copy- command, as
opposed to bringing in the student’s own typed words with the EDIT

MORE ABOUT JUDGING

key. One example of the use of the COPY key is seen in the PLATO
lesson editor. In this case, you as an author can use the COPY key in
insert or replace mode to bring in portions of a preceding line without
having to retype. The COPY key must be specifically activated by a
-copy- command, but the EDIT key is always usable, unless you specify a
-long- greater than the normal limit of 150. (To use the EDIT key on
responses longer than 150 characters requires you to furnish an edit
buffer through an -edit- command.)

The -long-, -jkey-, and -copy- commands all override default specifi-
cations set by the -arrow- command. They can be thought of as modifiers
of the -arrow- command. If they are to have an effect on the student’s first
response, they not only must follow the -arrow- command but must
precede any judging commands:

arrow 1518 $$ sets default values

jkey help
copy cstring,ccount : These commands alter the default values.
long 15

-specs- or -answer- or -store- or any other judging command

If -jkey-, -copy-, or -long- came after the first judging command, the
-arrow- defaults would hold for the first response because the modifying
command would not have been executed yet.

Applications of -jkey- and -ans-

Use of the -jkey- command is well illustrated in the case of providing
help to the student (through the HELP key) without leaving the page.
(This. is an alternative to the more commonly used -helpop- command
described in Chapter 5.) If giving help requires an entire screen display,
or a whole sequence of help units, it is best to use a -help- command to
specify where to jump if the student presses HELP. The screen is then
erased automatically to make room for the help page (unless the original
base unit had an “inhibit erase” in it). On the other hand, sufficient help
might consist merely of a brief comment or some additional line-

“drawings on the present page. A convenient way to provide such help
without leaving the page is:

151

The TUTOR Language

152

arrow 1815

jkey help
answer cat
no

write Hint: it meows . ..

The statement “jkey help” makes the HELP key completely equivalent
to the NEXT key. If the student presses HELP, judging is initiated, the
student’s (blank) response does not match “cat”, and he or she gets “Hint:
it meows . ..”. Without the -jkey- command, the HELP key would be
ignored (which would be unfortunate). It is a very good idea to have the
HELP key do something at all times so that the student can come to rely
on help being available.

In this example, the student will get the same assistance whether he
or she presses HELP or types “dog” followed by pressing NEXT. We
could give different kinds of assistance in these two cases by changing
the -write- statement to a -writec-:

arrow 1815

jkey help
answer cat
no

writec key=help,Meow?,The answer is cat.

The system variable “key” always contains a number corresponding to
the last key pressed by the student. In this case the last key will either be
HELP or NEXT. If the student presses HELP, the logical expression
“key=help” will be true (—1) and the student gets the reply “Meow?”
But, if the student presses NEXT, then the logical expression “key=help”
is false (@) and the student gets “The answer is cat.”” The lower-case word
“help” is defined by TUTOR to mean (in a calculational expression) “the
number corresponding to the HELP key.” Other similarly defined names
include next, back, and helpl (for shift-HELP).
The following is another way of writing the same sequence:

MORE ABOUT JUDGING

arrow 1815

jkey help

no $$ terminate judging
judge key=help,x,continue

write Meow?

answer cat

no

write The answer is cat.

If key=help, we “fall through” the -judge- command and write “Meow?”
If the key is not equal to help (that is, the student pressed NEXT), a
“judge continue” is performed to return to the judging state. The
“write Meow?” is skipped since -write- is a regular command. If the
response does not match “cat”, the student will get the message “The
answer is cat”. As usual, there are many ways in TUTOR to do the same
thing! In a particular situation one scheme may be more appropriate than
another.

There is an ANS key on the keyset which is often used to let students
skip through material by just pressing ANS:

arrow 1817

jkey ans

ok

judge key=ans,x,continue
write The answer is cat
answer cat

Since the ANS key generates an ok judgment here, the student will move
on immediately to the next arrow or unit without having to type the
correct answer. This procedure could best be utilized when the student is
in the review mode. That is, you might define “review=v1”, zero it
initially, and set it to —1 only after the student has gone through the
material once under his or her own power. With the following structure,
the student will be able to use the ANS key only when reviewing the
material:

153

The TUTOR Language

154

arrow 1817

_do review,jans,x
ok

judge key=ans,x,continue

unit jans
jkey ans

Another way to activate the ANS key for the student is to use the -ans-
command with a blank tag.

arrow 2123

write The answer is cat.

