Judging Student Responses

You now know quite a bit about how to express (in the TUTOR
language) your instructions to PLATO on how to administer a lesson to a
student. You may not have realized it, but in the process you have learned
a great deal about the fundamental concepts of computer programming.
You can calculate, produce complex displays, and construct rich branch-
ing structures. You have studied aspects of initialization problems, you
have seen the importance of subroutines, and you have looked at some
stylistic aspects of good programming practice such as defining variables,
placing unit pointer commands at the head of main units, etc. With this
solid background you are now ready for a detailed look at how to accept
and judge student responses.

In Chapter 1 you saw a common type of judging situation in which
you simply listed the anticipated responses after an -arrow- statement,
together with the display or other actions to be performed depending on
the particular response. Let us see how TUTOR actually processes these
judging commands. We will consider a slightly different version of the
“geometry” unit. Remember that in the -answer- and -wrong- statements,

parentheses enclose synonyms, and angle brackets enclose ignorable
words.

95

The TUTOR Language

unit geometry

draw 510;1510;1540;510
arrow 2015

at 1812

write What is this figure?
answer <it,is,a> (right,rt) triangle
write Exactly right!

wrong <it,is,a> square

write Count the sides!

What 15 this figure?

96

Fig. 7-1.

The order of the initial statements has been changed slightly. TUTOR
starts executing this main unit by drawing the triangle. TUTOR next
encounters the -arrow- command, places an arrowhead at position 2015,
and notes where this -arrow- command is (the second command in unit
“geometry”). TUTOR then executes the -at- and -write- to display the
text: “What is this figure?”

Finally, TUTOR reaches the -answer- command. This “judging”
command is useless at this time because the student has not entered a
response. There is nothing more that can be done but wait for the student
to type a response and enter it by pressing NEXT. We call commands
which operate on the student’s response “judging” commands (such as
-answer- and -wrong-). Other commands, such as -draw-, -at-, -write-, and
-calc-, are called “regular” commands. We see that TUTOR must stop
executing regular commands when a judging command is encountered.
(This assumes the presence of an -arrow- command. An -answer- or other
judging command without a preceding -arrow- is meaningless.)

When the student presses NEXT to enter his or her response,
TUTOR looks at its notes and finds that the -arrow- was the second
command in unit “geometry”. TUTOR starts looking just beyond there
for judging commands to process the student’s response. It skips the
regular commands -at- and -write- since these are not judging commands
and are of no use at this point. It encounters the -answer- command and
compares the student response with the specifications given in the tag of
the -answer- command.

JUDGING STUDENT RESPONSES

If there is not an adequate match, TUTOR goes to the next command
looking for a judging command that might yield a match. In this case, the
following command is a regular command (-write-) which is skipped.
Next there is a -wrong- judging command, and if there is no match to the
student’s response, TUTOR keeps judging. At this point, there is a -write-
regular command which is skipped.

Finally, we come to the end of the unit without finding a matching
judging command and must give a “no” judgment to this response (and
possibly mark up the response with underlining and X’s if the response is
fairly close to that specified by the -answer- command). (See Figure 7-1.)
The process of starting immediately after the -arrow- in the “judging
state” will be repeated each time the student tries again with a revised
response.

If, on the other hand, the response adequately matches the -answer-
statement, TUTOR has found a match and can terminate the execution of
judging commands. It switches to processing regular commands with the
result that the following “write Exactly right!” will be executed. (This
regular command is skipped unless a match to the -answer- flips TUTOR
out of the “judging state” into the “regular state”.) Then TUTOR, in the
regular state, comes to a judging command (-wrong-) which terminates
the processing. TUTOR finishes up by placing an “ok” beside the student
response. (Similarly, a match to the -wrong- would flip TUTOR to the
regular state to execute the regular statement “write Count the sides!”)

When the -arrow- is finally “satisfied” by an “ok’ judgment, TUTOR
returns one last time to the -arrow- and searches for any other -arrow-
commands in the unit. In this search it skips both regular and judging
commands. In our particular example no other -arrow- is found, so all
arrows (one) in the unit have been satisfied. After the student has read our
comment, he or she presses NEXT and proceeds to the next main unit.

It may seem wasteful to you that TUTOR keeps going back to the
-arrow- only to skip over the regular commands preceding the first
judging command. It turns out that skipping a command is an extremely
fast procedure, and that keeping a single marker (the location of the
-arrow- command within the unit) greatly simplifies the TUTOR machin-
ery.

In the example, the replies “Exactly right!” or “Count the sides!”
would be displayed at location 2317, three lines below the response on
the screen. This standard positioning can, of course, be altered by an -at-
statement. Here is another illustration:

unit canine

at 2105

write Name a canine:
{Continued on the next page.)

97

The TUTOR Language

98

arrow 2308
answer dog

write A house pet.
answer wolf

write A wild one!
wrong cat

write A feline!

Suppose the student enters “wolf” as his response. TUTOR initiates the
“judging state” just after the -arrow-. The first -answer- (dog) does not
match, so TUTOR stays in the judging state and skips the “write A
house pet.” There is a match to the following “answer wolf”, so judging
terminates and the regular state starts. The “write A wild one!” is
executed, not skipped. Next, TUTOR encounters a “wrong cat”, and
since -wrong- is a judging command, this terminates the regular state.
The student gets an “ok’ judgment. TUTOR searches for another -arrow-
but does not find one, so the student has successfully completed the unit.
(Various units of this kind are illustrated with animated diagrams in the
on-line “aids” available on PLLATO.)

This method of processing judging and regular commands yields a
readable programming structure, with judging commands delimiting the
regular commands used to respond to the student. We have spent time
discussing the details in order to simplify our later descriptions of the
various types of judging commands used to match, modify, or store
student responses.

It is important to point out that the -do- and -goto- commands are
regular commands. They are, therefore, skipped over during the judging
state and during the search state (looking for a possible additional -arrow-
after an arrow has been satisfied). There is another command, -join-,
which works much like -do- except that the -join- command is universally
executed whether TUTOR is in the regular state, the judging state, or the
search state. In particular, it is possible to -join- units containing judging
commands, whereas a -goto- or -do- is incapable of accessing other units
in the judging state (since these regular commands arc skipped). Al-
though the -do- command acts essentially like a -join-, it is, nevertheless,
a regular command and is skipped during the judging and search states.
Only the -join- command itself has the unique characteristic of being
performed in all states (regular, judging, and search).

It is frequently useful to handle more than one response in a unit.
Let’s ask “Who owned Mount Vernon?” and (after receiving a correct
response) ask in what state it is located but stay on the same page:

unit wash
at 812

JUDGING STUDENT RESPONSES

write Who lived at Mount Vernon?
arrow 1015

answer <George,G> Washington

at 1120

write Great!

wrong Jefferson

at 1112

write No, he lived at Monticello.
arrow 1715

at 15612
write In what state is it located?
answer (Va,Virginia)

If you say “Jefferson” the -wrong- is matched. Regular commands are
executed until you run into the second -arrow-, which ends the range of
the first -arrow-. In other words, when you are working on one -arrow-,
the next -arrow- is a terminating marker. If you say “Washington”, the
student gets the “Great!” comment. Since the -arrow- is now satisfied,
TUTOR starts at the first -arrow- searching for another -arrow-. In this
search state, all commands other than -join- are skipped (-join- may be
used to attach a unit that contains another -arrow-). A second -arrow- is
encountered, which changes the search state into the regular state. The
arrowhead is displayed on the screen and the location of this -arrow-
within the unit is noted. The regular commands following this second
-arrow- are processed to display the second question. The final -answer-
command stops this processing to await the student’s response.
There is another way to do this which is probably more readable:

unit wash

next wash

at 812

write Who lived at Mount Vernon?
arrow 1015

answer <George,G> Washington
at 1120

write Great!

wrong Jefferson

at 1112

write No, he lived at Monticello.
endarrow ’
at 1512

write In what state is it located?
arrow 1715

answer Va,Virginia
{ (ginia) 99

The TUTOR Language

100

The -endarrow- command defines the end of commands associated with
the first -arrow-. Note that -endarrow- changes the search state to the
regular state. One benefit of this form is that the second arrowhead
appears on the screen affer the text of the second question, which often
seems more natural.

It may seem rather abrupt that the “Great!” and “In what state is it
located?” both appear on the screen at the same time. It might be better to
let the student digest the reply before presenting the second question. We
might insert a -pause- (with the tag “keys=all”) just after the -endarrow-.
Now TUTOR waits for you to press a key, (which signals that you want to
go on) before presenting the next question.

The -endarrow- command is quite useful even in units which contain
only one -arrow-:

arrow 1213

answer dog

write Bowwow!
answer wolf

write Howl!
wrong cat

write Meow.
endarrow

calc y<37+y
circle 100,250,250

The commands following the -endarrow- will be executed only after the
-arrow- is satisfied, whether it be by the response “dog” or “wolf”. So this
is a convenient way to finish up the unit.

While it is possible to -join- or -do- units which contain -arrow-
commands, two seemingly arbitrary rules must be followed or you will
get unpredictable results:

1) A unit attached by -join- or -do- which contains one or more
-arrow- commands must end with an -endarrow- command
(possibly followed by regular commands).

2) This attached unit must not contain any -goto- commands.

If you violate either of these rules, strange things will happen
because TUTOR may “undo” from this unit several times (during
judging, while processing regular commands, or in the search state).

