Doing Calculations
in TUTOR 4

You can make TUTOR calculate things for you. For example:

at 1201
write Who is buried

in Grant's tomb?
arrow 1201+308

The -arrow- statement, as written, is completely equivalent to
“arrow 1509”. Or consider this:

circle (412+72.62)2

The radius of the circle will be taken to be the square root of the sum
of 41 squared and 72.6 squared.
Just about any expression that would have made sense to your high

school algebra teacher will be understood and correctly evaluated. For
example:

43

The TUTOR Language

Expression TUTOR Evaluation
3.4+5(23-3)/2 15.9

2x3+8 14 (NOT 22)

sin(30°) 0.5 (See Appendix C for other functions.)
49'/2 7

(4+7)(3+6) 99

6/5x 103 1200 (NOT 1.2x1073)

If your high school algebra is rusty, we remind you that “2x5+3”
means “(2x5)+3” which is 13, not “2x(5+3)” which is 16. The rule is
that multiplication is “more important” than addition or subtraction and
gets done first. If you are unsure at some point, you may use parentheses
around several portions of your expression to make the meaning unam-
biguous.

A similar point holds true for division, which is considered “more
important” than addition or subtraction. “8+6/2” means “8+(6/2)”
which is 11, not “(8+6)/2” which would be 7. The only ticklish point is
whether multiplication is more or less “important” than division.
TUTOR agrees with most mathematical books and journals that multipli-
cation is more important than division, so that “6x4/3x2” means
“(6x4)/(3x2)” which is 4. Note that this means that TUTOR considers
“1/2(6+4)” to be “1/(2(6+4))” which is 0.05, not “(1/2)(6+4)” which
would be 5. Again, when in doubt use parentheses. You could write
“5(6+4)” if you wish, which is unambiguous.

Experience has shown that students tend to write algebraic responses
according to these rules, and making TUTOR conform to these rules
facilitates the correct judging of student algebraic and numerical re-
sponses.

Having seen how expressions are handled, we can introduce “stu-
dent variables” which may be used to hold numerical values obtained by
evaluating expressions. These stored results can be used later in the
lesson. As an example, a “variable” might hold the student’s score on a
diagnostic quiz, and this score could be used later to determine how
much drill to give the student. The storage place is called a “variable”
because what it holds may vary at different times in the lesson. Another
variable might count the number of times the student has requested help,
in which case the number which it holds would vary from @ to 1 to 2, etc.

There are 150 “student variables” which can be used for storing up

to 150 numerical values. These “student variables” are unimaginatively
called:

v1, v2,v3,...v148, v149, v150.

DOING CALCULATIONS IN TUTOR

Later in this section we will learn how to give variables names (such
as “radius,” “wrongs,” “tries,” “speed,” etc.) which are appropriate to
their particular usage in a specific lesson. But first, we will look at
variables using their primitive names: vl through v150.

These variables are called student variables because each of the
many students who may simultancously be studying your lesson has his
or her own private set of 150 variables. You might use variable v23 to
count the number of correct responses on a certain topic, which will be
different for each student. If there are forty students working on your
lesson, TUTOR is keeping track of forty different “v23’s”, each one
different. This is done automatically for you, so that you can write the
lesson with one individual student in mind, and v23 may be considered
simply as containing that individual student’s count of correct responses.
Thus, one student might be sent to a remedial unit because the contents
of his variable number 23 show that he did poorly on this topic. Another
student might be pushed ahead because the contents of her variable 23
indicate an excellent grasp of the material. It is through manipulation of
the student variables that a lesson can be highly individualized for each
student.

Variables are useful in building certain kinds of displays. Let’s see
how to build a subroutine which can draw a half-circle in various sizes,
depending on variables which we set up. In order to specify the size of
the figure and its location on the screen, we must specify a center (x and y)
and a radius. We let variables v1 and v2 hold the horizontal x and vertical
y positions of the center, and we let variable v3 hold the value for the
radius.

at X,y (at viyv2
circle radius,0,180 \ circle v3,0,180

draw x-radius,y;x+radius,y
(draw v1-v3, v2;v1+v3 Vv2)

! ! 1

(x—radius,y) (x,y) (x+radius,y)
(v1—v3 v2) (viv2) (vi+v3 V2)

Fig. 4-1.

