Sequencing of Units
Within a Lesson

We have discussed many units which make different kinds of
displays. In some cases, the main units had other units attached to them
by means of -do-. Upon completion of a main unit, the student can
proceed to the next one by pressing NEXT. A greater variety of inter-unit
connections is needed to build a complete lesson which includes optional
help sequences, branches to remedial sections when the student is having
trouble, an index that gives the student some control over the order of
presentation, etc. This section will discuss, in more detail, how to build
rich interconnections into a lesson. This discussion builds on the
introduction to such matters presented in Chapter 1.

It is often desirable to skip over some units, particularly if they are
used as subroutines, not as main presentation units. We have seen that
this can be done by using a -next- command to name the main unit which
is to follow. For example:

unit one
next two

do dispone
at 1515

write This is unit one.
*

unit dispone
calc radiuse(xey«200)—50

(Continued on the next page.)

The TUTOR Language

do halfcirc

unit two
at 412
write This is unit two.

This is unit one.

This is unit two.

Fig.

60

5-1a. : Fig. 5-1b.

When TUTOR begins “executing” the staterments in unit “one”, it starts
out assuming that the next physical unit, unit “dispone”, will be the next
main unit. However, TUTOR encounters a “next two’” statement which
says, “No, make a note that unit ‘two’ will be next, rather than the next
physical unit”. The “do dispone” is then executed, which involves
drawing a figure. Finally, we write “This is unit one”, which is at the end
of unit “one”. Nothing more will happen until the student presses the
NEXT key, at which time TUTOR looks at its notes and finds that unit
“two” comes next, whereupon it erases the screen and starts executing
unit “two”. Had we not inserted the -next- command, TUTOR would
have gone on to unit “dispone” by default.

To put it another way, TUTOR has a pointer which tells which main
unit should come next. At the beginning of a main unit, TUTOR places
zero in this pointer to indicate that the next physical unit should be next.

SEQUENCING OF UNITS WITHIN A LESSON

If no -next- command is encountered, we reach the end of the unit with
the pointer still zero, and when the student presses NEXT, TUTOR will
by default proceed to the next physical unit. On the other hand, if we
encounter a -next- command anywhere in the unit, it will alter this
pointer so that later, when the student presses NEXT, the pointer is
non-zero and is pointing to whatever unit we have specified.

It should be clear from this discussion that the -next- command can
be executed anywhere in the unit without changing its effect. Neverthe-
less, it is important to place the -next- command near the beginning of the
unit. The advantage is that you can then see at a glance what is the main
sequence flow. If the -next- command is buried far down in the unit, you
have to hunt for this crucial information. You put such unit information
at the beginning of a unit for the same reason that you define appropriate
names for the variables you use: you or a colleague may have to read
through the lesson months after it was written!

The following is a simple illustration of how the -next- pointer is

handled:

unit silly
next A
next B
next C

*

unit sillier

Well, what unit will be next? Answer: unit “C”! The pointer starts out
cleared to zero (which implies the next physical unit), then gets set to
“A”, then to “B”, and finally to “C”. Each succeeding -next- command
overwrites what had previously been in the pointer.

It is also possible to clear the next pointer yourself by -next- with no
tag or “next q” (“q” for “quit specifying something”). Either of these
forms will clear the next pointer so that the next physical unit will come
next. In other words, the sequence:

unit start

next silly

next q $$ or just “next’”’ with no tag
*

unit again

will proceed from unit “start” to unit “again” because the “next q”
cancels the “next silly”.

61

The TUTOR Language

62

Such seemingly meaningless manipulations are mentioned here for
completeness and as aids to explaining how TUTOR handles a unit
pointer, such as that associated with the -next- command. These manipu-
lations will make more sense to you later on in the book. The important
thing to remember is that you have complete control over the pointer. You
can set it or clear it with an appropriate -next- command.

The existence of “next q” (and related statements) means that
“unit q” is not a permitted statement (you are not allowed to name a
unit “q” because of the possible confusion). For similar reasons you will
see later that a unit cannot be named “x”.