JUDGING STUDENT RESPONSES

If you follow these two rules, the -join- or -do- will act like a
text-insertion device whereby your program will act as though you had
inserted the attached unit where the -join- or -do- was. We will discuss
these rules in more detail in Chapter 8.

Student Specification of Numerical Parameters

The -answer- and -wrong- commands make it easy to specify a list of
anticipated responses each of which (due to the specification of synony-
mous and optional words) can allow the student considerable latitude in.,
the way he or she phrases his or her response. However, in some cases
there can be no list of anticipated responses and a different technique
must be used. For example, you might ask the student to specify a
rocket’s launch velocity and use his or her number to calculate and
display the rocket’s orbit. Or you might ask the student for his or her
name for later use in personalized messages such as “Bill, you should
look at Chapter 5.” In such cases, all you can anticipate is that the
response will be a number or a name, but you can’t possibly list all
possible numbers or names.

Here is an example of such a situation. We will provide the student
with a desk calculator accessible on the DATA key. In the desk calculator
mode the student can type complicated expressions (such as “2+63”") and
receive the evaluated result. (Students also have access to a similar
calculator mode by typing “TERM-calc”, which is a built-in PLATO
feature.)

unit mainline

data desk

at 3020

write Press DATA for calculator

unit desk
next desk $$ for repeated use
at 1713
write Type an expression.
Press BACK when finished.

arrow 19156
Eg:: store eval $$ Be sure to define “eval”’.
ok $$ Accept all responses.

write The result is <s,evalp.

101

The TUTOR Language

102

The -store- command will evaluate the student’s expression (e.g.,
“13sin30°”) and store the result in “eval” (in this case, the number 6.5).
The -store- command is a judging command because it operates on the
student’s response and can be executed only after the student initiates
judging by pressing NEXT. The -ok- command is a universal -answer-
which matches all responses, and unconditionally flips TUTOR from the
judging state to the regular state. In this example, it accepts any response
and enables the following -write- to display the evaluated result.

Note that a student need not use parentheses with functions. For
example, sqrt25, cos6()°, arctan3 are all legal. However, such expressions
are illegal in a -calc-. In a moment we’ll see another way in .which
TUTOR is more tolerant of students than of authors.

What if the response cannot be evaluated, such as “(—3)12” or “19/”
or “(3+5)))”’? In this case, the student will get a “no” judgment. To see
how this works, let’s insert a -write- statement after the -store-:

store eval

write Cannot evaluate!

ok

Notice that this new -write- is normally skipped because the -store- leaves
us in the judging state. But, if the student’s expression cannot be
evaluated, -store- makes a “no” judgment and switches us from the
judging state to the regular state. TUTOR then executes the “write
Cannot evaluate!”, after which it encounters a judging command (-ok-)
which stops the regular processing. Note that -store- terminates judging
only on an error condition, whereas -answer- terminates judging only on a
match, and -ok- always terminates judging.

You can tell the student precisely (in a -writec- statement) what is
wrong with his or her expression by use of the system variable ‘“formok”.
This variable is — 1 if the student’s expression can be evaluated but takes
one of several positive integral values for specific errors such as unbal-
anced parentheses, bad form, unrecognized variable name, etc. The
variable “formok” is defined automatically to perform this function. (If
you yourself define “formok=v3” you override the system definition and
you won’t get these features.) The particular values assumed by “formok”
can be obtained through on-line documentation at a PLATO terminal.

JUDGING STUDENT RESPONSES

You can also give the student some storage variables. Let’s define a
couple of variables for the student:

define student $$ special define set
bob=v30,cat=v31

Place these defines ahead of everything else in the lesson. Suppose you do
a -calc- to assign bob«18 and cat<3. If the student types “2bob” he gets
36. Or he can type “bobcat” and get 54, whereas bobcat would be illegal
in a -cale- where you would need bobXxcat or bob(cat). Only names
defined in the set of definitions labeled “student” may be used by the
student in this way. Attempted use (by the student) of names in your
other sets of defines will give a value of “formok” corresponding to
“unrecognized variable name”.

We have discussed a desk calculator, but clearly the store/ok combi-
nation will work in any situation where we let the student choose a
number. Another good example is in an index of chapter numbers:

unit table

base
term index $$ or access by means of shift-DATA,
at 1218 $$ as in Chapter 5

write Choose a chapter:
1) Introduction

2) Nouns
3) Pronouns
4) Verbs
arrow 1822
Sg: long 1 $$ get one digit; don't wait for NEXT

store chapter

no
ES? jump chapter,x,x,intro,unoun,pron,verb,x
write Pick a number between 1 and 4.

(As previously mentioned in Chapter 5, it would be better to execute the
-base- command only after deciding to jump, so that the student could
still use the BACK key to return to the original unit.) The -long- command
following an -arrow- (but preceding any judging commands) sets a limit
on the length of the student’s response. The “long 17 is particularly
useful here because the student need not press NEXT but has only to
press the single number to begin the judging process. (For -long- of
greater than 1 there must be an accompanying “force long” statement or
else a NEXT key is required.) The -long- command must precede any

103

The TUTOR Language

104

judging command since the “long” specification is needed before the
student starts typing (whereas we proceed past the judging command
only after the student enters a response). The -long- command may be
thought of as a kind of modifier of the -arrow- command, in the sense that
the -arrow- sets a default maximum response length which is overridden
(or modified) by the following -long- statement.

The -no- in this index unit is similar to an -ok- command in that it
unconditionally terminates judging, but the -no- command makes a “no”
judgment. If “chapter” is a number from 1 to 4, the -jump- will take the
student to his chosen chapter. (Since -jump- erases the screen the “no”
will not be seen.) If, however, “chapter” is not in range, we fall through
the -jump- to an error message, and there will be a “no” next to the
response (and the student must try again).

Student Specification of Non-Numerical Parameters

Now that we have seen how to let the student specify a number, let’s
see how to ask the student to tell us his or her name or nickname to permit
us to communicate by name:

unit meet

at 1215

write Hello, my name is Sam Connor.
What's your name?

arrow 1620

long 8 $$ limit to 8 characters
storea name $$ define “name’’ earlier
ok

write Pleased to meet you, <{a,name)}!

The -storea- command is a judging command which will store alphabetic
information as distinguished from numeric information. The <a,name)>
is the embedded form of the statement “showa name” which will
display alphabetic information. This unit will feed back to you any name
you give it. Notice that you can’t enter a name of more than 8 characters
because of the -long- command. TUTOR stores a capital letter as a “shift”
character plus the lower-case letter, so if capitalized, the name must be
shorter because a capital letter counts as two characters. (Insert a
“force long” statement anywhere before the -storea- if you would like
judging to start upon hitting the -long- limit, without having to press
NEXT.)

JUDGING STUDENT RESPONSES

A statement of the form “storea name,3” will store just the first
three characters of the student’s response. You can get and keep a
character count of the length of the student’s name, including “shift”
characters, by referring to the system variable “jcount”, which is a count
of the number of characters in the copy of the student response used for

cery

judging—hence the “j”. With these facts in mind, change the -storea- to:
storea name,(naming<ijcount)

This will store the whole response and save the length. Be sure to define
both “name” and “namlng”, but do not define “jcount” or you will
override TUTOR’s definition of its function. Also, to show the precise
number of characters, change the embedded -showa- to:

<a,name,naming)>

The reason for saving the present value of “jcount” in “namlng” is
that “jcount” will change at each -arrow- in the lesson, whereas through-
out the lesson you will repeatedly use “showa name,namlng” or <a,
name,namlng)> to call the student by name. So, you want “namlng” to
keep the name length. Incidentally, a -showa- with only a single argu-
ment (such as “showa name”) will show ten characters, which is the
number of characters (including shift characters) that will fit in one of
your variables.

It is possible to store alphabetic information which is longer than ten
characters. Change the “long 8 to “long 20”. Suppose you’ve defined
“name=v24.” In this case, you must make sure that you are not using v25,
and change your defines if necessary. The 20-character name will need
both v24 and v25 since each variable can hold only ten characters. With
these changes it is possible to enter a long name (e.g., Benjamin Franklin,
which is 19 characters counting shift characters).

Difference Between Numeric and Alphabetic Information

When we were studying the desk calculator unit, we defined a
variable “bob=v30” for the student. Suppose the student responds with
the word “bob”. If we use a numeric -store-, we will get the number
presently contained in v3@, which might be 529.3. If we use an alphabetic
-storea-, we will get the string of characters “bob”” which is simply a name
and nothing more. Perhaps the distinction is most easily seen with an
example, which you should write and try out at a PLATO terminal:

105

The TUTOR Language

106

define student
bob=v1
define ours,student $$ include “’student” set of defines
name=v2,num=v3
unit test
calc bob<«m $$ ™ means 3.14159
arrow 1815
store num
storea name
ok '
write num=<s,num)
name=<a,name,jcount)>

Consider various responses. For example, “2bob” should give a numeric
2 (6.2832) and an alphabetic “2bob”. Most often, we speak of “alphanu-
meric” information (letters and numbers) in the latter case. The response
“3—4/5" yields a numeric 2.2 and an alphanumeric “3-4/5".

In other words, a storea/showa combination feeds back exactly the
alphanumeric text entered by the student. However, a -store- involves a
numerical evaluation of the student’s response, and a later -show-
converts this numerical result into appropriate characters to display on
the screen (so that you can read the result). You might interchange the
“num” and “name” arguments on the -store- and -storea- commands to
see the unusual things that happen if you pair -store- with -showa-
(instead of -show-) or if you pair -storea- with -show- (instead of -showa-).