We can draw such a figure with the following unit:

45

The TUTOR Language

46

unit
at
circle
draw

halfcirc

vl,v2

v3,0,180 $$ 180 degree arc
v1—v3,v2;v1+v3,v2 $$ horizontal line

In order to use this subroutine we might write:

unit
calc
calc
calc
do

calc
do

The statement “calc v2<150” means “perform a calculation to put
the number 150 in variable v2”. The statement “calc v1l«v1+v3” means
“calculate the sum of the numbers presently held in variables v1 and v3,
and put the result in variable v1”. In the present case, this operation will
store the number 250 (150+10@) in variable vl for use in the second
“do halfcire”. Note that the second “do
values of v2 and v3, which have not been changed. This unit will produce

this picture:

vary
v1<150 $$ x center at 150
v2<=300 $$ y center at 300
v3<100 $$ radius 100

halfcirc
vlievl+v3 $$ increment x center
halfcirc $$ y and radius unchanged

Fig. 4-2.

halfcirc” will use the original

DOING CALCULATIONS IN TUTOR

The « symbol is called the “assignment” symbol, because it assigns a
numerical value to the variable on its left. This numerical value is
obtained by evaluating the expression to the right of the assignment
symbol.

A slightly more complicated example of a -calc- statement is:

calc v3<«bv2+vi

This statement means “multiply by 5 the number currently held in v2,
add this to the number held in v1, and store the result in v3.” In
conversation you might read this as “calc v3 assigned five v2 plus v1” or
“calc v3 becomes five v2 plus v1”. Notice that it is common practice to
refer simply to “v2” when we really mean “the number currently held in
variable v2”,

The simplest possible -calc- statement merely assigns a number to a
variable, as in “calc v2¢150”. It is permissible to make more than one
assignment in a -calc- statement:

calc v3«¢v7+18.62

This will assign the value 18.62 to both variables v3 and v7.

Giving Names to Variables: -define-

Your programming can be made much more readable by “defining”
suitable names for the student variables which you use. For example, in
the units just discussed, the quantities of interest were the center (x and y)
and radius of the circular arc. We should precede such units with a
-define- statement:

@- define x=v1,y=v2
radius=v3 $$ names may be 7 characters long

unit vary

calc x<«150
y<=300 $$ The command name -calc- may be
radius<100 $$ omitted on successive lines

do halfcirc

calc x<ex+radius

do halfcirc

*

unit halfcirc

at X,Y

circle radius,$,180

draw x-—radius,y;x+radius,y

47

The TUTOR Language

48

The -define- statement tells TUTOR how to interpret the defined
names when they are encountered later in expressions. The units are now
much more readable than they were when we used v1, v2, and v3.

Giving meaningful names to the variables you use is very important.
After an absence of several months, you would have difficulty in
remembering what you are keeping in, say, variable v26, whereas the
name “tries” would remind you immediately that this variable holds a
count of the number of times the student has tried to answer the question.
The importance of readability is even more vital if a colleague is working
with you on the material. Your associate would find it extremely frustrat-
ing to try to figure out what you are keeping in v26. So, use -define-!

There should not be any v3’s or v26’s anywhere in your lesson except
in the -define- statement itself. Put all your definitions at the very
beginning of the lesson where you will have ready reference to the
variables you are using.

The only reason we started out using the primitive v-names was to
establish a more concrete feeling for the meaning of a student variable.
From here on we will use defined variable names. A preceding -define-
statement is assumed.

