Conditional
Commands

It is important to be able to specify the sequencing of a lesson
conditionally. We might like to jump past some material on the condition
that the student has demonstrated mastery of the concept and needs no
further practice. Or we might like to take the student to a remedial
sequence conditionally (the condition being poor performance on the
present topic). Or, which help sequence we offer might be conditional on
the number of times help has been requested. All of these examples imply
a need for conditional sequencing or branching statements, where the
condition may be specified by calculations involving the status of the
student.

The usefulness of conditional branching is not limited to the
sequencing of major lesson segments, but extends to many calculational
or display situations. For example, we might need to -do- conditionally
one of several possible subroutines in the course of presenting a complex
display to the student. This chapter will show you how to perform these
and similar conditional operations.

Here is an example involving a conditional -do- statement:

unit setup
calc Ne-1
jump home

*
(Continued on the next page.)

77

The TUTOR Language

78

unit home
next home
at 2019
@- do N,neg,uzero,One,utwo
at 1215

write N equals <{s,N}.
calc NeN+1

5

unit neg

write Unit “neg”’.

*

unit uzero

draw 210,260;2060;2010
*

unit One

circleb 50,0,270

*

unit utwo

write Unit “two".

The new element is the conditional -do- statement in unit “home”. If N is
negative, that statement is equivalent to “do neg”. If N is zero, the
statement is equivalent to “do uzero”, and so on. The statement:

do N,neg,uzero,One,utwo
is equivalent to:

do neg if N is negative

do uzero if Nis zero

do One ifNis1

do utwo if Nis 2 or greater
Note that unit “utwo” will come up repeatedly because it is the last unit
named in the conditional -do- statement. The list of unit names can be up

to 100 long:

do N,neg,uzero,One,utwo,dispone,
zon,zip,figure,ultima

If N is 7 or greater, this statement is equivalent to “do ultima”.

CONDITIONAL COMMANDS

The “conditional expression” (N in this case) can be anything. It can
be as complicated as “3x — 5 sqrt(N)” and can even involve assignments
as in “N«35—x". The value of the expression is rounded to the nearest
integer before choosing a unit from the list of units. If the rounded value
is negative, the first unit in the list is chosen. For example, if the
expression is —.4, it rounds to zero, in which case the second unit in the
list is chosen.

In a conditional -do- each unit named may involve the passing of
arguments:

do 3N-4,circ(25,75),box(45),x,flag,circ(10,30)
neg ¢ 1 2 =3

So far we have encountered the following sequencing commands:
-do-, -jump-, -next-, -nextl-, -back-, -backl-, -help-, -help1l-, -lab-, -lab1-,
-nextnow-, -data-, -datal-, and -base-. When the tag of such a command is
just a single unit name (e.g., in a statement like “help uhelper”), we say
it is “unconditional”. To make a “conditional” statement out of any of
these, we follow the same rule: state the conditional expression, followed
by a list of unit names. So we might have:

data N-b,zonk,q,zap,zing,x
R))

%é\o°0.\\4 2 ’cﬂo'((“ °
.,9‘6) o ,b,@‘
¢ g@

Here, as in unconditional pointer-associated statements, “q” meauns the
“data” pointer is cleared so that the DATA key is disabled. This can be
used to cancel the effect of an earlier -data- command in this main unit.
(Remember that all the unit pointers are cleared when we start a new
main unit.) The unit name “x” has the special meaning “don’t do
anything!” In the example shown, if the condition (N—5) is three or
greater, this -data- command has no effect at all and we “fall through” to
the next statement without affecting the “data” pointer. Similarly, if a
unit name in the conditional -do- discussed above is replaced by “x”, no
unit will be done for the corresponding condition and we “fall through”
to the next statement.

This “x” option is extremely useful. Consider the following situa-
tion:

79

The TUTOR Language

80

jump correct—5,x,done
(then show the next item)

If (correct—5) is negative (that is, the student has made fewer than 5
correct answers), we “fall through” to the presentation of the next item.
If, however, the student has 5 or more correct, the condition (correct—35)
will be zero or greater and we jump to unit “done”.

Logical Expressions

The last example can be written in an alternative form which
improves the readability:

jump correct<5,x,done

This says “fall through if correct is less than 5, otherwise jump to done”.
The condition (correct<5) we call a “logical expression” because it has
only two possible values, “true” (—1) or “false” (@), whereas numerical
expressions can have any numerical value. Since a logical expression can
have only two values (—1 if true, or @ if false) it is pointless to list more
than two unit names after the condition.