To sum up, if you accept numeric information with a -store-, display
it with a -show-. If you accept alphanumeric information with a -storea-,
display it with a -showa-.

More On -answer- and -wrong- (Including -list- and -specs-)

There are some additional features of -answer- (and -wrong-) which
should be pointed out. First, -answer- will not only handle word or
sentence responses but will also handle numbers:

answer 7 women <and> 5 men

This -answer- will be matched by a student response of the form “14/2
women and 3+2 men” because simple expressions such as 14/2 or 3+2
are evaluated by the -answer- command. Currently, the -answer- com-
mand will not handle very complicated numerical expressions.

JUDGING STUDENT RESPONSES

(Later we will discuss the -ansv- and -wrongv- commands which
handle expressions as complicated as those handled by -store- but
without the sentence capabilities of -answer- and -wrong-. There are also
-ansu- and -wrongu- commands which are similar to -ansv- and -wrongv-
but treat scientific units on a dimensional basis.)

If the student says “37 women and 5 men,” the incorrect number 37
will have xx under it, whereas the response “6.5 women and 5 men” will
have the 6.5 underlined since it is nearly correct (similar to a misspelling
of a word). Normally -answer- and -wrong- consider numbers off by less
than 10% to be “misspelled.” You can alter these specifications by
preceding the list of -answer- and -wrong- commands with a -specs-
command:

unit trial

arrow 1815

specs toler,nodiff

answer 7 women <and> 5 men

The -specs- command is a judging command which affects the operation
of other judging commands which follow it. Here it has been used to
specify that a “tolerance” of 1% is permitted and that “no difference will
be allowed for underlining” (normally 10%). Having specified both
“toler” and “nodiff,” any expressions within 1% of 7 and 5 will be
accepted, but expressions with larger discrepancies will not be under-
lined.

Note carefully that since -specs- is a judging command, it terminates
the processing of regular commands. Among other things, this means that
a -long- command must precede the -specs-, not follow it. If -long- comes
after -specs-, TUTOR could not prevent the student from entering a
longer response (since it could not see the -long- command before it
paused for the student’s response).

Here are some other useful applications of -specs-:

specs okcap,okspell
answer the antidisestablishmentarianism doctrine

This allows the student to capitalize words, and specifies that mis-
spellings are to be considered ok. Note that if the -answer- tag contains
capitalized words, the student must also capitalize those words. The
“okcap” makes capitalization optional only for those words you have not
capitalized. You can use -specs- to ignore extra words:

107

The TUTOR Language

108

specs okextra
answer Washington

This states that it is ok to have extra words, so that “It was George
Washington” will be an acceptable response. The following is another
example of -specs- capabilities:

specs noorder
answer apples pears and peaches

This specifies that no particular word order is required. Note the absence
of commas in the -answer- tag. (Such punctuation marks are not allowed
there, but all punctuation marks are ignored in the student’s response, so
he or she may use commas). Also, note that “answer apples, pears and
peaches” would represent two synonymous answers, and the student
could respond either with “apples” or with “pears and peaches”. There
exists a much less powerful -exact- command (as well as other tech-
niques) for judging particular punctuation when that is necessary. For
example, it is possible to use the -change- command to redefine the
comma to be a “word” rather than a punctuation mark. In that case, some
otherwise unused character must be defined to take the place of the
comma in specifying synonyms.

specs nookno
ok

Here we specify that no “ok” or “no” be displayed beside the student’s
response, contrary to the normal situation. (As an alternative, the
-okword- and -noword- commands can be used to change the words
TUTOR uses from “ok” and “no” to something else.)

(For other -specs- capabilities see reference material described in
Appendix A.)

Another important feature of -specs- (in addition to its use in
specifying various options) is that it marks a place to return to after
judging. Consider the following unit. You do not define the system
variable “spell”.

unit presi

at 1212

write Name one of the first three U.S. presidents.
arrow 1513

specs bumpshift $$ delete shift codes

at 2508

va writec spell,No misspellings],
Underlining indicates a misspelled word.

JUDGING STUDENT RESPONSES

answer washington

write Good old George.
answer adams

answer jefferson

Suppose the student types “WASHINGTON”. TUTOR starts judg-
ing just after the -arrow- and encounters -specs-, a judging command. The
tag (“bumpshift”) tells TUTOR to change the response to “washington”
for judging purposes. (Incidentally, this operation changes “jcount”, the
character count of the judging copy of the student’s response, from 20 to
10 because the “shift” characters are knocked out.) Moreover, TUTOR
makes a note that it encountered a -specs- command as the fourth
command in unit “presi”’, and this marker will be used in a moment.
TUTOR skips the following -at- and -writec- because regular commands
are skipped in the judging state.

Next, TUTOR encounters “answer washington” which matches the
student’s (altered) response, and this terminates judging. The succeeding
regular commands are processed as usual. In this case, there is only a
“write Good old George” before we run into another judging command
(“answer adams”) which stops the processing.

Actually, processing has not completely stopped. It is at this point
that TUTOR asks one last question: “Did I pass a -specs- command in
processing this response?” The answer is yes (at the fourth command in
unit “presi”’). TUTOR now processes any regular commands following
that -specs- marker. In this case, TUTOR does an “at 2508 and a
-writec- before finally being stopped (really stopped this time) by the first
-answer- command. :

The -writec- refers to the system variable “spell” which is true (—1) if
the spelling is correct, and false (@) if a misspelling has been detected.
The variable “spell” is —1 if there are no underlined words, but there
may be X’ed words (words that are completely different).

The usefulness of the marker property of -specs- is that you can
specify a central place to put messages and calculations, which should be
done no matter which judging command is matched. We will see
additional applications of this useful feature of -specs-. Notice that a later
-specs- command will override an earlier -specs- marker in a manner
analogous to the way a later -help- command overrides an earlier setting
of the “help” marker. Note, too, that if no regular commands follow the
-specs-, TUTOR finds nothing to do when it comes there after being
nearly stopped as described above. This was the situation in our previous
examples such as:

specs nookno
ok

108

The TUTOR Language

110

In this example, there are no regular commands between the -specs- and
the -ok-.

Let us return for a moment to the -answer- command. We had
examples involving synonyms such as (rightrt) or (Va,Virginia). A
convenient way to specify synonym lists which occur frequently in a
lesson is to define a -list-:

list affirm,yes,ok,yep,yeah,sure,certainly

Here “affirm” is the title of a list of synonyms (“affirm” is not itself a
member of that list). With this definition, which should be placed at the
very beginning of your lesson along with your -define- statement, you can
write:

answer ((affirm))
wrong maybe ((affirm))

These are equivalent to:

answer (yes,ok,yep,yeah,sure,certainly)
wrong maybe (yes,ok,yep,yeah,sure,certainly)

Note that “answer we affirm” does not imply this list of synonyms, just
as a single important word by itself does not refer to a list. You can use the
list equally well to specify optional words, as in:

answer <<affirm>> itis

Here <<affirm>> is equivalent to <yes,ok,yep,yeah sure,certainly>. Note
that <affirm> merely refers to the single word “affirm”. Double marks are
needed to refer to the list whose title is “affirm”. You can combine
references to synonym lists with individual words. For example:

wrong usually (definite, (affirm))
answer often <definite, <affirm>>

The following list might also be particularly useful:

list negate,no,nope,not,never,huhuh

This covers the main capabilities of the -answer- and -wrong-
commands and their associated -list- definitions. The -specs- command
may be used to modify how -answer- works and also serves as a useful
marker. The marker function of -specs- is not limited to -answer- but
holds for any judging commands which follow it, including -ok- and -no-.

JUDGING STUDENT RESPONSES

The -answer- (or -wrong-) command can nicely handle responses
which involve a relatively small vocabulary of words. It is, therefore,
adequate when the context limits the diversity of student responses (such
as foreign language translation drills where there are only a few permissi-
ble translations of the sentence and each such sentence contains a rather
small number of allowable words). The detailed markup of the response
provides the student with useful feedback in such a drill.

The -answer- command is not well-suited to a more free dialog with
the student where the context is broader and where the vocabulary used
by the student may encompass hundreds of words. In the next section we
discuss the -concept- command which can cope with more complexity.

Building Dialogs With -concept- and -vocabs-

An excellent example of a dialog is a lesson on qualitative organic
chemistry analysis written by Prof. Stanley Smith of the Department of
Chemistry, University of Illinois, Urbana. This lesson helps students
practice their deductive skills on PLATO before they identify unknown
compounds in a laboratory. Prof. Smith has PLATO randomly choose
one of several organic compounds and then invites the student to ask
experimentally-oriented questions aimed at identifying the unknown.
Typical questions are: “what is the melting point;” “does it dissolve in
sulfuric acid;” “show me the infrared spectrum;” “is it soluble in H,0.”
There are over a hundred such concepts important in this simulated
laboratory situation, and since each concept has many equivalent forms
drawing upon a vocabulary of hundreds of words, the number of possible
responses is astronomical. How can this be handled?

Although the context is far broader than that of a language drill, it is,
nevertheless, sufficiently limited to be tractable. No attempt is made to
recognize arbitrary student responses such as “cook me some apple pie.”
With this quite reasonable restriction, the situation can be handled by
using the -vocabs- command (analogous to -list-) to define a large
vocabulary (with appropriate “synonymization”) associated with a list of
-concept- commands (analogous to -answer-) which express the basic
concepts meaningful in the context of this lesson. The following is a
fragment of the -vocabs- command:

vocabs labtest $$ vocabulary must have a name
<is,it,a,does,in,what> $$ ignorable words
(color,red,blue,green) $$ word number 1 and synonyms
(water,H,0) $$ word number 2 and synonym
(dissolve,soluble) $$ word number 3 and synonym

111

The TUTOR Language

112

And here are a couple of the many -concept- commands:

arrow 1213
concept what color

write It is red.
concept soluble in water

write It's slightly soluble in water.