Another way to utilize pointers is in specifying optional “help”
sequences which the student can request by pressing the HELP key.
Such optional sequences are important tools in tailoring the lesson to
meet the needs of individual students of diverse backgrounds and

abilities. Here is an example. (See Figures 5-2a and 5-2b.)

unit dipper
ghelp words $$ specify a help unit
at 1215
write Today we will discuss Ursa Major.
*
unit dippy
@help words $$ specify a help unit
at 2213

write Ursa Major is in the northern sky.

unit words
at 1525
write Ursa Major is the Latin name for the
constellation which contains
the ““Big Dipper”.
(Press NEXT for more help,
or Press BACK.)

unit words2

at 1525

write ‘““Ursa’” means “bear”.
“Major’” means “bigger”.

end

SEQUENCING OF UNITS WITHIN A LESSON

HELP (base is "dipper")

o e

l;,\mt dipper J

unit words
NEXT NEXT NEXT

unit words2 1

end
unit dippy T o unit dippy

NEXT or BACK e -
NEXT NEXT
v v

——

HELP (base is "dippy")

unit words J
MACK J’.NEXT

unit wordsz
end

-
NEXT or BACK

Fig. 5-2a.

The -help- command is used to specify a “help” unit, which may be
just the first unit in a long help sequence. If you provide help in this way,
the student can get it by pressing the HELP key. (Conversely, if there is
no -help- command, the HELP key has no effect). When the student
enters the help sequence, his or her screen is erased to clear the way for
the display generated by the first help unit. The student may at any time
press BACK or shift-BACK to return to “home base”, the main unit he or
she was in when requesting help. A “base” pointer retains the name of
the “base unit” (the unit to return to). In the example, if you press HELP
in the base unit “dippy”’, TUTOR remembers “dippy” and jumps to
“words”, from which the BACK key will take you back to “dippy”. If
instead you press NEXT, you advance to “words2”, where you can again
press BACK or shift-BACK to return to “dippy”’. From “words2” you will
also return to “dippy” upon pressing NEXT because the -end- command
in unit “words2” signals the end of the help sequence.

It is almost as though the student had two screens to look at! The
student starts the lesson in the first unit of a normal, non-help sequence
and advances in this sequence until he or she requests help. At this point,
the student turns his or her attention to a different, parallel sequence of
units, almost as though that student had turned to use another terminal.
The student can get back to the original sequence by pressing BACK, as if
he or she had turned back to the original terminal. The usefulness of such
a parallel sequence is not limited to help sequences but can be used to

Fig. 5-2b.

63

The TUTOR Language

64

provide review, a desk calculator mode, a dictionary of terms, tables of
data, etc., or for any situation in which the student temporarily needs a
second terminal “off to the side”.

It is possible to access yet another help sequence when you are
already in a help sequence. BACK, however, will return you to the
original base unit, not the help unit you were in when you requested the
second help sequence. This is due to the fact that there is only one base
pointer, which is not changed by the second help request. If there is
already a base unit specification, TUTOR does not alter it.

You can alter the base unit pointer yourself with a -base- command.
If you put a -base- command with no tag in unit “words” you will prevent
a return to “dipper” or “dippy”. The -base- command with no tag or a
“base q” statement clears the base pointer so that TUTOR forgets where
to return to and thinks that you are not in a help sequence. (You should
notice that the -end- command in unit “words2” is now ignored. The
-end- command has no effect in a non-help sequence.) This -base- (blank
or “q” tag) is used quite often since it is frequently convenient to put the
student into a non-help sequence, even though he reached a certain point
by pressing HELP. Also, TUTOR automatically clears the base pointer
whenever and by whatever means the student reaches the corresponding
base unit.

You can change the base pointer to point to some unit other than the
original one. Imagine that we place the following statement in unit
“words”:

base dispone

This means TUTOR will eventually return to “dispone” rather than
“dipper” or “dippy”. This is occasionally a useful technique. For
example, you might like to return to a unit just ahead of the original one
in order to ease back into the original context. Notice, too, that while
-base- with no tag (or “q”) can change a help sequence into a non-help
sequence, so “base unitname” can change a non-help sequence into a
help sequence by naming a unit to return to.