Actually, because of rounding, the form “jump N<5x,done” is
more precise than the form “jump N-5,x,done”. Suppose that N is 4.8.
Then “N<5” is true (—1), which rounds to —1, which implies “x”. But
“N-5" is —0.2, which rounds to zero, which implies “done”. Such
differences appear whenever you have variables which can have non-
integer values.

Here is another example:

do c¢-—b,far,near,far

The above will do unit “near” if ¢ and b differ by no more than 0.5, since
(in that case) “c—b” will lie between —@.5 and +.5, which rounds to
zero. On the other hand:

do c¢=b,same,diff

will do unit “same” only if c and b are equal. The condition “c=b"" is true
(—1) only if ¢ is equal to b.

There are six basic logical operators: =, #, <, >, =, and =, which
mean equal, not equal, less than, greater than, less than or equal, and

CONDITIONAL COMMANDS

greater than or equal. The statement “do a#b,diff,same” is equivalent to
“do a=b,same,diff”’. These comparison operators consider two numbers
to be equal if they differ by less than one part in 10! (relative tolerance)
or by an absolute difference of 1079, whichever is larger. This is done to
compensate for small roundoff errors, inherent to computers, due to their
very high but not infinite precision. One consequence is that all numbers
within 107° of zero are considered equal by these logical operators. If
it is necessary to test very small numbers, scale up the numbers:
1000a<100Pb can be used if a and b are larger than 10712 (since
multiplying by 1000 brings the quantities up above the 102 threshold).

You can mix logical expressions with numerical expressions in many
effective ways. For example:

calc x<100-25(y>13)
gives “xe125" if y is greater than 13 (“y>13" if true is —1) or it gives

“x¢=100” if y is less than or equal to 13 (“y>13" if false is 0). To clarify
this, suppose that y is 18 or y is 4:

y=18 y=4
100—25(y>13) 100—25(y>13)
100—-25(18>13) 100—-25(4>13)
100—-25(—1) 100—-25(0)
100+25 100—(0)

125 100

In these applications it would be nice if “true” were +1 rather than —1,
but the much more common use of logical expressions in conditional
branching commands dictates the choice of —1 (since the first unit listed
is chosen if the condition is negative).

You can combine logical expressions. For example:

[(3<b) and (b<5)]
is true (—1) only if both conditions (3<b) and (b<5) are true. In other
words, b must lie between 3 and 5 for this expression to have the value
—1. Similarly,

(y>x) or (b=2)

will be true if either (y>x) is true or (b=2) is true (or both are true).
Finally, you can “invert” the truth of an expression:

81

The TUTOR Language

not(b=3c)

is true if (b=3c) is not true. This complete expression is equivalent to
“b#3c”.

The combining operations and, or, and “not” make sense only
when used in association with logical expressions (which are —1 or).
For instance, [b>c and 19] is.meaningless and will give unpredict-
able results. (If you have done a great deal of programming, you might
wonder about special bit manipulations, but there are separate operators
for masking, union, and shift operations, as discussed in Chapter 10.)

The Conditional -write- Command (-writec-)

A very common situation is that of needing to write one of several
possible messages on the screen. For example, you might like to pick one
of five congratulatory messages to write after receiving a correct response
from the student:

unit congrat
ngs randu N,5 $$ let TUTOR pick an integer from 1to b
at 1215
do N—2,0k1,0k2,0k3,0k4,0kb
%
unit ok1
write Good!
*
unit ok2
write Excellent!
*
unit ok3
write I'm proud of you.
*
unit ok4
write Hurray!
*
unit okb
write Great!

The -randu- command, “random on a uniform distribution,” tells
TUTOR to pick an integer between 1 and 5 and put it in N. We then use
this value of N to do one of five units to write one of five messages. There
is a much more compact way of writing this:

82

CONDITIONAL COMMANDS

unit congrat
randu N,5
at 1215
@: writec N-2,Good!,Excellent!,
I’'m proud of you.,
Hurray!,Great!,

The -writec- command is similar to that of a conditional branching
command, but the listed elements are pieces of text rather than unit
names. Because -write- can be used to display any kind of text (including
commas), it is necessary to use a different command name (-writec-) to
indicate the conditional form of -write-, whereas in branching statements
the commas separating the unit names are enough to tell TUTOR that it is
a conditional rather than an unconditional form. (In conversation,
“writec” is pronounced “write-see.”)

You can write whole paragraphs with nice left margins, just as with
the -write- command:

writec N,,,Good! Excellent!,
I'm proud of
you and so
is your mother.,
Hurray!,Greatl,

The elements of text are set off by commas. If N is 3, the student will see a
three-line paragraph, since there are no commas at the end of “of” and
“s0”. If N is —1 or 0, no text will be displayed, since there is no text
between the first few commas. Note that “x” is not the fall-through that it
is for a unit name in a conditional branching command. Here, “x” is a
legitimate piece of text which can be displayed, so the “,” form is the
“fall-through”.