In the above example, the single -ans- command is equivalent to the
following:

jkey ans
ok
judge key=ans,x,continue

The -ans- command is a judging command and must be the first judging
command after the -arrow-. When it is first encountered, it sets up ANS to
be a judging key, and it is matched only if the ANS key is pressed. If the
-ans- command is used only to provide a kind of help, but not to let the
student pass on to the next item, put a “judge wrong” after the -ans-
command.

In many places you may do specific things in response to the ANS
and HELP keys. Elsewhere in the lesson it is appropriate merely to
utilize these keys so that something will happen when they are pressed.
Just put “jkey help,ans” after each such -arrow-. The student will then

MORE ABOUT JUDGING

get (at least) whatever reply you give him or her after the universal -no-
that catches all unrecognized responses. Certainly, every -arrow- should
provide some kind of feedback to unrecognized responses or the student
will become perplexed. The “jkey help,ans” will further insure that a
reasonable response to the student’s input is always forthcoming. With-
out this -jkey- statement, nothing would happen when the student presses
ANS or HELP.

An additional procedure is advisable. Often a student will press
NEXT an extra time, perhaps because he or she hadn’t noticed that a
response was to be typed. This blank response, consisting only of a
NEXT key, will probably get judged “no’” at most arrows, which requires
an additional NEXT (or ERASE) to clear the “no” judgment before
typing a response. This can get confusing. In most cases it is best simply
to ignore blank responses by means of the statement “inhibit blanks™,
which can be put in the -imain- unit (see Chapter 5). This statement
causes blank-NEXT inputs to be ignored, but other blank inputs such as
HELP or ANS are not ignored.

Use a -join- to insert recurring statements after an -arrow-:

arrow 1917
join anshelp
answer cat

unit anshelp
inhibit blanks $$ or the -inhibit- could be in an -imain- unit
jkey ans,help

Placing “join anshelp” after each -arrow- will insure that extra NEXT
keys are thrown out (while responses involving ANS or HELP keys, will
fall through to whatever reply you give to unrecognized responses). Note
that you must use -join-, not -do-, to attach unit “anshelp” if you add any
judging commands to that unit.

Just as the -imain- command can be used to specify a unit to be done
at the beginning of each new main unit, there is an -iarrow- command
(“initialize arrow”) which can be used to specify a unit to be joined after
every -arrow-. With the statement “iarrow anshelp”, it is unnecessary to
write “join anshelp” after every -arrow- command. Unit “anshelp” will
be joined automatically after every -arrow-.

155

The TUTOR Language

156

Modifying the Response: -bump- and -put-

It is possible to delete characters from the judging copy of the
student’s response by using the -bump- command:

arrow 1812
@: bump as3 $$ delete all a’s,s’s, and 3's
answer rdvrk

This -answer- will be matched if the student types “33 aardvarks”
because the -bump- command reduces the judging copy of the response
to “rdvrk.” The original response is not altered and can-be recovered with
a “judge rejudge”. Also, the screen display is unaffected: the student
still sees “33 aardvarks” on the screen just as he or she typed it. On the
other hand, all judging commands following the -bump- are affected
since they all operate on the judging copy (not on the original response).
For example, a -storea- following the -bump- would give you “rdvrk”.
Here is another example:

define cfirst=v1,csecond=v2
first=v11,second=v21
unit conson
at 913
write Type anything, and /'l
| remove the vowels:
arrow 1309
long 100 $$ from v11 to v21 is 100 characters
storea first,cfirstjcount

@ bump aeiou
storea second,csecond<jcount
ok
write You typed <a,first,cfirst)>.
Remove vowels: <a,second,csecond).
You used <s,cfirst-csecond)> vowels.

Note that “cfirst” is the number of characters (including hidden charac-
ters such as shift characters) in the original response, whereas “csecond”
is the number of characters after the -bump- has removed the vowels.
This is a true count since “jcount” always has an up-to-date character
count of the judging copy, as influenced by -bump- and related opera-

MORE ABOUT JUDGING

tions. (You may recall that “specs bumpshift” also affects “jcount” by
removing shift characters.) Suppose the student types “Apples taste
funnier”. In this case, the student will get the reply:

You typed Apples taste funnier.
Remove vowels: Ppls tst fnnr.
You used 7 vowels.