WARNING: Normal algebraic notation permits expressions such as
“rcos6”, but in TUTOR you must write “rxcos(8)” or “r(cos(8))”. That is,
you must use an explicit multiplication sign between names (either your
defined names such as “r”” or TUTOR-defined names such as “cos”), and
you must place parentheses around the arguments of functions. For
example, the “0” in cos (6) must be enclosed in parentheses.

The reason for this is that TUTOR cannot cope with the ambiguities of
trying to decide whether an expression such as “abc” means “axbce” (if
there is a name “bc”), or “abxc” (if there is a name “ab”), etc. Later,
when we discuss the important topic of judging student responses, we
will see that TUTOR can make reasonable guesses when treating a
student’s algebraic response and can permit the student the luxury of
leaving out multiplication signs and omitting parentheses around func-
tion arguments. You, the author, are required to be more explicit,
however, in separating one name from another. Notice that “17angle” is
fine and TUTOR will recognize this as meaning “17xangle”. But
“rangle” can’t be pulled apart into “(r)(angle)” because you might have
meant “(ran)(gle)”.

DOING CALCULATIONS IN TUTOR

Repeated Operations: The lterative -do-

With very little effort we can make a variety of designs out of our unit
“halfcirc”. For example:

We used an
iterative -do-.

e "‘\\
A
[E unit stack
—= ‘ calc x«256

radius<70
Egﬁ do halfcirc,y<100,380,70
Y at 312
write We used an
iterative -do-.

Fig. 4-3.

The effect of the -do- statement is to set y to 100 and do unit
“halfcirc”, then set y to 170 (the starting value of 100 plus an increment
of 70) and do halfcirc again, and repeat the process until y reaches the
final value of 380. The format of the extremely useful iterative -do-
statement is:

do unitname,index<start,end,increment

In the above example, the index “y” starts at 100 and goes to 380 in
increments of 70. If no increment is specified, an increment of one is
assumed. For example, “do halfcirc, radius«101,105” will make an arc
five dots wide, as in the following figure:

Fig. 4-4.

49

The TUTOR Language

The iterative -do- statement also helps in making animations. The
following statements will cause the half-circle to move horizontally
across the screen. (See Figures 4-5a and 4-5b.)

unit
at
write
calc

do

do

at
write
E3

unit
do
catchup
pause
mode
do
mode

march
3120
Move figure left to right.
y<=280
radius<75
anim,x<100,350,50
halfcirc $$ draw final figure
3220
All done.
anim
halfcirc $$ draw figure
$$ wait for it to finish
1 $$ pause an additional second
erase
halfcirc $$ erase the figure
write

N

Move figure left to right.

N

Move figure left to right.
ALl dong

Fig. 4-5a.

50

Fig. 4-5b.

DOING CALCULATIONS IN TUTOR

We simply -do- unit “anim” repeatedly for different values of x (the
horizontal position of the figure on the screen). Unit “anim” does unit
“halfcirc” twice, once to draw and once to erase the figure interrupted by
a one-second pause. The -catchup- command insures that a second will
elapse from the end of drawing the figure on the screen until the
beginning of erasing it.

Now that you have studied -define-, -calc-, and -do-, you have learned
the basic techniques of how to tell PLLATO what calculations you want
performed. We have applied these tools to a variety of display generation
problems, and we will later use calculations for controlling sequencing in
a lesson and for judging responses. Hopefully, you have gained added
insight into the value of a subroutine. Notice how many different ways
we have used the single unit “halfcirc”!

Showing the Value of a Variable

We have learned how to calculate and how to store results in
variables. How do we show these results on the screen? Suppose we
perform this calculation:

calc y<«bsqrt(37) $$ or, ye<5x37% ; “sqrt’” means square root

How do we later show the value of y? Assume we have defined y. Perhaps
we could use this:

write 'y
No, that won’t work; that will just put the letter “y”” on the screen. The
-write- command is basically a device for displaying non-varying text, not
for showing the value contained in a variable. We need another com-
mand:

show vy

This will show the value of y in an appropriate format (-show- picks
an appropriate number of significant figures and will use a scientific
format such as 6.7x 1013, if the number is large enough to require it). By
using -show- instead of -write-, you tell TUTOR that you want the stored
value to be shown rather than just the characters in the tag.