Consider what TUTOR does with “concept soluble in water”.
TUTOR knows that -concept- has a tag consisting of words defined by a
previous -vocabs-. (As usual with such matters, the -vocabs- should be at
the beginning of the lesson.) The first word in the tag is “soluble” which
TUTOR finds is the third very important word in the vocabulary
(discounting the ignorable or optional words “is,it,a,” etc.). TUTOR
groups synonyms together so that “dissolve”, too, would be considered a
“number 3” vocabulary word. The next word of the tag is “in” which
TUTOR throws away because the -vocabs- command says that the word
is ignorable. The next word is “water”, which is in the second set of
important -vocabs- synonyms. The net result is that “concept soluble in
water” is converted to the sequence “3 27,

Now, consider a student in this lesson who types “does it dissolve in
H,O”. Superficially, this looks quite different from the -concept- tag
“soluble in water”. However, TUTOR encounters a -concept- command
which, unlike -answer-, indicates that the student’s response should be
looked up in the defined vocabulary. (In the case of -answer- there is no
one vocabulary set because each -answer- may include various -list-
references and particular words specific to that -answer-.) By a process
identical to the conversion of the author’s -concept- tag, TUTOR converts
the student’s response into “3 2”. This compact form “3 2 does not
match the first “concept what color” (which was converted to “1”), so,
TUTOR proceeds to the next judging command, which is “concept
soluble in water” or rather its converted form “3 2”. This matches, so
judging terminates and regular processing begins. The student gets a
reply “It’s slightly soluble in water.”

JUDGING STUDENT RESPONSES

Notice that the first -concept- encountered triggers the transforma-
tion of the student’s response into the compact form suitable for looking
through a very long list of concepts. If the -vocabs- contains an entry such
as (five,5,cinco), the student may match this entry with “3+2”, just as in
an -answer- statement involving numbers.

You will have to experiment a little with this machinery in order to
learn how best to manage the synonymization in the vocabulary. This
does depend on the context. In an art lesson it would be disastrous to call
red and blue synonyms as was done here, but it makes sense in this
context (where the only concept related to color has to do with “what
color is it”, which means essentially the same as “is it red” or “is it
blue”).

You will find that the use of words not defined by -vocabs- will result
in a markup indicating which words are undefined (X’s will appear under
these words). If your context is such that you need worry only about key
words and don’t care if the student asks “does it dissolve superbly in
water”’, you might precede the first -concept- with a “specs okextra”
which says that extra student words not found in the vocabulary may be
ignored, as though they had been so specified in the -vocabs- tag. In that
case, you need not define any ignorable words with -vocabs-, but you
would write “concept dissolve water”, not “concept dissolve in water”
since extra author words are not tolerated. If you don’t use “specs
okextra”, the student’s word “superbly” will be marked (xxxxxxxx). If
the student misspells a vocabulary word, that word will be underlined
such as “saluble

The following is an alternative and more detailed version of the heart
of the dialog lesson, which illustrates several points. It is a rather
complex example which brings together many aspects of TUTOR. Note
particularly that the -concept- statements now are listed one after the
other. The variable “unknown” is a number from 1 to 4 (associated with
which compound the student is attempting to identify). The system
variable “anscnt” is set to zero when judging starts (and when a -specs- is
encountered) and it counts the number of -answer-, -wrong-, -ok-, -no-,
and -concept- commands passed through. If the third such command
terminates judging, “anscnt” will have the value 3. If no match is found,
“ansent” is set to —1.

arrow 1213

wrong whatis it

write That is for you to determine!
(Continued on next page.)

113

The TUTOR Language

114

specs $$ to clear anscnt again

goto anscnt>@,unknown,x

writec . vocab,l don’t understand your sentence.,
The xxxx words are not in my vocabulary.

concept what color

concept soluble in water

concept boiling point

unit unknown
goto unknown—2,reply1,reply2,reply3,reply4
*
unit reply1
writec anscnt,,,lt is colorless.,
It is slightly soluble in water.,
The boiling point is 245-247° C.,

The statement “wrong what is it” is necessary because a “concept
what is it” contains only ignorable words and would, therefore, not
distinguish between “what is it” and “does it what”, which also contains
only ignorable words. Since -specs- resets “anscnt’ to zero, “anscnt” will
have the value 2 if the student’s response matches the second -concept-
(“soluble in water”). No regular commands follow this -concept-, so
TUTOR goes right to the -specs- marker to execute the regular commands
there. Since “anscnt” is greater than zero, TUTOR does a -goto- to unit
“unknown”, where there is a -goto- to unit “replyl” (assuming we are
working on unknown number 1), which writes “It is slightly soluble in
water” on the student’s screen.

This structure makes it very easy to add a fifth unknown compound
to the lesson. The -vocabs- and list of -concept- commands do not have to
be changed, since the basic concepts and vocabulary are pertinent to the
analysis of any compound. All that is necessary is to add “reply5” to the
end of the conditional -goto- in unit “unknown” and to write a unit
“reply5” patterned after unit “replyl”. The lesson revision is completed!

What happens if the student says “it what does”’? This will not match
the -wrong- nor any of the -concept- commands, so “anscnt” will be —1.
Therefore, the -goto- just after the -specs- will fall through to the

JUDGING STUDENT RESPONSES

following -writec-, which gives one of the two messages dependent on
the system variable “vocab”: true if all words are found in vocabulary,
false if some words are not found (these words would be underscored
with xxxx). In this case, the student will get the message “I don’t
understand your sentence”, whereas if the student says “what is ele-
phant” he will see the xxxx’s under “elephant” and get the message “The
xxxx words are not in my vocabulary”.

That was a fairly complicated example, but the discussion is justified
by the general usefulness of many of the techniques employed and by the
extraordinary power such a structure yields, both in its sophisticated
handling of student responses and in the ease of expansion to additional
options.

Suppose the -arrow- is in unit “analysis”. One way to proceed from
one question to the next would be to place a “next analysis” in this unit.
There is an efficient way to avoid erasing and recreating the display
associated with this unit. Instead of proceeding, let’s judge each response
“wrong” so that we stay at this -arrow-. Replace the -specs- command
with these two statements:

specs nookno $$ so “no’’ doesn’t appear
judge wrong

Despite its name, -judge- is a regular command, not a judging command.
It can be used to alter the judgment made by the judging commands. In
this case, TUTOR first skips over this regular command to get to the
-concept- commands. If one of these commands matches the student
response, TUTOR makes an “ok” judgment, but upon going to the -specs-
marker TUTOR finds a “judge wrong” which overrides the earlier
judgment. TUTOR keeps going, processing regular commands, and
produces a message as we have seen before. The “nookno” specification
prevents a “no” from appearing on the screen and the student simply sees

115

The TUTOR Language

116

our message. But the -arrow- has not been satisfied, so when the student
presses NEXT, TUTOR erases the response and awaits a new response.
Each time, the student gets a reply to his or her experimental question,
and the “wrong” judgment takes us back to the -arrow-.

This is a good way to manage the screen because only a small portion
of the display changes (the surrounding text and figures remain un-
touched). The “next analysis” re-entry to this same main unit would
quickly get tiresome because of the repetitious replotting of the sur-
rounding material.

You should now be able to use -answer-, -wrong-, and -list- in
situations where the vocabulary is small and -concept- and -vocabs-
where the vocabulary is large. You have seen how to use -specs- both to
specify various judging options and to mark a place where post-judging
actions can be centralized. You have seen one form of the regular -judge-
command “judge wrong” which overrides an “ok” judgment made by
an -answer- or -concept-.

Another way to get a “wrong” judgment is to use -miscon- (“miscon-
ception”’) commands instead of -concept- commands. Just as -wrong- is
the opposite of -answer-, -miscon- is the opposite of -concept-.

There is a particularly convenient way to make different concepts
equivalent, including different word orders:

concept dissolve in water
water soluble
drop in water

write It’s soluble in H,0.

The “continued” -concept- specifies synonymous concepts. If the stu-
dent’s response matches any of these three concepts the same message
will be given. Also, “anscnt” will be the same no matter which of these
concepts makes the match.

Use of -vocabs- makes possible the underlining of misspelled vocab-
ulary words (or their acceptance with a “specs okspell”), just as with the
-answer- command. Similarly, “specs noorder” can be used to indicate
that no particular word order is required. There is a -vocab- command
which permits a larger vocabulary (at the price of giving up these spelling
and order capabilities). Just as the multi-word phrase “sodium*chloride”
can be used with the -answer- command, so can such phrases be specified
in a -vocabs- vocabulary.

At times you may be interested mainly in root words, no matter what
endings are attached. The words “walk”, “walks”, “walked”, “walker”,
and “walking” can be added to a -vocabs- very simply as “‘walk/s/ed/er/
ing”, which saves you some typing effort. If you want all of these except

JUDGING STUDENT RESPONSES

for “walk” itself to be added to the vocabulary, use a double slash after
the root: “walk//s/ed/er/ing”.