You probably will not need all of the features of -help-, -base-, and
-end- described above, but hopefully the discussion has clarified how
they do their work. You have also discovered some terms which will be
quite useful in later discussions and can now talk about “non-help
sequences” of “main units” and “help sequences” of “main units”. It
should be pointed out that a base unit may have other (auxiliary) units
attached to it by -do-; and, of course, you return to the base unit itself, not
to one of these attached units, even if the -help- command is located in an
attached unit. Moreover, a lesson may be thought of as a collection of

SEQUENCING OF UNITS WITHIN A LESSON

main units which have attached units, and the student moves from one
main unit to another. The student may enter a help sequence of main
units, each of which may -do- attached units. While the student is in the
help sequence, TUTOR remembers which main unit is the “base’ unit to
return to when -end- is encountered, or when BACK or shift-BACK is
pressed. The following is a diagram of this structure:

HELF ——> main NEXT

(optional)
START N main

main [;ftached k
NEXT

main
\{T’EXT end
\
\a A attached $
f’/

attached f——

/

attached

Return to
base unit

main e NEXT
~—
T main

attached

Fig. 5-3.

You may have realized that -help- and -base- are quite similar to
-next- in that all three commands set pointers. (The pointers have
different uses, however). For example, if we say:

unit lotshelp

help a
help b
help ¢

then the last one wins—the help pointer ends up pointing at unit “c”. We
saw earlier that -next- works this way. Similarly, “help q” or -help- with
no tag will clear the help pointer, thus making the HELP key inoperative.

65

The TUTOR Language

66

You may find it helpful to think of a help sequence as a “slow”
subroutine. Whereas a -do- command takes us to a unit and right back
again, -help- makes possible an optional jump to a unit or to a sequence of
units where the student may study for many minutes before returning to
the base unit. Aside from the “slowness” and the necessity of pressing
keys to go and return, there is one fundamental difference from a -do-
situation. In a help sequence, we return from help to the beginning of the
base unit and re-execute the statements in the unit in order to restore the
original display, whereas the return from a -do- is to the statement
following the -do-.

This last point is sufliciently important to warrant an example:

unit initial

at 2513

write Set “a” to .

calc a<«0

*

unit repeat

help trivial

at 2715

write Increment “‘a” to <s,a<a+1p>.
*

unit trivial

at 312

write Press NEXT or BACK.
end

>

(Of course, “a” must be defined.) If we repeatedly press HELP, then
BACK, while we arc in unit “repeat” we will repeatedly increment
variable “a”. Variable “a” increases by one on every return from the help
sequence because the return is to the beginning of the base unit, and all
the statements in unit “repeat” are re-executed. This is necessary to
restore (to the screen) the display associated with unit “repeat”, since the
entire screen is erased when the HELP and BACK keys are pressed.

This example brings up a fundamental programming point: the
question of initialization. We might use a structure like that shown above
for counting the number of times the student presses the HELP key
(although we would then most likely put the “aca+1" in the help unit).
In order to count something (requests for help, number of wrong
answers, etc.), it is necessary to “initialize” the counting variable to zero
before starting the process, and this initialization must precede (and be
outside) the process itself. This can perhaps best be seen by moving the
statement “calc a<0” from unit “initial” to the beginning of unit
“repeat’:

SEQUENCING OF UNITS WITHIN A LESSON

unit repeat

help trivial
calc a«l
at 2715

write Increment “a" to <s,aca+1).

Imagine pressing HELP (and BACK) repeatedly. There would never be a
change in the displayed value of “a”, because on each return from the
help unit, “a” is again reset to zero (whereas that was previously done
only within unit “initial”).

The question of initialization will be encountered again and again in
various guises. These matters were not mentioned earlier partly because
the iterative -do- command had the initialization built-in. For example:

do zonk,i«<b,13

means “initialize ‘i’ to 5 and do ‘zonk’, then repeat by incrementing ‘i’ by
one until it reaches 13”.

It should be mentioned here that initialization questions are, of
course, not unique to programming. The principal and interest due
monthly on your car or house loan depend on the initial conditions of the
loan. When you make fudge, you start with certain ingredients in the
mixing bowl (the initial condition) and then you beat the mixture 200
times. You would no more restart with new, unmixed ingredients after
each beating stroke than you would reinitialize a count of student errors
after each attempt. In other words, questions of initialization are mainly
questions of common sense, and we will make explicit comments about
these matters only where confusion is likely. In the case of a return from a
help sequence, you might have thought that TUTOR remembers the
entire display originally made by the base unit. However, as you have
seen, TUTOR must re-create the display by re-executing the commands
in the base unit (which has side effects related to initialization questions).