If you want commas to appear in some of your text elements, you
have a problem, since the commas delimit elements. Consider this:

writec N,Hello!,How are you, Bill?,Hi there!,

If N is zero, we will see “How are you”, not “How are you, Bill?”” The
solution is to use a special character (3):

writec NiHello!{How are you, Bill?{Hi there!}

Now, if N=0 we will sce “How are you, Bill?”” While this special
character (3) is required if text elements contain commas, you may prefer
to use it always, even when there are no commas. This special character is
often called “the writec delimiter”.

83

The TUTOR Language

84

The same kinds of embedding of other commands which are permit-
ted by -write- are also permitted with -writec-:

writec 2c=b,l have <s,ap) apples.,
I will buy <s,peachy)> peaches.,

The -writec- is affected by -size- and -rotate- commands, just like -write-.

The Conditional -calc- Commands: -calcc- and
-calcs-

The effects of -writec- can be achieved by a conditional -do- and a
bunch of units containing the text elements, but we have seen that this is
a clumsy way to do it. We would often like to calculate one of several
things based on a condition. This, too, could be done with a conditional
-do- to one of several units containing the calé¢ulations, but this is
cumbersome. We saw one shortcut already:

calc x<100—-25(y>13)

This statement is equivalent to “x«125” if y>13, and to “x<100" if y=13.
This can also be written as:

calcc y>13,x<=125,x<100

The -calcc- (pronounced “calc-see”) is strictly analogous to -writec-. It
indicates a list of calculations to be performed, dependent on a condition.
The elements in the list are calculations rather than pieces of text or unit
names.

Very often each of the calculations in the list consists of assigning a
value to the same variable. In the example above, both calculations assign
a value to the variable “x”. An even shorter way to write this kind of thing
is:

calcs N-by,bin<37,6.2,y3+2,,2/N

The -calcs- (pronounced “calc-ess’) will store one of five values in “bin”,
depending on the condition “N—>5y”. Note that if “N—5y”” rounds to two,
we do nothing. Two commas in a row (,,) indicate “do nothing” in -calcs-,
-calce-, and -writec-. Just as “x” can be a legitimate piece of text to write,

so “x” might be a defined variable, which is why it cannot be used as the
“do-nothing” indicator in these commands.

The Conditional -mode- Command

CONDITIONAL COMMANDS

For completeness it should be mentioned that the -mode- command
can also be made conditional:

mode count—3,write,x,rewrite,erase,write

Here the list of elements following the condition is similar to the list of
unit names in a -help- command. In this case, they are the names of the

various possible screen display modes. The “x

<

nothing—do not change the present mode.”

The -goto- Command

option means ‘“do

The -goto- command is a very mild version of the -jump- command.
It does not initiate a new main unit and does not perform the initializa-
tions associated with starting a main unit (the screen is not erased, the
help and other unit pointers are not cleared, and how deep we are in “do”
levels is unaffected). It is most often used in its conditional form so we
waited until this chapter to introduce it.

One common use of the -goto- command is to “cutoff” a unit

prematurely:
unit
at
write
goto
size
at
write
size
¥
unit
at
write

unit
at
write

unit

A
1315

You have now finished the quiz.

score<90,fair,x
4

2205
Congratulations!

0

B
1912
The next topicis

fair
18156

Your score was below 90.

blah

85

The TUTOR Language

86

In this example, a score of 90 or better will mean that we fall through the
-goto- to display the large-size “Congratulations!” A score of less than 90
will take us to unit “fair” to add “Your score was below 90" to the “You
have finished the quiz” already on the screen. The -goto- does not erase
the screen, nor does it change the fact that the main unit is still “A”’. When
the student presses NEXT, he proceeds to unit “B”, the main unit
following unit “A”. He does not proceed to unit “blah”.

Like -do-, the -goto- command attaches a unit without changing
which unit is “home”, whereas -jump- changes the main unit and
performs the many initializations associated with entering a new main
unit (full-screen erase, clearing the help pointers, forgetting any -do-s,
etc.). The main difference between -goto- and -do-, is that the -do- will
normally come back upon completion of the attached unit, whereas -goto-
does not come back and statements following the -goto- are normally not
executed. (Some people like to think of the -goto- coming back to the end
of the unit, whereas -do- comes back to the next statement.)