An even more compact way to define common endings is with
-endings- commands:

endings 0,s,ed,ing
endings 9,er,est

vocabs sample
will/@,full//9

The use of the “@” and “9” sets of endings causes the vocabulary to
contain these words: will, wills, willed, willing, fuller, and fullest (“full”
itself is missing, due to the double slash). An -endings- set must be
identified by a number from @ to 9.

Numbering Vocabulary Words

Suppose the student is encouraged to ask questions such as “What is
the capital of Alabama?” or “What is the area of Alaska?” A compact and
powerful way to handle all the states is to specify a vocabulary class
(“state”) and number the various states. For example:

define st=v1

vocabs inquiry
<What,is,the,of>
(state, Alabama=1, Alaska=2, Arizona=3,.......)
capital, area

concept capital of state,stestate

writec st,,,Montgomery,Juneau,Phoenix
concept area of state,stestate

writec st—2151,6091586,4003113,909%
write sq. mi.

If the student asks “What is the capital of Alaska?” the first -concept- is
matched (“capital of state”), and variable “st” is assigned the value “2”,
since “Alaska” was given the value “2” in the vocabulary. Now “st” can
be used in the following -writec- to tell the student the name of the capital
(Juneau). Similarly, if the student asks “What is the area of Arizona”, the
second -concept- is matched, “st” is assigned the value “3”, and the
student is given the reply “113,909 sq. mi.”

117

The TUTOR Language

118

We can go even further. Consider this altered version, in which the
two -concept-s are combined:

define st=v1,prop=v2

vocabs inquiry
<What,is,the,of>
(state, Alabama=1, Alaska=2, Arizona=3,......)
(property, capital=1, area=2)

concept property of state, stestate,prop«property
writec 2(state—1)+{prop—1){Montgomery$51,609

Juneau}586,400tPhoenix$113,909¢
writec prop=2} sq. mi.{}

Suppose the student asks about “the area of Alabama”. The -concept- is
matched, “st” is assigned the value “1”, and “prop” is assigned the value
“9”. The expression “2(state—1)+(prop—1)” reduces to “2(0)+1” or “1”,
which picks out “51,609” from the first -writec-. Since “prop” does equal
“2” the second -writec- will write “sq. mi.” on the screen beside the area
number. (It would be good practice for you to determine the steps that
would be taken if the student asked about “the capital of Arizona.”)

Synonyms, phrases, and endings can be numbered, as in this
-vocabs- entry:

(verbs, walk=1/ed=2, stroll=1/ed=2, went*past=3)

According to this numbering scheme, “walk” and “stroll” are number 1
among the “verbs,” “walked” and “strolled” are number 2, and the
phrase “went past” is number 3.

The -judge- Command

We have encountered the regular command -judge- (not a judging
command) and have seen how it can be used to “judge wrong” a
response that had already received an “ok” judgment. The -judge-
command may also be used to “judge ok’ aresponse (disregarding what
a previous judging command may have had to say). The following is a
conditional form for this type of -judge- command:

judge 3a-b,ok,x,wrong

JUDGING STUDENT RESPONSES

This form will either make the judgment “ok”, leave the current judg-
ment as is (the “x” option), or make the judgment “wrong”, depending on
the condition “3a-b”.

Here is a useful example:

unit negative

at 1214

write Give me a

negative number:

arrow 1516

store num

write Cannot evaluate your expression.

ok $$ terminate judging
Eg' judge num<@,ok,wrong

writec num<®,Good!,That's positive!

We could just as well have written “judge num<@,x,wrong” since the
original judgment was a universal “ok”. (Later we will study -ansv- and
-wrongv- which are also useful in numerical judging.) Note that
“judge ok” and “judge wrong” do not cut off the following com-
mands. In the above example, the -writec- is performed, even though it
follows the -judge- command. The -judge- command here merely alters
the judgment. If you want to cut off the following commands, you can use
“judge okquit” or “judge noquit”.

We have been using the -ok- or -no- commands to terminate judging
unconditionally, as in the last example. It is sometimes useful to be able
to switch in the other direction, from the regular state to the judging state.
For example, suppose you want to count the number of attempts the
student makes to satisfy the -arrow-:

calc attempt<0

arrow 1518
ok
calc attempte«attempt+1

Egj judge continue

answer cat
etc.

119

The TUTOR Language

120

Judging starts just after the -arrow-. The -ok- terminates judging to permit
executing the regular -calc- which increments the “attempt” counter.
Then the regular -judge- command says “continue judging”, which
switches TUTOR back into the judging state to examine the -answer- and
other judging commands which follow. If the response is finally judged
“no”, the student will respond again, and since judging starts each time
from the -arrow-, the “attempt” counter will record each try. (Actually,
system variable “ntries” automatically counts the number of tries, but
structures similar to the structure illustrated here are often useful.)

Leaving out the -ok- and “judge continue” (which permit counting
each attempt) is a common mistake. If you write:

calc attempt<0
arrow 1518
calc attempteattempt+1

answer cat

then “attempt” will stop at one. TUTOR initializes “attempt” to 0, then
encounters the -arrow- and notes its position in the unit. Then, the
following -calc- increments “attempt” to 1, after which the -answer-
judging command terminates this regular processing to await the stu-
dent’s response. The student then enters his or her response and TUTOR
starts judging. The first command after the -arrow- is the incrementing
-calc-, which is skipped because it is a regular command and TUTOR is
looking for judging commands. This will happen on each response entry,
so “attempt” never gets larger than one. This explains the importance of
bracketing the -calc- with -ok- and “judge continue”.

A related option is “judge rejudge” which is similar to “judge
continue”. We have seen that “specs bumpshift” alters the “judging
copy” of the response by knocking out the shift characters. The judging
copy is the version of the response which is examined by the judging com-
mands (such as -answer-). This version may differ from the student’s
actual response due to various operations such as “specs bumpshift”. It
is also possible to -bump- other characters or to -put- one string of
characters in place of another. All such operations affect the judging copy
only and do not touch the original response, which remains unmodified.
The statement “judge rejudge” replaces the judging copy of the re-
sponse with the original response, thus cancelling the effects of any
previous modifications of the judging copy. The statement also initializes
the system variables associated with judging, including “anscnt”. It is,
therefore, much more drastic than “judge continue”, which merely

JUDGING STUDENT RESPONSES

switches TUTOR to the judging state without affecting the judging copy
or the system variables.

Another exceedingly useful -judge- option is “judge ignore” which
erases the student’s response from the screen and permits him or her to
type another response without first having to use NEXT or ERASE.
Unlike “judge wrong”, “ok”, or “continue”, “judge ignore” stops all
processing and waits for new student input. (Even the commands
following a -specs- won’t be performed.) On the other hand, TUTOR goes
on to the following commands after processing -judge- with tags “ok”,
“wrong”, or “continue”.

The following routine (which permits the student to move a cursor
on the screen) is a good example of the heightened interaction made
possible through the use of “judge ignore”. We use the typewriter keys
d,e,w,q,a,z,x, and c which are clustered around a 3 key by 3 key square on
the keyboard, to indicate the eight compass directions for the cursor to
move on the screen. These keys (shown in Fig. 7-2) have small arrows on
them to indicate their common use for moving a cursor.

Fig. 7-2.

121

The TUTOR Language

122

unit cursor

calc x<y<250 $$ initialize cursor position
dx<dy<=10 $$ cursor step size

do plot $$ plot cursor on screen

inhibit arrow $$ don’t show the arrowhead

arrow 3201

long 1

specs $$ come here after judging

do move $$ -do- is a regular command

answer d $$ east: anscnt=1 ‘

answer e $$ northeast 2

answer w $$ north 3

answer $$ northwest 4

answer a $$ west 5

answer 2z $$ southwest 6

answer x $$ south 7

answer ¢ $$ southeast 8

ignore $$ equivalent to: (no

* {judge ignore

unit move

*erase old cursor

mode erase

do plot

mode write

*increment x and y on the basis of “anscnt”

calcs anscnt—2,xex+dx,x+dx,x,x—dx,x—dx,x—dx,
x,x+dx

calcs anscnt—2,y<y,y+dy,y+dy,y+dy,y,

y—dy,y—dy,y—dy

do plot
Eg:’ judge ignore
*
unit plot
at XY
write + $$ use ““+" for cursor

This routine permits the student to move the cursor rapidly in any
direction on the screen. A letter which matches one of the -answer-
statements will cause the -calcs- statements to update x and y appropriate-
ly to move in one of the eight compass directions. The “long 1" makes it
unnecessary to press NEXT to initiate judging, and the “judge ignore”
after the replotting of the cursor again leaves TUTOR awaiting a new
response. The “judge ignore” greatly simplifies repetitive response

JUDGING STUDENT RESPONSES

handling such as that which arises in this example. Normally, such a
cursor-moving routine would be associated with options to perform some
action, such as drawing a line. This would make it possible for the
student to draw figures on the screen.

In addition to the -judge- options discussed above, there is a
“judge exit” which throws away the NEXT or timeup key that had
initated judging. This leaves the student in a state to type another letter
on the end of his or her response. This can be used to achieve special
timing and animation effects.

To summarize, the -judge- command is a regular command used for
controlling various judging aspects. The -ok-, -no-, and -ignore- are
judging commands which somewhat parallel the “judge ok”,
“judge no”, and “judge ignore” options. The “judge rejudge” and
“judge continue” options make it possible to switch from the regular
state to the judging state (with or without reinitializing the judging copy
of the student response and the system variables associated with judg-
ing). All of these options may appear in a conditional -judge- with “x”
meaning “do nothing”:

judge expr,no,x,0k,continue,wrong,rejudge,x,ignore,ok

The subtle difference between “judge wrong” and “judge no” will be
discussed in Chapter 12 in the section on “Student Response Data”.
Basically, “judge wrong” is used to indicate an anticipated (specific)
wrong response, whereas “judge no” indicates an unanticipated student
response. Additional -judge- options are “quit”, “okquit”, and “noquit”.