The reason that the word “Apples” turns into “Ppls” with a capital “P” is
that a capital “A” is really a shift character followed by a lower-case “a”.
With the “a” bumped out, the shift character stands next to the “p”,
making a capital “P”.

While the -bump- command will delete characters, the -put- com-

mand will change particular strings of characters:

arrow 1218
Egj put cat=dog

put rat=mouse

storea first,jcount

ok
showa first,jcount

All occurrences of “cat” change into “dog”, and all occurrences of “rat”
change into “mouse”. Suppose the student types “Scattered cats scratch
rats”. The reply will be “Sdogtered dogs scmousech mouses”!

Both -bump- and -put- are judging commands. They operate on the
student’s response. Like all judging commands, they stop processing
when encountered during the processing of regular commands. The -put-
command has a property similar to -store- in that it can terminate judging
with a “no” judgment if it cannot handle the student’s response:

arrow 1218

put cat=enormous
write Too many cats!
ok

157

The TUTOR Language

158

If the student has many “cats” in his or her response, the -put- may cause
“jcount” to exceed the 15Q-character response limit. In this case, it
changes to the regular state, and the student gets the message “Too many
cats!” This regular -write- command normally is skipped, since we’re in
the judging state.

The following is an equivalent form of -put- which is often easier to
read:

put cat=dog
putd /cat/dog/
putd ,catdog,

All three of these statements are equivalent. The -putd- (d for delimiter)
takes the first character as the delimiter between the two character strings.
Other examples of its use are:

putd /=/equals/ $$ convert = sign
putd / // $$ remove all spaces

It is also possible to change variable character strings by using -putv- (v
for variable):

putv first,cfirst,second,csecond

—

string and count string and count

When you combine -put- and -bump- commands, you must be careful
about how you arrange them. For example, the following sequence is
nonsense:

bump a
put cat=dog

With all a’s bumped the -put- will not find any cat’s. Similar remarks
apply to sequences of -put- commands.

The -bump- command looks for single characters, so “bump B”
will not merely bump capital B’s. All shift characters will be bumped as
well as lower-case b’s. In other words, “bump B” is really
“bump shift-b”. If you want to eliminate only capital B’s, use
“putd /B//”. This will find occurrences of the string of characters
“shift-b”> and replace this string with a zero-length string, thus deleting
the B.

The main purpose of -bump- and -put- is to make minor modifica-

MORE ABOUT JUDGING

tions to the student’s response and convert it into a form which can be
handled by standard judging commands. For example, the word-oriented
judging commands (-answer-, -match-, -concept-, etc.) cannot find pieces
of words. Suppose that for some reason you need to look for the fragment
“elect”, and you don’t care whether this appears in the word “selection”
or “electronics” or “electoral”. Do this:

arrow 1723

specs okextra

putd /elect/ elect /
answer elect

The -putd- is used here to put spaces before and after the string “elect” so
that it stands out as a separate word. You could also use the values of
“jcount” before and after executing the -putd- to determine whether
“elect” was present. The number of times it appeared could also be
determined from these values. The value of “jcount” will increase by two
for each insertion of two extra spaces.

Manipulating Character Strings

The judging commands -bump- and -put- operate on the judging
copy of the student’s response. It is sometimes useful to manipulate other
strings of characters with -pack-, -move-, and -search-. These commands
are regular commands, not judging commands. Like -showa-, they
operate on stored character strings, not the judging copy of the student’s
response. These commands are mentioned here because they are often
used in association with the analyzing of student responses. In particular,
the judging command -storea- can be used to get the response character
string. It can then be operated on with -move- and -search-. Finally, the
altered character string can be loaded back into the judging copy with the
judging command -loada- (load alphanumeric; the -loada- command is
precisely the opposite of -storea-). Since this section deals with a rather
esoteric topic, you might just skim through it now to get a rough idea of
what character string manipulations look like. If you later find a need for
such operations, you should study this section again.