Now, let’s move the “calc a«0” back to unit “initial” and modify
the unit to look like this:

unit initial

calc a«0

jump repeat $$ do not wait for the NEXT key
*

67

The TUTOR Language

The -jump- command acts much like the student pressing NEXT (the
screen is erased and we move to a new main unit). The -jump- command
is particularly useful in association with initializations, as in this exam-
ple, where it is necessary to separate initializations from a process in a
different unit. It would be superfluous to show the student a blank screen
and to make the student press NEXT. Indeed, it should be a basic rule to
minimize unnecessary keypresses so as not to frustrate the student.
Notice that -jump- is immediate (like -do- and unlike the -next- or -help-
commands) and that statements which follow -jump- in a unit will not be
executed (unlike -do-, -next-, and -help-).

The base pointer is not affected by a -jump-. The pointer remains zero
if we are not in a help sequence, and it retains its base unit specification if
we are in a help sequence. The -jump- simply takes us from one new main
unit to another without having to press NEXT. Since it starts a new main
unit, a -jump- cancels any -do-s which have been encountered (there will
be no return from those -do-s).

When moving from one main unit to another, by -jump- or by
pressing NEXT, the entire screen is erased unless the first of these two
main units contains an “inhibit erase” statement. For example, the
sequence:

inhibit erase
jump more

will leave the old display on the screen, and displays created by unit
“more” will be added to the screen.

Since -jump- takes the student from one main unit to another without
altering the base pointer, it is possible to take a student to a help sequence
immediately without pressing HELP:

unit model

base model
jump modhelp

Initially, the base pointer is zero because we are in a non-help sequence.
Then, a -base- command is used to set the base pointer to unit “model”
(the main unit we are presently in). The -jump- takes us to unit
“modhelp”.

SEQUENCING OF UNITS WITHIN A LESSON

Now we are in a help sequence because the base pointer has been set.
The return from the help sequence will be to the beginning of unit
“model”. Note the diffecrence between “base model” and “base q” in
unit “model”: a “base q” statement would clear the already-cleared
base pointer, whereas “base model” sets the pointer to “model”.

Summary of Sequencing Commands

You have learned a variety of commands which enable you to control
the sequencing of units in a lesson. These include commands which set
pointers (-next-, -help-, -base-, etc.) and a couple of immediate branching
commands (-do- and -jump-). You have seen how to have two parallel
sequences of main units, a non-help sequence and a help sequence, and
have used the -end- command to terminate a help sequence. Additional
aspects of the connections among units will be discussed in Chapter 6 in
the section on the -goto- command. Recall that the LAB, DATA, and
BACK keys are activated by -lab-, -data-, and -back- commands, just as the
HELP key is activated by the -help- command. The shifted HELP, 1LAB,
DATA, NEXT, and BACK keys (abbreviated as HELP1, LAB1, DATAL,
NEXT1, and BACKI1) are activated by the commands -helpl-, -labl-,
-datal-, -nextl-, and -backl-. (When in a help sequence, the BACK or
BACKI1 keys will cause a return to the base unit, unless there are explicit
-back- or -backl- commands to alter this.) Here is a unit which uses many
of these commands:

unit central

help uhelp

help1 index

lab simulate

lab1 calc

data data

datal news

at 1314

write Press HELP for assistance,

shift-HELP for an index,
LAB for simulation,
shift-LAB for a calculator,
DATA for tables of data,
shift-DATA for class news.

This is an extreme case, but this unit gives the student six choices of help
sequences, and which help sequence is entered depends on which key
the student presses. In any of these cases, the eventual return will be to
this base unit.

69

The TUTOR Language

70

The commands -next-, -nextl-, -back-, and -backl- are somewhat
different in that they do not cause a help sequence to be initiated
(pressing the corresponding key does not alter the base pointer, and one
simply moves among main units of the help sequence or non-help
sequence).