Finding Key Words: The -match- and -storen-
Commands

The -match- command, a judging command, makes it easy to look for
key words in a student’s response. The -match- command will not only
find a word in the midst of a sentence, but it will replace the found word
in the judging copy with spaces, to facilitate the further use of additional
judging commands (including -match-) to analyze the remainder of the
response. Here is the form of a -match- statement:

match num,dog,(cat,feline),horse,(pig,hog,swine)
0 1 2 3

Here “num” is a variable which will be set to —1 if none of the listed
words appear in the student’s response, to @ if “dog’ appears, to 1 if “cat”
or “feline” is present, 2 if “horse” is in the response, etc. In any case,

123

The TUTOR Language

124

-match- terminates judging, with a “no” judgment if num= —1 or an “ok”
judgment otherwise. What if more than one of the words appear in the
student’s response? Suppose the student says:

“horse and dog”

In this case “num” will be set to 2 because in looking at the first student
word we find a match (horse). The judging copy of the response is altered
by replacing “horse” with spaces so that it looks like:

g

and dog”

If we were to execute the same -match- again we would get the number 0
corresponding to “dog”, and the judging copy would then look like:

1 ”

and

Note that -match- always terminates judging, so that a “judge continue”
is needed before another -match- can be executed. Also note that the key
words are pulled out in the order in which they appear in the student’s
response, not in the order they appear in the -match- statement.

There are many other ways in which the -match- can be utilized.
First, we can improve greatly on our cursor program:

inhibit arrow

arrow 3201

long 1

match num,d.ew,q,a,z,x,¢
do num,x,move

judge ignore

Unit “move” remains unchanged except to replace (in two places) the
expression “anscnt—2” by the expression “num~—1" (and we can delete
the “judge ignore” in unit “move”). We see that -match is useful for
converting a word to a number which represents the word’s position in a
list.

JUDGING STUDENT RESPONSES

Another good use of -match-.is in an index:

unit table

base
term index
at 1218

write Choose a chapter:
a) Introduction

b) Nouns

c) Pronouns

d) Verbs
arrow 1822

long 1

match chapter,a,b,c,d

calc chapter«chapter+1

jump chapter,x,x,intro,unoun,pron,verb,x

write Pick a,b,c, or d.
Notice that we must increment “chapter” by one if we want topic “a” to
be chapter 1, since -match- associates § with the first element in its list
(=1 is reserved for the case where no match is found). If no match is
found, there is a “no” judgment. (Again, -base- could come later in the
unit, or at the beginning of the chapters, in which case the BACK key
would still be active for returning to the place from which the index was
accessed.)

These applications barely scratch the surface of -match-s capabili-

ties. Here are some other ideas on how to use -match-:

1) Use -match- to pull out negation words such as no, not, never,
etc. Then “judge continue” and use -answer- or -concept-
commands to analyze the remainder of the response. You can in
this way separate the basic concept from whether it is negated,
with the negation information held in the -match- variable for
easy use in conditional statements.

2) Use -match- to identify and remove a key-word directive before
processing the rest of the information. This comes up in simulat-
ing computer compilers, in games (“move” or “capture”), etc.

A related command is -storen-, which will find a simple numeric
expression in a sentence, store it in your specified variable, and replace
the expression with spaces. This is particularly useful for pulling out
several numbers. The -store- command will handle much more compli-
cated expressions including variables as well as numbers, but can get
only one number. For example, the student might respond to a question
about graph-plotting coordinates with “32.7,38.3”. These two numbers
can be acquired by:

125

The TUTOR Language

126

arrow 1215

Eegzstoren X
write You haven't given me numbers.

storen y

write You only gave me one number.

answer $$ remainder should be essentially blank
no

write There should just be two numbers.

Like -store-, -storen- will terminate judging on an error condition (in
which no number was found). In the example, the first -storen- removes
and stores one number in “x” and the second -storen- looks for a
remaining number to store in “‘y”. The first -storen- will terminate
judging if there are no numbers. The second -storen- will terminate
judging if there is no number remaining after one has been removed. The
blank -answer- will be matched if only punctuation, such as commas,

remains after the actions of the two -storen-s.

Numerical and Algebraic Judging: -ansv- and -wrongv-

We have already had some experience in handling numerical and
algebraic responses by using -store- to evaluate numerically the student’s
expression. The -ansv- (for “answer is variable”) and -wrongv- judging
commands evaluate the student’s expression in the same way as -store-
and also perform a comparison with a specified value.

The -ansv- command is useful in association with -store-. If you ask
the student for a chapter number or a launch velocity of a moon rocket, it
is convenient to use -ansv- to check whether his number is within the
range you allow. For example:

arrow 1314
store chapter

Efansv 5,4 $$ match if in the range 54 (1 t0 9)
no

write Choose a chapter from 1 to 9.

JUDGING STUDENT RESPONSES

Another common use is in arithmetic drills:

define b=v1,c=v2

unit drill $$ multiplication drill

next drill

randu b,10 $$ pick an integer from 1 to 10
randu c,10 $$ pick another integer

at 1513

write What is {s,b)> times <s,c)>?
arrow 1715

ansv bxc $$ no tolerance
write Right!

wrongv b+c

write You added.

wrongv bxc,1 $$ plus or minus 1
write You are off by 1.

wrongv bxc,20% $$ plus or minus 20%
write You are fairly close.

no

write You are way off!

The drill as written will run forever. It could be modified to stop after 5
straight correct responses, or after some other criterion has been met.
Note that the response “be” or “bXxc is judged “no” (unless you define
these variables in the “student” set of defines). Also note that the student
need not do any mental multiplication for this drill (since if the student is
asked to multiply 7 times 9, he or she could respond with 7x9 which
matches the -ansv-).

Let’s make a change to require some multiplication on the part of the
student:

ansv bxc

judge opcnt=0,0kwrong
writec opcnt=0,Right!,Multiply!
wrongv b+c

127

The TUTOR Language

128

Do not define “opcnt”! It is a system variable which counts the number of
operations in the student’s response. If the student says “7(5+8+3)/2”
then “opent” will be 4 because the student’s expression contains:

1) an (implied) multiplication (7 times a parenthesized expression);

2) two additions; and

3) a division.

In this drill we want the student to give the result with no operations, so
“opent” should be zero (“specs noops,novars” can also be used to
prevent the student from using operations or variables in his or her
response).

Recall that the first -concept- command encountered will trigger the
reduction of the student’s response to a compact form, through the use of
the -vocabs-. This compact form can be compared rapidly to all succeed-
ing -concept- commands. Similarly, the first -store- or -ansv- or -wrongv-
causes TUTOR to “compile” the student’s expression into a form which
can be quickly evaluated when another of these commands is encoun-
tered. It is during the compilation process that “opent” is set. Just as the
-vocabs- list tells TUTOR how to interpret the student’s words, so the
“define student” set of names tells TUTOR how to treat names encoun-
tered in the compilation of a student’s algebraic response. So, there are
many parallels between -ansv- and “define student” on the one hand
and -concept- and -vocabs- on the other.

Let’s look at an algebraic example, as opposed to the numerical
examples we have treated:

define student

| x=v1
unit simplify
at 1215

write Simplify the expression
3x+7+2x—-5

randu X $$ pick a fraction between 0@ and 1

calc x<x+1 $$ change to 1 to 2 range

arrow 1418

ansv 5x+2 $$ 0 tolerance

goto varcnt—1,toofew,x,manyvar $$ how many x's

goto opcnt—2,toofew,x,manyop $$ how many operations

wrongv 5x+12
write You should subtract 5, not add it.
no

goto formok,x,tellerr
*

JUDGING STUDENT RESPONSES

unit toofew

write Your expression is not sufficiently general.
judge wrong

*

unit manyvar

write “x"" should appear only once.
judge wrong

*

unit manyop
write Not simplest form.
judge wrong

Unit “tellerr” would contain a -writec- involving the system variable
“formok” to tell the student precisely why his or her expression could not
be evaluated. There could be several -wrongv- statements in the example
to check for specific errors. The system variable “varent” during compila-
tion of the student’s expression counts the number of references to
variables. For example, “x+3x+x+2” is numerically equivalent to
(5x+2), so that this response will match the -ansv-, but “varent” will be 3
because “x” is mentioned three times. If both x and y were defined, the
expression “2x+y+4x”" would yield a “varcnt” of 3 (two x’s and one y)
and an “opent” of 4 (two implied multiplications and two additions).

In this way “opent” and “varent” may be used to distinguish among
equivalent algebraic responses which differ only in form. Roughly
speaking, what is usually called “simplest algebraic form” often corre-
sponds to the smallest possible values of “opent” and “varent”.