159

The TUTOR Language

160

Here is an example of a -move- statement:
move v3,5,v52,21,8

This means “move 8 characters from the 5th character of the string that
starts in v3 to the 21st character of the string that starts in v52.” The 21st
through 28th characters of the v52 character string are replaced by the 5th
through the 12th characters of the v3 character string. The v3 character
string is unaffected. In other words, -move- has the form:

move string1,start1,string2,start2,#characters moved

If the number of characters to move is not specified, one character will be
moved.

Here is an example of the use of -move-. Suppose the student types
“x+4y = y—3”, and we want to convert this into the form “x+4y—(y—3)”
before using -store- on it. Assume “str” has been defined:

arrow 1812 $$ x+4y=y-3

putd .=.—(. $$ x+4y—(y—3
storea str,jcount
ok $$ to do regular -move-
move ‘),1,strjcount+1 $$ x+4y—(y—3)

{judge continue $$ to do judging -loada-
loada str,jcount+1

store result

ok

write Subtracting the right side of
your equation from the
left side gives <s,result)>.

In the -move- command the parenthesis within single quote marks, ’),
means a character string one character long consisting of a right parenthe-
sis. Similarly, ‘dog” would denote a character string consisting of d,0, and
g. Character strings up to ten characters in length may be described this
way, using single quote marks. The -move- command shown above
moves the first character of ’)’, which is just a right parenthesis, to the
(jcount+1)th character position in “str”. This effectively appends a right
parenthesis to the student’s character string (as modified by the -putd-).
The -loada- command moves the final character string into the judging
copy so that -store- can operate on it. Note carefully the switches from the
judging state to the regular state and back again.

MORE ABOUT JUDGING

The -search- command is used to look for occurrences of specific
character strings. It has the form:

search string1,length1,string2,length2,start2,return

string sought string return location
to look
through where to
start

Suppose we use -storea- to place the unaltered student response
“x+4y=y—3” in “str,jcount”’. Then use:

search ’'=',1str,jcount,1,charnum
e e e
look for
= sign string return location

(string 1 to look

character through

long) start at
beginning
of string

This -search- command will set the variable “charnum” to 5, since the
equal sign is the 5th character in “x+4y=y—3". If the search is unsuc-
cessful, “charnum” is set to —1. As further illustration of -move- and
-search-, let’s rewrite our earlier sequence without the -putd-:

arrow 1812

storea str,jcount

ok

search ‘=’,1,str,jcount,1,charnum

* Now make room for the —{(:

move str,charnum+1,str,charnum+2,jcount—charnum
*Next insert the —(:

move ‘—(’,1,str,charnum,2 $$ move 2 characters
* Append the) :

move ‘)’ 1,str,jcount+2

judge continue

loada str,jcount+2

store result

ok

U

161

The TUTOR Language

162

The -search- finds the equal sign. The first -move- moves the latter part of
the string to make room for the insertion of ‘—(’. The second -move-
makes the insertion which overwrites the characters (=y) which were
there originally. The third -move- appends the °)’. Normally, the -search-
would be followed by a “goto charnum,noeq,x” to take care of the case
where the student did not use an equal sign, in which case “charnum”
would be —1.

The single quote marks can be used to specify character strings up to
ten characters long. Loonger character strings can be placed in variables
with a -pack- command:

pack v11,v3,abcdefghijkimnopqrstuvwxyz
string location character count

This packs a character string 26 characters long into v11 and following
variables. The character count (26 in this case) is placed in v3. Since each
variable holds ten characters, v11 and v12 will be full while v13 will have
the last six characters. The -pack- command might be considered analo-
gous to -storea-, since both place character strings in variables. In the case
of -storea-, the total character count can be gotten from the system-
defined variable “jcount”. Here is another example:

pack v12,v1,H,SO4
showa v12,v1

This will display “HsSO,” on the screen. The character count in v1 will
be ten, including three shift codes and two subscripts. The character
string HoSOy is actually composed of shift, h, subscript, 2, shift, s, shift,
o, subscript, 4. The character count portion of a -pack- command can be
left blank, as in “pack v12,,dog”, the result of which could be displayed
later with the statement “showa v12”. It is possible to embed “show”
commands in a -pack- statement:

pack string,count,There are $<s,total)> left.
There is also a conditional form, -packc-, analogous to -writec-:

packc cond,string,count,dog,cat,horse,cow
R
conditional -1 1] 1 =2

expression

MORE ABOUT JUDGING

There are other string-oriented commands. For example, -clock- will
get the time, -date- gets today’s date, -name- gets the (18-character) name
the student is registered under, and -course- gets the course the student is
registered in. These commands are used in the following illustration:

name v1 $%$v1 and v2 for name

course v3
clock v4
date vb

write Hello! Your name is<a,v1,18D.
You are registered in <{a,v3).
The time is <a,v4).
The date is <a,vb).