51

The TUTOR Language

The -show- command will normally choose 4 significant figures, so
that a typical display might be “~23.47”. You can specify a different
value by giving a second “argument” (arguments are the individual
pieces of the tag of a statement):

show vy,8 $$ 8 significant figures

The arguments of the -show- command can, of course, be complicat-
ed expressions:

show 10+30cos(2angle),format+2

In fact, it is a general rule that you can use complicated expres-
sions anywhere in TUTOR statements. For example, “draw 5rad
+225,341.;123—1.2,28L.”!

Here is a short program which uses -show- to display a table (see
Figure 4-6) of square roots of the integers from 1 to 15:

define N=v1

unit roots

at 310 $$ write titles for the two columns

write N

at 325

Write N'/2 N Nl/z

do root,N<1,15

%

. 1 1

unit root

at 410+100N 2 L.414
3 1.732

show N 4 2

at 425+100N 5 2.236

N) '

show sqrt(6 2. 449
7 2.646
8 2.828
9 3
18 3.162
11 3.317
12 3.464
13 3.606
14 3.742
15 3.873

Fig. 4-6.
52

DOING CALCULATIONS IN TUTOR

The last statement could also be written as “show N%”. This
technique of making tables, including the use of the -do- index (N) to
position the displays (as in “at 425+10ON"") is an important and
powerful tool.

There are other commands for displaying variables: -showe- (expo-
nential), -showt- (tabular), -showa- (alphanumeric), -showo- (octal), and
-showz- (show trailing zeroes). These are described in detail in the
reference material mentioned in Appendix A.

Although -write- is basically designed for non-variable text, combi-
nations of text and variables occur so often that TUTOR makes it easy to
“embed” a -show- command within a -write-:

write The area was <s,13.7w,6> square miles.

The embedded “s” indicates a -show- command and the remainder
“13.7w,6” is its tag. Other permissible abbreviations include “o0”

(showo), “a” (showa), “e¢” (showe), “t” (showt) and “z” (showz). The
above -write- statement is equivalent to:

write The area was
show 13.7w,6
write square miles.

Passing Arguments to Subroutines

When you write “show 13.7w,6”, you are passing two pieces of
information to the -show- command. You are giving two numerical
“arguments” (13.7w and 6) to the TUTOR machinery that performs the
-show- operations. Similarly, we created a half-circular arc with
“circle radius,0,180” in which we passed three arguments to the
TUTOR circle-making machinery. Sometimes certain arguments are
optional. For example, “show 13.7w”" will use a default second argu-
ment of 4 (significant figures), and omitting the last two arguments in a
-circle- command (“circle radius”) will cause a full circle to be drawn
rather than an arc. When we pass one argument to the -at- command
(“at 1215”), we mean coarse grid; when we pass two arguments
(“at 125,375”), we mean finc grid.

This notion of passing arguments to TUTOR commands, with some
arguments optional, also applies to your own subroutines, such as unit
“halfcirc”. The “halfcirc” subroutine needs three arguments (x, y, and
radius) to do its job. We passed these arguments by assigning values to
variables and letting “halfcirc” pick up those values and use them:

53

The TUTOR Language

54

define x=v1,y=v2radius=v3
unit vary
calc x<«=150

y<=300
radius<100
do halfcirc
calc radius«50
do halfcirc
*

unit halfcirc

at XY

circle radius,8,180

draw x-—radius,y;x+radius,y

Notice that the second -do- will use the original “x” and “y”, since these
variables have not been changed. It is as though we passed only one
argument (“radius’) to the subroutine.