The relationships among main units and attached units and among
-jump-, -goto-, and -do- may be clearer if you think of a lesson as being
made up of a number of nodes or clusters, each consisting of a main unit
and its attached units:

Subroutine attached by -do-.
Subroutine uses -goto-, but
main returns to main unit.

=

main

This unit attached
with -goto-. The
main unit is not
changed.

Fig. 6-1.

CONDITIONAL COMMANDS

Movement between main units is made by pressing NEXT (or HELP,
BACK, etc.) or by executing a -jump-. These main units may form a
normal sequence or a help sequence (see Chapter 5). The -goto- and -do-
commands attach auxiliary units to these main units.

Notice that completion of a unit reached by one or more -goto-s will
cause TUTOR to “undo” one level, if one or more -do-s had intervened in
reaching this unit. The reason this occurs is that whenever TUTOR
encounters a -unit- command (which terminates the preceding unit)
TUTOR asks “Are we at the main-unit level?” If so, we have completed
processing; if not, we must “undo” to the statement immediately follow-
ing the last -do- encountered. This point deserves an illustration:

unit calcit

do sum
show total
unit sum

calc total=@ $$ initialize “total”

goto addup $$ -goto- used instead of -do-, for
* $$ purposes of illustration

unit addup

$$ a calculation of ““total”

unit other

In unit “calcit” we -do- “sum”, which initializes “total”” and does a
-goto- to unit “addup”, where some kind of calculation is performed.
When we run out of work (by encountering a -unit- command at the end
of unit “addup”), TUTOR asks whether there was a -do-. There was a
-do-, so control passes to the statement following the last -do-, which is
“show total”. All of this is perfectly reasonable and useful, but it should
be pointed out that this property of the -goto- (that it preserves the
required information to permit “undoing”) has an odd side-effect. The
presence of a -goto- in a done unit causes an exception (the only
exception) to the description of -do- as a text-insertion device. Except for
this case, the effect of a -do- is equivalent to inserting all the statements,
contained in the done unit, in place of the -do- statement. But suppose we
replace our -do- with the statements contained in unit “sum”. We would
have:

87

The TUTOR Language

88

unit calcit

total . “ "
calc o ¢0} in place of “do sum

goto addup
show total
*®

unit addup

unit other

Now the -goto- cuts off the rest of unit “calcit”, and the -show- will not be
performed, in contrast with the case where we used a -do-. So, the
presence of a -goto- in a done unit causes a (useful) exception to the
text-insertion nature of -do-.

Here is a summary of the basic properties of the -goto- command:

1) -goto- may be used to attach units with none of the initializations
associated with -jump-;

2) statements which follow the -goto- will not be executed (like
-jump- and unlike -do-);

3) a -goto- in a done unit does not cut off statements following the
original -do- statement, which is an exception to the normal
text-insertion nature of -do-.

Additional aspects of -goto- (in relation to judging student responses) are
discussed in Chapter 8.

It is often convenient to cut off a unit with a -goto- in the form shown

in this example:

unit cuts
goto expression,x,zonk,empty,x,empty
write We fell through . . .

unit empty

unit zonk

Note that unit “empty” has nothing in it but serves merely to have a place
to go to in order to cut off the end of unit “cuts”. This is such a common
situation that TUTOR provides an empty unit named “q” (for quit). The
previous -goto- can be written as:

CONDITIONAL COMMANDS

goto expression,x,zonk,q,x,q

The statement “goto q” means go to an empty unit. The special
meaning of “q” here makes it illegal to have your own unit named “q”,
just as it is not possible to name a unit “x”. Since “do empty” can be
rendered by the equivalent “do x”, the statement “do q” (or a condi-
tional form) is given the special interpretation of acting like a “goto q”.
The use of “q” in a -goto- statement is somewhat different from the use of
“q” in a -help- statement. You will recall from Chapter 5 that “help q”
means to quit specifying a help unit, by clearing the -help- pointer.

The -goto- can be used in association with the -entry- command to
skip over statements:

calc be0

goto 3f>5, leavit,x
calc bef/2
f<0

@:a entry leavit

If 3f is greater than 5, we skip over intervening statements to entry
“leavit”. The -entry- command is equivalent to a special -goto- plus a
-unit-:

{special goto leavit

unit leavit } equivalent to (entry leavit)

So, unlike a -unit- command, -entry- does not terminate a unit but merely
provides a named place to branch to. Its equivalence to a special hidden
-goto- followed by a -unit- command means that an entry is completely
equivalent to a unit, except for not terminating the preceding statements.
For this reason it is possible to use an entry name with -do-, -jump-, -help-,
ete.