The same conventions apply to all these commands. In particular, a
blank tag (or “q”) disables the corresponding key by clearing the
associated pointer. A non-help sequence can be changed into a help
sequence by specifying a unit to return to with a “base unit” statement. A
help sequence becomes a non-help sequence if we encounter a “base q”
or “base” statement, since these clear the base pointer.

It is important to point out that all the unit pointers, other than
“base”, are cleared when we start a new main unit (either by -jump- or by
pressing a key such as NEXT, BACK, or HELP). Starting a new main
unit, therefore, involves a number of important initializations, including
erasing the screen to prepare for the new display (unless there was a
preceding “inhibit erase”).

Notice that -jump- and -do- are basically author-controlled branching
commands, while -help-, -back-, -data-, etc., permit the student to control
the lesson sequence.

There is another way to enter a help sequence, which is particularly
useful in offering the student an index to the various parts of the lesson.
Suppose the lesson is organized into chapters or topics and you wish to
let the student choose his or her own sequence. In particular, the student
can skip ahead, go back, or review material. It is desirable that the student
be able to go to an index or table of contents at any time. One way to
provide access to the index is to put a “data table” statement in every
main unit. The student can then hit the DATA key and jump to unit
“table” at any time. Unit “table” would contain a list of topics for the
student to choose from, and it should contain a “base” statement to insure
that the chosen topic be entered as a base sequence. Another way to
provide access to this kind of index is by means of a single -term-
command:

unit table
base

[ié§mtenn index
at 1218
write Choose a chapter:
a) Introduction

b) Nouns
c) Pronouns
d) Verbs

SEQUENCING OF UNITS WITHIN A LESSON

arrow 1822

answer a
jump intro
answer b
jump unoun
answer ¢
jump pron
answer d

jump verb

The presence of “term index” in the unit “table” makes it possible for
the student to press the TERM key and type “index” in order to reach
unit “table” at any time. (The TERM key is the shifted ANS key on the
keyboard.) When the student presses TERM, TUTOR responds by asking
the student “what term?” at the bottom of the screen, whereupon the
student would type “index”. The student then reaches unit “table”,
where he or she may choose a chapter. You can see that -term- is
complementary to -help-. The -help- command in a main unit specifies
where to go if HELP is pressed while in that main unit, whereas the
presence of -term- in a unit specifies that the unit can be entered from
anywhere in the lesson. An error is made if another -term- command (with
the same tag) is placed in a different unit. In this case, TUTOR would not
know which unit to enter.

While the -base- command can be put at the beginning of the unit,
there is some advantage to moving it later on in the unit. With -base-
commands just before the -jump- commands, the student retains the
option of pressing BACK to return to where he or she came from (if he or
she doesn’t like the available choices). This option is lost if the -base-
command has already cleared the base pointer.

The name -term- stems from an early use of this kind of facility to
provide a dictionary of “terms”, whereby the student has access to the
special vocabulary used in a lesson. In such an application, there are as
many help units as there are terms to be defined and each unit has an
appropriate -term- command:

unit cardinfo
term cardiac

at 1907
write ‘‘cardiac’” means “pertaining to the heart”.
end

When the student types TERM-cardiac, the screen is erased and the
definition of “cardiac” is displayed by unit “cardinfo”. Immediately

n

The TUTOR Language

72

upon pressing NEXT or BACK, the screen is again erased and the student
is sent back to the beginning of the base unit. A better procedure in this
case would be to change the statement “term cardiac” to “termop
cardiac”. The -termop- command refers to “term on page” and permits
the display given by unit “cardinfo” to be added to the original display
without any erasing.

Except for such dictionary applications, it is strongly recommended
that you limit yourself to having only one unit with a -term- in it, and its
tag should be “index”. This greatly simplifies the instructions to the
student on how to use the lesson and minimizes what he must remember
in order to move around in the lesson. In the index unit you descrihe the
various options that are available. Even for providing a dictionary of
terms, this scheme is probably preferable (one of the options could be
“dictionary of terms”, which in turn would show a list of the words
whose definitions are available).

It is possible to have additional -term- commands in the unit to
provide synonyms:

unit table

base

term index

term contents

term choice

at 1218

write Choose a topic . . .

These additions insure that the student will reach this unit by TERM-
index, or TERM-contents, or TERM-choice.