There are some minor technical points in the preceding example. For
example, -randu- with only one argument produces a fraction between
and 1. If this should happen to be very close to @ then “x” would be
unimportant in the expression (5x+2), so it seems better to add one and
give “x” a value between 1 and 2, which is comparable to the other
quantities in the expression. We could have used the two-argument form
(e.g., “randu x,8”) to pick an integer value for “x”. However suppose
TUTOR chooses the integer 2 for “x”. In this case, a student who
happens to give “12” as his or her response will match the -ansv- by
accident since 5x+2 = 5x2+2 = 10+2 = 12. On the other hand, with
TUTOR picking a fraction, the student would have to type something
like “8.93172462173” to accidentally match the -ansv-. This just won’t
happen. You would have to type different numbers 24 hours a day for
hundreds of years to match accidentally. If you want even more security
against an accidental match, just change the value of “x” and check again.
In skeleton form, here is a way to do it:

129

The TUTOR Language

130

ansv 5x+2
goto varcnt—1,toofew,x,manyvar
goto opcnt—2,toofew,checkup,manyop

wrongv 5x+12

unit checkup

randu X $$ new value of x
calc XeX+1
judge continue

ansv 5x+2 $$ try again

<<

A further check is that we require exactly one “x” and exactly two
operations.

There is a way to give detailed feedback to the student in case his or
her expression is not algebraically equivalent to the desired expression
(5x+2). Suppose the student’s incorrect expression is “6x+2”, and that
you have done a -storea- to save the response and a -store- to evaluate it
for some integer value of x. Then ask the student this question:

write What is the numerical value of
3(s,xP)+7+2(<s,xp)—5?

If x is 4, this will appear on the screen as:

What is the numerical value of
3(4)+7+2(4)-5?

Many students can handle a numerical example even if an algebraic
example gives them trouble, so this student is likely to reply correctly,
either with or without some help, that this expression gives 22. You can
then reply to the student with this statement (assuming the student’s
alphanumeric response is in “string” and its value is in “result”):

JUDGING STUDENT RESPONSES

write But your expression, <{a,string,count)>,
gives <s,result) in this case.

If the student’s response was “6x+2”, with a value of 26 (if x is 4), this
appears on the screen as:

But your expression, 6x+2,
gives 26 in this case.

The student now sees that his or her expression “6x+2” does not give
the value 22 which it should in the case where x is 4. You have fed back
the student’s own expression, evaluated for a particular case where the
student can see there is a conflict. (In other words, anything the student
says may be used against him or her.) Here is an opportunity for the
student to learn, by example, a useful technique in simplifying compli-
cated expressions: try some numerical cases for which you know the
results and see whether they agree with the simplified expression.

It is possible to judge equations as well as expressions. Suppose we
ask the student to simplify the equation “4x+3=x+12y—5". A suitable
response might be “12y=3x+8" or “x=(12y—8)/3”. Every time the
student enters a response, let TUTOR pick a random value for the in-
dependent variable x, and calculate the corresponding value of the
dependent variable y: y<«(3x+8)/12. Consequently, any correct equation
will be true (with value —1), and an incorrect equation will be false (with
value 0). Here is a unit embodying these concepts:

define student,x=v1,y=v2

unit equate

at 1215

write Simplify the equation
4x+3=x+12y-5

arrow 1718

ok
randu X $$ random x on each judging
calc xe=x+1 '
y<=(3x+8)/12 $$ y depends on x
judge continue
ansv -1 $$ logical true
do ident
wrongv @ $$ logical false

write That is false.
(Continued on the next page.)

131

The TUTOR Language

132

no $$ anything else

write Give me an equation!

*

unit ident

calc y<3.72y $%$ change y arbitrarily
judge continue

wrongv —1 $$ should not now be true
write That is an identity!

ok

judge varcnt>2,wrong,ok
writec varcnt>2,Not simplified.,Fine.

If the student writes “3+4”, this expression has the numerical value
7, so the reply is “Give me an equation!”

If the student writes “3=4", this expression has the numerical value
0, since it is logically false, and the reply is “That is false.”

If the student writes “32+5=17-3", which is equivalent to 14=14,
TUTOR replies “That is an identity!” The student’s response is true (14
does equal 14), so that this true relationship has the value —1 which
matches the -ansv- statement. A “do ident” follows, where the depen-
dent variable y is changed so that y no longer bears the correct relation-
ship to x. If the student’s response had been a correct simplification of the
given equation, his or her expression would no longer be true (—1), since
y is no longer the correct function of x. In the case of “32+5=17-3",
however, changing y has no effect and the value is still —1, which
matches the -wrongv- statement in unit “ident”. The student gets the
message “That is an identity!”

Only if the student enters an equation which is not an identity will
he or she get an “ok” judgment. Note the check on “varent”. There could
also be a check on “opcent”.

To summarize, -ansv- and -wrongv- are extremely powerful com-
mands for algebraic or numeric responses, particularly in association
with variables defined in the “define student” set. The system variables
“opent” and “varent” give you additional information about the form of
the response.

CAUTION: Since TUTOR performs multiplications before divi-
sions (unless parentheses intervene), a student response of “1/2x” is taken
to mean “1/(2x)”, whereas the student might have in mind “(1/2)x”. It is
important to warn your students of this convention at the beginning of a
lesson which uses algebraic judging. Scientific journals and most text-
books follow this same convention, but many students are unaware of
this. Usually, printed materials use the forms 3 or %x or 31; . These
forms avoid the ambiguities that arise from the slash (/) or quotient sign

JUDGING STUDENT RESPONSES

(+) used on a single typewritten line. It is hoped that eventually TUTOR
will make it easy for students to type fractions with the horizontal bar
rather than with the slash or quotient sign. Until then, it is important to
point out this convention to your students.

Handling Scientific Units: -ansu-, -wrongu-, and -storeu-

Suppose you want to ask the student for the density of mercury. A
correct answer would be “13.6 grams/cm?®”, but there are many equiva-
lent ways to write the same thing. For example, the student might write
“13.6x103kg/ (.01 meter)®” or “13.6 gm-cm™3”, and both of these
responses are equivalent to “13.6 grams/cm3®’. TUTOR provides a
convenient way not only to judge such responses appropriately, but to
give the student specific feedback if he or she makes specific errors (such
as omitting the units or giving the right units but the wrong number).

The TUTOR scheme is based on the judging performed by human
instructors when grading exam questions involving numbers and units.
The instructor makes two separate checks, one for the numerical value
and the other for the dimensionality of the units. The dimensionality of
density is (mass)! (length)™3, and it is the powers (1,-3) that we are
interested in as well as the number 13.6. All of the equivalent correct
responses listed above have a numerical value of 13.6 (in the gram-cm
system of units) and a mass-length dimensionality of (1,—3). The -storeu-
command (-store- with units) can be used to get the numerical part and
the dimensionality if we define the units appropriately:

define student $$ units will be used by student
@:units,gm,cm $$ can define up to 10 basic units
gram=gm,grams=gm, kg=1000gm $$ synonyms
meter=100cm,cc=cm3
define mine,student $$ include student define set
num=v1,dimens(n)=v(1+n)$$ see “Arrays”’, Chapter 10
unit dense
at 1215
write What is the density of mercury?
(Include units!)
arrow 1618
@- storeu num,dimens(1)
write Cannot evaluate.
no
(Continued on the next page.)

133

The TUTOR Language

134

goto num#13.6,badnum,x
goto dimens(1)#1,badmass,x
goto dimens(2)=-3,badleng,x
judge ok

write Good!

We will go to a unit “badnum”, “badmass”, or “badleng” (not shown
here) if there is something wrong with number, mass, or length. The
-storeu- command has two variables in its tag. The first variable will get
the numerical part of the student’s response, and the second (dimens(1) in
this case) is the starting point for receiving the dimensional information.
Here are some examples of what will end up in num, dimens(1), and
dimens(2) for various student responses:

student response num dimens(1) dimens (2)

13.6 grams/cm3 13.6 1 -3
13.6 13.6 0 0
13.6 cm-gm? 13.6 2 1
13.6 kg/10cm 1360 1 -1

Notice (in the third example) that a minus sign preceding a unit name is
taken as a dash meaning multiplication, not subtraction. Note in the last
example that “kg” brings in a factor of 1000 relative to the basic unit
(gm). Note also that, as usual, TUTOR does multiplication before doing
division so that the “10 cm” is all in the denominator, with the result that
we have (length)~1. Similarly, “1/2 kg”” will be taken to mean 1/(2 kg), not
(1/2) kg. As mentioned earlier, it is best to point out this matter to the
student at the beginning of the lesson.

Like -store-, the -storeu- judging command will flip TUTOR to the
regular state (with a “no” judgment) if it cannot evaluate the student’s
response. The system variable “formok™ can be used in a -writec- to tell
the student why his or her response can’t be evaluated. One example
characteristic of responses involving units is “5 grams + 3 cm”, which is
absurd. You cannot add masses and lengths, and -storeu- will give up. On
the other hand, the student can say “65 cm + 2 meter” and -storeu- will
set num to 265, dimens(1) to @ (no mass), and dimens(2) to 1. As another
example, “cos(3cm)” is rejected, but “cos(3cm/meter)” is accepted. The
argument of most functions must be dimensionless. (Exceptions are
“abs” and “sqrt”.)

A related difficulty faces students unless they are specifically warned
about “3+6 cm” being rejected by -storeu- (although it looks reasonable
in context to the human eye). As far as -storeu- is concerned, however, the
student is trying to add 3 “nothings” to 6 cm, and the units do not have

JUDGING STUDENT RESPONSES

thc same dimensionality. For -storeu- this is as improper as “3 kg + 6
cm”, Unfortunately, until -storeu- and TUTOR become more sophisticat-
ed, it will be necessary to give explicit instructions to the students that:

1) Multiplications are done before divisions (unless parentheses
intervene), so that 1/2 kg does not mean (1/2) kg.