TUTOR permits another way of writing this sequence which looks
similar to the way onc passes arguments to the “built-in subroutines”
(-show-, -circle-, -at-, etc.):

define x=v1,y=v2radius=v3
unit vary

- do halfcirc(150,300,100)
do - halfcirc(50)
*

unit halfcirc(x,y,radius)

at XY

circle radius,0,180

draw x-—radius,y;x+radius,y

The statement “unit halfcire(x,y,radius)” tells TUTOR that when this
unit is done as a subroutine, arguments are to be passed to it. The
statement “do halfcirc(150,300,100)” tells TUTOR to pass the listed
arguments to the “halfcirc” subroutine for its use. The arguments are
passed in the order listed:

do halfcirc(150,300,100)
1/2 /3 (Pass 3 Arguments)

unit halfcirc(x,y,radius)

DOING CALCULATIONS IN TUTOR

These variables are now set for use in the subroutine. It is precisely as
({32 (X3 b4

though we had assigned values to “x”, “y”, and “radius” by using -calc-.
If some arguments are omitted, these variables are not transferred:

do halfcirc(235,,85)
1 2 (Pass 2 Arguments)
unit halfcirc(x,y,radius)

In this case the variable “y” has not been assigned a new value, so it
retains the value it had, which was 300. (The value of “y” could have
changed if “halfcirc” itself altered it. For example, if we append
“calc y«75” to the end of unit “halfcirc”, “y” would now be 75,
although it was originally passed the value of 300 by the first -do-
statement during the making of the first display.)

Arguments to be passed need not be simple numbers. Each argument
can be a complicated expression. The expressions are evaluated, then
passed in order:

do halfcirc(3.4radius—25,radius+25y,200 +vy)

1 2

unit halfcirc(x,y,radius)
It is as though we had written:

calc argl<«3.4radius—25
arg2<«radius+25y
arg3<200+y
x<arg1
y<arg2
radius<arg3

Just as the -at- command handles its arguments differently depend-
ing on the number of arguments (one for coarse grid and two for fine
grid), so it is possible for your subroutines to do such things. There is a
TUTOR-defined “system variable” named “args” which always contains
the number of arguments passed the last time a subroutine was done. By
“system variable” we mean a variable separate from the student variables

55

The TUTOR Language

56

(v1 through v150) whose contents are assigned by TUTOR rather than by
you. You do not define system variables; they are already defined for you.
(Indeed, if you say “define args=v3”, you will override TUTOR’s
definition of the meaning of “args”, so that “args” will mean “v3” rather
than “the number of arguments passed to a subroutine”.) In Chapter 6
(Conditional Commands) you will see how you could do a variety of
things in a subroutine (conditional on the value of “args”) which are
similar to the kinds of things the -at- command does.

Our subroutine “halfcirc” uses three student variables: v1, v2, and
v3, defined as “x”, “y”, and “radius”. Another subroutine could use the
same variables for carrying out its work, but it must be kept in mind that
-do-ing this subroutine will affect v1, v2, and v3, since arguments will be
passed.

Suppose one subroutine uses another, with “nested” -do-s like this:

do A(b)

. PASS

unit A(v11) $$ v11«h

do B(3+v11)

calc v11<10viT $$ v11<50
PASS

unit B(v25) $$ v25+8

Variable v11 ends up with the value 50. It is advisable to use different
variables in the two subroutines. Here unit A uses v11 and unit B uses
v25. It can lead to confusion or even logical errors if B also uses v11 to do
its work, since -do-ing B will affect the value of v11 used by A. Here is the
structure to be avoided:

do A(5)
PASS

unit A(v11) $$ v11<h

DOING CALCULATIONS IN TUTOR

do B(3+v11)
calc v11<10v1i $$ v11<80

PASS
unit B(v11) $$ v11<8

Now variable v11 ends up with the value 80 rather than 50. This is due to
the effect on v11 of the “do B(3+v11)” statement, which assigns the
value of 8 to v11 by passing the argument to unit “B”.

This concludes our discussion of calculations for now. We can
calculate, save results, use them to make displays, and show the values.
In the next section, we will use calculations in association with guiding
the sequencing of a lesson.

57