89

The TUTOR Language

90

The conditional -goto- is often used for repetitive operations similar
to those carried out with -do-. Here are two versions of a subroutine to
add the cubes of the first ten integers:

-do- -goto-
unit add unit add
calc total<0 calc je1
do add2,i=1,10 total<0
* goto add2
unit add2 *
calc total«total+i® unit add2
calc total«<total +i?
ii+1

goto i=10,add2,x
The last two statements in the -goto- example could be combined as:
goto (i<i+1)=10,add2,x
For the simple task of adding ten numbers, the -do- form is certainly
easier to construct, but situations occasionally arise where it is easier to
construct a repetitive loop using a conditional -goto-.
Except for not changing how many levels deep in -do-s we are, -goto-

is quite similar to -do-. Although the feature is seldom used, it is even
possible to pass arguments to a subroutine with a -goto-:

goto zonk(12,25)
Arguments may also be passed in a conditional -goto-:

goto 3N-—4,alpha(2+count),x,beta(15,2N),q

The Conditional lterative -do-

The conditional and iterative -do- can be combined so that, on each
iteration, the conditional expression selects which unit to do this time:

do N+3,ua,ub,uc,ud,i<=1,12

o b ¥ %

CONDITIONAL COMMANDS

For each value of i (from 1 to 12), the expression “N+3” is evaluated,
which determines which subroutine will be done. For example, if “N+3”
is @, the above statement is equivalent to “do ub,i«1,12”. Usually a
conditional iterative -do- is used in situations where the conditional
expression (“N+3”) is not changing, but doing one of the subroutines
can, change N so that a different subroutine is used on the next iteration.
The following is an example of such manipulations:

do i—2,ua,ub,uc,ud,i<1,4

In the first case, where i is equal to 1, the condition “i—2” is —1, so we do

ua”. Then i is incremented to 2, and we do “ub”, etc. This is, therefore,
equivalent to the sequence:

do ua
do ub
do uc
do ud

As usual, the specified units can involve the passing of arguments.

In a conditional non-iterative -do- the unit names “x” and “q” mean
“don’t do anything” and “goto q” respectively. In a conditional itera-
tive -do-, “x”” means “don’t do anything on this iteration,” and “q” means
“quit doing this statement and go on to the next statement.” In other

words, “x”” means “fall through to the next iteration,” while “q” means
“fall through to the next TUTOR statement.” For example:

do i—2,ua,x,q,ud,i<1,4
show i

will display the number “3”. For i equal to 1 we do “ua”; for i equal to 2
we do nothing; for i equal to 3 we quit and go on to the following -show-
statement.

The -if- and -else- Commands

Suppose you want to do one set of statements if x is greater than y,
and a different set of statements. One way to do this, as we have seen, is to
put the two sets of statements in two different units and write “do x>y,
unita, unitb”. Another way to perform these operations is to use -if- and
-else- commands:

91

The TUTOR Language

92

if x>y
) . calc Z«by
Done if x>y { . draw x,Z;x+100,Z+100
else
. at X,
Done if x<y { . circle 5¢y
endif

The statements between the -if- and -else- commands are performed only
if x is greater than y, and the statements between the -else- and -endif-
commands are performed otherwise. The tag of the -if- command must be
a logical expression (one that has values —1 or (). The tag of the -else-
command must be blank. The -endif- command identifies the end of the
sequence.

Note that the statements bracketed by -if-, -else-, and -endif- must be
indented, with an initial period identifying them as indented statements.
(It is possible that the details of this indenting format may change.
Consult on-line PLATO aids for up-to-date information.)

When do you use a conditional -do-, and when do you use -if- and
-else-? This depends mainly on the number of statements involved. If
there are few statements to be performed, -if- and -else- is probably more
readable. But, if “unita” and “unitb” are long subroutines, the condition-
al -do- is the more convenient form.

There doesn’t have to be an -else-:

if x>y

calc Z«by

draw x,Z;x+100,Z+100
endif

This will do the -calc- and -draw- only if x is greater than y.
There is also an -elseif- for specifying an additional condition:

if x>y
_ . calc Z&by
Done if x>y { draw X,Z;x+100,Z+100

elseif
Done if x>.5y
but x not
greater than

Yy

Done if else
neither of .

the above {

is valid endif

CONDITIONAL COMMANDS

x>.by

at 1225

write This paragraph will be
displayed only if x is
not greater than y but
is greater than .5y.

at 1225
write x is less than .5y!

It is possible to have additional levels of indented -if- structures:

if

A second
level of
indenting

else

endif

a=b or b>3
calc x«b+2

if count<8

at 2513

write Two levels!
else
. do subr
endif
at 912
show x

The text “Two levels!” will appear on the screen if (a=b or b>3)

and if (count<8).

93