2) Responses such as “3 + 6cm” must be written rather as
“(3+6)cm”.

Note that these rules also apply in scientific journals and almost all
textbooks, but your students may not be consciously aware of these
standard rules. Given only these standard conventions, -storeu- will
correctly handle an enormous variety of student responses.

While -storeu- can be used to get the number and dimensionality, the
-ansu- and -wrongu- commands are primarily used to check for specific
cases. Let us modify our sample unit to use these commands, which are
like -ansv- and -wrongv- except for checking for correct units:

arrow 1618
storeu num,dimens(1)
write Cannot evaluate!
G,g’ ansu 13.6 gm/cm3,.1
write Good!
wrongu 13.6,.1
write Right number, but give the units!
wrongu {num)gm/cm?3,.1
write Right dimensionality, but wrong number!
wrongv 13.6,.1
write Right number but wrong dimensionality.
no
writec dimens(2)=-3,Length ok.,Length incorrect.

The -ansu- will make a match only if the dimensionality is correct and the
-wrongu- checks for 13.6 (mass)? (length)?, that is, no units given at all.
The second -wrongu- looks for a number equal to (num), and finds it
since it is the number the student gave (as determined by -storeu-).
Therefore, this -wrongu- will match if the number is not 13.6 but the
dimensionality is correct. The -wrongy-, unlike -wrongu-, is only con-
cerned with the numerical element rather than the dimensionality. It is
used here to check for responses such as “13.6 cm”.

135

The TUTOR Language

136

The -exact- and -exactc- Commands

It is occasionally useful (in special cases) to use a command less
powerful than -answer- to judge a response. Suppose you are teaching the
precise format required on some business form, and you want the student
to type “A B C” exactly, with three spaces between the letters. A
match to “answer A B C” would occur no matter how the student
separates the letters. One space, four spaces, a comma or a semicolon (any
of these punctuations) are permissible separators as far as -answer- is
concerned. Normally, this flexibility is beneficial to students because it
keeps them from getting too hung up on petty details. If, however, it is
the details that are important in a particular response, use an -exact-
command. In the present case, the statement “exact A B C” will be
matched only if the student types exactly that string of characters: A,
space, space, space, B, space, space, space, C.

The -answer- command does not permit punctuation marks in its tag,
so that a response such as “a:b” must be judged with an -exact- command
if the colon is important. While punctuation marks cannot appear in the
tag of the -answer- command, the student can use them in a response. The
-answer- command will treat all punctuation marks that the student uses
as being equivalent to spaces. (As an alternative, the -change- command
can be used to redefine the colon to be considered a “word” and not just
as a punctuation mark, in which case the -answer- command can be used.)

It should be emphasized that it is easy to misuse the -exact-
command. The student should normally be given considerable latitude in
the form of his or her response, such as is permitted by the -answer-,
-concept-, and -ansv- commands. The -exact- command should be used
sparingly, and only for short responses. It may be important for the
student to know the exact format of something that is as long as:

3 No. 6 screws/516-213-86xg-4: New Orleans

In this case, it would certainly be preferable to have the student pick this
correct form out of a displayed set of samples than to ask him or her to
type it exactly. (Then, all the student would need to say is that item
number 3 is the correct form.)

There is also a conditional form of the -exact- command, -exactc-.
(The conditional -answer- command is called -answerc-.) In the case of
the conditional form of the -do- command, the presence of commas tells
TUTOR that the statement is conditional, so a -doc- command name is
not needed. But -write-, -answer-, and -exact- may have tags which

JUDGING STUDENT RESPONSES

include commas, so the conditional command names must be different
(-writec-, -answerc-, -exactc-).

The -answerc- Command: A Language Drill

The conditional -answer- command, -answerc-, may be used to create
vocabulary or translation drills. Here is a sample unit which will give the
student practice with Esperanto numbers:

unit espo

next espo

at 1812

write Give the Esperanto for

randu item,5 $$ pick an integer from 1 to 6
at 2015

writec item-2,0ne,two,three four five

arrow 2113

answerc item-2;unu;du;tri;kvar;kvin $$ note semicolons

Each item in the -answerc- can be as complicated as the tag of an -answer-
command. For example, “answerc select} <it,is,a> (right,rt) triangle,
<it,is,a> three*sided (polygon,figure)$} circle,ring” will accept either “rt
triangle” or “three sided polygon™ if “select” is —1, will accept nothing if
“select” is zero, and will accept “circle” or “ring” if “select” is one or
more. Note that items must be separated by a semicolon or by the -writec-
delimiter. There is also a conditional -wrong- command, -wrongc-.

You might write yourself a similar unit to drill yourself on historical
dates, capitals of nations, etc. The drill just shown has three defects: (1) it
never ends; (2) you may see the same item two or three times in a row; and
(3) no help is available if you get stuck. Let’s revise the sample unit to
have the following characteristics: it should present the five items in a
random order but without repeating any item; any items missed will then
be presented again; the student may press HELP to get the correct
answer.

We will be using a random sequence of non-repeating item numbers
such as:

4,2,1,5,3.

137

The TUTOR Language

This is called a “permutation” of the five integers. The following
sequence is another permutation:

2,5,3,14.

You can see that there is a large number (120) of different permutations of
five integers. Correspondingly, there is a large number of different
permutation sequences for presenting the drill to the student. Such
sequences of non-repeating integers are quite different from the sequenc-
es we get from repeated execution of our “randu item,5”, which
produces sequences (with some integers repeating and some not showing
up for a long time) such as:

3.244,1,51,2,4,355,2etc.

We need some way of asking TUTOR to produce a permutation for
us, rather than the kind of sequence produced by -randu-. This is done by
telling TUTOR to set up a permutation of 5 integers (“setperm 5”) from
which to draw integers (“randp item”) until the sequence is finished
(indicated by “item” getting a value of zero). The -setperm- command
actually sets up two copies of the permutation, and the “remove item”
statement can be used to remove an integer from the second copy. (The
-randp- draws integers from the first copy.) If we -remove- only those
integers corresponding to items correctly answered on the first try, the
second copy will contain only the difficult items (after completing the
first pass over the five items). At this time, we can use -modperm- (which
has no tag) to modify the first copy by shoving the second copy into the
first copy. Having replenished the first copy with the difficult items we
can use -randp- to choose these again.

Here is a form of the drill incorporating these ideas:

unit begin

setperm 5 $$ set up two copies of a permutation
@ jump choose

*

unit choose

calc attempt<0 $$ initialize number of attempts
@:randp item $$ pick an integer

jump item>0,espo,x $$ jump if first copy not empty
@» modperm $$ use second copy if first copy empty

randp item

jump item>0,espo,x $$ jump if second copy not empty

138

JUDGING STUDENT RESPONSES

at 2115
write Congratulations!
You finished the drill.
end lesson $$ end the lesson
*
unit espo
next choose
help esphelp
at 1812
write Give the Esperanto for
at 2015
writec item-2,one,two,three,four,five
arrow 2113
answerc item-2;unu;du;tri;kvar;kvin
goto attempt>0,q,x
remove item $$ remove item if correct on first attempt
no
calc attempt«attempt+1
%
unit esphelp
calc attempteattempt+1 $$ count HELP as an attempt
at 1613
writec item-2,unu,du,tri,kvar,kvin
end

We want to remove an item only if the student gets it right on the first
try, which means “attempt” should be zero. The “goto attempt>0,q,x”
means “goto a fictitious, empty unit ‘q’ if attempt is greater than @, clse
fall through.” If we fall through, we remove the item (“remove item”).
We increment “attempt” on each try (and also when help is requested) so
that if the student has to see the answer, the item is not removed and will
be seen again. Note that the student is required to type the correct
response and cannot see this answer while he or she types, which gives
the student additional practice on the difficult items.

Summary

This chapter has demonstrated an array of techniques for judging
various types of student responses. There are -answer- and -wrong- (aided
by -list-) for handling sentences composed from a relatively small
vocabulary of words. There are -concept- and -miscon- (supported by
-vocabs-) to handle dialogs involving a large vocabulary. The -match- and

139

The TUTOR Language

140

-storen- commands can be used to pull out pieces of a student’s response.
The -storea- and -store- commands allow the student to specify alphanu-
meric or numeric parameters. There are -ansv-, -wrongv-, -ansu-, and
-wrongu-, aided by “define student”, for judging numerical and alge-
braic responses. The -exact- and -exactc- commands can be used when it
is important that the response take a particular precise form. The -specs-
command permits you to exercise various options associated with these
commands and also provides a convenient marker of centralized post-
judging processing. The regular -judge- command offers additional
control over the judging process.

The construction of randomized drills using -setperm-, -randp-,
-remove-, and -modperm- (and featuring the conditional commands
-answerc- and -wrongc-) was also illustrated in this chapter.

It is hoped that you will read over this chapter occasionally in the
course of writing curriculum materials. The TUTOR judging capabilities
are extremely rich (because of the wide range of student responses that
must be handled in order for lesson material to be successful). Reread
appropriate sections of this chapter at a later time, when you need the
details. For now it is sufficient to know what is available, and roughly in
what form. You may find it helpful to think of the judging commands
introduced in this chapter as making up two major classes: those used for
handling words and sentences (-answer-, -answerc-, -list-, -concept-,
-vocabs-, -match-, -storen-, -storea-, and -exact-), and those used for
handling numbers and algebraic expressions (-ansv-, -define-, -ansu-,
-store-, and -storeu-).