Suppose the student is registered as “sam nottingham™ in a course
“french4.” Tt is 10:45:37 PM (22:45:37 on a 24-hour clock) on June 3,
1974. The student will receive this display:

Hello! Your name is sam nottingham.
You are registered in french4.

The time is 22.45.37.

The date is 06/03/74.

All of these commands, -name-, -course-, -clock-, and -date-, simply place
the requested character string in the specified variable for use in a
-showa-.

The -clock- command produces a character string. In addition, there
is a system variable “clock’ which may be used in calculational expres-
sions. It holds the number of seconds of a daily clock to the nearest
thousandth of a second, and is convenient for calculating the amount of
time spent in a section of a lesson.

The -date- command also produces a character string. There is also a
-day- command which produces a number corresponding to the number
of days elapsed since January 1, 1973. This number of days and fraction
of a day is accurate to one-tenth of a second.

The TUTOR judging commands offer a great deal of power. We have
seen that the judging commands -bump- and -put- together with the
regular string-oriented commands -move-, -search-, and -pack- can be
used to change an otherwise intractable response into a form which can
be handled with TUTOR judging commands. This is a useful scheme as

163

The TUTOR Language

164

long as only minor modifications are required. However, if major
modifications of the response are required in order to be able to use
TUTOR judging facilities, it is usually simpler to “do your own judging.”
That is, get the student’s response with a -storea- and then analyze it with
string-oriented commands, together with the additional calculational
machinery described in Chapter 9. You might not even want to use the
built-in marker features of the -arrow- command, with the associated
returns to the -arrow-, when there is a “no” judgment. In such circum-
stances you might write a subroutine to be used in place of -arrow-
commands, which merely collects the student’s response:

unit arrow(apos)
arrow apos

storea sstr,scntejcount
specs nookno

ok

endarrow

Instead of writing “arrow 18157 with associated judging commands
you would then write:

do arrow(1815)
calc,move,etc. to do your own judging

Naturally, this course of action is advisable only if you are trying to
analyze responses which have a form very different from those classes of
responses which can be handled well by TUTOR judging commands.

Catching Every Key: -pause-, -keytype-, and
-group-

Occasionally, it is useful to process individual keypresses without
waiting for a NEXT key. We have already discussed such typical
examples as moving a cursor and choosing a topic from an index. These
examples used a “long 1”7 with an -arrow- in order to catch each
keypress. There is another way to do this, involving the -pause- command
which was introduced in Chapter 2 in connection with creating dis-
plays, particularly timed animations. As was pointed out in the discus-

MORE ABOUT JUDGING

sion of the -jkey- command in the present chapter, the system variable
“key”” contains a number corresponding to the most recent key pressed by
the student. For example, if the student presses the letter “d”, the system
variable “key”” will have the numerical value 4 (since d is the 4th letter in
the alphabet). Putting these notions together, we have the following kind
of structure:

write Press “d”, please.
pause
writec key#4,You didn’t press d.,Good!

The blank -pause- statement (“blank” in the sense of having no tag)
causes TUTOR to wait for the student to press a key. Any key will cause
TUTOR to move past the -pause- to the next statement.

In the example shown, the -pause- is followed by a -writec- condi-
tional on “key#4”. This -writec- can be written in more readable form by
replacing the “4” with a “d”:

writec key#"d"”,You didn’t press d.,Good!

Enclosing the d with (double) quote marks is taken in calculational
expressions to mean the number 4. Similarly, (v3«<*“z”) will assign the
value 26 to v3. If the student presses @ or 1, “key”” will have the numerical
value 27 or 28 respectively. That is, the 26 letters are followed by the
numbers @ through 9, then come various punctuation marks. If the
student presses the plus key, “key” will have the numerical value “+”,
which happens to be 37.