The -helpop- Command: “Help on Page”

Often the help to be provided when the student presses the HELP
key is a brief statement or small drawing which will fit easily on the
“page” or screen display which the student is viewing. When this is the
case, such help can be added to the screen by means of a -help- command
if an “inhibit erase” is used to prevent the current display from disap-
pearing.

A better way is to use a -helpop- command. The statement “helpop
hint” specifies that unit “hint” should be done when the student presses
the HELP key, without erasing the screen. After going through unit
“hint”, TUTOR returns to the point in the lesson where you were waiting
for the student to press a key. This could be a -pause- statement, the end
of a unit (where you were waiting for the student to press NEXT to

SEQUENCING OF UNITS WITHIN A LESSON

proceed to the next main unit), or an -arrow- command where the student
was entering a response. The fact that TUTOR returns to the waiting
point is an additional advantage of -helpop- over the -help- command,
since return from an ordinary help sequence goes all the way to the
beginning of the base unit, rather than to the waiting point. (Since the
original display is still on the screen when -helpop- is used, there is no
need to redo the base unit to restore the screen display.) No -end-
command is needed in a -helpop- unit, unlike a -help- unit.

The set of on-page commands includes -helpop-, -helplop- (associa-
ted with the HELP1 or shift-HELP key), -dataop-, -datalop- (for the
DATALI key), -labop-, and -lablop- (LABI1 key). The -termop- command
mentioned earlier permits TERM-associated displays “on the page”.

For moving among main units there are the commands -nextop-,
-nextlop-, -backop-, and -backopl-. These are just like -next-, -nextl-,
-back-, and -back1-, except that the screen is not erased when proceeding
to the named unit. These features can be mixed in one unit. If a unit
contains a -nextop- command and a -back- command, the screen will not
be erased when NEXT is pressed, but it will be erased if BACK is
pressed.

The -imain- Command

An alternative to “TERM-index” is to tell the student to press a key
such as shift-DATA to reach an index page. If this index is in unit “table”,
you must then put the statement “datal table” in every main unit, since
all unit pointers are cleared when a new main unit is entered. A better
way to do this is to use an -imain- command which specifies a unit to be
done initially in every main unit:

imain setit
unit a unit a
.- do setit
unit b EQUIVALENT unit b
.. do setit
unit c unit ¢
do setit
unit setit unit setit

datal table datal table

73

The TUTOR Language

74

The -imain- command names unit “setit” to be done at the beginning of
every main unit. This saves you the trouble of placing the statement
“do setit” at the beginning of each main unit.

You can specify all kinds of initializations to be performed in each
main unit. For example, you might advertise the shift-DATA key with
this display at the bottom of the screen:

Press shift-DATA for an index

In this case you would write something like:

imain setit
unit setit
datal table
at 3218

write Press shift-DATA for an index
box 3217;3148

Now the display will appear with each main unit, and the shift-DATA
key will be activated. (Incidentally, if you have blank -pause- commands
in your units, pressing shift-DATA will merely take the student past the
pause, not to the table of contents. Similarly, pressing the TERM key at a
blank -pause- will not offer TERM capabilities but will merely take the
student past the pause. Rather than use a blank -pause-, use a statement
such as “pause keys=next,datal,term”, as discussed in Chapter 8. With
this kind of pause, pressing shift-DATA will take the student to the index,
and pressing TERM will give normal TERM features, while pressing
NEXT will take the student past the pause. Other keys are ignored.)

The -imain- command sets a pointer, just as the -help- and -base-
commands do. You can change the associated unit by executing another
-imain- command:

imain setit

imain other
Notice that the new “imain” unit will not be done immediately, but only
when a new main unit is entered. You must add the statement “do
other” if you want unit “other” to be done immediately. You can stop

having an imain-associated unit done by using “imain q”, or “imain”
(blank tag), to clear the -imain- pointer.

SEQUENCING OF UNITS WITHIN A LESSON

While any key may be used to access an index, many authors have
agreed to use shift-DATA in order to provide some uniformity from one
lesson to another. This procedure reduces the number of new conven-
tions a student must learn when studying new material.

There is a similar -iarrow- command which can be used to specify a
unit to be performed every time a student enters a response. If the
-iarrow- command is itself located in the -imain- unit, @ll -arrow-s will be
affected.

75