If the student presses a capital D, “key” will have the value 64+d”,
or 68. The shifted or upper case letters have “key”” value 64 greater than
the corresponding lower-case letters. Caution: some common keys such
as parentheses have key numbers smaller than 64 despite requiring the
shift key to type them. The most commonly used characters (lower-case
letters, numbers, and common punctuation marks) have key numbers less
than 64, independent of whether they are typed using the shift key. As for
the function keys (NEXT, BACK, HELPI, etc.), we have seen (in
connection with the -jkey- command) that the corresponding key num-
bers are given by next, back, helpl, etc., as in:

goto key=help1,yes,no
No quote marks are used for the function keys.

A more convenient way to determine which key has been pressed is
to use a -keytype- command. Consider a cursor-moving procedure:

165

The TUTOR Language

166

define num=v5x=v1,y=v2,dx=10,dy=10

unit cursor

pause

keytype num,d,e,w,q,a,z,x,c
goto num,cursor,x

calcs num—1,y«y,y+dy,y+dy,y+dy,y,y—dy,y—dy,y—dy

The -keytype- command searches through the listed keys (d, e, w, q, a, z,
x, and c in this case) and, similar to the -match- command, sets “num” to
—1 (if the key is not found in this list) orto 0, 1, 2, 3, etc. (if it is found). If
the student presses d, “num” will be set to 0; if the student presses c,
“num” will be 7; and if he or she presses D, “num” will be set to —1. The
-goto- statement effectively causes all unlisted keys to be ignored.

Note that no quote marks are used in specifying keys in a -keytype-
command. Capital letters and function keys may also be listed:

keytype v3,a,A,b,B,next,data,timeup

While the -keytype- command is most often used in conjunction with a
-pause- command, it can also be used in association with an -arrow-
command or any time that you want to find out which key was pressed
most recently. The function key timeup is one generated by TUTOR
when a timing key is “pressed” as the result of an earlier -time- command
or timed -pause- command (see Chapter 2).

Just as the -list- command can be used to specify a set of synonomous
words and numbers for use in -answer- and -match-, so there is a -group-
command available for specifying synonomous keys for use in a
-keytype- command:

define keynum=v23,algkey=v24
group algebra,x,y,z

keytype keynum,a,b,algebra,help
01 2 3

If the student presses any of the keys x, y, or z, the variable “keynum”
will be assigned the value 2. An additional -keytype- command can be
used to separate members of a group:

MORE ABOUT JUDGING

keytype keynum,a,b,algebra,help
goto keynum,none,ua,ub,alg,somehelp

unit alg
keytype algkey,x,y,z

Some particularly useful -group- definitions are built-in. Without speci-
fying these definitions with your own -group- commands, you can (in a
-keytype- command) refer to these groups in the following ways:

alpha all 52 lower-case and upper-case letters
numeric @ through 9
funct function keys (next,help,etc.)

An example of the use of these built-in groups might be “keytype
v45 funct,a,b,c”. You can also use previously defined or built-in groups to
define new groups:

group mine,a,b,c help
group ours,mine,d,e,f
group all,A,B,C,ours,numeric,funct

It is important to note that if you use a -pause-, the key pressed will
not cause the associated character to appear on the student’s screen. You
are in complete control. You may write something on the screen or not, as
you choose. Only if you use an -arrow- will the standard key display take
place (with the associated ERASE and other standard typing features
available). Similarly, if you press HELP, you will not automatically

branch to a unit specified by a previous -help- command, because a blank.

-pause- gives you every key, function key or not.

There is a variant of the -pause- command which is usually more
useful than the blank -pause-. You can define which keys are to be
accepted, and all other keys will be ignored:

next umore

help discuss

data tables
(Continued on the next page.)

167

The TUTOR Language

168

pause keys=d,D,next,term, help,help1

Any key not listed here is completely ignored, as though the student had
not pressed it. Of the function keys listed, the HELP key will take the
student to unit “discuss”, since you have already specified what you want
the HELP key to do. Note that this is not possible with a blank -pause-
which catches all keys. Similarly, what the TERM key will do has been
predefined (the student will be asked “what term?”). But the DATA key
will be ignored since it is not listed in the -pause- statement, and the
student cannot reach unit “tables” with the DATA key until he or she has
passed the -pause-. Pressing d, D, NEXT, or HELP1 will take the student
past the -pause-. The NEXT key is rather special here in that the
preceeding specification “next umore”, unlike “help discuss”, tells
TUTOR what to do when the present main unit has been completed.
Thus, pressing NEXT here takes us past the -pause- instead of branching
us immediately to a different unit as HELP does.

You may prefer not to ignore the HELP key nor to use it to access unit
“discuss”. In this case, the statement “help discuss” must follow the
-pause- statement, or a “help q” must precede the -pause- in order to
quit specifying a help unit.

Touching the Screen

Most PLATO terminals have “touch panels” which make it possible
for the student to respond by touching the screen. For example, a
language drill might show the student pictures of various animals and ask
the student to point to the dog. You need a way to tell at which part of the
screen the student pointed. This is most easily done with -pause- and
-keytype- statements, as in the following example:

pause keys=touch
keytype num,touch(1215),touch(100,200)

The first statement, using the built-in group “touch”, tells PLATO to
expect a touch input. The -keytype- statement will set “num” to 0, if the
student touches as close as possible to screen location “1215”; will set
“num” to 1, if the student touches near location “100,200”; and will set

MORE ABOUT JUDGING

“num” to —1, if the student touches the screen elsewhere.

How close the student must be to location “1215” or location
“100,200” depends on the resolution or fineness of the touch panel. Most
touch panels cover the screen with a 16 by 16 grid of square touch areas.
Each square is 32 dots by 32 dots in size, or 4 characters wide by 2
characters high. If the square touched by the student overlaps location
“1215” or location “100,200”, TUTOR will consider that the student has
pointed at that place.

You can define larger regions of the screen. For example:

‘keytype num,touch(1215;8,4),touch(100,200;64,32)

In this case, the -keytype- statement will set “num” to @ if the student
touches somewhere within a box whose lower left corner is at “1215”,
whose width is 8 characters, and whose height is 4 characters. The
variable “num” will be 1 if the student touches within a box whose lower
left corner is at fine-grid location “100,200”, whose width is 64 dots, and
whose height is 32 dots. The touch-panel square touched by the student
must overlap one of your rectangles in order for TUTOR to consider that
a rectangle has been touched.

You can abbreviate “touch” by “t” and write “t(1215)” instead of
“touch(1215)”.

In addition to the pause-keytype combination, you can also use a
-touch- judging command with an -arrow-. See the PLATO on-line “aids”
for details.

Summary

In this chapter we have discussed, in some detail, the marker
properties of the -arrow- command. The -arrow- command as we have
seen serves as an anchor point which TUTOR clings to until the -arrow-
is satisfied by an “ok” judgment (at which point a search is made for
additional -arrow- commands). We looked at some cases involving the
repeated execution of -join- in regular, judging, and search states, and of
the non-execution of -goto- in the judging and search states. We have also
looked at other side-effects of the -arrow- command, including initializa-
tions associated with -size-, -rotate-, -long-, -jkey-, and -copy-.

In addition, we have seen how the -bump- and -put- commands can
be used to change a student’s response into a form more easily handled by
the standard judging commands. This is particularly useful when only
slight changes are necessary.

In Chapter 7 we saw how to store numeric and alphanumeric

169

The TUTOR Language

170

responses for later processing (-store- and -storea-). These capabilities
make it possible to “do your own judging” in those cases where the
standard judging commands are not suitable. The basic TUTOR judging
commands provide a great deal of power but cannot handle all possible
situations. Fortunately, there is always the possibility of performing
calculations on a stored student response, which means that TUTOR is
open-ended in its judging power. The regular commands -search- and
-move- can be used to manipulate stored character strings. (In Chapter 10
you will find discussions of “segments” and “bit manipulations” which
permit you to use the -calc- command to perform additional operations on
character strings.) We have also discussed how to handle input from the
student by collecting each key with a -pause- command, then using
-keytype- (aided by -group-) to make decisions on a key-by-key basis. We
have learned, also, how to use similar techniques to determine where the
student had touched the screen.

